aboutsummaryrefslogtreecommitdiffstats
path: root/sound/soc/soc-core.c
diff options
context:
space:
mode:
Diffstat (limited to 'sound/soc/soc-core.c')
-rw-r--r--sound/soc/soc-core.c1920
1 files changed, 1920 insertions, 0 deletions
diff --git a/sound/soc/soc-core.c b/sound/soc/soc-core.c
new file mode 100644
index 000000000000..e841ad46c759
--- /dev/null
+++ b/sound/soc/soc-core.c
@@ -0,0 +1,1920 @@
1/*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Author: Liam Girdwood
6 * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * Revision history
14 * 12th Aug 2005 Initial version.
15 * 25th Oct 2005 Working Codec, Interface and Platform registration.
16 *
17 * TODO:
18 * o Add hw rules to enforce rates, etc.
19 * o More testing with other codecs/machines.
20 * o Add more codecs and platforms to ensure good API coverage.
21 * o Support TDM on PCM and I2S
22 */
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/init.h>
27#include <linux/delay.h>
28#include <linux/pm.h>
29#include <linux/bitops.h>
30#include <linux/platform_device.h>
31#include <sound/driver.h>
32#include <sound/core.h>
33#include <sound/pcm.h>
34#include <sound/pcm_params.h>
35#include <sound/soc.h>
36#include <sound/soc-dapm.h>
37#include <sound/initval.h>
38
39/* debug */
40#define SOC_DEBUG 0
41#if SOC_DEBUG
42#define dbg(format, arg...) printk(format, ## arg)
43#else
44#define dbg(format, arg...)
45#endif
46/* debug DAI capabilities matching */
47#define SOC_DEBUG_DAI 0
48#if SOC_DEBUG_DAI
49#define dbgc(format, arg...) printk(format, ## arg)
50#else
51#define dbgc(format, arg...)
52#endif
53
54static DEFINE_MUTEX(pcm_mutex);
55static DEFINE_MUTEX(io_mutex);
56static struct workqueue_struct *soc_workq;
57static struct work_struct soc_stream_work;
58static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
59
60/* supported sample rates */
61/* ATTENTION: these values depend on the definition in pcm.h! */
62static const unsigned int rates[] = {
63 5512, 8000, 11025, 16000, 22050, 32000, 44100,
64 48000, 64000, 88200, 96000, 176400, 192000
65};
66
67/*
68 * This is a timeout to do a DAPM powerdown after a stream is closed().
69 * It can be used to eliminate pops between different playback streams, e.g.
70 * between two audio tracks.
71 */
72static int pmdown_time = 5000;
73module_param(pmdown_time, int, 0);
74MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
75
76#ifdef CONFIG_SND_SOC_AC97_BUS
77/* unregister ac97 codec */
78static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
79{
80 if (codec->ac97->dev.bus)
81 device_unregister(&codec->ac97->dev);
82 return 0;
83}
84
85/* stop no dev release warning */
86static void soc_ac97_device_release(struct device *dev){}
87
88/* register ac97 codec to bus */
89static int soc_ac97_dev_register(struct snd_soc_codec *codec)
90{
91 int err;
92
93 codec->ac97->dev.bus = &ac97_bus_type;
94 codec->ac97->dev.parent = NULL;
95 codec->ac97->dev.release = soc_ac97_device_release;
96
97 snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
98 codec->card->number, 0, codec->name);
99 err = device_register(&codec->ac97->dev);
100 if (err < 0) {
101 snd_printk(KERN_ERR "Can't register ac97 bus\n");
102 codec->ac97->dev.bus = NULL;
103 return err;
104 }
105 return 0;
106}
107#endif
108
109static inline const char* get_dai_name(int type)
110{
111 switch(type) {
112 case SND_SOC_DAI_AC97:
113 return "AC97";
114 case SND_SOC_DAI_I2S:
115 return "I2S";
116 case SND_SOC_DAI_PCM:
117 return "PCM";
118 }
119 return NULL;
120}
121
122/* get rate format from rate */
123static inline int soc_get_rate_format(int rate)
124{
125 int i;
126
127 for (i = 0; i < ARRAY_SIZE(rates); i++) {
128 if (rates[i] == rate)
129 return 1 << i;
130 }
131 return 0;
132}
133
134/* gets the audio system mclk/sysclk for the given parameters */
135static unsigned inline int soc_get_mclk(struct snd_soc_pcm_runtime *rtd,
136 struct snd_soc_clock_info *info)
137{
138 struct snd_soc_device *socdev = rtd->socdev;
139 struct snd_soc_machine *machine = socdev->machine;
140 int i;
141
142 /* find the matching machine config and get it's mclk for the given
143 * sample rate and hardware format */
144 for(i = 0; i < machine->num_links; i++) {
145 if (machine->dai_link[i].cpu_dai == rtd->cpu_dai &&
146 machine->dai_link[i].config_sysclk)
147 return machine->dai_link[i].config_sysclk(rtd, info);
148 }
149 return 0;
150}
151
152/* changes a bitclk multiplier mask to a divider mask */
153static u16 soc_bfs_mult_to_div(u16 bfs, int rate, unsigned int mclk,
154 unsigned int pcmfmt, unsigned int chn)
155{
156 int i, j;
157 u16 bfs_ = 0;
158 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
159
160 if (size <= 0)
161 return 0;
162
163 /* the minimum bit clock that has enough bandwidth */
164 min = size * rate * chn;
165 dbgc("mult --> div min bclk %d with mclk %d\n", min, mclk);
166
167 for (i = 0; i < 16; i++) {
168 if ((bfs >> i) & 0x1) {
169 j = rate * SND_SOC_FSB_REAL(1<<i);
170
171 if (j >= min) {
172 bfs_ |= SND_SOC_FSBD(mclk/j);
173 dbgc("mult --> div support mult %d\n",
174 SND_SOC_FSB_REAL(1<<i));
175 }
176 }
177 }
178
179 return bfs_;
180}
181
182/* changes a bitclk divider mask to a multiplier mask */
183static u16 soc_bfs_div_to_mult(u16 bfs, int rate, unsigned int mclk,
184 unsigned int pcmfmt, unsigned int chn)
185{
186 int i, j;
187 u16 bfs_ = 0;
188
189 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
190
191 if (size <= 0)
192 return 0;
193
194 /* the minimum bit clock that has enough bandwidth */
195 min = size * rate * chn;
196 dbgc("div to mult min bclk %d with mclk %d\n", min, mclk);
197
198 for (i = 0; i < 16; i++) {
199 if ((bfs >> i) & 0x1) {
200 j = mclk / (SND_SOC_FSBD_REAL(1<<i));
201 if (j >= min) {
202 bfs_ |= SND_SOC_FSB(j/rate);
203 dbgc("div --> mult support div %d\n",
204 SND_SOC_FSBD_REAL(1<<i));
205 }
206 }
207 }
208
209 return bfs_;
210}
211
212/* Matches codec DAI and SoC CPU DAI hardware parameters */
213static int soc_hw_match_params(struct snd_pcm_substream *substream,
214 struct snd_pcm_hw_params *params)
215{
216 struct snd_soc_pcm_runtime *rtd = substream->private_data;
217 struct snd_soc_dai_mode *codec_dai_mode = NULL;
218 struct snd_soc_dai_mode *cpu_dai_mode = NULL;
219 struct snd_soc_clock_info clk_info;
220 unsigned int fs, mclk, codec_bfs, cpu_bfs, rate = params_rate(params),
221 chn, j, k, cpu_bclk, codec_bclk, pcmrate;
222 u16 fmt = 0;
223
224 dbg("asoc: match version %s\n", SND_SOC_VERSION);
225 clk_info.rate = rate;
226 pcmrate = soc_get_rate_format(rate);
227
228 /* try and find a match from the codec and cpu DAI capabilities */
229 for (j = 0; j < rtd->codec_dai->caps.num_modes; j++) {
230 for (k = 0; k < rtd->cpu_dai->caps.num_modes; k++) {
