diff options
Diffstat (limited to 'virt/kvm/arm/vgic-v3-emul.c')
-rw-r--r-- | virt/kvm/arm/vgic-v3-emul.c | 1036 |
1 files changed, 1036 insertions, 0 deletions
diff --git a/virt/kvm/arm/vgic-v3-emul.c b/virt/kvm/arm/vgic-v3-emul.c new file mode 100644 index 000000000000..b3f154631515 --- /dev/null +++ b/virt/kvm/arm/vgic-v3-emul.c | |||
@@ -0,0 +1,1036 @@ | |||
1 | /* | ||
2 | * GICv3 distributor and redistributor emulation | ||
3 | * | ||
4 | * GICv3 emulation is currently only supported on a GICv3 host (because | ||
5 | * we rely on the hardware's CPU interface virtualization support), but | ||
6 | * supports both hardware with or without the optional GICv2 backwards | ||
7 | * compatibility features. | ||
8 | * | ||
9 | * Limitations of the emulation: | ||
10 | * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore) | ||
11 | * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI. | ||
12 | * - We do not support the message based interrupts (MBIs) triggered by | ||
13 | * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0. | ||
14 | * - We do not support the (optional) backwards compatibility feature. | ||
15 | * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports | ||
16 | * the compatiblity feature, you can use a GICv2 in the guest, though. | ||
17 | * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI. | ||
18 | * - Priorities are not emulated (same as the GICv2 emulation). Linux | ||
19 | * as a guest is fine with this, because it does not use priorities. | ||
20 | * - We only support Group1 interrupts. Again Linux uses only those. | ||
21 | * | ||
22 | * Copyright (C) 2014 ARM Ltd. | ||
23 | * Author: Andre Przywara <andre.przywara@arm.com> | ||
24 | * | ||
25 | * This program is free software; you can redistribute it and/or modify | ||
26 | * it under the terms of the GNU General Public License version 2 as | ||
27 | * published by the Free Software Foundation. | ||
28 | * | ||
29 | * This program is distributed in the hope that it will be useful, | ||
30 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
31 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
32 | * GNU General Public License for more details. | ||
33 | * | ||
34 | * You should have received a copy of the GNU General Public License | ||
35 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
36 | */ | ||
37 | |||
38 | #include <linux/cpu.h> | ||
39 | #include <linux/kvm.h> | ||
40 | #include <linux/kvm_host.h> | ||
41 | #include <linux/interrupt.h> | ||
42 | |||
43 | #include <linux/irqchip/arm-gic-v3.h> | ||
44 | #include <kvm/arm_vgic.h> | ||
45 | |||
46 | #include <asm/kvm_emulate.h> | ||
47 | #include <asm/kvm_arm.h> | ||
48 | #include <asm/kvm_mmu.h> | ||
49 | |||
50 | #include "vgic.h" | ||
51 | |||
52 | static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu, | ||
53 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
54 | { | ||
55 | u32 reg = 0xffffffff; | ||
56 | |||
57 | vgic_reg_access(mmio, ®, offset, | ||
58 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
59 | |||
60 | return false; | ||
61 | } | ||
62 | |||
63 | static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu, | ||
64 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
65 | { | ||
66 | u32 reg = 0; | ||
67 | |||
68 | /* | ||
69 | * Force ARE and DS to 1, the guest cannot change this. | ||
70 | * For the time being we only support Group1 interrupts. | ||
71 | */ | ||
72 | if (vcpu->kvm->arch.vgic.enabled) | ||
73 | reg = GICD_CTLR_ENABLE_SS_G1; | ||
74 | reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; | ||
75 | |||
76 | vgic_reg_access(mmio, ®, offset, | ||
77 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
78 | if (mmio->is_write) { | ||
79 | if (reg & GICD_CTLR_ENABLE_SS_G0) | ||
80 | kvm_info("guest tried to enable unsupported Group0 interrupts\n"); | ||
81 | vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1); | ||
82 | vgic_update_state(vcpu->kvm); | ||
83 | return true; | ||
84 | } | ||
85 | return false; | ||
86 | } | ||
87 | |||
88 | /* | ||
89 | * As this implementation does not provide compatibility | ||
90 | * with GICv2 (ARE==1), we report zero CPUs in bits [5..7]. | ||
91 | * Also LPIs and MBIs are not supported, so we set the respective bits to 0. | ||
92 | * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs). | ||
93 | */ | ||
94 | #define INTERRUPT_ID_BITS 10 | ||
95 | static bool handle_mmio_typer(struct kvm_vcpu *vcpu, | ||
96 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
97 | { | ||
98 | u32 reg; | ||
