| Commit message (Collapse) | Author | Age |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull KVM updates from Avi Kivity:
"Highlights include
- full big real mode emulation on pre-Westmere Intel hosts (can be
disabled with emulate_invalid_guest_state=0)
- relatively small ppc and s390 updates
- PCID/INVPCID support in guests
- EOI avoidance; 3.6 guests should perform better on 3.6 hosts on
interrupt intensive workloads)
- Lockless write faults during live migration
- EPT accessed/dirty bits support for new Intel processors"
Fix up conflicts in:
- Documentation/virtual/kvm/api.txt:
Stupid subchapter numbering, added next to each other.
- arch/powerpc/kvm/booke_interrupts.S:
PPC asm changes clashing with the KVM fixes
- arch/s390/include/asm/sigp.h, arch/s390/kvm/sigp.c:
Duplicated commits through the kvm tree and the s390 tree, with
subsequent edits in the KVM tree.
* tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits)
KVM: fix race with level interrupts
x86, hyper: fix build with !CONFIG_KVM_GUEST
Revert "apic: fix kvm build on UP without IOAPIC"
KVM guest: switch to apic_set_eoi_write, apic_write
apic: add apic_set_eoi_write for PV use
KVM: VMX: Implement PCID/INVPCID for guests with EPT
KVM: Add x86_hyper_kvm to complete detect_hypervisor_platform check
KVM: PPC: Critical interrupt emulation support
KVM: PPC: e500mc: Fix tlbilx emulation for 64-bit guests
KVM: PPC64: booke: Set interrupt computation mode for 64-bit host
KVM: PPC: bookehv: Add ESR flag to Data Storage Interrupt
KVM: PPC: bookehv64: Add support for std/ld emulation.
booke: Added crit/mc exception handler for e500v2
booke/bookehv: Add host crit-watchdog exception support
KVM: MMU: document mmu-lock and fast page fault
KVM: MMU: fix kvm_mmu_pagetable_walk tracepoint
KVM: MMU: trace fast page fault
KVM: MMU: fast path of handling guest page fault
KVM: MMU: introduce SPTE_MMU_WRITEABLE bit
KVM: MMU: fold tlb flush judgement into mmu_spte_update
...
|
| |
| |
| |
| |
| |
| |
| | |
Document fast page fault and mmu-lock in locking.txt
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Document the new EOI MSR. Couldn't decide whether this change belongs
conceptually on guest or host side, so a separate patch.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If there is pending critical or machine check interrupt then guest
would like to capture it when guest enable MSR.CE and MSR_ME respectively.
Also as mostly MSR_CE and MSR_ME are updated with rfi/rfci/rfmii
which anyway traps so removing the the paravirt optimization for MSR.CE
and MSR.ME.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|/
|
|
|
|
| |
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull KVM changes from Avi Kivity:
"Changes include additional instruction emulation, page-crossing MMIO,
faster dirty logging, preventing the watchdog from killing a stopped
guest, module autoload, a new MSI ABI, and some minor optimizations
and fixes. Outside x86 we have a small s390 and a very large ppc
update.
Regarding the new (for kvm) rebaseless workflow, some of the patches
that were merged before we switch trees had to be rebased, while
others are true pulls. In either case the signoffs should be correct
now."
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
arch/powerpc/kvm/book3s_segment.S and arch/x86/include/asm/kvm_para.h.
I suspect the kvm_para.h resolution ends up doing the "do I have cpuid"
check effectively twice (it was done differently in two different
commits), but better safe than sorry ;)
* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (125 commits)
KVM: make asm-generic/kvm_para.h have an ifdef __KERNEL__ block
KVM: s390: onereg for timer related registers
KVM: s390: epoch difference and TOD programmable field
KVM: s390: KVM_GET/SET_ONEREG for s390
KVM: s390: add capability indicating COW support
KVM: Fix mmu_reload() clash with nested vmx event injection
KVM: MMU: Don't use RCU for lockless shadow walking
KVM: VMX: Optimize %ds, %es reload
KVM: VMX: Fix %ds/%es clobber
KVM: x86 emulator: convert bsf/bsr instructions to emulate_2op_SrcV_nobyte()
KVM: VMX: unlike vmcs on fail path
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
...
