diff options
Diffstat (limited to 'virt/kvm')
| -rw-r--r-- | virt/kvm/Kconfig | 10 | ||||
| -rw-r--r-- | virt/kvm/arm/arch_timer.c | 3 | ||||
| -rw-r--r-- | virt/kvm/arm/vgic-v2-emul.c | 847 | ||||
| -rw-r--r-- | virt/kvm/arm/vgic-v2.c | 12 | ||||
| -rw-r--r-- | virt/kvm/arm/vgic-v3-emul.c | 1036 | ||||
| -rw-r--r-- | virt/kvm/arm/vgic-v3.c | 90 | ||||
| -rw-r--r-- | virt/kvm/arm/vgic.c | 1145 | ||||
| -rw-r--r-- | virt/kvm/arm/vgic.h | 123 | ||||
| -rw-r--r-- | virt/kvm/async_pf.c | 2 | ||||
| -rw-r--r-- | virt/kvm/kvm_main.c | 235 |
10 files changed, 2557 insertions, 946 deletions
diff --git a/virt/kvm/Kconfig b/virt/kvm/Kconfig index fc0c5e603eb4..e2c876d5a03b 100644 --- a/virt/kvm/Kconfig +++ b/virt/kvm/Kconfig | |||
| @@ -37,3 +37,13 @@ config HAVE_KVM_CPU_RELAX_INTERCEPT | |||
| 37 | 37 | ||
| 38 | config KVM_VFIO | 38 | config KVM_VFIO |
| 39 | bool | 39 | bool |
| 40 | |||
| 41 | config HAVE_KVM_ARCH_TLB_FLUSH_ALL | ||
| 42 | bool | ||
| 43 | |||
| 44 | config KVM_GENERIC_DIRTYLOG_READ_PROTECT | ||
| 45 | bool | ||
| 46 | |||
| 47 | config KVM_COMPAT | ||
| 48 | def_bool y | ||
| 49 | depends on COMPAT && !S390 | ||
diff --git a/virt/kvm/arm/arch_timer.c b/virt/kvm/arm/arch_timer.c index 1c0772b340d8..6e54f3542126 100644 --- a/virt/kvm/arm/arch_timer.c +++ b/virt/kvm/arm/arch_timer.c | |||
| @@ -152,7 +152,8 @@ void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) | |||
| 152 | return; | 152 | return; |
| 153 | } | 153 | } |
| 154 | 154 | ||
| 155 | ns = cyclecounter_cyc2ns(timecounter->cc, cval - now); | 155 | ns = cyclecounter_cyc2ns(timecounter->cc, cval - now, timecounter->mask, |
| 156 | &timecounter->frac); | ||
| 156 | timer_arm(timer, ns); | 157 | timer_arm(timer, ns); |
| 157 | } | 158 | } |
| 158 | 159 | ||
diff --git a/virt/kvm/arm/vgic-v2-emul.c b/virt/kvm/arm/vgic-v2-emul.c new file mode 100644 index 000000000000..19c6210f02cf --- /dev/null +++ b/virt/kvm/arm/vgic-v2-emul.c | |||
| @@ -0,0 +1,847 @@ | |||
| 1 | /* | ||
| 2 | * Contains GICv2 specific emulation code, was in vgic.c before. | ||
| 3 | * | ||
| 4 | * Copyright (C) 2012 ARM Ltd. | ||
| 5 | * Author: Marc Zyngier <marc.zyngier@arm.com> | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | * | ||
| 11 | * This program is distributed in the hope that it will be useful, | ||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | * GNU General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU General Public License | ||
| 17 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
| 18 | */ | ||
| 19 | |||
| 20 | #include <linux/cpu.h> | ||
| 21 | #include <linux/kvm.h> | ||
| 22 | #include <linux/kvm_host.h> | ||
| 23 | #include <linux/interrupt.h> | ||
| 24 | #include <linux/io.h> | ||
| 25 | #include <linux/uaccess.h> | ||
| 26 | |||
| 27 | #include <linux/irqchip/arm-gic.h> | ||
| 28 | |||
| 29 | #include <asm/kvm_emulate.h> | ||
| 30 | #include <asm/kvm_arm.h> | ||
| 31 | #include <asm/kvm_mmu.h> | ||
| 32 | |||
| 33 | #include "vgic.h" | ||
| 34 | |||
| 35 | #define GICC_ARCH_VERSION_V2 0x2 | ||
| 36 | |||
| 37 | static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); | ||
| 38 | static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi) | ||
| 39 | { | ||
| 40 | return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi; | ||
| 41 | } | ||
| 42 | |||
| 43 | static bool handle_mmio_misc(struct kvm_vcpu *vcpu, | ||
| 44 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 45 | { | ||
| 46 | u32 reg; | ||
| 47 | u32 word_offset = offset & 3; | ||
| 48 | |||
| 49 | switch (offset & ~3) { | ||
| 50 | case 0: /* GICD_CTLR */ | ||
| 51 | reg = vcpu->kvm->arch.vgic.enabled; | ||
| 52 | vgic_reg_access(mmio, ®, word_offset, | ||
| 53 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 54 | if (mmio->is_write) { | ||
| 55 | vcpu->kvm->arch.vgic.enabled = reg & 1; | ||
| 56 | vgic_update_state(vcpu->kvm); | ||
| 57 | return true; | ||
| 58 | } | ||
| 59 | break; | ||
| 60 | |||
| 61 | case 4: /* GICD_TYPER */ | ||
| 62 | reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; | ||
| 63 | reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1; | ||
| 64 | vgic_reg_access(mmio, ®, word_offset, | ||
| 65 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 66 | break; | ||
| 67 | |||
| 68 | case 8: /* GICD_IIDR */ | ||
| 69 | reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); | ||
| 70 | vgic_reg_access(mmio, ®, word_offset, | ||
| 71 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 72 | break; | ||
| 73 | } | ||
| 74 | |||
| 75 | return false; | ||
| 76 | } | ||
| 77 | |||
| 78 | static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, | ||
| 79 | struct kvm_exit_mmio *mmio, | ||
| 80 | phys_addr_t offset) | ||
| 81 | { | ||
| 82 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
| 83 | vcpu->vcpu_id, ACCESS_WRITE_SETBIT); | ||
| 84 | } | ||
| 85 | |||
| 86 | static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, | ||
| 87 | struct kvm_exit_mmio *mmio, | ||
| 88 | phys_addr_t offset) | ||
| 89 | { | ||
| 90 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
| 91 | vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT); | ||
| 92 | } | ||
| 93 | |||
| 94 | static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, | ||
| 95 | struct kvm_exit_mmio *mmio, | ||
| 96 | phys_addr_t offset) | ||
| 97 | { | ||
| 98 | return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, | ||
| 99 | vcpu->vcpu_id); | ||
| 100 | } | ||
| 101 | |||
| 102 | static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, | ||
| 103 | struct kvm_exit_mmio *mmio, | ||
| 104 | phys_addr_t offset) | ||
| 105 | { | ||
| 106 | return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, | ||
| 107 | vcpu->vcpu_id); | ||
| 108 | } | ||
| 109 | |||
| 110 | static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, | ||
| 111 | struct kvm_exit_mmio *mmio, | ||
| 112 | phys_addr_t offset) | ||
| 113 | { | ||
| 114 | u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, | ||
| 115 | vcpu->vcpu_id, offset); | ||
| 116 | vgic_reg_access(mmio, reg, offset, | ||
| 117 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 118 | return false; | ||
| 119 | } | ||
| 120 | |||
| 121 | #define GICD_ITARGETSR_SIZE 32 | ||
| 122 | #define GICD_CPUTARGETS_BITS 8 | ||
| 123 | #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) | ||
| 124 | static u32 vgic_get_target_reg(struct kvm *kvm, int irq) | ||
| 125 | { | ||
| 126 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 127 | int i; | ||
| 128 | u32 val = 0; | ||
| 129 | |||
| 130 | irq -= VGIC_NR_PRIVATE_IRQS; | ||
| 131 | |||
| 132 | for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) | ||
| 133 | val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); | ||
| 134 | |||
| 135 | return val; | ||
| 136 | } | ||
| 137 | |||
| 138 | static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) | ||
| 139 | { | ||
| 140 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 141 | struct kvm_vcpu *vcpu; | ||
| 142 | int i, c; | ||
| 143 | unsigned long *bmap; | ||
| 144 | u32 target; | ||
| 145 | |||
| 146 | irq -= VGIC_NR_PRIVATE_IRQS; | ||
| 147 | |||
| 148 | /* | ||
| 149 | * Pick the LSB in each byte. This ensures we target exactly | ||
| 150 | * one vcpu per IRQ. If the byte is null, assume we target | ||
| 151 | * CPU0. | ||
| 152 | */ | ||
| 153 | for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { | ||
| 154 | int shift = i * GICD_CPUTARGETS_BITS; | ||
| 155 | |||
| 156 | target = ffs((val >> shift) & 0xffU); | ||
| 157 | target = target ? (target - 1) : 0; | ||
| 158 | dist->irq_spi_cpu[irq + i] = target; | ||
| 159 | kvm_for_each_vcpu(c, vcpu, kvm) { | ||
| 160 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); | ||
| 161 | if (c == target) | ||
| 162 | set_bit(irq + i, bmap); | ||
| 163 | else | ||
| 164 | clear_bit(irq + i, bmap); | ||
| 165 | } | ||
| 166 | } | ||
| 167 | } | ||
| 168 | |||
| 169 | static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, | ||
| 170 | struct kvm_exit_mmio *mmio, | ||
| 171 | phys_addr_t offset) | ||
| 172 | { | ||
| 173 | u32 reg; | ||
| 174 | |||
| 175 | /* We treat the banked interrupts targets as read-only */ | ||
| 176 | if (offset < 32) { | ||
| 177 | u32 roreg; | ||
| 178 | |||
| 179 | roreg = 1 << vcpu->vcpu_id; | ||
| 180 | roreg |= roreg << 8; | ||
| 181 | roreg |= roreg << 16; | ||
| 182 | |||
| 183 | vgic_reg_access(mmio, &roreg, offset, | ||
| 184 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 185 | return false; | ||
| 186 | } | ||
| 187 | |||
| 188 | reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); | ||
| 189 | vgic_reg_access(mmio, ®, offset, | ||
| 190 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 191 | if (mmio->is_write) { | ||
| 192 | vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); | ||
| 193 | vgic_update_state(vcpu->kvm); | ||
| 194 | return true; | ||
| 195 | } | ||
| 196 | |||
| 197 | return false; | ||
| 198 | } | ||
| 199 | |||
| 200 | static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, | ||
| 201 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 202 | { | ||
| 203 | u32 *reg; | ||
| 204 | |||
| 205 | reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, | ||
| 206 | vcpu->vcpu_id, offset >> 1); | ||
| 207 | |||
| 208 | return vgic_handle_cfg_reg(reg, mmio, offset); | ||
| 209 | } | ||
| 210 | |||
| 211 | static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, | ||
| 212 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 213 | { | ||
| 214 | u32 reg; | ||
| 215 | |||
| 216 | vgic_reg_access(mmio, ®, offset, | ||
| 217 | ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); | ||
| 218 | if (mmio->is_write) { | ||
| 219 | vgic_dispatch_sgi(vcpu, reg); | ||
| 220 | vgic_update_state(vcpu->kvm); | ||
| 221 | return true; | ||
| 222 | } | ||
| 223 | |||
| 224 | return false; | ||
| 225 | } | ||
| 226 | |||
| 227 | /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */ | ||
| 228 | static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, | ||
| 229 | struct kvm_exit_mmio *mmio, | ||
| 230 | phys_addr_t offset) | ||
| 231 | { | ||
| 232 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 233 | int sgi; | ||
| 234 | int min_sgi = (offset & ~0x3); | ||
| 235 | int max_sgi = min_sgi + 3; | ||
| 236 | int vcpu_id = vcpu->vcpu_id; | ||
| 237 | u32 reg = 0; | ||
| 238 | |||
| 239 | /* Copy source SGIs from distributor side */ | ||
| 240 | for (sgi = min_sgi; sgi <= max_sgi; sgi++) { | ||
| 241 | u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi); | ||
| 242 | |||
| 243 | reg |= ((u32)sources) << (8 * (sgi - min_sgi)); | ||
| 244 | } | ||
| 245 | |||
| 246 | mmio_data_write(mmio, ~0, reg); | ||
| 247 | return false; | ||
| 248 | } | ||
| 249 | |||
| 250 | static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, | ||
| 251 | struct kvm_exit_mmio *mmio, | ||
| 252 | phys_addr_t offset, bool set) | ||
| 253 | { | ||
| 254 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 255 | int sgi; | ||
| 256 | int min_sgi = (offset & ~0x3); | ||
| 257 | int max_sgi = min_sgi + 3; | ||
| 258 | int vcpu_id = vcpu->vcpu_id; | ||
| 259 | u32 reg; | ||
| 260 | bool updated = false; | ||
| 261 | |||
| 262 | reg = mmio_data_read(mmio, ~0); | ||
| 263 | |||
| 264 | /* Clear pending SGIs on the distributor */ | ||
| 265 | for (sgi = min_sgi; sgi <= max_sgi; sgi++) { | ||
| 266 | u8 mask = reg >> (8 * (sgi - min_sgi)); | ||
| 267 | u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi); | ||
| 268 | |||
| 269 | if (set) { | ||
| 270 | if ((*src & mask) != mask) | ||
| 271 | updated = true; | ||
| 272 | *src |= mask; | ||
| 273 | } else { | ||
| 274 | if (*src & mask) | ||
| 275 | updated = true; | ||
| 276 | *src &= ~mask; | ||
| 277 | } | ||
| 278 | } | ||
| 279 | |||
| 280 | if (updated) | ||
| 281 | vgic_update_state(vcpu->kvm); | ||
| 282 | |||
| 283 | return updated; | ||
| 284 | } | ||
| 285 | |||
| 286 | static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu, | ||
| 287 | struct kvm_exit_mmio *mmio, | ||
| 288 | phys_addr_t offset) | ||
| 289 | { | ||
| 290 | if (!mmio->is_write) | ||
| 291 | return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); | ||
| 292 | else | ||
| 293 | return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true); | ||
| 294 | } | ||
| 295 | |||
| 296 | static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, | ||
| 297 | struct kvm_exit_mmio *mmio, | ||
| 298 | phys_addr_t offset) | ||
| 299 | { | ||
| 300 | if (!mmio->is_write) | ||
| 301 | return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); | ||
| 302 | else | ||
| 303 | return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false); | ||
| 304 | } | ||
| 305 | |||
| 306 | static const struct kvm_mmio_range vgic_dist_ranges[] = { | ||
| 307 | { | ||
| 308 | .base = GIC_DIST_CTRL, | ||
| 309 | .len = 12, | ||
| 310 | .bits_per_irq = 0, | ||
| 311 | .handle_mmio = handle_mmio_misc, | ||
| 312 | }, | ||
| 313 | { | ||
| 314 | .base = GIC_DIST_IGROUP, | ||
| 315 | .len = VGIC_MAX_IRQS / 8, | ||
| 316 | .bits_per_irq = 1, | ||
| 317 | .handle_mmio = handle_mmio_raz_wi, | ||
| 318 | }, | ||
| 319 | { | ||
| 320 | .base = GIC_DIST_ENABLE_SET, | ||
| 321 | .len = VGIC_MAX_IRQS / 8, | ||
| 322 | .bits_per_irq = 1, | ||
| 323 | .handle_mmio = handle_mmio_set_enable_reg, | ||
| 324 | }, | ||
| 325 | { | ||
| 326 | .base = GIC_DIST_ENABLE_CLEAR, | ||
| 327 | .len = VGIC_MAX_IRQS / 8, | ||
| 328 | .bits_per_irq = 1, | ||
| 329 | .handle_mmio = handle_mmio_clear_enable_reg, | ||
| 330 | }, | ||
| 331 | { | ||
| 332 | .base = GIC_DIST_PENDING_SET, | ||
| 333 | .len = VGIC_MAX_IRQS / 8, | ||
| 334 | .bits_per_irq = 1, | ||
| 335 | .handle_mmio = handle_mmio_set_pending_reg, | ||
| 336 | }, | ||
| 337 | { | ||
| 338 | .base = GIC_DIST_PENDING_CLEAR, | ||
| 339 | .len = VGIC_MAX_IRQS / 8, | ||
| 340 | .bits_per_irq = 1, | ||
| 341 | .handle_mmio = handle_mmio_clear_pending_reg, | ||
| 342 | }, | ||
| 343 | { | ||
| 344 | .base = GIC_DIST_ACTIVE_SET, | ||
| 345 | .len = VGIC_MAX_IRQS / 8, | ||
| 346 | .bits_per_irq = 1, | ||
| 347 | .handle_mmio = handle_mmio_raz_wi, | ||
| 348 | }, | ||
| 349 | { | ||
| 350 | .base = GIC_DIST_ACTIVE_CLEAR, | ||
| 351 | .len = VGIC_MAX_IRQS / 8, | ||
| 352 | .bits_per_irq = 1, | ||
| 353 | .handle_mmio = handle_mmio_raz_wi, | ||
| 354 | }, | ||
| 355 | { | ||
| 356 | .base = GIC_DIST_PRI, | ||
| 357 | .len = VGIC_MAX_IRQS, | ||
| 358 | .bits_per_irq = 8, | ||
| 359 | .handle_mmio = handle_mmio_priority_reg, | ||
| 360 | }, | ||
| 361 | { | ||
| 362 | .base = GIC_DIST_TARGET, | ||
| 363 | .len = VGIC_MAX_IRQS, | ||
| 364 | .bits_per_irq = 8, | ||
| 365 | .handle_mmio = handle_mmio_target_reg, | ||
| 366 | }, | ||
| 367 | { | ||
| 368 | .base = GIC_DIST_CONFIG, | ||
| 369 | .len = VGIC_MAX_IRQS / 4, | ||
| 370 | .bits_per_irq = 2, | ||
| 371 | .handle_mmio = handle_mmio_cfg_reg, | ||
| 372 | }, | ||
| 373 | { | ||
| 374 | .base = GIC_DIST_SOFTINT, | ||
| 375 | .len = 4, | ||
| 376 | .handle_mmio = handle_mmio_sgi_reg, | ||
| 377 | }, | ||
| 378 | { | ||
| 379 | .base = GIC_DIST_SGI_PENDING_CLEAR, | ||
| 380 | .len = VGIC_NR_SGIS, | ||
| 381 | .handle_mmio = handle_mmio_sgi_clear, | ||
| 382 | }, | ||
| 383 | { | ||
| 384 | .base = GIC_DIST_SGI_PENDING_SET, | ||
| 385 | .len = VGIC_NR_SGIS, | ||
| 386 | .handle_mmio = handle_mmio_sgi_set, | ||
| 387 | }, | ||
| 388 | {} | ||
| 389 | }; | ||
| 390 | |||
| 391 | static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, | ||
| 392 | struct kvm_exit_mmio *mmio) | ||
| 393 | { | ||
| 394 | unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base; | ||
| 395 | |||
| 396 | if (!is_in_range(mmio->phys_addr, mmio->len, base, | ||
| 397 | KVM_VGIC_V2_DIST_SIZE)) | ||
| 398 | return false; | ||
| 399 | |||
| 400 | /* GICv2 does not support accesses wider than 32 bits */ | ||
| 401 | if (mmio->len > 4) { | ||
| 402 | kvm_inject_dabt(vcpu, mmio->phys_addr); | ||
| 403 | return true; | ||
| 404 | } | ||
| 405 | |||
| 406 | return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base); | ||
| 407 | } | ||
| 408 | |||
| 409 | static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) | ||
| 410 | { | ||
| 411 | struct kvm *kvm = vcpu->kvm; | ||
| 412 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 413 | int nrcpus = atomic_read(&kvm->online_vcpus); | ||
| 414 | u8 target_cpus; | ||
| 415 | int sgi, mode, c, vcpu_id; | ||
| 416 | |||
| 417 | vcpu_id = vcpu->vcpu_id; | ||
| 418 | |||
| 419 | sgi = reg & 0xf; | ||
| 420 | target_cpus = (reg >> 16) & 0xff; | ||
| 421 | mode = (reg >> 24) & 3; | ||
| 422 | |||
| 423 | switch (mode) { | ||
| 424 | case 0: | ||
| 425 | if (!target_cpus) | ||
| 426 | return; | ||
| 427 | break; | ||
| 428 | |||
| 429 | case 1: | ||
| 430 | target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; | ||
| 431 | break; | ||
| 432 | |||
| 433 | case 2: | ||
| 434 | target_cpus = 1 << vcpu_id; | ||
| 435 | break; | ||
| 436 | } | ||
| 437 | |||
| 438 | kvm_for_each_vcpu(c, vcpu, kvm) { | ||
| 439 | if (target_cpus & 1) { | ||
| 440 | /* Flag the SGI as pending */ | ||
| 441 | vgic_dist_irq_set_pending(vcpu, sgi); | ||
| 442 | *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id; | ||
| 443 | kvm_debug("SGI%d from CPU%d to CPU%d\n", | ||
| 444 | sgi, vcpu_id, c); | ||
| 445 | } | ||
| 446 | |||
| 447 | target_cpus >>= 1; | ||
| 448 | } | ||
| 449 | } | ||
| 450 | |||
| 451 | static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq) | ||
| 452 | { | ||
| 453 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 454 | unsigned long sources; | ||
| 455 | int vcpu_id = vcpu->vcpu_id; | ||
| 456 | int c; | ||
| 457 | |||
| 458 | sources = *vgic_get_sgi_sources(dist, vcpu_id, irq); | ||
| 459 | |||
| 460 | for_each_set_bit(c, &sources, dist->nr_cpus) { | ||
| 461 | if (vgic_queue_irq(vcpu, c, irq)) | ||
| 462 | clear_bit(c, &sources); | ||
| 463 | } | ||
| 464 | |||
| 465 | *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources; | ||
| 466 | |||
| 467 | /* | ||
| 468 | * If the sources bitmap has been cleared it means that we | ||
| 469 | * could queue all the SGIs onto link registers (see the | ||
| 470 | * clear_bit above), and therefore we are done with them in | ||
| 471 | * our emulated gic and can get rid of them. | ||
| 472 | */ | ||
| 473 | if (!sources) { | ||
| 474 | vgic_dist_irq_clear_pending(vcpu, irq); | ||
| 475 | vgic_cpu_irq_clear(vcpu, irq); | ||
| 476 | return true; | ||
| 477 | } | ||
| 478 | |||
| 479 | return false; | ||
| 480 | } | ||
| 481 | |||
| 482 | /** | ||
| 483 | * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs | ||
| 484 | * @kvm: pointer to the kvm struct | ||
| 485 | * | ||
| 486 | * Map the virtual CPU interface into the VM before running any VCPUs. We | ||
| 487 | * can't do this at creation time, because user space must first set the | ||
| 488 | * virtual CPU interface address in the guest physical address space. | ||
| 489 | */ | ||
| 490 | static int vgic_v2_map_resources(struct kvm *kvm, | ||
| 491 | const struct vgic_params *params) | ||
| 492 | { | ||
| 493 | int ret = 0; | ||
| 494 | |||
| 495 | if (!irqchip_in_kernel(kvm)) | ||
| 496 | return 0; | ||
| 497 | |||
| 498 | mutex_lock(&kvm->lock); | ||
| 499 | |||
| 500 | if (vgic_ready(kvm)) | ||
| 501 | goto out; | ||
| 502 | |||
| 503 | if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || | ||
| 504 | IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { | ||
| 505 | kvm_err("Need to set vgic cpu and dist addresses first\n"); | ||
| 506 | ret = -ENXIO; | ||
| 507 | goto out; | ||
| 508 | } | ||
| 509 | |||
| 510 | /* | ||
| 511 | * Initialize the vgic if this hasn't already been done on demand by | ||
| 512 | * accessing the vgic state from userspace. | ||
| 513 | */ | ||
| 514 | ret = vgic_init(kvm); | ||
| 515 | if (ret) { | ||
| 516 | kvm_err("Unable to allocate maps\n"); | ||
| 517 | goto out; | ||
| 518 | } | ||
| 519 | |||
| 520 | ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, | ||
| 521 | params->vcpu_base, KVM_VGIC_V2_CPU_SIZE, | ||
| 522 | true); | ||
| 523 | if (ret) { | ||
| 524 | kvm_err("Unable to remap VGIC CPU to VCPU\n"); | ||
| 525 | goto out; | ||
| 526 | } | ||
| 527 | |||
| 528 | kvm->arch.vgic.ready = true; | ||
| 529 | out: | ||
| 530 | if (ret) | ||
| 531 | kvm_vgic_destroy(kvm); | ||
| 532 | mutex_unlock(&kvm->lock); | ||
| 533 | return ret; | ||
| 534 | } | ||
| 535 | |||
| 536 | static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) | ||
| 537 | { | ||
| 538 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 539 | |||
| 540 | *vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source; | ||
| 541 | } | ||
| 542 | |||
| 543 | static int vgic_v2_init_model(struct kvm *kvm) | ||
| 544 | { | ||
| 545 | int i; | ||
| 546 | |||
| 547 | for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4) | ||
| 548 | vgic_set_target_reg(kvm, 0, i); | ||
| 549 | |||
| 550 | return 0; | ||
| 551 | } | ||
| 552 | |||
| 553 | void vgic_v2_init_emulation(struct kvm *kvm) | ||
| 554 | { | ||
| 555 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 556 | |||
| 557 | dist->vm_ops.handle_mmio = vgic_v2_handle_mmio; | ||
| 558 | dist->vm_ops.queue_sgi = vgic_v2_queue_sgi; | ||
| 559 | dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source; | ||
| 560 | dist->vm_ops.init_model = vgic_v2_init_model; | ||
| 561 | dist->vm_ops.map_resources = vgic_v2_map_resources; | ||
| 562 | |||
| 563 | kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS; | ||
| 564 | } | ||
| 565 | |||
| 566 | static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu, | ||
| 567 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 568 | { | ||
| 569 | bool updated = false; | ||
| 570 | struct vgic_vmcr vmcr; | ||
| 571 | u32 *vmcr_field; | ||
| 572 | u32 reg; | ||
| 573 | |||
| 574 | vgic_get_vmcr(vcpu, &vmcr); | ||
| 575 | |||
| 576 | switch (offset & ~0x3) { | ||
| 577 | case GIC_CPU_CTRL: | ||
| 578 | vmcr_field = &vmcr.ctlr; | ||
| 579 | break; | ||
| 580 | case GIC_CPU_PRIMASK: | ||
| 581 | vmcr_field = &vmcr.pmr; | ||
| 582 | break; | ||
| 583 | case GIC_CPU_BINPOINT: | ||
| 584 | vmcr_field = &vmcr.bpr; | ||
| 585 | break; | ||
| 586 | case GIC_CPU_ALIAS_BINPOINT: | ||
| 587 | vmcr_field = &vmcr.abpr; | ||
| 588 | break; | ||
| 589 | default: | ||
| 590 | BUG(); | ||
| 591 | } | ||
| 592 | |||
| 593 | if (!mmio->is_write) { | ||
| 594 | reg = *vmcr_field; | ||
| 595 | mmio_data_write(mmio, ~0, reg); | ||
| 596 | } else { | ||
| 597 | reg = mmio_data_read(mmio, ~0); | ||
| 598 | if (reg != *vmcr_field) { | ||
| 599 | *vmcr_field = reg; | ||
| 600 | vgic_set_vmcr(vcpu, &vmcr); | ||
| 601 | updated = true; | ||
