| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xfs_ioc_fstrim() doesn't treat the incoming offset and length
correctly. It treats them as a filesystem block address, rather than
a disk address. This is wrong because the range passed in is a
linear representation, while the filesystem block address notation
is a sparse representation. Hence we cannot convert the range direct
to filesystem block units and then use that for calculating the
range to trim.
While this sounds dangerous, the problem is limited to calculating
what AGs need to be trimmed. The code that calcuates the actual
ranges to trim gets the right result (i.e. only ever discards free
space), even though it uses the wrong ranges to limit what is
trimmed. Hence this is not a bug that endangers user data.
Fix this by treating the range as a disk address range and use the
appropriate functions to convert the range into the desired formats
for calculations.
Further, fix the first free extent lookup (the longest) to actually
find the largest free extent. Currently this lookup uses a <=
lookup, which results in finding the extent to the left of the
largest because we can never get an exact match on the largest
extent. This is due to the fact that while we know it's size, we
don't know it's location and so the exact match fails and we move
one record to the left to get the next largest extent. Instead, use
a >= search so that the lookup returns the largest extent regardless
of the fact we don't get an exact match on it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently have significant issues with the amount of stack that
allocation in XFS uses, especially in the writeback path. We can
easily consume 4k of stack between mapping the page, manipulating
the bmap btree and allocating blocks from the free list. Not to
mention btree block readahead and other functionality that issues IO
in the allocation path.
As a result, we can no longer fit allocation in the writeback path
in the stack space provided on x86_64. To alleviate this problem,
introduce an allocation workqueue and move all allocations to a
seperate context. This can be easily added as an interposing layer
into xfs_alloc_vextent(), which takes a single argument structure
and does not return until the allocation is complete or has failed.
To do this, add a work structure and a completion to the allocation
args structure. This allows xfs_alloc_vextent to queue the args onto
the workqueue and wait for it to be completed by the worker. This
can be done completely transparently to the caller.
The worker function needs to ensure that it sets and clears the
PF_TRANS flag appropriately as it is being run in an active
transaction context. Work can also be queued in a memory reclaim
context, so a rescuer is needed for the workqueue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
|
|
|
|
|
|
| |
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
| |
Remove the definitions and usage of the macros XFS_BUF_ERROR,
XFS_BUF_GETERROR and XFS_BUF_ISERROR.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
| |
Remove two variables that serve no purpose in
xfs_alloc_ag_vextent_exact().
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
Micro-optimize various comparisms by always byteswapping the constant
instead of the variable, which allows to do the swap at compile instead
of runtime.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Blocks for the allocation btree are allocated from and released to
the AGFL, and thus frequently reused. Even worse we do not have an
easy way to avoid using an AGFL block when it is discarded due to
the simple FILO list of free blocks, and thus can frequently stall
on blocks that are currently undergoing a discard.
Add a flag to the busy extent tracking structure to skip the discard
for allocation btree blocks. In normal operation these blocks are
reused frequently enough that there is no need to discard them
anyway, but if they spill over to the allocation btree as part of a
balance we "leak" blocks that we would otherwise discard. We could
fix this by adding another flag and keeping these block in the
rbtree even after they aren't busy any more so that we could discard
them when they migrate out of the AGFL. Given that this would cause
significant overhead I don't think it's worthwile for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we have reliably tracking of deleted extents in a
transaction we can easily implement "online" discard support
which calls blkdev_issue_discard once a transaction commits.
