| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently compressed IO does not deal with not having its entire extent able to
be allocated. So if we have enough free space to allocate for the extent, but
its not contiguous, it will fail spectacularly. This patch fixes this by
falling back on uncompressed IO which lets us spread the delalloc extent across
multiple extents. I tested this by making us randomly think the reservation had
failed to make it fallback on the uncompressed io way and it seemed to work
fine. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes a few things. Hopefully the comments are helpfull, but
I'll try and be as verbose here.
Problem:
My fedora box was taking 1 minute and 21 seconds to boot with btrfs as root.
Part of this problem was we pick the first block group we can find and start
caching it, even if it may not have enough free space. The other problem is
we only search for cached block groups the first time around, which we won't
find any cached block groups because this is a newly mounted fs, so we end up
caching several block groups during bootup, which with alot of fragmentation
takes around 30-45 seconds to complete, which bogs down the system. So
Solution:
1) Don't cache block groups willy-nilly at first. Instead try and figure out
which block group has the most free, and therefore will take the least amount
of time to cache.
2) Don't be so picky about cached block groups. The other problem is once
we've filled up a cluster, if the block group isn't finished caching the next
time we try and do the allocation we'll completely ignore the cluster and
start searching from the beginning of the space, which makes us cache more
block groups, which slows us down even more. So instead of skipping block
groups that are not finished caching when we have a hint, only skip the block
group if it hasn't started caching yet.
There is one other tweak in here. Before if we allocated a chunk and still
couldn't find new space, we'd end up switching the space info to force another
chunk allocation. This could make us end up with way too many chunks, so keep
track of this particular case.
With this patch and my previous cluster fixes my fedora box now boots in 43
seconds, and according to the bootchart is not held up by our block group
caching at all.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
| |
I re-orderred the checks to avoid dereferencing "em" if it was null.
Found by smatch static checker.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
We don't need to call btrfs_release_path because btrfs_free_path will do
that for us.
Signed-off-by: Li Dongyang <Jerry87905@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
We weren't reserving metadata space for rename, rmdir and unlink, which could
cause problems.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes a problem where max_size can be set to 0 even though we
filled the cluster properly. We set max_size to 0 if we restart the cluster
window, but if the new start entry is big enough to be our new cluster then we
could return with a max_size set to 0, which will mean the next time we try to
allocate from this cluster it will fail. So set max_extent to the entry's
size. Tested this on my box and now we actually allocate from the cluster
after we fill it. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We use journal_info to tell if we're in a nested transaction to make sure we
don't commit the transaction within a nested transaction. We use another
method to see if there are any outstanding ioctl trans handles, so if we're
starting one do not set current->journal_info, since it will screw with other
filesystems. This patch also cleans up the starting stuff so there aren't any
magic numbers.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sometimes our start allocation hint when we cow a file can be either
EXTENT_HOLE or some other such place holder, which is not optimal. So if we
find that our em->block_start is one of these special values, check to see
where the first block of the inode is stored, and use that as a hint. If that
block is also a special value, just fallback on a hint of 0 and let the
allocator figure out a good place to put the data.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have an optimization in btrfs to allow blocks to be
immediately freed if they were allocated in this transaction and never
written. Otherwise they are pinned and freed when the transaction
commits.
This isn't optimal for discard mode because immediately freeing
them means immediately discarding them. It is better to give the
block to the pinning code and letting the (slow) discard happen later.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
| |
The discard support code in btrfs currently is guarded by ifdefs for
BIO_RW_DISCARD, which is never defines as it's the name of an enum
memeber. Just remove the useless ifdefs to actually enable the code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
Enable discard by default is not a good idea given the the trim speed
of SSD prototypes we've seen, and the carecteristics for many high-end
arrays. Turn of discards by default and require the -o discard option
to enable them on.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
| |
A recently fsync optimization make btrfs_sync_log skip calling
wait_for_writer in the single log writer case. This is incorrect
since the writer count can also be increased by btrfs_pin_log.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
There's a problem where we don't do any space reservation for truncates, which
can cause you to OOPs because you will be allowed to go off in the weeds a bit
since we don't account for the delalloc bytes that are created as a result of
the truncate.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
The btrfs acl code was #ifdefing for a define
that didn't exist. This correctly matches it
to the values used by the Kconfig file.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Syncing the tree log is a 3 phase operation.
1) write and wait for all the tree log blocks for a given root.