231 codec_dai_mode = &rtd->codec_dai->caps.mode[j];
232 cpu_dai_mode = &rtd->cpu_dai->caps.mode[k];
233
234 if (!(codec_dai_mode->pcmrate & cpu_dai_mode->pcmrate &
235 pcmrate)) {
236 dbgc("asoc: DAI[%d:%d] failed to match rate\n", j, k);
237 continue;
238 }
239
240 fmt = codec_dai_mode->fmt & cpu_dai_mode->fmt;
241 if (!(fmt & SND_SOC_DAIFMT_FORMAT_MASK)) {
242 dbgc("asoc: DAI[%d:%d] failed to match format\n", j, k);
243 continue;
244 }
245
246 if (!(fmt & SND_SOC_DAIFMT_CLOCK_MASK)) {
247 dbgc("asoc: DAI[%d:%d] failed to match clock masters\n",
248 j, k);
249 continue;
250 }
251
252 if (!(fmt & SND_SOC_DAIFMT_INV_MASK)) {
253 dbgc("asoc: DAI[%d:%d] failed to match invert\n", j, k);
254 continue;
255 }
256
257 if (!(codec_dai_mode->pcmfmt & cpu_dai_mode->pcmfmt)) {
258 dbgc("asoc: DAI[%d:%d] failed to match pcm format\n", j, k);
259 continue;
260 }
261
262 if (!(codec_dai_mode->pcmdir & cpu_dai_mode->pcmdir)) {
263 dbgc("asoc: DAI[%d:%d] failed to match direction\n", j, k);
264 continue;
265 }
266
267 /* todo - still need to add tdm selection */
268 rtd->cpu_dai->dai_runtime.fmt =
269 rtd->codec_dai->dai_runtime.fmt =
270 1 << (ffs(fmt & SND_SOC_DAIFMT_FORMAT_MASK) -1) |
271 1 << (ffs(fmt & SND_SOC_DAIFMT_CLOCK_MASK) - 1) |
272 1 << (ffs(fmt & SND_SOC_DAIFMT_INV_MASK) - 1);
273 clk_info.bclk_master =
274 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_CLOCK_MASK;
275
276 /* make sure the ratio between rate and master
277 * clock is acceptable*/
278 fs = (cpu_dai_mode->fs & codec_dai_mode->fs);
279 if (fs == 0) {
280 dbgc("asoc: DAI[%d:%d] failed to match FS\n", j, k);
281 continue;
282 }
283 clk_info.fs = rtd->cpu_dai->dai_runtime.fs =
284 rtd->codec_dai->dai_runtime.fs = fs;
285
286 /* calculate audio system clocking using slowest clocks possible*/
287 mclk = soc_get_mclk(rtd, &clk_info);
288 if (mclk == 0) {
289 dbgc("asoc: DAI[%d:%d] configuration not clockable\n", j, k);
290 dbgc("asoc: rate %d fs %d master %x\n", rate, fs,
291 clk_info.bclk_master);
292 continue;
293 }
294
295 /* calculate word size (per channel) and frame size */
296 rtd->codec_dai->dai_runtime.pcmfmt =
297 rtd->cpu_dai->dai_runtime.pcmfmt =
298 1 << params_format(params);
299
300 chn = params_channels(params);
301 /* i2s always has left and right */
302 if (params_channels(params) == 1 &&
303 rtd->cpu_dai->dai_runtime.fmt & (SND_SOC_DAIFMT_I2S |
304 SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_LEFT_J))
305 chn <<= 1;
306
307 /* Calculate bfs - the ratio between bitclock and the sample rate
308 * We must take into consideration the dividers and multipliers
309 * used in the codec and cpu DAI modes. We always choose the
310 * lowest possible clocks to reduce power.
311 */
312 if (codec_dai_mode->flags & cpu_dai_mode->flags &
313 SND_SOC_DAI_BFS_DIV) {
314 /* cpu & codec bfs dividers */
315 rtd->cpu_dai->dai_runtime.bfs =
316 rtd->codec_dai->dai_runtime.bfs =
317 1 << (fls(codec_dai_mode->bfs & cpu_dai_mode->bfs) - 1);
318 } else if (codec_dai_mode->flags & SND_SOC_DAI_BFS_DIV) {
319 /* normalise bfs codec divider & cpu mult */
320 codec_bfs = soc_bfs_div_to_mult(codec_dai_mode->bfs, rate,
321 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
322 rtd->cpu_dai->dai_runtime.bfs =
323 1 << (ffs(codec_bfs & cpu_dai_mode->bfs) - 1);
324 cpu_bfs = soc_bfs_mult_to_div(cpu_dai_mode->bfs, rate, mclk,
325 rtd->codec_dai->dai_runtime.pcmfmt, chn);
326 rtd->codec_dai->dai_runtime.bfs =
327 1 << (fls(codec_dai_mode->bfs & cpu_bfs) - 1);
328 } else if (cpu_dai_mode->flags & SND_SOC_DAI_BFS_DIV) {
329 /* normalise bfs codec mult & cpu divider */
330 codec_bfs = soc_bfs_mult_to_div(codec_dai_mode->bfs, rate,
331 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
332 rtd->cpu_dai->dai_runtime.bfs =
333 1 << (fls(codec_bfs & cpu_dai_mode->bfs) -1);
334 cpu_bfs = soc_bfs_div_to_mult(cpu_dai_mode->bfs, rate, mclk,
335 rtd->codec_dai->dai_runtime.pcmfmt, chn);
336 rtd->codec_dai->dai_runtime.bfs =
337 1 << (ffs(codec_dai_mode->bfs & cpu_bfs) -1);
338 } else {
339 /* codec & cpu bfs rate multipliers */
340 rtd->cpu_dai->dai_runtime.bfs =
341 rtd->codec_dai->dai_runtime.bfs =
342 1 << (ffs(codec_dai_mode->bfs & cpu_dai_mode->bfs) -1);
343 }
344
345 /* make sure the bit clock speed is acceptable */
346 if (!rtd->cpu_dai->dai_runtime.bfs ||
347 !rtd->codec_dai->dai_runtime.bfs) {
348 dbgc("asoc: DAI[%d:%d] failed to match BFS\n", j, k);
349 dbgc("asoc: cpu_dai %x codec %x\n",
350 rtd->cpu_dai->dai_runtime.bfs,
351 rtd->codec_dai->dai_runtime.bfs);
352 dbgc("asoc: mclk %d hwfmt %x\n", mclk, fmt);
353 continue;
354 }
355
356 goto found;
357 }
358 }
359 printk(KERN_ERR "asoc: no matching DAI found between codec and CPU\n");
360 return -EINVAL;
361
362found:
363 /* we have matching DAI's, so complete the runtime info */
364 rtd->codec_dai->dai_runtime.pcmrate =
365 rtd->cpu_dai->dai_runtime.pcmrate =
366 soc_get_rate_format(rate);
367
368 rtd->codec_dai->dai_runtime.priv = codec_dai_mode->priv;
369 rtd->cpu_dai->dai_runtime.priv = cpu_dai_mode->priv;
370 rtd->codec_dai->dai_runtime.flags = codec_dai_mode->flags;
371 rtd->cpu_dai->dai_runtime.flags = cpu_dai_mode->flags;
372
373 /* for debug atm */
374 dbg("asoc: DAI[%d:%d] Match OK\n", j, k);
375 if (rtd->codec_dai->dai_runtime.flags == SND_SOC_DAI_BFS_DIV) {
376 codec_bclk = (rtd->codec_dai->dai_runtime.fs * params_rate(params)) /
377 SND_SOC_FSBD_REAL(rtd->codec_dai->dai_runtime.bfs);
378 dbg("asoc: codec fs %d mclk %d bfs div %d bclk %d\n",
379 rtd->codec_dai->dai_runtime.fs, mclk,
380 SND_SOC_FSBD_REAL(rtd->codec_dai->dai_runtime.bfs), codec_bclk);
381 } else {
382 codec_bclk = params_rate(params) *
383 SND_SOC_FSB_REAL(rtd->codec_dai->dai_runtime.bfs);
384 dbg("asoc: codec fs %d mclk %d bfs mult %d bclk %d\n",
385 rtd->codec_dai->dai_runtime.fs, mclk,
386 SND_SOC_FSB_REAL(rtd->codec_dai->dai_runtime.bfs), codec_bclk);
387 }
388 if (rtd->cpu_dai->dai_runtime.flags == SND_SOC_DAI_BFS_DIV) {
389 cpu_bclk = (rtd->cpu_dai->dai_runtime.fs * params_rate(params)) /
390 SND_SOC_FSBD_REAL(rtd->cpu_dai->dai_runtime.bfs);
391 dbg("asoc: cpu fs %d mclk %d bfs div %d bclk %d\n",
392 rtd->cpu_dai->dai_runtime.fs, mclk,
393 SND_SOC_FSBD_REAL(rtd->cpu_dai->dai_runtime.bfs), cpu_bclk);
394 } else {
395 cpu_bclk = params_rate(params) *
396 SND_SOC_FSB_REAL(rtd->cpu_dai->dai_runtime.bfs);
397 dbg("asoc: cpu fs %d mclk %d bfs mult %d bclk %d\n",
398 rtd->cpu_dai->dai_runtime.fs, mclk,
399 SND_SOC_FSB_REAL(rtd->cpu_dai->dai_runtime.bfs), cpu_bclk);
400 }
401
402 /*
403 * Check we have matching bitclocks. If we don't then it means the
404 * sysclock returned by either the codec or cpu DAI (selected by the
405 * machine sysclock function) is wrong compared with the supported DAI
406 * modes for the codec or cpu DAI.
