| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are circumstances when a user-space process might need to
"oversee" a resync/reshape process. For example when doing an
in-place reshape of a raid5, it is prudent to take a backup of each
section before reshaping it as this is the only way to provide
safety against an unplanned shutdown (i.e. crash/power failure).
The sync_max sysfs value can be used to stop the resync from
advancing beyond a particular point.
So user-space can:
suspend IO to the first section and back it up
set 'sync_max' to the end of the section
wait for 'sync_completed' to reach that point
resume IO on the first section and move on to the next section.
However this process requires the kernel and user-space to run in
lock-step which could introduce unnecessary delays.
It would be better if a 'double buffered' approach could be used with
userspace and kernel space working on different sections with the
'next' section always ready when the 'current' section is finished.
One problem with implementing this is that sync_completed is only
guaranteed to be updated when the sync process reaches sync_max.
(it is updated on a time basis at other times, but it is hard to rely
on that). This defeats some of the double buffering.
With this patch, sync_completed (and reshape_position) get updated as
the current position approaches sync_max, so there is room for
userspace to advance sync_max early without losing updates.
To be precise, sync_completed is updated when the current sync
position reaches half way between the current value of sync_completed
and the value of sync_max. This will usually be a good time for user
space to update sync_max.
If sync_max does not get updated, the updates to sync_completed
(together with associated metadata updates) will occur at an
exponentially increasing frequency which will get unreasonably fast
(one update every page) immediately before the process hits sync_max
and stops. So the update rate will be unreasonably fast only for an
insignificant period of time.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The sync_completed file reports how much of a resync (or recovery or
reshape) has been completed.
However due to the possibility of out-of-order completion of writes,
it is not certain to be accurate.
We have an internal value - mddev->curr_resync_completed - which is an
accurate value (though it might not always be quite so uptodate).
So:
- make curr_resync_completed be uptodate a little more often,
particularly when raid5 reshape updates status in the metadata
- report curr_resync_completed in the sysfs file
- allow poll/select to report all updates to md/sync_completed.
This makes sync_completed completed usable by any external metadata
handler that wants to record this status information in its metadata.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently update the metadata :
1/ every 3Megabytes
2/ When the place we will write new-layout data to is recorded in
the metadata as still containing old-layout data.
Rule one exists to avoid having to re-do too much reshaping in the
face of a crash/restart. So it should really be time based rather
than size based. So change it to "every 10 seconds".
Rule two turns out to be too harsh when restriping an array
'in-place', as in that case the metadata much be updates for every
stripe.
For the in-place update, it can only possibly be safe from a crash if
some user-space program data a backup of every e.g. few hundred
stripes before allowing them to be reshaped. In that case, the
constant metadata update is pointless.
So only update the metadata if the new metadata will report that the
end of the 'old-layout' data is beyond where we are currently
writing 'new-layout' data.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
... and to be certain the that make_request doesn't wait forever,
add a 'wake_up' when ->reshape_progress has been set to MaxSector
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
This was only needed when the code was experimental. Most of it
is well tested now, so the option is no longer useful.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we are reshaping an array, it is very important that we read
the data from a particular sector offset before writing new data
at that offset.
In most cases when growing or shrinking an array we read long before
we even consider writing. But when restriping an array without
changing it size, there is a small possibility that we might have
some data to available write before the read has happened at the same
location. This would require some stripes to be in cache already.
To guard against this small possibility, we check, before writing,
that the 'old' stripe at the same location is not in the process of
being read. And we ensure that we mark all 'source' stripes as such
before allowing new 'destination' stripes to proceed.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
| |
If an array has 3 or more devices, we allow the chunksize or layout
to be changed and when a reshape starts, we use these as the 'new'
values.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
| |
This ensures that even when old and new stripes are overlapping,
we will try to read all of the old before having to write any
of the new.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
Add prev_algo to raid5_conf_t along the same lines as prev_chunk
and previous_raid_disks.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add "prev_chunk" to raid5_conf_t, similar to "previous_raid_disks", to
remember what the chunk size was before the reshape that is currently
underway.
This seems like duplication with "chunk_size" and "new_chunk" in
mddev_t, and to some extent it is, but there are differences.
