| Commit message (Collapse) | Author | Age |
... | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I've been hitting warnings in use_block_rsv when running the delayed insertion
stuff. It's because we will readjust global block rsv based on what is in use,
which means we could end up discarding reservations that are for the delayed
insertion stuff. So instead create a seperate block rsv for the delayed
insertion stuff. This will also make it easier to debug problems with the
delayed insertion reservations since we will know that only the delayed
insertion code touches this block_rsv. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|/
|
|
|
|
|
|
|
| |
Replace remaining direct i_nlink updates with a new set_nlink()
updater function.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Tested-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The btrfs metadata btree is the source of significant
lock contention, especially in the root node. This
commit changes our locking to use a reader/writer
lock.
The lock is built on top of rw spinlocks, and it
extends the lock tracking to remember if we have a
read lock or a write lock when we go to blocking. Atomics
count the number of blocking readers or writers at any
given time.
It removes all of the adaptive spinning from the old code
and uses only the spinning/blocking hints inside of btrfs
to decide when it should continue spinning.
In read heavy workloads this is dramatically faster. In write
heavy workloads we're still faster because of less contention
on the root node lock.
We suffer slightly in dbench because we schedule more often
during write locks, but all other benchmarks so far are improved.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When iputting the inode, We may leave the delayed nodes if they have some
delayed items that have not been dealt with. So when the inode is read again,
we must look up the relative delayed node, and use the information in it to
initialize the inode. Or we will get inconsonant inode information, it may
cause that the same directory index number is allocated again, and hit the
following oops:
[ 5447.554187] err add delayed dir index item(name: pglog_0.965_0) into the
insertion tree of the delayed node(root id: 262, inode id: 258, errno: -17)
[ 5447.569766] ------------[ cut here ]------------
[ 5447.575361] kernel BUG at fs/btrfs/delayed-inode.c:1301!
[SNIP]
[ 5447.790721] Call Trace:
[ 5447.793191] [<ffffffffa0641c4e>] btrfs_insert_dir_item+0x189/0x1bb [btrfs]
[ 5447.800156] [<ffffffffa0651a45>] btrfs_add_link+0x12b/0x191 [btrfs]
[ 5447.806517] [<ffffffffa0651adc>] btrfs_add_nondir+0x31/0x58 [btrfs]
[ 5447.812876] [<ffffffffa0651d6a>] btrfs_create+0xf9/0x197 [btrfs]
[ 5447.818961] [<ffffffff8111f840>] vfs_create+0x72/0x92
[ 5447.824090] [<ffffffff8111fa8c>] do_last+0x22c/0x40b
[ 5447.829133] [<ffffffff8112076a>] path_openat+0xc0/0x2ef
[ 5447.834438] [<ffffffff810c58e2>] ? __perf_event_task_sched_out+0x24/0x44
[ 5447.841216] [<ffffffff8103ecdd>] ? perf_event_task_sched_out+0x59/0x67
[ 5447.847846] [<ffffffff81121a79>] do_filp_open+0x3d/0x87
[ 5447.853156] [<ffffffff811e126c>] ? strncpy_from_user+0x43/0x4d
[ 5447.859072] [<ffffffff8111f1f5>] ? getname_flags+0x2e/0x80
[ 5447.864636] [<ffffffff8111f179>] ? do_getname+0x14b/0x173
[ 5447.870112] [<ffffffff8111f1b7>] ? audit_getname+0x16/0x26
[ 5447.875682] [<ffffffff8112b1ab>] ? spin_lock+0xe/0x10
[ 5447.880882] [<ffffffff81112d39>] do_sys_open+0x69/0xae
[ 5447.886153] [<ffffffff81112db1>] sys_open+0x20/0x22
[ 5447.891114] [<ffffffff813b9aab>] system_call_fastpath+0x16/0x1b
Fix it by reusing the old delayed node.
Reported-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Snapshot creation has two phases. One is the initial snapshot setup,
and the second is done during commit, while nobody is allowed to modify
the root we are snapshotting.
The delayed metadata insertion code can break that rule, it does a
delayed inode update on the inode of the parent of the snapshot,
and delayed directory item insertion.
This makes sure to run the pending delayed operations before we
record the snapshot root, which avoids corruptions.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have migrated the space for the delayed inode items from
trans_block_rsv to global_block_rsv, but we forgot to set trans->block_rsv to
global_block_rsv when we doing delayed inode operations, and the following Oops
happened:
[ 9792.654889] ------------[ cut here ]------------
[ 9792.654898] WARNING: at fs/btrfs/extent-tree.c:5681
btrfs_alloc_free_block+0xca/0x27c [btrfs]()
[ 9792.654899] Hardware name: To Be Filled By O.E.M.