2) write and wait for all the tree log blocks for the
tree of tree log roots.
3) write and wait for the super blocks (barriers here)
This isn't as efficient as it could be because there is
no requirement to wait for the blocks from step one to hit the disk
before we start writing the blocks from step two. This commit
changes the sequence so that we don't start waiting until
all the tree blocks from both steps one and two have been sent
to disk.
We do this by breaking up btrfs_write_wait_marked_extents into
two functions, which is trivial because it was already broken
up into two parts.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
rpm has a habit of running fdatasync when the file hasn't
changed. We already detect if a file hasn't been changed
in the current transaction but it might have been sent to
the tree-log in this transaction and not changed since
the last call to fsync.
In this case, we want to avoid a tree log sync, which includes
a number of synchronous writes and barriers. This commit
extends the existing tracking of the last transaction to change
a file to also track the last sub-transaction.
The end result is that rpm -ivh and -Uvh are roughly twice as fast,
and on par with ext3.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
During a tree-log commit for fsync, we've been writing at least
two copies of the super block and forcing them to disk.
The other filesystems write only one, and this change brings us on
par with them. A full transaction commit will write all the super
copies, so we still have redundant info written on a regular
basis.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The file clone ioctl was incorrectly taking the offset into the
extent on disk into account when calculating the length of the
cloned extent.
The length never changes based on the offset into the physical extent.
Test case:
fallocate -l 1g image
mke2fs image
bcp image image2
e2fsck -f image2
(errors on image2)
The math bug ends up wrapping the length of the extent, and things
go wrong from there.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
The extent_type variable was exposed uninit via a goto. It should be
impossible to trigger because it is protected by a check on another
variable, but this makes sure.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
| |
This patch reading level 0 tree blocks that already use full backrefs.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
The use of btrfs_dentry_delete is removing dentries from the
dcache when deleting subvolumne. btrfs_dentry_delete ignores
negative dentries. This is incorrect since if we don't remove
the negative dentry, its parent dentry can't be removed.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
| |
This patch optimizes the tree logging stuff so it doesn't always wait 1 jiffie
for new people to join the logging transaction if there is only ever 1 writer.
This helps a little bit with latency where we have something like RPM where it
will fdatasync every file it writes, and so waiting the 1 jiffie for every
fdatasync really starts to add up.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch moves the delalloc flushing that occurs when we are under space
pressure off to a async thread pool. This helps since we only free up
metadata space when we actually insert the extent item, which means it takes
quite a while for space to be free'ed up if we wait on all ordered extents.
However, if space is freed up due to inline extents being inserted, we can
wake people who are waiting up early, and they can finish their work.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes an issue with the delalloc metadata space reservation
code. The problem is we used to free the reservation as soon as we
allocated the delalloc region. The problem with this is if we are not
inserting an inline extent, we don't actually insert the extent item until
after the ordered extent is written out. This patch does 3 things,
1) It moves the reservation clearing stuff into the ordered code, so when
we remove the ordered extent we remove the reservation.
2) It adds a EXTENT_DO_ACCOUNTING flag that gets passed when we clear
delalloc bits in the cases where we want to clear the metadata reservation
when we clear the delalloc extent, in the case that we do an inline extent
or we invalidate the page.
3) It adds another waitqueue to the space info so that when we start a fs
wide delalloc flush, anybody else who also hits that area will simply wait
for the flush to finish and then try to make their allocation.
This has been tested thoroughly to make sure we did not regress on
performance.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When compression is on, the cow_file_range code is farmed off to
worker threads. This allows us to do significant CPU work in parallel
on SMP machines.
But it is a delicate balance around when we clear flags and how. In
the past we cleared the delalloc flag immediately, which was safe
because the pages stayed locked.
But this is causing problems with the newest ENOSPC code, and with the
recent extent state cleanups we can now clear the delalloc bit at the
same time the uncompressed code does.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
| |
extent_clear_unlock_delalloc has a growing set of ugly parameters
that is very difficult to read and maintain.
This switches to a flag field and well named flag defines.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Like the cluster allocating stuff, we can lockup the box with the normal
allocation path. This happens when we
1) Start to cache a block group that is severely fragmented, but has a decent
amount of free space.
2) Start to commit a transaction
3) Have the commit try and empty out some of the delalloc inodes with extents
that are relatively large.