The actual discard is a two stage operation as we first have
to mark the busy extent as not available for reuse before we
can start the actual discard. Note that we don't bother
supporting discard for the non-delaylog mode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When allocating an extent that is long enough to consume the
remaining free space in an AG, we need to ensure that the allocation
leaves enough space in the AG for any subsequent bmap btree blocks
that are needed to track the new extent. These have to be allocated
in the same AG as we only reserve enough blocks in an allocation
transaction for modification of the freespace trees in a single AG.
xfs_alloc_fix_minleft() has been considering blocks on the AGFL as
free blocks available for extent and bmbt block allocation, which is
not correct - blocks on the AGFL are there exclusively for the use
of the free space btrees. As a result, when minleft is less than the
number of blocks on the AGFL, xfs_alloc_fix_minleft() does not trim
the given extent to leave minleft blocks available for bmbt
allocation, and hence we can fail allocation during bmbt record
insertion.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
Instead of finding the per-ag and then taking and releasing the pagb_lock
for every single busy extent completed sort the list of busy extents and
only switch betweens AGs where nessecary. This becomes especially important
with the online discard support which will hit this lock more often.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Update the extent tree in case we have to reuse a busy extent, so that it
always is kept uptodate. This is done by replacing the busy list searches
with a new xfs_alloc_busy_reuse helper, which updates the busy extent tree
in case of a reuse. This allows us to allow reusing metadata extents
unconditionally, and thus avoid log forces especially for allocation btree
blocks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Every time we reallocate a busy extent, we cause a synchronous log force
to occur to ensure the freeing transaction is on disk before we continue
and use the newly allocated extent. This is extremely sub-optimal as we
have to mark every transaction with blocks that get reused as synchronous.
Instead of searching the busy extent list after deciding on the extent to
allocate, check each candidate extent during the allocation decisions as
to whether they are in the busy list. If they are in the busy list, we
trim the busy range out of the extent we have found and determine if that
trimmed range is still OK for allocation. In many cases, this check can
be incorporated into the allocation extent alignment code which already
does trimming of the found extent before determining if it is a valid
candidate for allocation.
Based on earlier patches from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While we need to make sure we do not reuse busy extents, there is no need
to force out busy extents when moving them between the AGFL and the
freespace btree as we still take care of that when doing the real allocation.
To avoid the log force when just moving extents from the different free
space tracking structures, move the busy search out of
xfs_alloc_get_freelist into the callers that need it, and move the busy
list insert from xfs_free_ag_extent which is used both by AGFL refills
and real allocation to xfs_free_extent, which is only used by the latter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
A fuzzed filesystem crashed a kernel when freeing an extent with a
block number beyond the end of the filesystem. Convert all the debug
asserts in xfs_free_extent() to active checks so that we catch bad
extents and return that the filesytsem is corrupted rather than
crashing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
| |
Updating the AGF and transactions counters is duplicated between allocating
and freeing extents. Factor the code into a common helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Pass a xfs_alloc_arg structure to xfs_alloc_compute_aligned and derive
the alignment and minlen paramters from it. This cleans up the existing
callers, and we'll need even more information from the xfs_alloc_arg
in subsequent patches. Based on a patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
Allow manual discards from userspace using the FITRIM ioctl. This is not
intended to be run during normal workloads, as the freepsace btree walks
can cause large performance degradation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a new xfs_alloc_find_best_extent that does a forward/backward
search in the allocation btree. That code previously was existed
two times in xfs_alloc_ag_vextent_near, once for each search
direction.
Based on an earlier patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
Use a goto label to consolidate all block not found cases, and add a
tracepoint for them. Also clean up a few whitespace issues.
Based on an earlier patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ionut Gabriel Popescu <poyo_vl@yahoo.com> submitted a simple change
to eliminate some "may be used uninitialized" warnings when building
XFS. The reported condition seems to be something that GCC did not
used to recognize or report. The warnings were produced by:
gcc version 4.5.0 20100604
[gcc-4_5-branch revision 160292] (SUSE Linux)
Signed-off-by: Ionut Gabriel Popescu <poyo_vl@yahoo.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
| |
[hch: dropped a few hunks that need structural changes instead]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
|
|
|
|
| |
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Dmapi support was never merged upstream, but we still have a lot of hooks
bloating XFS for it, all over the fast pathes of the filesystem.
