| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.
There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.
The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same. Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.
Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one. I have tested this heavily and it does
not appear to break anything. This has to be applied on top of my
find_free_extent redo patch.
I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch improves the space balancing code to keep more sharing
of tree blocks. The only case that breaks sharing of tree blocks is
data extents get fragmented during balancing. The main changes in
this patch are:
Add a 'drop sub-tree' function. This solves the problem in old code
that BTRFS_HEADER_FLAG_WRITTEN check breaks sharing of tree block.
Remove relocation mapping tree. Relocation mappings are stored in
struct btrfs_ref_path and updated dynamically during walking up/down
the reference path. This reduces CPU usage and simplifies code.
This patch also fixes a bug. Root items for reloc trees should be
updated in btrfs_free_reloc_root.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The tree logging code was trying to separate tree log allocations
from normal metadata allocations to improve writeback patterns during
an fsync.
But, the code was not effective and ended up just mixing tree log
blocks with regular metadata. That seems to be working fairly well,
so the last_log_alloc code can be removed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
| |
This improves the comments at the top of many functions. It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.
extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch updates the space balancing code to utilize the new
backref format. Before, btrfs-vol -b would break any COW links
on data blocks or metadata. This was slow and caused the amount
of space used to explode if a large number of snapshots were present.
The new code can keeps the sharing of all data extents and
most of the tree blocks.
To maintain the sharing of data extents, the space balance code uses
a seperate inode hold data extent pointers, then updates the references
to point to the new location.
To maintain the sharing of tree blocks, the space balance code uses
reloc trees to relocate tree blocks in reference counted roots.
There is one reloc tree for each subvol, and all reloc trees share
same root key objectid. Reloc trees are snapshots of the latest
committed roots of subvols (root->commit_root).
To relocate a tree block referenced by a subvol, there are two steps.
COW the block through subvol's reloc tree, then update block pointer in
the subvol to point to the new block. Since all reloc trees share
same root key objectid, doing special handing for tree blocks
owned by them is easy. Once a tree block has been COWed in one
reloc tree, we can use the resulting new block directly when the
same block is required to COW again through other reloc trees.
In this way, relocated tree blocks are shared between reloc trees,
so they are also shared between subvols.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Add an EXTENT_BOUNDARY state bit to keep the writepage code
from merging data extents that are in the process of being
relocated. This allows us to do accounting for them properly.
* The balancing code relocates data extents indepdent of the underlying
inode. The extent_map code was modified to properly account for
things moving around (invalidating extent_map caches in the inode).
* Don't take the drop_mutex in the create_subvol ioctl. It isn't
required.
* Fix walking of the ordered extent list to avoid races with sys_unlink
* Change the lock ordering rules. Transaction start goes outside
the drop_mutex. This allows btrfs_commit_transaction to directly
drop the relocation trees.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Btrfs has a cache of reference counts in leaves, allowing it to
avoid reading tree leaves while deleting snapshots. To reduce
contention with multiple subvolumes, this cache is private to each
subvolume.
This patch adds shared reference cache support. The new space
balancing code plays with multiple subvols at the same time, So
the old per-subvol reference cache is not well suited.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the same way the transaction code makes sure that all the
other tree blocks are safely on disk. There's an extent_io tree
for each root, and any blocks allocated to the tree logs are
recorded in that tree.
At tree-log sync, the extent_io tree is walked to flush down the
dirty pages and wait for them.
The main benefit is less time spent walking the tree log and skipping
clean pages, and getting sequential IO down to the drive.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Pin down data blocks to prevent them from being reallocated like so:
trans 1: allocate file extent
trans 2: free file extent
trans 3: free file extent during old snapshot deletion
trans 3: allocate file extent to new file
trans 3: fsync new file
Before the tree logging code, this was legal because the fsync
would commit the transation that did the final data extent free
and the transaction that allocated the extent to the new file
at the same time.
With the tree logging code, the tree log subtransaction can commit
before the transaction that freed the extent. If we crash,
we're left with two different files using the extent.
* Don't wait in start_transaction if log replay is going on. This
avoids deadlocks from iput while we're cleaning up link counts in the
replay code.
* Don't deadlock in replay_one_name by trying to read an inode off
the disk while holding paths for the directory
* Hold the buffer lock while we mark a buffer as written. This
closes a race where someone is changing a buffer while we write it.
They are supposed to mark it dirty again after they change it, but
this violates the cow rules.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
| |
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree. There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.
