diff options
Diffstat (limited to 'sound/pci/sis7019.c')
-rw-r--r-- | sound/pci/sis7019.c | 1461 |
1 files changed, 1461 insertions, 0 deletions
diff --git a/sound/pci/sis7019.c b/sound/pci/sis7019.c new file mode 100644 index 000000000000..2f178598186d --- /dev/null +++ b/sound/pci/sis7019.c | |||
@@ -0,0 +1,1461 @@ | |||
1 | /* | ||
2 | * Driver for SiS7019 Audio Accelerator | ||
3 | * | ||
4 | * Copyright (C) 2004-2007, David Dillow | ||
5 | * Written by David Dillow <dave@thedillows.org> | ||
6 | * Inspired by the Trident 4D-WaveDX/NX driver. | ||
7 | * | ||
8 | * All rights reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation, version 2. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, | ||
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
17 | * GNU General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
22 | */ | ||
23 | |||
24 | #include <sound/driver.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/pci.h> | ||
27 | #include <linux/time.h> | ||
28 | #include <linux/moduleparam.h> | ||
29 | #include <linux/interrupt.h> | ||
30 | #include <linux/delay.h> | ||
31 | #include <sound/core.h> | ||
32 | #include <sound/ac97_codec.h> | ||
33 | #include <sound/initval.h> | ||
34 | #include "sis7019.h" | ||
35 | |||
36 | MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); | ||
37 | MODULE_DESCRIPTION("SiS7019"); | ||
38 | MODULE_LICENSE("GPL"); | ||
39 | MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); | ||
40 | |||
41 | static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ | ||
42 | static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ | ||
43 | static int enable = 1; | ||
44 | |||
45 | module_param(index, int, 0444); | ||
46 | MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); | ||
47 | module_param(id, charp, 0444); | ||
48 | MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); | ||
49 | module_param(enable, bool, 0444); | ||
50 | MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); | ||
51 | |||
52 | static struct pci_device_id snd_sis7019_ids[] = { | ||
53 | { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, | ||
54 | { 0, } | ||
55 | }; | ||
56 | |||
57 | MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); | ||
58 | |||
59 | /* There are three timing modes for the voices. | ||
60 | * | ||
61 | * For both playback and capture, when the buffer is one or two periods long, | ||
62 | * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt | ||
63 | * to let us know when the periods have ended. | ||
64 | * | ||
65 | * When performing playback with more than two periods per buffer, we set | ||
66 | * the "Stop Sample Offset" and tell the hardware to interrupt us when we | ||
67 | * reach it. We then update the offset and continue on until we are | ||
68 | * interrupted for the next period. | ||
69 | * | ||
70 | * Capture channels do not have a SSO, so we allocate a playback channel to | ||
71 | * use as a timer for the capture periods. We use the SSO on the playback | ||
72 | * channel to clock out virtual periods, and adjust the virtual period length | ||
73 | * to maintain synchronization. This algorithm came from the Trident driver. | ||
74 | * | ||
75 | * FIXME: It'd be nice to make use of some of the synth features in the | ||
76 | * hardware, but a woeful lack of documentation is a significant roadblock. | ||
77 | */ | ||
78 | struct voice { | ||
79 | u16 flags; | ||
80 | #define VOICE_IN_USE 1 | ||
81 | #define VOICE_CAPTURE 2 | ||
82 | #define VOICE_SSO_TIMING 4 | ||
83 | #define VOICE_SYNC_TIMING 8 | ||
84 | u16 sync_cso; | ||
85 | u16 period_size; | ||
86 | u16 buffer_size; | ||
87 | u16 sync_period_size; | ||
88 | u16 sync_buffer_size; | ||
89 | u32 sso; | ||
90 | u32 vperiod; | ||
91 | struct snd_pcm_substream *substream; | ||
92 | struct voice *timing; | ||
93 | void __iomem *ctrl_base; | ||
94 | void __iomem *wave_base; | ||
95 | void __iomem *sync_base; | ||
96 | int num; | ||
97 | }; | ||
98 | |||
99 | /* We need four pages to store our wave parameters during a suspend. If | ||
100 | * we're not doing power management, we still need to allocate a page | ||
101 | * for the silence buffer. | ||
102 | */ | ||
103 | #ifdef CONFIG_PM | ||
104 | #define SIS_SUSPEND_PAGES 4 | ||
105 | #else | ||
106 | #define SIS_SUSPEND_PAGES 1 | ||
107 | #endif | ||
108 | |||
109 | struct sis7019 { | ||
110 | unsigned long ioport; | ||
111 | void __iomem *ioaddr; | ||
112 | int irq; | ||
113 | int codecs_present; | ||
114 | |||
115 | struct pci_dev *pci; | ||
116 | struct snd_pcm *pcm; | ||
117 | struct snd_card *card; | ||
118 | struct snd_ac97 *ac97[3]; | ||
119 | |||
120 | /* Protect against more than one thread hitting the AC97 | ||
121 | * registers (in a more polite manner than pounding the hardware | ||
122 | * semaphore) | ||
123 | */ | ||
124 | struct mutex ac97_mutex; | ||
125 | |||
126 | /* voice_lock protects allocation/freeing of the voice descriptions | ||
127 | */ | ||
128 | spinlock_t voice_lock; | ||
129 | |||
130 | struct voice voices[64]; | ||
131 | struct voice capture_voice; | ||
132 | |||