This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM
support in mainline at least the namespace events can be done much saner
in the VFS instead of the individual filesystem, so it's not like this
is much help for future work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we free a metadata extent, we record it in the per-AG busy
extent array so that it is not re-used before the freeing
transaction hits the disk. This array is fixed size, so when it
overflows we make further allocation transactions synchronous
because we cannot track more freed extents until those transactions
hit the disk and are completed. Under heavy mixed allocation and
freeing workloads with large log buffers, we can overflow this array
quite easily.
Further, the array is sparsely populated, which means that inserts
need to search for a free slot, and array searches often have to
search many more slots that are actually used to check all the
busy extents. Quite inefficient, really.
To enable this aspect of extent freeing to scale better, we need
a structure that can grow dynamically. While in other areas of
XFS we have used radix trees, the extents being freed are at random
locations on disk so are better suited to being indexed by an rbtree.
So, use a per-AG rbtree indexed by block number to track busy
extents. This incures a memory allocation when marking an extent
busy, but should not occur too often in low memory situations. This
should scale to an arbitrary number of extents so should not be a
limitation for features such as in-memory aggregation of
transactions.
However, there are still situations where we can't avoid allocating
busy extents (such as allocation from the AGFL). To minimise the
overhead of such occurences, we need to avoid doing a synchronous
log force while holding the AGF locked to ensure that the previous
transactions are safely on disk before we use the extent. We can do
this by marking the transaction doing the allocation as synchronous
rather issuing a log force.
Because of the locking involved and the ordering of transactions,
the synchronous transaction provides the same guarantees as a
synchronous log force because it ensures that all the prior
transactions are already on disk when the synchronous transaction
hits the disk. i.e. it preserves the free->allocate order of the
extent correctly in recovery.
By doing this, we avoid holding the AGF locked while log writes are
in progress, hence reducing the length of time the lock is held and
therefore we increase the rate at which we can allocate and free
from the allocation group, thereby increasing overall throughput.
The only problem with this approach is that when a metadata buffer is
marked stale (e.g. a directory block is removed), then buffer remains
pinned and locked until the log goes to disk. The issue here is that
if that stale buffer is reallocated in a subsequent transaction, the
attempt to lock that buffer in the transaction will hang waiting
the log to go to disk to unlock and unpin the buffer. Hence if
someone tries to lock a pinned, stale, locked buffer we need to
push on the log to get it unlocked ASAP. Effectively we are trading
off a guaranteed log force for a much less common trigger for log
force to occur.
Ideally we should not reallocate busy extents. That is a much more
complex fix to the problem as it involves direct intervention in the
allocation btree searches in many places. This is left to a future
set of modifications.
Finally, now that we track busy extents in allocated memory, we
don't need the descriptors in the transaction structure to point to
them. We can replace the complex busy chunk infrastructure with a
simple linked list of busy extents. This allows us to remove a large
chunk of code, making the overall change a net reduction in code
size.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove the XFS_LOG_FORCE argument which was always set, and the
XFS_LOG_URGE define, which was never used.
Split xfs_log_force into a two helpers - xfs_log_force which forces
the whole log, and xfs_log_force_lsn which forces up to the
specified LSN. The underlying implementations already were entirely
separate, as were the users.
Also re-indent the new _xfs_log_force/_xfs_log_force which
previously had a weird coding style.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently we define aliases for the buffer flags in various
namespaces, which only adds confusion. Remove all but the XBF_
flags to clean this up a bit.
Note that we still abuse XFS_B_ASYNC/XBF_ASYNC for some non-buffer
uses, but I'll clean that up later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Now that the perag structure is allocated memory rather than held in
an array, we don't need to have the busy extent array external to
the structure. Embed it into the perag structure to avoid needing an
extra allocation when setting up.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The use of an array for the per-ag structures requires reallocation
of the array when growing the filesystem. This requires locking
access to the array to avoid use after free situations, and the
locking is difficult to get right. To avoid needing to reallocate an
array, change the per-ag structures to an allocated object per ag
and index them using a tree structure.