407 */
408 if (cpu_bclk != codec_bclk){
409 printk(KERN_ERR
410 "asoc: codec and cpu bitclocks differ, audio may be wrong speed\n"
411 );
412 printk(KERN_ERR "asoc: codec %d != cpu %d\n", codec_bclk, cpu_bclk);
413 }
414
415 switch(rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
416 case SND_SOC_DAIFMT_CBM_CFM:
417 dbg("asoc: DAI codec BCLK master, LRC master\n");
418 break;
419 case SND_SOC_DAIFMT_CBS_CFM:
420 dbg("asoc: DAI codec BCLK slave, LRC master\n");
421 break;
422 case SND_SOC_DAIFMT_CBM_CFS:
423 dbg("asoc: DAI codec BCLK master, LRC slave\n");
424 break;
425 case SND_SOC_DAIFMT_CBS_CFS:
426 dbg("asoc: DAI codec BCLK slave, LRC slave\n");
427 break;
428 }
429 dbg("asoc: mode %x, invert %x\n",
430 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_FORMAT_MASK,
431 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_INV_MASK);
432 dbg("asoc: audio rate %d chn %d fmt %x\n", params_rate(params),
433 params_channels(params), params_format(params));
434
435 return 0;
436}
437
438static inline u32 get_rates(struct snd_soc_dai_mode *modes, int nmodes)
439{
440 int i;
441 u32 rates = 0;
442
443 for(i = 0; i < nmodes; i++)
444 rates |= modes[i].pcmrate;
445
446 return rates;
447}
448
449static inline u64 get_formats(struct snd_soc_dai_mode *modes, int nmodes)
450{
451 int i;
452 u64 formats = 0;
453
454 for(i = 0; i < nmodes; i++)
455 formats |= modes[i].pcmfmt;
456
457 return formats;
458}
459
460/*
461 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
462 * then initialized and any private data can be allocated. This also calls
463 * startup for the cpu DAI, platform, machine and codec DAI.
464 */
465static int soc_pcm_open(struct snd_pcm_substream *substream)
466{
467 struct snd_soc_pcm_runtime *rtd = substream->private_data;
468 struct snd_soc_device *socdev = rtd->socdev;
469 struct snd_pcm_runtime *runtime = substream->runtime;
470 struct snd_soc_machine *machine = socdev->machine;
471 struct snd_soc_platform *platform = socdev->platform;
472 struct snd_soc_codec_dai *codec_dai = rtd->codec_dai;
473 struct snd_soc_cpu_dai *cpu_dai = rtd->cpu_dai;
474 int ret = 0;
475
476 mutex_lock(&pcm_mutex);
477
478 /* startup the audio subsystem */
479 if (rtd->cpu_dai->ops.startup) {
480 ret = rtd->cpu_dai->ops.startup(substream);
481 if (ret < 0) {
482 printk(KERN_ERR "asoc: can't open interface %s\n",
483 rtd->cpu_dai->name);
484 goto out;
485 }
486 }
487
488 if (platform->pcm_ops->open) {
489 ret = platform->pcm_ops->open(substream);
490 if (ret < 0) {
491 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
492 goto platform_err;
493 }
494 }
495
496 if (machine->ops && machine->ops->startup) {
497 ret = machine->ops->startup(substream);
498 if (ret < 0) {
499 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
500 goto machine_err;
501 }
502 }
503
504 if (rtd->codec_dai->ops.startup) {
505 ret = rtd->codec_dai->ops.startup(substream);
506 if (ret < 0) {
507 printk(KERN_ERR "asoc: can't open codec %s\n",
508 rtd->codec_dai->name);
509 goto codec_dai_err;
510 }
511 }
512
513 /* create runtime params from DMA, codec and cpu DAI */
514 if (runtime->hw.rates)
515 runtime->hw.rates &=
516 get_rates(codec_dai->caps.mode, codec_dai->caps.num_modes) &
517 get_rates(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
518 else
519 runtime->hw.rates =
520 get_rates(codec_dai->caps.mode, codec_dai->caps.num_modes) &
521 get_rates(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
522 if (runtime->hw.formats)
523 runtime->hw.formats &=
524 get_formats(codec_dai->caps.mode, codec_dai->caps.num_modes) &
525 get_formats(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
526 else
527 runtime->hw.formats =
528 get_formats(codec_dai->caps.mode, codec_dai->caps.num_modes) &
529 get_formats(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
530
531 /* Check that the codec and cpu DAI's are compatible */
532 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
533 runtime->hw.rate_min =
534 max(rtd->codec_dai->playback.rate_min,
535 rtd->cpu_dai->playback.rate_min);
536 runtime->hw.rate_max =
537 min(rtd->codec_dai->playback.rate_max,
538 rtd->cpu_dai->playback.rate_max);
539 runtime->hw.channels_min =
540 max(rtd->codec_dai->playback.channels_min,
541 rtd->cpu_dai->playback.channels_min);
542 runtime->hw.channels_max =
543 min(rtd->codec_dai->playback.channels_max,
544 rtd->cpu_dai->playback.channels_max);
545 } else {
546 runtime->hw.rate_min =
547 max(rtd->codec_dai->capture.rate_min,
548 rtd->cpu_dai->capture.rate_min);
549 runtime->hw.rate_max =
550 min(rtd->codec_dai->capture.rate_max,
551 rtd->cpu_dai->capture.rate_max);
552 runtime->hw.channels_min =
553 max(rtd->codec_dai->capture.channels_min,
554 rtd->cpu_dai->capture.channels_min);
555 runtime->hw.channels_max =
556 min(rtd->codec_dai->capture.channels_max,
557 rtd->cpu_dai->capture.channels_max);
558 }
559
560 snd_pcm_limit_hw_rates(runtime);
561 if (!runtime->hw.rates) {
562 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
563 rtd->codec_dai->name, rtd->cpu_dai->name);
564 goto codec_dai_err;
565 }
566 if (!runtime->hw.formats) {
567 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
568 rtd->codec_dai->name, rtd->cpu_dai->name);
569 goto codec_dai_err;
570 }
571 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
572 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
573 rtd->codec_dai->name, rtd->cpu_dai->name);
574 goto codec_dai_err;
575 }
576
577 dbg("asoc: %s <-> %s info:\n", rtd->codec_dai->name, rtd->cpu_dai->name);
578 dbg("asoc: rate mask 0x%x \nasoc: min ch %d max ch %d\n
579 asoc: min rate %d max rate %d\n",
580 runtime->hw.rates, runtime->hw.channels_min,
581 runtime->hw.channels_max, runtime->hw.rate_min, runtime->hw.rate_max);
582
583
584 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
585 rtd->cpu_dai->playback.active = rtd->codec_dai->playback.active = 1;
586 else
587 rtd->cpu_dai->capture.active = rtd->codec_dai->capture.active = 1;
588 rtd->cpu_dai->active = rtd->codec_dai->active = 1;
589 rtd->cpu_dai->runtime = runtime;
590 socdev->codec->active++;
591 mutex_unlock(&pcm_mutex);
592 return 0;
593
594codec_dai_err:
595 if (machine->ops && machine->ops->shutdown)
596 machine->ops->shutdown(substream);
597
598machine_err:
599 if (platform->pcm_ops->close)
600 platform->pcm_ops->close(substream);
601
602platform_err:
603 if (rtd->cpu_dai->ops.shutdown)
604 rtd->cpu_dai->ops.shutdown(substream);
605out:
606 mutex_unlock(&pcm_mutex);
607 return ret;
608}
609
610/*
611 * Power down the audio subsytem pmdown_time msecs after close is called.