133 | /* Allocate pages to store the internal wave state during | ||
134 | * suspends. When we're operating, this can be used as a silence | ||
135 | * buffer for a timing channel. | ||
136 | */ | ||
137 | void *suspend_state[SIS_SUSPEND_PAGES]; | ||
138 | |||
139 | int silence_users; | ||
140 | dma_addr_t silence_dma_addr; | ||
141 | }; | ||
142 | |||
143 | #define SIS_PRIMARY_CODEC_PRESENT 0x0001 | ||
144 | #define SIS_SECONDARY_CODEC_PRESENT 0x0002 | ||
145 | #define SIS_TERTIARY_CODEC_PRESENT 0x0004 | ||
146 | |||
147 | /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a | ||
148 | * documented range of 8-0xfff8 samples. Given that they are 0-based, | ||
149 | * that places our period/buffer range at 9-0xfff9 samples. That makes the | ||
150 | * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and | ||
151 | * max samples / min samples gives us the max periods in a buffer. | ||
152 | * | ||
153 | * We'll add a constraint upon open that limits the period and buffer sample | ||
154 | * size to values that are legal for the hardware. | ||
155 | */ | ||
156 | static struct snd_pcm_hardware sis_playback_hw_info = { | ||
157 | .info = (SNDRV_PCM_INFO_MMAP | | ||
158 | SNDRV_PCM_INFO_MMAP_VALID | | ||
159 | SNDRV_PCM_INFO_INTERLEAVED | | ||
160 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
161 | SNDRV_PCM_INFO_SYNC_START | | ||
162 | SNDRV_PCM_INFO_RESUME), | ||
163 | .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | ||
164 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | ||
165 | .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, | ||
166 | .rate_min = 4000, | ||
167 | .rate_max = 48000, | ||
168 | .channels_min = 1, | ||
169 | .channels_max = 2, | ||
170 | .buffer_bytes_max = (0xfff9 * 4), | ||
171 | .period_bytes_min = 9, | ||
172 | .period_bytes_max = (0xfff9 * 4), | ||
173 | .periods_min = 1, | ||
174 | .periods_max = (0xfff9 / 9), | ||
175 | }; | ||
176 | |||
177 | static struct snd_pcm_hardware sis_capture_hw_info = { | ||
178 | .info = (SNDRV_PCM_INFO_MMAP | | ||
179 | SNDRV_PCM_INFO_MMAP_VALID | | ||
180 | SNDRV_PCM_INFO_INTERLEAVED | | ||
181 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
182 | SNDRV_PCM_INFO_SYNC_START | | ||
183 | SNDRV_PCM_INFO_RESUME), | ||
184 | .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | ||
185 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | ||
186 | .rates = SNDRV_PCM_RATE_48000, | ||
187 | .rate_min = 4000, | ||
188 | .rate_max = 48000, | ||
189 | .channels_min = 1, | ||
190 | .channels_max = 2, | ||
191 | .buffer_bytes_max = (0xfff9 * 4), | ||
192 | .period_bytes_min = 9, | ||
193 | .period_bytes_max = (0xfff9 * 4), | ||
194 | .periods_min = 1, | ||
195 | .periods_max = (0xfff9 / 9), | ||
196 | }; | ||
197 | |||
198 | static void sis_update_sso(struct voice *voice, u16 period) | ||
199 | { | ||
200 | void __iomem *base = voice->ctrl_base; | ||
201 | |||
202 | voice->sso += period; | ||
203 | if (voice->sso >= voice->buffer_size) | ||
204 | voice->sso -= voice->buffer_size; | ||
205 | |||
206 | /* Enforce the documented hardware minimum offset */ | ||
207 | if (voice->sso < 8) | ||
208 | voice->sso = 8; | ||
209 | |||
210 | /* The SSO is in the upper 16 bits of the register. */ | ||
211 | writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); | ||
212 | } | ||
213 | |||
214 | static void sis_update_voice(struct voice *voice) | ||
215 | { | ||
216 | if (voice->flags & VOICE_SSO_TIMING) { | ||
217 | sis_update_sso(voice, voice->period_size); | ||
218 | } else if (voice->flags & VOICE_SYNC_TIMING) { | ||
219 | int sync; | ||
220 | |||
221 | /* If we've not hit the end of the virtual period, update | ||
222 | * our records and keep going. | ||
223 | */ | ||
224 | if (voice->vperiod > voice->period_size) { | ||
225 | voice->vperiod -= voice->period_size; | ||
226 | if (voice->vperiod < voice->period_size) | ||
227 | sis_update_sso(voice, voice->vperiod); | ||
228 | else | ||
229 | sis_update_sso(voice, voice->period_size); | ||
230 | return; | ||
231 | } | ||
232 | |||
233 | /* Calculate our relative offset between the target and | ||
234 | * the actual CSO value. Since we're operating in a loop, | ||
235 | * if the value is more than half way around, we can | ||
236 | * consider ourselves wrapped. | ||
237 | */ | ||
238 | sync = voice->sync_cso; | ||
239 | sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); | ||
240 | if (sync > (voice->sync_buffer_size / 2)) | ||
241 | sync -= voice->sync_buffer_size; | ||
242 | |||
243 | /* If sync is positive, then we interrupted too early, and | ||
244 | * we'll need to come back in a few samples and try again. | ||
245 | * There's a minimum wait, as it takes some time for the DMA | ||
246 | * engine to startup, etc... | ||
247 | */ | ||
248 | if (sync > 0) { | ||
249 | if (sync < 16) | ||
250 | sync = 16; | ||
251 | sis_update_sso(voice, sync); | ||
252 | return; | ||
253 | } | ||
254 | |||
255 | /* Ok, we interrupted right on time, or (hopefully) just | ||
256 | * a bit late. We'll adjst our next waiting period based | ||
257 | * on how close we got. | ||
258 | * | ||