99 | |||
100 | reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1; | ||
101 | |||
102 | reg |= (INTERRUPT_ID_BITS - 1) << 19; | ||
103 | |||
104 | vgic_reg_access(mmio, ®, offset, | ||
105 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
106 | |||
107 | return false; | ||
108 | } | ||
109 | |||
110 | static bool handle_mmio_iidr(struct kvm_vcpu *vcpu, | ||
111 | struct kvm_exit_mmio *mmio, phys_addr_t offset) | ||
112 | { | ||
113 | u32 reg; | ||
114 | |||
115 | reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); | ||
116 | vgic_reg_access(mmio, ®, offset, | ||
117 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
118 | |||
119 | return false; | ||
120 | } | ||
121 | |||
122 | static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu, | ||
123 | struct kvm_exit_mmio *mmio, | ||
124 | phys_addr_t offset) | ||
125 | { | ||
126 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
127 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
128 | vcpu->vcpu_id, | ||
129 | ACCESS_WRITE_SETBIT); | ||
130 | |||
131 | vgic_reg_access(mmio, NULL, offset, | ||
132 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
133 | return false; | ||
134 | } | ||
135 | |||
136 | static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu, | ||
137 | struct kvm_exit_mmio *mmio, | ||
138 | phys_addr_t offset) | ||
139 | { | ||
140 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
141 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
142 | vcpu->vcpu_id, | ||
143 | ACCESS_WRITE_CLEARBIT); | ||
144 | |||
145 | vgic_reg_access(mmio, NULL, offset, | ||
146 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
147 | return false; | ||
148 | } | ||
149 | |||
150 | static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu, | ||
151 | struct kvm_exit_mmio *mmio, | ||
152 | phys_addr_t offset) | ||
153 | { | ||
154 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
155 | return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, | ||
156 | vcpu->vcpu_id); | ||
157 | |||
158 | vgic_reg_access(mmio, NULL, offset, | ||
159 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
160 | return false; | ||
161 | } | ||
162 | |||
163 | static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu, | ||
164 | struct kvm_exit_mmio *mmio, | ||
165 | phys_addr_t offset) | ||
166 | { | ||
167 | if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) | ||
168 | return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, | ||
169 | vcpu->vcpu_id); | ||
170 | |||
171 | vgic_reg_access(mmio, NULL, offset, | ||
172 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
173 | return false; | ||
174 | } | ||
175 | |||
176 | static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu, | ||
177 | struct kvm_exit_mmio *mmio, | ||
178 | phys_addr_t offset) | ||
179 | { | ||
180 | u32 *reg; | ||
181 | |||
182 | if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) { | ||
183 | vgic_reg_access(mmio, NULL, offset, | ||
184 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
185 | return false; | ||
186 | } | ||
187 | |||
188 | reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, | ||
189 | vcpu->vcpu_id, offset); | ||
190 | vgic_reg_access(mmio, reg, offset, | ||
191 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
192 | return false; | ||
193 | } | ||
194 | |||
195 | static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu, | ||
196 | struct kvm_exit_mmio *mmio, | ||
197 | phys_addr_t offset) | ||
198 | { | ||
199 | u32 *reg; | ||
200 | |||
201 | if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) { | ||
202 | vgic_reg_access(mmio, NULL, offset, | ||
203 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
204 | return false; | ||
205 | } | ||
206 | |||
207 | reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, | ||
208 | vcpu->vcpu_id, offset >> 1); | ||
209 | |||
210 | return vgic_handle_cfg_reg(reg, mmio, offset); | ||
211 | } | ||
212 | |||
213 | /* | ||
214 | * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word) | ||
215 | * when we store the target MPIDR written by the guest. | ||
216 | */ | ||
217 | static u32 compress_mpidr(unsigned long mpidr) | ||
218 | { | ||
219 | u32 ret; | ||
220 | |||
221 | ret = MPIDR_AFFINITY_LEVEL(mpidr, 0); | ||
222 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8; | ||
223 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16; | ||
224 | ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24; | ||
225 | |||
226 | return ret; | ||
227 | } | ||
228 | |||
