| Commit message (Collapse) | Author | Age |
|\ |
|
| |\ |
|
| |\ \ |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The sched_clock code currently tries to keep all CPU clocks of all CPUS
somewhat in sync. At every clock tick it records the gtod clock and
uses that and jiffies and the TSC to calculate a CPU clock that tries to
stay in sync with all the other CPUs.
ftrace depends heavily on this timer and it detects when this timer
"jumps". One problem is that the TSC and the gtod also drift.
When the TSC is 0.1% faster or slower than the gtod it is very noticeable
in ftrace. To help compensate for this, I've added a multiplier that
tries to keep the CPU clock updating at the same rate as the gtod.
I've tried various ways to get it to be in sync and this ended up being
the most reliable. At every scheduler tick we calculate the new multiplier:
multi = delta_gtod / delta_TSC
This means we perform a 64 bit divide at the tick (once a HZ). A shift
is used to handle the accuracy.
Other methods that failed due to dynamic HZ are:
(not used) multi += (gtod - tsc) / delta_gtod
(not used) multi += (gtod - (last_tsc + delta_tsc)) / delta_gtod
as well as other variants.
This code still allows for a slight drift between TSC and gtod, but
it keeps the damage down to a minimum.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
To read the gtod we need to grab the xtime lock for read. Reading the gtod
before the TSC can cause a bigger gab if the xtime lock is contended.
This patch simply reverses the order to read the TSC after the gtod.
The locking in the reading of the gtod handles any barriers one might
think is needed.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Reading the CPU clock should try to stay accurate within the CPU.
By reading the CPU clock from another CPU and updating the deltas can
cause unneeded jumps when reading from the local CPU.
This patch changes the code to update the last read TSC only when read
from the local CPU.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The algorithm to calculate the 'now' of another CPU is not correct.
At each scheduler tick, each CPU records the last sched_clock and
gtod (tick_raw and tick_gtod respectively). If the TSC is somewhat the
same in speed between two clocks the algorithm would be:
tick_gtod1 + (now1 - tick_raw1) = tick_gtod2 + (now2 - tick_raw2)
To calculate now2 we would have:
now2 = (tick_gtod1 - tick_gtod2) + (tick_raw2 - tick_raw1) + now1
Currently the algorithm is:
now2 = (tick_gtod1 - tick_gtod2) + (tick_raw1 - tick_raw2) + now1
This solves most of the rest of the issues I've had with timestamps in
ftace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Working with ftrace I would get large jumps of 11 millisecs or more with
the clock tracer. This killed the latencing timings of ftrace and also
caused the irqoff self tests to fail.
What was happening is with NO_HZ the idle would stop the jiffy counter and
before the jiffy counter was updated the sched_clock would have a bad
delta jiffies to compare with the gtod with the maximum.
The jiffies would stop and the last sched_tick would record the last gtod.
On wakeup, the sched clock update would compare the gtod + delta jiffies
(which would be zero) and compare it to the TSC. The TSC would have
correctly (with a stable TSC) moved forward several jiffies. But because the
jiffies has not been updated yet the clock would be prevented from moving
forward because it would appear that the TSC jumped too far ahead.
The clock would then virtually stop, until the jiffies are updated. Then
the next sched clock update would see that the clock was very much behind
since the delta jiffies is now correct. This would then jump the clock
forward by several jiffies.
This caused ftrace to report several milliseconds of interrupts off
latency at every resume from NO_HZ idle.
This patch adds hooks into the nohz code to disable the checking of the
maximum clock update when nohz is in effect. It resumes the max check
when nohz has updated the jiffies again.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
With keeping the max and min sched time within one jiffy of the gtod clock
was too tight. Just before a schedule tick the max could easily be hit, as
well as just after a schedule_tick the min could be hit. This caused the
clock to jump around by a jiffy.
This patch widens the minimum to
last gtod + (delta_jiffies ? delta_jiffies - 1 : 0) * TICK_NSECS
and the maximum to
last gtod + (2 + delta_jiffies) * TICK_NSECS
This keeps the minum to gtod or if one jiffy less than delta jiffies
and the maxim 2 jiffies ahead of gtod. This may cause unstable TSCs to be
a bit more sporadic, but it helps keep a clock with a stable TSC working well.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The sched_clock code tries to keep within the gtod time by one tick (jiffy).
The current code mistakenly keeps track of the delta jiffies between
updates of the clock, where the the delta is used to compare with the
number of jiffies that have past since an update of the gtod. The gtod is
updated at each schedule tick not each sched_clock update. After one
jiffy passes the clock is updated fine. But the delta is taken from the
last update so if the next update happens before the next tick the delta
jiffies used will be incorrect.
This patch changes the code to check the delta of jiffies between ticks
and not updates to match the comparison of the updates with the gtod.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \ |
|
| |\ \ \ \ |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
On Thu, Jun 19, 2008 at 12:27:14PM +0200, Peter Zijlstra wrote:
> On Thu, 2008-06-05 at 10:50 +0530, Ankita Garg wrote:
>
> > Thanks Peter for the explanation...