259 | * We need to stay just behind the actual channel to ensure | ||
260 | * it really is past a period when we get our interrupt -- | ||
261 | * otherwise we'll fall into the early code above and have | ||
262 | * a minimum wait time, which makes us quite late here, | ||
263 | * eating into the user's time to refresh the buffer, esp. | ||
264 | * if using small periods. | ||
265 | * | ||
266 | * If we're less than 9 samples behind, we're on target. | ||
267 | */ | ||
268 | if (sync > -9) | ||
269 | voice->vperiod = voice->sync_period_size + 1; | ||
270 | else | ||
271 | voice->vperiod = voice->sync_period_size - 4; | ||
272 | |||
273 | if (voice->vperiod < voice->buffer_size) { | ||
274 | sis_update_sso(voice, voice->vperiod); | ||
275 | voice->vperiod = 0; | ||
276 | } else | ||
277 | sis_update_sso(voice, voice->period_size); | ||
278 | |||
279 | sync = voice->sync_cso + voice->sync_period_size; | ||
280 | if (sync >= voice->sync_buffer_size) | ||
281 | sync -= voice->sync_buffer_size; | ||
282 | voice->sync_cso = sync; | ||
283 | } | ||
284 | |||
285 | snd_pcm_period_elapsed(voice->substream); | ||
286 | } | ||
287 | |||
288 | static void sis_voice_irq(u32 status, struct voice *voice) | ||
289 | { | ||
290 | int bit; | ||
291 | |||
292 | while (status) { | ||
293 | bit = __ffs(status); | ||
294 | status >>= bit + 1; | ||
295 | voice += bit; | ||
296 | sis_update_voice(voice); | ||
297 | voice++; | ||
298 | } | ||
299 | } | ||
300 | |||
301 | static irqreturn_t sis_interrupt(int irq, void *dev) | ||
302 | { | ||
303 | struct sis7019 *sis = dev; | ||
304 | unsigned long io = sis->ioport; | ||
305 | struct voice *voice; | ||
306 | u32 intr, status; | ||
307 | |||
308 | /* We only use the DMA interrupts, and we don't enable any other | ||
309 | * source of interrupts. But, it is possible to see an interupt | ||
310 | * status that didn't actually interrupt us, so eliminate anything | ||
311 | * we're not expecting to avoid falsely claiming an IRQ, and an | ||
312 | * ensuing endless loop. | ||
313 | */ | ||
314 | intr = inl(io + SIS_GISR); | ||
315 | intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | ||
316 | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | ||
317 | if (!intr) | ||
318 | return IRQ_NONE; | ||
319 | |||
320 | do { | ||
321 | status = inl(io + SIS_PISR_A); | ||
322 | if (status) { | ||
323 | sis_voice_irq(status, sis->voices); | ||
324 | outl(status, io + SIS_PISR_A); | ||
325 | } | ||
326 | |||
327 | status = inl(io + SIS_PISR_B); | ||
328 | if (status) { | ||
329 | sis_voice_irq(status, &sis->voices[32]); | ||
330 | outl(status, io + SIS_PISR_B); | ||
331 | } | ||
332 | |||
333 | status = inl(io + SIS_RISR); | ||
334 | if (status) { | ||
335 | voice = &sis->capture_voice; | ||
336 | if (!voice->timing) | ||
337 | snd_pcm_period_elapsed(voice->substream); | ||
338 | |||
339 | outl(status, io + SIS_RISR); | ||
340 | } | ||
341 | |||
342 | outl(intr, io + SIS_GISR); | ||
343 | intr = inl(io + SIS_GISR); | ||
344 | intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | ||
345 | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | ||
346 | } while (intr); | ||
347 | |||
348 | return IRQ_HANDLED; | ||
349 | } | ||
350 | |||
351 | static u32 sis_rate_to_delta(unsigned int rate) | ||
352 | { | ||
353 | u32 delta; | ||
354 | |||
355 | /* This was copied from the trident driver, but it seems its gotten | ||
356 | * around a bit... nevertheless, it works well. | ||
357 | * | ||
358 | * We special case 44100 and 8000 since rounding with the equation | ||
359 | * does not give us an accurate enough value. For 11025 and 22050 | ||
360 | * the equation gives us the best answer. All other frequencies will | ||
361 | * also use the equation. JDW | ||
362 | */ | ||
363 | if (rate == 44100) | ||
364 | delta = 0xeb3; | ||
365 | else if (rate == 8000) | ||
366 | delta = 0x2ab; | ||
367 | else if (rate == 48000) | ||
368 | delta = 0x1000; | ||
369 | else | ||
370 | delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; | ||
371 | return delta; | ||
372 | } | ||
373 | |||
374 | static void __sis_map_silence(struct sis7019 *sis) | ||
375 | { | ||
376 | /* Helper function: must hold sis->voice_lock on entry */ | ||
377 | if (!sis->silence_users) | ||
378 | sis->silence_dma_addr = pci_map_single(sis->pci, | ||
379 | sis->suspend_state[0], | ||
380 | 4096, PCI_DMA_TODEVICE); | ||
381 | sis->silence_users++; | ||
382 | } | ||
383 | |||
384 | static void __sis_unmap_silence(struct sis7019 *sis) | ||
385 | { | ||
386 | /* Helper function: must hold sis->voice_lock on entry */ | ||
387 | sis->silence_users--; | ||
388 | if (!sis->silence_users) | ||
389 | pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, | ||
390 | PCI_DMA_TODEVICE); | ||
391 | } | ||
392 | |||
393 | static void sis_free_voice(struct sis7019 *sis, struct voice *voice) | ||
394 | { | ||
395 | unsigned long flags; | ||
396 | |||
397 | spin_lock_irqsave(&sis->voice_lock, flags); | ||
398 | if (voice->timing) { | ||
399 | __sis_unmap_silence(sis); | ||
400 | voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | | ||
401 | VOICE_SYNC_TIMING); | ||