612 * This is to ensure there are no pops or clicks in between any music tracks
613 * due to DAPM power cycling.
614 */
615static void close_delayed_work(void *data)
616{
617 struct snd_soc_device *socdev = data;
618 struct snd_soc_codec *codec = socdev->codec;
619 struct snd_soc_codec_dai *codec_dai;
620 int i;
621
622 mutex_lock(&pcm_mutex);
623 for(i = 0; i < codec->num_dai; i++) {
624 codec_dai = &codec->dai[i];
625
626 dbg("pop wq checking: %s status: %s waiting: %s\n",
627 codec_dai->playback.stream_name,
628 codec_dai->playback.active ? "active" : "inactive",
629 codec_dai->pop_wait ? "yes" : "no");
630
631 /* are we waiting on this codec DAI stream */
632 if (codec_dai->pop_wait == 1) {
633
634 codec_dai->pop_wait = 0;
635 snd_soc_dapm_stream_event(codec, codec_dai->playback.stream_name,
636 SND_SOC_DAPM_STREAM_STOP);
637
638 /* power down the codec power domain if no longer active */
639 if (codec->active == 0) {
640 dbg("pop wq D3 %s %s\n", codec->name,
641 codec_dai->playback.stream_name);
642 if (codec->dapm_event)
643 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
644 }
645 }
646 }
647 mutex_unlock(&pcm_mutex);
648}
649
650/*
651 * Called by ALSA when a PCM substream is closed. Private data can be
652 * freed here. The cpu DAI, codec DAI, machine and platform are also
653 * shutdown.
654 */
655static int soc_codec_close(struct snd_pcm_substream *substream)
656{
657 struct snd_soc_pcm_runtime *rtd = substream->private_data;
658 struct snd_soc_device *socdev = rtd->socdev;
659 struct snd_soc_machine *machine = socdev->machine;
660 struct snd_soc_platform *platform = socdev->platform;
661 struct snd_soc_codec *codec = socdev->codec;
662
663 mutex_lock(&pcm_mutex);
664
665 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
666 rtd->cpu_dai->playback.active = rtd->codec_dai->playback.active = 0;
667 else
668 rtd->cpu_dai->capture.active = rtd->codec_dai->capture.active = 0;
669
670 if (rtd->codec_dai->playback.active == 0 &&
671 rtd->codec_dai->capture.active == 0) {
672 rtd->cpu_dai->active = rtd->codec_dai->active = 0;
673 }
674 codec->active--;
675
676 if (rtd->cpu_dai->ops.shutdown)
677 rtd->cpu_dai->ops.shutdown(substream);
678
679 if (rtd->codec_dai->ops.shutdown)
680 rtd->codec_dai->ops.shutdown(substream);
681
682 if (machine->ops && machine->ops->shutdown)
683 machine->ops->shutdown(substream);
684
685 if (platform->pcm_ops->close)
686 platform->pcm_ops->close(substream);
687 rtd->cpu_dai->runtime = NULL;
688
689 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
690 /* start delayed pop wq here for playback streams */
691 rtd->codec_dai->pop_wait = 1;
692 queue_delayed_work(soc_workq, &soc_stream_work,
693 msecs_to_jiffies(pmdown_time));
694 } else {
695 /* capture streams can be powered down now */
696 snd_soc_dapm_stream_event(codec, rtd->codec_dai->capture.stream_name,
697 SND_SOC_DAPM_STREAM_STOP);
698
699 if (codec->active == 0 && rtd->codec_dai->pop_wait == 0){
700 if (codec->dapm_event)
701 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
702 }
703 }
704
705 mutex_unlock(&pcm_mutex);
706 return 0;
707}
708
709/*
710 * Called by ALSA when the PCM substream is prepared, can set format, sample
711 * rate, etc. This function is non atomic and can be called multiple times,
712 * it can refer to the runtime info.
713 */
714static int soc_pcm_prepare(struct snd_pcm_substream *substream)
715{
716 struct snd_soc_pcm_runtime *rtd = substream->private_data;
717 struct snd_soc_device *socdev = rtd->socdev;
718 struct snd_soc_platform *platform = socdev->platform;
719 struct snd_soc_codec *codec = socdev->codec;
720 int ret = 0;
721
722 mutex_lock(&pcm_mutex);
723 if (platform->pcm_ops->prepare) {
724 ret = platform->pcm_ops->prepare(substream);
725 if (ret < 0)
726 goto out;
727 }
728
729 if (rtd->codec_dai->ops.prepare) {
730 ret = rtd->codec_dai->ops.prepare(substream);
731 if (ret < 0)
732 goto out;
733 }
734
735 if (rtd->cpu_dai->ops.prepare)
736 ret = rtd->cpu_dai->ops.prepare(substream);
737
738 /* we only want to start a DAPM playback stream if we are not waiting
739 * on an existing one stopping */
740 if (rtd->codec_dai->pop_wait) {
741 /* we are waiting for the delayed work to start */
742 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
743 snd_soc_dapm_stream_event(codec,
744 rtd->codec_dai->capture.stream_name,
745 SND_SOC_DAPM_STREAM_START);
746 else {
747 rtd->codec_dai->pop_wait = 0;
748 cancel_delayed_work(&soc_stream_work);
749 if (rtd->codec_dai->digital_mute)
750 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
751 }
752 } else {
753 /* no delayed work - do we need to power up codec */
754 if (codec->dapm_state != SNDRV_CTL_POWER_D0) {
755
756 if (codec->dapm_event)
757 codec->dapm_event(codec, SNDRV_CTL_POWER_D1);
758
759 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
760 snd_soc_dapm_stream_event(codec,
761 rtd->codec_dai->playback.stream_name,
762 SND_SOC_DAPM_STREAM_START);
763 else
764 snd_soc_dapm_stream_event(codec,
765 rtd->codec_dai->capture.stream_name,
766 SND_SOC_DAPM_STREAM_START);
767
768 if (codec->dapm_event)
769 codec->dapm_event(codec, SNDRV_CTL_POWER_D0);
770 if (rtd->codec_dai->digital_mute)
771 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
772
773 } else {
774 /* codec already powered - power on widgets */
775 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
776 snd_soc_dapm_stream_event(codec,
777 rtd->codec_dai->playback.stream_name,
778 SND_SOC_DAPM_STREAM_START);
779 else
780 snd_soc_dapm_stream_event(codec,
781 rtd->codec_dai->capture.stream_name,
782 SND_SOC_DAPM_STREAM_START);
783 if (rtd->codec_dai->digital_mute)
784 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
785 }
786 }
787
788out:
789 mutex_unlock(&pcm_mutex);
790 return ret;
791}
792
793/*
794 * Called by ALSA when the hardware params are set by application. This
795 * function can also be called multiple times and can allocate buffers
796 * (using snd_pcm_lib_* ). It's non-atomic.