> >
> > I agree with the above and that is the reason why I did not see weird
> > values with cpu_time. But, run_delay still would suffer skews as the end
> > points for delta could be taken on different cpus due to migration (more
> > so on RT kernel due to the push-pull operations). With the below patch,
> > I could not reproduce the issue I had seen earlier. After every dequeue,
> > we take the delta and start wait measurements from zero when moved to a
> > different rq.
>
> OK, so task delay delay accounting is broken because it doesn't take
> migration into account.
>
> What you've done is make it symmetric wrt enqueue, and account it like
>
> cpu0 cpu1
>
> enqueue
> <wait-d1>
> dequeue
> enqueue
> <wait-d2>
> run
>
> Where you add both d1 and d2 to the run_delay,.. right?
>
Thanks for reviewing the patch. The above is exactly what I have done.
> This seems like a good fix, however it looks like the patch will break
> compilation in !CONFIG_SCHEDSTATS && !CONFIG_TASK_DELAY_ACCT, of it
> failing to provide a stub for sched_info_dequeue() in that case.
Fixed. Pl. find the new patch below.
Signed-off-by: Ankita Garg <ankita@in.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: rostedt@goodmis.org
Cc: suresh.b.siddha@intel.com
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@linux.vnet.ibm.com
Cc: David Bahi <DBahi@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We have the notion of tracking process-coupling (a.k.a. buddy-wake) via
the p->se.last_wake / p->se.avg_overlap facilities, but it is only used
for cfs to cfs interactions. There is no reason why an rt to cfs
interaction cannot share in establishing a relationhip in a similar
manner.
Because PREEMPT_RT runs many kernel threads as FIFO priority, we often
times have heavy interaction between RT threads waking CFS applications.
This patch offers a substantial boost (50-60%+) in perfomance under those
circumstances.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Cc: npiggin@suse.de
Cc: rostedt@goodmis.org
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Inspired by Peter Zijlstra.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Cc: npiggin@suse.de
Cc: rostedt@goodmis.org
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
This patch fixes the following warning:
kernel/sched.c:1667: warning: 'cfs_rq_set_shares' defined but not used
This seems the correct way to fix this; cfs_rq_set_shares() is only used
in a single place, which is also inside #ifdef CONFIG_FAIR_GROUP_SCHED.
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
fix:
kernel/sched.c: In function ‘sched_group_set_shares':
kernel/sched.c:8635: error: implicit declaration of function ‘cfs_rq_set_shares'
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Vegard Nossum reported:
> WARNING: at kernel/lockdep.c:2738 check_flags+0x142/0x160()
which happens due to:
unsigned long long cpu_clock(int cpu)
{
unsigned long long clock;
unsigned long flags;
raw_local_irq_save(flags);
as lower level functions can take locks, we must not do that, use
proper lockdep-annotated irq save/restore.
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
the rcutorture module relies on cpu_clock.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Measurement shows that the difference between cgroup:/ and cgroup:/foo
wake_affine() results is that the latter succeeds significantly more.
Therefore bias the calculations towards failing the test.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Increase the accuracy of the effective_load values.
Not only consider the current increment (as per the attempted wakeup), but
also consider the delta between when we last adjusted the shares and the
current situation.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
rw_i = {2, 4, 1, 0}
s_i = {2/7, 4/7, 1/7, 0}
wakeup on cpu0, weight=1
rw'_i = {3, 4, 1, 0}
s'_i = {3/8, 4/8, 1/8, 0}
s_0 = S * rw_0 / \Sum rw_j ->
\Sum rw_j = S*rw_0/s_0 = 1*2*7/2 = 7 (correct)
s'_0 = S * (rw_0 + 1) / (\Sum rw_j + 1) =
1 * (2+1) / (7+1) = 3/8 (correct
so we find that adding 1 to cpu0 gains 5/56 in weight
if say the other cpu were, cpu1, we'd also have to calculate its 4/56 loss
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
It was observed these mults can overflow.
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We found that the affine wakeup code needs rather accurate load figures
to be effective. The trouble is that updating the load figures is fairly
expensive with group scheduling. Therefore ratelimit the updating.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
In case the domain is empty, pretend there is a single task on each cpu, so
that together with the boost logic we end up giving 1/n shares to each
cpu.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The bias given by source/target_load functions can be very large, disable
it by default to get faster convergence.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
s_i = S * rw_i / \Sum_j rw_j
-> \Sum_j rw_j = S * rw_i / s_i
-> s'_i = S * (rw_i + w) / (\Sum_j rw_j + w)
delta s = s' - s = S * (rw + w) / ((S * rw / s) + w)
= s * (S * (rw + w) / (S * rw + s * w) - 1)
a = S*(rw+w), b = S*rw + s*w
delta s = s * (a-b) / b
IOW, trade one divide for two multiplies
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Priority looses much of its meaning in a hierarchical context. So don't
use it in balance decisions.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Currently task_h_load() computes the load of a task and uses that to either
subtract it from the total, or add to it.
