| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
| |
If some read/write error happens (eg.CRC error), UBIFS swotches to
read-only mode, but the VFS infomation still not update.
This patch add this also make /proc/mounts update.
Signed-off-by: Zhang Jiejing <kzjeef@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
|
|
|
|
|
| |
Convert the journal head integer into the head name when printing
debugging information.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
| |
Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com>
|
|
|
|
| |
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
| |
This patch cleans up write-buffer timeout initialization and
sets it to 3-5 interval.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the following minor optimization:
1. If write-buffer does not use the timer, indicate it with the
wbuf->no_timer variable, instead of using the wbuf->softlimit
variable. This is better because wbuf->softlimit is of ktime_t
type, and the ktime_to_ns function contains 64-bit multiplication.
2. Do not call the 'hrtimer_cancel()' function for write-buffers
which do not use timers.
3. Do not cancel the timer in 'ubifs_put_super()' because the
synchronization function does this.
This patch also removes a confusing comment.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
| |
1. Make the I/O debugging message print the journal head number.
2. Add prints to timer functions.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix the following warning:
fs/ubifs/io.c: In function 'ubifs_wbuf_init':
fs/ubifs/io.c:860: warning: integer overflow in expression
And limit maximum hrtimer delta to ULONG_MAX because the
argument is 'unsigned long'.
Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
UBIFS uses timers for write-buffer write-back. It is not
crucial for us to write-back exactly on time. We are fine
to write-back a little earlier or later. And this means
we may optimize UBIFS timer so that it could be groped
with a close timer event, so that the CPU would not be
waken up just to do the write back. This is optimization
to lessen power consumption, which is important in
embedded devices UBIFS is used for.
hrtimers have a nice feature: they are effectively range
timers, and we may defind the soft and hard limits for
it. Standard timers do not have these feature. They may
only be made deferrable, but this means there is effectively
no hard limit. So, we will better use hrtimers.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When data CRC checking is disabled, UBIFS returns incorrect return
code from the 'try_read_node()' function (0 instead of 1, which means
CRC error), which make the caller re-read the data node again, but using
a different code patch, so the second read is fine. Thus, we read the
same node twice. And the result of this is that UBIFS is slower
with no_chk_data_crc option than it is with chk_data_crc option.
This patches fixes the problem.
Reported-by: Reuben Dowle <Reuben.Dowle@navico.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
| |
When UBIFS switches to R/O mode because of an error,
it is reasonable to enable data CRC checking.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
UBIFS read performance can be improved by skipping the CRC
check when data nodes are read. This option can be used if
the underlying media is considered to be highly reliable.
Note that CRCs are always checked for metadata.
Read speed on Arm platform with OneNAND goes from 19 MiB/s
to 27 MiB/s with data CRC checking disabled.
Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
|
|
|
|
|
|
|
|
|
|
|
| |
We use ubifs_ro_mode() quite a lot, and not in fast-path, so
there is no reason to blow the code up by having it inlined.
Also, we usually want R/O mode change to be seen to other
CPUs as soon as possible, so when we make this a function
call, we will automatically have a memory barrier.
Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
This is a new flash file system. See
http://www.linux-mtd.infradead.org/doc/ubifs.html
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
|