229 | static unsigned long uncompress_mpidr(u32 value) | ||
230 | { | ||
231 | unsigned long mpidr; | ||
232 | |||
233 | mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0); | ||
234 | mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1); | ||
235 | mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2); | ||
236 | mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3); | ||
237 | |||
238 | return mpidr; | ||
239 | } | ||
240 | |||
241 | /* | ||
242 | * Lookup the given MPIDR value to get the vcpu_id (if there is one) | ||
243 | * and store that in the irq_spi_cpu[] array. | ||
244 | * This limits the number of VCPUs to 255 for now, extending the data | ||
245 | * type (or storing kvm_vcpu pointers) should lift the limit. | ||
246 | * Store the original MPIDR value in an extra array to support read-as-written. | ||
247 | * Unallocated MPIDRs are translated to a special value and caught | ||
248 | * before any array accesses. | ||
249 | */ | ||
250 | static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu, | ||
251 | struct kvm_exit_mmio *mmio, | ||
252 | phys_addr_t offset) | ||
253 | { | ||
254 | struct kvm *kvm = vcpu->kvm; | ||
255 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
256 | int spi; | ||
257 | u32 reg; | ||
258 | int vcpu_id; | ||
259 | unsigned long *bmap, mpidr; | ||
260 | |||
261 | /* | ||
262 | * The upper 32 bits of each 64 bit register are zero, | ||
263 | * as we don't support Aff3. | ||
264 | */ | ||
265 | if ((offset & 4)) { | ||
266 | vgic_reg_access(mmio, NULL, offset, | ||
267 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
268 | return false; | ||
269 | } | ||
270 | |||
271 | /* This region only covers SPIs, so no handling of private IRQs here. */ | ||
272 | spi = offset / 8; | ||
273 | |||
274 | /* get the stored MPIDR for this IRQ */ | ||
275 | mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]); | ||
276 | reg = mpidr; | ||
277 | |||
278 | vgic_reg_access(mmio, ®, offset, | ||
279 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
280 | |||
281 | if (!mmio->is_write) | ||
282 | return false; | ||
283 | |||
284 | /* | ||
285 | * Now clear the currently assigned vCPU from the map, making room | ||
286 | * for the new one to be written below | ||
287 | */ | ||
288 | vcpu = kvm_mpidr_to_vcpu(kvm, mpidr); | ||
289 | if (likely(vcpu)) { | ||
290 | vcpu_id = vcpu->vcpu_id; | ||
291 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); | ||
292 | __clear_bit(spi, bmap); | ||
293 | } | ||
294 | |||
295 | dist->irq_spi_mpidr[spi] = compress_mpidr(reg); | ||
296 | vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK); | ||
297 | |||
298 | /* | ||
299 | * The spec says that non-existent MPIDR values should not be | ||
300 | * forwarded to any existent (v)CPU, but should be able to become | ||
301 | * pending anyway. We simply keep the irq_spi_target[] array empty, so | ||
302 | * the interrupt will never be injected. | ||
303 | * irq_spi_cpu[irq] gets a magic value in this case. | ||
304 | */ | ||
305 | if (likely(vcpu)) { | ||
306 | vcpu_id = vcpu->vcpu_id; | ||
307 | dist->irq_spi_cpu[spi] = vcpu_id; | ||
308 | bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); | ||
309 | __set_bit(spi, bmap); | ||
310 | } else { | ||
311 | dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED; | ||
312 | } | ||
313 | |||
314 | vgic_update_state(kvm); | ||
315 | |||
316 | return true; | ||
317 | } | ||
318 | |||
319 | /* | ||
320 | * We should be careful about promising too much when a guest reads | ||
321 | * this register. Don't claim to be like any hardware implementation, | ||
322 | * but just report the GIC as version 3 - which is what a Linux guest | ||
323 | * would check. | ||
324 | */ | ||
325 | static bool handle_mmio_idregs(struct kvm_vcpu *vcpu, | ||
326 | struct kvm_exit_mmio *mmio, | ||
327 | phys_addr_t offset) | ||
328 | { | ||
329 | u32 reg = 0; | ||
330 | |||
331 | switch (offset + GICD_IDREGS) { | ||
332 | case GICD_PIDR2: | ||
333 | reg = 0x3b; | ||
334 | break; | ||
335 | } | ||
336 | |||
337 | vgic_reg_access(mmio, ®, offset, | ||
338 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
339 | |||
340 | return false; | ||
341 | } | ||
342 | |||
343 | static const struct kvm_mmio_range vgic_v3_dist_ranges[] = { | ||
344 | { | ||
345 | .base = GICD_CTLR, | ||
346 | .len = 0x04, | ||
347 | .bits_per_irq = 0, | ||
348 | .handle_mmio = handle_mmio_ctlr, | ||
349 | }, | ||
350 | { | ||
351 | .base = GICD_TYPER, | ||
352 | .len = 0x04, | ||
353 | .bits_per_irq = 0, | ||
354 | .handle_mmio = handle_mmio_typer, | ||