| 602 | } | ||
| 603 | } | ||
| 604 | return updated; | ||
| 605 | } | ||
| 606 | |||
| 607 | static bool handle_mmio_abpr(struct kvm_vcpu *vcpu, | ||
| 608 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 609 | { | ||
| 610 | return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT); | ||
| 611 | } | ||
| 612 | |||
| 613 | static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu, | ||
| 614 | struct kvm_exit_mmio *mmio, | ||
| 615 | phys_addr_t offset) | ||
| 616 | { | ||
| 617 | u32 reg; | ||
| 618 | |||
| 619 | if (mmio->is_write) | ||
| 620 | return false; | ||
| 621 | |||
| 622 | /* GICC_IIDR */ | ||
| 623 | reg = (PRODUCT_ID_KVM << 20) | | ||
| 624 | (GICC_ARCH_VERSION_V2 << 16) | | ||
| 625 | (IMPLEMENTER_ARM << 0); | ||
| 626 | mmio_data_write(mmio, ~0, reg); | ||
| 627 | return false; | ||
| 628 | } | ||
| 629 | |||
| 630 | /* | ||
| 631 | * CPU Interface Register accesses - these are not accessed by the VM, but by | ||
| 632 | * user space for saving and restoring VGIC state. | ||
| 633 | */ | ||
| 634 | static const struct kvm_mmio_range vgic_cpu_ranges[] = { | ||
| 635 | { | ||
| 636 | .base = GIC_CPU_CTRL, | ||
| 637 | .len = 12, | ||
| 638 | .handle_mmio = handle_cpu_mmio_misc, | ||
| 639 | }, | ||
| 640 | { | ||
| 641 | .base = GIC_CPU_ALIAS_BINPOINT, | ||
| 642 | .len = 4, | ||
| 643 | .handle_mmio = handle_mmio_abpr, | ||
| 644 | }, | ||
| 645 | { | ||
| 646 | .base = GIC_CPU_ACTIVEPRIO, | ||
| 647 | .len = 16, | ||
| 648 | .handle_mmio = handle_mmio_raz_wi, | ||
| 649 | }, | ||
| 650 | { | ||
| 651 | .base = GIC_CPU_IDENT, | ||
| 652 | .len = 4, | ||
| 653 | .handle_mmio = handle_cpu_mmio_ident, | ||
| 654 | }, | ||
| 655 | }; | ||
| 656 | |||
| 657 | static int vgic_attr_regs_access(struct kvm_device *dev, | ||
| 658 | struct kvm_device_attr *attr, | ||
| 659 | u32 *reg, bool is_write) | ||
| 660 | { | ||
| 661 | const struct kvm_mmio_range *r = NULL, *ranges; | ||
| 662 | phys_addr_t offset; | ||
| 663 | int ret, cpuid, c; | ||
| 664 | struct kvm_vcpu *vcpu, *tmp_vcpu; | ||
| 665 | struct vgic_dist *vgic; | ||
| 666 | struct kvm_exit_mmio mmio; | ||
| 667 | |||
| 668 | offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; | ||
| 669 | cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> | ||
| 670 | KVM_DEV_ARM_VGIC_CPUID_SHIFT; | ||
| 671 | |||
| 672 | mutex_lock(&dev->kvm->lock); | ||
| 673 | |||
| 674 | ret = vgic_init(dev->kvm); | ||
| 675 | if (ret) | ||
| 676 | goto out; | ||
| 677 | |||
| 678 | if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { | ||
| 679 | ret = -EINVAL; | ||
| 680 | goto out; | ||
| 681 | } | ||
| 682 | |||
| 683 | vcpu = kvm_get_vcpu(dev->kvm, cpuid); | ||
| 684 | vgic = &dev->kvm->arch.vgic; | ||
| 685 | |||
| 686 | mmio.len = 4; | ||
| 687 | mmio.is_write = is_write; | ||
| 688 | if (is_write) | ||
| 689 | mmio_data_write(&mmio, ~0, *reg); | ||
| 690 | switch (attr->group) { | ||
| 691 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 692 | mmio.phys_addr = vgic->vgic_dist_base + offset; | ||
| 693 | ranges = vgic_dist_ranges; | ||
| 694 | break; | ||
| 695 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
| 696 | mmio.phys_addr = vgic->vgic_cpu_base + offset; | ||
| 697 | ranges = vgic_cpu_ranges; | ||
| 698 | break; | ||
| 699 | default: | ||
| 700 | BUG(); | ||
| 701 | } | ||
| 702 | r = vgic_find_range(ranges, &mmio, offset); | ||
| 703 | |||
| 704 | if (unlikely(!r || !r->handle_mmio)) { | ||
| 705 | ret = -ENXIO; | ||
| 706 | goto out; | ||
| 707 | } | ||
| 708 | |||
| 709 | |||
| 710 | spin_lock(&vgic->lock); | ||
| 711 | |||
| 712 | /* | ||
| 713 | * Ensure that no other VCPU is running by checking the vcpu->cpu | ||
| 714 | * field. If no other VPCUs are running we can safely access the VGIC | ||
| 715 | * state, because even if another VPU is run after this point, that | ||
| 716 | * VCPU will not touch the vgic state, because it will block on | ||
| 717 | * getting the vgic->lock in kvm_vgic_sync_hwstate(). | ||
| 718 | */ | ||
| 719 | kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) { | ||
| 720 | if (unlikely(tmp_vcpu->cpu != -1)) { | ||
| 721 | ret = -EBUSY; | ||
| 722 | goto out_vgic_unlock; | ||
| 723 | } | ||
| 724 | } | ||
| 725 | |||
| 726 | /* | ||
| 727 | * Move all pending IRQs from the LRs on all VCPUs so the pending | ||
| 728 | * state can be properly represented in the register state accessible | ||
| 729 | * through this API. | ||
| 730 | */ | ||
| 731 | kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) | ||
| 732 | vgic_unqueue_irqs(tmp_vcpu); | ||
| 733 | |||
| 734 | offset -= r->base; | ||
| 735 | r->handle_mmio(vcpu, &mmio, offset); | ||
| 736 | |||
| 737 | if (!is_write) | ||
| 738 | *reg = mmio_data_read(&mmio, ~0); | ||
| 739 | |||
| 740 | ret = 0; | ||
| 741 | out_vgic_unlock: | ||
| 742 | spin_unlock(&vgic->lock); | ||
| 743 | out: | ||
| 744 | mutex_unlock(&dev->kvm->lock); | ||
| 745 | return ret; | ||
| 746 | } | ||
| 747 | |||
| 748 | static int vgic_v2_create(struct kvm_device *dev, u32 type) | ||
| 749 | { | ||
| 750 | return kvm_vgic_create(dev->kvm, type); | ||
| 751 | } | ||
| 752 | |||
| 753 | static void vgic_v2_destroy(struct kvm_device *dev) | ||
| 754 | { | ||
| 755 | kfree(dev); | ||
| 756 | } | ||
| 757 | |||
| 758 | static int vgic_v2_set_attr(struct kvm_device *dev, | ||
| 759 | struct kvm_device_attr *attr) | ||
| 760 | { | ||
| 761 | int ret; | ||
| 762 | |||
| 763 | ret = vgic_set_common_attr(dev, attr); | ||
| 764 | if (ret != -ENXIO) | ||
| 765 | return ret; | ||
| 766 | |||
| 767 | switch (attr->group) { | ||
| 768 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 769 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { | ||
| 770 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; | ||
| 771 | u32 reg; | ||
| 772 | |||
| 773 | if (get_user(reg, uaddr)) | ||
| 774 | return -EFAULT; | ||
| 775 | |||
| 776 | return vgic_attr_regs_access(dev, attr, ®, true); | ||
| 777 | } | ||
| 778 | |||
| 779 | } | ||
| 780 | |||
| 781 | return -ENXIO; | ||
| 782 | } | ||
| 783 | |||
| 784 | static int vgic_v2_get_attr(struct kvm_device *dev, | ||
| 785 | struct kvm_device_attr *attr) | ||
| 786 | { | ||
| 787 | int ret; | ||
| 788 | |||
| 789 | ret = vgic_get_common_attr(dev, attr); | ||
| 790 | if (ret != -ENXIO) | ||
| 791 | return ret; | ||
| 792 | |||
| 793 | switch (attr->group) { | ||
| 794 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 795 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { | ||
| 796 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; | ||
| 797 | u32 reg = 0; | ||
| 798 | |||
| 799 | ret = vgic_attr_regs_access(dev, attr, ®, false); | ||
| 800 | if (ret) | ||
| 801 | return ret; | ||
| 802 | return put_user(reg, uaddr); | ||
| 803 | } | ||
| 804 | |||
| 805 | } | ||
| 806 | |||
| 807 | return -ENXIO; | ||
| 808 | } | ||
| 809 | |||
| 810 | static int vgic_v2_has_attr(struct kvm_device *dev, | ||
| 811 | struct kvm_device_attr *attr) | ||
| 812 | { | ||
| 813 | phys_addr_t offset; | ||
| 814 | |||
| 815 | switch (attr->group) { | ||
| 816 | case KVM_DEV_ARM_VGIC_GRP_ADDR: | ||
| 817 | switch (attr->attr) { | ||
| 818 | case KVM_VGIC_V2_ADDR_TYPE_DIST: | ||
| 819 | case KVM_VGIC_V2_ADDR_TYPE_CPU: | ||
| 820 | return 0; | ||
| 821 | } | ||
| 822 | break; | ||
| 823 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 824 | offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; | ||
| 825 | return vgic_has_attr_regs(vgic_dist_ranges, offset); | ||
| 826 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
| 827 | offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; | ||
| 828 | return vgic_has_attr_regs(vgic_cpu_ranges, offset); | ||
| 829 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: | ||
| 830 | return 0; | ||
| 831 | case KVM_DEV_ARM_VGIC_GRP_CTRL: | ||
| 832 | switch (attr->attr) { | ||
| 833 | case KVM_DEV_ARM_VGIC_CTRL_INIT: | ||
| 834 | return 0; | ||
| 835 | } | ||
| 836 | } | ||
| 837 | return -ENXIO; | ||
| 838 | } | ||
| 839 | |||
| 840 | struct kvm_device_ops kvm_arm_vgic_v2_ops = { | ||
| 841 | .name = "kvm-arm-vgic-v2", | ||
| 842 | .create = vgic_v2_create, | ||
| 843 | .destroy = vgic_v2_destroy, | ||
| 844 | .set_attr = vgic_v2_set_attr, | ||
| 845 | .get_attr = vgic_v2_get_attr, | ||
| 846 | .has_attr = vgic_v2_has_attr, | ||
| 847 | }; | ||
diff --git a/virt/kvm/arm/vgic-v2.c b/virt/kvm/arm/vgic-v2.c index 2935405ad22f..f9b9c7c51372 100644 --- a/virt/kvm/arm/vgic-v2.c +++ b/virt/kvm/arm/vgic-v2.c | |||
| @@ -72,6 +72,8 @@ static void vgic_v2_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr, | |||
| 72 | { | 72 | { |
| 73 | if (!(lr_desc.state & LR_STATE_MASK)) | 73 | if (!(lr_desc.state & LR_STATE_MASK)) |
| 74 | vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr |= (1ULL << lr); | 74 | vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr |= (1ULL << lr); |
| 75 | else | ||
| 76 | vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr &= ~(1ULL << lr); | ||
| 75 | } | 77 | } |
| 76 | 78 | ||
| 77 | static u64 vgic_v2_get_elrsr(const struct kvm_vcpu *vcpu) | 79 | static u64 vgic_v2_get_elrsr(const struct kvm_vcpu *vcpu) |
| @@ -84,6 +86,11 @@ static u64 vgic_v2_get_eisr(const struct kvm_vcpu *vcpu) | |||
| 84 | return vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr; | 86 | return vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr; |
| 85 | } | 87 | } |
| 86 | 88 | ||
| 89 | static void vgic_v2_clear_eisr(struct kvm_vcpu *vcpu) | ||
| 90 | { | ||
| 91 | vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr = 0; | ||
| 92 | } | ||
| 93 | |||
| 87 | static u32 vgic_v2_get_interrupt_status(const struct kvm_vcpu *vcpu) | 94 | static u32 vgic_v2_get_interrupt_status(const struct kvm_vcpu *vcpu) |
| 88 | { | 95 | { |
| 89 | u32 misr = vcpu->arch.vgic_cpu.vgic_v2.vgic_misr; | 96 | u32 misr = vcpu->arch.vgic_cpu.vgic_v2.vgic_misr; |
| @@ -148,6 +155,7 @@ static const struct vgic_ops vgic_v2_ops = { | |||
| 148 | .sync_lr_elrsr = vgic_v2_sync_lr_elrsr, | 155 | .sync_lr_elrsr = vgic_v2_sync_lr_elrsr, |
| 149 | .get_elrsr = vgic_v2_get_elrsr, | 156 | .get_elrsr = vgic_v2_get_elrsr, |
| 150 | .get_eisr = vgic_v2_get_eisr, | 157 | .get_eisr = vgic_v2_get_eisr, |
| 158 | .clear_eisr = vgic_v2_clear_eisr, | ||
| 151 | .get_interrupt_status = vgic_v2_get_interrupt_status, | 159 | .get_interrupt_status = vgic_v2_get_interrupt_status, |
| 152 | .enable_underflow = vgic_v2_enable_underflow, | 160 | .enable_underflow = vgic_v2_enable_underflow, |
| 153 | .disable_underflow = vgic_v2_disable_underflow, | 161 | .disable_underflow = vgic_v2_disable_underflow, |
| @@ -229,12 +237,16 @@ int vgic_v2_probe(struct device_node *vgic_node, | |||
| 229 | goto out_unmap; | 237 | goto out_unmap; |
| 230 | } | 238 | } |
| 231 | 239 | ||
| 240 | vgic->can_emulate_gicv2 = true; | ||
| 241 | kvm_register_device_ops(&kvm_arm_vgic_v2_ops, KVM_DEV_TYPE_ARM_VGIC_V2); | ||
| 242 | |||
| 232 | vgic->vcpu_base = vcpu_res.start; | 243 | vgic->vcpu_base = vcpu_res.start; |
| 233 | 244 | ||
| 234 | kvm_info("%s@%llx IRQ%d\n", vgic_node->name, | 245 | kvm_info("%s@%llx IRQ%d\n", vgic_node->name, |
| 235 | vctrl_res.start, vgic->maint_irq); | 246 | vctrl_res.start, vgic->maint_irq); |
| 236 | 247 | ||
| 237 | vgic->type = VGIC_V2; | 248 | vgic->type = VGIC_V2; |
| 249 | vgic->max_gic_vcpus = VGIC_V2_MAX_CPUS; | ||
| 238 | *ops = &vgic_v2_ops; | 250 | *ops = &vgic_v2_ops; |
| 239 | *params = vgic; | 251 | *params = vgic; |
| 240 | goto out; | 252 | goto out; |
diff --git a/virt/kvm/arm/vgic-v3-emul.c b/virt/kvm/arm/vgic-v3-emul.c new file mode 100644 index 000000000000..b3f154631515 --- /dev/null +++ b/virt/kvm/arm/vgic-v3-emul.c | |||
| @@ -0,0 +1,1036 @@ | |||
| 1 | /* | ||
| 2 | * GICv3 distributor and redistributor emulation | ||
| 3 | * | ||
| 4 | * GICv3 emulation is currently only supported on a GICv3 host (because | ||
| 5 | * we rely on the hardware's CPU interface virtualization support), but | ||
| 6 | * supports both hardware with or without the optional GICv2 backwards | ||
| 7 | * compatibility features. | ||
| 8 | * | ||
| 9 | * Limitations of the emulation: | ||
| 10 | * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore) | ||
| 11 | * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI. | ||
| 12 | * - We do not support the message based interrupts (MBIs) triggered by | ||
| 13 | * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0. | ||
| 14 | * - We do not support the (optional) backwards compatibility feature. | ||
| 15 | * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports | ||
| 16 | * the compatiblity feature, you can use a GICv2 in the guest, though. | ||
| 17 | * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI. | ||
| 18 | * - Priorities are not emulated (same as the GICv2 emulation). Linux | ||
| 19 | * as a guest is fine with this, because it does not use priorities. | ||
| 20 | * - We only support Group1 interrupts. Again Linux uses only those. | ||
| 21 | * | ||
| 22 | * Copyright (C) 2014 ARM Ltd. | ||
| 23 | * Author: Andre Przywara <andre.przywara@arm.com> | ||
| 24 | * | ||
| 25 | * This program is free software; you can redistribute it and/or modify | ||
| 26 | * it under the terms of the GNU General Public License version 2 as | ||
| 27 | * published by the Free Software Foundation. | ||
| 28 | * | ||
| 29 | * This program is distributed in the hope that it will be useful, | ||
| 30 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 31 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 32 | * GNU General Public License for more details. | ||
| 33 | * | ||
| 34 | * You should have received a copy of the GNU General Public License | ||
| 35 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
| 36 | */ | ||
| 37 | |||
| 38 | #include <linux/cpu.h> | ||
| 39 | #include <linux/kvm.h> | ||
| 40 | #include <linux/kvm_host.h> | ||
| 41 | #include <linux/interrupt.h> | ||
| 42 | |||
| 43 | #include <linux/irqchip/arm-gic-v3.h> | ||
| 44 | #include <kvm/arm_vgic.h> | ||
| 45 | |||
| 46 | #include <asm/kvm_emulate.h> | ||
| 47 | #include <asm/kvm_arm.h> | ||
| 48 | #include <asm/kvm_mmu.h> | ||
| 49 | |||
| 50 | #include "vgic.h" | ||
| 51 | |||
| 52 | static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu, | ||
| 53 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 54 | { | ||
| 55 | u32 reg = 0xffffffff; | ||
| 56 | |||
| 57 | vgic_reg_access(mmio, ®, offset, | ||
| 58 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 59 | |||
| 60 | return false; | ||
| 61 | } | ||
| 62 | |||
| 63 | static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu, | ||
| 64 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 65 | { | ||
| 66 | u32 reg = 0; | ||
| 67 | |||
| 68 | /* | ||
| 69 | * Force ARE and DS to 1, the guest cannot change this. | ||
| 70 | * For the time being we only support Group1 interrupts. | ||
| 71 | */ | ||
| 72 | if (vcpu->kvm->arch.vgic.enabled) | ||
| 73 | reg = GICD_CTLR_ENABLE_SS_G1; | ||
| 74 | reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; | ||
| 75 | |||
| 76 | vgic_reg_access(mmio, ®, offset, | ||
| 77 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 78 | if (mmio->is_write) { | ||
| 79 | if (reg & GICD_CTLR_ENABLE_SS_G0) | ||
| 80 | kvm_info("guest tried to enable unsupported Group0 interrupts\n"); | ||
| 81 | vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1); | ||
| 82 | vgic_update_state(vcpu->kvm); | ||
| 83 | return true; | ||
| 84 | } | ||
| 85 | return false; | ||
| 86 | } | ||
| 87 | |||
| 88 | /* | ||
| 89 | * As this implementation does not provide compatibility | ||
| 90 | * with GICv2 (ARE==1), we report zero CPUs in bits [5..7]. | ||
| 91 | * Also LPIs and MBIs are not supported, so we set the respective bits to 0. | ||
| 92 | * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs). | ||
| 93 | */ | ||
| 94 | #define INTERRUPT_ID_BITS 10 | ||
| 95 | static bool handle_mmio_typer(struct kvm_vcpu *vcpu, | ||
| 96 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 97 | { | ||
| 98 | u32 reg; | ||
| 99 | |||
| 100 | reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1; | ||
| 101 | |||
| 102 | reg |= (INTERRUPT_ID_BITS - 1) << 19; | ||
| 103 | |||
| 104 | vgic_reg_access(mmio, ®, offset, | ||
| 105 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 106 | |||
| 107 | return false; | ||
| 108 | } | ||
| 109 | |||
| 110 | static bool handle_mmio_iidr(struct kvm_vcpu *vcpu, | ||
| 111 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 112 | { | ||
| 113 | u32 reg; | ||
| 114 | |||
| 115 | reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); | ||
| 116 | vgic_reg_access(mmio, ®, offset, | ||
| 117 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 118 | |||
| 119 | return false; | ||
| 120 | } | ||
| 121 | |||
| 122 | static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu, | ||
| 123 | struct kvm_exit_mmio *mmio, | ||
| 124 | phys_addr_t offset) | ||
| 125 | { | ||
| 126 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
| 127 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
| 128 | vcpu->vcpu_id, | ||
| 129 | ACCESS_WRITE_SETBIT); | ||
| 130 | |||
| 131 | vgic_reg_access(mmio, NULL, offset, | ||
| 132 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 133 | return false; | ||
| 134 | } | ||
| 135 | |||
| 136 | static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu, | ||
| 137 | struct kvm_exit_mmio *mmio, | ||
| 138 | phys_addr_t offset) | ||
| 139 | { | ||
| 140 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
| 141 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
| 142 | vcpu->vcpu_id, | ||
| 143 | ACCESS_WRITE_CLEARBIT); | ||
| 144 | |||
| 145 | vgic_reg_access(mmio, NULL, offset, | ||
| 146 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 147 | return false; | ||
| 148 | } | ||
| 149 | |||
| 150 | static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu, | ||
| 151 | struct kvm_exit_mmio *mmio, | ||
| 152 | phys_addr_t offset) | ||
| 153 | { | ||
| 154 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
| 155 | return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, | ||
| 156 | vcpu->vcpu_id); | ||
| 157 | |||
| 158 | vgic_reg_access(mmio, NULL, offset, | ||
| 159 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 160 | return false; | ||
| 161 | } | ||
| 162 | |||
| 163 | static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu, | ||
| 164 | struct kvm_exit_mmio *mmio, | ||
| 165 | phys_addr_t offset) | ||
| 166 | { | ||
| 167 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
| 168 | return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, | ||
| 169 | vcpu->vcpu_id); | ||
| 170 | |||
| 171 | vgic_reg_access(mmio, NULL, offset, | ||
| 172 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 173 | return false; | ||
| 174 | } | ||
| 175 | |||
| 176 | static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu, | ||
| 177 | struct kvm_exit_mmio *mmio, | ||
| 178 | phys_addr_t offset) | ||
| 179 | { | ||
| 180 | u32 *reg; | ||
| 181 | |||
| 182 | if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) { | ||
| 183 | vgic_reg_access(mmio, NULL, offset, | ||
| 184 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 185 | return false; | ||
| 186 | } | ||
| 187 | |||
| 188 | reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, | ||
| 189 | vcpu->vcpu_id, offset); | ||
| 190 | vgic_reg_access(mmio, reg, offset, | ||
| 191 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 192 | return false; | ||
| 193 | } | ||
| 194 | |||
| 195 | static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu, | ||
| 196 | struct kvm_exit_mmio *mmio, | ||
| 197 | phys_addr_t offset) | ||
| 198 | { | ||
| 199 | u32 *reg; | ||
| 200 | |||
| 201 | if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) { | ||
| 202 | vgic_reg_access(mmio, NULL, offset, | ||
| 203 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 204 | return false; | ||
| 205 | } | ||
| 206 | |||
| 207 | reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, | ||
| 208 | vcpu->vcpu_id, offset >> 1); | ||
| 209 | |||
| 210 | return vgic_handle_cfg_reg(reg, mmio, offset); | ||
| 211 | } | ||
| 212 | |||
| 213 | /* | ||
| 214 | * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word) | ||
| 215 | * when we store the target MPIDR written by the guest. | ||
| 216 | */ | ||
| 217 | static u32 compress_mpidr(unsigned long mpidr) | ||
| 218 | { | ||
| 219 | u32 ret; | ||
| 220 | |||
| 221 | ret = MPIDR_AFFINITY_LEVEL(mpidr, 0); | ||
| 222 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8; | ||
| 223 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16; | ||
| 224 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24; | ||
| 225 | |||
| 226 | return ret; | ||
| 227 | } | ||
| 228 | |||
| 229 | static unsigned long uncompress_mpidr(u32 value) | ||
| 230 | { | ||
| 231 | unsigned long mpidr; | ||
| 232 | |||
| 233 | mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0); | ||
| 234 | mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1); | ||
| 235 | mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2); | ||
| 236 | mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3); | ||
| 237 | |||
| 238 | return mpidr; | ||
| 239 | } | ||
| 240 | |||
| 241 | /* | ||
| 242 | * Lookup the given MPIDR value to get the vcpu_id (if there is one) | ||
| 243 | * and store that in the irq_spi_cpu[] array. | ||
| 244 | * This limits the number of VCPUs to 255 for now, extending the data | ||
| 245 | * type (or storing kvm_vcpu pointers) should lift the limit. | ||
| 246 | * Store the original MPIDR value in an extra array to support read-as-written. | ||
| 247 | * Unallocated MPIDRs are translated to a special value and caught | ||
| 248 | * before any array accesses. | ||
| 249 | */ | ||
| 250 | static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu, | ||
| 251 | struct kvm_exit_mmio *mmio, | ||
| 252 | phys_addr_t offset) | ||
| 253 | { | ||
| 254 | struct kvm *kvm = vcpu->kvm; | ||
| 255 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 256 | int spi; | ||
| 257 | u32 reg; | ||
| 258 | int vcpu_id; | ||
| 259 | unsigned long *bmap, mpidr; | ||
| 260 | |||
| 261 | /* | ||
| 262 | * The upper 32 bits of each 64 bit register are zero, | ||
| 263 | * as we don't support Aff3. | ||
| 264 | */ | ||
| 265 | if ((offset & 4)) { | ||
| 266 | vgic_reg_access(mmio, NULL, offset, | ||
| 267 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 268 | return false; | ||
| 269 | } | ||
| 270 | |||
| 271 | /* This region only covers SPIs, so no handling of private IRQs here. */ | ||
| 272 | spi = offset / 8; | ||
| 273 | |||