The values in mddev_t are always defined and often the same.
The prev* values are only defined if a reshape is underway.
Also (and more significantly) the raid5_conf_t values will be changed
at the same time (inside an appropriate lock) that the reshape is
started by setting reshape_position. In contrast, the new_chunk value
is set when the sysfs file is written which could be well before the
reshape starts.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During a raid5 reshape, we have some stripes in the cache that are
'before' the reshape (and are still to be processed) and some that are
'after'. They are currently differentiated by having different
->disks values as the only reshape current supported involves changing
the number of disks.
However we will soon support reshapes that do not change the number
of disks (chunk parity or chunk size). So make the difference more
explicit with a 'generation' number.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When reshaping a raid5 to have fewer devices, we work from the end of
the array to the beginning.
md_do_sync gives addresses to sync_request that go from the beginning
to the end. So largely ignore them use the internal state variable
"reshape_progress" to keep track of what to do next.
Never allow the size to be reduced below the minimum (4 for raid6,
3 otherwise).
We require that the size of the array has already been reduced before
the array is reshaped to a smaller size. This is because simply
reducing the size is an easily reversible operation, while the reshape
is immediately destructive and so is not reversible for the blocks at
the ends of the devices.
Thus to reshape an array to have fewer devices, you must first write
an appropriately small size to md/array_size.
When reshape finished, we remove any drives that are no longer
needed and fix up ->degraded.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When reducing the number of devices in a raid4/5/6, the reshape
process has to start at the end of the array and work down to the
beginning. So we need to handle expand_progress and expand_lo
differently.
This patch renames "expand_progress" and "expand_lo" to avoid the
implication that anything is getting bigger (expand->reshape) and
every place they are used, we make sure that they are used the right
way depending on whether delta_disks is positive or negative.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently raid5 (the only module that supports restriping)
notices that the reshape has finished be sync_request being
given a large value, and handles any cleanup them.
This patch changes it so md_check_recovery calls into an
explicit finish_reshape method as well.
The clean-up from sync_request can do things that need to be
done promptly, typically things local to the raid5_conf_t
structure.
The "finish_reshape" method is called under the mddev_lock
so it can do things involving reconfiguring the device.
This allows us to get rid of md_set_array_sectors_locked, which
would have caused a deadlock if you tried to stop and array
while a reshape was happening.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first of four patches which combine to allow md/raid5 to
reduce the number of devices in the array by restriping the data over
a subset of the devices.
If the number of disks in a raid4/5/6 is being reduced, then the
default size must be based on the new number, not the old number
of devices.
In general, it should be based on the smaller of new and old.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
We now have this value in stripe_head so we don't need to duplicate
it.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the raid6 data processing routines into a standalone module
(raid6_pq) to prepare them to be called from async_tx wrappers and other
non-md drivers/modules. This precludes a circular dependency of raid456
needing the async modules for data processing while those modules in
turn depend on raid456 for the base level synchronous raid6 routines.
To support this move:
1/ The exportable definitions in raid6.h move to include/linux/raid/pq.h
2/ The raid6_call, recovery calls, and table symbols are exported
3/ Extra #ifdef __KERNEL__ statements to enable the userspace raid6test to
compile
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
raid4 allows only one failed disk.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow userspace to set the size of the array according to the following
semantics:
1/ size must be <= to the size returned by mddev->pers->size(mddev, 0, 0)
a) If size is set before the array is running, do_md_run will fail
if size is greater than the default size
b) A reshape attempt that reduces the default size to less than the set
array size should be blocked
2/ once userspace sets the size the kernel will not change it
3/ writing 'default' to this attribute returns control of the size to the
kernel and reverts to the size reported by the personality
Also, convert locations that need to know the default size from directly
reading ->array_sectors to <pers>_size. Resync/reshape operations
always follow the default size.
Finally, fixup other locations that read a number of 1k-blocks from
userspace to use strict_blocks_to_sectors() which checks for unsigned
long long to sector_t overflow and blocks to sectors overflow.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
| |
Get personalities out of the business of directly modifying
->array_sectors. Lays groundwork to introduce policy on when
->array_sectors can be modified.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for giving userspace control over ->array_sectors we need
to be able to retrieve the 'default' size, and the 'anticipated' size
when a reshape is requested. For personalities that do not reshape emit
a warning if anything but the default size is requested.
