| Commit message (Collapse) | Author | Age |
... | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add appropriate TASK_SIZE and TASK_UNMAPPED_BASE definitions for running
on ColdFire V4e cores with MMU enabled.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The interrupt handling support defines and code is not so much conditional
on an MMU being present (CONFIG_MMU), as it is on which type of CPU we are
building for. So make the code conditional on the CPU types instead. The
current irq.h is mostly specific to the interrupt code for the 680x0 CPUs,
so it should only be used for them.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Basic register level definitions to support the internal MMU of the
V4e ColdFire cores.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Create machine and CPU definitions to support the ColdFire CPU family
members that have a virtual memory management unit.
The ColdFire V4e core contains an MMU, and it is quite different to
any other 68k family members.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Matt Waddel <mwaddel@yahoo.com>
Acked-by: Kurt Mahan <kmahan@xmission.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The code that used the anchor.h include file has long been removed from
the kernel. Remove it too.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The traditional 68000 processors and the newer reduced instruction set
ColdFire processors do not support the 32*32->64 multiply or the 64/32->32
divide instructions. This is not a difference based on the presence of
a hardware MMU or not.
Create a new config symbol to mark that a CPU type doesn't support the
longer multiply/divide instructions. Use this then as a basis for using
the fast 64bit based divide (in div64.h) and for linking in the extra
libgcc functions that may be required (mulsi3, divsi3, etc).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We have two implementations of the IP checksuming code for the m68k arch.
One uses the more advanced instructions available in 68020 and above
processors, the other uses the simpler instructions available on the
original 68000 processors and the modern ColdFire processors.
This simpler code is pretty much the same as the generic lib implementation
of the IP csum functions. So lets just switch over to using that. That
means we can completely remove the checksum_no.c file, and only have the
local fast code used for the more complex 68k CPU family members.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There is no reason we can't make the saved fp registers the same for all
m68k types and ColdFire. There is a little wasted space, but the code
consistency and cleanliness is a big win.
sigcontext.h is an exported header, but currently there is no in-mainline
users of the !__uClinux__ and __mcoldfire__ case that this change effects.
Even better this change actually makes this structure consistent with
the out-of-mainline ColdFire/MMU code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Output a table of the kernel memory regions at boot time.
This is taken directly from the ARM architecture code that does this.
The table looks like this:
Virtual kernel memory layout:
vector : 0x00000000 - 0x00000400 ( 0 KiB)
kmap : 0xd0000000 - 0xe0000000 ( 256 MiB)
vmalloc : 0xc0000000 - 0xcfffffff ( 255 MiB)
lowmem : 0x00000000 - 0x02000000 ( 32 MiB)
.init : 0x00128000 - 0x00134000 ( 48 KiB)
.text : 0x00020000 - 0x00118d54 ( 996 KiB)
.data : 0x00118d60 - 0x00126000 ( 53 KiB)
.bss : 0x00134000 - 0x001413e0 ( 53 KiB)
This has been very useful while debugging the ColdFire virtual memory
support code. But in general I think it is nice to know extacly where
the kernel has layed everything out on boot.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently on m68k we have a comeplete thread_info structure stored inside
of the thread_struct, and we also have it in the initial part of the kernel
stack. Mostly the code currently uses the one inside of the thread_struct,
only using the "task" pointer from the stack based one.
This is wasteful and confusing, we should only have the single instance of
thread_info inside the stack page. And this is the norm for all other
architectures.
This change makes m68k handle thread_info consistently on both MMU enabled
and non-MMU setups.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We have a duplicate name and definition for the offset of the thread.info
struct within the task struct in our asm-offsets.c code. Remove one of them,
and consolidate to use a single define, TASK_INFO.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
gpiolib provides __gpio_to_irq() to map gpiolib gpios to interrupts - hook
that up on m68k.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|\| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Conflicts:
net/bluetooth/l2cap_core.c
Just two overlapping changes, one added an initialization of
a local variable, and another change added a new local variable.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| |/
| |
| |
| |
| | |
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Greg Ungerer <gerg@uclinux.org>
|
|\|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The forcedeth changes had a conflict with the conversion over
to atomic u64 statistics in net-next.
The libertas cfg.c code had a conflict with the bss reference
counting fix by John Linville in net-next.