The inodes will not be able to make the allocations because they will ask for
allocations larger than a contiguous area in the free space cache. So we will
wait for more progress to be made on the block group, but since we're in a
commit the caching kthread won't make any more progress and it already has
enough free space that wait_block_group_cache_progress will just return. So,
if we wait and fail to make the allocation the next time around, just loop and
go to the next block group. This keeps us from getting stuck in a softlockup.
Thanks,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The btrfs async worker threads are used for a wide variety of things,
including processing bio end_io functions. This means that when
the endio threads aren't running, the rest of the FS isn't
able to do the final processing required to clear PageWriteback.
The endio threads also try to exit as they become idle and
start more as the work piles up. The problem is that starting more
threads means kthreadd may need to allocate ram, and that allocation
may wait until the global number of writeback pages on the system is
below a certain limit.
The result of that throttling is that end IO threads wait on
kthreadd, who is waiting on IO to end, which will never happen.
This commit fixes the deadlock by handing off thread startup to a
dedicated thread. It also fixes a bug where the on-demand thread
creation was creating far too many threads because it didn't take into
account threads being started by other procs.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a problem where page_mkwrite can be called on a dirtied page that
already has a delalloc range associated with it. The fix is to clear any
delalloc bits for the range we are dirtying so the space accounting gets
handled properly. This is the same thing we do in the normal write case, so we
are consistent across the board. With this patch we no longer leak reserved
space.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
btrfs_file_write was incorrectly calling generic_write_checks without
taking i_mutex. This lead to problems with racing around i_size when
doing O_APPEND writes.
The fix here is to move i_mutex higher.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
| |
wait_on_page_writeback_range/btrfs_wait_on_page_writeback_range takes
a pagecache offset, not a byte offset into the file. Shift the arguments
around to wait for the correct range
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
If an ioctl-initiated transaction is open, we can't force a commit during
the free space checks in order to free up pinned extents or else we
deadlock. Just ENOSPC instead.
A more satisfying solution that reserves space for the entire user
transaction up front is forthcoming...
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
Fix leak of vfsmount write reference and open_ioctl_trans reference on
ENOMEM. Clean up the error paths while we're at it.
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
| |
We've already defined CONFIG_BTRFS_POSIX_ACL in Kconfig, but we're
currently not using it and are testing CONFIG_FS_POSIX_ACL instead.
CONFIG_FS_POSIX_ACL states "Never use this symbol for ifdefs".
Signed-off-by: Chris Ball <cjb@laptop.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Error handling code following a kzalloc should free the allocated data.
The semantic match that finds the problem is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@r exists@
local idexpression x;
statement S;
expression E;
identifier f,f1,l;
position p1,p2;
expression *ptr != NULL;
@@
x@p1 = \(kmalloc\|kzalloc\|kcalloc\)(...);
...
if (x == NULL) S
<... when != x
when != if (...) { <+...x...+> }
(
x->f1 = E
|
(x->f1 == NULL || ...)
|
f(...,x->f1,...)
)
...>
(
return \(0\|<+...x...+>\|ptr\);
|
return@p2 ...;
)
@script:python@
p1 << r.p1;
p2 << r.p2;
@@
print "* file: %s kmalloc %s return %s" % (p1[0].file,p1[0].line,p2[0].line)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
We currently set sb->s_flags |= MS_POSIXACL unconditionally, which is
incorrect -- it tells the VFS that it shouldn't set umask because we
will, yet we don't set it ourselves if we aren't using POSIX ACLs, so
the umask ends up ignored.
Signed-off-by: Chris Ball <cjb@laptop.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At the start of a transaction we do a btrfs_reserve_metadata_space() and
specify how many items we plan on modifying. Then once we've done our
modifications and such, just call btrfs_unreserve_metadata_space() for
the same number of items we reserved.
For keeping track of metadata needed for data I've had to add an extent_io op
for when we merge extents. This lets us track space properly when we are doing
sequential writes, so we don't end up reserving way more metadata space than
what we need.
The only place where the metadata space accounting is not done is in the
relocation code. This is because Yan is going to be reworking that code in the
near future, so running btrfs-vol -b could still possibly result in a ENOSPC
related panic. This patch also turns off the metadata_ratio stuff in order to
allow users to more efficiently use their disk space.