797 */
798static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
799 struct snd_pcm_hw_params *params)
800{
801 struct snd_soc_pcm_runtime *rtd = substream->private_data;
802 struct snd_soc_device *socdev = rtd->socdev;
803 struct snd_soc_platform *platform = socdev->platform;
804 struct snd_soc_machine *machine = socdev->machine;
805 int ret = 0;
806
807 mutex_lock(&pcm_mutex);
808
809 /* we don't need to match any AC97 params */
810 if (rtd->cpu_dai->type != SND_SOC_DAI_AC97) {
811 ret = soc_hw_match_params(substream, params);
812 if (ret < 0)
813 goto out;
814 } else {
815 struct snd_soc_clock_info clk_info;
816 clk_info.rate = params_rate(params);
817 ret = soc_get_mclk(rtd, &clk_info);
818 if (ret < 0)
819 goto out;
820 }
821
822 if (rtd->codec_dai->ops.hw_params) {
823 ret = rtd->codec_dai->ops.hw_params(substream, params);
824 if (ret < 0) {
825 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
826 rtd->codec_dai->name);
827 goto out;
828 }
829 }
830
831 if (rtd->cpu_dai->ops.hw_params) {
832 ret = rtd->cpu_dai->ops.hw_params(substream, params);
833 if (ret < 0) {
834 printk(KERN_ERR "asoc: can't set interface %s hw params\n",
835 rtd->cpu_dai->name);
836 goto interface_err;
837 }
838 }
839
840 if (platform->pcm_ops->hw_params) {
841 ret = platform->pcm_ops->hw_params(substream, params);
842 if (ret < 0) {
843 printk(KERN_ERR "asoc: can't set platform %s hw params\n",
844 platform->name);
845 goto platform_err;
846 }
847 }
848
849 if (machine->ops && machine->ops->hw_params) {
850 ret = machine->ops->hw_params(substream, params);
851 if (ret < 0) {
852 printk(KERN_ERR "asoc: machine hw_params failed\n");
853 goto machine_err;
854 }
855 }
856
857out:
858 mutex_unlock(&pcm_mutex);
859 return ret;
860
861machine_err:
862 if (platform->pcm_ops->hw_free)
863 platform->pcm_ops->hw_free(substream);
864
865platform_err:
866 if (rtd->cpu_dai->ops.hw_free)
867 rtd->cpu_dai->ops.hw_free(substream);
868
869interface_err:
870 if (rtd->codec_dai->ops.hw_free)
871 rtd->codec_dai->ops.hw_free(substream);
872
873 mutex_unlock(&pcm_mutex);
874 return ret;
875}
876
877/*
878 * Free's resources allocated by hw_params, can be called multiple times
879 */
880static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
881{
882 struct snd_soc_pcm_runtime *rtd = substream->private_data;
883 struct snd_soc_device *socdev = rtd->socdev;
884 struct snd_soc_platform *platform = socdev->platform;
885 struct snd_soc_codec *codec = socdev->codec;
886 struct snd_soc_machine *machine = socdev->machine;
887
888 mutex_lock(&pcm_mutex);
889
890 /* apply codec digital mute */
891 if (!codec->active && rtd->codec_dai->digital_mute)
892 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 1);
893
894 /* free any machine hw params */
895 if (machine->ops && machine->ops->hw_free)
896 machine->ops->hw_free(substream);
897
898 /* free any DMA resources */
899 if (platform->pcm_ops->hw_free)
900 platform->pcm_ops->hw_free(substream);
901
902 /* now free hw params for the DAI's */
903 if (rtd->codec_dai->ops.hw_free)
904 rtd->codec_dai->ops.hw_free(substream);
905
906 if (rtd->cpu_dai->ops.hw_free)
907 rtd->cpu_dai->ops.hw_free(substream);
908
909 mutex_unlock(&pcm_mutex);
910 return 0;
911}
912
913static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
914{
915 struct snd_soc_pcm_runtime *rtd = substream->private_data;
916 struct snd_soc_device *socdev = rtd->socdev;
917 struct snd_soc_platform *platform = socdev->platform;
918 int ret;
919
920 if (rtd->codec_dai->ops.trigger) {
921 ret = rtd->codec_dai->ops.trigger(substream, cmd);
922 if (ret < 0)
923 return ret;
924 }
925
926 if (platform->pcm_ops->trigger) {
927 ret = platform->pcm_ops->trigger(substream, cmd);
928 if (ret < 0)
929 return ret;
930 }
931
932 if (rtd->cpu_dai->ops.trigger) {
933 ret = rtd->cpu_dai->ops.trigger(substream, cmd);
934 if (ret < 0)
935 return ret;
936 }
937 return 0;
938}
939
940/* ASoC PCM operations */
941static struct snd_pcm_ops soc_pcm_ops = {
942 .open = soc_pcm_open,
943 .close = soc_codec_close,
944 .hw_params = soc_pcm_hw_params,
945 .hw_free = soc_pcm_hw_free,
946 .prepare = soc_pcm_prepare,
947 .trigger = soc_pcm_trigger,
948};
949
950#ifdef CONFIG_PM
951/* powers down audio subsystem for suspend */
952static int soc_suspend(struct platform_device *pdev, pm_message_t state)
953{
954 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
955 struct snd_soc_machine *machine = socdev->machine;
956 struct snd_soc_platform *platform = socdev->platform;
957 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
958 struct snd_soc_codec *codec = socdev->codec;
959 int i;
960
961 /* mute any active DAC's */
962 for(i = 0; i < machine->num_links; i++) {
963 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
964 if (dai->digital_mute && dai->playback.active)
965 dai->digital_mute(codec, dai, 1);
966 }
967
968 if (machine->suspend_pre)
969 machine->suspend_pre(pdev, state);
970
971 for(i = 0; i < machine->num_links; i++) {
972 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
973 if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
974 cpu_dai->suspend(pdev, cpu_dai);
975 if (platform->suspend)
976 platform->suspend(pdev, cpu_dai);
977 }
978
979 /* close any waiting streams and save state */
980 flush_workqueue(soc_workq);
981 codec->suspend_dapm_state = codec->dapm_state;
982
983 for(i = 0; i < codec->num_dai; i++) {
984 char *stream = codec->dai[i].playback.stream_name;
985 if (stream != NULL)
986 snd_soc_dapm_stream_event(codec, stream,
987 SND_SOC_DAPM_STREAM_SUSPEND);
988 stream = codec->dai[i].capture.stream_name;
989 if (stream != NULL)
990 snd_soc_dapm_stream_event(codec, stream,
991 SND_SOC_DAPM_STREAM_SUSPEND);
992 }
993
994 if (codec_dev->suspend)
995 codec_dev->suspend(pdev, state);
996
997 for(i = 0; i < machine->num_links; i++) {
998 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
999 if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
1000 cpu_dai->suspend(pdev, cpu_dai);
1001 }
1002
1003 if (machine->suspend_post)
1004 machine->suspend_post(pdev, state);
1005
1006 return 0;
1007}
1008
1009/* powers up audio subsystem after a suspend */
1010static int soc_resume(struct platform_device *pdev)
1011{
1012 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1013 struct snd_soc_machine *machine = socdev->machine;
1014 struct snd_soc_platform *platform = socdev->platform;
1015 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1016 struct snd_soc_codec *codec = socdev->codec;
1017 int i;
1018
1019 if (machine->resume_pre)
1020 machine->resume_pre(pdev);
1021
1022 for(i = 0; i < machine->num_links; i++) {
1023 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1024 if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
1025 cpu_dai->resume(pdev, cpu_dai);
1026 }
1027
1028 if (codec_dev->resume)
1029 codec_dev->resume(pdev);
1030
1031 for(i = 0; i < codec->num_dai; i++) {
1032 char* stream = codec->dai[i].playback.stream_name;
1033 if (stream != NULL)
1034 snd_soc_dapm_stream_event(codec, stream,
1035 SND_SOC_DAPM_STREAM_RESUME);
1036 stream = codec->dai[i].capture.stream_name;
1037 if (stream != NULL)
1038 snd_soc_dapm_stream_event(codec, stream,
1039 SND_SOC_DAPM_STREAM_RESUME);
1040 }
1041
1042 /* unmute any active DAC's */
1043 for(i = 0; i < machine->num_links; i++) {
1044 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
1045 if (dai->digital_mute && dai->playback.active)
1046 dai->digital_mute(codec, dai, 0);
1047 }
1048
1049 for(i = 0; i < machine->num_links; i++) {
1050 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1051 if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
1052 cpu_dai->resume(pdev, cpu_dai);
1053 if (platform->resume)
1054 platform->resume(pdev, cpu_dai);
1055 }
1056
1057 if (machine->resume_post)
1058 machine->resume_post(pdev);
1059
1060 return 0;
1061}
1062
1063#else
1064#define soc_suspend NULL
1065#define soc_resume NULL
1066#endif
1067
1068/* probes a new socdev */
1069static int soc_probe(struct platform_device *pdev)
1070{
1071 int ret = 0, i;
1072 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1073 struct snd_soc_machine *machine = socdev->machine;
1074 struct snd_soc_platform *platform = socdev->platform;
1075 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1076
1077 if (machine->probe) {
1078 ret = machine->probe(pdev);
1079 if(ret < 0)
1080 return ret;
1081 }
1082