| 274 | /* get the stored MPIDR for this IRQ */ | ||
| 275 | mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]); | ||
| 276 | reg = mpidr; | ||
| 277 | |||
| 278 | vgic_reg_access(mmio, ®, offset, | ||
| 279 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 280 | |||
| 281 | if (!mmio->is_write) | ||
| 282 | return false; | ||
| 283 | |||
| 284 | /* | ||
| 285 | * Now clear the currently assigned vCPU from the map, making room | ||
| 286 | * for the new one to be written below | ||
| 287 | */ | ||
| 288 | vcpu = kvm_mpidr_to_vcpu(kvm, mpidr); | ||
| 289 | if (likely(vcpu)) { | ||
| 290 | vcpu_id = vcpu->vcpu_id; | ||
| 291 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); | ||
| 292 | __clear_bit(spi, bmap); | ||
| 293 | } | ||
| 294 | |||
| 295 | dist->irq_spi_mpidr[spi] = compress_mpidr(reg); | ||
| 296 | vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK); | ||
| 297 | |||
| 298 | /* | ||
| 299 | * The spec says that non-existent MPIDR values should not be | ||
| 300 | * forwarded to any existent (v)CPU, but should be able to become | ||
| 301 | * pending anyway. We simply keep the irq_spi_target[] array empty, so | ||
| 302 | * the interrupt will never be injected. | ||
| 303 | * irq_spi_cpu[irq] gets a magic value in this case. | ||
| 304 | */ | ||
| 305 | if (likely(vcpu)) { | ||
| 306 | vcpu_id = vcpu->vcpu_id; | ||
| 307 | dist->irq_spi_cpu[spi] = vcpu_id; | ||
| 308 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); | ||
| 309 | __set_bit(spi, bmap); | ||
| 310 | } else { | ||
| 311 | dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED; | ||
| 312 | } | ||
| 313 | |||
| 314 | vgic_update_state(kvm); | ||
| 315 | |||
| 316 | return true; | ||
| 317 | } | ||
| 318 | |||
| 319 | /* | ||
| 320 | * We should be careful about promising too much when a guest reads | ||
| 321 | * this register. Don't claim to be like any hardware implementation, | ||
| 322 | * but just report the GIC as version 3 - which is what a Linux guest | ||
| 323 | * would check. | ||
| 324 | */ | ||
| 325 | static bool handle_mmio_idregs(struct kvm_vcpu *vcpu, | ||
| 326 | struct kvm_exit_mmio *mmio, | ||
| 327 | phys_addr_t offset) | ||
| 328 | { | ||
| 329 | u32 reg = 0; | ||
| 330 | |||
| 331 | switch (offset + GICD_IDREGS) { | ||
| 332 | case GICD_PIDR2: | ||
| 333 | reg = 0x3b; | ||
| 334 | break; | ||
| 335 | } | ||
| 336 | |||
| 337 | vgic_reg_access(mmio, ®, offset, | ||
| 338 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 339 | |||
| 340 | return false; | ||
| 341 | } | ||
| 342 | |||
| 343 | static const struct kvm_mmio_range vgic_v3_dist_ranges[] = { | ||
| 344 | { | ||
| 345 | .base = GICD_CTLR, | ||
| 346 | .len = 0x04, | ||
| 347 | .bits_per_irq = 0, | ||
| 348 | .handle_mmio = handle_mmio_ctlr, | ||
| 349 | }, | ||
| 350 | { | ||
| 351 | .base = GICD_TYPER, | ||
| 352 | .len = 0x04, | ||
| 353 | .bits_per_irq = 0, | ||
| 354 | .handle_mmio = handle_mmio_typer, | ||
| 355 | }, | ||
| 356 | { | ||
| 357 | .base = GICD_IIDR, | ||
| 358 | .len = 0x04, | ||
| 359 | .bits_per_irq = 0, | ||
| 360 | .handle_mmio = handle_mmio_iidr, | ||
| 361 | }, | ||
| 362 | { | ||
| 363 | /* this register is optional, it is RAZ/WI if not implemented */ | ||
| 364 | .base = GICD_STATUSR, | ||
| 365 | .len = 0x04, | ||
| 366 | .bits_per_irq = 0, | ||
| 367 | .handle_mmio = handle_mmio_raz_wi, | ||
| 368 | }, | ||
| 369 | { | ||
| 370 | /* this write only register is WI when TYPER.MBIS=0 */ | ||
| 371 | .base = GICD_SETSPI_NSR, | ||
| 372 | .len = 0x04, | ||
| 373 | .bits_per_irq = 0, | ||
| 374 | .handle_mmio = handle_mmio_raz_wi, | ||
| 375 | }, | ||
| 376 | { | ||
| 377 | /* this write only register is WI when TYPER.MBIS=0 */ | ||
| 378 | .base = GICD_CLRSPI_NSR, | ||
| 379 | .len = 0x04, | ||
| 380 | .bits_per_irq = 0, | ||
| 381 | .handle_mmio = handle_mmio_raz_wi, | ||
| 382 | }, | ||
| 383 | { | ||
| 384 | /* this is RAZ/WI when DS=1 */ | ||
| 385 | .base = GICD_SETSPI_SR, | ||
| 386 | .len = 0x04, | ||
| 387 | .bits_per_irq = 0, | ||
| 388 | .handle_mmio = handle_mmio_raz_wi, | ||
| 389 | }, | ||
| 390 | { | ||
| 391 | /* this is RAZ/WI when DS=1 */ | ||
| 392 | .base = GICD_CLRSPI_SR, | ||
| 393 | .len = 0x04, | ||
| 394 | .bits_per_irq = 0, | ||
| 395 | .handle_mmio = handle_mmio_raz_wi, | ||
| 396 | }, | ||
| 397 | { | ||
| 398 | .base = GICD_IGROUPR, | ||
| 399 | .len = 0x80, | ||
| 400 | .bits_per_irq = 1, | ||
| 401 | .handle_mmio = handle_mmio_rao_wi, | ||
| 402 | }, | ||
| 403 | { | ||
| 404 | .base = GICD_ISENABLER, | ||
| 405 | .len = 0x80, | ||
| 406 | .bits_per_irq = 1, | ||
| 407 | .handle_mmio = handle_mmio_set_enable_reg_dist, | ||
| 408 | }, | ||
| 409 | { | ||
| 410 | .base = GICD_ICENABLER, | ||
| 411 | .len = 0x80, | ||
| 412 | .bits_per_irq = 1, | ||
| 413 | .handle_mmio = handle_mmio_clear_enable_reg_dist, | ||
| 414 | }, | ||
| 415 | { | ||
| 416 | .base = GICD_ISPENDR, | ||
| 417 | .len = 0x80, | ||
| 418 | .bits_per_irq = 1, | ||
| 419 | .handle_mmio = handle_mmio_set_pending_reg_dist, | ||
| 420 | }, | ||
| 421 | { | ||
| 422 | .base = GICD_ICPENDR, | ||
| 423 | .len = 0x80, | ||
| 424 | .bits_per_irq = 1, | ||
| 425 | .handle_mmio = handle_mmio_clear_pending_reg_dist, | ||
| 426 | }, | ||
| 427 | { | ||
| 428 | .base = GICD_ISACTIVER, | ||
| 429 | .len = 0x80, | ||
| 430 | .bits_per_irq = 1, | ||
| 431 | .handle_mmio = handle_mmio_raz_wi, | ||
| 432 | }, | ||
| 433 | { | ||
| 434 | .base = GICD_ICACTIVER, | ||
| 435 | .len = 0x80, | ||
| 436 | .bits_per_irq = 1, | ||
| 437 | .handle_mmio = handle_mmio_raz_wi, | ||
| 438 | }, | ||
| 439 | { | ||
| 440 | .base = GICD_IPRIORITYR, | ||
| 441 | .len = 0x400, | ||
| 442 | .bits_per_irq = 8, | ||
| 443 | .handle_mmio = handle_mmio_priority_reg_dist, | ||
| 444 | }, | ||
| 445 | { | ||
| 446 | /* TARGETSRn is RES0 when ARE=1 */ | ||
| 447 | .base = GICD_ITARGETSR, | ||
| 448 | .len = 0x400, | ||
| 449 | .bits_per_irq = 8, | ||
| 450 | .handle_mmio = handle_mmio_raz_wi, | ||
| 451 | }, | ||
| 452 | { | ||
| 453 | .base = GICD_ICFGR, | ||
| 454 | .len = 0x100, | ||
| 455 | .bits_per_irq = 2, | ||
| 456 | .handle_mmio = handle_mmio_cfg_reg_dist, | ||
| 457 | }, | ||
| 458 | { | ||
| 459 | /* this is RAZ/WI when DS=1 */ | ||
| 460 | .base = GICD_IGRPMODR, | ||
| 461 | .len = 0x80, | ||
| 462 | .bits_per_irq = 1, | ||
| 463 | .handle_mmio = handle_mmio_raz_wi, | ||
| 464 | }, | ||
| 465 | { | ||
| 466 | /* this is RAZ/WI when DS=1 */ | ||
| 467 | .base = GICD_NSACR, | ||
| 468 | .len = 0x100, | ||
| 469 | .bits_per_irq = 2, | ||
| 470 | .handle_mmio = handle_mmio_raz_wi, | ||
| 471 | }, | ||
| 472 | { | ||
| 473 | /* this is RAZ/WI when ARE=1 */ | ||
| 474 | .base = GICD_SGIR, | ||
| 475 | .len = 0x04, | ||
| 476 | .handle_mmio = handle_mmio_raz_wi, | ||
| 477 | }, | ||
| 478 | { | ||
| 479 | /* this is RAZ/WI when ARE=1 */ | ||
| 480 | .base = GICD_CPENDSGIR, | ||
| 481 | .len = 0x10, | ||
| 482 | .handle_mmio = handle_mmio_raz_wi, | ||
| 483 | }, | ||
| 484 | { | ||
| 485 | /* this is RAZ/WI when ARE=1 */ | ||
| 486 | .base = GICD_SPENDSGIR, | ||
| 487 | .len = 0x10, | ||
| 488 | .handle_mmio = handle_mmio_raz_wi, | ||
| 489 | }, | ||
| 490 | { | ||
| 491 | .base = GICD_IROUTER + 0x100, | ||
| 492 | .len = 0x1ee0, | ||
| 493 | .bits_per_irq = 64, | ||
| 494 | .handle_mmio = handle_mmio_route_reg, | ||
| 495 | }, | ||
| 496 | { | ||
| 497 | .base = GICD_IDREGS, | ||
| 498 | .len = 0x30, | ||
| 499 | .bits_per_irq = 0, | ||
| 500 | .handle_mmio = handle_mmio_idregs, | ||
| 501 | }, | ||
| 502 | {}, | ||
| 503 | }; | ||
| 504 | |||
| 505 | static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu, | ||
| 506 | struct kvm_exit_mmio *mmio, | ||
| 507 | phys_addr_t offset) | ||
| 508 | { | ||
| 509 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
| 510 | |||
| 511 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
| 512 | redist_vcpu->vcpu_id, | ||
| 513 | ACCESS_WRITE_SETBIT); | ||
| 514 | } | ||
| 515 | |||
| 516 | static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu, | ||
| 517 | struct kvm_exit_mmio *mmio, | ||
| 518 | phys_addr_t offset) | ||
| 519 | { | ||
| 520 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
| 521 | |||
| 522 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
| 523 | redist_vcpu->vcpu_id, | ||
| 524 | ACCESS_WRITE_CLEARBIT); | ||
| 525 | } | ||
| 526 | |||
| 527 | static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu, | ||
| 528 | struct kvm_exit_mmio *mmio, | ||
| 529 | phys_addr_t offset) | ||
| 530 | { | ||
| 531 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
| 532 | |||
| 533 | return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, | ||
| 534 | redist_vcpu->vcpu_id); | ||
| 535 | } | ||
| 536 | |||
| 537 | static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu, | ||
| 538 | struct kvm_exit_mmio *mmio, | ||
| 539 | phys_addr_t offset) | ||
| 540 | { | ||
| 541 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
| 542 | |||
| 543 | return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, | ||
| 544 | redist_vcpu->vcpu_id); | ||
| 545 | } | ||
| 546 | |||
| 547 | static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu, | ||
| 548 | struct kvm_exit_mmio *mmio, | ||
| 549 | phys_addr_t offset) | ||
| 550 | { | ||
| 551 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
| 552 | u32 *reg; | ||
| 553 | |||
| 554 | reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, | ||
| 555 | redist_vcpu->vcpu_id, offset); | ||
| 556 | vgic_reg_access(mmio, reg, offset, | ||
| 557 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 558 | return false; | ||
| 559 | } | ||
| 560 | |||
| 561 | static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu, | ||
| 562 | struct kvm_exit_mmio *mmio, | ||
| 563 | phys_addr_t offset) | ||
| 564 | { | ||
| 565 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
| 566 | |||
| 567 | u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, | ||
| 568 | redist_vcpu->vcpu_id, offset >> 1); | ||
| 569 | |||
| 570 | return vgic_handle_cfg_reg(reg, mmio, offset); | ||
| 571 | } | ||
| 572 | |||
| 573 | static const struct kvm_mmio_range vgic_redist_sgi_ranges[] = { | ||
| 574 | { | ||
| 575 | .base = GICR_IGROUPR0, | ||
| 576 | .len = 0x04, | ||
| 577 | .bits_per_irq = 1, | ||
| 578 | .handle_mmio = handle_mmio_rao_wi, | ||
| 579 | }, | ||
| 580 | { | ||
| 581 | .base = GICR_ISENABLER0, | ||
| 582 | .len = 0x04, | ||
| 583 | .bits_per_irq = 1, | ||
| 584 | .handle_mmio = handle_mmio_set_enable_reg_redist, | ||
| 585 | }, | ||
| 586 | { | ||
| 587 | .base = GICR_ICENABLER0, | ||
| 588 | .len = 0x04, | ||
| 589 | .bits_per_irq = 1, | ||
| 590 | .handle_mmio = handle_mmio_clear_enable_reg_redist, | ||
| 591 | }, | ||
| 592 | { | ||
| 593 | .base = GICR_ISPENDR0, | ||
| 594 | .len = 0x04, | ||
| 595 | .bits_per_irq = 1, | ||
| 596 | .handle_mmio = handle_mmio_set_pending_reg_redist, | ||
| 597 | }, | ||
| 598 | { | ||
| 599 | .base = GICR_ICPENDR0, | ||
| 600 | .len = 0x04, | ||
| 601 | .bits_per_irq = 1, | ||
| 602 | .handle_mmio = handle_mmio_clear_pending_reg_redist, | ||
| 603 | }, | ||
| 604 | { | ||
| 605 | .base = GICR_ISACTIVER0, | ||
| 606 | .len = 0x04, | ||
| 607 | .bits_per_irq = 1, | ||
| 608 | .handle_mmio = handle_mmio_raz_wi, | ||
| 609 | }, | ||
| 610 | { | ||
| 611 | .base = GICR_ICACTIVER0, | ||
| 612 | .len = 0x04, | ||
| 613 | .bits_per_irq = 1, | ||
| 614 | .handle_mmio = handle_mmio_raz_wi, | ||
| 615 | }, | ||
| 616 | { | ||
| 617 | .base = GICR_IPRIORITYR0, | ||
| 618 | .len = 0x20, | ||
| 619 | .bits_per_irq = 8, | ||
| 620 | .handle_mmio = handle_mmio_priority_reg_redist, | ||
| 621 | }, | ||
| 622 | { | ||
| 623 | .base = GICR_ICFGR0, | ||
| 624 | .len = 0x08, | ||
| 625 | .bits_per_irq = 2, | ||
| 626 | .handle_mmio = handle_mmio_cfg_reg_redist, | ||
| 627 | }, | ||
| 628 | { | ||
| 629 | .base = GICR_IGRPMODR0, | ||
| 630 | .len = 0x04, | ||
| 631 | .bits_per_irq = 1, | ||
| 632 | .handle_mmio = handle_mmio_raz_wi, | ||
| 633 | }, | ||
| 634 | { | ||
| 635 | .base = GICR_NSACR, | ||
| 636 | .len = 0x04, | ||
| 637 | .handle_mmio = handle_mmio_raz_wi, | ||
| 638 | }, | ||
| 639 | {}, | ||
| 640 | }; | ||
| 641 | |||
| 642 | static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu, | ||
| 643 | struct kvm_exit_mmio *mmio, | ||
| 644 | phys_addr_t offset) | ||
| 645 | { | ||
| 646 | /* since we don't support LPIs, this register is zero for now */ | ||
| 647 | vgic_reg_access(mmio, NULL, offset, | ||
| 648 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
| 649 | return false; | ||
| 650 | } | ||
| 651 | |||
| 652 | static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu, | ||
| 653 | struct kvm_exit_mmio *mmio, | ||
| 654 | phys_addr_t offset) | ||
| 655 | { | ||
| 656 | u32 reg; | ||
| 657 | u64 mpidr; | ||
| 658 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
| 659 | int target_vcpu_id = redist_vcpu->vcpu_id; | ||
| 660 | |||
| 661 | /* the upper 32 bits contain the affinity value */ | ||
| 662 | if ((offset & ~3) == 4) { | ||
| 663 | mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu); | ||
| 664 | reg = compress_mpidr(mpidr); | ||
| 665 | |||
| 666 | vgic_reg_access(mmio, ®, offset, | ||
| 667 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 668 | return false; | ||
| 669 | } | ||
| 670 | |||
| 671 | reg = redist_vcpu->vcpu_id << 8; | ||
| 672 | if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) | ||
| 673 | reg |= GICR_TYPER_LAST; | ||
| 674 | vgic_reg_access(mmio, ®, offset, | ||
| 675 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 676 | return false; | ||
| 677 | } | ||
| 678 | |||
| 679 | static const struct kvm_mmio_range vgic_redist_ranges[] = { | ||
| 680 | { | ||
| 681 | .base = GICR_CTLR, | ||
| 682 | .len = 0x04, | ||
| 683 | .bits_per_irq = 0, | ||
| 684 | .handle_mmio = handle_mmio_ctlr_redist, | ||
| 685 | }, | ||
| 686 | { | ||
| 687 | .base = GICR_TYPER, | ||
| 688 | .len = 0x08, | ||
| 689 | .bits_per_irq = 0, | ||
| 690 | .handle_mmio = handle_mmio_typer_redist, | ||
| 691 | }, | ||
| 692 | { | ||
| 693 | .base = GICR_IIDR, | ||
| 694 | .len = 0x04, | ||
| 695 | .bits_per_irq = 0, | ||
| 696 | .handle_mmio = handle_mmio_iidr, | ||
| 697 | }, | ||
| 698 | { | ||
| 699 | .base = GICR_WAKER, | ||
| 700 | .len = 0x04, | ||
| 701 | .bits_per_irq = 0, | ||
| 702 | .handle_mmio = handle_mmio_raz_wi, | ||
| 703 | }, | ||
| 704 | { | ||
| 705 | .base = GICR_IDREGS, | ||
| 706 | .len = 0x30, | ||
| 707 | .bits_per_irq = 0, | ||
| 708 | .handle_mmio = handle_mmio_idregs, | ||
| 709 | }, | ||
| 710 | {}, | ||
| 711 | }; | ||
| 712 | |||
| 713 | /* | ||
| 714 | * This function splits accesses between the distributor and the two | ||
| 715 | * redistributor parts (private/SPI). As each redistributor is accessible | ||
| 716 | * from any CPU, we have to determine the affected VCPU by taking the faulting | ||
| 717 | * address into account. We then pass this VCPU to the handler function via | ||
| 718 | * the private parameter. | ||
| 719 | */ | ||
| 720 | #define SGI_BASE_OFFSET SZ_64K | ||
| 721 | static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, | ||
| 722 | struct kvm_exit_mmio *mmio) | ||
| 723 | { | ||
| 724 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 725 | unsigned long dbase = dist->vgic_dist_base; | ||
| 726 | unsigned long rdbase = dist->vgic_redist_base; | ||
| 727 | int nrcpus = atomic_read(&vcpu->kvm->online_vcpus); | ||
| 728 | int vcpu_id; | ||
| 729 | const struct kvm_mmio_range *mmio_range; | ||
| 730 | |||
| 731 | if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) { | ||
| 732 | return vgic_handle_mmio_range(vcpu, run, mmio, | ||
| 733 | vgic_v3_dist_ranges, dbase); | ||
| 734 | } | ||
| 735 | |||
| 736 | if (!is_in_range(mmio->phys_addr, mmio->len, rdbase, | ||
| 737 | GIC_V3_REDIST_SIZE * nrcpus)) | ||
| 738 | return false; | ||
| 739 | |||
| 740 | vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE; | ||
| 741 | rdbase += (vcpu_id * GIC_V3_REDIST_SIZE); | ||
| 742 | mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id); | ||
| 743 | |||
| 744 | if (mmio->phys_addr >= rdbase + SGI_BASE_OFFSET) { | ||
| 745 | rdbase += SGI_BASE_OFFSET; | ||
| 746 | mmio_range = vgic_redist_sgi_ranges; | ||
| 747 | } else { | ||
| 748 | mmio_range = vgic_redist_ranges; | ||
| 749 | } | ||
| 750 | return vgic_handle_mmio_range(vcpu, run, mmio, mmio_range, rdbase); | ||
| 751 | } | ||
| 752 | |||
| 753 | static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq) | ||
| 754 | { | ||
| 755 | if (vgic_queue_irq(vcpu, 0, irq)) { | ||
| 756 | vgic_dist_irq_clear_pending(vcpu, irq); | ||
| 757 | vgic_cpu_irq_clear(vcpu, irq); | ||
| 758 | return true; | ||
| 759 | } | ||
| 760 | |||
| 761 | return false; | ||
| 762 | } | ||
| 763 | |||
| 764 | static int vgic_v3_map_resources(struct kvm *kvm, | ||
| 765 | const struct vgic_params *params) | ||
| 766 | { | ||
| 767 | int ret = 0; | ||
| 768 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 769 | |||
| 770 | if (!irqchip_in_kernel(kvm)) | ||
| 771 | return 0; | ||
| 772 | |||
| 773 | mutex_lock(&kvm->lock); | ||
| 774 | |||
| 775 | if (vgic_ready(kvm)) | ||
| 776 | goto out; | ||
| 777 | |||
| 778 | if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || | ||
| 779 | IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { | ||
| 780 | kvm_err("Need to set vgic distributor addresses first\n"); | ||
| 781 | ret = -ENXIO; | ||
| 782 | goto out; | ||
| 783 | } | ||
| 784 | |||
| 785 | /* | ||
| 786 | * For a VGICv3 we require the userland to explicitly initialize | ||
| 787 | * the VGIC before we need to use it. | ||
| 788 | */ | ||
| 789 | if (!vgic_initialized(kvm)) { | ||
| 790 | ret = -EBUSY; | ||
| 791 | goto out; | ||
| 792 | } | ||
| 793 | |||
| 794 | kvm->arch.vgic.ready = true; | ||
| 795 | out: | ||
| 796 | if (ret) | ||
| 797 | kvm_vgic_destroy(kvm); | ||
| 798 | mutex_unlock(&kvm->lock); | ||
| 799 | return ret; | ||
| 800 | } | ||
| 801 | |||
| 802 | static int vgic_v3_init_model(struct kvm *kvm) | ||
| 803 | { | ||
| 804 | int i; | ||
| 805 | u32 mpidr; | ||
| 806 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 807 | int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; | ||
| 808 | |||
| 809 | dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]), | ||
| 810 | GFP_KERNEL); | ||
| 811 | |||
| 812 | if (!dist->irq_spi_mpidr) | ||
| 813 | return -ENOMEM; | ||
| 814 | |||
| 815 | /* Initialize the target VCPUs for each IRQ to VCPU 0 */ | ||
| 816 | mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0))); | ||
| 817 | for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) { | ||
| 818 | dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0; | ||
| 819 | dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr; | ||
| 820 | vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1); | ||
| 821 | } | ||
| 822 | |||
| 823 | return 0; | ||
| 824 | } | ||
| 825 | |||
| 826 | /* GICv3 does not keep track of SGI sources anymore. */ | ||
| 827 | static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) | ||
| 828 | { | ||
| 829 | } | ||
| 830 | |||
| 831 | void vgic_v3_init_emulation(struct kvm *kvm) | ||
| 832 | { | ||
| 833 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 834 | |||
| 835 | dist->vm_ops.handle_mmio = vgic_v3_handle_mmio; | ||
| 836 | dist->vm_ops.queue_sgi = vgic_v3_queue_sgi; | ||
| 837 | dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source; | ||
| 838 | dist->vm_ops.init_model = vgic_v3_init_model; | ||
| 839 | dist->vm_ops.map_resources = vgic_v3_map_resources; | ||
| 840 | |||
| 841 | kvm->arch.max_vcpus = KVM_MAX_VCPUS; | ||
| 842 | } | ||
| 843 | |||
| 844 | /* | ||
| 845 | * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI | ||
| 846 | * generation register ICC_SGI1R_EL1) with a given VCPU. | ||
| 847 | * If the VCPU's MPIDR matches, return the level0 affinity, otherwise | ||
| 848 | * return -1. | ||
| 849 | */ | ||
| 850 | static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) | ||
| 851 | { | ||
| 852 | unsigned long affinity; | ||
| 853 | int level0; | ||
| 854 | |||
| 855 | /* | ||
| 856 | * Split the current VCPU's MPIDR into affinity level 0 and the | ||
| 857 | * rest as this is what we have to compare against. | ||
| 858 | */ | ||
| 859 | affinity = kvm_vcpu_get_mpidr_aff(vcpu); | ||
| 860 | level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); | ||
| 861 | affinity &= ~MPIDR_LEVEL_MASK; | ||
| 862 | |||
| 863 | /* bail out if the upper three levels don't match */ | ||
| 864 | if (sgi_aff != affinity) | ||
| 865 | return -1; | ||
| 866 | |||
| 867 | /* Is this VCPU's bit set in the mask ? */ | ||
| 868 | if (!(sgi_cpu_mask & BIT(level0))) | ||
| 869 | return -1; | ||
| 870 | |||
| 871 | return level0; | ||
| 872 | } | ||
| 873 | |||
| 874 | #define SGI_AFFINITY_LEVEL(reg, level) \ | ||
| 875 | ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ | ||
| 876 | >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) | ||
| 877 | |||
| 878 | /** | ||
| 879 | * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs | ||
| 880 | * @vcpu: The VCPU requesting a SGI | ||
| 881 | * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU | ||
| 882 | * | ||
| 883 | * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. | ||
| 884 | * This will trap in sys_regs.c and call this function. | ||
| 885 | * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the | ||
| 886 | * target processors as well as a bitmask of 16 Aff0 CPUs. | ||
| 887 | * If the interrupt routing mode bit is not set, we iterate over all VCPUs to | ||
| 888 | * check for matching ones. If this bit is set, we signal all, but not the | ||
| 889 | * calling VCPU. | ||
| 890 | */ | ||
| 891 | void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) | ||
| 892 | { | ||
| 893 | struct kvm *kvm = vcpu->kvm; | ||
| 894 | struct kvm_vcpu *c_vcpu; | ||
| 895 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 896 | u16 target_cpus; | ||
| 897 | u64 mpidr; | ||
| 898 | int sgi, c; | ||
| 899 | int vcpu_id = vcpu->vcpu_id; | ||
| 900 | bool broadcast; | ||
| 901 | int updated = 0; | ||
| 902 | |||
| 903 | sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; | ||
| 904 | broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); | ||
| 905 | target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; | ||
| 906 | mpidr = SGI_AFFINITY_LEVEL(reg, 3); | ||
| 907 | mpidr |= SGI_AFFINITY_LEVEL(reg, 2); | ||
| 908 | mpidr |= SGI_AFFINITY_LEVEL(reg, 1); | ||
| 909 | |||
| 910 | /* | ||
| 911 | * We take the dist lock here, because we come from the sysregs | ||
| 912 | * code path and not from the MMIO one (which already takes the lock). | ||
| 913 | */ | ||