355 | }, | ||
356 | { | ||
357 | .base = GICD_IIDR, | ||
358 | .len = 0x04, | ||
359 | .bits_per_irq = 0, | ||
360 | .handle_mmio = handle_mmio_iidr, | ||
361 | }, | ||
362 | { | ||
363 | /* this register is optional, it is RAZ/WI if not implemented */ | ||
364 | .base = GICD_STATUSR, | ||
365 | .len = 0x04, | ||
366 | .bits_per_irq = 0, | ||
367 | .handle_mmio = handle_mmio_raz_wi, | ||
368 | }, | ||
369 | { | ||
370 | /* this write only register is WI when TYPER.MBIS=0 */ | ||
371 | .base = GICD_SETSPI_NSR, | ||
372 | .len = 0x04, | ||
373 | .bits_per_irq = 0, | ||
374 | .handle_mmio = handle_mmio_raz_wi, | ||
375 | }, | ||
376 | { | ||
377 | /* this write only register is WI when TYPER.MBIS=0 */ | ||
378 | .base = GICD_CLRSPI_NSR, | ||
379 | .len = 0x04, | ||
380 | .bits_per_irq = 0, | ||
381 | .handle_mmio = handle_mmio_raz_wi, | ||
382 | }, | ||
383 | { | ||
384 | /* this is RAZ/WI when DS=1 */ | ||
385 | .base = GICD_SETSPI_SR, | ||
386 | .len = 0x04, | ||
387 | .bits_per_irq = 0, | ||
388 | .handle_mmio = handle_mmio_raz_wi, | ||
389 | }, | ||
390 | { | ||
391 | /* this is RAZ/WI when DS=1 */ | ||
392 | .base = GICD_CLRSPI_SR, | ||
393 | .len = 0x04, | ||
394 | .bits_per_irq = 0, | ||
395 | .handle_mmio = handle_mmio_raz_wi, | ||
396 | }, | ||
397 | { | ||
398 | .base = GICD_IGROUPR, | ||
399 | .len = 0x80, | ||
400 | .bits_per_irq = 1, | ||
401 | .handle_mmio = handle_mmio_rao_wi, | ||
402 | }, | ||
403 | { | ||
404 | .base = GICD_ISENABLER, | ||
405 | .len = 0x80, | ||
406 | .bits_per_irq = 1, | ||
407 | .handle_mmio = handle_mmio_set_enable_reg_dist, | ||
408 | }, | ||
409 | { | ||
410 | .base = GICD_ICENABLER, | ||
411 | .len = 0x80, | ||
412 | .bits_per_irq = 1, | ||
413 | .handle_mmio = handle_mmio_clear_enable_reg_dist, | ||
414 | }, | ||
415 | { | ||
416 | .base = GICD_ISPENDR, | ||
417 | .len = 0x80, | ||
418 | .bits_per_irq = 1, | ||
419 | .handle_mmio = handle_mmio_set_pending_reg_dist, | ||
420 | }, | ||
421 | { | ||
422 | .base = GICD_ICPENDR, | ||
423 | .len = 0x80, | ||
424 | .bits_per_irq = 1, | ||
425 | .handle_mmio = handle_mmio_clear_pending_reg_dist, | ||
426 | }, | ||
427 | { | ||
428 | .base = GICD_ISACTIVER, | ||
429 | .len = 0x80, | ||
430 | .bits_per_irq = 1, | ||
431 | .handle_mmio = handle_mmio_raz_wi, | ||
432 | }, | ||
433 | { | ||
434 | .base = GICD_ICACTIVER, | ||
435 | .len = 0x80, | ||
436 | .bits_per_irq = 1, | ||
437 | .handle_mmio = handle_mmio_raz_wi, | ||
438 | }, | ||
439 | { | ||
440 | .base = GICD_IPRIORITYR, | ||
441 | .len = 0x400, | ||
442 | .bits_per_irq = 8, | ||
443 | .handle_mmio = handle_mmio_priority_reg_dist, | ||
444 | }, | ||
445 | { | ||
446 | /* TARGETSRn is RES0 when ARE=1 */ | ||
447 | .base = GICD_ITARGETSR, | ||
448 | .len = 0x400, | ||
449 | .bits_per_irq = 8, | ||
450 | .handle_mmio = handle_mmio_raz_wi, | ||
451 | }, | ||
452 | { | ||
453 | .base = GICD_ICFGR, | ||
454 | .len = 0x100, | ||
455 | .bits_per_irq = 2, | ||
456 | .handle_mmio = handle_mmio_cfg_reg_dist, | ||
457 | }, | ||
458 | { | ||
459 | /* this is RAZ/WI when DS=1 */ | ||
460 | .base = GICD_IGRPMODR, | ||
461 | .len = 0x80, | ||
462 | .bits_per_irq = 1, | ||
463 | .handle_mmio = handle_mmio_raz_wi, | ||
464 | }, | ||
465 | { | ||
466 | /* this is RAZ/WI when DS=1 */ | ||
467 | .base = GICD_NSACR, | ||
468 | .len = 0x100, | ||
469 | .bits_per_irq = 2, | ||
470 | .handle_mmio = handle_mmio_raz_wi, | ||
471 | }, | ||
472 | { | ||
473 | /* this is RAZ/WI when ARE=1 */ | ||
474 | .base = GICD_SGIR, | ||
475 | .len = 0x04, | ||
476 | .handle_mmio = handle_mmio_raz_wi, | ||
477 | }, | ||
478 | { | ||
479 | /* this is RAZ/WI when ARE=1 */ | ||
480 | .base = GICD_CPENDSGIR, | ||
481 | .len = 0x10, | ||
482 | .handle_mmio = handle_mmio_raz_wi, | ||
483 | }, | ||
484 | { | ||
485 | /* this is RAZ/WI when ARE=1 */ | ||
486 | .base = GICD_SPENDSGIR, | ||
487 | .len = 0x10, | ||
488 | .handle_mmio = handle_mmio_raz_wi, | ||
489 | }, | ||
490 | { | ||
491 | .base = GICD_IROUTER + 0x100, | ||
492 | .len = 0x1ee0, | ||
493 | .bits_per_irq = 64, | ||
494 | .handle_mmio = handle_mmio_route_reg, | ||
495 | }, | ||
496 | { | ||
497 | .base = GICD_IDREGS, | ||
498 | .len = 0x30, | ||
499 | .bits_per_irq = 0, | ||
500 | .handle_mmio = handle_mmio_idregs, | ||
501 | }, | ||
502 | {}, | ||
503 | }; | ||
504 | |||
505 | static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu, | ||
506 | struct kvm_exit_mmio *mmio, | ||
507 | phys_addr_t offset) | ||
508 | { | ||
509 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