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
PPC updates from Alex.
* 'for-upstream' of git://github.com/agraf/linux-2.6:
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
KVM: PPC: Book3S: PR: No isync in slbie path
KVM: PPC: Book3S: PR: Optimize entry path
KVM: PPC: booke(hv): Fix save/restore of guest accessible SPRGs.
KVM: PPC: Restrict PPC_[L|ST]D macro to asm code
KVM: PPC: bookehv: Use a Macro for saving/restoring guest registers to/from their 64 bit copies.
KVM: PPC: Use clockevent multiplier and shifter for decrementer
KVM: Use minimum and maximum address mapped by TLB1
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This is necessary for qemu to be able to pass the right information
to the guest, such as the supported page sizes and corresponding
encodings in the SLB and hash table, which can vary depending
on the processor type, the type of KVM used (PR vs HV) and the
version of KVM
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix compilation on hv, adjust for newer ioctl numbers]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
cpuid eax should return the max leaf so that
guests can find out the valid range.
This matches Xen et al.
Update documentation to match.
Tested with -cpu host.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We can't run PIT IRQ injection work in the interrupt context of the host
timer. This would allow the user to influence the handler complexity by
asking for a broadcast to a large number of VCPUs. Therefore, this work
was pushed into workqueue context in 9d244caf2e. However, this prevents
prioritizing the PIT injection over other task as workqueues share
kernel threads.
This replaces the workqueue with a kthread worker and gives that thread
a name in the format "kvm-pit/<owner-process-pid>". That allows to
identify and adjust the kthread priority according to the VM process
parameters.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
Add descriptions for KVM_CREATE_PIT2 and KVM_GET/SET_PIT2.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
This helps to identify sections and it also fixes the numbering from
4.54 to 4.61.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, MSI messages can only be injected to in-kernel irqchips by
defining a corresponding IRQ route for each message. This is not only
unhandy if the MSI messages are generated "on the fly" by user space,
IRQ routes are a limited resource that user space has to manage
carefully.
By providing a direct injection path, we can both avoid using up limited
resources and simplify the necessary steps for user land.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that we have a flag that will tell the guest it was suspended, create an
interface for that communication using a KVM ioctl.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|/
|
|
| |
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull kvm updates from Avi Kivity:
"Changes include timekeeping improvements, support for assigning host
PCI devices that share interrupt lines, s390 user-controlled guests, a
large ppc update, and random fixes."
This is with the sign-off's fixed, hopefully next merge window we won't
have rebased commits.
* 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: Convert intx_mask_lock to spin lock
KVM: x86: fix kvm_write_tsc() TSC matching thinko
x86: kvmclock: abstract save/restore sched_clock_state
KVM: nVMX: Fix erroneous exception bitmap check
KVM: Ignore the writes to MSR_K7_HWCR(3)
KVM: MMU: make use of ->root_level in reset_rsvds_bits_mask
KVM: PMU: add proper support for fixed counter 2
KVM: PMU: Fix raw event check
KVM: PMU: warn when pin control is set in eventsel msr
KVM: VMX: Fix delayed load of shared MSRs
KVM: use correct tlbs dirty type in cmpxchg
KVM: Allow host IRQ sharing for assigned PCI 2.3 devices
KVM: Ensure all vcpus are consistent with in-kernel irqchip settings
KVM: x86 emulator: Allow PM/VM86 switch during task switch
KVM: SVM: Fix CPL updates
KVM: x86 emulator: VM86 segments must have DPL 3
KVM: x86 emulator: Fix task switch privilege checks
arch/powerpc/kvm/book3s_hv.c: included linux/sched.h twice
KVM: x86 emulator: correctly mask pmc index bits in RDPMC instruction emulation
KVM: mmu_notifier: Flush TLBs before releasing mmu_lock
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
PCI 2.3 allows to generically disable IRQ sources at device level. This
enables us to share legacy IRQs of such devices with other host devices
when passing them to a guest.