402 | voice->timing = NULL; | ||
403 | } | ||
404 | voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); | ||
405 | spin_unlock_irqrestore(&sis->voice_lock, flags); | ||
406 | } | ||
407 | |||
408 | static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) | ||
409 | { | ||
410 | /* Must hold the voice_lock on entry */ | ||
411 | struct voice *voice; | ||
412 | int i; | ||
413 | |||
414 | for (i = 0; i < 64; i++) { | ||
415 | voice = &sis->voices[i]; | ||
416 | if (voice->flags & VOICE_IN_USE) | ||
417 | continue; | ||
418 | voice->flags |= VOICE_IN_USE; | ||
419 | goto found_one; | ||
420 | } | ||
421 | voice = NULL; | ||
422 | |||
423 | found_one: | ||
424 | return voice; | ||
425 | } | ||
426 | |||
427 | static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) | ||
428 | { | ||
429 | struct voice *voice; | ||
430 | unsigned long flags; | ||
431 | |||
432 | spin_lock_irqsave(&sis->voice_lock, flags); | ||
433 | voice = __sis_alloc_playback_voice(sis); | ||
434 | spin_unlock_irqrestore(&sis->voice_lock, flags); | ||
435 | |||
436 | return voice; | ||
437 | } | ||
438 | |||
439 | static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, | ||
440 | struct snd_pcm_hw_params *hw_params) | ||
441 | { | ||
442 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | ||
443 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
444 | struct voice *voice = runtime->private_data; | ||
445 | unsigned int period_size, buffer_size; | ||
446 | unsigned long flags; | ||
447 | int needed; | ||
448 | |||
449 | /* If there are one or two periods per buffer, we don't need a | ||
450 | * timing voice, as we can use the capture channel's interrupts | ||
451 | * to clock out the periods. | ||
452 | */ | ||
453 | period_size = params_period_size(hw_params); | ||
454 | buffer_size = params_buffer_size(hw_params); | ||
455 | needed = (period_size != buffer_size && | ||
456 | period_size != (buffer_size / 2)); | ||
457 | |||
458 | if (needed && !voice->timing) { | ||
459 | spin_lock_irqsave(&sis->voice_lock, flags); | ||
460 | voice->timing = __sis_alloc_playback_voice(sis); | ||
461 | if (voice->timing) | ||
462 | __sis_map_silence(sis); | ||
463 | spin_unlock_irqrestore(&sis->voice_lock, flags); | ||
464 | if (!voice->timing) | ||
465 | return -ENOMEM; | ||
466 | voice->timing->substream = substream; | ||
467 | } else if (!needed && voice->timing) { | ||
468 | sis_free_voice(sis, voice); | ||
469 | voice->timing = NULL; | ||
470 | } | ||
471 | |||
472 | return 0; | ||
473 | } | ||
474 | |||
475 | static int sis_playback_open(struct snd_pcm_substream *substream) | ||
476 | { | ||
477 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | ||
478 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
479 | struct voice *voice; | ||
480 | |||
481 | voice = sis_alloc_playback_voice(sis); | ||
482 | if (!voice) | ||
483 | return -EAGAIN; | ||
484 | |||
485 | voice->substream = substream; | ||
486 | runtime->private_data = voice; | ||
487 | runtime->hw = sis_playback_hw_info; | ||
488 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | ||
489 | 9, 0xfff9); | ||
490 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | ||
491 | 9, 0xfff9); | ||
492 | snd_pcm_set_sync(substream); | ||
493 | return 0; | ||
494 | } | ||
495 | |||
496 | static int sis_substream_close(struct snd_pcm_substream *substream) | ||
497 | { | ||
498 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | ||
499 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
500 | struct voice *voice = runtime->private_data; | ||
501 | |||
502 | sis_free_voice(sis, voice); | ||
503 | return 0; | ||
504 | } | ||
505 | |||
506 | static int sis_playback_hw_params(struct snd_pcm_substream *substream, | ||
507 | struct snd_pcm_hw_params *hw_params) | ||
508 | { | ||
509 | return snd_pcm_lib_malloc_pages(substream, | ||
510 | params_buffer_bytes(hw_params)); | ||
511 | } | ||
512 | |||
513 | static int sis_hw_free(struct snd_pcm_substream *substream) | ||
514 | { | ||
515 | return snd_pcm_lib_free_pages(substream); | ||
516 | } | ||
517 | |||
518 | static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) | ||
519 | { | ||
520 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
521 | struct voice *voice = runtime->private_data; | ||
522 | void __iomem *ctrl_base = voice->ctrl_base; | ||
523 | void __iomem *wave_base = voice->wave_base; | ||
524 | u32 format, dma_addr, control, sso_eso, delta, reg; | ||
525 | u16 leo; | ||
526 | |||
527 | /* We rely on the PCM core to ensure that the parameters for this | ||
528 | * substream do not change on us while we're programming the HW. | ||
529 | */ | ||
530 | format = 0; | ||
531 | if (snd_pcm_format_width(runtime->format) == 8) | ||
532 | format |= SIS_PLAY_DMA_FORMAT_8BIT; | ||
533 | if (!snd_pcm_format_signed(runtime->format)) | ||
534 | format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; | ||
535 | if (runtime->channels == 1) | ||
536 | format |= SIS_PLAY_DMA_FORMAT_MONO; | ||
537 | |||
538 | /* The baseline setup is for a single period per buffer, and | ||
539 | * we add bells and whistles as needed from there. | ||