| 914 | spin_lock(&dist->lock); | ||
| 915 | |||
| 916 | /* | ||
| 917 | * We iterate over all VCPUs to find the MPIDRs matching the request. | ||
| 918 | * If we have handled one CPU, we clear it's bit to detect early | ||
| 919 | * if we are already finished. This avoids iterating through all | ||
| 920 | * VCPUs when most of the times we just signal a single VCPU. | ||
| 921 | */ | ||
| 922 | kvm_for_each_vcpu(c, c_vcpu, kvm) { | ||
| 923 | |||
| 924 | /* Exit early if we have dealt with all requested CPUs */ | ||
| 925 | if (!broadcast && target_cpus == 0) | ||
| 926 | break; | ||
| 927 | |||
| 928 | /* Don't signal the calling VCPU */ | ||
| 929 | if (broadcast && c == vcpu_id) | ||
| 930 | continue; | ||
| 931 | |||
| 932 | if (!broadcast) { | ||
| 933 | int level0; | ||
| 934 | |||
| 935 | level0 = match_mpidr(mpidr, target_cpus, c_vcpu); | ||
| 936 | if (level0 == -1) | ||
| 937 | continue; | ||
| 938 | |||
| 939 | /* remove this matching VCPU from the mask */ | ||
| 940 | target_cpus &= ~BIT(level0); | ||
| 941 | } | ||
| 942 | |||
| 943 | /* Flag the SGI as pending */ | ||
| 944 | vgic_dist_irq_set_pending(c_vcpu, sgi); | ||
| 945 | updated = 1; | ||
| 946 | kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); | ||
| 947 | } | ||
| 948 | if (updated) | ||
| 949 | vgic_update_state(vcpu->kvm); | ||
| 950 | spin_unlock(&dist->lock); | ||
| 951 | if (updated) | ||
| 952 | vgic_kick_vcpus(vcpu->kvm); | ||
| 953 | } | ||
| 954 | |||
| 955 | static int vgic_v3_create(struct kvm_device *dev, u32 type) | ||
| 956 | { | ||
| 957 | return kvm_vgic_create(dev->kvm, type); | ||
| 958 | } | ||
| 959 | |||
| 960 | static void vgic_v3_destroy(struct kvm_device *dev) | ||
| 961 | { | ||
| 962 | kfree(dev); | ||
| 963 | } | ||
| 964 | |||
| 965 | static int vgic_v3_set_attr(struct kvm_device *dev, | ||
| 966 | struct kvm_device_attr *attr) | ||
| 967 | { | ||
| 968 | int ret; | ||
| 969 | |||
| 970 | ret = vgic_set_common_attr(dev, attr); | ||
| 971 | if (ret != -ENXIO) | ||
| 972 | return ret; | ||
| 973 | |||
| 974 | switch (attr->group) { | ||
| 975 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 976 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
| 977 | return -ENXIO; | ||
| 978 | } | ||
| 979 | |||
| 980 | return -ENXIO; | ||
| 981 | } | ||
| 982 | |||
| 983 | static int vgic_v3_get_attr(struct kvm_device *dev, | ||
| 984 | struct kvm_device_attr *attr) | ||
| 985 | { | ||
| 986 | int ret; | ||
| 987 | |||
| 988 | ret = vgic_get_common_attr(dev, attr); | ||
| 989 | if (ret != -ENXIO) | ||
| 990 | return ret; | ||
| 991 | |||
| 992 | switch (attr->group) { | ||
| 993 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 994 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
| 995 | return -ENXIO; | ||
| 996 | } | ||
| 997 | |||
| 998 | return -ENXIO; | ||
| 999 | } | ||
| 1000 | |||
| 1001 | static int vgic_v3_has_attr(struct kvm_device *dev, | ||
| 1002 | struct kvm_device_attr *attr) | ||
| 1003 | { | ||
| 1004 | switch (attr->group) { | ||
| 1005 | case KVM_DEV_ARM_VGIC_GRP_ADDR: | ||
| 1006 | switch (attr->attr) { | ||
| 1007 | case KVM_VGIC_V2_ADDR_TYPE_DIST: | ||
| 1008 | case KVM_VGIC_V2_ADDR_TYPE_CPU: | ||
| 1009 | return -ENXIO; | ||
| 1010 | case KVM_VGIC_V3_ADDR_TYPE_DIST: | ||
| 1011 | case KVM_VGIC_V3_ADDR_TYPE_REDIST: | ||
| 1012 | return 0; | ||
| 1013 | } | ||
| 1014 | break; | ||
| 1015 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 1016 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
| 1017 | return -ENXIO; | ||
| 1018 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: | ||
| 1019 | return 0; | ||
| 1020 | case KVM_DEV_ARM_VGIC_GRP_CTRL: | ||
| 1021 | switch (attr->attr) { | ||
| 1022 | case KVM_DEV_ARM_VGIC_CTRL_INIT: | ||
| 1023 | return 0; | ||
| 1024 | } | ||
| 1025 | } | ||
| 1026 | return -ENXIO; | ||
| 1027 | } | ||
| 1028 | |||
| 1029 | struct kvm_device_ops kvm_arm_vgic_v3_ops = { | ||
| 1030 | .name = "kvm-arm-vgic-v3", | ||
| 1031 | .create = vgic_v3_create, | ||
| 1032 | .destroy = vgic_v3_destroy, | ||
| 1033 | .set_attr = vgic_v3_set_attr, | ||
| 1034 | .get_attr = vgic_v3_get_attr, | ||
| 1035 | .has_attr = vgic_v3_has_attr, | ||
| 1036 | }; | ||
diff --git a/virt/kvm/arm/vgic-v3.c b/virt/kvm/arm/vgic-v3.c index 1c2c8eef0599..dff06021e748 100644 --- a/virt/kvm/arm/vgic-v3.c +++ b/virt/kvm/arm/vgic-v3.c | |||
| @@ -34,6 +34,7 @@ | |||
| 34 | #define GICH_LR_VIRTUALID (0x3ffUL << 0) | 34 | #define GICH_LR_VIRTUALID (0x3ffUL << 0) |
| 35 | #define GICH_LR_PHYSID_CPUID_SHIFT (10) | 35 | #define GICH_LR_PHYSID_CPUID_SHIFT (10) |
| 36 | #define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT) | 36 | #define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT) |
| 37 | #define ICH_LR_VIRTUALID_MASK (BIT_ULL(32) - 1) | ||
| 37 | 38 | ||
| 38 | /* | 39 | /* |
| 39 | * LRs are stored in reverse order in memory. make sure we index them | 40 | * LRs are stored in reverse order in memory. make sure we index them |
| @@ -48,12 +49,17 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr) | |||
| 48 | struct vgic_lr lr_desc; | 49 | struct vgic_lr lr_desc; |
| 49 | u64 val = vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[LR_INDEX(lr)]; | 50 | u64 val = vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[LR_INDEX(lr)]; |
| 50 | 51 | ||
| 51 | lr_desc.irq = val & GICH_LR_VIRTUALID; | 52 | if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) |
| 52 | if (lr_desc.irq <= 15) | 53 | lr_desc.irq = val & ICH_LR_VIRTUALID_MASK; |
| 53 | lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7; | ||
| 54 | else | 54 | else |
| 55 | lr_desc.source = 0; | 55 | lr_desc.irq = val & GICH_LR_VIRTUALID; |
| 56 | lr_desc.state = 0; | 56 | |
| 57 | lr_desc.source = 0; | ||
| 58 | if (lr_desc.irq <= 15 && | ||
| 59 | vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) | ||
| 60 | lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7; | ||
| 61 | |||
| 62 | lr_desc.state = 0; | ||
| 57 | 63 | ||
| 58 | if (val & ICH_LR_PENDING_BIT) | 64 | if (val & ICH_LR_PENDING_BIT) |
| 59 | lr_desc.state |= LR_STATE_PENDING; | 65 | lr_desc.state |= LR_STATE_PENDING; |
| @@ -68,8 +74,20 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr) | |||
| 68 | static void vgic_v3_set_lr(struct kvm_vcpu *vcpu, int lr, | 74 | static void vgic_v3_set_lr(struct kvm_vcpu *vcpu, int lr, |
| 69 | struct vgic_lr lr_desc) | 75 | struct vgic_lr lr_desc) |
| 70 | { | 76 | { |
| 71 | u64 lr_val = (((u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT) | | 77 | u64 lr_val; |
| 72 | lr_desc.irq); | 78 | |
| 79 | lr_val = lr_desc.irq; | ||
| 80 | |||
| 81 | /* | ||
| 82 | * Currently all guest IRQs are Group1, as Group0 would result | ||
| 83 | * in a FIQ in the guest, which it wouldn't expect. | ||
| 84 | * Eventually we want to make this configurable, so we may revisit | ||
| 85 | * this in the future. | ||
| 86 | */ | ||
| 87 | if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) | ||
| 88 | lr_val |= ICH_LR_GROUP; | ||
| 89 | else | ||
| 90 | lr_val |= (u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT; | ||
| 73 | 91 | ||
| 74 | if (lr_desc.state & LR_STATE_PENDING) | 92 | if (lr_desc.state & LR_STATE_PENDING) |
| 75 | lr_val |= ICH_LR_PENDING_BIT; | 93 | lr_val |= ICH_LR_PENDING_BIT; |
| @@ -86,6 +104,8 @@ static void vgic_v3_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr, | |||
| 86 | { | 104 | { |
| 87 | if (!(lr_desc.state & LR_STATE_MASK)) | 105 | if (!(lr_desc.state & LR_STATE_MASK)) |
| 88 | vcpu->arch.vgic_cpu.vgic_v3.vgic_elrsr |= (1U << lr); | 106 | vcpu->arch.vgic_cpu.vgic_v3.vgic_elrsr |= (1U << lr); |
| 107 | else | ||
| 108 | vcpu->arch.vgic_cpu.vgic_v3.vgic_elrsr &= ~(1U << lr); | ||
| 89 | } | 109 | } |
| 90 | 110 | ||
| 91 | static u64 vgic_v3_get_elrsr(const struct kvm_vcpu *vcpu) | 111 | static u64 vgic_v3_get_elrsr(const struct kvm_vcpu *vcpu) |
| @@ -98,6 +118,11 @@ static u64 vgic_v3_get_eisr(const struct kvm_vcpu *vcpu) | |||
| 98 | return vcpu->arch.vgic_cpu.vgic_v3.vgic_eisr; | 118 | return vcpu->arch.vgic_cpu.vgic_v3.vgic_eisr; |
| 99 | } | 119 | } |
| 100 | 120 | ||
| 121 | static void vgic_v3_clear_eisr(struct kvm_vcpu *vcpu) | ||
| 122 | { | ||
| 123 | vcpu->arch.vgic_cpu.vgic_v3.vgic_eisr = 0; | ||
| 124 | } | ||
| 125 | |||
| 101 | static u32 vgic_v3_get_interrupt_status(const struct kvm_vcpu *vcpu) | 126 | static u32 vgic_v3_get_interrupt_status(const struct kvm_vcpu *vcpu) |
| 102 | { | 127 | { |
| 103 | u32 misr = vcpu->arch.vgic_cpu.vgic_v3.vgic_misr; | 128 | u32 misr = vcpu->arch.vgic_cpu.vgic_v3.vgic_misr; |
| @@ -145,15 +170,27 @@ static void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) | |||
| 145 | 170 | ||
| 146 | static void vgic_v3_enable(struct kvm_vcpu *vcpu) | 171 | static void vgic_v3_enable(struct kvm_vcpu *vcpu) |
| 147 | { | 172 | { |
| 173 | struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; | ||
| 174 | |||
| 148 | /* | 175 | /* |
| 149 | * By forcing VMCR to zero, the GIC will restore the binary | 176 | * By forcing VMCR to zero, the GIC will restore the binary |
| 150 | * points to their reset values. Anything else resets to zero | 177 | * points to their reset values. Anything else resets to zero |
| 151 | * anyway. | 178 | * anyway. |
| 152 | */ | 179 | */ |
| 153 | vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = 0; | 180 | vgic_v3->vgic_vmcr = 0; |
| 181 | |||
| 182 | /* | ||
| 183 | * If we are emulating a GICv3, we do it in an non-GICv2-compatible | ||
| 184 | * way, so we force SRE to 1 to demonstrate this to the guest. | ||
| 185 | * This goes with the spec allowing the value to be RAO/WI. | ||
| 186 | */ | ||
| 187 | if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) | ||
| 188 | vgic_v3->vgic_sre = ICC_SRE_EL1_SRE; | ||
| 189 | else | ||
| 190 | vgic_v3->vgic_sre = 0; | ||
| 154 | 191 | ||
| 155 | /* Get the show on the road... */ | 192 | /* Get the show on the road... */ |
| 156 | vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr = ICH_HCR_EN; | 193 | vgic_v3->vgic_hcr = ICH_HCR_EN; |
| 157 | } | 194 | } |
| 158 | 195 | ||
| 159 | static const struct vgic_ops vgic_v3_ops = { | 196 | static const struct vgic_ops vgic_v3_ops = { |
| @@ -162,6 +199,7 @@ static const struct vgic_ops vgic_v3_ops = { | |||
| 162 | .sync_lr_elrsr = vgic_v3_sync_lr_elrsr, | 199 | .sync_lr_elrsr = vgic_v3_sync_lr_elrsr, |
| 163 | .get_elrsr = vgic_v3_get_elrsr, | 200 | .get_elrsr = vgic_v3_get_elrsr, |
| 164 | .get_eisr = vgic_v3_get_eisr, | 201 | .get_eisr = vgic_v3_get_eisr, |
| 202 | .clear_eisr = vgic_v3_clear_eisr, | ||
| 165 | .get_interrupt_status = vgic_v3_get_interrupt_status, | 203 | .get_interrupt_status = vgic_v3_get_interrupt_status, |
| 166 | .enable_underflow = vgic_v3_enable_underflow, | 204 | .enable_underflow = vgic_v3_enable_underflow, |
| 167 | .disable_underflow = vgic_v3_disable_underflow, | 205 | .disable_underflow = vgic_v3_disable_underflow, |
| @@ -205,35 +243,37 @@ int vgic_v3_probe(struct device_node *vgic_node, | |||
| 205 | * maximum of 16 list registers. Just ignore bit 4... | 243 | * maximum of 16 list registers. Just ignore bit 4... |
| 206 | */ | 244 | */ |
| 207 | vgic->nr_lr = (ich_vtr_el2 & 0xf) + 1; | 245 | vgic->nr_lr = (ich_vtr_el2 & 0xf) + 1; |
| 246 | vgic->can_emulate_gicv2 = false; | ||
| 208 | 247 | ||
| 209 | if (of_property_read_u32(vgic_node, "#redistributor-regions", &gicv_idx)) | 248 | if (of_property_read_u32(vgic_node, "#redistributor-regions", &gicv_idx)) |
| 210 | gicv_idx = 1; | 249 | gicv_idx = 1; |
| 211 | 250 | ||
| 212 | gicv_idx += 3; /* Also skip GICD, GICC, GICH */ | 251 | gicv_idx += 3; /* Also skip GICD, GICC, GICH */ |
| 213 | if (of_address_to_resource(vgic_node, gicv_idx, &vcpu_res)) { | 252 | if (of_address_to_resource(vgic_node, gicv_idx, &vcpu_res)) { |
| 214 | kvm_err("Cannot obtain GICV region\n"); | 253 | kvm_info("GICv3: no GICV resource entry\n"); |
| 215 | ret = -ENXIO; | 254 | vgic->vcpu_base = 0; |
| 216 | goto out; | 255 | } else if (!PAGE_ALIGNED(vcpu_res.start)) { |
| 217 | } | 256 | pr_warn("GICV physical address 0x%llx not page aligned\n", |
| 218 | |||
| 219 | if (!PAGE_ALIGNED(vcpu_res.start)) { | ||
| 220 | kvm_err("GICV physical address 0x%llx not page aligned\n", | ||
| 221 | (unsigned long long)vcpu_res.start); | 257 | (unsigned long long)vcpu_res.start); |
| 222 | ret = -ENXIO; | 258 | vgic->vcpu_base = 0; |
| 223 | goto out; | 259 | } else if (!PAGE_ALIGNED(resource_size(&vcpu_res))) { |
| 224 | } | 260 | pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n", |
| 225 | |||
| 226 | if (!PAGE_ALIGNED(resource_size(&vcpu_res))) { | ||
| 227 | kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n", | ||
| 228 | (unsigned long long)resource_size(&vcpu_res), | 261 | (unsigned long long)resource_size(&vcpu_res), |
| 229 | PAGE_SIZE); | 262 | PAGE_SIZE); |
| 230 | ret = -ENXIO; | 263 | vgic->vcpu_base = 0; |
| 231 | goto out; | 264 | } else { |
| 265 | vgic->vcpu_base = vcpu_res.start; | ||
| 266 | vgic->can_emulate_gicv2 = true; | ||
| 267 | kvm_register_device_ops(&kvm_arm_vgic_v2_ops, | ||
| 268 | KVM_DEV_TYPE_ARM_VGIC_V2); | ||
| 232 | } | 269 | } |
| 270 | if (vgic->vcpu_base == 0) | ||
| 271 | kvm_info("disabling GICv2 emulation\n"); | ||
| 272 | kvm_register_device_ops(&kvm_arm_vgic_v3_ops, KVM_DEV_TYPE_ARM_VGIC_V3); | ||
| 233 | 273 | ||
| 234 | vgic->vcpu_base = vcpu_res.start; | ||
| 235 | vgic->vctrl_base = NULL; | 274 | vgic->vctrl_base = NULL; |
| 236 | vgic->type = VGIC_V3; | 275 | vgic->type = VGIC_V3; |
| 276 | vgic->max_gic_vcpus = KVM_MAX_VCPUS; | ||
| 237 | 277 | ||
| 238 | kvm_info("%s@%llx IRQ%d\n", vgic_node->name, | 278 | kvm_info("%s@%llx IRQ%d\n", vgic_node->name, |
| 239 | vcpu_res.start, vgic->maint_irq); | 279 | vcpu_res.start, vgic->maint_irq); |
diff --git a/virt/kvm/arm/vgic.c b/virt/kvm/arm/vgic.c index 03affc7bf453..c9f60f524588 100644 --- a/virt/kvm/arm/vgic.c +++ b/virt/kvm/arm/vgic.c | |||
| @@ -75,37 +75,31 @@ | |||
| 75 | * inactive as long as the external input line is held high. | 75 | * inactive as long as the external input line is held high. |
| 76 | */ | 76 | */ |
| 77 | 77 | ||
| 78 | #define VGIC_ADDR_UNDEF (-1) | 78 | #include "vgic.h" |
| 79 | #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) | 79 | |
| 80 | |||
| 81 | #define PRODUCT_ID_KVM 0x4b /* ASCII code K */ | ||
| 82 | #define IMPLEMENTER_ARM 0x43b | ||
| 83 | #define GICC_ARCH_VERSION_V2 0x2 | ||
| 84 | |||
| 85 | #define ACCESS_READ_VALUE (1 << 0) | ||
| 86 | #define ACCESS_READ_RAZ (0 << 0) | ||
| 87 | #define ACCESS_READ_MASK(x) ((x) & (1 << 0)) | ||
| 88 | #define ACCESS_WRITE_IGNORED (0 << 1) | ||
| 89 | #define ACCESS_WRITE_SETBIT (1 << 1) | ||
| 90 | #define ACCESS_WRITE_CLEARBIT (2 << 1) | ||
| 91 | #define ACCESS_WRITE_VALUE (3 << 1) | ||
| 92 | #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) | ||
| 93 | |||
| 94 | static int vgic_init(struct kvm *kvm); | ||
| 95 | static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); | 80 | static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); |
| 96 | static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu); | 81 | static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu); |
| 97 | static void vgic_update_state(struct kvm *kvm); | ||
| 98 | static void vgic_kick_vcpus(struct kvm *kvm); | ||
| 99 | static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi); | ||
| 100 | static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); | ||
| 101 | static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); | 82 | static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); |
| 102 | static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); | 83 | static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); |
| 103 | static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); | ||
| 104 | static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); | ||
| 105 | 84 | ||
| 106 | static const struct vgic_ops *vgic_ops; | 85 | static const struct vgic_ops *vgic_ops; |
| 107 | static const struct vgic_params *vgic; | 86 | static const struct vgic_params *vgic; |
| 108 | 87 | ||
| 88 | static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) | ||
| 89 | { | ||
| 90 | vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source); | ||
| 91 | } | ||
| 92 | |||
| 93 | static bool queue_sgi(struct kvm_vcpu *vcpu, int irq) | ||
| 94 | { | ||
| 95 | return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq); | ||
| 96 | } | ||
| 97 | |||
| 98 | int kvm_vgic_map_resources(struct kvm *kvm) | ||
| 99 | { | ||
| 100 | return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic); | ||
| 101 | } | ||
| 102 | |||
| 109 | /* | 103 | /* |
| 110 | * struct vgic_bitmap contains a bitmap made of unsigned longs, but | 104 | * struct vgic_bitmap contains a bitmap made of unsigned longs, but |
| 111 | * extracts u32s out of them. | 105 | * extracts u32s out of them. |
| @@ -160,8 +154,7 @@ static unsigned long *u64_to_bitmask(u64 *val) | |||
| 160 | return (unsigned long *)val; | 154 | return (unsigned long *)val; |
| 161 | } | 155 | } |
| 162 | 156 | ||
| 163 | static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, | 157 | u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) |
| 164 | int cpuid, u32 offset) | ||
| 165 | { | 158 | { |
| 166 | offset >>= 2; | 159 | offset >>= 2; |
| 167 | if (!offset) | 160 | if (!offset) |
| @@ -179,8 +172,8 @@ static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, | |||
| 179 | return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); | 172 | return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); |
| 180 | } | 173 | } |
| 181 | 174 | ||
| 182 | static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, | 175 | void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, |
| 183 | int irq, int val) | 176 | int irq, int val) |
| 184 | { | 177 | { |
| 185 | unsigned long *reg; | 178 | unsigned long *reg; |
| 186 | 179 | ||
| @@ -202,7 +195,7 @@ static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) | |||
| 202 | return x->private + cpuid; | 195 | return x->private + cpuid; |
| 203 | } | 196 | } |
| 204 | 197 | ||
| 205 | static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) | 198 | unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) |
| 206 | { | 199 | { |
| 207 | return x->shared; | 200 | return x->shared; |
| 208 | } | 201 | } |
| @@ -229,7 +222,7 @@ static void vgic_free_bytemap(struct vgic_bytemap *b) | |||
| 229 | b->shared = NULL; | 222 | b->shared = NULL; |
| 230 | } | 223 | } |
| 231 | 224 | ||
| 232 | static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) | 225 | u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) |
| 233 | { | 226 | { |
| 234 | u32 *reg; | 227 | u32 *reg; |
| 235 | 228 | ||
| @@ -326,14 +319,14 @@ static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) | |||
| 326 | return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); | 319 | return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); |
| 327 | } | 320 | } |
| 328 | 321 | ||
| 329 | static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) | 322 | void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) |
| 330 | { | 323 | { |
| 331 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | 324 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 332 | 325 | ||
| 333 | vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); | 326 | vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); |
| 334 | } | 327 | } |
| 335 | 328 | ||
| 336 | static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) | 329 | void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) |
| 337 | { | 330 | { |
| 338 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | 331 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 339 | 332 | ||
| @@ -349,7 +342,7 @@ static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) | |||
| 349 | vcpu->arch.vgic_cpu.pending_shared); | 342 | vcpu->arch.vgic_cpu.pending_shared); |
| 350 | } | 343 | } |
| 351 | 344 | ||
| 352 | static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) | 345 | void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) |
| 353 | { | 346 | { |
| 354 | if (irq < VGIC_NR_PRIVATE_IRQS) | 347 | if (irq < VGIC_NR_PRIVATE_IRQS) |
| 355 | clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); | 348 | clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); |
| @@ -363,16 +356,6 @@ static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq) | |||
| 363 | return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq); | 356 | return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq); |
| 364 | } | 357 | } |
| 365 | 358 | ||
| 366 | static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) | ||
| 367 | { | ||
| 368 | return le32_to_cpu(*((u32 *)mmio->data)) & mask; | ||
| 369 | } | ||
| 370 | |||
| 371 | static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) | ||
| 372 | { | ||
| 373 | *((u32 *)mmio->data) = cpu_to_le32(value) & mask; | ||
| 374 | } | ||
| 375 | |||
| 376 | /** | 359 | /** |
| 377 | * vgic_reg_access - access vgic register | 360 | * vgic_reg_access - access vgic register |
| 378 | * @mmio: pointer to the data describing the mmio access | 361 | * @mmio: pointer to the data describing the mmio access |
| @@ -384,8 +367,8 @@ static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) | |||
| 384 | * modes defined for vgic register access | 367 | * modes defined for vgic register access |
| 385 | * (read,raz,write-ignored,setbit,clearbit,write) | 368 | * (read,raz,write-ignored,setbit,clearbit,write) |
| 386 | */ | 369 | */ |
| 387 | static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, | 370 | void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, |
| 388 | phys_addr_t offset, int mode) | 371 | phys_addr_t offset, int mode) |
| 389 | { | 372 | { |
| 390 | int word_offset = (offset & 3) * 8; | 373 | int word_offset = (offset & 3) * 8; |
| 391 | u32 mask = (1UL << (mmio->len * 8)) - 1; | 374 | u32 mask = (1UL << (mmio->len * 8)) - 1; |
| @@ -434,107 +417,58 @@ static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, | |||
| 434 | } | 417 | } |
| 435 | } | 418 | } |
| 436 | 419 | ||
| 437 | static bool handle_mmio_misc(struct kvm_vcpu *vcpu, | 420 | bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, |
| 438 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | 421 | phys_addr_t offset) |
| 439 | { | ||
| 440 | u32 reg; | ||
| 441 | u32 word_offset = offset & 3; | ||
| 442 | |||
| 443 | switch (offset & ~3) { | ||
| 444 | case 0: /* GICD_CTLR */ | ||
| 445 | reg = vcpu->kvm->arch.vgic.enabled; | ||
| 446 | vgic_reg_access(mmio, ®, word_offset, | ||