Conflicts:
drivers/net/ethernet/nvidia/forcedeth.c
drivers/net/wireless/libertas/cfg.c
|
| |
| |
| |
| |
| | |
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |
| |
| |
| |
| |
| | |
It was used on Apollo only, before its conversion to genirq.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |
| |
| |
| | |
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
q40_irq_handler() must be kept to translate ISA IRQs to the range 1-15.
q40_probe_irq_o{ff,n}() become unused.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Richard Zidlicky <rz@linux-m68k.org>
|
| |
| |
| |
| |
| |
| |
| | |
Disabled on all platforms for now
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
[v1] Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
| |
| |
| |
| |
| |
| |
| |
| | |
- Rename m68k_handle_int() to generic_handle_irq(), and drop the unneeded
asmlinkage,
- Rename __m68k_handle_int() to do_IRQ().
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |
| |
| |
| |
| |
| |
| | |
This is a wrapper around m68k_setup_irq_chip() that discards its dummy
second parameter, to ease the future transition to genirq.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |
| |
| |
| |
| | |
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Make it more similar to the genirq version:
- Add an irq field
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
| |
| |
| |
| |
| | |
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Make it more similar to the genirq version:
- Remove lock (unused as we don't do SMP anyway),
- Prepend methods with irq_,
- Make irq_startup() return unsigned int.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The 802.1X EAPOL handshake hostapd does requires
knowing whether the frame was ack'ed by the peer.
Currently, we fudge this pretty badly by not even
transmitting the frame as a normal data frame but
injecting it with radiotap and getting the status
out of radiotap monitor as well. This is rather
complex, confuses users (mon.wlan0 presence) and
doesn't work with all hardware.
To get rid of that hack, introduce a real wifi TX
status option for data frame transmissions.
This works similar to the existing TX timestamping
in that it reflects the SKB back to the socket's
error queue with a SCM_WIFI_STATUS cmsg that has
an int indicating ACK status (0/1).
Since it is possible that at some point we will
want to have TX timestamping and wifi status in a
single errqueue SKB (there's little point in not
doing that), redefine SO_EE_ORIGIN_TIMESTAMPING
to SO_EE_ORIGIN_TXSTATUS which can collect more
than just the timestamp; keep the old constant
as an alias of course. Currently the internal APIs
don't make that possible, but it wouldn't be hard
to split them up in a way that makes it possible.
Thanks to Neil Horman for helping me figure out
the functions that add the control messages.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
|
|
|
|
|
| |
Create common extern definitions of _rambase, _ramstart and _ramend
instead of them being externed when used in code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
|
|
|
|
|
|
| |
We should be including and using sections.h to get at the extern
definitions of the linker sections in the m68knommu startup code.
Not defining them locally.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The code for handling traps in the non-mmu case is a subset of the mmu
enabled case. Merge the non-mmu traps_no.c code back to a single traps.c.
There is actually no code mmu specific here at all, and the processor
specific code (for the more complex 68020/68030/68040/68060) is already
proplerly conditionaly used.
The format of console exception dump is a little different, but I don't
think will cause any one problems, it is purely for debug purposes.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The changes in the mmu version of entry.h (entry_mm.h) and the non-mmu
version (entry_no.h) are not about the presence or use of an MMU at all.
The main changes are to support the ColdFire processors. The code for
trap entry and exit for all types of 68k processor outside coldfire is
the same.
So merge the files back to a single entry.h and share the common 68k
entry/exit code. Some changes are required for the non-mmu entry
handlers to adopt the differing macros for system call and interrupt
entry, but this is quite strait forward. The changes for the ColdFire
remove a couple of instructions for the separate a7 register case, and
are no worse for the older single a7 register case.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The problem has its root in the calculation of the set-port offsets (macro
MCFGPIO_SETR() in arch/m68k/include/asm/gpio.h), this assumes that all ports
have the same offset from the base port address (MCFGPIO_SETR) which is
defined in mcf520xsim.h as an alias of MCFGIO_PSETR_BUSCTL. Because the BUSCTL
and BE port do not have a set-register (see MCF5208 Reference Manual Page
13-10, Table 13-3) the offset calculations went wrong.
Because the BE and BUSCTL port do not seem useful in these parts, as they
lack a set register, I removed them and adapted the gpio chip bases which
are also used for the offset-calculations. Now both setting and resetting
the chip selects works as expected from userland and from the kernelspace.
