| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For IBoE, SLs 0-7 are mapped to Ethernet 802.1Q user priority bits
(pbits) which are part of the VLAN tag, SLs 8-15 are reserved.
Under Ethernet, the ConnectX firmware treats (decode/encode) the four
bit SL field in various constructs such as QPC / UD WQE / CQE as PPP0
and not as 0PPP. This correlates well to the fact that within the
vlan tag the pbits are located in bits 15-13 and not 12-14.
The current code wasn't consistent around that area - the
encoding was correct for the IBoE QPC.path.schedule_queue field,
but was wrong for IBoE CQEs and when MLX header was built.
These inconsistencies resulted in wrong SL <--> wire 802.1Q pbits
mapping, which is fixed by using SL <--> PPP0 all around the place.
Signed-off-by: Oren Duer <oren@mellanox.co.il>
Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com>
Signed-off-by: Roland Dreier <roland@purestorage.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch allows IBoE traffic to be encapsulated in 802.1Q tagged
VLAN frames. The VLAN tag is encoded in the GID and derived from it
by a simple computation.
The netdev notifier callback is modified to catch VLAN device
addition/removal and the port's GID table is updated to reflect the
change, so that for each netdevice there is an entry in the GID table.
When the port's GID table is exhausted, GID entries will not be added.
Only children of the main interfaces can add to the GID table; if a
VLAN interface is added on another VLAN interface (e.g. "vconfig add
eth2.6 8"), then that interfaces will not add an entry to the GID
table.
Signed-off-by: Eli Cohen <eli@mellanox.co.il>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for IBoE to mlx4_ib. The bulk of the code is handling the
new address vector fields; mlx4 needs the MAC address of a remote node
to include it in a WQE (for datagrams) or in the QP context (for
connected QPs). Address resolution is done by assuming all unicast
GIDs are either link-local IPv6 addresses.
Multicast group attach/detach needs to update the NIC's multicast
filters; but since attaching a QP to a multicast group can be done
before the QP is bound to a port, for IBoE we need to keep track of
all multicast groups that a QP is attached too before it transitions
from INIT to RTR (since it does not have a port in the INIT state).
Signed-off-by: Eli Cohen <eli@mellanox.co.il>
[ Many things cleaned up and otherwise monkeyed with; hope I didn't
introduce too many bugs. - Roland ]
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
Add an InfiniBand driver for Mellanox ConnectX adapters. Because
these adapters can also be used as ethernet NICs and Fibre Channel
HBAs, the driver is split into two modules:
mlx4_core: Handles low-level things like device initialization and
processing firmware commands. Also controls resource allocation
so that the InfiniBand, ethernet and FC functions can share a
device without stepping on each other.
mlx4_ib: Handles InfiniBand-specific things; plugs into the
InfiniBand midlayer.
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|