| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the architecture backend for transparent hugepages
on s390.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The core page allocator ensures that page flags are zeroed when freeing
pages via free_pages_check. A number of architectures (ARM, PPC, MIPS)
rely on this property to treat new pages as dirty with respect to the data
cache and perform the appropriate flushing before mapping the pages into
userspace.
This can lead to cache synchronisation problems when using hugepages,
since the allocator keeps its own pool of pages above the usual page
allocator and does not reset the page flags when freeing a page into the
pool.
This patch adds a new architecture hook, arch_clear_hugepage_flags, so
that architectures which rely on the page flags being in a particular
state for fresh allocations can adjust the flags accordingly when a page
is freed into the pool.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
huge_ptep_get_and_clear() is either missing a TLB invalidation or
an mm->context.attach_count check. Since the attach_count logic was
introduced with normal ptes in mind, let's just use direct TLB
flushing for hugetlbfs pages.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The noexec support on s390 does not rely on a bit in the page table
entry but utilizes the secondary space mode to distinguish between
memory accesses for instructions vs. data. The noexec code relies
on the assumption that the cpu will always use the secondary space
page table for data accesses while it is running in the secondary
space mode. Up to the z9-109 class machines this has been the case.
Unfortunately this is not true anymore with z10 and later machines.
The load-relative-long instructions lrl, lgrl and lgfrl access the
memory operand using the same addressing-space mode that has been
used to fetch the instruction.
This breaks the noexec mode for all user space binaries compiled
with march=z10 or later. The only option is to remove the current
noexec support.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
|
|
|
|
|
|
|
|
| |
All architectures besides s390 have pte_mkhuge() defined in pgtable.h.
So move the function to pgtable.h on s390 as well.
Fixes a compile error introduced with "hugetlb: hugepage migration core"
in linux-next which only happens on s390.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The tlb flushing code uses the mm_users field of the mm_struct to
decide if each page table entry needs to be flushed individually with
IPTE or if a global flush for the mm_struct is sufficient after all page
table updates have been done. The comment for mm_users says "How many
users with user space?" but the /proc code increases mm_users after it
found the process structure by pid without creating a new user process.
Which makes mm_users useless for the decision between the two tlb
flusing methods. The current code can be confused to not flush tlb
entries by a concurrent access to /proc files if e.g. a fork is in
progres. The solution for this problem is to make the tlb flushing
logic independent from the mm_users field.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|