| 447 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 448 | if (mmio->is_write) { | ||
| 449 | vcpu->kvm->arch.vgic.enabled = reg & 1; | ||
| 450 | vgic_update_state(vcpu->kvm); | ||
| 451 | return true; | ||
| 452 | } | ||
| 453 | break; | ||
| 454 | |||
| 455 | case 4: /* GICD_TYPER */ | ||
| 456 | reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; | ||
| 457 | reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1; | ||
| 458 | vgic_reg_access(mmio, ®, word_offset, | ||
| 459 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 460 | break; | ||
| 461 | |||
| 462 | case 8: /* GICD_IIDR */ | ||
| 463 | reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); | ||
| 464 | vgic_reg_access(mmio, ®, word_offset, | ||
| 465 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 466 | break; | ||
| 467 | } | ||
| 468 | |||
| 469 | return false; | ||
| 470 | } | ||
| 471 | |||
| 472 | static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, | ||
| 473 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 474 | { | 422 | { |
| 475 | vgic_reg_access(mmio, NULL, offset, | 423 | vgic_reg_access(mmio, NULL, offset, |
| 476 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | 424 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 477 | return false; | 425 | return false; |
| 478 | } | 426 | } |
| 479 | 427 | ||
| 480 | static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, | 428 | bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, |
| 481 | struct kvm_exit_mmio *mmio, | 429 | phys_addr_t offset, int vcpu_id, int access) |
| 482 | phys_addr_t offset) | ||
| 483 | { | 430 | { |
| 484 | u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, | 431 | u32 *reg; |
| 485 | vcpu->vcpu_id, offset); | 432 | int mode = ACCESS_READ_VALUE | access; |
| 486 | vgic_reg_access(mmio, reg, offset, | 433 | struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id); |
| 487 | ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); | ||
| 488 | if (mmio->is_write) { | ||
| 489 | vgic_update_state(vcpu->kvm); | ||
| 490 | return true; | ||
| 491 | } | ||
| 492 | |||
| 493 | return false; | ||
| 494 | } | ||
| 495 | 434 | ||
| 496 | static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, | 435 | reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset); |
| 497 | struct kvm_exit_mmio *mmio, | 436 | vgic_reg_access(mmio, reg, offset, mode); |
| 498 | phys_addr_t offset) | ||
| 499 | { | ||
| 500 | u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, | ||
| 501 | vcpu->vcpu_id, offset); | ||
| 502 | vgic_reg_access(mmio, reg, offset, | ||
| 503 | ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); | ||
| 504 | if (mmio->is_write) { | 437 | if (mmio->is_write) { |
| 505 | if (offset < 4) /* Force SGI enabled */ | 438 | if (access & ACCESS_WRITE_CLEARBIT) { |
| 506 | *reg |= 0xffff; | 439 | if (offset < 4) /* Force SGI enabled */ |
| 507 | vgic_retire_disabled_irqs(vcpu); | 440 | *reg |= 0xffff; |
| 508 | vgic_update_state(vcpu->kvm); | 441 | vgic_retire_disabled_irqs(target_vcpu); |
| 442 | } | ||
| 443 | vgic_update_state(kvm); | ||
| 509 | return true; | 444 | return true; |
| 510 | } | 445 | } |
| 511 | 446 | ||
| 512 | return false; | 447 | return false; |
| 513 | } | 448 | } |
| 514 | 449 | ||
| 515 | static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, | 450 | bool vgic_handle_set_pending_reg(struct kvm *kvm, |
| 516 | struct kvm_exit_mmio *mmio, | 451 | struct kvm_exit_mmio *mmio, |
| 517 | phys_addr_t offset) | 452 | phys_addr_t offset, int vcpu_id) |
| 518 | { | 453 | { |
| 519 | u32 *reg, orig; | 454 | u32 *reg, orig; |
| 520 | u32 level_mask; | 455 | u32 level_mask; |
| 521 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | 456 | int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT; |
| 457 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 522 | 458 | ||
| 523 | reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset); | 459 | reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset); |
| 524 | level_mask = (~(*reg)); | 460 | level_mask = (~(*reg)); |
| 525 | 461 | ||
| 526 | /* Mark both level and edge triggered irqs as pending */ | 462 | /* Mark both level and edge triggered irqs as pending */ |
| 527 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); | 463 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| 528 | orig = *reg; | 464 | orig = *reg; |
| 529 | vgic_reg_access(mmio, reg, offset, | 465 | vgic_reg_access(mmio, reg, offset, mode); |
| 530 | ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); | ||
| 531 | 466 | ||
| 532 | if (mmio->is_write) { | 467 | if (mmio->is_write) { |
| 533 | /* Set the soft-pending flag only for level-triggered irqs */ | 468 | /* Set the soft-pending flag only for level-triggered irqs */ |
| 534 | reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, | 469 | reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, |
| 535 | vcpu->vcpu_id, offset); | 470 | vcpu_id, offset); |
| 536 | vgic_reg_access(mmio, reg, offset, | 471 | vgic_reg_access(mmio, reg, offset, mode); |
| 537 | ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); | ||
| 538 | *reg &= level_mask; | 472 | *reg &= level_mask; |
| 539 | 473 | ||
| 540 | /* Ignore writes to SGIs */ | 474 | /* Ignore writes to SGIs */ |
| @@ -543,31 +477,30 @@ static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, | |||
| 543 | *reg |= orig & 0xffff; | 477 | *reg |= orig & 0xffff; |
| 544 | } | 478 | } |
| 545 | 479 | ||
| 546 | vgic_update_state(vcpu->kvm); | 480 | vgic_update_state(kvm); |
| 547 | return true; | 481 | return true; |
| 548 | } | 482 | } |
| 549 | 483 | ||
| 550 | return false; | 484 | return false; |
| 551 | } | 485 | } |
| 552 | 486 | ||
| 553 | static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, | 487 | bool vgic_handle_clear_pending_reg(struct kvm *kvm, |
| 554 | struct kvm_exit_mmio *mmio, | 488 | struct kvm_exit_mmio *mmio, |
| 555 | phys_addr_t offset) | 489 | phys_addr_t offset, int vcpu_id) |
| 556 | { | 490 | { |
| 557 | u32 *level_active; | 491 | u32 *level_active; |
| 558 | u32 *reg, orig; | 492 | u32 *reg, orig; |
| 559 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | 493 | int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT; |
| 494 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 560 | 495 | ||
| 561 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); | 496 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| 562 | orig = *reg; | 497 | orig = *reg; |
| 563 | vgic_reg_access(mmio, reg, offset, | 498 | vgic_reg_access(mmio, reg, offset, mode); |
| 564 | ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); | ||
| 565 | if (mmio->is_write) { | 499 | if (mmio->is_write) { |
| 566 | /* Re-set level triggered level-active interrupts */ | 500 | /* Re-set level triggered level-active interrupts */ |
| 567 | level_active = vgic_bitmap_get_reg(&dist->irq_level, | 501 | level_active = vgic_bitmap_get_reg(&dist->irq_level, |
| 568 | vcpu->vcpu_id, offset); | 502 | vcpu_id, offset); |
| 569 | reg = vgic_bitmap_get_reg(&dist->irq_pending, | 503 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| 570 | vcpu->vcpu_id, offset); | ||
| 571 | *reg |= *level_active; | 504 | *reg |= *level_active; |
| 572 | 505 | ||
| 573 | /* Ignore writes to SGIs */ | 506 | /* Ignore writes to SGIs */ |
| @@ -578,101 +511,12 @@ static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, | |||
| 578 | 511 | ||
| 579 | /* Clear soft-pending flags */ | 512 | /* Clear soft-pending flags */ |
| 580 | reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, | 513 | reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, |
| 581 | vcpu->vcpu_id, offset); | 514 | vcpu_id, offset); |
| 582 | vgic_reg_access(mmio, reg, offset, | 515 | vgic_reg_access(mmio, reg, offset, mode); |
| 583 | ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); | ||
| 584 | |||
| 585 | vgic_update_state(vcpu->kvm); | ||
| 586 | return true; | ||
| 587 | } | ||
| 588 | |||
| 589 | return false; | ||
| 590 | } | ||
| 591 | |||
| 592 | static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, | ||
| 593 | struct kvm_exit_mmio *mmio, | ||
| 594 | phys_addr_t offset) | ||
| 595 | { | ||
| 596 | u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, | ||
| 597 | vcpu->vcpu_id, offset); | ||
| 598 | vgic_reg_access(mmio, reg, offset, | ||
| 599 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 600 | return false; | ||
| 601 | } | ||
| 602 | |||
| 603 | #define GICD_ITARGETSR_SIZE 32 | ||
| 604 | #define GICD_CPUTARGETS_BITS 8 | ||
| 605 | #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) | ||
| 606 | static u32 vgic_get_target_reg(struct kvm *kvm, int irq) | ||
| 607 | { | ||
| 608 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 609 | int i; | ||
| 610 | u32 val = 0; | ||
| 611 | |||
| 612 | irq -= VGIC_NR_PRIVATE_IRQS; | ||
| 613 | |||
| 614 | for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) | ||
| 615 | val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); | ||
| 616 | |||
| 617 | return val; | ||
| 618 | } | ||
| 619 | |||
| 620 | static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) | ||
| 621 | { | ||
| 622 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
| 623 | struct kvm_vcpu *vcpu; | ||
| 624 | int i, c; | ||
| 625 | unsigned long *bmap; | ||
| 626 | u32 target; | ||
| 627 | |||
| 628 | irq -= VGIC_NR_PRIVATE_IRQS; | ||
| 629 | |||
| 630 | /* | ||
| 631 | * Pick the LSB in each byte. This ensures we target exactly | ||
| 632 | * one vcpu per IRQ. If the byte is null, assume we target | ||
| 633 | * CPU0. | ||
| 634 | */ | ||
| 635 | for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { | ||
| 636 | int shift = i * GICD_CPUTARGETS_BITS; | ||
| 637 | target = ffs((val >> shift) & 0xffU); | ||
| 638 | target = target ? (target - 1) : 0; | ||
| 639 | dist->irq_spi_cpu[irq + i] = target; | ||
| 640 | kvm_for_each_vcpu(c, vcpu, kvm) { | ||
| 641 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); | ||
| 642 | if (c == target) | ||
| 643 | set_bit(irq + i, bmap); | ||
| 644 | else | ||
| 645 | clear_bit(irq + i, bmap); | ||
| 646 | } | ||
| 647 | } | ||
| 648 | } | ||
| 649 | |||
| 650 | static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, | ||
| 651 | struct kvm_exit_mmio *mmio, | ||
| 652 | phys_addr_t offset) | ||
| 653 | { | ||
| 654 | u32 reg; | ||
| 655 | |||
| 656 | /* We treat the banked interrupts targets as read-only */ | ||
| 657 | if (offset < 32) { | ||
| 658 | u32 roreg = 1 << vcpu->vcpu_id; | ||
| 659 | roreg |= roreg << 8; | ||
| 660 | roreg |= roreg << 16; | ||
| 661 | 516 | ||
| 662 | vgic_reg_access(mmio, &roreg, offset, | 517 | vgic_update_state(kvm); |
| 663 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
| 664 | return false; | ||
| 665 | } | ||
| 666 | |||
| 667 | reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); | ||
| 668 | vgic_reg_access(mmio, ®, offset, | ||
| 669 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
| 670 | if (mmio->is_write) { | ||
| 671 | vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); | ||
| 672 | vgic_update_state(vcpu->kvm); | ||
| 673 | return true; | 518 | return true; |
| 674 | } | 519 | } |
| 675 | |||
| 676 | return false; | 520 | return false; |
| 677 | } | 521 | } |
| 678 | 522 | ||
| @@ -711,14 +555,10 @@ static u16 vgic_cfg_compress(u32 val) | |||
| 711 | * LSB is always 0. As such, we only keep the upper bit, and use the | 555 | * LSB is always 0. As such, we only keep the upper bit, and use the |
| 712 | * two above functions to compress/expand the bits | 556 | * two above functions to compress/expand the bits |
| 713 | */ | 557 | */ |
| 714 | static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, | 558 | bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, |
| 715 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | 559 | phys_addr_t offset) |
| 716 | { | 560 | { |
| 717 | u32 val; | 561 | u32 val; |
| 718 | u32 *reg; | ||
| 719 | |||
| 720 | reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, | ||
| 721 | vcpu->vcpu_id, offset >> 1); | ||
| 722 | 562 | ||
| 723 | if (offset & 4) | 563 | if (offset & 4) |
| 724 | val = *reg >> 16; | 564 | val = *reg >> 16; |
| @@ -747,21 +587,6 @@ static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, | |||
| 747 | return false; | 587 | return false; |
| 748 | } | 588 | } |
| 749 | 589 | ||
| 750 | static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, | ||
| 751 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 752 | { | ||
| 753 | u32 reg; | ||
| 754 | vgic_reg_access(mmio, ®, offset, | ||
| 755 | ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); | ||
| 756 | if (mmio->is_write) { | ||
| 757 | vgic_dispatch_sgi(vcpu, reg); | ||
| 758 | vgic_update_state(vcpu->kvm); | ||
| 759 | return true; | ||
| 760 | } | ||
| 761 | |||
| 762 | return false; | ||
| 763 | } | ||
| 764 | |||
| 765 | /** | 590 | /** |
| 766 | * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor | 591 | * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor |
| 767 | * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs | 592 | * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs |
| @@ -774,11 +599,9 @@ static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, | |||
| 774 | * to the distributor but the active state stays in the LRs, because we don't | 599 | * to the distributor but the active state stays in the LRs, because we don't |
| 775 | * track the active state on the distributor side. | 600 | * track the active state on the distributor side. |
| 776 | */ | 601 | */ |
| 777 | static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) | 602 | void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) |
| 778 | { | 603 | { |
| 779 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 780 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 604 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 781 | int vcpu_id = vcpu->vcpu_id; | ||
| 782 | int i; | 605 | int i; |
| 783 | 606 | ||
| 784 | for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) { | 607 | for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) { |
| @@ -805,7 +628,7 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) | |||
| 805 | */ | 628 | */ |
| 806 | vgic_dist_irq_set_pending(vcpu, lr.irq); | 629 | vgic_dist_irq_set_pending(vcpu, lr.irq); |
| 807 | if (lr.irq < VGIC_NR_SGIS) | 630 | if (lr.irq < VGIC_NR_SGIS) |
| 808 | *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source; | 631 | add_sgi_source(vcpu, lr.irq, lr.source); |
| 809 | lr.state &= ~LR_STATE_PENDING; | 632 | lr.state &= ~LR_STATE_PENDING; |
| 810 | vgic_set_lr(vcpu, i, lr); | 633 | vgic_set_lr(vcpu, i, lr); |
| 811 | 634 | ||
| @@ -824,188 +647,12 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) | |||
| 824 | } | 647 | } |
| 825 | } | 648 | } |
| 826 | 649 | ||
| 827 | /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */ | 650 | const |
| 828 | static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, | 651 | struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges, |
| 829 | struct kvm_exit_mmio *mmio, | ||
| 830 | phys_addr_t offset) | ||
| 831 | { | ||
| 832 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 833 | int sgi; | ||
| 834 | int min_sgi = (offset & ~0x3); | ||
| 835 | int max_sgi = min_sgi + 3; | ||
| 836 | int vcpu_id = vcpu->vcpu_id; | ||
| 837 | u32 reg = 0; | ||
| 838 | |||
| 839 | /* Copy source SGIs from distributor side */ | ||
| 840 | for (sgi = min_sgi; sgi <= max_sgi; sgi++) { | ||
| 841 | int shift = 8 * (sgi - min_sgi); | ||
| 842 | reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift; | ||
| 843 | } | ||
| 844 | |||
| 845 | mmio_data_write(mmio, ~0, reg); | ||
| 846 | return false; | ||
| 847 | } | ||
| 848 | |||
| 849 | static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, | ||
| 850 | struct kvm_exit_mmio *mmio, | ||
| 851 | phys_addr_t offset, bool set) | ||
| 852 | { | ||
| 853 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 854 | int sgi; | ||
| 855 | int min_sgi = (offset & ~0x3); | ||
| 856 | int max_sgi = min_sgi + 3; | ||
| 857 | int vcpu_id = vcpu->vcpu_id; | ||
| 858 | u32 reg; | ||
| 859 | bool updated = false; | ||
| 860 | |||
| 861 | reg = mmio_data_read(mmio, ~0); | ||
| 862 | |||
| 863 | /* Clear pending SGIs on the distributor */ | ||
| 864 | for (sgi = min_sgi; sgi <= max_sgi; sgi++) { | ||
| 865 | u8 mask = reg >> (8 * (sgi - min_sgi)); | ||
| 866 | u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi); | ||
| 867 | if (set) { | ||
| 868 | if ((*src & mask) != mask) | ||
| 869 | updated = true; | ||
| 870 | *src |= mask; | ||
| 871 | } else { | ||
| 872 | if (*src & mask) | ||
| 873 | updated = true; | ||
| 874 | *src &= ~mask; | ||
| 875 | } | ||
| 876 | } | ||
| 877 | |||
| 878 | if (updated) | ||
| 879 | vgic_update_state(vcpu->kvm); | ||
| 880 | |||
| 881 | return updated; | ||
| 882 | } | ||
| 883 | |||
| 884 | static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu, | ||
| 885 | struct kvm_exit_mmio *mmio, | ||
| 886 | phys_addr_t offset) | ||
| 887 | { | ||
| 888 | if (!mmio->is_write) | ||
| 889 | return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); | ||
| 890 | else | ||
| 891 | return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true); | ||
| 892 | } | ||
| 893 | |||
| 894 | static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, | ||
| 895 | struct kvm_exit_mmio *mmio, | ||
| 896 | phys_addr_t offset) | ||
| 897 | { | ||
| 898 | if (!mmio->is_write) | ||
| 899 | return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); | ||
| 900 | else | ||
| 901 | return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false); | ||
| 902 | } | ||
| 903 | |||
| 904 | /* | ||
| 905 | * I would have liked to use the kvm_bus_io_*() API instead, but it | ||
| 906 | * cannot cope with banked registers (only the VM pointer is passed | ||
| 907 | * around, and we need the vcpu). One of these days, someone please | ||
| 908 | * fix it! | ||
| 909 | */ | ||
| 910 | struct mmio_range { | ||
| 911 | phys_addr_t base; | ||
| 912 | unsigned long len; | ||
| 913 | int bits_per_irq; | ||
| 914 | bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, | ||
| 915 | phys_addr_t offset); | ||
| 916 | }; | ||
| 917 | |||
| 918 | static const struct mmio_range vgic_dist_ranges[] = { | ||
| 919 | { | ||
| 920 | .base = GIC_DIST_CTRL, | ||
| 921 | .len = 12, | ||
| 922 | .bits_per_irq = 0, | ||
| 923 | .handle_mmio = handle_mmio_misc, | ||
| 924 | }, | ||
| 925 | { | ||
| 926 | .base = GIC_DIST_IGROUP, | ||
| 927 | .len = VGIC_MAX_IRQS / 8, | ||
| 928 | .bits_per_irq = 1, | ||
| 929 | .handle_mmio = handle_mmio_raz_wi, | ||
| 930 | }, | ||
| 931 | { | ||
| 932 | .base = GIC_DIST_ENABLE_SET, | ||
| 933 | .len = VGIC_MAX_IRQS / 8, | ||
| 934 | .bits_per_irq = 1, | ||
| 935 | .handle_mmio = handle_mmio_set_enable_reg, | ||
| 936 | }, | ||
| 937 | { | ||
| 938 | .base = GIC_DIST_ENABLE_CLEAR, | ||
| 939 | .len = VGIC_MAX_IRQS / 8, | ||
| 940 | .bits_per_irq = 1, | ||
| 941 | .handle_mmio = handle_mmio_clear_enable_reg, | ||
| 942 | }, | ||
| 943 | { | ||
| 944 | .base = GIC_DIST_PENDING_SET, | ||
| 945 | .len = VGIC_MAX_IRQS / 8, | ||
| 946 | .bits_per_irq = 1, | ||
| 947 | .handle_mmio = handle_mmio_set_pending_reg, | ||
| 948 | }, | ||
| 949 | { | ||
| 950 | .base = GIC_DIST_PENDING_CLEAR, | ||
| 951 | .len = VGIC_MAX_IRQS / 8, | ||
| 952 | .bits_per_irq = 1, | ||
| 953 | .handle_mmio = handle_mmio_clear_pending_reg, | ||
| 954 | }, | ||
| 955 | { | ||
| 956 | .base = GIC_DIST_ACTIVE_SET, | ||
| 957 | .len = VGIC_MAX_IRQS / 8, | ||
| 958 | .bits_per_irq = 1, | ||
| 959 | .handle_mmio = handle_mmio_raz_wi, | ||
| 960 | }, | ||
| 961 | { | ||
| 962 | .base = GIC_DIST_ACTIVE_CLEAR, | ||
| 963 | .len = VGIC_MAX_IRQS / 8, | ||
| 964 | .bits_per_irq = 1, | ||
| 965 | .handle_mmio = handle_mmio_raz_wi, | ||
| 966 | }, | ||
| 967 | { | ||
| 968 | .base = GIC_DIST_PRI, | ||
| 969 | .len = VGIC_MAX_IRQS, | ||
| 970 | .bits_per_irq = 8, | ||
| 971 | .handle_mmio = handle_mmio_priority_reg, | ||
| 972 | }, | ||
| 973 | { | ||
| 974 | .base = GIC_DIST_TARGET, | ||
| 975 | .len = VGIC_MAX_IRQS, | ||
| 976 | .bits_per_irq = 8, | ||
| 977 | .handle_mmio = handle_mmio_target_reg, | ||
| 978 | }, | ||
| 979 | { | ||
| 980 | .base = GIC_DIST_CONFIG, | ||
| 981 | .len = VGIC_MAX_IRQS / 4, | ||
| 982 | .bits_per_irq = 2, | ||
| 983 | .handle_mmio = handle_mmio_cfg_reg, | ||
| 984 | }, | ||
| 985 | { | ||
| 986 | .base = GIC_DIST_SOFTINT, | ||
| 987 | .len = 4, | ||
| 988 | .handle_mmio = handle_mmio_sgi_reg, | ||
| 989 | }, | ||
| 990 | { | ||
| 991 | .base = GIC_DIST_SGI_PENDING_CLEAR, | ||
| 992 | .len = VGIC_NR_SGIS, | ||
| 993 | .handle_mmio = handle_mmio_sgi_clear, | ||
| 994 | }, | ||
| 995 | { | ||
| 996 | .base = GIC_DIST_SGI_PENDING_SET, | ||
| 997 | .len = VGIC_NR_SGIS, | ||
| 998 | .handle_mmio = handle_mmio_sgi_set, | ||
| 999 | }, | ||
| 1000 | {} | ||
| 1001 | }; | ||
| 1002 | |||
| 1003 | static const | ||
| 1004 | struct mmio_range *find_matching_range(const struct mmio_range *ranges, | ||
| 1005 | struct kvm_exit_mmio *mmio, | 652 | struct kvm_exit_mmio *mmio, |
| 1006 | phys_addr_t offset) | 653 | phys_addr_t offset) |
| 1007 | { | 654 | { |
| 1008 | const struct mmio_range *r = ranges; | 655 | const struct kvm_mmio_range *r = ranges; |
| 1009 | 656 | ||
| 1010 | while (r->len) { | 657 | while (r->len) { |
| 1011 | if (offset >= r->base && | 658 | if (offset >= r->base && |
| @@ -1018,7 +665,7 @@ struct mmio_range *find_matching_range(const struct mmio_range *ranges, | |||
| 1018 | } | 665 | } |
| 1019 | 666 | ||
| 1020 | static bool vgic_validate_access(const struct vgic_dist *dist, | 667 | static bool vgic_validate_access(const struct vgic_dist *dist, |
| 1021 | const struct mmio_range *range, | 668 | const struct kvm_mmio_range *range, |
| 1022 | unsigned long offset) | 669 | unsigned long offset) |
| 1023 | { | 670 | { |
| 1024 | int irq; | 671 | int irq; |
| @@ -1033,37 +680,76 @@ static bool vgic_validate_access(const struct vgic_dist *dist, | |||
| 1033 | return true; | 680 | return true; |
| 1034 | } | 681 | } |
| 1035 | 682 | ||
| 683 | /* | ||
| 684 | * Call the respective handler function for the given range. | ||
| 685 | * We split up any 64 bit accesses into two consecutive 32 bit | ||
| 686 | * handler calls and merge the result afterwards. | ||
| 687 | * We do this in a little endian fashion regardless of the host's | ||
| 688 | * or guest's endianness, because the GIC is always LE and the rest of | ||
| 689 | * the code (vgic_reg_access) also puts it in a LE fashion already. | ||
