aboutsummaryrefslogtreecommitdiffstats
path: root/arch/sparc64/kernel/winfixup.S
Commit message (Collapse)AuthorAge
* [SPARC64]: Fix unaligned access winfxup handling on SUN4V.David S. Miller2006-03-20
| | | | | | | | | | | Another case where we have to force ourselves into global register level one. Also make sure the arguments passed to sun4v_do_mna() are correct. This area actually needs some more work, for example spill fixup is not necessarily going to do the right thing for this case. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Fix bogus call to sun4v_mna in winfixup code.David S. Miller2006-03-20
| | | | | | The C function is named sun4v_do_mna not sun4v_mna. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: SUN4V memory exception trap handlers.David S. Miller2006-03-20
| | | | Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Refine register window trap handling.David S. Miller2006-03-20
| | | | | | | | | | | When saving and restoing trap state, do the window spill/fill handling inline so that we never trap deeper than 2 trap levels. This is important for chips like Niagara. The window fixup code is massively simplified, and many more improvements are now possible. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Add explicit register args to trap state loading macros.David S. Miller2006-03-20
| | | | | | | This, as well as making the code cleaner, allows a simplification in the TSB miss handling path. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Don't clobber alt-global %g4 on window fixups.David S. Miller2006-03-20
| | | | | | | | If we are returning back to kernel mode, %g4 could be live (for example, in the case where we window spill in the etrap code). So do not change it's value if going back to kernel. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Fix race in LOAD_PER_CPU_BASE()David S. Miller2006-03-20
| | | | | | | | | | Since we use %g5 itself as a temporary, it can get clobbered if we take an interrupt mid-stream and thus cause end up with the final %g5 value too early as a result of rtrap processing. Set %g5 at the very end, atomically, to avoid this problem. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Fix bogus flush instruction usage.David S. Miller2006-03-20
| | | | | | | | | | Some of the trap code was still assuming that alternate global %g6 was hard coded with current_thread_info(). Let's just consistently flush at KERNBASE when we need a pipeline synchronization. That's locked into the TLB and will always work. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Elminate all usage of hard-coded trap globals.David S. Miller2006-03-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UltraSPARC has special sets of global registers which are switched to for certain trap types. There is one set for MMU related traps, one set of Interrupt Vector processing, and another set (called the Alternate globals) for all other trap types. For what seems like forever we've hard coded the values in some of these trap registers. Some examples include: 1) Interrupt Vector global %g6 holds current processors interrupt work struct where received interrupts are managed for IRQ handler dispatch. 2) MMU global %g7 holds the base of the page tables of the currently active address space. 3) Alternate global %g6 held the current_thread_info() value. Such hardcoding has resulted in some serious issues in many areas. There are some code sequences where having another register available would help clean up the implementation. Taking traps such as cross-calls from the OBP firmware requires some trick code sequences wherein we have to save away and restore all of the special sets of global registers when we enter/exit OBP. We were also using the IMMU TSB register on SMP to hold the per-cpu area base address, which doesn't work any longer now that we actually use the TSB facility of the cpu. The implementation is pretty straight forward. One tricky bit is getting the current processor ID as that is different on different cpu variants. We use a stub with a fancy calling convention which we patch at boot time. The calling convention is that the stub is branched to and the (PC - 4) to return to is in register %g1. The cpu number is left in %g6. This stub can be invoked by using the __GET_CPUID macro. We use an array of per-cpu trap state to store the current thread and physical address of the current address space's page tables. The TRAP_LOAD_THREAD_REG loads %g6 with the current thread from this table, it uses __GET_CPUID and also clobbers %g1. TRAP_LOAD_IRQ_WORK is used by the interrupt vector processing to load the current processor's IRQ software state into %g6. It also uses __GET_CPUID and clobbers %g1. Finally, TRAP_LOAD_PGD_PHYS loads the physical address base of the current address space's page tables into %g7, it clobbers %g1 and uses __GET_CPUID. Many refinements are possible, as well as some tuning, with this stuff in place. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Move away from virtual page tables, part 1.David S. Miller2006-03-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | We now use the TSB hardware assist features of the UltraSPARC MMUs. SMP is currently knowingly broken, we need to find another place to store the per-cpu base pointers. We hid them away in the TSB base register, and that obviously will not work any more :-) Another known broken case is non-8KB base page size. Also noticed that flush_tlb_all() is not referenced anywhere, only the internal __flush_tlb_all() (local cpu only) is used by the sparc64 port, so we can get rid of flush_tlb_all(). The kernel gets it's own 8KB TSB (swapper_tsb) and each address space gets it's own private 8K TSB. Later we can add code to dynamically increase the size of per-process TSB as the RSS grows. An 8KB TSB is good enough for up to about a 4MB RSS, after which the TSB starts to incur many capacity and conflict misses. We even accumulate OBP translations into the kernel TSB. Another area for refinement is large page size support. We could use a secondary address space TSB to handle those. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Replace cheetah+ code patching with variables.David S. Miller2005-10-04
| | | | | | | | Instead of code patching to handle the page size fields in the context registers, just use variables from which we get the proper values. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC64]: Revamp Spitfire error trap handling.David S. Miller2005-08-29
| | | | | | | | | | | | | | | | | | | Current uncorrectable error handling was poor enough that the processor could just loop taking the same trap over and over again. Fix things up so that we at least get a log message and perhaps even some register state. In the process, much consolidation became possible, particularly with the correctable error handler. Prefix assembler and C function names with "spitfire" to indicate that these are for Ultra-I/II/IIi/IIe only. More work is needed to make these routines robust and featureful to the level of the Ultra-III error handlers. Signed-off-by: David S. Miller <davem@davemloft.net>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-16
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!