After a crash, items are copied out of the log tree and back into the
subvolume. See tree-log.c for all the details.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
Before, the btrfs bdi congestion function was used to test for too many
async bios. This keeps that check to throttle pdflush, but also
adds a check while queuing bios.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
After writing out all the remaining btree blocks in the transaction,
the commit code would use filemap_fdatawait to make sure it was all
on disk. This means it would wait for blocks written by other procs
as well.
The new code walks the list of blocks for this transaction again
and waits only for those required by this transaction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
This trivial patch contains two locking fixes and a off by one fix.
---
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 597:466b27332893 (btrfs_start_transaction: wait for commits in
progress) breaks the transaction start/stop ioctls by making
btrfs_start_transaction conditionally wait for the next transaction to
start. If an application artificially is holding a transaction open,
things deadlock.
This workaround maintains a count of open ioctl-initiated transactions in
fs_info, and avoids wait_current_trans() if any are currently open (in
start_transaction() and btrfs_throttle()). The start transaction ioctl
uses a new btrfs_start_ioctl_transaction() that _does_ call
wait_current_trans(), effectively pushing the join/wait decision to the
outer ioctl-initiated transaction.
This more or less neuters btrfs_throttle() when ioctl-initiated
transactions are in use, but that seems like a pretty fundamental
consequence of wrapping lots of write()'s in a transaction. Btrfs has no
way to tell if the application considers a given operation as part of it's
transaction.
Obviously, if the transaction start/stop ioctls aren't being used, there
is no effect on current behavior.
Signed-off-by: Sage Weil <sage@newdream.net>
---
ctree.h | 1 +
ioctl.c | 12 +++++++++++-
transaction.c | 18 +++++++++++++-----
transaction.h | 2 ++
4 files changed, 27 insertions(+), 6 deletions(-)
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
* Make walk_down_tree wake up throttled tasks more often
* Make walk_down_tree call cond_resched during long loops
* As the size of the ref cache grows, wait longer in throttle
* Get rid of the reada code in walk_down_tree, the leaves don't get
read anymore, thanks to the ref cache.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A btree block cow has two parts, the first is to allocate a destination
block and the second is to copy the old bock over.
The first part needs locks in the extent allocation tree, and may need to
do IO. This changeset splits that into a separate function that can be
called without any tree locks held.
btrfs_search_slot is changed to drop its path and start over if it has
to COW a contended block. This often means that many writers will
pre-alloc a new destination for a the same contended block, but they
cache their prealloc for later use on lower levels in the tree.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
This avoids waiting for transactions with pages locked by breaking out
the code to wait for the current transaction to close into a function
called by btrfs_throttle.
It also lowers the limits for where we start throttling.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.
The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To check whether a given file extent is referenced by multiple snapshots, the
checker walks down the fs tree through dead root and checks all tree blocks in
the path.
We can easily detect whether a given tree block is directly referenced by other
snapshot. We can also detect any indirect reference from other snapshot by
checking reference's generation. The checker can always detect multiple
references, but can't reliably detect cases of single reference. So btrfs may
do file data cow even there is only one reference.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
A large reference cache is directly related to a lot of work pending
for the cleaner thread. This throttles back new operations based on
the size of the reference cache so the cleaner thread will be able to keep
up.
Overall, this actually makes the FS faster because the cleaner thread will
be more likely to find things in cache.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the reference cache to make a single cache per root
instead of one cache per transaction, and to key by the byte number
of the disk block instead of the keys inside.
This makes it much less likely to have cache misses if a snapshot
or something has an extra reference on a higher node or a leaf while
the first transaction that added the leaf into the cache is dropping.
Some throttling is added to functions that free blocks heavily so they
wait for old transactions to drop.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
Much of the IO done while dropping snapshots is done looking up
leaves in the filesystem trees to see if they point to any extents and
to drop the references on any extents found.
This creates a cache so that IO isn't required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Stress testing was showing data checksum errors, most of which were caused
by a lookup bug in the extent_map tree. The tree was caching the last
pointer returned, and searches would check the last pointer first.
But, search callers also expect the search to return the very first
matching extent in the range, which wasn't always true with the last
pointer usage.
For now, the code to cache the last return value is just removed. It is
easy to fix, but I think lookups are rare enough that it isn't required anymore.
This commit also replaces do_sync_mapping_range with a local copy of the
related functions.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
btrfs_commit_transaction has to loop waiting for any writers in the
transaction to finish before it can proceed. btrfs_start_transaction
should be polite and not join a transaction that is in the process
of being finished off.