The new IRQ sharing feature introduced here is optional, user space has
to request it explicitly. Moreover, user space can inform us about its
view of PCI_COMMAND_INTX_DISABLE so that we can avoid unmasking the
interrupt and signaling it if the guest masked it via the virtualized
PCI config space.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead of keeping separate copies of struct kvm_vcpu_arch_shared (one in
the code, one in the docs) that inevitably fail to be kept in sync
(already sr[] is missing from the doc version), just point to the header
file as the source of documentation on the contents of the magic page.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Until now, we always set HIOR based on the PVR, but this is just wrong.
Instead, we should be setting HIOR explicitly, so user space can decide
what the initial HIOR value is - just like on real hardware.
We keep the old PVR based way around for backwards compatibility, but
once user space uses the SET_ONE_REG based method, we drop the PVR logic.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Right now we transfer a static struct every time we want to get or set
registers. Unfortunately, over time we realize that there are more of
these than we thought of before and the extensibility and flexibility of
transferring a full struct every time is limited.
So this is a new approach to the problem. With these new ioctls, we can
get and set a single register that is identified by an ID. This allows for
very precise and limited transmittal of data. When we later realize that
it's a better idea to shove over multiple registers at once, we can reuse
most of the infrastructure and simply implement a GET_MANY_REGS / SET_MANY_REGS
interface.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This implements a shared-memory API for giving host userspace access to
the guest's TLB.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On some cpus the overhead for virtualization instructions is in the same
range as a system call. Having to call multiple ioctls to get set registers
will make certain userspace handled exits more expensive than necessary.
Lets provide a section in kvm_run that works as a shared save area
for guest registers.
We also provide two 64bit flags fields (architecture specific), that will
specify
1. which parts of these fields are valid.
2. which registers were modified by userspace
Each bit for these flag fields will define a group of registers (like
general purpose) or a single register.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch allows the user to fault in pages on a virtual cpus
address space for user controlled virtual machines. Typically this
is superfluous because userspace can just create a mapping and
let the kernel's page fault logic take are of it. There is one
exception: SIE won't start if the lowcore is not present. Normally
the kernel takes care of this [handle_validity() in
arch/s390/kvm/intercept.c] but since the kernel does not handle
intercepts for user controlled virtual machines, userspace needs to
be able to handle this condition.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch exports the s390 SIE hardware control block to userspace
via the mapping of the vcpu file descriptor. In order to do so,
a new arch callback named kvm_arch_vcpu_fault is introduced for all
architectures. It allows to map architecture specific pages.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch introduces a new exit reason in the kvm_run structure
named KVM_EXIT_S390_UCONTROL. This exit indicates, that a virtual cpu
has regognized a fault on the host page table. The idea is that
userspace can handle this fault by mapping memory at the fault
location into the cpu's address space and then continue to run the
virtual cpu.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch introduces two ioctls for virtual cpus, that are only
valid for kernel virtual machines that are controlled by userspace.
Each virtual cpu has its individual address space in this mode of
operation, and each address space is backed by the gmap
implementation just like the address space for regular KVM guests.
KVM_S390_UCAS_MAP allows to map a part of the user's virtual address
space to the vcpu. Starting offset and length in both the user and
the vcpu address space need to be aligned to 1M.
KVM_S390_UCAS_UNMAP can be used to unmap a range of memory from a
virtual cpu in a similar way.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch introduces a new config option for user controlled kernel
virtual machines. It introduces a parameter to KVM_CREATE_VM that
allows to set bits that alter the capabilities of the newly created
virtual machine.
The parameter is passed to kvm_arch_init_vm for all architectures.
The only valid modifier bit for now is KVM_VM_S390_UCONTROL.
