| Commit message (Collapse) | Author | Age |
|
|
|
|
| |
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reenable kprobes and alternative patching when the kernel text is write
protected by DEBUG_RODATA
Add a general utility function to change write protected text. The new
function remaps the code using vmap to write it and takes care of CPU
synchronization. It also does CLFLUSH to make icache recovery faster.
There are some limitations on when the function can be used, see the
comment.
This is a newer version that also changes the paravirt_ops code.
text_poke also supports multi byte patching now.
Contains bug fixes from Zach Amsden and suggestions from Mathieu
Desnoyers.
Cc: Jan Beulich <jbeulich@novell.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org>
Cc: Zach Amsden <zach@vmware.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch provides a debugfs knob to turn kprobes on/off
o A new file /debug/kprobes/enabled indicates if kprobes is enabled or
not (default enabled)
o Echoing 0 to this file will disarm all installed probes
o Any new probe registration when disabled will register the probe but
not arm it. A message will be printed out in such a case.
o When a value 1 is echoed to the file, all probes (including ones
registered in the intervening period) will be enabled
o Unregistration will happen irrespective of whether probes are globally
enabled or not.
o Update Documentation/kprobes.txt to reflect these changes. While there
also update the doc to make it current.
We are also looking at providing sysrq key support to tie to the disabling
feature provided by this patch.
[akpm@linux-foundation.org: Use bool like a bool!]
[akpm@linux-foundation.org: add printk facility levels]
[cornelia.huck@de.ibm.com: Add the missing arch_trampoline_kprobe() for s390]
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- consolidate duplicate code in all arch_prepare_kretprobe instances
into common code
- replace various odd helpers that use hlist_for_each_entry to get
the first elemenet of a list with either a hlist_for_each_entry_save
or an opencoded access to the first element in the caller
- inline add_rp_inst into it's only remaining caller
- use kretprobe_inst_table_head instead of opencoding it
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In certain cases like when the real return address can't be found or when
the number of tracked calls to a kretprobed function is less than the
number of returns, we may not be able to find the correct return address
after processing a kretprobe. Currently we just do a BUG_ON, but no
information is provided about the actual failing kretprobe.
Print out details of the kretprobe before calling BUG().
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Jim Keniston <jkenisto@us.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Maneesh Soni <maneesh@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch moves the die notifier handling to common code. Previous
various architectures had exactly the same code for it. Note that the new
code is compiled unconditionally, this should be understood as an appel to
the other architecture maintainer to implement support for it aswell (aka
sprinkling a notify_die or two in the proper place)
arm had a notifiy_die that did something totally different, I renamed it to
arm_notify_die as part of the patch and made it static to the file it's
declared and used at. avr32 used to pass slightly less information through
this interface and I brought it into line with the other architectures.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix vmalloc_sync_all bustage]
[bryan.wu@analog.com: fix vmalloc_sync_all in nommu]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: <linux-arch@vger.kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we are unregistering a kprobe-booster, we can't release its
instruction buffer immediately on the preemptive kernel, because some
processes might be preempted on the buffer. The freeze_processes() and
thaw_processes() functions can clean most of processes up from the buffer.
There are still some non-frozen threads who have the PF_NOFREEZE flag. If
those threads are sleeping (not preempted) at the known place outside the
buffer, we can ensure safety of freeing.
However, the processing of this check routine takes a long time. So, this
patch introduces the garbage collection mechanism of insn_slot. It also
introduces the "dirty" flag to free_insn_slot because of efficiency.
The "clean" instruction slots (dirty flag is cleared) are released
immediately. But the "dirty" slots which are used by boosted kprobes, are
marked as garbages. collect_garbage_slots() will be invoked to release
"dirty" slots if there are more than INSNS_PER_PAGE garbage slots or if
there are no unused slots.
Cc: "Keshavamurthy, Anil S" <anil.s.keshavamurthy@intel.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: "bibo,mao" <bibo.mao@intel.com>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Yumiko Sugita <yumiko.sugita.yf@hitachi.com>
Cc: Satoshi Oshima <soshima@redhat.com>
Cc: Hideo Aoki <haoki@redhat.com>
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
kprobe_flush_task() possibly calls kfree function during holding
kretprobe_lock spinlock, if kfree function is probed by kretprobe that will
incur spinlock deadlock. This patch moves kfree function out scope of
kretprobe_lock.