[ 9792.654900] Modules linked in: btrfs zlib_deflate libcrc32c
ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 ip6table_filter ip6_tables
arc4 rt61pci rt2x00pci rt2x00lib snd_hda_codec_hdmi mac80211
snd_hda_codec_realtek cfg80211 snd_hda_intel edac_core snd_seq rfkill
pcspkr serio_raw snd_hda_codec eeprom_93cx6 edac_mce_amd sp5100_tco
i2c_piix4 k10temp snd_hwdep snd_seq_device snd_pcm floppy r8169 xhci_hcd
mii snd_timer snd soundcore snd_page_alloc ipv6 firewire_ohci pata_acpi
ata_generic firewire_core pata_via crc_itu_t radeon ttm drm_kms_helper
drm i2c_algo_bit i2c_core [last unloaded: scsi_wait_scan]
[ 9792.654919] Pid: 2762, comm: rm Tainted: G W 2.6.39+ #1
[ 9792.654920] Call Trace:
[ 9792.654922] [<ffffffff81053c4a>] warn_slowpath_common+0x83/0x9b
[ 9792.654925] [<ffffffff81053c7c>] warn_slowpath_null+0x1a/0x1c
[ 9792.654933] [<ffffffffa038e747>] btrfs_alloc_free_block+0xca/0x27c [btrfs]
[ 9792.654945] [<ffffffffa03b8562>] ? map_extent_buffer+0x6e/0xa8 [btrfs]
[ 9792.654953] [<ffffffffa038189b>] __btrfs_cow_block+0xfc/0x30c [btrfs]
[ 9792.654963] [<ffffffffa0396aa6>] ? btrfs_buffer_uptodate+0x47/0x58 [btrfs]
[ 9792.654970] [<ffffffffa0382e48>] ? read_block_for_search+0x94/0x368 [btrfs]
[ 9792.654978] [<ffffffffa0381ba9>] btrfs_cow_block+0xfe/0x146 [btrfs]
[ 9792.654986] [<ffffffffa03848b0>] btrfs_search_slot+0x14d/0x4b6 [btrfs]
[ 9792.654997] [<ffffffffa03b8562>] ? map_extent_buffer+0x6e/0xa8 [btrfs]
[ 9792.655022] [<ffffffffa03938e8>] btrfs_lookup_inode+0x2f/0x8f [btrfs]
[ 9792.655025] [<ffffffff8147afac>] ? _cond_resched+0xe/0x22
[ 9792.655027] [<ffffffff8147b892>] ? mutex_lock+0x29/0x50
[ 9792.655039] [<ffffffffa03d41b1>] btrfs_update_delayed_inode+0x72/0x137 [btrfs]
[ 9792.655051] [<ffffffffa03d4ea2>] btrfs_run_delayed_items+0x90/0xdb [btrfs]
[ 9792.655062] [<ffffffffa039a69b>] btrfs_commit_transaction+0x228/0x654 [btrfs]
[ 9792.655064] [<ffffffff8106e8da>] ? remove_wait_queue+0x3a/0x3a
[ 9792.655075] [<ffffffffa03a2fa5>] btrfs_evict_inode+0x14d/0x202 [btrfs]
[ 9792.655077] [<ffffffff81132bd6>] evict+0x71/0x111
[ 9792.655079] [<ffffffff81132de0>] iput+0x12a/0x132
[ 9792.655081] [<ffffffff8112aa3a>] do_unlinkat+0x106/0x155
[ 9792.655083] [<ffffffff81127b83>] ? path_put+0x1f/0x23
[ 9792.655085] [<ffffffff8109c53c>] ? audit_syscall_entry+0x145/0x171
[ 9792.655087] [<ffffffff81128410>] ? putname+0x34/0x36
[ 9792.655090] [<ffffffff8112b441>] sys_unlinkat+0x29/0x2b
[ 9792.655092] [<ffffffff81482c42>] system_call_fastpath+0x16/0x1b
[ 9792.655093] ---[ end trace 02b696eb02b3f768 ]---
This patch fix it by setting the reservation of the transaction handle to the
correct one.
Reported-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With Linus' tree, today's linux-next build (powercp ppc64_defconfig)
produced this warning:
fs/btrfs/delayed-inode.c: In function 'btrfs_delayed_update_inode':
fs/btrfs/delayed-inode.c:1598:6: warning: 'ret' may be used
uninitialized in this function
Introduced by commit 16cdcec736cd ("btrfs: implement delayed inode items
operation").