This requires CAP_SYS_ADMIN privileges and creates a user controlled
virtual machine on s390 architectures.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|/
|
|
|
|
| |
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
|
|
|
|
|
| |
We're in tools/lguest now.
Reported-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
|
|
|
|
|
| |
This is a better location instead of having it in Documentation.
Signed-off-by: Davidlohr Bueso <dave@gnu.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (fixed compile)
|
|
|
|
| |
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unlike all of the other cpuid bits, the TSC deadline timer bit is set
unconditionally, regardless of what userspace wants.
This is broken in several ways:
- if userspace doesn't use KVM_CREATE_IRQCHIP, and doesn't emulate the TSC
deadline timer feature, a guest that uses the feature will break
- live migration to older host kernels that don't support the TSC deadline
timer will cause the feature to be pulled from under the guest's feet;
breaking it
- guests that are broken wrt the feature will fail.
Fix by not enabling the feature automatically; instead report it to userspace.
Because the feature depends on KVM_CREATE_IRQCHIP, which we cannot guarantee
will be called, we expose it via a KVM_CAP_TSC_DEADLINE_TIMER and not
KVM_GET_SUPPORTED_CPUID.
Fixes the Illumos guest kernel, which uses the TSC deadline timer feature.
[avi: add the KVM_CAP + documentation]
Reported-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Tested-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Only allow KVM device assignment to attach to devices which:
- Are not bridges
- Have BAR resources (assume others are special devices)
- The user has permissions to use
Assigning a bridge is a configuration error, it's not supported, and
typically doesn't result in the behavior the user is expecting anyway.
Devices without BAR resources are typically chipset components that
also don't have host drivers. We don't want users to hold such devices
captive or cause system problems by fencing them off into an iommu
domain. We determine "permission to use" by testing whether the user
has access to the PCI sysfs resource files. By default a normal user
will not have access to these files, so it provides a good indication
that an administration agent has granted the user access to the device.
[Yang Bai: add missing #include]
[avi: fix comment style]
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Yang Bai <hamo.by@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|
|
|
|
|
|
|
|
| |
This option has no users and it exposes a security hole that we
can allow devices to be assigned without iommu protection. Make
KVM_DEV_ASSIGN_ENABLE_IOMMU a mandatory option.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* 'for-linus' of git://github.com/richardweinberger/linux: (90 commits)
um: fix ubd cow size
um: Fix kmalloc argument order in um/vdso/vma.c
um: switch to use of drivers/Kconfig
UserModeLinux-HOWTO.txt: fix a typo
UserModeLinux-HOWTO.txt: remove ^H characters
um: we need sys/user.h only on i386
um: merge delay_{32,64}.c
um: distribute exports to where exported stuff is defined
um: kill system-um.h
um: generic ftrace.h will do...
um: segment.h is x86-only and needed only there
um: asm/pda.h is not needed anymore
um: hw_irq.h can go generic as well
um: switch to generic-y
um: clean Kconfig up a bit
um: a couple of missing dependencies...
um: kill useless argument of free_chan() and free_one_chan()
um: unify ptrace_user.h
um: unify KSTK_...
um: fix gcov build breakage
...
|
| |
| |
| |
| |
| | |
Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If you can't read this patch, please run:
sed -i -e "s/[^\o10]\o10//g" \
Documentation/virtual/uml/UserModeLinux-HOWTO.txt
Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm
* 'kvm-updates/3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm: (75 commits)
KVM: SVM: Keep intercepting task switching with NPT enabled
KVM: s390: implement sigp external call
KVM: s390: fix register setting
KVM: s390: fix return value of kvm_arch_init_vm
KVM: s390: check cpu_id prior to using it
KVM: emulate lapic tsc deadline timer for guest
x86: TSC deadline definitions
KVM: Fix simultaneous NMIs
KVM: x86 emulator: convert push %sreg/pop %sreg to direct decode
KVM: x86 emulator: switch lds/les/lss/lfs/lgs to direct decode
KVM: x86 emulator: streamline decode of segment registers
KVM: x86 emulator: simplify OpMem64 decode
KVM: x86 emulator: switch src decode to decode_operand()
KVM: x86 emulator: qualify OpReg inhibit_byte_regs hack
KVM: x86 emulator: switch OpImmUByte decode to decode_imm()
KVM: x86 emulator: free up some flag bits near src, dst
KVM: x86 emulator: switch src2 to generic decode_operand()
KVM: x86 emulator: expand decode flags to 64 bits
KVM: x86 emulator: split dst decode to a generic decode_operand()
KVM: x86 emulator: move memop, memopp into emulation context
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We have an ioctl that enables capabilities individually, but no description
on what exactly happens when we enable a capability using this ioctl.