In the raid5 case we need to update ->previous_raid_disks to make the
new 'default' size available.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
| |
If a raid6 is still in the layout that comes from converting raid5
into a raid6. this will allow us to convert it back again.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
| |
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
2-drive raid5's aren't very interesting. But if you are converting
a raid1 into a raid5, you will at least temporarily have one. And
that it a good time to set the layout/chunksize for the new RAID5
if you aren't happy with the defaults.
layout and chunksize don't actually affect the placement of data
on a 2-drive raid5, so we just do some internal book-keeping.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
The RAID1 must have two drives and be a suitable size to
be a multiple of a chunksize that isn't too small.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
Implement this for RAID6 to be able to 'takeover' a RAID5 array. The
new RAID6 will use a layout which places Q on the last device, and
that device will be missing.
If there are any available spares, one will immediately have Q
recovered onto it.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
| |
Mostly md_unregister_thread is only called when we know that the
thread is NULL, but sometimes we need to check first. It is safer
to put the check inside md_unregister_thread itself.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
| |
.. so that the code to create the private data structures is separate.
This will help with future code to change the level of an active
array.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DDF requires RAID6 calculations over different devices in a different
order.
For md/raid6, we calculate over just the data devices, starting
immediately after the 'Q' block.
For ddf/raid6 we calculate over all devices, using zeros in place of
the P and Q blocks.
This requires unfortunately complex loops...
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DDF uses different layouts for P and Q blocks than current md/raid6
so add those that are missing.
Also add support for RAID6 layouts that are identical to various
raid5 layouts with the simple addition of one device to hold all of
the 'Q' blocks.
Finally add 'raid5' layouts to match raid4.
These last to will allow online level conversion.
Note that this does not provide correct support for DDF/raid6 yet
as the order in which data blocks are summed to produce the Q block
is significant and different between current md code and DDF
requirements.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
| |
Rather than passing 'pd_idx' and 'qd_idx' to be filled in, pass
a 'struct stripe_head *' and fill in the relevant fields. This is
more extensible.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Code currently assumes that the devices in a raid6 stripe are
0 1 ... N-1 P Q
in some rotated order. We will shortly add new layouts in which
this strict pattern is broken.
So remove this expectation. We still assume that the data disks
are roughly in-order. However P and Q can be inserted anywhere within
that order.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
'previous' argument
This similar to the recent change to get_active_stripe.
There is no functional change, just come rearrangement to make
future patches cleaner.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rather than passing 'pd_idx' and 'disks' to these functions, just pass
'previous' which tells whether to use the 'previous' or 'current'
geometry during a reshape, and let init_stripe calculate
disks and pd_idx and anything else it might need.
This is not a substantial simplification and even adds a division.
However we will shortly be adding more complexity to init_stripe
to handle more interesting 'reshape' activities, and without this
change, the interface to these functions would get very complex.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch renames the "size" field of struct mddev_s to "dev_sectors"
and stores the number of 512-byte sectors instead of the number of
1K-blocks in it.
All users of that field, including raid levels 1,4-6,10, are adjusted
accordingly. This simplifies the code a bit because it allows to get
rid of a couple of divisions/multiplications by two.
In order to make checkpatch happy, some minor coding style issues
have also been addressed. In particular, size_store() now uses
strict_strtoull() instead of simple_strtoull().
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
| |
It really is nicer to keep related code together..
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
This makes the includes more explicit, and is preparation for moving
md_k.h to drivers/md/md.h
Remove include/raid/md.h as its only remaining use was to #include
other files.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
Move the headers with the local structures for the disciplines and
bitmap.h into drivers/md/ so that they are more easily grepable for
hacking and not far away. md.h is left where it is for now as there
are some uses from the outside.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The rdev_for_each macro defined in <linux/raid/md_k.h> is identical to
list_for_each_entry_safe, from <linux/list.h>, it should be defined to
use list_for_each_entry_safe, instead of reinventing the wheel.
But some calls to each_entry_safe don't really need a safe version,
just a direct list_for_each_entry is enough, this could save a temp
variable (tmp) in every function that used rdev_for_each.