540 | */ | ||
541 | dma_addr = runtime->dma_addr; | ||
542 | leo = runtime->buffer_size - 1; | ||
543 | control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; | ||
544 | sso_eso = leo; | ||
545 | |||
546 | if (runtime->period_size == (runtime->buffer_size / 2)) { | ||
547 | control |= SIS_PLAY_DMA_INTR_AT_MLP; | ||
548 | } else if (runtime->period_size != runtime->buffer_size) { | ||
549 | voice->flags |= VOICE_SSO_TIMING; | ||
550 | voice->sso = runtime->period_size - 1; | ||
551 | voice->period_size = runtime->period_size; | ||
552 | voice->buffer_size = runtime->buffer_size; | ||
553 | |||
554 | control &= ~SIS_PLAY_DMA_INTR_AT_LEO; | ||
555 | control |= SIS_PLAY_DMA_INTR_AT_SSO; | ||
556 | sso_eso |= (runtime->period_size - 1) << 16; | ||
557 | } | ||
558 | |||
559 | delta = sis_rate_to_delta(runtime->rate); | ||
560 | |||
561 | /* Ok, we're ready to go, set up the channel. | ||
562 | */ | ||
563 | writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | ||
564 | writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); | ||
565 | writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); | ||
566 | writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); | ||
567 | |||
568 | for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | ||
569 | writel(0, wave_base + reg); | ||
570 | |||
571 | writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | ||
572 | writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | ||
573 | writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | ||
574 | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | ||
575 | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | ||
576 | wave_base + SIS_WAVE_CHANNEL_CONTROL); | ||
577 | |||
578 | /* Force PCI writes to post. */ | ||
579 | readl(ctrl_base); | ||
580 | |||
581 | return 0; | ||
582 | } | ||
583 | |||
584 | static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) | ||
585 | { | ||
586 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | ||
587 | unsigned long io = sis->ioport; | ||
588 | struct snd_pcm_substream *s; | ||
589 | struct voice *voice; | ||
590 | void *chip; | ||
591 | int starting; | ||
592 | u32 record = 0; | ||
593 | u32 play[2] = { 0, 0 }; | ||
594 | |||
595 | /* No locks needed, as the PCM core will hold the locks on the | ||
596 | * substreams, and the HW will only start/stop the indicated voices | ||
597 | * without changing the state of the others. | ||
598 | */ | ||
599 | switch (cmd) { | ||
600 | case SNDRV_PCM_TRIGGER_START: | ||
601 | case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: | ||
602 | case SNDRV_PCM_TRIGGER_RESUME: | ||
603 | starting = 1; | ||
604 | break; | ||
605 | case SNDRV_PCM_TRIGGER_STOP: | ||
606 | case SNDRV_PCM_TRIGGER_PAUSE_PUSH: | ||
607 | case SNDRV_PCM_TRIGGER_SUSPEND: | ||
608 | starting = 0; | ||
609 | break; | ||
610 | default: | ||
611 | return -EINVAL; | ||
612 | } | ||
613 | |||
614 | snd_pcm_group_for_each_entry(s, substream) { | ||
615 | /* Make sure it is for us... */ | ||
616 | chip = snd_pcm_substream_chip(s); | ||
617 | if (chip != sis) | ||
618 | continue; | ||
619 | |||
620 | voice = s->runtime->private_data; | ||
621 | if (voice->flags & VOICE_CAPTURE) { | ||
622 | record |= 1 << voice->num; | ||
623 | voice = voice->timing; | ||
624 | } | ||
625 | |||
626 | /* voice could be NULL if this a recording stream, and it | ||
627 | * doesn't have an external timing channel. | ||
628 | */ | ||
629 | if (voice) | ||
630 | play[voice->num / 32] |= 1 << (voice->num & 0x1f); | ||
631 | |||
632 | snd_pcm_trigger_done(s, substream); | ||
633 | } | ||
634 | |||
635 | if (starting) { | ||
636 | if (record) | ||
637 | outl(record, io + SIS_RECORD_START_REG); | ||
638 | if (play[0]) | ||
639 | outl(play[0], io + SIS_PLAY_START_A_REG); | ||
640 | if (play[1]) | ||
641 | outl(play[1], io + SIS_PLAY_START_B_REG); | ||
642 | } else { | ||
643 | if (record) | ||
644 | outl(record, io + SIS_RECORD_STOP_REG); | ||
645 | if (play[0]) | ||
646 | outl(play[0], io + SIS_PLAY_STOP_A_REG); | ||
647 | if (play[1]) | ||
648 | outl(play[1], io + SIS_PLAY_STOP_B_REG); | ||
649 | } | ||
650 | return 0; | ||
651 | } | ||
652 | |||
653 | static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) | ||
654 | { | ||
655 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
656 | struct voice *voice = runtime->private_data; | ||
657 | u32 cso; | ||
658 | |||
659 | cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | ||
660 | cso &= 0xffff; | ||
661 | return cso; | ||
662 | } | ||
663 | |||
664 | static int sis_capture_open(struct snd_pcm_substream *substream) | ||
665 | { | ||
666 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | ||
667 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
668 | struct voice *voice = &sis->capture_voice; | ||
669 | unsigned long flags; | ||
670 | |||
671 | /* FIXME: The driver only supports recording from one channel | ||
672 | * at the moment, but it could support more. | ||
673 | */ | ||
674 | spin_lock_irqsave(&sis->voice_lock, flags); | ||
675 | if (voice->flags & VOICE_IN_USE) | ||