This fixes a bug in btrfs_update_inode(): if the returned value from
btrfs_delayed_update_inode is a nonzero garbage, inode stat data are not
updated and several call paths may hit a BUG_ON or fail with strange
code.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David Sterba <dsterba@suse.cz>
|
|
|
|
|
|
| |
The nitems counter needs to start at zero
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
git://git.kernel.org/pub/scm/linux/kernel/git/josef/btrfs-work into for-linus
Conflicts:
fs/btrfs/disk-io.c
fs/btrfs/extent-tree.c
fs/btrfs/free-space-cache.c
fs/btrfs/inode.c
fs/btrfs/transaction.c
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
inode_numbers
Conflicts:
fs/btrfs/extent-tree.c
fs/btrfs/free-space-cache.c
fs/btrfs/inode.c
fs/btrfs/tree-log.c
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
|
|
| |
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Changelog V5 -> V6:
- Fix oom when the memory load is high, by storing the delayed nodes into the
root's radix tree, and letting btrfs inodes go.
Changelog V4 -> V5:
- Fix the race on adding the delayed node to the inode, which is spotted by
Chris Mason.
- Merge Chris Mason's incremental patch into this patch.
- Fix deadlock between readdir() and memory fault, which is reported by
Itaru Kitayama.
Changelog V3 -> V4:
- Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
inode in time.
Changelog V2 -> V3:
- Fix the race between the delayed worker and the task which does delayed items
balance, which is reported by Tsutomu Itoh.
- Modify the patch address David Sterba's comment.
- Fix the bug of the cpu recursion spinlock, reported by Chris Mason
Changelog V1 -> V2:
- break up the global rb-tree, use a list to manage the delayed nodes,
which is created for every directory and file, and used to manage the
delayed directory name index items and the delayed inode item.
- introduce a worker to deal with the delayed nodes.
Compare with Ext3/4, the performance of file creation and deletion on btrfs
is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
such as inode item, directory name item, directory name index and so on.
If we can do some delayed b+ tree insertion or deletion, we can improve the
performance, so we made this patch which implemented delayed directory name
index insertion/deletion and delayed inode update.
Implementation:
- introduce a delayed root object into the filesystem, that use two lists to
manage the delayed nodes which are created for every file/directory.
One is used to manage all the delayed nodes that have delayed items. And the
other is used to manage the delayed nodes which is waiting to be dealt with
by the work thread.
- Every delayed node has two rb-tree, one is used to manage the directory name
index which is going to be inserted into b+ tree, and the other is used to
manage the directory name index which is going to be deleted from b+ tree.
- introduce a worker to deal with the delayed operation. This worker is used
to deal with the works of the delayed directory name index items insertion
and deletion and the delayed inode update.
When the delayed items is beyond the lower limit, we create works for some
delayed nodes and insert them into the work queue of the worker, and then
go back.
When the delayed items is beyond the upper bound, we create works for all
the delayed nodes that haven't been dealt with, and insert them into the work
queue of the worker, and then wait for that the untreated items is below some
threshold value.
- When we want to insert a directory name index into b+ tree, we just add the
information into the delayed inserting rb-tree.
And then we check the number of the delayed items and do delayed items
balance. (The balance policy is above.)
- When we want to delete a directory name index from the b+ tree, we search it
in the inserting rb-tree at first. If we look it up, just drop it. If not,
add the key of it into the delayed deleting rb-tree.
Similar to the delayed inserting rb-tree, we also check the number of the
delayed items and do delayed items balance.
(The same to inserting manipulation)
- When we want to update the metadata of some inode, we cached the data of the
inode into the delayed node. the worker will flush it into the b+ tree after
dealing with the delayed insertion and deletion.
- We will move the delayed node to the tail of the list after we access the
delayed node, By this way, we can cache more delayed items and merge more
inode updates.
- If we want to commit transaction, we will deal with all the delayed node.
- the delayed node will be freed when we free the btrfs inode.
- Before we log the inode items, we commit all the directory name index items
and the delayed inode update.
I did a quick test by the benchmark tool[1] and found we can improve the
performance of file creation by ~15%, and file deletion by ~20%.
Before applying this patch:
Create files:
Total files: 50000
Total time: 1.096108
Average time: 0.000022
Delete files:
Total files: 50000
Total time: 1.510403
Average time: 0.000030
After applying this patch:
Create files:
Total files: 50000
Total time: 0.932899
Average time: 0.000019
Delete files:
Total files: 50000
Total time: 1.215732
Average time: 0.000024
[1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
Many thanks for Kitayama-san's help!
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dave@jikos.cz>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|