510 | |||
511 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
512 | redist_vcpu->vcpu_id, | ||
513 | ACCESS_WRITE_SETBIT); | ||
514 | } | ||
515 | |||
516 | static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu, | ||
517 | struct kvm_exit_mmio *mmio, | ||
518 | phys_addr_t offset) | ||
519 | { | ||
520 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
521 | |||
522 | return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, | ||
523 | redist_vcpu->vcpu_id, | ||
524 | ACCESS_WRITE_CLEARBIT); | ||
525 | } | ||
526 | |||
527 | static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu, | ||
528 | struct kvm_exit_mmio *mmio, | ||
529 | phys_addr_t offset) | ||
530 | { | ||
531 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
532 | |||
533 | return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, | ||
534 | redist_vcpu->vcpu_id); | ||
535 | } | ||
536 | |||
537 | static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu, | ||
538 | struct kvm_exit_mmio *mmio, | ||
539 | phys_addr_t offset) | ||
540 | { | ||
541 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
542 | |||
543 | return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, | ||
544 | redist_vcpu->vcpu_id); | ||
545 | } | ||
546 | |||
547 | static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu, | ||
548 | struct kvm_exit_mmio *mmio, | ||
549 | phys_addr_t offset) | ||
550 | { | ||
551 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
552 | u32 *reg; | ||
553 | |||
554 | reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, | ||
555 | redist_vcpu->vcpu_id, offset); | ||
556 | vgic_reg_access(mmio, reg, offset, | ||
557 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); | ||
558 | return false; | ||
559 | } | ||
560 | |||
561 | static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu, | ||
562 | struct kvm_exit_mmio *mmio, | ||
563 | phys_addr_t offset) | ||
564 | { | ||
565 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
566 | |||
567 | u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, | ||
568 | redist_vcpu->vcpu_id, offset >> 1); | ||
569 | |||
570 | return vgic_handle_cfg_reg(reg, mmio, offset); | ||
571 | } | ||
572 | |||
573 | static const struct kvm_mmio_range vgic_redist_sgi_ranges[] = { | ||
574 | { | ||
575 | .base = GICR_IGROUPR0, | ||
576 | .len = 0x04, | ||
577 | .bits_per_irq = 1, | ||
578 | .handle_mmio = handle_mmio_rao_wi, | ||
579 | }, | ||
580 | { | ||
581 | .base = GICR_ISENABLER0, | ||
582 | .len = 0x04, | ||
583 | .bits_per_irq = 1, | ||
584 | .handle_mmio = handle_mmio_set_enable_reg_redist, | ||
585 | }, | ||
586 | { | ||
587 | .base = GICR_ICENABLER0, | ||
588 | .len = 0x04, | ||
589 | .bits_per_irq = 1, | ||
590 | .handle_mmio = handle_mmio_clear_enable_reg_redist, | ||
591 | }, | ||
592 | { | ||
593 | .base = GICR_ISPENDR0, | ||
594 | .len = 0x04, | ||
595 | .bits_per_irq = 1, | ||
596 | .handle_mmio = handle_mmio_set_pending_reg_redist, | ||
597 | }, | ||
598 | { | ||
599 | .base = GICR_ICPENDR0, | ||
600 | .len = 0x04, | ||
601 | .bits_per_irq = 1, | ||
602 | .handle_mmio = handle_mmio_clear_pending_reg_redist, | ||
603 | }, | ||
604 | { | ||
605 | .base = GICR_ISACTIVER0, | ||
606 | .len = 0x04, | ||
607 | .bits_per_irq = 1, | ||
608 | .handle_mmio = handle_mmio_raz_wi, | ||
609 | }, | ||
610 | { | ||
611 | .base = GICR_ICACTIVER0, | ||
612 | .len = 0x04, | ||
613 | .bits_per_irq = 1, | ||
614 | .handle_mmio = handle_mmio_raz_wi, | ||
615 | }, | ||
616 | { | ||
617 | .base = GICR_IPRIORITYR0, | ||
618 | .len = 0x20, | ||
619 | .bits_per_irq = 8, | ||
620 | .handle_mmio = handle_mmio_priority_reg_redist, | ||
621 | }, | ||
622 | { | ||
623 | .base = GICR_ICFGR0, | ||
624 | .len = 0x08, | ||
625 | .bits_per_irq = 2, | ||
626 | .handle_mmio = handle_mmio_cfg_reg_redist, | ||
627 | }, | ||
628 | { | ||
629 | .base = GICR_IGRPMODR0, | ||
630 | .len = 0x04, | ||
631 | .bits_per_irq = 1, | ||
632 | .handle_mmio = handle_mmio_raz_wi, | ||
633 | }, | ||
634 | { | ||
635 | .base = GICR_NSACR, | ||
636 | .len = 0x04, | ||
637 | .handle_mmio = handle_mmio_raz_wi, | ||
638 | }, | ||
639 | {}, | ||
640 | }; | ||
641 | |||
642 | static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu, | ||
643 | struct kvm_exit_mmio *mmio, | ||
644 | phys_addr_t offset) | ||
645 | { | ||
646 | /* since we don't support LPIs, this register is zero for now */ | ||
647 | vgic_reg_access(mmio, NULL, offset, | ||
648 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); | ||
649 | return false; | ||
650 | } | ||