676 | voice = NULL; | ||
677 | else | ||
678 | voice->flags |= VOICE_IN_USE; | ||
679 | spin_unlock_irqrestore(&sis->voice_lock, flags); | ||
680 | |||
681 | if (!voice) | ||
682 | return -EAGAIN; | ||
683 | |||
684 | voice->substream = substream; | ||
685 | runtime->private_data = voice; | ||
686 | runtime->hw = sis_capture_hw_info; | ||
687 | runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; | ||
688 | snd_pcm_limit_hw_rates(runtime); | ||
689 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | ||
690 | 9, 0xfff9); | ||
691 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | ||
692 | 9, 0xfff9); | ||
693 | snd_pcm_set_sync(substream); | ||
694 | return 0; | ||
695 | } | ||
696 | |||
697 | static int sis_capture_hw_params(struct snd_pcm_substream *substream, | ||
698 | struct snd_pcm_hw_params *hw_params) | ||
699 | { | ||
700 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | ||
701 | int rc; | ||
702 | |||
703 | rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, | ||
704 | params_rate(hw_params)); | ||
705 | if (rc) | ||
706 | goto out; | ||
707 | |||
708 | rc = snd_pcm_lib_malloc_pages(substream, | ||
709 | params_buffer_bytes(hw_params)); | ||
710 | if (rc < 0) | ||
711 | goto out; | ||
712 | |||
713 | rc = sis_alloc_timing_voice(substream, hw_params); | ||
714 | |||
715 | out: | ||
716 | return rc; | ||
717 | } | ||
718 | |||
719 | static void sis_prepare_timing_voice(struct voice *voice, | ||
720 | struct snd_pcm_substream *substream) | ||
721 | { | ||
722 | struct sis7019 *sis = snd_pcm_substream_chip(substream); | ||
723 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
724 | struct voice *timing = voice->timing; | ||
725 | void __iomem *play_base = timing->ctrl_base; | ||
726 | void __iomem *wave_base = timing->wave_base; | ||
727 | u16 buffer_size, period_size; | ||
728 | u32 format, control, sso_eso, delta; | ||
729 | u32 vperiod, sso, reg; | ||
730 | |||
731 | /* Set our initial buffer and period as large as we can given a | ||
732 | * single page of silence. | ||
733 | */ | ||
734 | buffer_size = 4096 / runtime->channels; | ||
735 | buffer_size /= snd_pcm_format_size(runtime->format, 1); | ||
736 | period_size = buffer_size; | ||
737 | |||
738 | /* Initially, we want to interrupt just a bit behind the end of | ||
739 | * the period we're clocking out. 10 samples seems to give a good | ||
740 | * delay. | ||
741 | * | ||
742 | * We want to spread our interrupts throughout the virtual period, | ||
743 | * so that we don't end up with two interrupts back to back at the | ||
744 | * end -- this helps minimize the effects of any jitter. Adjust our | ||
745 | * clocking period size so that the last period is at least a fourth | ||
746 | * of a full period. | ||
747 | * | ||
748 | * This is all moot if we don't need to use virtual periods. | ||
749 | */ | ||
750 | vperiod = runtime->period_size + 10; | ||
751 | if (vperiod > period_size) { | ||
752 | u16 tail = vperiod % period_size; | ||
753 | u16 quarter_period = period_size / 4; | ||
754 | |||
755 | if (tail && tail < quarter_period) { | ||
756 | u16 loops = vperiod / period_size; | ||
757 | |||
758 | tail = quarter_period - tail; | ||
759 | tail += loops - 1; | ||
760 | tail /= loops; | ||
761 | period_size -= tail; | ||
762 | } | ||
763 | |||
764 | sso = period_size - 1; | ||
765 | } else { | ||
766 | /* The initial period will fit inside the buffer, so we | ||
767 | * don't need to use virtual periods -- disable them. | ||
768 | */ | ||
769 | period_size = runtime->period_size; | ||
770 | sso = vperiod - 1; | ||
771 | vperiod = 0; | ||
772 | } | ||
773 | |||
774 | /* The interrupt handler implements the timing syncronization, so | ||
775 | * setup its state. | ||
776 | */ | ||
777 | timing->flags |= VOICE_SYNC_TIMING; | ||
778 | timing->sync_base = voice->ctrl_base; | ||
779 | timing->sync_cso = runtime->period_size - 1; | ||
780 | timing->sync_period_size = runtime->period_size; | ||
781 | timing->sync_buffer_size = runtime->buffer_size; | ||
782 | timing->period_size = period_size; | ||
783 | timing->buffer_size = buffer_size; | ||
784 | timing->sso = sso; | ||
785 | timing->vperiod = vperiod; | ||
786 | |||
787 | /* Using unsigned samples with the all-zero silence buffer | ||
788 | * forces the output to the lower rail, killing playback. | ||
789 | * So ignore unsigned vs signed -- it doesn't change the timing. | ||
790 | */ | ||
791 | format = 0; | ||
792 | if (snd_pcm_format_width(runtime->format) == 8) | ||
793 | format = SIS_CAPTURE_DMA_FORMAT_8BIT; | ||
794 | if (runtime->channels == 1) | ||
795 | format |= SIS_CAPTURE_DMA_FORMAT_MONO; | ||
796 | |||
797 | control = timing->buffer_size - 1; | ||
798 | control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; | ||
799 | sso_eso = timing->buffer_size - 1; | ||
800 | sso_eso |= timing->sso << 16; | ||
801 | |||
802 | delta = sis_rate_to_delta(runtime->rate); | ||
803 | |||
804 | /* We've done the math, now configure the channel. | ||
805 | */ | ||
806 | writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); | ||
807 | writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); | ||