Signed-off-by: bibo, mao <bibo.mao@intel.com>
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Whitespace is used to indent, this patch cleans up these sentences by
kernel coding style.
Signed-off-by: bibo, mao <bibo.mao@intel.com>
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
| |
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Problem:
If we put a probe onto a callq instruction and the probe is executed,
kernel panic of Bad RIP value occurs.
Root cause:
If resume_execution() found 0xff at first byte of p->ainsn.insn, it must
check the _second_ byte. But current resume_execution check _first_ byte
again.
I changed it checks second byte of p->ainsn.insn.
Kprobes on i386 don't have this problem, because the implementation is a
little bit different from x86_64.
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Satoshi Oshima <soshima@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Andrew Morton pointed out that compiler might not inline the functions
marked for inline in kprobes. There-by allowing the insertion of probes
on these kprobes routines, which might cause recursion.
This patch removes all such inline and adds them to kprobes section
there by disallowing probes on all such routines. Some of the routines
can even still be inlined, since these routines gets executed after the
kprobes had done necessay setup for reentrancy.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Provide proper kprobes fault handling, if a user-specified pre/post handlers
tries to access user address space, through copy_from_user(), get_user() etc.
The user-specified fault handler gets called only if the fault occurs while
executing user-specified handlers. In such a case user-specified handler is
allowed to fix it first, later if the user-specifed fault handler does not fix
it, we try to fix it by calling fix_exception().
The user-specified handler will not be called if the fault happens when single
stepping the original instruction, instead we reset the current probe and
allow the system page fault handler to fix it up.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently kprobe handler traps only happen in kernel space, so function
kprobe_exceptions_notify should skip traps which happen in user space.
This patch modifies this, and it is based on 2.6.16-rc4.
Signed-off-by: bibo mao <bibo.mao@intel.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: "Keshavamurthy, Anil S" <anil.s.keshavamurthy@intel.com>
Cc: <hiramatu@sdl.hitachi.co.jp>
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Semaphore to mutex conversion.
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a window where a probe gets removed right after the probe is hit
on some different cpu. In this case probe handlers can't find a matching
probe instance related to break address. In this case we need to read the
original instruction at break address to see if that is not a break/int3
instruction and recover safely.
Previous code had a bug where we were not checking for the above race in
case of reentrant probes and the below patch fixes this race.
Tested on IA64, Powerpc, x86_64.
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The following patch (against 2.6.15-rc5-mm3) fixes a kprobes build break
due to changes introduced in the kprobe locking in 2.6.15-rc5-mm3. In
addition, the patch reverts back the open-coding of kprobe_mutex.
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Acked-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently arch_remove_kprobes() is only implemented/required for x86_64 and
powerpc. All other architecture like IA64, i386 and sparc64 implementes a
dummy function which is being called from arch independent kprobes.c file.
This patch removes the dummy functions and replaces it with
#define arch_remove_kprobe(p, s) do { } while(0)
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
Based on some feedback from Oleg Nesterov, I have made few changes to
previously posted patch.
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Kprobes runtime exception handlers is now lock free as this code path is
now using RCU to walk through the list, there is no need for the
register/unregister{_kprobe} to use spin_{lock/unlock}_isr{save/restore}. The
serialization during registration/unregistration is now possible using just a
mutex.
In the above process, this patch also fixes a minor memory leak for x86_64 and
powerpc.
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When multiple probes are registered at the same address and if due to some
recursion (probe getting triggered within a probe handler), we skip calling
pre_handlers and just increment nmissed field.
The below patch make sure it walks the list for multiple probes case.
Without the below patch we get incorrect results of nmissed count for
multiple probe case.
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Reorganize the preempt_disable/enable calls to eliminate the extra preempt
depth. Changes based on Paul McKenney's review suggestions for the kprobes
RCU changeset.
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Changes to the arch kprobes infrastructure to take advantage of the locking
changes introduced by usage of RCU for synchronization. All handlers are now
run without any locks held, so they have to be re-entrant or provide their own
synchronization.