651 | |||
652 | static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu, | ||
653 | struct kvm_exit_mmio *mmio, | ||
654 | phys_addr_t offset) | ||
655 | { | ||
656 | u32 reg; | ||
657 | u64 mpidr; | ||
658 | struct kvm_vcpu *redist_vcpu = mmio->private; | ||
659 | int target_vcpu_id = redist_vcpu->vcpu_id; | ||
660 | |||
661 | /* the upper 32 bits contain the affinity value */ | ||
662 | if ((offset & ~3) == 4) { | ||
663 | mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu); | ||
664 | reg = compress_mpidr(mpidr); | ||
665 | |||
666 | vgic_reg_access(mmio, ®, offset, | ||
667 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
668 | return false; | ||
669 | } | ||
670 | |||
671 | reg = redist_vcpu->vcpu_id << 8; | ||
672 | if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) | ||
673 | reg |= GICR_TYPER_LAST; | ||
674 | vgic_reg_access(mmio, ®, offset, | ||
675 | ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); | ||
676 | return false; | ||
677 | } | ||
678 | |||
679 | static const struct kvm_mmio_range vgic_redist_ranges[] = { | ||
680 | { | ||
681 | .base = GICR_CTLR, | ||
682 | .len = 0x04, | ||
683 | .bits_per_irq = 0, | ||
684 | .handle_mmio = handle_mmio_ctlr_redist, | ||
685 | }, | ||
686 | { | ||
687 | .base = GICR_TYPER, | ||
688 | .len = 0x08, | ||
689 | .bits_per_irq = 0, | ||
690 | .handle_mmio = handle_mmio_typer_redist, | ||
691 | }, | ||
692 | { | ||
693 | .base = GICR_IIDR, | ||
694 | .len = 0x04, | ||
695 | .bits_per_irq = 0, | ||
696 | .handle_mmio = handle_mmio_iidr, | ||
697 | }, | ||
698 | { | ||
699 | .base = GICR_WAKER, | ||
700 | .len = 0x04, | ||
701 | .bits_per_irq = 0, | ||
702 | .handle_mmio = handle_mmio_raz_wi, | ||
703 | }, | ||
704 | { | ||
705 | .base = GICR_IDREGS, | ||
706 | .len = 0x30, | ||
707 | .bits_per_irq = 0, | ||
708 | .handle_mmio = handle_mmio_idregs, | ||
709 | }, | ||
710 | {}, | ||
711 | }; | ||
712 | |||
713 | /* | ||
714 | * This function splits accesses between the distributor and the two | ||
715 | * redistributor parts (private/SPI). As each redistributor is accessible | ||
716 | * from any CPU, we have to determine the affected VCPU by taking the faulting | ||
717 | * address into account. We then pass this VCPU to the handler function via | ||
718 | * the private parameter. | ||
719 | */ | ||
720 | #define SGI_BASE_OFFSET SZ_64K | ||
721 | static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, | ||
722 | struct kvm_exit_mmio *mmio) | ||
723 | { | ||
724 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; | ||
725 | unsigned long dbase = dist->vgic_dist_base; | ||
726 | unsigned long rdbase = dist->vgic_redist_base; | ||
727 | int nrcpus = atomic_read(&vcpu->kvm->online_vcpus); | ||
728 | int vcpu_id; | ||
729 | const struct kvm_mmio_range *mmio_range; | ||
730 | |||
731 | if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) { | ||
732 | return vgic_handle_mmio_range(vcpu, run, mmio, | ||
733 | vgic_v3_dist_ranges, dbase); | ||
734 | } | ||
735 | |||
736 | if (!is_in_range(mmio->phys_addr, mmio->len, rdbase, | ||
737 | GIC_V3_REDIST_SIZE * nrcpus)) | ||
738 | return false; | ||
739 | |||
740 | vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE; | ||
741 | rdbase += (vcpu_id * GIC_V3_REDIST_SIZE); | ||
742 | mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id); | ||
743 | |||
744 | if (mmio->phys_addr >= rdbase + SGI_BASE_OFFSET) { | ||
745 | rdbase += SGI_BASE_OFFSET; | ||
746 | mmio_range = vgic_redist_sgi_ranges; | ||
747 | } else { | ||
748 | mmio_range = vgic_redist_ranges; | ||
749 | } | ||
750 | return vgic_handle_mmio_range(vcpu, run, mmio, mmio_range, rdbase); | ||
751 | } | ||
752 | |||
753 | static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq) | ||
754 | { | ||
755 | if (vgic_queue_irq(vcpu, 0, irq)) { | ||
756 | vgic_dist_irq_clear_pending(vcpu, irq); | ||
757 | vgic_cpu_irq_clear(vcpu, irq); | ||
758 | return true; | ||
759 | } | ||
760 | |||
761 | return false; | ||
762 | } | ||
763 | |||
764 | static int vgic_v3_map_resources(struct kvm *kvm, | ||
765 | const struct vgic_params *params) | ||
766 | { | ||
767 | int ret = 0; | ||
768 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
769 | |||
770 | if (!irqchip_in_kernel(kvm)) | ||
771 | return 0; | ||
772 | |||
773 | mutex_lock(&kvm->lock); | ||
774 | |||
775 | if (vgic_ready(kvm)) | ||
776 | goto out; | ||
777 | |||
778 | if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || | ||
779 | IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { | ||