The AGs are always densely indexed (hence the use of an array), but
the number supported is 2^32 and lookups tend to be random and hence
indexing needs to scale. A simple choice is a radix tree - it works
well with this sort of index. This change also removes another
large contiguous allocation from the mount/growfs path in XFS.
The growing process now needs to change to only initialise the new
AGs required for the extra space, and as such only needs to
exclusively lock the tree for inserts. The rest of the code only
needs to lock the tree while doing lookups, and hence this will
remove all the deadlocks that currently occur on the m_perag_lock as
it is now an innermost lock. The lock is also changed to a spinlock
from a read/write lock as the hold time is now extremely short.
To complete the picture, the per-ag structures will need to be
reference counted to ensure that we don't free/modify them while
they are still in use. This will be done in subsequent patch.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Start abstracting the perag references so that the indexing of the
structures is not directly coded into all the places that uses the
perag structures. This will allow us to separate the use of the
perag structure and the way it is indexed and hence avoid the known
deadlocks related to growing a busy filesystem.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we search for and find a busy extent during allocation we
force the log out to ensure the extent free transaction is on
disk before the allocation transaction. The current implementation
has a subtle bug in it--it does not handle multiple overlapping
ranges.
That is, if we free lots of little extents into a single
contiguous extent, then allocate the contiguous extent, the busy
search code stops searching at the first extent it finds that
overlaps the allocated range. It then uses the commit LSN of the
transaction to force the log out to.
Unfortunately, the other busy ranges might have more recent
commit LSNs than the first busy extent that is found, and this
results in xfs_alloc_search_busy() returning before all the
extent free transactions are on disk for the range being
allocated. This can lead to potential metadata corruption or
stale data exposure after a crash because log replay won't replay
all the extent free transactions that cover the allocation range.
Modified-by: Alex Elder <aelder@sgi.com>
(Dropped the "found" argument from the xfs_alloc_busysearch trace
event.)
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert the old xfs tracing support that could only be used with the
out of tree kdb and xfsidbg patches to use the generic event tracer.
To use it make sure CONFIG_EVENT_TRACING is enabled and then enable
all xfs trace channels by:
echo 1 > /sys/kernel/debug/tracing/events/xfs/enable
or alternatively enable single events by just doing the same in one
event subdirectory, e.g.
echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable
or set more complex filters, etc. In Documentation/trace/events.txt
all this is desctribed in more detail. To reads the events do a
cat /sys/kernel/debug/tracing/trace
Compared to the last posting this patch converts the tracing mostly to
the one tracepoint per callsite model that other users of the new
tracing facility also employ. This allows a very fine-grained control
of the tracing, a cleaner output of the traces and also enables the
perf tool to use each tracepoint as a virtual performance counter,
allowing us to e.g. count how often certain workloads git various
spots in XFS. Take a look at
http://lwn.net/Articles/346470/
for some examples.
Also the btree tracing isn't included at all yet, as it will require
additional core tracing features not in mainline yet, I plan to
deliver it later.