1083 for (i = 0; i < machine->num_links; i++) {
1084 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1085 if (cpu_dai->probe) {
1086 ret = cpu_dai->probe(pdev);
1087 if(ret < 0)
1088 goto cpu_dai_err;
1089 }
1090 }
1091
1092 if (codec_dev->probe) {
1093 ret = codec_dev->probe(pdev);
1094 if(ret < 0)
1095 goto cpu_dai_err;
1096 }
1097
1098 if (platform->probe) {
1099 ret = platform->probe(pdev);
1100 if(ret < 0)
1101 goto platform_err;
1102 }
1103
1104 /* DAPM stream work */
1105 soc_workq = create_workqueue("kdapm");
1106 if (soc_workq == NULL)
1107 goto work_err;
1108 INIT_WORK(&soc_stream_work, close_delayed_work, socdev);
1109 return 0;
1110
1111work_err:
1112 if (platform->remove)
1113 platform->remove(pdev);
1114
1115platform_err:
1116 if (codec_dev->remove)
1117 codec_dev->remove(pdev);
1118
1119cpu_dai_err:
1120 for (i--; i > 0; i--) {
1121 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1122 if (cpu_dai->remove)
1123 cpu_dai->remove(pdev);
1124 }
1125
1126 if (machine->remove)
1127 machine->remove(pdev);
1128
1129 return ret;
1130}
1131
1132/* removes a socdev */
1133static int soc_remove(struct platform_device *pdev)
1134{
1135 int i;
1136 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1137 struct snd_soc_machine *machine = socdev->machine;
1138 struct snd_soc_platform *platform = socdev->platform;
1139 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1140
1141 if (soc_workq)
1142 destroy_workqueue(soc_workq);
1143
1144 if (platform->remove)
1145 platform->remove(pdev);
1146
1147 if (codec_dev->remove)
1148 codec_dev->remove(pdev);
1149
1150 for (i = 0; i < machine->num_links; i++) {
1151 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1152 if (cpu_dai->remove)
1153 cpu_dai->remove(pdev);
1154 }
1155
1156 if (machine->remove)
1157 machine->remove(pdev);
1158
1159 return 0;
1160}
1161
1162/* ASoC platform driver */
1163static struct platform_driver soc_driver = {
1164 .driver = {
1165 .name = "soc-audio",
1166 },
1167 .probe = soc_probe,
1168 .remove = soc_remove,
1169 .suspend = soc_suspend,
1170 .resume = soc_resume,
1171};
1172
1173/* create a new pcm */
1174static int soc_new_pcm(struct snd_soc_device *socdev,
1175 struct snd_soc_dai_link *dai_link, int num)
1176{
1177 struct snd_soc_codec *codec = socdev->codec;
1178 struct snd_soc_codec_dai *codec_dai = dai_link->codec_dai;
1179 struct snd_soc_cpu_dai *cpu_dai = dai_link->cpu_dai;
1180 struct snd_soc_pcm_runtime *rtd;
1181 struct snd_pcm *pcm;
1182 char new_name[64];
1183 int ret = 0, playback = 0, capture = 0;
1184
1185 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1186 if (rtd == NULL)
1187 return -ENOMEM;
1188 rtd->cpu_dai = cpu_dai;
1189 rtd->codec_dai = codec_dai;
1190 rtd->socdev = socdev;
1191
1192 /* check client and interface hw capabilities */
1193 sprintf(new_name, "%s %s-%s-%d",dai_link->stream_name, codec_dai->name,
1194 get_dai_name(cpu_dai->type), num);
1195
1196 if (codec_dai->playback.channels_min)
1197 playback = 1;
1198 if (codec_dai->capture.channels_min)
1199 capture = 1;
1200
1201 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1202 capture, &pcm);
1203 if (ret < 0) {
1204 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1205 kfree(rtd);
1206 return ret;
1207 }
1208
1209 pcm->private_data = rtd;
1210 soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
1211 soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
1212 soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
1213 soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
1214 soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
1215 soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
1216 soc_pcm_ops.page = socdev->platform->pcm_ops->page;
1217
1218 if (playback)
1219 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1220
1221 if (capture)
1222 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1223
1224 ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
1225 if (ret < 0) {
1226 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1227 kfree(rtd);
1228 return ret;
1229 }
1230
1231 pcm->private_free = socdev->platform->pcm_free;
1232 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1233 cpu_dai->name);
1234 return ret;
1235}
1236
1237/* codec register dump */
1238static ssize_t codec_reg_show(struct device *dev,
1239 struct device_attribute *attr, char *buf)
1240{
1241 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1242 struct snd_soc_codec *codec = devdata->codec;
1243 int i, step = 1, count = 0;
1244
1245 if (!codec->reg_cache_size)
1246 return 0;
1247
1248 if (codec->reg_cache_step)
1249 step = codec->reg_cache_step;
1250
1251 count += sprintf(buf, "%s registers\n", codec->name);
1252 for(i = 0; i < codec->reg_cache_size; i += step)
1253 count += sprintf(buf + count, "%2x: %4x\n", i, codec->read(codec, i));
1254
1255 return count;
1256}
1257static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1258
1259/**
1260 * snd_soc_new_ac97_codec - initailise AC97 device
1261 * @codec: audio codec
1262 * @ops: AC97 bus operations
1263 * @num: AC97 codec number
1264 *
1265 * Initialises AC97 codec resources for use by ad-hoc devices only.
1266 */
1267int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1268 struct snd_ac97_bus_ops *ops, int num)
1269{
1270 mutex_lock(&codec->mutex);
1271
1272 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1273 if (codec->ac97 == NULL) {
1274 mutex_unlock(&codec->mutex);
1275 return -ENOMEM;
1276 }
1277
1278 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1279 if (codec->ac97->bus == NULL) {
1280 kfree(codec->ac97);
1281 codec->ac97 = NULL;
1282 mutex_unlock(&codec->mutex);
1283 return -ENOMEM;
1284 }
1285
1286 codec->ac97->bus->ops = ops;
1287 codec->ac97->num = num;
1288 mutex_unlock(&codec->mutex);
1289 return 0;
1290}
1291EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1292
1293/**
1294 * snd_soc_free_ac97_codec - free AC97 codec device
1295 * @codec: audio codec
1296 *
1297 * Frees AC97 codec device resources.
1298 */
1299void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1300{
1301 mutex_lock(&codec->mutex);
1302 kfree(codec->ac97->bus);
1303 kfree(codec->ac97);
1304 codec->ac97 = NULL;
1305 mutex_unlock(&codec->mutex);
1306}
1307EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1308
1309/**
1310 * snd_soc_update_bits - update codec register bits
1311 * @codec: audio codec
1312 * @reg: codec register
1313 * @mask: register mask
1314 * @value: new value
1315 *
1316 * Writes new register value.
1317 *
1318 * Returns 1 for change else 0.
1319 */
1320int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1321 unsigned short mask, unsigned short value)
1322{
1323 int change;
1324 unsigned short old, new;
1325
1326 mutex_lock(&io_mutex);
1327 old = snd_soc_read(codec, reg);
1328 new = (old & ~mask) | value;
1329 change = old != new;
1330 if (change)
1331 snd_soc_write(codec, reg, new);
1332
1333 mutex_unlock(&io_mutex);
1334 return change;
1335}
1336EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1337
1338/**
1339 * snd_soc_test_bits - test register for change
1340 * @codec: audio codec
1341 * @reg: codec register
1342 * @mask: register mask
1343 * @value: new value
1344 *
1345 * Tests a register with a new value and checks if the new value is
1346 * different from the old value.
1347 *
1348 * Returns 1 for change else 0.
1349 */
1350int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1351 unsigned short mask, unsigned short value)
1352{
1353 int change;
1354 unsigned short old, new;
1355
1356 mutex_lock(&io_mutex);
1357 old = snd_soc_read(codec, reg);
1358 new = (old & ~mask) | value;
1359 change = old != new;
1360 mutex_unlock(&io_mutex);
1361
1362 return change;
1363}
1364EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1365
1366/**
1367 * snd_soc_get_rate - get int sample rate
1368 * @hwpcmrate: the hardware pcm rate
1369 *
1370 * Returns the audio rate integaer value, else 0.
1371 */
1372int snd_soc_get_rate(int hwpcmrate)
1373{
1374 int rate = ffs(hwpcmrate) - 1;
1375
1376 if (rate > ARRAY_SIZE(rates))
1377 return 0;
1378 return rates[rate];
1379}
1380EXPORT_SYMBOL_GPL(snd_soc_get_rate);
1381
1382/**
1383 * snd_soc_new_pcms - create new sound card and pcms
1384 * @socdev: the SoC audio device
1385 *
1386 * Create a new sound card based upon the codec and interface pcms.
1387 *
1388 * Returns 0 for success, else error.