780 | kvm_err("Need to set vgic distributor addresses first\n"); | ||
781 | ret = -ENXIO; | ||
782 | goto out; | ||
783 | } | ||
784 | |||
785 | /* | ||
786 | * For a VGICv3 we require the userland to explicitly initialize | ||
787 | * the VGIC before we need to use it. | ||
788 | */ | ||
789 | if (!vgic_initialized(kvm)) { | ||
790 | ret = -EBUSY; | ||
791 | goto out; | ||
792 | } | ||
793 | |||
794 | kvm->arch.vgic.ready = true; | ||
795 | out: | ||
796 | if (ret) | ||
797 | kvm_vgic_destroy(kvm); | ||
798 | mutex_unlock(&kvm->lock); | ||
799 | return ret; | ||
800 | } | ||
801 | |||
802 | static int vgic_v3_init_model(struct kvm *kvm) | ||
803 | { | ||
804 | int i; | ||
805 | u32 mpidr; | ||
806 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
807 | int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; | ||
808 | |||
809 | dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]), | ||
810 | GFP_KERNEL); | ||
811 | |||
812 | if (!dist->irq_spi_mpidr) | ||
813 | return -ENOMEM; | ||
814 | |||
815 | /* Initialize the target VCPUs for each IRQ to VCPU 0 */ | ||
816 | mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0))); | ||
817 | for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) { | ||
818 | dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0; | ||
819 | dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr; | ||
820 | vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1); | ||
821 | } | ||
822 | |||
823 | return 0; | ||
824 | } | ||
825 | |||
826 | /* GICv3 does not keep track of SGI sources anymore. */ | ||
827 | static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) | ||
828 | { | ||
829 | } | ||
830 | |||
831 | void vgic_v3_init_emulation(struct kvm *kvm) | ||
832 | { | ||
833 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
834 | |||
835 | dist->vm_ops.handle_mmio = vgic_v3_handle_mmio; | ||
836 | dist->vm_ops.queue_sgi = vgic_v3_queue_sgi; | ||
837 | dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source; | ||
838 | dist->vm_ops.init_model = vgic_v3_init_model; | ||
839 | dist->vm_ops.map_resources = vgic_v3_map_resources; | ||
840 | |||
841 | kvm->arch.max_vcpus = KVM_MAX_VCPUS; | ||
842 | } | ||
843 | |||
844 | /* | ||
845 | * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI | ||
846 | * generation register ICC_SGI1R_EL1) with a given VCPU. | ||
847 | * If the VCPU's MPIDR matches, return the level0 affinity, otherwise | ||
848 | * return -1. | ||
849 | */ | ||
850 | static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) | ||
851 | { | ||
852 | unsigned long affinity; | ||
853 | int level0; | ||
854 | |||
855 | /* | ||
856 | * Split the current VCPU's MPIDR into affinity level 0 and the | ||
857 | * rest as this is what we have to compare against. | ||
858 | */ | ||
859 | affinity = kvm_vcpu_get_mpidr_aff(vcpu); | ||
860 | level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); | ||
861 | affinity &= ~MPIDR_LEVEL_MASK; | ||
862 | |||
863 | /* bail out if the upper three levels don't match */ | ||
864 | if (sgi_aff != affinity) | ||
865 | return -1; | ||
866 | |||
867 | /* Is this VCPU's bit set in the mask ? */ | ||
868 | if (!(sgi_cpu_mask & BIT(level0))) | ||
869 | return -1; | ||
870 | |||
871 | return level0; | ||
872 | } | ||
873 | |||
874 | #define SGI_AFFINITY_LEVEL(reg, level) \ | ||
875 | ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ | ||
876 | >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) | ||
877 | |||
878 | /** | ||
879 | * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs | ||
880 | * @vcpu: The VCPU requesting a SGI | ||
881 | * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU | ||
882 | * | ||
883 | * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. | ||
884 | * This will trap in sys_regs.c and call this function. | ||
885 | * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the | ||
886 | * target processors as well as a bitmask of 16 Aff0 CPUs. | ||
887 | * If the interrupt routing mode bit is not set, we iterate over all VCPUs to | ||
888 | * check for matching ones. If this bit is set, we signal all, but not the | ||
889 | * calling VCPU. | ||
890 | */ | ||
891 | void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) | ||
892 | { | ||
893 | struct kvm *kvm = vcpu->kvm; | ||
894 | struct kvm_vcpu *c_vcpu; | ||
895 | struct vgic_dist *dist = &kvm->arch.vgic; | ||
896 | u16 target_cpus; | ||
897 | u64 mpidr; | ||
898 | int sgi, c; | ||
899 | int vcpu_id = vcpu->vcpu_id; | ||
900 | bool broadcast; | ||
901 | int updated = 0; | ||