808 | writel(control, play_base + SIS_PLAY_DMA_CONTROL); | ||
809 | writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); | ||
810 | |||
811 | for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | ||
812 | writel(0, wave_base + reg); | ||
813 | |||
814 | writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | ||
815 | writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | ||
816 | writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | ||
817 | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | ||
818 | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | ||
819 | wave_base + SIS_WAVE_CHANNEL_CONTROL); | ||
820 | } | ||
821 | |||
822 | static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) | ||
823 | { | ||
824 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
825 | struct voice *voice = runtime->private_data; | ||
826 | void __iomem *rec_base = voice->ctrl_base; | ||
827 | u32 format, dma_addr, control; | ||
828 | u16 leo; | ||
829 | |||
830 | /* We rely on the PCM core to ensure that the parameters for this | ||
831 | * substream do not change on us while we're programming the HW. | ||
832 | */ | ||
833 | format = 0; | ||
834 | if (snd_pcm_format_width(runtime->format) == 8) | ||
835 | format = SIS_CAPTURE_DMA_FORMAT_8BIT; | ||
836 | if (!snd_pcm_format_signed(runtime->format)) | ||
837 | format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; | ||
838 | if (runtime->channels == 1) | ||
839 | format |= SIS_CAPTURE_DMA_FORMAT_MONO; | ||
840 | |||
841 | dma_addr = runtime->dma_addr; | ||
842 | leo = runtime->buffer_size - 1; | ||
843 | control = leo | SIS_CAPTURE_DMA_LOOP; | ||
844 | |||
845 | /* If we've got more than two periods per buffer, then we have | ||
846 | * use a timing voice to clock out the periods. Otherwise, we can | ||
847 | * use the capture channel's interrupts. | ||
848 | */ | ||
849 | if (voice->timing) { | ||
850 | sis_prepare_timing_voice(voice, substream); | ||
851 | } else { | ||
852 | control |= SIS_CAPTURE_DMA_INTR_AT_LEO; | ||
853 | if (runtime->period_size != runtime->buffer_size) | ||
854 | control |= SIS_CAPTURE_DMA_INTR_AT_MLP; | ||
855 | } | ||
856 | |||
857 | writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); | ||
858 | writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); | ||
859 | writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); | ||
860 | |||
861 | /* Force the writes to post. */ | ||
862 | readl(rec_base); | ||
863 | |||
864 | return 0; | ||
865 | } | ||
866 | |||
867 | static struct snd_pcm_ops sis_playback_ops = { | ||
868 | .open = sis_playback_open, | ||
869 | .close = sis_substream_close, | ||
870 | .ioctl = snd_pcm_lib_ioctl, | ||
871 | .hw_params = sis_playback_hw_params, | ||
872 | .hw_free = sis_hw_free, | ||
873 | .prepare = sis_pcm_playback_prepare, | ||
874 | .trigger = sis_pcm_trigger, | ||
875 | .pointer = sis_pcm_pointer, | ||
876 | }; | ||
877 | |||
878 | static struct snd_pcm_ops sis_capture_ops = { | ||
879 | .open = sis_capture_open, | ||
880 | .close = sis_substream_close, | ||
881 | .ioctl = snd_pcm_lib_ioctl, | ||
882 | .hw_params = sis_capture_hw_params, | ||
883 | .hw_free = sis_hw_free, | ||
884 | .prepare = sis_pcm_capture_prepare, | ||
885 | .trigger = sis_pcm_trigger, | ||
886 | .pointer = sis_pcm_pointer, | ||
887 | }; | ||
888 | |||
889 | static int __devinit sis_pcm_create(struct sis7019 *sis) | ||
890 | { | ||
891 | struct snd_pcm *pcm; | ||
892 | int rc; | ||
893 | |||
894 | /* We have 64 voices, and the driver currently records from | ||
895 | * only one channel, though that could change in the future. | ||
896 | */ | ||
897 | rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); | ||
898 | if (rc) | ||
899 | return rc; | ||
900 | |||
901 | pcm->private_data = sis; | ||
902 | strcpy(pcm->name, "SiS7019"); | ||
903 | sis->pcm = pcm; | ||
904 | |||
905 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); | ||
906 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); | ||
907 | |||
908 | /* Try to preallocate some memory, but it's not the end of the | ||
909 | * world if this fails. | ||
910 | */ | ||
911 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | ||
912 | snd_dma_pci_data(sis->pci), 64*1024, 128*1024); | ||
913 | |||
914 | return 0; | ||
915 | } | ||
916 | |||
917 | static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) | ||
918 | { | ||
919 | unsigned long io = sis->ioport; | ||
920 | unsigned short val = 0xffff; | ||
921 | u16 status; | ||
922 | u16 rdy; | ||
923 | int count; | ||
924 | const static u16 codec_ready[3] = { | ||
925 | SIS_AC97_STATUS_CODEC_READY, | ||
926 | SIS_AC97_STATUS_CODEC2_READY, | ||
927 | SIS_AC97_STATUS_CODEC3_READY, | ||
928 | }; | ||
929 | |||
930 | rdy = codec_ready[codec]; | ||
931 | |||
932 | |||
933 | /* Get the AC97 semaphore -- software first, so we don't spin | ||
934 | * pounding out IO reads on the hardware semaphore... | ||
935 | */ | ||
936 | mutex_lock(&sis->ac97_mutex); | ||
937 | |||
938 | count = 0xffff; | ||
939 | while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | ||