However, removing or adding a task need not have any effect on the total load
at all. Imagine adding a task to a group that is local to one cpu - in that
case the total load of that cpu is unaffected.
So properly compute addition/removal:
s_i = S * rw_i / \Sum_j rw_j
s'_i = S * (rw_i + wl) / (\Sum_j rw_j + wg)
then s'_i - s_i gives the change in load.
Where s_i is the shares for cpu i, S the group weight, rw_i the runqueue weight
for that cpu, wl the weight we add (subtract) and wg the weight contribution to
the runqueue.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
doing the load balance will change cfs_rq->load.weight (that's the whole point)
but since that's part of the scale factor, we'll scale back with a different
amount.
Weight getting smaller would result in an inflated moved_load which causes
it to stop balancing too soon.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
find_busiest_group() has some assumptions about task weight being in the
NICE_0_LOAD range. Hierarchical task groups break this assumption - fix this
by replacing it with the average task weight, which will adapt the situation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
With hierarchical grouping we can't just compare task weight to rq weight - we
need to scale the weight appropriately.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Remove the fall-back to SCHED_LOAD_SCALE by remembering the previous value of
cpu_avg_load_per_task() - this is useful because of the hierarchical group
model in which task weight can be much smaller.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Finding the least idle cpu is more accurate when done with updated shares.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Re-compute the shares on newidle - so we can make a decision based on
recent data.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
While thinking about the previous patch - I realized that using per domain
aggregate load values in load_balance_fair() is wrong. We should use the
load value for that CPU.
By not needing per domain hierarchical load values we don't need to store
per domain aggregate shares, which greatly simplifies all the math.
It basically falls apart in two separate computations:
- per domain update of the shares
- per CPU update of the hierarchical load
Also get rid of the move_group_shares() stuff - just re-compute the shares
again after a successful load balance.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We only need to know the task_weight of the busiest rq - nothing to do
if there are no tasks there.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We used to try and contain the loss of 'shares' by playing arithmetic
games. Replace that by noticing that at the top sched_domain we'll
always have the full weight in shares to distribute.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The idea was to balance groups until we've reached the global goal, however
Vatsa rightly pointed out that we might never reach that goal this way -
hence take out this logic.
[ the initial rationale for this 'feature' was to promote max concurrency
within a group - it does not however affect fairness ]
Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
It was observed that in __update_group_shares_cpu()
rq_weight > aggregate()->rq_weight
This is caused by forks/wakeups in between the initial aggregate pass and
locking of the RQs for load balance. To avoid this situation partially re-do
the aggregation once we have the RQs locked (which avoids new tasks from
appearing).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Keeping the aggregate on the first cpu of the sched domain has two problems:
- it could collide between different sched domains on different cpus
- it could slow things down because of the remote accesses
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
show all the schedstats in /debug/sched_debug as well.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Uncouple buddy selection from wakeup granularity.
The initial idea was that buddies could run ahead as far as a normal task
can - do this by measuring a pair 'slice' just as we do for a normal task.
This means we can drop the wakeup_granularity back to 5ms.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
with sched_clock_cpu() being reasonably in sync between cpus (max 1 jiffy
difference) use this to provide cpu_clock().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Try again..
Initial commit: 18d95a2832c1392a2d63227a7a6d433cb9f2037e
Revert: 6363ca57c76b7b83639ca8c83fc285fa26a7880e
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Ok, so why are we in this mess, it was:
1/w
but now we mixed that rw in the mix like:
rw/w
rw being \Sum w suggests: fiddling w, we should also fiddle rw, humm?
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
calc_delta_asym() is supposed to do the same as calc_delta_fair() except
linearly shrink the result for negative nice processes - this causes them
to have a smaller preemption threshold so that they are more easily preempted.
The problem is that for task groups se->load.weight is the per cpu share of
the actual task group weight; take that into account.
Also provide a debug switch to disable the asymmetry (which I still don't
like - but it does greatly benefit some workloads)
This would explain the interactivity issues reported against group scheduling.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Try again..
initial commit: 8f1bc385cfbab474db6c27b5af1e439614f3025c
revert: f9305d4a0968201b2818dbed0dc8cb0d4ee7aeb3
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
In file included from /mnt/build/linux-2.6/kernel/sched.c:1496:
/mnt/build/linux-2.6/kernel/sched_rt.c: In function '__enable_runtime':
/mnt/build/linux-2.6/kernel/sched_rt.c:339: warning: unused variable 'rd'
/mnt/build/linux-2.6/kernel/sched_rt.c: In function 'requeue_rt_entity':
/mnt/build/linux-2.6/kernel/sched_rt.c:692: warning: unused variable 'queue'
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|