902 | |||
903 | sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; | ||
904 | broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); | ||
905 | target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; | ||
906 | mpidr = SGI_AFFINITY_LEVEL(reg, 3); | ||
907 | mpidr |= SGI_AFFINITY_LEVEL(reg, 2); | ||
908 | mpidr |= SGI_AFFINITY_LEVEL(reg, 1); | ||
909 | |||
910 | /* | ||
911 | * We take the dist lock here, because we come from the sysregs | ||
912 | * code path and not from the MMIO one (which already takes the lock). | ||
913 | */ | ||
914 | spin_lock(&dist->lock); | ||
915 | |||
916 | /* | ||
917 | * We iterate over all VCPUs to find the MPIDRs matching the request. | ||
918 | * If we have handled one CPU, we clear it's bit to detect early | ||
919 | * if we are already finished. This avoids iterating through all | ||
920 | * VCPUs when most of the times we just signal a single VCPU. | ||
921 | */ | ||
922 | kvm_for_each_vcpu(c, c_vcpu, kvm) { | ||
923 | |||
924 | /* Exit early if we have dealt with all requested CPUs */ | ||
925 | if (!broadcast && target_cpus == 0) | ||
926 | break; | ||
927 | |||
928 | /* Don't signal the calling VCPU */ | ||
929 | if (broadcast && c == vcpu_id) | ||
930 | continue; | ||
931 | |||
932 | if (!broadcast) { | ||
933 | int level0; | ||
934 | |||
935 | level0 = match_mpidr(mpidr, target_cpus, c_vcpu); | ||
936 | if (level0 == -1) | ||
937 | continue; | ||
938 | |||
939 | /* remove this matching VCPU from the mask */ | ||
940 | target_cpus &= ~BIT(level0); | ||
941 | } | ||
942 | |||
943 | /* Flag the SGI as pending */ | ||
944 | vgic_dist_irq_set_pending(c_vcpu, sgi); | ||
945 | updated = 1; | ||
946 | kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); | ||
947 | } | ||
948 | if (updated) | ||
949 | vgic_update_state(vcpu->kvm); | ||
950 | spin_unlock(&dist->lock); | ||
951 | if (updated) | ||
952 | vgic_kick_vcpus(vcpu->kvm); | ||
953 | } | ||
954 | |||
955 | static int vgic_v3_create(struct kvm_device *dev, u32 type) | ||
956 | { | ||
957 | return kvm_vgic_create(dev->kvm, type); | ||
958 | } | ||
959 | |||
960 | static void vgic_v3_destroy(struct kvm_device *dev) | ||
961 | { | ||
962 | kfree(dev); | ||
963 | } | ||
964 | |||
965 | static int vgic_v3_set_attr(struct kvm_device *dev, | ||
966 | struct kvm_device_attr *attr) | ||
967 | { | ||
968 | int ret; | ||
969 | |||
970 | ret = vgic_set_common_attr(dev, attr); | ||
971 | if (ret != -ENXIO) | ||
972 | return ret; | ||
973 | |||
974 | switch (attr->group) { | ||
975 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
976 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
977 | return -ENXIO; | ||
978 | } | ||
979 | |||
980 | return -ENXIO; | ||
981 | } | ||
982 | |||
983 | static int vgic_v3_get_attr(struct kvm_device *dev, | ||
984 | struct kvm_device_attr *attr) | ||
985 | { | ||
986 | int ret; | ||
987 | |||
988 | ret = vgic_get_common_attr(dev, attr); | ||
989 | if (ret != -ENXIO) | ||
990 | return ret; | ||
991 | |||
992 | switch (attr->group) { | ||
993 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
994 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
995 | return -ENXIO; | ||
996 | } | ||
997 | |||
998 | return -ENXIO; | ||
999 | } | ||
1000 | |||
1001 | static int vgic_v3_has_attr(struct kvm_device *dev, | ||
1002 | struct kvm_device_attr *attr) | ||
1003 | { | ||
1004 | switch (attr->group) { | ||
1005 | case KVM_DEV_ARM_VGIC_GRP_ADDR: | ||
1006 | switch (attr->attr) { | ||
1007 | case KVM_VGIC_V2_ADDR_TYPE_DIST: | ||
1008 | case KVM_VGIC_V2_ADDR_TYPE_CPU: | ||
1009 | return -ENXIO; | ||
1010 | case KVM_VGIC_V3_ADDR_TYPE_DIST: | ||
1011 | case KVM_VGIC_V3_ADDR_TYPE_REDIST: | ||
1012 | return 0; | ||
1013 | } | ||
1014 | break; | ||
1015 | case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: | ||
1016 | case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: | ||
1017 | return -ENXIO; | ||
1018 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: | ||
1019 | return 0; | ||
1020 | case KVM_DEV_ARM_VGIC_GRP_CTRL: | ||
1021 | switch (attr->attr) { | ||
1022 | case KVM_DEV_ARM_VGIC_CTRL_INIT: | ||
1023 | return 0; | ||
1024 | } | ||
1025 | } | ||
1026 | return -ENXIO; | ||
1027 | } | ||
1028 | |||
1029 | struct kvm_device_ops kvm_arm_vgic_v3_ops = { | ||
1030 | .name = "kvm-arm-vgic-v3", | ||
1031 | .create = vgic_v3_create, | ||
1032 | .destroy = vgic_v3_destroy, | ||
1033 | .set_attr = vgic_v3_set_attr, | ||
1034 | .get_attr = vgic_v3_get_attr, | ||
1035 | .has_attr = vgic_v3_has_attr, | ||
1036 | }; | ||