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
| |
x86_64 changes to track kprobe execution on a per-cpu basis. We now track the
kprobe state machine independently on each cpu using a arch specific kprobe
control block.
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following set of patches are aimed at improving kprobes scalability. We
currently serialize kprobe registration, unregistration and handler execution
using a single spinlock - kprobe_lock.
With these changes, kprobe handlers can run without any locks held. It also
allows for simultaneous kprobe handler executions on different processors as
we now track kprobe execution on a per processor basis. It is now necessary
that the handlers be re-entrant since handlers can run concurrently on
multiple processors.
All changes have been tested on i386, ia64, ppc64 and x86_64, while sparc64
has been compile tested only.
The patches can be viewed as 3 logical chunks:
patch 1: Reorder preempt_(dis/en)able calls
patches 2-7: Introduce per_cpu data areas to track kprobe execution
patches 8-9: Use RCU to synchronize kprobe (un)registration and handler
execution.
Thanks to Maneesh Soni, James Keniston and Anil Keshavamurthy for their
review and suggestions. Thanks again to Anil, Hien Nguyen and Kevin Stafford
for testing the patches.
This patch:
Reorder preempt_disable/enable() calls in arch kprobes files in preparation to
introduce locking changes. No functional changes introduced by this patch.
Signed-off-by: Ananth N Mavinakayahanalli <ananth@in.ibm.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The up()/down() orders are incorrect in arch/x86_64/kprobes.c file.
kprobe_mutext is used to protect the free kprobe instruction slot list.
arch_prepare_kprobe applies for a slot from the free list, and
arch_remove_kprobe returns a slot to the free list. The incorrect up()/down()
orders to operate on kprobe_mutex fail to protect the free list. If 2 threads
try to get/return kprobe instruction slot at the same time, the free slot list
might be broken, or a free slot might be applied by 2 threads.
Signed-off-by: Zhang Yanmin <Yanmin.zhang@intel.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes a race condition where in system used to hang or sometime
crash within minutes when kprobes are inserted on ISR routine and a task
routine.
The fix has been stress tested on i386, ia64, pp64 and on x86_64. To
reproduce the problem insert kprobes on schedule() and do_IRQ() functions
and you should see hang or system crash.
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Acked-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes a bug in kprobes's handling of a corner case on i386 and
x86_64. On an SMP system, if one CPU unregisters a kprobe just after
another CPU hits that probepoint, kprobe_handler() on the latter CPU sees
that the kprobe has been unregistered, and attempts to let the CPU continue
as if the probepoint hadn't been hit. The bug is that on i386 and x86_64,
we were neglecting to set the IP back to the beginning of the probed
instruction. This could cause an oops or crash.
This bug doesn't exist on ppc64 and ia64, where a breakpoint instruction
leaves the IP pointing to the beginning of the instruction. I don't know
about sparc64. (Dave, could you please advise?)
This fix has been tested on i386 and x86_64 SMP systems. To reproduce the
problem, set one CPU to work registering and unregistering a kprobe
repeatedly, and another CPU pounding the probepoint in a tight loop.
Acked-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Jim Keniston <jkenisto@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
This patch contains the x86_64 architecture specific changes to prevent the
possible race conditions.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following renames arch_init, a kprobes function for performing any
architecture specific initialization, to arch_init_kprobes in order to
cleanup the namespace.
Also, this patch adds arch_init_kprobes to sparc64 to fix the sparc64 kprobes
build from the last return probe patch.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following patch contains the x86_64 specific changes for the new
return probe design. Changes include:
* Removing the architecture specific functions for querying a return probe
instance off a stack address
* Complete rework onf arch_prepare_kretprobe() and trampoline_probe_handler()
* Removing trampoline_post_handler()
* Adding arch_init() so that now we handle registering the return probe
trampoline instead of kernel/kprobes.c doing it
NOTE:
Note that with this new design, the dependency on calculating a pointer to
the task off the stack pointer no longer exist (resolving the problem of
interruption stacks as pointed out in the original feedback to this port.)
Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Now that PPC64 has no-execute support, here is a second try to fix the
single step out of line during kprobe execution. Kprobes on x86_64 already
solved this problem by allocating an executable page and using it as the
scratch area for stepping out of line. Reuse that.