Signed-off-by: Peter Turczak <peter@turczak.de>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes fallout due to the removal of the cast in commit aa462abe8aaf
("mm: fix __page_to_pfn for a const struct page argument")
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: linux-m68k@lists.linux-m68k.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k/math-emu: Remove unnecessary code
m68k/math-emu: Remove commented out old code
m68k: Kill warning in setup_arch() when compiling for Sun3
m68k/atari: Prefix GPIO_{IN,OUT} with CODEC_
sparc: iounmap() and *_free_coherent() - Use lookup_resource()
m68k/atari: Reserve some ST-RAM early on for device buffer use
m68k/amiga: Chip RAM - Use lookup_resource()
resources: Add lookup_resource()
sparc: _sparc_find_resource() should check for exact matches
m68k/amiga: Chip RAM - Offset resource end by CHIP_PHYSADDR
m68k/amiga: Chip RAM - Use resource_size() to fix off-by-one error
m68k/amiga: Chip RAM - Change chipavail to an atomic_t
m68k/amiga: Chip RAM - Always allocate from the start of memory
m68k/amiga: Chip RAM - Convert from printk() to pr_*()
m68k/amiga: Chip RAM - Use tabs for indentation
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
These defines are way to generic, and cause conflicts:
drivers/net/wireless/rtlwifi/rtl8192c/../rtl8192ce/reg.h:369:1: warning: "GPIO_IN" redefined
drivers/net/wireless/rtlwifi/rtl8192c/../rtl8192ce/reg.h:370:1: warning: "GPIO_OUT" redefined
drivers/net/wireless/rtlwifi/rtl8192se/reg.h:252:1: warning: "GPIO_IN" redefined
drivers/net/wireless/rtlwifi/rtl8192se/reg.h:253:1: warning: "GPIO_OUT" redefined
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Based on an original patch from Michael Schmitz:
Because mem_init() is now called before device init, devices that rely on
ST-RAM may find all ST-RAM already allocated to other users by the time
device init happens. In particular, a large initrd RAM disk may use up
enough of ST-RAM to cause atari_stram_alloc() to resort to
__get_dma_pages() allocation.
In the current state of Atari memory management, all of RAM is marked
DMA capable, so __get_dma_pages() may well return RAM that is not in actual
fact DMA capable. Using this for frame buffer or SCSI DMA buffer causes
subtle failure.
The ST-RAM allocator has been changed to allocate memory from a pool of
reserved ST-RAM of configurable size, set aside on ST-RAM init (i.e.
before mem_init()). As long as this pool is not exhausted, allocation of
real ST-RAM can be guaranteed.
Other changes:
- Replace the custom allocator in the ST-RAM pool by the existing allocator
in the resource subsystem,
- Remove mem_init_done and its hook, as memory init is now done before
device init,
- Remove /proc/stram, as ST-RAM usage now shows up under /proc/iomem, e.g.
005f2000-006f1fff : ST-RAM Pool
005f2000-0063dfff : atafb
0063e000-00641fff : ataflop
00642000-00642fff : SCSI
Signed-off-by: Michael Schmitz <schmitz@debian.org>
[Andreas Schwab <schwab@linux-m68k.org>: Use memparse()]
[Geert: Use the resource subsystem instead of a custom allocator]
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After changing all consumers of atomics to include <linux/atomic.h>, we
ran into some compile time errors due to this dependency chain:
linux/atomic.h
-> asm/atomic.h
-> asm-generic/atomic-long.h
where atomic-long.h could use funcs defined later in linux/atomic.h
without a prototype. This patches moves the code that includes
asm-generic/atomic*.h to linux/atomic.h.
Archs that need <asm-generic/atomic64.h> need to select
CONFIG_GENERIC_ATOMIC64 from now on (some of them used to include it
unconditionally).
Compile tested on i386 and x86_64 with allnoconfig.
Signed-off-by: Arun Sharma <asharma@fb.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is in preparation for more generic atomic primitives based on
__atomic_add_unless.
Signed-off-by: Arun Sharma <asharma@fb.com>
Signed-off-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Harmonise these return values with other architectures. In some cases
this affects all compilers and in other cases non-gcc compilers only.