There are a few places that can't wait, basically the ones doing IO that
might be needed to finish the transaction. For them, btrfs_join_transaction
is added.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The old data=ordered code would force commit to wait until
all the data extents from the transaction were fully on disk. This
introduced large latencies into the commit and stalled new writers
in the transaction for a long time.
The new code changes the way data allocations and extents work:
* When delayed allocation is filled, data extents are reserved, and
the extent bit EXTENT_ORDERED is set on the entire range of the extent.
A struct btrfs_ordered_extent is allocated an inserted into a per-inode
rbtree to track the pending extents.
* As each page is written EXTENT_ORDERED is cleared on the bytes corresponding
to that page.
* When all of the bytes corresponding to a single struct btrfs_ordered_extent
are written, The previously reserved extent is inserted into the FS
btree and into the extent allocation trees. The checksums for the file
data are also updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
The btree defragger wasn't making forward progress because the new key wasn't
being saved by the btrfs_search_forward function.
This also disables the automatic btree defrag, it wasn't scaling well to
huge filesystems. The auto-defrag needs to be done differently.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
| |
This creates one kthread for commits and one kthread for
deleting old snapshots. All the work queues are removed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The existing throttle mechanism was often not sufficient to prevent
new writers from coming in and making a given transaction run forever.
This adds an explicit wait at the end of most operations so they will
allow the current transaction to close.
There is no wait inside file_write, inode updates, or cow filling, all which
have different deadlock possibilities.
This is a temporary measure until better asynchronous commit support is
added. This code leads to stalls as it waits for data=ordered
writeback, and it really needs to be fixed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
Extent alloctions are still protected by a large alloc_mutex.
Objectid allocations are covered by a objectid mutex
Other btree operations are protected by a lock on individual btree nodes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The allocation trees and the chunk trees are serialized via their own
dedicated mutexes. This means allocation location is still not very
fine grained.
The main FS btree is protected by locks on each block in the btree. Locks
are taken top / down, and as processing finishes on a given level of the
tree, the lock is released after locking the lower level.
The end result of a search is now a path where only the lowest level
is locked. Releasing or freeing the path drops any locks held.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We need to invalidate an existing dcache entry after creating a new
snapshot or subvolume, because a negative dache entry will stop us from
accessing the new snapshot or subvolume.
---
ctree.h | 23 +++++++++++++++++++++++
inode.c | 4 ++++
transaction.c | 4 ++++
3 files changed, 31 insertions(+)
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
| |
When a new transaction was started, the code would incorrectly
set the pointer in fs_info before all the data structures were setup.
fsync heavy workloads hit races on the setup of the ordered inode spinlock
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This required a few structural changes to the code that manages bdev pointers:
The VFS super block now gets an anon-bdev instead of a pointer to the
lowest bdev. This allows us to avoid swapping the super block bdev pointer
around at run time.
The code to read in the super block no longer goes through the extent
buffer interface. Things got ugly keeping the mapping constant.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
2.6.18 seems to get caught in an infinite loop when
cancel_rearming_delayed_workqueue is called more than once, so this switches
to cancel_delayed_work, which is arguably more correct.
Also, balance_dirty_pages can run into problems with 2.6.18 based kernels
because it doesn't have the per-bdi dirty limits. This avoids calling
balance_dirty_pages on the btree inode unless there is actually something
to balance, which is a good optimization in general.
Finally there's a compile fix for ordered-data.h
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before, metadata checksumming was done by the callers of read_tree_block,
which would set EXTENT_CSUM bits in the extent tree to show that a given
range of pages was already checksummed and didn't need to be verified
again.
But, those bits could go away via try_to_releasepage, and the end
result was bogus checksum failures on pages that never left the cache.
The new code validates checksums when the page is read. It is a little
tricky because metadata blocks can span pages and a single read may
end up going via multiple bios.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is now extent_map for mapping offsets in the file to disk and
extent_io for state tracking, IO submission and extent_bufers.
The new extent_map code shifts from [start,end] pairs to [start,len], and
pushes the locking out into the caller. This allows a few performance
optimizations and is easier to use.
A number of extent_map usage bugs were fixed, mostly with failing
to remove extent_map entries when changing the file.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
| |
Using ilookup5 during data=ordered writeback could deadlock on I_LOCK. This
saves a pointer to the inode instead.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|