And the really nice thing about this patch is that it actually removes
many lines of code while adding this nice functionality:
fs/xfs/Makefile | 8
fs/xfs/linux-2.6/xfs_acl.c | 1
fs/xfs/linux-2.6/xfs_aops.c | 52 -
fs/xfs/linux-2.6/xfs_aops.h | 2
fs/xfs/linux-2.6/xfs_buf.c | 117 +--
fs/xfs/linux-2.6/xfs_buf.h | 33
fs/xfs/linux-2.6/xfs_fs_subr.c | 3
fs/xfs/linux-2.6/xfs_ioctl.c | 1
fs/xfs/linux-2.6/xfs_ioctl32.c | 1
fs/xfs/linux-2.6/xfs_iops.c | 1
fs/xfs/linux-2.6/xfs_linux.h | 1
fs/xfs/linux-2.6/xfs_lrw.c | 87 --
fs/xfs/linux-2.6/xfs_lrw.h | 45 -
fs/xfs/linux-2.6/xfs_super.c | 104 ---
fs/xfs/linux-2.6/xfs_super.h | 7
fs/xfs/linux-2.6/xfs_sync.c | 1
fs/xfs/linux-2.6/xfs_trace.c | 75 ++
fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++
fs/xfs/linux-2.6/xfs_vnode.h | 4
fs/xfs/quota/xfs_dquot.c | 110 ---
fs/xfs/quota/xfs_dquot.h | 21
fs/xfs/quota/xfs_qm.c | 40 -
fs/xfs/quota/xfs_qm_syscalls.c | 4
fs/xfs/support/ktrace.c | 323 ---------
fs/xfs/support/ktrace.h | 85 --
fs/xfs/xfs.h | 16
fs/xfs/xfs_ag.h | 14
fs/xfs/xfs_alloc.c | 230 +-----
fs/xfs/xfs_alloc.h | 27
fs/xfs/xfs_alloc_btree.c | 1
fs/xfs/xfs_attr.c | 107 ---
fs/xfs/xfs_attr.h | 10
fs/xfs/xfs_attr_leaf.c | 14
fs/xfs/xfs_attr_sf.h | 40 -
fs/xfs/xfs_bmap.c | 507 +++------------
fs/xfs/xfs_bmap.h | 49 -
fs/xfs/xfs_bmap_btree.c | 6
fs/xfs/xfs_btree.c | 5
fs/xfs/xfs_btree_trace.h | 17
fs/xfs/xfs_buf_item.c | 87 --
fs/xfs/xfs_buf_item.h | 20
fs/xfs/xfs_da_btree.c | 3
fs/xfs/xfs_da_btree.h | 7
fs/xfs/xfs_dfrag.c | 2
fs/xfs/xfs_dir2.c | 8
fs/xfs/xfs_dir2_block.c | 20
fs/xfs/xfs_dir2_leaf.c | 21
fs/xfs/xfs_dir2_node.c | 27
fs/xfs/xfs_dir2_sf.c | 26
fs/xfs/xfs_dir2_trace.c | 216 ------
fs/xfs/xfs_dir2_trace.h | 72 --
fs/xfs/xfs_filestream.c | 8
fs/xfs/xfs_fsops.c | 2
fs/xfs/xfs_iget.c | 111 ---
fs/xfs/xfs_inode.c | 67 --
fs/xfs/xfs_inode.h | 76 --
fs/xfs/xfs_inode_item.c | 5
fs/xfs/xfs_iomap.c | 85 --
fs/xfs/xfs_iomap.h | 8
fs/xfs/xfs_log.c | 181 +----
fs/xfs/xfs_log_priv.h | 20
fs/xfs/xfs_log_recover.c | 1
fs/xfs/xfs_mount.c | 2
fs/xfs/xfs_quota.h | 8
fs/xfs/xfs_rename.c | 1
fs/xfs/xfs_rtalloc.c | 1
fs/xfs/xfs_rw.c | 3
fs/xfs/xfs_trans.h | 47 +
fs/xfs/xfs_trans_buf.c | 62 -
fs/xfs/xfs_vnodeops.c | 8
70 files changed, 2151 insertions(+), 2592 deletions(-)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
|
|
|
| |
Signed-off-by: Dave Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
| |
Add a helper to read the AGF header and perform basic verification.
Based on hunks from a larger patch from Dave Chinner.
(First sent on Juli 23rd)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
structures.
Always use the generic xfs_btree_block type instead of the short / long
structures. Add XFS_BTREE_SBLOCK_LEN / XFS_BTREE_LBLOCK_LEN defines for
the length of a short / long form block. The rationale for this is that we
will grow more btree block header variants to support CRCs and other RAS
information, and always accessing them through the same datatype with
unions for the short / long form pointers makes implementing this much
easier.