This patch adds documentation for capability enabling in a new section
of the API documentation.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 371fefd6 lost a doc hunk somehow, restore it.
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The patch raises the hard limit of VCPU count to 254.
This will allow developers to easily work on scalability
and will allow users to test high VCPU setups easily without
patching the kernel.
To prevent possible issues with current setups, KVM_CAP_NR_VCPUS
now returns the recommended VCPU limit (which is still 64) - this
should be a safe value for everybody, while a new KVM_CAP_MAX_VCPUS
returns the hard limit which is now 254.
Cc: Avi Kivity <avi@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Suggested-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
| |
There are numerous broken references to Documentation files (in other
Documentation files, in comments, etc.). These broken references are
caused by typo's in the references, and by renames or removals of the
Documentation files. Some broken references are simply odd.
Fix these broken references, sometimes by dropping the irrelevant text
they were part of.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The CONFIG_RELOCATABLE code tries to align the unpack destination to
the value of 'kernel_alignment' in the setup_hdr. If that's 0, it
tries to unpack to address 0, which in fact causes the gunzip code
to call 'error("Out of memory while allocating output buffer")'.
The bootloader (ie. the lguest Launcher in this case) should be doing
setting this field; the normal bzImage is 16M, we can use the same.
Reported-by: Stefanos Geraggelos <sgerag@cslab.ece.ntua.gr>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: stable@kernel.org
|
|
|
|
|
|
| |
As suggested by Christoph Hellwig.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* 'kvm-updates/3.1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (143 commits)
KVM: IOMMU: Disable device assignment without interrupt remapping
KVM: MMU: trace mmio page fault
KVM: MMU: mmio page fault support
KVM: MMU: reorganize struct kvm_shadow_walk_iterator
KVM: MMU: lockless walking shadow page table
KVM: MMU: do not need atomicly to set/clear spte
KVM: MMU: introduce the rules to modify shadow page table
KVM: MMU: abstract some functions to handle fault pfn
KVM: MMU: filter out the mmio pfn from the fault pfn
KVM: MMU: remove bypass_guest_pf
KVM: MMU: split kvm_mmu_free_page
KVM: MMU: count used shadow pages on prepareing path
KVM: MMU: rename 'pt_write' to 'emulate'
KVM: MMU: cleanup for FNAME(fetch)
KVM: MMU: optimize to handle dirty bit
KVM: MMU: cache mmio info on page fault path
KVM: x86: introduce vcpu_mmio_gva_to_gpa to cleanup the code
KVM: MMU: do not update slot bitmap if spte is nonpresent
KVM: MMU: fix walking shadow page table
KVM guest: KVM Steal time registration
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
To implement steal time, we need the hypervisor to pass the guest information
about how much time was spent running other processes outside the VM.
This is per-vcpu, and using the kvmclock structure for that is an abuse
we decided not to make.
In this patchset, I am introducing a new msr, KVM_MSR_STEAL_TIME, that
holds the memory area address containing information about steal time
This patch contains the headers for it. I am keeping it separate to facilitate
backports to people who wants to backport the kernel part but not the
hypervisor, or the other way around.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode. H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.
Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables. The
ioctl returns a file descriptor which can be used to mmap the newly
created table. The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.
There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time. Specifically, allowing this will avoid awkwardness
when we need to reset the table. More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|