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ulrich Drepper <drepper@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
[ poleg@redhat.com: no need to declare show_regs() in ptrace.h, sched.h does this ]
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu:
m68k: Revive reporting of spurious interrupts
m68knommu: Move forward declaration of do_IRQ() from machdep.h to irq.h
m68k: fix some atomic operation asm address modes for ColdFire
m68k: use CPU_HAS_NO_BITFIELDS for signal functions
m68k: merge and clean up delay.h files
m68knommu: correctly use trap_init
m68knommu: merge ColdFire 5206 and 5206e platform code
m68k: merge mmu and non-mmu bitops.h
m68k: merge MMU and non MMU versions of system.h
m68k: merge MMU and non-MMU versions of asm/hardirq.h
m68k: merge the non-mmu and mmu versions of module.c
m68knommu: Fix printk() format in free_initrd_mem()
m68knommu: Make empty_zero_page "void *", like on m68k
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
It is not machine-specific, but common irq infrastructure.
Also add the missing asmlinkage, to match its definition.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The ColdFire processors have a much more limited set of addressing modes
that can be used for most instructions. A number of the atomic operations
have already been fixed to limit the addressing modes used with add and
sub instructions when building for ColdFire. But we missed a few.
Fix the remaining atomic operations to be clean for ColdFire processors.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When reworking bitops.h to be clean for all processor types we introduced
a CONFIG_CPU_HAS_NO_BITFIELDS define to signal whether this processor type
supported the bit field instructions. The ARCH_SIG_BITOPS functions for
m68k use these instruction types. We should base the use of these functions
(or the generic versions) on the CONFIG_CPU_HAS_NO_BITFIELDS define.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The real difference between the mmu and non-mmu varients of the delay.h
files has nothing to do with having an mmu or not. It is processor family
differences that means slightly different code. Merge the delay_mm.h and
delay_no.h files back into a single file.
The primarly difference we need to deal with is whether the processor
supports a 32bit * 32bit -> 64bit multiply. Without it we need to do some
shift scaling as well as use a 32bit * 32bit -> 32bit multiply. If building
for a multi-CPU type kernel then we must use the simpler mult/shift scaling.
This version of delay code allows the CPU32 family to use a 64bit mul,
since it supports this instruction, the old code did not.
The changes use macros where appropriate to try and optimize constant sized
udelay times. And it removes the use of a fixed lib function for the non-mmu
case. Code size on typical kernel configurations is similar, or only larger
by a few tens of bytes.
Also removed the unused muldiv() code from delay_mm.h.
Build and run tested on ColdFire and ARAnyM. Build tested only on 68328
and 68360 (CPU32).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently trap_init() is an empty function for m68knommu. Instead
the vectors are being setup as part of the IRQ initialization.
This is inconsistent with m68k and other architectures.
Change the local init_vectors() to be trap_init(), and init the
vectors at the correct time during startup. This will help merge of
m68k and m68knommu trap code in the furture.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The following patch merges the mmu and non-mmu versions of the m68k
bitops.h files. Now there is a good deal of difference between the two
files, but none of it is actually an mmu specific difference. It is
all about the specific m68k/coldfire varient we are targeting. So it
makes an awful lot of sense to merge these into a single bitops.h.
There is a number of ways I can see to factor this code. The approach
I have taken here is to keep the various versions of each macro/function
type together. This means that there is some ifdefery with each to handle
each CPU type.
I have added some comments in a couple of appropriate places to try
and make it clear what the differences we are dealing with are.
Specifically the instruction and addressing mode differences we have
to deal with.
The merged form keeps the same underlying optimizations for each CPU
type for all the general bit clear/set/change and find bit operations.
It does switch to using the generic le operations though, instead of
any local varients.
Build tested on ColdFire, 68328, 68360 (which is cpu32) and 68020+.
Run tested on ColdFire and ARAnyM.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The non-MMU m68k targets can use the same asm/system.h as the MMU
targets. So switch the current system_mm.h to be system.h and remove
system_no.h.
The assembly support code for the non-MMU resume functions needs to
be modified to match the now common switch_to() macro. Specifically
this means correctly saving and restoring the status flags in the case
of the ColdFire resume, and some reordering of the code to not use
registers before they are saved or after they are restored.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The contents of asm/hardirq.h are pretty strait forward for both the
MMU (hardirq_mm.h) and non-MMU (hardirq_no.h) include files. Merge the
two back into a single file.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
|