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
| |
This patch includes x86_64 architecture specific changes to support temporary
disarming on reentrancy of probes.
Signed-of-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The architecture independent code of the current kprobes implementation is
arming and disarming kprobes at registration time. The problem is that the
code is assuming that arming and disarming is a just done by a simple write
of some magic value to an address. This is problematic for ia64 where our
instructions look more like structures, and we can not insert break points
by just doing something like:
*p->addr = BREAKPOINT_INSTRUCTION;
The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent
functions:
* void arch_arm_kprobe(struct kprobe *p)
* void arch_disarm_kprobe(struct kprobe *p)
and then adds the new functions for each of the architectures that already
implement kprobes (spar64/ppc64/i386/x86_64).
I thought arch_[dis]arm_kprobe was the most descriptive of what was really
happening, but each of the architectures already had a disarm_kprobe()
function that was really a "disarm and do some other clean-up items as
needed when you stumble across a recursive kprobe." So... I took the
liberty of changing the code that was calling disarm_kprobe() to call
arch_disarm_kprobe(), and then do the cleanup in the block of code dealing
with the recursive kprobe case.
So far this patch as been tested on i386, x86_64, and ppc64, but still
needs to be tested in sparc64.
Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following patch adds the x86_64 architecture specific implementation
for function return probes.
Function return probes is a mechanism built on top of kprobes that allows
a caller to register a handler to be called when a given function exits.
For example, to instrument the return path of sys_mkdir:
static int sys_mkdir_exit(struct kretprobe_instance *i, struct pt_regs *regs)
{
printk("sys_mkdir exited\n");
return 0;
}
static struct kretprobe return_probe = {
.handler = sys_mkdir_exit,
};
<inside setup function>
return_probe.kp.addr = (kprobe_opcode_t *) kallsyms_lookup_name("sys_mkdir");
if (register_kretprobe(&return_probe)) {
printk(KERN_DEBUG "Unable to register return probe!\n");
/* do error path */
}
<inside cleanup function>
unregister_kretprobe(&return_probe);
The way this works is that:
* At system initialization time, kernel/kprobes.c installs a kprobe
on a function called kretprobe_trampoline() that is implemented in
the arch/x86_64/kernel/kprobes.c (More on this later)
* When a return probe is registered using register_kretprobe(),
kernel/kprobes.c will install a kprobe on the first instruction of the
targeted function with the pre handler set to arch_prepare_kretprobe()
which is implemented in arch/x86_64/kernel/kprobes.c.
* arch_prepare_kretprobe() will prepare a kretprobe instance that stores:
- nodes for hanging this instance in an empty or free list
- a pointer to the return probe
- the original return address
- a pointer to the stack address
With all this stowed away, arch_prepare_kretprobe() then sets the return
address for the targeted function to a special trampoline function called
kretprobe_trampoline() implemented in arch/x86_64/kernel/kprobes.c
* The kprobe completes as normal, with control passing back to the target
function that executes as normal, and eventually returns to our trampoline
function.
* Since a kprobe was installed on kretprobe_trampoline() during system
initialization, control passes back to kprobes via the architecture
specific function trampoline_probe_handler() which will lookup the
instance in an hlist maintained by kernel/kprobes.c, and then call
the handler function.
* When trampoline_probe_handler() is done, the kprobes infrastructure
single steps the original instruction (in this case just a top), and
then calls trampoline_post_handler(). trampoline_post_handler() then
looks up the instance again, puts the instance back on the free list,
and then makes a long jump back to the original return instruction.
So to recap, to instrument the exit path of a function this implementation
will cause four interruptions:
- A breakpoint at the very beginning of the function allowing us to
switch out the return address
- A single step interruption to execute the original instruction that
we replaced with the break instruction (normal kprobe flow)
- A breakpoint in the trampoline function where our instrumented function
returned to
- A single step interruption to execute the original instruction that
we replaced with the break instruction (normal kprobe flow)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Kprobes could not handle the insertion of a probe on the ret/lret
instruction and used to oops after single stepping since kprobes was
modifying eip/rip incorrectly. Adjustment of eip/rip is not required after
single stepping in case of ret/lret instruction, because eip/rip points to
the correct location after execution of the ret/lret instruction. This
patch fixes the above problem.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|