| 690 | * At this point we have already identified the handle function, so | ||
| 691 | * range points to that one entry and offset is relative to this. | ||
| 692 | */ | ||
| 693 | static bool call_range_handler(struct kvm_vcpu *vcpu, | ||
| 694 | struct kvm_exit_mmio *mmio, | ||
| 695 | unsigned long offset, | ||
| 696 | const struct kvm_mmio_range *range) | ||
| 697 | { | ||
| 698 | u32 *data32 = (void *)mmio->data; | ||
| 699 | struct kvm_exit_mmio mmio32; | ||
| 700 | bool ret; | ||
| 701 | |||
| 702 | if (likely(mmio->len <= 4)) | ||
| 703 | return range->handle_mmio(vcpu, mmio, offset); | ||
| 704 | |||
| 705 | /* | ||
| 706 | * Any access bigger than 4 bytes (that we currently handle in KVM) | ||
| 707 | * is actually 8 bytes long, caused by a 64-bit access | ||
| 708 | */ | ||
| 709 | |||
| 710 | mmio32.len = 4; | ||
| 711 | mmio32.is_write = mmio->is_write; | ||
| 712 | mmio32.private = mmio->private; | ||
| 713 | |||
| 714 | mmio32.phys_addr = mmio->phys_addr + 4; | ||
| 715 | if (mmio->is_write) | ||
| 716 | *(u32 *)mmio32.data = data32[1]; | ||
| 717 | ret = range->handle_mmio(vcpu, &mmio32, offset + 4); | ||
| 718 | if (!mmio->is_write) | ||
| 719 | data32[1] = *(u32 *)mmio32.data; | ||
| 720 | |||
| 721 | mmio32.phys_addr = mmio->phys_addr; | ||
| 722 | if (mmio->is_write) | ||
| 723 | *(u32 *)mmio32.data = data32[0]; | ||
| 724 | ret |= range->handle_mmio(vcpu, &mmio32, offset); | ||
| 725 | if (!mmio->is_write) | ||
| 726 | data32[0] = *(u32 *)mmio32.data; | ||
| 727 | |||
| 728 | return ret; | ||
| 729 | } | ||
| 730 | |||
| 1036 | /** | 731 | /** |
| 1037 | * vgic_handle_mmio - handle an in-kernel MMIO access | 732 | * vgic_handle_mmio_range - handle an in-kernel MMIO access |
| 1038 | * @vcpu: pointer to the vcpu performing the access | 733 | * @vcpu: pointer to the vcpu performing the access |
| 1039 | * @run: pointer to the kvm_run structure | 734 | * @run: pointer to the kvm_run structure |
| 1040 | * @mmio: pointer to the data describing the access | 735 | * @mmio: pointer to the data describing the access |
| 736 | * @ranges: array of MMIO ranges in a given region | ||
| 737 | * @mmio_base: base address of that region | ||
| 1041 | * | 738 | * |
| 1042 | * returns true if the MMIO access has been performed in kernel space, | 739 | * returns true if the MMIO access could be performed |
| 1043 | * and false if it needs to be emulated in user space. | ||
| 1044 | */ | 740 | */ |
| 1045 | bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, | 741 | bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run, |
| 1046 | struct kvm_exit_mmio *mmio) | 742 | struct kvm_exit_mmio *mmio, |
| 743 | const struct kvm_mmio_range *ranges, | ||
| 744 | unsigned long mmio_base) | ||
| 1047 | { | 745 | { |
| 1048 | const struct mmio_range *range; | 746 | const struct kvm_mmio_range *range; |
| 1049 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | 747 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1050 | unsigned long base = dist->vgic_dist_base; | ||
| 1051 | bool updated_state; | 748 | bool updated_state; |
| 1052 | unsigned long offset; | 749 | unsigned long offset; |
| 1053 | 750 | ||
| 1054 | if (!irqchip_in_kernel(vcpu->kvm) || | 751 | offset = mmio->phys_addr - mmio_base; |
| 1055 | mmio->phys_addr < base || | 752 | range = vgic_find_range(ranges, mmio, offset); |
| 1056 | (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE)) | ||
| 1057 | return false; | ||
| 1058 | |||
| 1059 | /* We don't support ldrd / strd or ldm / stm to the emulated vgic */ | ||
| 1060 | if (mmio->len > 4) { | ||
| 1061 | kvm_inject_dabt(vcpu, mmio->phys_addr); | ||
| 1062 | return true; | ||
| 1063 | } | ||
| 1064 | |||
| 1065 | offset = mmio->phys_addr - base; | ||
| 1066 | range = find_matching_range(vgic_dist_ranges, mmio, offset); | ||
| 1067 | if (unlikely(!range || !range->handle_mmio)) { | 753 | if (unlikely(!range || !range->handle_mmio)) { |
| 1068 | pr_warn("Unhandled access %d %08llx %d\n", | 754 | pr_warn("Unhandled access %d %08llx %d\n", |
| 1069 | mmio->is_write, mmio->phys_addr, mmio->len); | 755 | mmio->is_write, mmio->phys_addr, mmio->len); |
| @@ -1071,12 +757,12 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, | |||
| 1071 | } | 757 | } |
| 1072 | 758 | ||
| 1073 | spin_lock(&vcpu->kvm->arch.vgic.lock); | 759 | spin_lock(&vcpu->kvm->arch.vgic.lock); |
| 1074 | offset = mmio->phys_addr - range->base - base; | 760 | offset -= range->base; |
| 1075 | if (vgic_validate_access(dist, range, offset)) { | 761 | if (vgic_validate_access(dist, range, offset)) { |
| 1076 | updated_state = range->handle_mmio(vcpu, mmio, offset); | 762 | updated_state = call_range_handler(vcpu, mmio, offset, range); |
| 1077 | } else { | 763 | } else { |
| 1078 | vgic_reg_access(mmio, NULL, offset, | 764 | if (!mmio->is_write) |
| 1079 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | 765 | memset(mmio->data, 0, mmio->len); |
| 1080 | updated_state = false; | 766 | updated_state = false; |
| 1081 | } | 767 | } |
| 1082 | spin_unlock(&vcpu->kvm->arch.vgic.lock); | 768 | spin_unlock(&vcpu->kvm->arch.vgic.lock); |
| @@ -1089,50 +775,28 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, | |||
| 1089 | return true; | 775 | return true; |
| 1090 | } | 776 | } |
| 1091 | 777 | ||
| 1092 | static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi) | 778 | /** |
| 1093 | { | 779 | * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation |
| 1094 | return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi; | 780 | * @vcpu: pointer to the vcpu performing the access |
| 1095 | } | 781 | * @run: pointer to the kvm_run structure |
| 1096 | 782 | * @mmio: pointer to the data describing the access | |
| 1097 | static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) | 783 | * |
| 784 | * returns true if the MMIO access has been performed in kernel space, | ||
| 785 | * and false if it needs to be emulated in user space. | ||
| 786 | * Calls the actual handling routine for the selected VGIC model. | ||
| 787 | */ | ||
| 788 | bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, | ||
| 789 | struct kvm_exit_mmio *mmio) | ||
| 1098 | { | 790 | { |
| 1099 | struct kvm *kvm = vcpu->kvm; | 791 | if (!irqchip_in_kernel(vcpu->kvm)) |
| 1100 | struct vgic_dist *dist = &kvm->arch.vgic; | 792 | return false; |
| 1101 | int nrcpus = atomic_read(&kvm->online_vcpus); | ||
| 1102 | u8 target_cpus; | ||
| 1103 | int sgi, mode, c, vcpu_id; | ||
| 1104 | |||
| 1105 | vcpu_id = vcpu->vcpu_id; | ||
| 1106 | |||
| 1107 | sgi = reg & 0xf; | ||
| 1108 | target_cpus = (reg >> 16) & 0xff; | ||
| 1109 | mode = (reg >> 24) & 3; | ||
| 1110 | |||
| 1111 | switch (mode) { | ||
| 1112 | case 0: | ||
| 1113 | if (!target_cpus) | ||
| 1114 | return; | ||
| 1115 | break; | ||
| 1116 | |||
| 1117 | case 1: | ||
| 1118 | target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; | ||
| 1119 | break; | ||
| 1120 | |||
| 1121 | case 2: | ||
| 1122 | target_cpus = 1 << vcpu_id; | ||
| 1123 | break; | ||
| 1124 | } | ||
| 1125 | |||
| 1126 | kvm_for_each_vcpu(c, vcpu, kvm) { | ||
| 1127 | if (target_cpus & 1) { | ||
| 1128 | /* Flag the SGI as pending */ | ||
| 1129 | vgic_dist_irq_set_pending(vcpu, sgi); | ||
| 1130 | *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id; | ||
| 1131 | kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); | ||
| 1132 | } | ||
| 1133 | 793 | ||
| 1134 | target_cpus >>= 1; | 794 | /* |
| 1135 | } | 795 | * This will currently call either vgic_v2_handle_mmio() or |
| 796 | * vgic_v3_handle_mmio(), which in turn will call | ||
| 797 | * vgic_handle_mmio_range() defined above. | ||
| 798 | */ | ||
| 799 | return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio); | ||
| 1136 | } | 800 | } |
| 1137 | 801 | ||
| 1138 | static int vgic_nr_shared_irqs(struct vgic_dist *dist) | 802 | static int vgic_nr_shared_irqs(struct vgic_dist *dist) |
| @@ -1173,7 +837,7 @@ static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) | |||
| 1173 | * Update the interrupt state and determine which CPUs have pending | 837 | * Update the interrupt state and determine which CPUs have pending |
| 1174 | * interrupts. Must be called with distributor lock held. | 838 | * interrupts. Must be called with distributor lock held. |
| 1175 | */ | 839 | */ |
| 1176 | static void vgic_update_state(struct kvm *kvm) | 840 | void vgic_update_state(struct kvm *kvm) |
| 1177 | { | 841 | { |
| 1178 | struct vgic_dist *dist = &kvm->arch.vgic; | 842 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 1179 | struct kvm_vcpu *vcpu; | 843 | struct kvm_vcpu *vcpu; |
| @@ -1219,6 +883,11 @@ static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu) | |||
| 1219 | return vgic_ops->get_eisr(vcpu); | 883 | return vgic_ops->get_eisr(vcpu); |
| 1220 | } | 884 | } |
| 1221 | 885 | ||
| 886 | static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu) | ||
| 887 | { | ||
| 888 | vgic_ops->clear_eisr(vcpu); | ||
| 889 | } | ||
| 890 | |||
| 1222 | static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu) | 891 | static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu) |
| 1223 | { | 892 | { |
| 1224 | return vgic_ops->get_interrupt_status(vcpu); | 893 | return vgic_ops->get_interrupt_status(vcpu); |
| @@ -1234,12 +903,12 @@ static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu) | |||
| 1234 | vgic_ops->disable_underflow(vcpu); | 903 | vgic_ops->disable_underflow(vcpu); |
| 1235 | } | 904 | } |
| 1236 | 905 | ||
| 1237 | static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) | 906 | void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| 1238 | { | 907 | { |
| 1239 | vgic_ops->get_vmcr(vcpu, vmcr); | 908 | vgic_ops->get_vmcr(vcpu, vmcr); |
| 1240 | } | 909 | } |
| 1241 | 910 | ||
| 1242 | static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) | 911 | void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| 1243 | { | 912 | { |
| 1244 | vgic_ops->set_vmcr(vcpu, vmcr); | 913 | vgic_ops->set_vmcr(vcpu, vmcr); |
| 1245 | } | 914 | } |
| @@ -1258,6 +927,7 @@ static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu) | |||
| 1258 | vgic_set_lr(vcpu, lr_nr, vlr); | 927 | vgic_set_lr(vcpu, lr_nr, vlr); |
| 1259 | clear_bit(lr_nr, vgic_cpu->lr_used); | 928 | clear_bit(lr_nr, vgic_cpu->lr_used); |
| 1260 | vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY; | 929 | vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY; |
| 930 | vgic_sync_lr_elrsr(vcpu, lr_nr, vlr); | ||
| 1261 | } | 931 | } |
| 1262 | 932 | ||
| 1263 | /* | 933 | /* |
| @@ -1288,8 +958,9 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) | |||
| 1288 | /* | 958 | /* |
| 1289 | * Queue an interrupt to a CPU virtual interface. Return true on success, | 959 | * Queue an interrupt to a CPU virtual interface. Return true on success, |
| 1290 | * or false if it wasn't possible to queue it. | 960 | * or false if it wasn't possible to queue it. |
| 961 | * sgi_source must be zero for any non-SGI interrupts. | ||
| 1291 | */ | 962 | */ |
| 1292 | static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) | 963 | bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) |
| 1293 | { | 964 | { |
| 1294 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; | 965 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 1295 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | 966 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| @@ -1313,6 +984,7 @@ static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) | |||
| 1313 | BUG_ON(!test_bit(lr, vgic_cpu->lr_used)); | 984 | BUG_ON(!test_bit(lr, vgic_cpu->lr_used)); |
| 1314 | vlr.state |= LR_STATE_PENDING; | 985 | vlr.state |= LR_STATE_PENDING; |
| 1315 | vgic_set_lr(vcpu, lr, vlr); | 986 | vgic_set_lr(vcpu, lr, vlr); |
| 987 | vgic_sync_lr_elrsr(vcpu, lr, vlr); | ||
| 1316 | return true; | 988 | return true; |
| 1317 | } | 989 | } |
| 1318 | } | 990 | } |
| @@ -1334,41 +1006,11 @@ static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) | |||
| 1334 | vlr.state |= LR_EOI_INT; | 1006 | vlr.state |= LR_EOI_INT; |
| 1335 | 1007 | ||
| 1336 | vgic_set_lr(vcpu, lr, vlr); | 1008 | vgic_set_lr(vcpu, lr, vlr); |
| 1009 | vgic_sync_lr_elrsr(vcpu, lr, vlr); | ||
| 1337 | 1010 | ||
| 1338 | return true; | 1011 | return true; |
| 1339 | } | 1012 | } |
| 1340 | 1013 | ||
| 1341 | static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) | ||
| 1342 | { | ||
| 1343 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
| 1344 | unsigned long sources; | ||
| 1345 | int vcpu_id = vcpu->vcpu_id; | ||
| 1346 | int c; | ||
| 1347 | |||
| 1348 | sources = *vgic_get_sgi_sources(dist, vcpu_id, irq); | ||
| 1349 | |||
| 1350 | for_each_set_bit(c, &sources, dist->nr_cpus) { | ||
| 1351 | if (vgic_queue_irq(vcpu, c, irq)) | ||
| 1352 | clear_bit(c, &sources); | ||
| 1353 | } | ||
| 1354 | |||
| 1355 | *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources; | ||
| 1356 | |||
| 1357 | /* | ||
| 1358 | * If the sources bitmap has been cleared it means that we | ||
| 1359 | * could queue all the SGIs onto link registers (see the | ||
| 1360 | * clear_bit above), and therefore we are done with them in | ||
| 1361 | * our emulated gic and can get rid of them. | ||
| 1362 | */ | ||
| 1363 | if (!sources) { | ||
| 1364 | vgic_dist_irq_clear_pending(vcpu, irq); | ||
| 1365 | vgic_cpu_irq_clear(vcpu, irq); | ||
| 1366 | return true; | ||
| 1367 | } | ||
| 1368 | |||
| 1369 | return false; | ||
| 1370 | } | ||
| 1371 | |||
| 1372 | static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) | 1014 | static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) |
| 1373 | { | 1015 | { |
| 1374 | if (!vgic_can_sample_irq(vcpu, irq)) | 1016 | if (!vgic_can_sample_irq(vcpu, irq)) |
| @@ -1413,7 +1055,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) | |||
| 1413 | 1055 | ||
| 1414 | /* SGIs */ | 1056 | /* SGIs */ |
| 1415 | for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) { | 1057 | for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) { |
| 1416 | if (!vgic_queue_sgi(vcpu, i)) | 1058 | if (!queue_sgi(vcpu, i)) |
| 1417 | overflow = 1; | 1059 | overflow = 1; |
| 1418 | } | 1060 | } |
| 1419 | 1061 | ||
| @@ -1502,6 +1144,14 @@ static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) | |||
| 1502 | if (status & INT_STATUS_UNDERFLOW) | 1144 | if (status & INT_STATUS_UNDERFLOW) |
| 1503 | vgic_disable_underflow(vcpu); | 1145 | vgic_disable_underflow(vcpu); |
| 1504 | 1146 | ||
| 1147 | /* | ||
| 1148 | * In the next iterations of the vcpu loop, if we sync the vgic state | ||
| 1149 | * after flushing it, but before entering the guest (this happens for | ||
| 1150 | * pending signals and vmid rollovers), then make sure we don't pick | ||
| 1151 | * up any old maintenance interrupts here. | ||
| 1152 | */ | ||
| 1153 | vgic_clear_eisr(vcpu); | ||
| 1154 | |||
| 1505 | return level_pending; | 1155 | return level_pending; |
| 1506 | } | 1156 | } |
| 1507 | 1157 | ||
| @@ -1575,7 +1225,7 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) | |||
| 1575 | return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); | 1225 | return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); |
| 1576 | } | 1226 | } |
| 1577 | 1227 | ||
| 1578 | static void vgic_kick_vcpus(struct kvm *kvm) | 1228 | void vgic_kick_vcpus(struct kvm *kvm) |
| 1579 | { | 1229 | { |
| 1580 | struct kvm_vcpu *vcpu; | 1230 | struct kvm_vcpu *vcpu; |
| 1581 | int c; | 1231 | int c; |
| @@ -1615,7 +1265,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, | |||
| 1615 | struct kvm_vcpu *vcpu; | 1265 | struct kvm_vcpu *vcpu; |
| 1616 | int edge_triggered, level_triggered; | 1266 | int edge_triggered, level_triggered; |
| 1617 | int enabled; | 1267 | int enabled; |
| 1618 | bool ret = true; | 1268 | bool ret = true, can_inject = true; |
| 1619 | 1269 | ||
| 1620 | spin_lock(&dist->lock); | 1270 | spin_lock(&dist->lock); |
| 1621 | 1271 | ||
| @@ -1630,6 +1280,11 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, | |||
| 1630 | 1280 | ||
| 1631 | if (irq_num >= VGIC_NR_PRIVATE_IRQS) { | 1281 | if (irq_num >= VGIC_NR_PRIVATE_IRQS) { |
| 1632 | cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; | 1282 | cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; |
| 1283 | if (cpuid == VCPU_NOT_ALLOCATED) { | ||
| 1284 | /* Pretend we use CPU0, and prevent injection */ | ||
| 1285 | cpuid = 0; | ||
| 1286 | can_inject = false; | ||
| 1287 | } | ||
| 1633 | vcpu = kvm_get_vcpu(kvm, cpuid); | 1288 | vcpu = kvm_get_vcpu(kvm, cpuid); |
| 1634 | } | 1289 | } |
| 1635 | 1290 | ||
| @@ -1652,7 +1307,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, | |||
| 1652 | 1307 | ||
| 1653 | enabled = vgic_irq_is_enabled(vcpu, irq_num); | 1308 | enabled = vgic_irq_is_enabled(vcpu, irq_num); |
| 1654 | 1309 | ||
| 1655 | if (!enabled) { | 1310 | if (!enabled || !can_inject) { |
| 1656 | ret = false; | 1311 | ret = false; |
| 1657 | goto out; | 1312 | goto out; |
| 1658 | } | 1313 | } |
| @@ -1698,6 +1353,16 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, | |||
| 1698 | int vcpu_id; | 1353 | int vcpu_id; |
| 1699 | 1354 | ||
| 1700 | if (unlikely(!vgic_initialized(kvm))) { | 1355 | if (unlikely(!vgic_initialized(kvm))) { |
| 1356 | /* | ||
| 1357 | * We only provide the automatic initialization of the VGIC | ||
| 1358 | * for the legacy case of a GICv2. Any other type must | ||
| 1359 | * be explicitly initialized once setup with the respective | ||
| 1360 | * KVM device call. | ||
| 1361 | */ | ||
| 1362 | if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) { | ||
| 1363 | ret = -EBUSY; | ||
| 1364 | goto out; | ||
| 1365 | } | ||
| 1701 | mutex_lock(&kvm->lock); | 1366 | mutex_lock(&kvm->lock); |
| 1702 | ret = vgic_init(kvm); | 1367 | ret = vgic_init(kvm); |
| 1703 | mutex_unlock(&kvm->lock); | 1368 | mutex_unlock(&kvm->lock); |
| @@ -1762,6 +1427,17 @@ static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs) | |||
| 1762 | return 0; | 1427 | return 0; |
| 1763 | } | 1428 | } |
| 1764 | 1429 | ||
| 1430 | /** | ||
| 1431 | * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW | ||
| 1432 | * | ||
| 1433 | * The host's GIC naturally limits the maximum amount of VCPUs a guest | ||
| 1434 | * can use. | ||
| 1435 | */ | ||
| 1436 | int kvm_vgic_get_max_vcpus(void) | ||
| 1437 | { | ||
| 1438 | return vgic->max_gic_vcpus; | ||
| 1439 | } | ||
| 1440 | |||
| 1765 | void kvm_vgic_destroy(struct kvm *kvm) | 1441 | void kvm_vgic_destroy(struct kvm *kvm) |
| 1766 | { | 1442 | { |
| 1767 | struct vgic_dist *dist = &kvm->arch.vgic; | 1443 | struct vgic_dist *dist = &kvm->arch.vgic; |
| @@ -1784,6 +1460,7 @@ void kvm_vgic_destroy(struct kvm *kvm) | |||
| 1784 | } | 1460 | } |
| 1785 | kfree(dist->irq_sgi_sources); | 1461 | kfree(dist->irq_sgi_sources); |
| 1786 | kfree(dist->irq_spi_cpu); | 1462 | kfree(dist->irq_spi_cpu); |
| 1463 | kfree(dist->irq_spi_mpidr); | ||
| 1787 | kfree(dist->irq_spi_target); | 1464 | kfree(dist->irq_spi_target); |
| 1788 | kfree(dist->irq_pending_on_cpu); | 1465 | kfree(dist->irq_pending_on_cpu); |
| 1789 | dist->irq_sgi_sources = NULL; | 1466 | dist->irq_sgi_sources = NULL; |
| @@ -1797,7 +1474,7 @@ void kvm_vgic_destroy(struct kvm *kvm) | |||
| 1797 | * Allocate and initialize the various data structures. Must be called | 1474 | * Allocate and initialize the various data structures. Must be called |
| 1798 | * with kvm->lock held! | 1475 | * with kvm->lock held! |
| 1799 | */ | 1476 | */ |
| 1800 | static int vgic_init(struct kvm *kvm) | 1477 | int vgic_init(struct kvm *kvm) |
| 1801 | { | 1478 | { |
| 1802 | struct vgic_dist *dist = &kvm->arch.vgic; | 1479 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 1803 | struct kvm_vcpu *vcpu; | 1480 | struct kvm_vcpu *vcpu; |
| @@ -1809,7 +1486,7 @@ static int vgic_init(struct kvm *kvm) | |||
| 1809 | 1486 | ||
| 1810 | nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); | 1487 | nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); |
| 1811 | if (!nr_cpus) /* No vcpus? Can't be good... */ | 1488 | if (!nr_cpus) /* No vcpus? Can't be good... */ |
| 1812 | return -EINVAL; | 1489 | return -ENODEV; |
| 1813 | 1490 | ||
| 1814 | /* | 1491 | /* |
| 1815 | * If nobody configured the number of interrupts, use the | 1492 | * If nobody configured the number of interrupts, use the |
| @@ -1852,8 +1529,9 @@ static int vgic_init(struct kvm *kvm) | |||
| 1852 | if (ret) | 1529 | if (ret) |
| 1853 | goto out; | 1530 | goto out; |
| 1854 | 1531 | ||
| 1855 | for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4) | 1532 | ret = kvm->arch.vgic.vm_ops.init_model(kvm); |
| 1856 | vgic_set_target_reg(kvm, 0, i); | 1533 | if (ret) |
| 1534 | goto out; | ||
| 1857 | 1535 | ||
| 1858 | kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { | 1536 | kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { |
| 1859 | ret = vgic_vcpu_init_maps(vcpu, nr_irqs); | 1537 | ret = vgic_vcpu_init_maps(vcpu, nr_irqs); |
| @@ -1882,72 +1560,51 @@ out: | |||
| 1882 | return ret; | 1560 | return ret; |
| 1883 | } | 1561 | } |
| 1884 | 1562 | ||
| 1885 | /** | 1563 | static int init_vgic_model(struct kvm *kvm, int type) |
| 1886 | * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs | ||
| 1887 | * @kvm: pointer to the kvm struct | ||
| 1888 | * | ||
| 1889 | * Map the virtual CPU interface into the VM before running any VCPUs. We | ||
| 1890 | * can't do this at creation time, because user space must first set the | ||
| 1891 | * virtual CPU interface address in the guest physical address space. | ||
| 1892 | */ | ||
| 1893 | int kvm_vgic_map_resources(struct kvm *kvm) | ||
| 1894 | { | 1564 | { |
| 1895 | int ret = 0; | 1565 | switch (type) { |
| 1896 | 1566 | case KVM_DEV_TYPE_ARM_VGIC_V2: | |
| 1897 | if (!irqchip_in_kernel(kvm)) | 1567 | vgic_v2_init_emulation(kvm); |
| 1898 | return 0; | 1568 | break; |
| 1899 | 1569 | #ifdef CONFIG_ARM_GIC_V3 | |
| 1900 | mutex_lock(&kvm->lock); | 1570 | case KVM_DEV_TYPE_ARM_VGIC_V3: |
| 1901 | 1571 | vgic_v3_init_emulation(kvm); | |
| 1902 | if (vgic_ready(kvm)) | 1572 | break; |
| 1903 | goto out; | 1573 | #endif |
| 1904 | 1574 | default: | |
| 1905 | if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || | 1575 | return -ENODEV; |
| 1906 | IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { | ||
| 1907 | kvm_err("Need to set vgic cpu and dist addresses first\n"); | ||
| 1908 | ret = -ENXIO; | ||
| 1909 | goto out; | ||
| 1910 | } | ||
| 1911 | |||
| 1912 | /* | ||
| 1913 | * Initialize the vgic if this hasn't already been done on demand by | ||
| 1914 | * accessing the vgic state from userspace. | ||
| 1915 | */ | ||
| 1916 | ret = vgic_init(kvm); | ||