1389 */
1390int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char * xid)
1391{
1392 struct snd_soc_codec *codec = socdev->codec;
1393 struct snd_soc_machine *machine = socdev->machine;
1394 int ret = 0, i;
1395
1396 mutex_lock(&codec->mutex);
1397
1398 /* register a sound card */
1399 codec->card = snd_card_new(idx, xid, codec->owner, 0);
1400 if (!codec->card) {
1401 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1402 codec->name);
1403 mutex_unlock(&codec->mutex);
1404 return -ENODEV;
1405 }
1406
1407 codec->card->dev = socdev->dev;
1408 codec->card->private_data = codec;
1409 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1410
1411 /* create the pcms */
1412 for(i = 0; i < machine->num_links; i++) {
1413 ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1414 if (ret < 0) {
1415 printk(KERN_ERR "asoc: can't create pcm %s\n",
1416 machine->dai_link[i].stream_name);
1417 mutex_unlock(&codec->mutex);
1418 return ret;
1419 }
1420 }
1421
1422 mutex_unlock(&codec->mutex);
1423 return ret;
1424}
1425EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1426
1427/**
1428 * snd_soc_register_card - register sound card
1429 * @socdev: the SoC audio device
1430 *
1431 * Register a SoC sound card. Also registers an AC97 device if the
1432 * codec is AC97 for ad hoc devices.
1433 *
1434 * Returns 0 for success, else error.
1435 */
1436int snd_soc_register_card(struct snd_soc_device *socdev)
1437{
1438 struct snd_soc_codec *codec = socdev->codec;
1439 struct snd_soc_machine *machine = socdev->machine;
1440 int ret = 0, i, ac97 = 0;
1441
1442 mutex_lock(&codec->mutex);
1443 for(i = 0; i < machine->num_links; i++) {
1444 if (socdev->machine->dai_link[i].init)
1445 socdev->machine->dai_link[i].init(codec);
1446 if (socdev->machine->dai_link[i].cpu_dai->type == SND_SOC_DAI_AC97)
1447 ac97 = 1;
1448 }
1449 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1450 "%s", machine->name);
1451 snprintf(codec->card->longname, sizeof(codec->card->longname),
1452 "%s (%s)", machine->name, codec->name);
1453
1454 ret = snd_card_register(codec->card);
1455 if (ret < 0) {
1456 printk(KERN_ERR "asoc: failed to register soundcard for codec %s\n",
1457 codec->name);
1458 mutex_unlock(&codec->mutex);
1459 return ret;
1460 }
1461
1462#ifdef CONFIG_SND_SOC_AC97_BUS
1463 if (ac97)
1464 soc_ac97_dev_register(codec);
1465#endif
1466
1467 snd_soc_dapm_sys_add(socdev->dev);
1468 device_create_file(socdev->dev, &dev_attr_codec_reg);
1469 mutex_unlock(&codec->mutex);
1470 return ret;
1471}
1472EXPORT_SYMBOL_GPL(snd_soc_register_card);
1473
1474/**
1475 * snd_soc_free_pcms - free sound card and pcms
1476 * @socdev: the SoC audio device
1477 *
1478 * Frees sound card and pcms associated with the socdev.
1479 * Also unregister the codec if it is an AC97 device.
1480 */
1481void snd_soc_free_pcms(struct snd_soc_device *socdev)
1482{
1483 struct snd_soc_codec *codec = socdev->codec;
1484
1485 mutex_lock(&codec->mutex);
1486#ifdef CONFIG_SND_SOC_AC97_BUS
1487 if (codec->ac97)
1488 soc_ac97_dev_unregister(codec);
1489#endif
1490
1491 if (codec->card)
1492 snd_card_free(codec->card);
1493 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1494 mutex_unlock(&codec->mutex);
1495}
1496EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1497
1498/**
1499 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1500 * @substream: the pcm substream
1501 * @hw: the hardware parameters
1502 *
1503 * Sets the substream runtime hardware parameters.
1504 */
1505int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1506 const struct snd_pcm_hardware *hw)
1507{
1508 struct snd_pcm_runtime *runtime = substream->runtime;
1509 runtime->hw.info = hw->info;
1510 runtime->hw.formats = hw->formats;
1511 runtime->hw.period_bytes_min = hw->period_bytes_min;
1512 runtime->hw.period_bytes_max = hw->period_bytes_max;
1513 runtime->hw.periods_min = hw->periods_min;
1514 runtime->hw.periods_max = hw->periods_max;
1515 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1516 runtime->hw.fifo_size = hw->fifo_size;
1517 return 0;
1518}
1519EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1520
1521/**
1522 * snd_soc_cnew - create new control
1523 * @_template: control template
1524 * @data: control private data
1525 * @lnng_name: control long name
1526 *
1527 * Create a new mixer control from a template control.
1528 *
1529 * Returns 0 for success, else error.
1530 */
1531struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1532 void *data, char *long_name)
1533{
1534 struct snd_kcontrol_new template;
1535
1536 memcpy(&template, _template, sizeof(template));
1537 if (long_name)
1538 template.name = long_name;
1539 template.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
1540 template.index = 0;
1541
1542 return snd_ctl_new1(&template, data);
1543}
1544EXPORT_SYMBOL_GPL(snd_soc_cnew);
1545
1546/**
1547 * snd_soc_info_enum_double - enumerated double mixer info callback
1548 * @kcontrol: mixer control
1549 * @uinfo: control element information
1550 *
1551 * Callback to provide information about a double enumerated
1552 * mixer control.
1553 *
1554 * Returns 0 for success.
1555 */
1556int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1557 struct snd_ctl_elem_info *uinfo)
1558{
1559 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1560
1561 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1562 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1563 uinfo->value.enumerated.items = e->mask;
1564
1565 if (uinfo->value.enumerated.item > e->mask - 1)
1566 uinfo->value.enumerated.item = e->mask - 1;
1567 strcpy(uinfo->value.enumerated.name,
1568 e->texts[uinfo->value.enumerated.item]);
1569 return 0;
1570}
1571EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1572
1573/**
1574 * snd_soc_get_enum_double - enumerated double mixer get callback
1575 * @kcontrol: mixer control
1576 * @uinfo: control element information
1577 *
1578 * Callback to get the value of a double enumerated mixer.
1579 *
1580 * Returns 0 for success.
1581 */
1582int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1583 struct snd_ctl_elem_value *ucontrol)
1584{
1585 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1586 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1587 unsigned short val, bitmask;
1588
1589 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1590 ;
1591 val = snd_soc_read(codec, e->reg);
1592 ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
1593 if (e->shift_l != e->shift_r)
1594 ucontrol->value.enumerated.item[1] =
1595 (val >> e->shift_r) & (bitmask - 1);
1596
1597 return 0;
1598}
1599EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1600
1601/**
1602 * snd_soc_put_enum_double - enumerated double mixer put callback
1603 * @kcontrol: mixer control
1604 * @uinfo: control element information
1605 *
1606 * Callback to set the value of a double enumerated mixer.
1607 *
1608 * Returns 0 for success.
1609 */
1610int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1611 struct snd_ctl_elem_value *ucontrol)
1612{
1613 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1614 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1615 unsigned short val;
1616 unsigned short mask, bitmask;
1617
1618 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1619 ;
1620 if (ucontrol->value.enumerated.item[0] > e->mask - 1)
1621 return -EINVAL;
1622 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1623 mask = (bitmask - 1) << e->shift_l;
1624 if (e->shift_l != e->shift_r) {
1625 if (ucontrol->value.enumerated.item[1] > e->mask - 1)
1626 return -EINVAL;
1627 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1628 mask |= (bitmask - 1) << e->shift_r;
1629 }
1630
1631 return snd_soc_update_bits(codec, e->reg, mask, val);
1632}
1633EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1634
1635/**
1636 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1637 * @kcontrol: mixer control
1638 * @uinfo: control element information
1639 *
1640 * Callback to provide information about an external enumerated
1641 * single mixer.
1642 *
1643 * Returns 0 for success.
1644 */
1645int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1646 struct snd_ctl_elem_info *uinfo)
1647{
1648 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1649
1650 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1651 uinfo->count = 1;
1652 uinfo->value.enumerated.items = e->mask;
1653
1654 if (uinfo->value.enumerated.item > e->mask - 1)
1655 uinfo->value.enumerated.item = e->mask - 1;
1656 strcpy(uinfo->value.enumerated.name,
1657 e->texts[uinfo->value.enumerated.item]);
1658 return 0;
1659}
1660EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1661
1662/**
1663 * snd_soc_info_volsw_ext - external single mixer info callback
1664 * @kcontrol: mixer control
1665 * @uinfo: control element information
1666 *
1667 * Callback to provide information about a single external mixer control.