SGI-PV: 988146
SGI-Modid: xfs-linux-melb:xfs-kern:32300a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
|
|
|
|
|
|
|
|
| |
SGI-PV: 987683
SGI-Modid: xfs-linux-melb:xfs-kern:32232a
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Not really much reason to make it generic given that it's so small, but
this is the last non-method in xfs_alloc_btree.c and xfs_ialloc_btree.c,
so it makes the whole btree implementation more structured.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32206a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make the btree delete code generic. Based on a patch from David Chinner
with lots of changes to follow the original btree implementations more
closely. While this loses some of the generic helper routines for
inserting/moving/removing records it also solves some of the one off bugs
in the original code and makes it easier to verify.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32205a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make the btree insert code generic. Based on a patch from David Chinner
with lots of changes to follow the original btree implementations more
closely. While this loses some of the generic helper routines for
inserting/moving/removing records it also solves some of the one off bugs
in the original code and makes it easier to verify.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32202a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
From: Dave Chinner <dgc@sgi.com>
The most complicated part here is the lastrec tracking for the alloc
btree. Most logic is in the update_lastrec method which has to do some
hopefully good enough dirty magic to maintain it.
[hch: split out from bigger patch and a rework of the lastrec
logic]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32194a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
From: Dave Chinner <dgc@sgi.com>
[hch: split out from bigger patch and minor adaptions]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32192a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
From: Dave Chinner <dgc@sgi.com>
[hch: split out from bigger patch and minor adaptions]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32191a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
From: Dave Chinner <dgc@sgi.com>
Because this is the first major generic btree routine this patch includes
some infrastrucure, first a few routines to deal with a btree block that
can be either in short or long form, second xfs_btree_read_buf_block,
which is the new central routine to read a btree block given a cursor, and
third the new xfs_btree_ptr_addr routine to calculate the address for a
given btree pointer record.
[hch: split out from bigger patch and minor adaptions]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32190a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xfs_btree_init_cursor contains close to little shared code for the
different btrees and will get even more non-common code in the future.
Split it up into one routine per btree type.
Because xfs_btree_dup_cursor needs to call the init routine for a generic
btree cursor add a new btree operation vector that contains a dup_cursor
method that initializes a new cursor based on an existing one.
The btree operations vector is based on an idea and code from Dave Chinner
and will grow more entries later during this series.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32176a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix a logic error in xfs_alloc_ag_vextent_near(). This is a regression
introduced by the error handling changes.
SGI-PV: 890084
SGI-Modid: xfs-linux-melb:xfs-kern:30838a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xfs_alloc_compute_aligned() returns a value based on a comparison of the
computed extent length and the minimum length allowed. This is only used
by some callers - the other four return parameters are used more often.
Hence move the comparison to the code that actually needs to do it and
make xfs_alloc_compute_aligned() a void function.
SGI-PV: 980084
SGI-Modid: xfs-linux-melb:xfs-kern:30797a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xfs_alloc_search_busy() returns an index into the busy array if the extent
was found in the array. This is never checked, and the
xfs_alloc_search_busy() does a log force to prevent reuse of the extent
before the free transaction hits the disk. Hence the return value is
useless. Declare the function void and remove the slot number from the
tracing as well.
SGI-PV: 980084
SGI-Modid: xfs-linux-melb:xfs-kern:30796a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
| |
__FUNCTION__ is gcc-specific, use __func__
SGI-PV: 976035
SGI-Modid: xfs-linux-melb:xfs-kern:30775a
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
remove beX_add functions and replace all uses with beX_add_cpu
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Dave Chinner <dgc@sgi.com>
Cc: Timothy Shimmin <tes@sgi.com>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
remove spinlock init abstraction macro in spin.h, remove the callers, and
remove the file. Move no-op spinlock_destroy to xfs_linux.h Cleanup
spinlock locals in xfs_mount.c
SGI-PV: 970382
SGI-Modid: xfs-linux-melb:xfs-kern:29751a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Un-obfuscate pagb_lock, remove mutex_lock->spin_lock macros, call
spin_lock directly, remove extraneous cookie holdover from old xfs code,
and change lock type to spinlock_t.
SGI-PV: 970382
SGI-Modid: xfs-linux-melb:xfs-kern:29743a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
|