| 1917 | if (ret) { | ||
| 1918 | kvm_err("Unable to allocate maps\n"); | ||
| 1919 | goto out; | ||
| 1920 | } | 1576 | } |
| 1921 | 1577 | ||
| 1922 | ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, | 1578 | if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) |
| 1923 | vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE, | 1579 | return -E2BIG; |
| 1924 | true); | ||
| 1925 | if (ret) { | ||
| 1926 | kvm_err("Unable to remap VGIC CPU to VCPU\n"); | ||
| 1927 | goto out; | ||
| 1928 | } | ||
| 1929 | 1580 | ||
| 1930 | kvm->arch.vgic.ready = true; | 1581 | return 0; |
| 1931 | out: | ||
| 1932 | if (ret) | ||
| 1933 | kvm_vgic_destroy(kvm); | ||
| 1934 | mutex_unlock(&kvm->lock); | ||
| 1935 | return ret; | ||
| 1936 | } | 1582 | } |
| 1937 | 1583 | ||
| 1938 | int kvm_vgic_create(struct kvm *kvm) | 1584 | int kvm_vgic_create(struct kvm *kvm, u32 type) |
| 1939 | { | 1585 | { |
| 1940 | int i, vcpu_lock_idx = -1, ret; | 1586 | int i, vcpu_lock_idx = -1, ret; |
| 1941 | struct kvm_vcpu *vcpu; | 1587 | struct kvm_vcpu *vcpu; |
| 1942 | 1588 | ||
| 1943 | mutex_lock(&kvm->lock); | 1589 | mutex_lock(&kvm->lock); |
| 1944 | 1590 | ||
| 1945 | if (kvm->arch.vgic.vctrl_base) { | 1591 | if (irqchip_in_kernel(kvm)) { |
| 1946 | ret = -EEXIST; | 1592 | ret = -EEXIST; |
| 1947 | goto out; | 1593 | goto out; |
| 1948 | } | 1594 | } |
| 1949 | 1595 | ||
| 1950 | /* | 1596 | /* |
| 1597 | * This function is also called by the KVM_CREATE_IRQCHIP handler, | ||
| 1598 | * which had no chance yet to check the availability of the GICv2 | ||
| 1599 | * emulation. So check this here again. KVM_CREATE_DEVICE does | ||
| 1600 | * the proper checks already. | ||
| 1601 | */ | ||
| 1602 | if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) { | ||
| 1603 | ret = -ENODEV; | ||
| 1604 | goto out; | ||
| 1605 | } | ||
| 1606 | |||
| 1607 | /* | ||
| 1951 | * Any time a vcpu is run, vcpu_load is called which tries to grab the | 1608 | * Any time a vcpu is run, vcpu_load is called which tries to grab the |
| 1952 | * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure | 1609 | * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure |
| 1953 | * that no other VCPUs are run while we create the vgic. | 1610 | * that no other VCPUs are run while we create the vgic. |
| @@ -1965,11 +1622,17 @@ int kvm_vgic_create(struct kvm *kvm) | |||
| 1965 | } | 1622 | } |
| 1966 | ret = 0; | 1623 | ret = 0; |
| 1967 | 1624 | ||
| 1625 | ret = init_vgic_model(kvm, type); | ||
| 1626 | if (ret) | ||
| 1627 | goto out_unlock; | ||
| 1628 | |||
| 1968 | spin_lock_init(&kvm->arch.vgic.lock); | 1629 | spin_lock_init(&kvm->arch.vgic.lock); |
| 1969 | kvm->arch.vgic.in_kernel = true; | 1630 | kvm->arch.vgic.in_kernel = true; |
| 1631 | kvm->arch.vgic.vgic_model = type; | ||
| 1970 | kvm->arch.vgic.vctrl_base = vgic->vctrl_base; | 1632 | kvm->arch.vgic.vctrl_base = vgic->vctrl_base; |
| 1971 | kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; | 1633 | kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; |
| 1972 | kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; | 1634 | kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; |
| 1635 | kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF; | ||
| 1973 | 1636 | ||
| 1974 | out_unlock: | 1637 | out_unlock: |
| 1975 | for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { | 1638 | for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { |
| @@ -2022,7 +1685,7 @@ static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, | |||
| 2022 | /** | 1685 | /** |
| 2023 | * kvm_vgic_addr - set or get vgic VM base addresses | 1686 | * kvm_vgic_addr - set or get vgic VM base addresses |
| 2024 | * @kvm: pointer to the vm struct | 1687 | * @kvm: pointer to the vm struct |
| 2025 | * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX | 1688 | * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX |
| 2026 | * @addr: pointer to address value | 1689 | * @addr: pointer to address value |
| 2027 | * @write: if true set the address in the VM address space, if false read the | 1690 | * @write: if true set the address in the VM address space, if false read the |
| 2028 | * address | 1691 | * address |
| @@ -2036,216 +1699,64 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) | |||
| 2036 | { | 1699 | { |
| 2037 | int r = 0; | 1700 | int r = 0; |
| 2038 | struct vgic_dist *vgic = &kvm->arch.vgic; | 1701 | struct vgic_dist *vgic = &kvm->arch.vgic; |
| 1702 | int type_needed; | ||
| 1703 | phys_addr_t *addr_ptr, block_size; | ||
| 1704 | phys_addr_t alignment; | ||
| 2039 | 1705 | ||
| 2040 | mutex_lock(&kvm->lock); | 1706 | mutex_lock(&kvm->lock); |
| 2041 | switch (type) { | 1707 | switch (type) { |
| 2042 | case KVM_VGIC_V2_ADDR_TYPE_DIST: | 1708 | case KVM_VGIC_V2_ADDR_TYPE_DIST: |
| 2043 | if (write) { | 1709 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; |
| 2044 | r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base, | 1710 | addr_ptr = &vgic->vgic_dist_base; |
| 2045 | *addr, KVM_VGIC_V2_DIST_SIZE); | 1711 | block_size = KVM_VGIC_V2_DIST_SIZE; |
| 2046 | } else { | 1712 | alignment = SZ_4K; |
| 2047 | *addr = vgic->vgic_dist_base; | ||
| 2048 | } | ||
| 2049 | break; | 1713 | break; |
| 2050 | case KVM_VGIC_V2_ADDR_TYPE_CPU: | 1714 | case KVM_VGIC_V2_ADDR_TYPE_CPU: |
| 2051 | if (write) { | 1715 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; |
| 2052 | r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base, | 1716 | addr_ptr = &vgic->vgic_cpu_base; |
| 2053 | *addr, KVM_VGIC_V2_CPU_SIZE); | 1717 | block_size = KVM_VGIC_V2_CPU_SIZE; |
| 2054 | } else { | 1718 | alignment = SZ_4K; |
| 2055 | *addr = vgic->vgic_cpu_base; | ||
| 2056 | } | ||
| 2057 | break; | ||
| 2058 | default: | ||
| 2059 | r = -ENODEV; | ||
| 2060 | } | ||
| 2061 | |||
| 2062 | mutex_unlock(&kvm->lock); | ||
| 2063 | return r; | ||
| 2064 | } | ||
| 2065 | |||
| 2066 | static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu, | ||
| 2067 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 2068 | { | ||
| 2069 | bool updated = false; | ||
| 2070 | struct vgic_vmcr vmcr; | ||
| 2071 | u32 *vmcr_field; | ||
| 2072 | u32 reg; | ||
| 2073 | |||
| 2074 | vgic_get_vmcr(vcpu, &vmcr); | ||
| 2075 | |||
| 2076 | switch (offset & ~0x3) { | ||
| 2077 | case GIC_CPU_CTRL: | ||
| 2078 | vmcr_field = &vmcr.ctlr; | ||
| 2079 | break; | 1719 | break; |
| 2080 | case GIC_CPU_PRIMASK: | 1720 | #ifdef CONFIG_ARM_GIC_V3 |
| 2081 | vmcr_field = &vmcr.pmr; | 1721 | case KVM_VGIC_V3_ADDR_TYPE_DIST: |
| 1722 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; | ||
| 1723 | addr_ptr = &vgic->vgic_dist_base; | ||
| 1724 | block_size = KVM_VGIC_V3_DIST_SIZE; | ||
| 1725 | alignment = SZ_64K; | ||
| 2082 | break; | 1726 | break; |
| 2083 | case GIC_CPU_BINPOINT: | 1727 | case KVM_VGIC_V3_ADDR_TYPE_REDIST: |
| 2084 | vmcr_field = &vmcr.bpr; | 1728 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; |
| 2085 | break; | 1729 | addr_ptr = &vgic->vgic_redist_base; |
| 2086 | case GIC_CPU_ALIAS_BINPOINT: | 1730 | block_size = KVM_VGIC_V3_REDIST_SIZE; |
| 2087 | vmcr_field = &vmcr.abpr; | 1731 | alignment = SZ_64K; |
| 2088 | break; | 1732 | break; |
| 1733 | #endif | ||
| 2089 | default: | 1734 | default: |
| 2090 | BUG(); | 1735 | r = -ENODEV; |
| 2091 | } | ||
| 2092 | |||
| 2093 | if (!mmio->is_write) { | ||
| 2094 | reg = *vmcr_field; | ||
| 2095 | mmio_data_write(mmio, ~0, reg); | ||
| 2096 | } else { | ||
| 2097 | reg = mmio_data_read(mmio, ~0); | ||
| 2098 | if (reg != *vmcr_field) { | ||
| 2099 | *vmcr_field = reg; | ||
| 2100 | vgic_set_vmcr(vcpu, &vmcr); | ||
| 2101 | updated = true; | ||
| 2102 | } | ||
| 2103 | } | ||
| 2104 | return updated; | ||
| 2105 | } | ||
| 2106 | |||
| 2107 | static bool handle_mmio_abpr(struct kvm_vcpu *vcpu, | ||
| 2108 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
| 2109 | { | ||
| 2110 | return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT); | ||
| 2111 | } | ||
| 2112 | |||
| 2113 | static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu, | ||
| 2114 | struct kvm_exit_mmio *mmio, | ||
| 2115 | phys_addr_t offset) | ||
| 2116 | { | ||
| 2117 | u32 reg; | ||
| 2118 | |||
| 2119 | if (mmio->is_write) | ||
| 2120 | return false; | ||
| 2121 | |||
| 2122 | /* GICC_IIDR */ | ||
| 2123 | reg = (PRODUCT_ID_KVM << 20) | | ||
| 2124 | (GICC_ARCH_VERSION_V2 << 16) | | ||
| 2125 | (IMPLEMENTER_ARM << 0); | ||
| 2126 | mmio_data_write(mmio, ~0, reg); | ||
| 2127 | return false; | ||
| 2128 | } | ||
| 2129 | |||
| 2130 | /* | ||
| 2131 | * CPU Interface Register accesses - these are not accessed by the VM, but by | ||
| 2132 | * user space for saving and restoring VGIC state. | ||
| 2133 | */ | ||
| 2134 | static const struct mmio_range vgic_cpu_ranges[] = { | ||
| 2135 | { | ||
| 2136 | .base = GIC_CPU_CTRL, | ||
| 2137 | .len = 12, | ||
| 2138 | .handle_mmio = handle_cpu_mmio_misc, | ||
| 2139 | }, | ||
| 2140 | { | ||
| 2141 | .base = GIC_CPU_ALIAS_BINPOINT, | ||
| 2142 | .len = 4, | ||
| 2143 | .handle_mmio = handle_mmio_abpr, | ||
| 2144 | }, | ||
| 2145 | { | ||
| 2146 | .base = GIC_CPU_ACTIVEPRIO, | ||
| 2147 | .len = 16, | ||
| 2148 | .handle_mmio = handle_mmio_raz_wi, | ||
| 2149 | }, | ||
| 2150 | { | ||
| 2151 | .base = GIC_CPU_IDENT, | ||
| 2152 | .len = 4, | ||
| 2153 | .handle_mmio = handle_cpu_mmio_ident, | ||
| 2154 | }, | ||
| 2155 | }; | ||
| 2156 | |||
| 2157 | static int vgic_attr_regs_access(struct kvm_device *dev, | ||
| 2158 | struct kvm_device_attr *attr, | ||
| 2159 | u32 *reg, bool is_write) | ||
| 2160 | { | ||
| 2161 | const struct mmio_range *r = NULL, *ranges; | ||
| 2162 | phys_addr_t offset; | ||
| 2163 | int ret, cpuid, c; | ||
| 2164 | struct kvm_vcpu *vcpu, *tmp_vcpu; | ||
| 2165 | struct vgic_dist *vgic; | ||
| 2166 | struct kvm_exit_mmio mmio; | ||
| 2167 | |||
| 2168 | offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; | ||
| 2169 | cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> | ||
| 2170 | KVM_DEV_ARM_VGIC_CPUID_SHIFT; | ||
| 2171 | |||
| 2172 | mutex_lock(&dev->kvm->lock); | ||
| 2173 | |||
| 2174 | ret = vgic_init(dev->kvm); | ||
| 2175 | if (ret) | ||
| 2176 | goto out; | ||
| 2177 | |||
| 2178 | if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { | ||
| 2179 | ret = -EINVAL; | ||
| 2180 | goto out; | 1736 | goto out; |
| 2181 | } | 1737 | } |
| 2182 | 1738 | ||
| 2183 | vcpu = kvm_get_vcpu(dev->kvm, cpuid); | 1739 | if (vgic->vgic_model != type_needed) { |
| 2184 | vgic = &dev->kvm->arch.vgic; | 1740 | r = -ENODEV; |
| 2185 | |||
| 2186 | mmio.len = 4; | ||
| 2187 | mmio.is_write = is_write; | ||
| 2188 | if (is_write) | ||
| 2189 | mmio_data_write(&mmio, ~0, *reg); | ||
| 2190 | switch (attr->group) { | ||
| 2191 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 2192 | mmio.phys_addr = vgic->vgic_dist_base + offset; | ||
| 2193 | ranges = vgic_dist_ranges; | ||
| 2194 | break; | ||
| 2195 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
| 2196 | mmio.phys_addr = vgic->vgic_cpu_base + offset; | ||
| 2197 | ranges = vgic_cpu_ranges; | ||
| 2198 | break; | ||
| 2199 | default: | ||
| 2200 | BUG(); | ||
| 2201 | } | ||
| 2202 | r = find_matching_range(ranges, &mmio, offset); | ||
| 2203 | |||
| 2204 | if (unlikely(!r || !r->handle_mmio)) { | ||
| 2205 | ret = -ENXIO; | ||
| 2206 | goto out; | 1741 | goto out; |
| 2207 | } | 1742 | } |
| 2208 | 1743 | ||
| 2209 | 1744 | if (write) { | |
| 2210 | spin_lock(&vgic->lock); | 1745 | if (!IS_ALIGNED(*addr, alignment)) |
| 2211 | 1746 | r = -EINVAL; | |
| 2212 | /* | 1747 | else |
| 2213 | * Ensure that no other VCPU is running by checking the vcpu->cpu | 1748 | r = vgic_ioaddr_assign(kvm, addr_ptr, *addr, |
| 2214 | * field. If no other VPCUs are running we can safely access the VGIC | 1749 | block_size); |
| 2215 | * state, because even if another VPU is run after this point, that | 1750 | } else { |
| 2216 | * VCPU will not touch the vgic state, because it will block on | 1751 | *addr = *addr_ptr; |
| 2217 | * getting the vgic->lock in kvm_vgic_sync_hwstate(). | ||
| 2218 | */ | ||
| 2219 | kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) { | ||
| 2220 | if (unlikely(tmp_vcpu->cpu != -1)) { | ||
| 2221 | ret = -EBUSY; | ||
| 2222 | goto out_vgic_unlock; | ||
| 2223 | } | ||
| 2224 | } | 1752 | } |
| 2225 | 1753 | ||
| 2226 | /* | ||
| 2227 | * Move all pending IRQs from the LRs on all VCPUs so the pending | ||
| 2228 | * state can be properly represented in the register state accessible | ||
| 2229 | * through this API. | ||
| 2230 | */ | ||
| 2231 | kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) | ||
| 2232 | vgic_unqueue_irqs(tmp_vcpu); | ||
| 2233 | |||
| 2234 | offset -= r->base; | ||
| 2235 | r->handle_mmio(vcpu, &mmio, offset); | ||
| 2236 | |||
| 2237 | if (!is_write) | ||
| 2238 | *reg = mmio_data_read(&mmio, ~0); | ||
| 2239 | |||
| 2240 | ret = 0; | ||
| 2241 | out_vgic_unlock: | ||
| 2242 | spin_unlock(&vgic->lock); | ||
| 2243 | out: | 1754 | out: |
| 2244 | mutex_unlock(&dev->kvm->lock); | 1755 | mutex_unlock(&kvm->lock); |
| 2245 | return ret; | 1756 | return r; |
| 2246 | } | 1757 | } |
| 2247 | 1758 | ||
| 2248 | static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) | 1759 | int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| 2249 | { | 1760 | { |
| 2250 | int r; | 1761 | int r; |
| 2251 | 1762 | ||
| @@ -2261,17 +1772,6 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) | |||
| 2261 | r = kvm_vgic_addr(dev->kvm, type, &addr, true); | 1772 | r = kvm_vgic_addr(dev->kvm, type, &addr, true); |
| 2262 | return (r == -ENODEV) ? -ENXIO : r; | 1773 | return (r == -ENODEV) ? -ENXIO : r; |
| 2263 | } | 1774 | } |
| 2264 | |||
| 2265 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 2266 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { | ||
| 2267 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; | ||
| 2268 | u32 reg; | ||
| 2269 | |||
| 2270 | if (get_user(reg, uaddr)) | ||
| 2271 | return -EFAULT; | ||
| 2272 | |||
| 2273 | return vgic_attr_regs_access(dev, attr, ®, true); | ||
| 2274 | } | ||
| 2275 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { | 1775 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { |
| 2276 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; | 1776 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; |
| 2277 | u32 val; | 1777 | u32 val; |
| @@ -2302,13 +1802,20 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) | |||
| 2302 | 1802 | ||
| 2303 | return ret; | 1803 | return ret; |
| 2304 | } | 1804 | } |
| 2305 | 1805 | case KVM_DEV_ARM_VGIC_GRP_CTRL: { | |
| 1806 | switch (attr->attr) { | ||
| 1807 | case KVM_DEV_ARM_VGIC_CTRL_INIT: | ||
| 1808 | r = vgic_init(dev->kvm); | ||
| 1809 | return r; | ||
| 1810 | } | ||
| 1811 | break; | ||
| 1812 | } | ||
| 2306 | } | 1813 | } |
| 2307 | 1814 | ||
| 2308 | return -ENXIO; | 1815 | return -ENXIO; |
| 2309 | } | 1816 | } |
| 2310 | 1817 | ||
| 2311 | static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) | 1818 | int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| 2312 | { | 1819 | { |
| 2313 | int r = -ENXIO; | 1820 | int r = -ENXIO; |
| 2314 | 1821 | ||
| @@ -2326,20 +1833,9 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) | |||
| 2326 | return -EFAULT; | 1833 | return -EFAULT; |
| 2327 | break; | 1834 | break; |
| 2328 | } | 1835 | } |
| 2329 | |||
| 2330 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 2331 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { | ||
| 2332 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; | ||
| 2333 | u32 reg = 0; | ||
| 2334 | |||
| 2335 | r = vgic_attr_regs_access(dev, attr, ®, false); | ||
| 2336 | if (r) | ||
| 2337 | return r; | ||
| 2338 | r = put_user(reg, uaddr); | ||
| 2339 | break; | ||
| 2340 | } | ||
| 2341 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { | 1836 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { |
| 2342 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; | 1837 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; |
| 1838 | |||
| 2343 | r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); | 1839 | r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); |
| 2344 | break; | 1840 | break; |
| 2345 | } | 1841 | } |
| @@ -2349,61 +1845,17 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) | |||
| 2349 | return r; | 1845 | return r; |
| 2350 | } | 1846 | } |
| 2351 | 1847 | ||
| 2352 | static int vgic_has_attr_regs(const struct mmio_range *ranges, | 1848 | int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset) |
| 2353 | phys_addr_t offset) | ||
| 2354 | { | 1849 | { |
| 2355 | struct kvm_exit_mmio dev_attr_mmio; | 1850 | struct kvm_exit_mmio dev_attr_mmio; |
| 2356 | 1851 | ||
| 2357 | dev_attr_mmio.len = 4; | 1852 | dev_attr_mmio.len = 4; |
| 2358 | if (find_matching_range(ranges, &dev_attr_mmio, offset)) | 1853 | if (vgic_find_range(ranges, &dev_attr_mmio, offset)) |
| 2359 | return 0; | 1854 | return 0; |
| 2360 | else | 1855 | else |
| 2361 | return -ENXIO; | 1856 | return -ENXIO; |
| 2362 | } | 1857 | } |
| 2363 | 1858 | ||
| 2364 | static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) | ||
| 2365 | { | ||
| 2366 | phys_addr_t offset; | ||
| 2367 | |||
| 2368 | switch (attr->group) { | ||
| 2369 | case KVM_DEV_ARM_VGIC_GRP_ADDR: | ||
| 2370 | switch (attr->attr) { | ||
| 2371 | case KVM_VGIC_V2_ADDR_TYPE_DIST: | ||
| 2372 | case KVM_VGIC_V2_ADDR_TYPE_CPU: | ||
| 2373 | return 0; | ||
| 2374 | } | ||
| 2375 | break; | ||
| 2376 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
| 2377 | offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; | ||
| 2378 | return vgic_has_attr_regs(vgic_dist_ranges, offset); | ||
| 2379 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
| 2380 | offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; | ||
| 2381 | return vgic_has_attr_regs(vgic_cpu_ranges, offset); | ||
| 2382 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: | ||
| 2383 | return 0; | ||
| 2384 | } | ||
| 2385 | return -ENXIO; | ||
| 2386 | } | ||
| 2387 | |||
| 2388 | static void vgic_destroy(struct kvm_device *dev) | ||
| 2389 | { | ||
| 2390 | kfree(dev); | ||
| 2391 | } | ||
| 2392 | |||
| 2393 | static int vgic_create(struct kvm_device *dev, u32 type) | ||
| 2394 | { | ||
| 2395 | return kvm_vgic_create(dev->kvm); | ||
| 2396 | } | ||
| 2397 | |||
| 2398 | static struct kvm_device_ops kvm_arm_vgic_v2_ops = { | ||
| 2399 | .name = "kvm-arm-vgic", | ||
| 2400 | .create = vgic_create, | ||
| 2401 | .destroy = vgic_destroy, | ||
| 2402 | .set_attr = vgic_set_attr, | ||
| 2403 | .get_attr = vgic_get_attr, | ||
| 2404 | .has_attr = vgic_has_attr, | ||
| 2405 | }; | ||
| 2406 | |||
| 2407 | static void vgic_init_maintenance_interrupt(void *info) | 1859 | static void vgic_init_maintenance_interrupt(void *info) |
| 2408 | { | 1860 | { |
| 2409 | enable_percpu_irq(vgic->maint_irq, 0); | 1861 | enable_percpu_irq(vgic->maint_irq, 0); |
| @@ -2474,8 +1926,7 @@ int kvm_vgic_hyp_init(void) | |||
| 2474 | 1926 | ||
| 2475 | on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); | 1927 | on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); |
| 2476 | 1928 | ||
| 2477 | return kvm_register_device_ops(&kvm_arm_vgic_v2_ops, | 1929 | return 0; |
| 2478 | KVM_DEV_TYPE_ARM_VGIC_V2); | ||
| 2479 | 1930 | ||
| 2480 | out_free_irq: | 1931 | out_free_irq: |
| 2481 | free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); | 1932 | free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); |
diff --git a/virt/kvm/arm/vgic.h b/virt/kvm/arm/vgic.h new file mode 100644 index 000000000000..1e83bdf5f499 --- /dev/null +++ b/virt/kvm/arm/vgic.h | |||
| @@ -0,0 +1,123 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2012-2014 ARM Ltd. | ||
| 3 | * Author: Marc Zyngier <marc.zyngier@arm.com> | ||
| 4 | * | ||
| 5 | * Derived from virt/kvm/arm/vgic.c | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License version 2 as | ||
| 9 | * published by the Free Software Foundation. | ||
| 10 | * | ||
| 11 | * This program is distributed in the hope that it will be useful, | ||
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | * GNU General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU General Public License | ||
| 17 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
| 18 | */ | ||
| 19 | |||
| 20 | #ifndef __KVM_VGIC_H__ | ||
| 21 | #define __KVM_VGIC_H__ | ||
| 22 | |||
| 23 | #define VGIC_ADDR_UNDEF (-1) | ||
| 24 | #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) | ||
| 25 | |||
| 26 | #define PRODUCT_ID_KVM 0x4b /* ASCII code K */ | ||
| 27 | #define IMPLEMENTER_ARM 0x43b | ||
| 28 | |||
| 29 | #define ACCESS_READ_VALUE (1 << 0) | ||
| 30 | #define ACCESS_READ_RAZ (0 << 0) | ||
| 31 | #define ACCESS_READ_MASK(x) ((x) & (1 << 0)) | ||
| 32 | #define ACCESS_WRITE_IGNORED (0 << 1) | ||
| 33 | #define ACCESS_WRITE_SETBIT (1 << 1) | ||
| 34 | #define ACCESS_WRITE_CLEARBIT (2 << 1) | ||
| 35 | #define ACCESS_WRITE_VALUE (3 << 1) | ||
| 36 | #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) | ||
| 37 | |||
| 38 | #define VCPU_NOT_ALLOCATED ((u8)-1) | ||
| 39 | |||
| 40 | unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x); | ||
| 41 | |||
| 42 | void vgic_update_state(struct kvm *kvm); | ||
| 43 | int vgic_init_common_maps(struct kvm *kvm); | ||
| 44 | |||
| 45 | u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset); | ||
| 46 | u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset); | ||
| 47 | |||
| 48 | void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq); | ||
| 49 | void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq); | ||
| 50 | void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq); | ||
| 51 | void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, | ||
| 52 | int irq, int val); | ||
| 53 | |||
| 54 | void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); | ||
| 55 | void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); | ||
| 56 | |||
| 57 | bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq); | ||
| 58 | void vgic_unqueue_irqs(struct kvm_vcpu *vcpu); | ||
| 59 | |||
| 60 | void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, | ||
| 61 | phys_addr_t offset, int mode); | ||
| 62 | bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, | ||
| 63 | phys_addr_t offset); | ||
| 64 | |||
| 65 | static inline | ||
| 66 | u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) | ||
| 67 | { | ||
| 68 | return le32_to_cpu(*((u32 *)mmio->data)) & mask; | ||
| 69 | } | ||
| 70 | |||
| 71 | static inline | ||
| 72 | void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) | ||