In this patch, most rdev_for_each loops are replaced by list_for_each_entry,
totally save many tmp vars; and only in the other situations that will call
list_del to delete an entry, the safe version is used.
Signed-off-by: Cheng Renquan <crquan@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, the 'chunk_size' of an array must be at-least PAGE_SIZE.
This makes moving an array to a machine with a larger PAGE_SIZE, or
changing the kernel to use a larger PAGE_SIZE, can stop an array from
working.
For RAID10 and RAID4/5/6, this is non-trivial to fix as the resync
process works on whole pages at a time, and assumes them to be wholly
within a stripe. For other raid personalities, this restriction is
not needed at all and can be dropped.
So remove the test on chunk_size from common can, and add it in just
the places where it is needed: raid10 and raid4/5/6.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Having
function (args)
instead of
function(args)
make is harder to search for calls of particular functions.
So remove all those spaces.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
| |
A lot of cruft has gathered over the years. Time to remove it.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move stats related fields - stamp, in_flight, dkstats - from disk to
part0 and unify stat handling such that...
* part_stat_*() now updates part0 together if the specified partition
is not part0. ie. part_stat_*() are now essentially all_stat_*().
* {disk|all}_stat_*() are gone.
* part_round_stats() is updated similary. It handles part0 stats
automatically and disk_round_stats() is killed.
* part_{inc|dec}_in_fligh() is implemented which automatically updates
part0 stats for parts other than part0.
* disk_map_sector_rcu() is updated to return part0 if no part matches.
Combined with the above changes, this makes NULL special case
handling in callers unnecessary.
* Separate stats show code paths for disk are collapsed into part
stats show code paths.
* Rename disk_stat_lock/unlock() to part_stat_lock/unlock()
While at it, reposition stat handling macros a bit and add missing
parentheses around macro parameters.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two variants of stat functions - ones prefixed with double
underbars which don't care about preemption and ones without which
disable preemption before manipulating per-cpu counters. It's unclear
whether the underbarred ones assume that preemtion is disabled on
entry as some callers don't do that.
This patch unifies diskstats access by implementing disk_stat_lock()
and disk_stat_unlock() which take care of both RCU (for partition
access) and preemption (for per-cpu counter access). diskstats access
should always be enclosed between the two functions. As such, there's
no need for the versions which disables preemption. They're removed
and double underbars ones are renamed to drop the underbars. As an
extra argument is added, there's no danger of using the old version
unconverted.
disk_stat_lock() uses get_cpu() and returns the cpu index and all
diskstat functions which access per-cpu counters now has @cpu
argument to help RT.
This change adds RCU or preemption operations at some places but also
collapses several preemption ops into one at others. Overall, the
performance difference should be negligible as all involved ops are
very lightweight per-cpu ones.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
|
|
|
|
|
| |
raid5 can overflow with more than 255 stripes, and we can increase it
to an int for free on both 32 and 64-bit archs due to the padding.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
|
|
| |
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we have externally managed metadata, we need to mark a failed
device as 'Blocked' and not allow any writes until that device
have been marked as faulty in the metadata and the Blocked flag has
been removed.
However it is perfectly OK to allow read requests when there is a
Blocked device, and with a readonly array, there may not be any
metadata-handler watching for blocked devices.
So in raid5/raid6 only allow a Blocked device to interfere with
Write request or resync. Read requests go through untouched.
raid1 and raid10 already differentiate between read and write
properly.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We cannot currently change the size of a write-intent bitmap.
So if we change the size of an array which has such a bitmap, it
tries to set bits beyond the end of the bitmap.
For now, simply reject any request to change the size of an array
which has a bitmap. mdadm can remove the bitmap and add a new one
after the array has changed size.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* 'for-linus' of git://neil.brown.name/md:
md: raid10: wake up frozen array
md: do not count blocked devices as spares
md: do not progress the resync process if the stripe was blocked
md: delay notification of 'active_idle' to the recovery thread
md: fix merge error
md: move async_tx_issue_pending_all outside spin_lock_irq
|
| |
| |
| |
| |
| |
| |
| | |
handle_stripe will take no action on a stripe when waiting for userspace
to unblock the array, so do not report completed sectors.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|