1668 *
1669 * Returns 0 for success.
1670 */
1671int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1672 struct snd_ctl_elem_info *uinfo)
1673{
1674 int mask = kcontrol->private_value;
1675
1676 uinfo->type =
1677 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1678 uinfo->count = 1;
1679 uinfo->value.integer.min = 0;
1680 uinfo->value.integer.max = mask;
1681 return 0;
1682}
1683EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1684
1685/**
1686 * snd_soc_info_bool_ext - external single boolean mixer info callback
1687 * @kcontrol: mixer control
1688 * @uinfo: control element information
1689 *
1690 * Callback to provide information about a single boolean external mixer control.
1691 *
1692 * Returns 0 for success.
1693 */
1694int snd_soc_info_bool_ext(struct snd_kcontrol *kcontrol,
1695 struct snd_ctl_elem_info *uinfo)
1696{
1697 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1698 uinfo->count = 1;
1699 uinfo->value.integer.min = 0;
1700 uinfo->value.integer.max = 1;
1701 return 0;
1702}
1703EXPORT_SYMBOL_GPL(snd_soc_info_bool_ext);
1704
1705/**
1706 * snd_soc_info_volsw - single mixer info callback
1707 * @kcontrol: mixer control
1708 * @uinfo: control element information
1709 *
1710 * Callback to provide information about a single mixer control.
1711 *
1712 * Returns 0 for success.
1713 */
1714int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1715 struct snd_ctl_elem_info *uinfo)
1716{
1717 int mask = (kcontrol->private_value >> 16) & 0xff;
1718 int shift = (kcontrol->private_value >> 8) & 0x0f;
1719 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1720
1721 uinfo->type =
1722 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1723 uinfo->count = shift == rshift ? 1 : 2;
1724 uinfo->value.integer.min = 0;
1725 uinfo->value.integer.max = mask;
1726 return 0;
1727}
1728EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1729
1730/**
1731 * snd_soc_get_volsw - single mixer get callback
1732 * @kcontrol: mixer control
1733 * @uinfo: control element information
1734 *
1735 * Callback to get the value of a single mixer control.
1736 *
1737 * Returns 0 for success.
1738 */
1739int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1740 struct snd_ctl_elem_value *ucontrol)
1741{
1742 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1743 int reg = kcontrol->private_value & 0xff;
1744 int shift = (kcontrol->private_value >> 8) & 0x0f;
1745 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1746 int mask = (kcontrol->private_value >> 16) & 0xff;
1747 int invert = (kcontrol->private_value >> 24) & 0x01;
1748
1749 ucontrol->value.integer.value[0] =
1750 (snd_soc_read(codec, reg) >> shift) & mask;
1751 if (shift != rshift)
1752 ucontrol->value.integer.value[1] =
1753 (snd_soc_read(codec, reg) >> rshift) & mask;
1754 if (invert) {
1755 ucontrol->value.integer.value[0] =
1756 mask - ucontrol->value.integer.value[0];
1757 if (shift != rshift)
1758 ucontrol->value.integer.value[1] =
1759 mask - ucontrol->value.integer.value[1];
1760 }
1761
1762 return 0;
1763}
1764EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1765
1766/**
1767 * snd_soc_put_volsw - single mixer put callback
1768 * @kcontrol: mixer control
1769 * @uinfo: control element information
1770 *
1771 * Callback to set the value of a single mixer control.
1772 *
1773 * Returns 0 for success.
1774 */
1775int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1776 struct snd_ctl_elem_value *ucontrol)
1777{
1778 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1779 int reg = kcontrol->private_value & 0xff;
1780 int shift = (kcontrol->private_value >> 8) & 0x0f;
1781 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1782 int mask = (kcontrol->private_value >> 16) & 0xff;
1783 int invert = (kcontrol->private_value >> 24) & 0x01;
1784 int err;
1785 unsigned short val, val2, val_mask;
1786
1787 val = (ucontrol->value.integer.value[0] & mask);
1788 if (invert)
1789 val = mask - val;
1790 val_mask = mask << shift;
1791 val = val << shift;
1792 if (shift != rshift) {
1793 val2 = (ucontrol->value.integer.value[1] & mask);
1794 if (invert)
1795 val2 = mask - val2;
1796 val_mask |= mask << rshift;
1797 val |= val2 << rshift;
1798 }
1799 err = snd_soc_update_bits(codec, reg, val_mask, val);
1800 return err;
1801}
1802EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1803
1804/**
1805 * snd_soc_info_volsw_2r - double mixer info callback
1806 * @kcontrol: mixer control
1807 * @uinfo: control element information
1808 *
1809 * Callback to provide information about a double mixer control that
1810 * spans 2 codec registers.
1811 *
1812 * Returns 0 for success.
1813 */
1814int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1815 struct snd_ctl_elem_info *uinfo)
1816{
1817 int mask = (kcontrol->private_value >> 12) & 0xff;
1818
1819 uinfo->type =
1820 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1821 uinfo->count = 2;
1822 uinfo->value.integer.min = 0;
1823 uinfo->value.integer.max = mask;
1824 return 0;
1825}
1826EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1827
1828/**
1829 * snd_soc_get_volsw_2r - double mixer get callback
1830 * @kcontrol: mixer control
1831 * @uinfo: control element information
1832 *
1833 * Callback to get the value of a double mixer control that spans 2 registers.
1834 *
1835 * Returns 0 for success.
1836 */
1837int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1838 struct snd_ctl_elem_value *ucontrol)
1839{
1840 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1841 int reg = kcontrol->private_value & 0xff;
1842 int reg2 = (kcontrol->private_value >> 24) & 0xff;
1843 int shift = (kcontrol->private_value >> 8) & 0x0f;
1844 int mask = (kcontrol->private_value >> 12) & 0xff;
1845 int invert = (kcontrol->private_value >> 20) & 0x01;
1846
1847 ucontrol->value.integer.value[0] =
1848 (snd_soc_read(codec, reg) >> shift) & mask;
1849 ucontrol->value.integer.value[1] =
1850 (snd_soc_read(codec, reg2) >> shift) & mask;
1851 if (invert) {
1852 ucontrol->value.integer.value[0] =
1853 mask - ucontrol->value.integer.value[0];
1854 ucontrol->value.integer.value[1] =
1855 mask - ucontrol->value.integer.value[1];
1856 }
1857
1858 return 0;
1859}
1860EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1861
1862/**
1863 * snd_soc_put_volsw_2r - double mixer set callback
1864 * @kcontrol: mixer control
1865 * @uinfo: control element information
1866 *
1867 * Callback to set the value of a double mixer control that spans 2 registers.
1868 *
1869 * Returns 0 for success.
1870 */
1871int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1872 struct snd_ctl_elem_value *ucontrol)
1873{
1874 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1875 int reg = kcontrol->private_value & 0xff;
1876 int reg2 = (kcontrol->private_value >> 24) & 0xff;
1877 int shift = (kcontrol->private_value >> 8) & 0x0f;
1878 int mask = (kcontrol->private_value >> 12) & 0xff;
1879 int invert = (kcontrol->private_value >> 20) & 0x01;
1880 int err;
1881 unsigned short val, val2, val_mask;
1882
1883 val_mask = mask << shift;
1884 val = (ucontrol->value.integer.value[0] & mask);
1885 val2 = (ucontrol->value.integer.value[1] & mask);
1886
1887 if (invert) {
1888 val = mask - val;
1889 val2 = mask - val2;
1890 }
1891
1892 val = val << shift;
1893 val2 = val2 << shift;
1894
1895 if ((err = snd_soc_update_bits(codec, reg, val_mask, val)) < 0)
1896 return err;
1897
1898 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1899 return err;
1900}
1901EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1902
1903static int __devinit snd_soc_init(void)
1904{
1905 printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
1906 return platform_driver_register(&soc_driver);
1907}
1908
1909static void snd_soc_exit(void)
1910{
1911 platform_driver_unregister(&soc_driver);
1912}
1913
1914module_init(snd_soc_init);
1915module_exit(snd_soc_exit);
1916
1917/* Module information */
1918MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1919MODULE_DESCRIPTION("ALSA SoC Core");
1920MODULE_LICENSE("GPL");