This patch makes it so we track how much metadata we need for an inode's
delayed allocation extents by tracking how many extents are currently
waiting for allocation. It introduces two new callbacks for the
extent_io tree's, merge_extent_hook and split_extent_hook. These help
us keep track of when we merge delalloc extents together and split them
up. Reservations are handled prior to any actually dirty'ing occurs,
and then we unreserve after we dirty.
btrfs_unreserve_metadata_for_delalloc() will make the appropriate
unreservations as needed based on the number of reservations we
currently have and the number of extents we currently have. Doing the
reservation outside of doing any of the actual dirty'ing lets us do
things like filemap_flush() the inode to try and force delalloc to
happen, or as a last resort actually start allocation on all delalloc
inodes in the fs. This has survived dbench, fs_mark and an fsx torture
test.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
| |
The snapshot deletion patches dropped this line, but the inode
needs to be hashed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The extent relocation code copy file extents one by one when
relocating data block group. This is inefficient if file
extents are small. This patch makes the relocation code copy
file extents in clusters. So we can can make better use of
read-ahead.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
| |
A recent change enforces only one access point to each subvolume. The first
directory entry (the one added when the subvolume/snapshot was created) is
treated as valid access point, all other subvolume links are linked to dummy
empty directories. The dummy directories are temporary inodes that only in
memory, so we can not rename file into them.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For every hardlink in btrfs, there is a corresponding inode back
reference. All inode back references for hardlinks in a given
directory are stored in single b-tree item. The size of b-tree item
is limited by the size of b-tree leaf, so we can only create limited
number of hardlinks to a given file in a directory.
The original code lacks of the check, it oops if the number of
hardlinks goes over the limit. This patch fixes the issue by adding
check to btrfs_link and btrfs_rename.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During releasepage, we try to drop any extent_state structs for the
bye offsets of the page we're releaseing. But the code was incorrectly
telling clear_extent_bit to delete the state struct unconditionallly.
Normally this would be fine because we have the page locked, but other
parts of btrfs will lock down an entire extent, the most common place
being IO completion.
releasepage was deleting the extent state without first locking the extent,
which may result in removing a state struct that another process had
locked down. The fix here is to leave the NODATASUM and EXTENT_LOCKED
bits alone in releasepage.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
If test_range_bit finds an extent that goes all the way to (u64)-1, it
can incorrectly wrap the u64 instead of treaing it like the end of
the address space.
This just adds a check for the highest possible offset so we don't wrap.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Both set and clear_extent_bit allow passing a cached
state struct to reduce rbtree search times. clear_extent_bit
was improperly bypassing some of the checks around making sure
the extent state fields were correct for a given operation.
The fix used here (from Yan Zheng) is to use the hit_next
goto target instead of jumping all the way down to start clearing
bits without making sure the cached state was exactly correct
for the operation we were doing.
This also fixes up the setting of the start variable for both
ops in the case where we find an overlapping extent that
begins before the range we want to change. In both cases
we were incorrectly going backwards from the original
requested change.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We now do extra checks before a balance to make sure
there is room for the balance to take place. One of
the checks was testing to see if we were trying to
balance away the last block group of a given type.
If there is no space available for new chunks, we
should not try and balance away the last block group
of a give type. But, the code wasn't checking for
available chunk space, and so it was exiting too soon.
The fix here is to combine some of the checks and make
sure we try to allocate new chunks when we're balancing
the last block group.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
| |
After a balance it is briefly possible for the space info
field in the inode to be NULL. This adds some checks
to make sure things properly deal with the NULL value.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
As we get closer to proper -ENOSPC handling in btrfs, we need more accurate
space accounting for the space info's. Currently we exclude the free space for
the super mirrors, but the space they take up isn't accounted for in any of the
counters. This patch introduces bytes_super, which keeps track of the amount
of bytes used for a super mirror in the block group cache and space info. This
makes sure that our free space caclucations will be completely accurate.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a slight problem with the extent entry threshold calculation for the
free space cache. We only adjust the threshold down as we add bitmaps, but
never actually adjust the threshold up as we add bitmaps. This means we could
fragment the free space so badly that we end up using all bitmaps to describe
the free space, use all the free space which would result in the bitmaps being
freed, but then go to add free space again as we delete things and immediately
add bitmaps since the extent threshold would still be 0. Now as we free
bitmaps the extent threshold will be ratcheted up to allow more extent entries
to be added.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
This patch removes a bunch of dead code from the snapshot removal stuff. It
was confusing me when doing the metadata ENOSPC stuff so I killed it.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|