| 73 | { | ||
| 74 | *((u32 *)mmio->data) = cpu_to_le32(value) & mask; | ||
| 75 | } | ||
| 76 | |||
| 77 | struct kvm_mmio_range { | ||
| 78 | phys_addr_t base; | ||
| 79 | unsigned long len; | ||
| 80 | int bits_per_irq; | ||
| 81 | bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, | ||
| 82 | phys_addr_t offset); | ||
| 83 | }; | ||
| 84 | |||
| 85 | static inline bool is_in_range(phys_addr_t addr, unsigned long len, | ||
| 86 | phys_addr_t baseaddr, unsigned long size) | ||
| 87 | { | ||
| 88 | return (addr >= baseaddr) && (addr + len <= baseaddr + size); | ||
| 89 | } | ||
| 90 | |||
| 91 | const | ||
| 92 | struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges, | ||
| 93 | struct kvm_exit_mmio *mmio, | ||
| 94 | phys_addr_t offset); | ||
| 95 | |||
| 96 | bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run, | ||
| 97 | struct kvm_exit_mmio *mmio, | ||
| 98 | const struct kvm_mmio_range *ranges, | ||
| 99 | unsigned long mmio_base); | ||
| 100 | |||
| 101 | bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, | ||
| 102 | phys_addr_t offset, int vcpu_id, int access); | ||
| 103 | |||
| 104 | bool vgic_handle_set_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, | ||
| 105 | phys_addr_t offset, int vcpu_id); | ||
| 106 | |||
| 107 | bool vgic_handle_clear_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, | ||
| 108 | phys_addr_t offset, int vcpu_id); | ||
| 109 | |||
| 110 | bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, | ||
| 111 | phys_addr_t offset); | ||
| 112 | |||
| 113 | void vgic_kick_vcpus(struct kvm *kvm); | ||
| 114 | |||
| 115 | int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset); | ||
| 116 | int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr); | ||
| 117 | int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr); | ||
| 118 | |||
| 119 | int vgic_init(struct kvm *kvm); | ||
| 120 | void vgic_v2_init_emulation(struct kvm *kvm); | ||
| 121 | void vgic_v3_init_emulation(struct kvm *kvm); | ||
| 122 | |||
| 123 | #endif | ||
diff --git a/virt/kvm/async_pf.c b/virt/kvm/async_pf.c index 5ff7f7f2689a..44660aee335f 100644 --- a/virt/kvm/async_pf.c +++ b/virt/kvm/async_pf.c | |||
| @@ -80,7 +80,7 @@ static void async_pf_execute(struct work_struct *work) | |||
| 80 | 80 | ||
| 81 | might_sleep(); | 81 | might_sleep(); |
| 82 | 82 | ||
| 83 | kvm_get_user_page_io(NULL, mm, addr, 1, NULL); | 83 | get_user_pages_unlocked(NULL, mm, addr, 1, 1, 0, NULL); |
| 84 | kvm_async_page_present_sync(vcpu, apf); | 84 | kvm_async_page_present_sync(vcpu, apf); |
| 85 | 85 | ||
| 86 | spin_lock(&vcpu->async_pf.lock); | 86 | spin_lock(&vcpu->async_pf.lock); |
diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c index f5283438ee05..cc6a25d95fbf 100644 --- a/virt/kvm/kvm_main.c +++ b/virt/kvm/kvm_main.c | |||
| @@ -66,6 +66,9 @@ | |||
| 66 | MODULE_AUTHOR("Qumranet"); | 66 | MODULE_AUTHOR("Qumranet"); |
| 67 | MODULE_LICENSE("GPL"); | 67 | MODULE_LICENSE("GPL"); |
| 68 | 68 | ||
| 69 | unsigned int halt_poll_ns = 0; | ||
| 70 | module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); | ||
| 71 | |||
| 69 | /* | 72 | /* |
| 70 | * Ordering of locks: | 73 | * Ordering of locks: |
| 71 | * | 74 | * |
| @@ -89,7 +92,7 @@ struct dentry *kvm_debugfs_dir; | |||
| 89 | 92 | ||
| 90 | static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, | 93 | static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, |
| 91 | unsigned long arg); | 94 | unsigned long arg); |
| 92 | #ifdef CONFIG_COMPAT | 95 | #ifdef CONFIG_KVM_COMPAT |
| 93 | static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, | 96 | static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, |
| 94 | unsigned long arg); | 97 | unsigned long arg); |
| 95 | #endif | 98 | #endif |
| @@ -176,6 +179,7 @@ bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) | |||
| 176 | return called; | 179 | return called; |
| 177 | } | 180 | } |
| 178 | 181 | ||
| 182 | #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL | ||
| 179 | void kvm_flush_remote_tlbs(struct kvm *kvm) | 183 | void kvm_flush_remote_tlbs(struct kvm *kvm) |
| 180 | { | 184 | { |
| 181 | long dirty_count = kvm->tlbs_dirty; | 185 | long dirty_count = kvm->tlbs_dirty; |
| @@ -186,6 +190,7 @@ void kvm_flush_remote_tlbs(struct kvm *kvm) | |||
| 186 | cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); | 190 | cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); |
| 187 | } | 191 | } |
| 188 | EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); | 192 | EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); |
| 193 | #endif | ||
| 189 | 194 | ||
| 190 | void kvm_reload_remote_mmus(struct kvm *kvm) | 195 | void kvm_reload_remote_mmus(struct kvm *kvm) |
| 191 | { | 196 | { |
| @@ -466,7 +471,7 @@ static struct kvm *kvm_create_vm(unsigned long type) | |||
| 466 | BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); | 471 | BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); |
| 467 | 472 | ||
| 468 | r = -ENOMEM; | 473 | r = -ENOMEM; |
| 469 | kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); | 474 | kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots)); |
| 470 | if (!kvm->memslots) | 475 | if (!kvm->memslots) |
| 471 | goto out_err_no_srcu; | 476 | goto out_err_no_srcu; |
| 472 | 477 | ||
| @@ -517,7 +522,7 @@ out_err_no_srcu: | |||
| 517 | out_err_no_disable: | 522 | out_err_no_disable: |
| 518 | for (i = 0; i < KVM_NR_BUSES; i++) | 523 | for (i = 0; i < KVM_NR_BUSES; i++) |
| 519 | kfree(kvm->buses[i]); | 524 | kfree(kvm->buses[i]); |
| 520 | kfree(kvm->memslots); | 525 | kvfree(kvm->memslots); |
| 521 | kvm_arch_free_vm(kvm); | 526 | kvm_arch_free_vm(kvm); |
| 522 | return ERR_PTR(r); | 527 | return ERR_PTR(r); |
| 523 | } | 528 | } |
| @@ -573,7 +578,7 @@ static void kvm_free_physmem(struct kvm *kvm) | |||
| 573 | kvm_for_each_memslot(memslot, slots) | 578 | kvm_for_each_memslot(memslot, slots) |
| 574 | kvm_free_physmem_slot(kvm, memslot, NULL); | 579 | kvm_free_physmem_slot(kvm, memslot, NULL); |
| 575 | 580 | ||
| 576 | kfree(kvm->memslots); | 581 | kvfree(kvm->memslots); |
| 577 | } | 582 | } |
| 578 | 583 | ||
| 579 | static void kvm_destroy_devices(struct kvm *kvm) | 584 | static void kvm_destroy_devices(struct kvm *kvm) |
| @@ -671,7 +676,9 @@ static void update_memslots(struct kvm_memslots *slots, | |||
| 671 | 676 | ||
| 672 | WARN_ON(mslots[i].id != id); | 677 | WARN_ON(mslots[i].id != id); |
| 673 | if (!new->npages) { | 678 | if (!new->npages) { |
| 679 | WARN_ON(!mslots[i].npages); | ||
| 674 | new->base_gfn = 0; | 680 | new->base_gfn = 0; |
| 681 | new->flags = 0; | ||
| 675 | if (mslots[i].npages) | 682 | if (mslots[i].npages) |
| 676 | slots->used_slots--; | 683 | slots->used_slots--; |
| 677 | } else { | 684 | } else { |
| @@ -687,12 +694,25 @@ static void update_memslots(struct kvm_memslots *slots, | |||
| 687 | slots->id_to_index[mslots[i].id] = i; | 694 | slots->id_to_index[mslots[i].id] = i; |
| 688 | i++; | 695 | i++; |
| 689 | } | 696 | } |
| 690 | while (i > 0 && | 697 | |
| 691 | new->base_gfn > mslots[i - 1].base_gfn) { | 698 | /* |
| 692 | mslots[i] = mslots[i - 1]; | 699 | * The ">=" is needed when creating a slot with base_gfn == 0, |
| 693 | slots->id_to_index[mslots[i].id] = i; | 700 | * so that it moves before all those with base_gfn == npages == 0. |
| 694 | i--; | 701 | * |
| 695 | } | 702 | * On the other hand, if new->npages is zero, the above loop has |
| 703 | * already left i pointing to the beginning of the empty part of | ||
| 704 | * mslots, and the ">=" would move the hole backwards in this | ||
| 705 | * case---which is wrong. So skip the loop when deleting a slot. | ||
| 706 | */ | ||
| 707 | if (new->npages) { | ||
| 708 | while (i > 0 && | ||
| 709 | new->base_gfn >= mslots[i - 1].base_gfn) { | ||
| 710 | mslots[i] = mslots[i - 1]; | ||
| 711 | slots->id_to_index[mslots[i].id] = i; | ||
| 712 | i--; | ||
| 713 | } | ||
| 714 | } else | ||
| 715 | WARN_ON_ONCE(i != slots->used_slots); | ||
| 696 | 716 | ||
| 697 | mslots[i] = *new; | 717 | mslots[i] = *new; |
| 698 | slots->id_to_index[mslots[i].id] = i; | 718 | slots->id_to_index[mslots[i].id] = i; |
| @@ -851,10 +871,10 @@ int __kvm_set_memory_region(struct kvm *kvm, | |||
| 851 | goto out_free; | 871 | goto out_free; |
| 852 | } | 872 | } |
| 853 | 873 | ||
| 854 | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), | 874 | slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); |
| 855 | GFP_KERNEL); | ||
| 856 | if (!slots) | 875 | if (!slots) |
| 857 | goto out_free; | 876 | goto out_free; |
| 877 | memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots)); | ||
| 858 | 878 | ||
| 859 | if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { | 879 | if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { |
| 860 | slot = id_to_memslot(slots, mem->slot); | 880 | slot = id_to_memslot(slots, mem->slot); |
| @@ -897,7 +917,7 @@ int __kvm_set_memory_region(struct kvm *kvm, | |||
| 897 | kvm_arch_commit_memory_region(kvm, mem, &old, change); | 917 | kvm_arch_commit_memory_region(kvm, mem, &old, change); |
| 898 | 918 | ||
| 899 | kvm_free_physmem_slot(kvm, &old, &new); | 919 | kvm_free_physmem_slot(kvm, &old, &new); |
| 900 | kfree(old_memslots); | 920 | kvfree(old_memslots); |
| 901 | 921 | ||
| 902 | /* | 922 | /* |
| 903 | * IOMMU mapping: New slots need to be mapped. Old slots need to be | 923 | * IOMMU mapping: New slots need to be mapped. Old slots need to be |
| @@ -916,7 +936,7 @@ int __kvm_set_memory_region(struct kvm *kvm, | |||
| 916 | return 0; | 936 | return 0; |
| 917 | 937 | ||
| 918 | out_slots: | 938 | out_slots: |
| 919 | kfree(slots); | 939 | kvfree(slots); |
| 920 | out_free: | 940 | out_free: |
| 921 | kvm_free_physmem_slot(kvm, &new, &old); | 941 | kvm_free_physmem_slot(kvm, &new, &old); |
| 922 | out: | 942 | out: |
| @@ -979,6 +999,86 @@ out: | |||
| 979 | } | 999 | } |
| 980 | EXPORT_SYMBOL_GPL(kvm_get_dirty_log); | 1000 | EXPORT_SYMBOL_GPL(kvm_get_dirty_log); |
| 981 | 1001 | ||
| 1002 | #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT | ||
| 1003 | /** | ||
| 1004 | * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages | ||
| 1005 | * are dirty write protect them for next write. | ||
| 1006 | * @kvm: pointer to kvm instance | ||
| 1007 | * @log: slot id and address to which we copy the log | ||
| 1008 | * @is_dirty: flag set if any page is dirty | ||
| 1009 | * | ||
| 1010 | * We need to keep it in mind that VCPU threads can write to the bitmap | ||
| 1011 | * concurrently. So, to avoid losing track of dirty pages we keep the | ||
| 1012 | * following order: | ||
| 1013 | * | ||
| 1014 | * 1. Take a snapshot of the bit and clear it if needed. | ||
| 1015 | * 2. Write protect the corresponding page. | ||
| 1016 | * 3. Copy the snapshot to the userspace. | ||
| 1017 | * 4. Upon return caller flushes TLB's if needed. | ||
| 1018 | * | ||
| 1019 | * Between 2 and 4, the guest may write to the page using the remaining TLB | ||
| 1020 | * entry. This is not a problem because the page is reported dirty using | ||
| 1021 | * the snapshot taken before and step 4 ensures that writes done after | ||
| 1022 | * exiting to userspace will be logged for the next call. | ||
| 1023 | * | ||
| 1024 | */ | ||
| 1025 | int kvm_get_dirty_log_protect(struct kvm *kvm, | ||
| 1026 | struct kvm_dirty_log *log, bool *is_dirty) | ||
| 1027 | { | ||
| 1028 | struct kvm_memory_slot *memslot; | ||
| 1029 | int r, i; | ||
| 1030 | unsigned long n; | ||
| 1031 | unsigned long *dirty_bitmap; | ||
| 1032 | unsigned long *dirty_bitmap_buffer; | ||
| 1033 | |||
| 1034 | r = -EINVAL; | ||
| 1035 | if (log->slot >= KVM_USER_MEM_SLOTS) | ||
| 1036 | goto out; | ||
| 1037 | |||
| 1038 | memslot = id_to_memslot(kvm->memslots, log->slot); | ||
| 1039 | |||
| 1040 | dirty_bitmap = memslot->dirty_bitmap; | ||
| 1041 | r = -ENOENT; | ||
| 1042 | if (!dirty_bitmap) | ||
| 1043 | goto out; | ||
| 1044 | |||
| 1045 | n = kvm_dirty_bitmap_bytes(memslot); | ||
| 1046 | |||
| 1047 | dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); | ||
| 1048 | memset(dirty_bitmap_buffer, 0, n); | ||
| 1049 | |||
| 1050 | spin_lock(&kvm->mmu_lock); | ||
| 1051 | *is_dirty = false; | ||
| 1052 | for (i = 0; i < n / sizeof(long); i++) { | ||
| 1053 | unsigned long mask; | ||
| 1054 | gfn_t offset; | ||
| 1055 | |||
| 1056 | if (!dirty_bitmap[i]) | ||
| 1057 | continue; | ||
| 1058 | |||
| 1059 | *is_dirty = true; | ||
| 1060 | |||
| 1061 | mask = xchg(&dirty_bitmap[i], 0); | ||
| 1062 | dirty_bitmap_buffer[i] = mask; | ||
| 1063 | |||
| 1064 | offset = i * BITS_PER_LONG; | ||
| 1065 | kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, offset, | ||
| 1066 | mask); | ||
| 1067 | } | ||
| 1068 | |||
| 1069 | spin_unlock(&kvm->mmu_lock); | ||
| 1070 | |||
| 1071 | r = -EFAULT; | ||
| 1072 | if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) | ||
| 1073 | goto out; | ||
| 1074 | |||
| 1075 | r = 0; | ||
| 1076 | out: | ||
| 1077 | return r; | ||
| 1078 | } | ||
| 1079 | EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); | ||
| 1080 | #endif | ||
| 1081 | |||
| 982 | bool kvm_largepages_enabled(void) | 1082 | bool kvm_largepages_enabled(void) |
| 983 | { | 1083 | { |
| 984 | return largepages_enabled; | 1084 | return largepages_enabled; |
| @@ -1114,43 +1214,6 @@ static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, | |||
| 1114 | return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); | 1214 | return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); |
| 1115 | } | 1215 | } |
| 1116 | 1216 | ||
| 1117 | int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm, | ||
| 1118 | unsigned long addr, bool write_fault, | ||
| 1119 | struct page **pagep) | ||
| 1120 | { | ||
| 1121 | int npages; | ||
| 1122 | int locked = 1; | ||
| 1123 | int flags = FOLL_TOUCH | FOLL_HWPOISON | | ||
| 1124 | (pagep ? FOLL_GET : 0) | | ||
| 1125 | (write_fault ? FOLL_WRITE : 0); | ||
| 1126 | |||
| 1127 | /* | ||
| 1128 | * If retrying the fault, we get here *not* having allowed the filemap | ||
| 1129 | * to wait on the page lock. We should now allow waiting on the IO with | ||
| 1130 | * the mmap semaphore released. | ||
| 1131 | */ | ||
| 1132 | down_read(&mm->mmap_sem); | ||
| 1133 | npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL, | ||
| 1134 | &locked); | ||
| 1135 | if (!locked) { | ||
| 1136 | VM_BUG_ON(npages); | ||
| 1137 | |||
| 1138 | if (!pagep) | ||
| 1139 | return 0; | ||
| 1140 | |||
| 1141 | /* | ||
| 1142 | * The previous call has now waited on the IO. Now we can | ||
| 1143 | * retry and complete. Pass TRIED to ensure we do not re | ||
| 1144 | * schedule async IO (see e.g. filemap_fault). | ||
| 1145 | */ | ||
| 1146 | down_read(&mm->mmap_sem); | ||
| 1147 | npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED, | ||
| 1148 | pagep, NULL, NULL); | ||
| 1149 | } | ||
| 1150 | up_read(&mm->mmap_sem); | ||
| 1151 | return npages; | ||
| 1152 | } | ||
| 1153 | |||
| 1154 | static inline int check_user_page_hwpoison(unsigned long addr) | 1217 | static inline int check_user_page_hwpoison(unsigned long addr) |
| 1155 | { | 1218 | { |
| 1156 | int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; | 1219 | int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; |
| @@ -1213,15 +1276,10 @@ static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, | |||
| 1213 | npages = get_user_page_nowait(current, current->mm, | 1276 | npages = get_user_page_nowait(current, current->mm, |
| 1214 | addr, write_fault, page); | 1277 | addr, write_fault, page); |
| 1215 | up_read(¤t->mm->mmap_sem); | 1278 | up_read(¤t->mm->mmap_sem); |
| 1216 | } else { | 1279 | } else |
| 1217 | /* | 1280 | npages = __get_user_pages_unlocked(current, current->mm, addr, 1, |
| 1218 | * By now we have tried gup_fast, and possibly async_pf, and we | 1281 | write_fault, 0, page, |
| 1219 | * are certainly not atomic. Time to retry the gup, allowing | 1282 | FOLL_TOUCH|FOLL_HWPOISON); |
| 1220 | * mmap semaphore to be relinquished in the case of IO. | ||
| 1221 | */ | ||
| 1222 | npages = kvm_get_user_page_io(current, current->mm, addr, | ||
| 1223 | write_fault, page); | ||
| 1224 | } | ||
| 1225 | if (npages != 1) | 1283 | if (npages != 1) |
| 1226 | return npages; | 1284 | return npages; |
| 1227 | 1285 | ||
| @@ -1579,6 +1637,7 @@ int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, | |||
| 1579 | } | 1637 | } |
| 1580 | return 0; | 1638 | return 0; |
| 1581 | } | 1639 | } |
| 1640 | EXPORT_SYMBOL_GPL(kvm_write_guest); | ||
| 1582 | 1641 | ||
| 1583 | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 1642 | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1584 | gpa_t gpa, unsigned long len) | 1643 | gpa_t gpa, unsigned long len) |
| @@ -1715,29 +1774,60 @@ void mark_page_dirty(struct kvm *kvm, gfn_t gfn) | |||
| 1715 | } | 1774 | } |
| 1716 | EXPORT_SYMBOL_GPL(mark_page_dirty); | 1775 | EXPORT_SYMBOL_GPL(mark_page_dirty); |
| 1717 | 1776 | ||
| 1777 | static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) | ||
| 1778 | { | ||
| 1779 | if (kvm_arch_vcpu_runnable(vcpu)) { | ||
| 1780 | kvm_make_request(KVM_REQ_UNHALT, vcpu); | ||
| 1781 | return -EINTR; | ||
| 1782 | } | ||
| 1783 | if (kvm_cpu_has_pending_timer(vcpu)) | ||
| 1784 | return -EINTR; | ||
| 1785 | if (signal_pending(current)) | ||
| 1786 | return -EINTR; | ||
| 1787 | |||
| 1788 | return 0; | ||
| 1789 | } | ||
| 1790 | |||
| 1718 | /* | 1791 | /* |
| 1719 | * The vCPU has executed a HLT instruction with in-kernel mode enabled. | 1792 | * The vCPU has executed a HLT instruction with in-kernel mode enabled. |
| 1720 | */ | 1793 | */ |
| 1721 | void kvm_vcpu_block(struct kvm_vcpu *vcpu) | 1794 | void kvm_vcpu_block(struct kvm_vcpu *vcpu) |
| 1722 | { | 1795 | { |
| 1796 | ktime_t start, cur; | ||
| 1723 | DEFINE_WAIT(wait); | 1797 | DEFINE_WAIT(wait); |
| 1798 | bool waited = false; | ||
| 1799 | |||
| 1800 | start = cur = ktime_get(); | ||
| 1801 | if (halt_poll_ns) { | ||
| 1802 | ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns); | ||
| 1803 | do { | ||
| 1804 | /* | ||
| 1805 | * This sets KVM_REQ_UNHALT if an interrupt | ||
| 1806 | * arrives. | ||
| 1807 | */ | ||
| 1808 | if (kvm_vcpu_check_block(vcpu) < 0) { | ||
| 1809 | ++vcpu->stat.halt_successful_poll; | ||
| 1810 | goto out; | ||
| 1811 | } | ||
| 1812 | cur = ktime_get(); | ||
| 1813 | } while (single_task_running() && ktime_before(cur, stop)); | ||
| 1814 | } | ||
| 1724 | 1815 | ||
| 1725 | for (;;) { | 1816 | for (;;) { |
| 1726 | prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); | 1817 | prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); |
| 1727 | 1818 | ||
| 1728 | if (kvm_arch_vcpu_runnable(vcpu)) { | 1819 | if (kvm_vcpu_check_block(vcpu) < 0) |
| 1729 | kvm_make_request(KVM_REQ_UNHALT, vcpu); | ||
| 1730 | break; | ||
| 1731 | } | ||
| 1732 | if (kvm_cpu_has_pending_timer(vcpu)) | ||
| 1733 | break; | ||
| 1734 | if (signal_pending(current)) | ||
| 1735 | break; | 1820 | break; |
| 1736 | 1821 | ||
| 1822 | waited = true; | ||
| 1737 | schedule(); | 1823 | schedule(); |
| 1738 | } | 1824 | } |
| 1739 | 1825 | ||
| 1740 | finish_wait(&vcpu->wq, &wait); | 1826 | finish_wait(&vcpu->wq, &wait); |
| 1827 | cur = ktime_get(); | ||
| 1828 | |||
| 1829 | out: | ||
| 1830 | trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited); | ||
| 1741 | } | 1831 | } |
| 1742 | EXPORT_SYMBOL_GPL(kvm_vcpu_block); | 1832 | EXPORT_SYMBOL_GPL(kvm_vcpu_block); |
| 1743 | 1833 | ||
| @@ -1920,7 +2010,7 @@ static int kvm_vcpu_release(struct inode *inode, struct file *filp) | |||
| 1920 | static struct file_operations kvm_vcpu_fops = { | 2010 | static struct file_operations kvm_vcpu_fops = { |
| 1921 | .release = kvm_vcpu_release, | 2011 | .release = kvm_vcpu_release, |
| 1922 | .unlocked_ioctl = kvm_vcpu_ioctl, | 2012 | .unlocked_ioctl = kvm_vcpu_ioctl, |
| 1923 | #ifdef CONFIG_COMPAT | 2013 | #ifdef CONFIG_KVM_COMPAT |
| 1924 | .compat_ioctl = kvm_vcpu_compat_ioctl, | 2014 | .compat_ioctl = kvm_vcpu_compat_ioctl, |
| 1925 | #endif | 2015 | #endif |
| 1926 | .mmap = kvm_vcpu_mmap, | 2016 | .mmap = kvm_vcpu_mmap, |
| @@ -2210,7 +2300,7 @@ out: | |||
| 2210 | return r; | 2300 | return r; |
| 2211 | } | 2301 | } |
| 2212 | 2302 | ||
| 2213 | #ifdef CONFIG_COMPAT | 2303 | #ifdef CONFIG_KVM_COMPAT |
| 2214 | static long kvm_vcpu_compat_ioctl(struct file *filp, | 2304 | static long kvm_vcpu_compat_ioctl(struct file *filp, |
| 2215 | unsigned int ioctl, unsigned long arg) | 2305 | unsigned int ioctl, unsigned long arg) |
| 2216 | { | 2306 | { |
| @@ -2302,7 +2392,7 @@ static int kvm_device_release(struct inode *inode, struct file *filp) | |||
| 2302 | 2392 | ||
| 2303 | static const struct file_operations kvm_device_fops = { | 2393 | static const struct file_operations kvm_device_fops = { |
| 2304 | .unlocked_ioctl = kvm_device_ioctl, | 2394 | .unlocked_ioctl = kvm_device_ioctl, |
| 2305 | #ifdef CONFIG_COMPAT | 2395 | #ifdef CONFIG_KVM_COMPAT |
| 2306 | .compat_ioctl = kvm_device_ioctl, | 2396 | .compat_ioctl = kvm_device_ioctl, |
| 2307 | #endif | 2397 | #endif |
| 2308 | .release = kvm_device_release, | 2398 | .release = kvm_device_release, |
| @@ -2402,6 +2492,7 @@ static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) | |||
| 2402 | case KVM_CAP_SIGNAL_MSI: | 2492 | case KVM_CAP_SIGNAL_MSI: |
| 2403 | #endif | 2493 | #endif |
| 2404 | #ifdef CONFIG_HAVE_KVM_IRQFD | 2494 | #ifdef CONFIG_HAVE_KVM_IRQFD |
| 2495 | case KVM_CAP_IRQFD: | ||
| 2405 | case KVM_CAP_IRQFD_RESAMPLE: | 2496 | case KVM_CAP_IRQFD_RESAMPLE: |
| 2406 | #endif | 2497 | #endif |
| 2407 | case KVM_CAP_CHECK_EXTENSION_VM: | 2498 | case KVM_CAP_CHECK_EXTENSION_VM: |
| @@ -2589,7 +2680,7 @@ out: | |||
| 2589 | return r; | 2680 | return r; |
| 2590 | } | 2681 | } |
| 2591 | 2682 | ||
| 2592 | #ifdef CONFIG_COMPAT | 2683 | #ifdef CONFIG_KVM_COMPAT |
| 2593 | struct compat_kvm_dirty_log { | 2684 | struct compat_kvm_dirty_log { |
| 2594 | __u32 slot; | 2685 | __u32 slot; |
| 2595 | __u32 padding1; | 2686 | __u32 padding1; |
| @@ -2636,7 +2727,7 @@ out: | |||
| 2636 | static struct file_operations kvm_vm_fops = { | 2727 | static struct file_operations kvm_vm_fops = { |
| 2637 | .release = kvm_vm_release, | 2728 | .release = kvm_vm_release, |
| 2638 | .unlocked_ioctl = kvm_vm_ioctl, | 2729 | .unlocked_ioctl = kvm_vm_ioctl, |
| 2639 | #ifdef CONFIG_COMPAT | 2730 | #ifdef CONFIG_KVM_COMPAT |
| 2640 | .compat_ioctl = kvm_vm_compat_ioctl, | 2731 | .compat_ioctl = kvm_vm_compat_ioctl, |
| 2641 | #endif | 2732 | #endif |
| 2642 | .llseek = noop_llseek, | 2733 | .llseek = noop_llseek, |