940 | udelay(1); | ||
941 | |||
942 | if (!count) | ||
943 | goto timeout; | ||
944 | |||
945 | /* ... and wait for any outstanding commands to complete ... | ||
946 | */ | ||
947 | count = 0xffff; | ||
948 | do { | ||
949 | status = inw(io + SIS_AC97_STATUS); | ||
950 | if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) | ||
951 | break; | ||
952 | |||
953 | udelay(1); | ||
954 | } while (--count); | ||
955 | |||
956 | if (!count) | ||
957 | goto timeout_sema; | ||
958 | |||
959 | /* ... before sending our command and waiting for it to finish ... | ||
960 | */ | ||
961 | outl(cmd, io + SIS_AC97_CMD); | ||
962 | udelay(10); | ||
963 | |||
964 | count = 0xffff; | ||
965 | while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | ||
966 | udelay(1); | ||
967 | |||
968 | /* ... and reading the results (if any). | ||
969 | */ | ||
970 | val = inl(io + SIS_AC97_CMD) >> 16; | ||
971 | |||
972 | timeout_sema: | ||
973 | outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | ||
974 | timeout: | ||
975 | mutex_unlock(&sis->ac97_mutex); | ||
976 | |||
977 | if (!count) { | ||
978 | printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n", | ||
979 | codec, cmd); | ||
980 | } | ||
981 | |||
982 | return val; | ||
983 | } | ||
984 | |||
985 | static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, | ||
986 | unsigned short val) | ||
987 | { | ||
988 | const static u32 cmd[3] = { | ||
989 | SIS_AC97_CMD_CODEC_WRITE, | ||
990 | SIS_AC97_CMD_CODEC2_WRITE, | ||
991 | SIS_AC97_CMD_CODEC3_WRITE, | ||
992 | }; | ||
993 | sis_ac97_rw(ac97->private_data, ac97->num, | ||
994 | (val << 16) | (reg << 8) | cmd[ac97->num]); | ||
995 | } | ||
996 | |||
997 | static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) | ||
998 | { | ||
999 | const static u32 cmd[3] = { | ||
1000 | SIS_AC97_CMD_CODEC_READ, | ||
1001 | SIS_AC97_CMD_CODEC2_READ, | ||
1002 | SIS_AC97_CMD_CODEC3_READ, | ||
1003 | }; | ||
1004 | return sis_ac97_rw(ac97->private_data, ac97->num, | ||
1005 | (reg << 8) | cmd[ac97->num]); | ||
1006 | } | ||
1007 | |||
1008 | static int __devinit sis_mixer_create(struct sis7019 *sis) | ||
1009 | { | ||
1010 | struct snd_ac97_bus *bus; | ||
1011 | struct snd_ac97_template ac97; | ||
1012 | static struct snd_ac97_bus_ops ops = { | ||
1013 | .write = sis_ac97_write, | ||
1014 | .read = sis_ac97_read, | ||
1015 | }; | ||
1016 | int rc; | ||
1017 | |||
1018 | memset(&ac97, 0, sizeof(ac97)); | ||
1019 | ac97.private_data = sis; | ||
1020 | |||
1021 | rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); | ||
1022 | if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | ||
1023 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); | ||
1024 | ac97.num = 1; | ||
1025 | if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) | ||
1026 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); | ||
1027 | ac97.num = 2; | ||
1028 | if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) | ||
1029 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); | ||
1030 | |||
1031 | /* If we return an error here, then snd_card_free() should | ||
1032 | * free up any ac97 codecs that got created, as well as the bus. | ||
1033 | */ | ||
1034 | return rc; | ||
1035 | } | ||
1036 | |||
1037 | static void sis_free_suspend(struct sis7019 *sis) | ||
1038 | { | ||
1039 | int i; | ||
1040 | |||
1041 | for (i = 0; i < SIS_SUSPEND_PAGES; i++) | ||
1042 | kfree(sis->suspend_state[i]); | ||
1043 | } | ||
1044 | |||
1045 | static int sis_chip_free(struct sis7019 *sis) | ||
1046 | { | ||
1047 | /* Reset the chip, and disable all interrputs. | ||
1048 | */ | ||
1049 | outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); | ||
1050 | udelay(10); | ||
1051 | outl(0, sis->ioport + SIS_GCR); | ||
1052 | outl(0, sis->ioport + SIS_GIER); | ||
1053 | |||
1054 | /* Now, free everything we allocated. | ||
1055 | */ | ||
1056 | if (sis->irq >= 0) | ||
1057 | free_irq(sis->irq, sis); | ||
1058 | |||
1059 | if (sis->ioaddr) | ||
1060 | iounmap(sis->ioaddr); | ||
1061 | |||
1062 | pci_release_regions(sis->pci); | ||
1063 | pci_disable_device(sis->pci); | ||
1064 | |||
1065 | sis_free_suspend(sis); | ||
1066 | return 0; | ||
1067 | } | ||
1068 | |||
1069 | static int sis_dev_free(struct snd_device *dev) | ||
1070 | { | ||
1071 | struct sis7019 *sis = dev->device_data; | ||
1072 | return sis_chip_free(sis); | ||
1073 | } | ||
1074 | |||
1075 | static int sis_chip_init(struct sis7019 *sis) | ||
1076 | { | ||
1077 | unsigned long io = sis->ioport; | ||
1078 | void __iomem *ioaddr = sis->ioaddr; | ||
1079 | u16 status; | ||
1080 | int count; | ||
1081 | int i; | ||
1082 | |||
1083 | /* Reset the audio controller | ||
1084 | */ | ||
1085 | outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); | ||
1086 | udelay(10); | ||
1087 | outl(0, io + SIS_GCR); | ||
1088 | |||
1089 | /* Get the AC-link semaphore, and reset the codecs | ||
1090 | */ | ||
1091 | count = 0xffff; | ||
1092 | while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | ||
1093 | udelay(1); | ||
1094 | |||
1095 | if (!count) | ||
1096 | return -EIO; | ||
1097 | |||
1098 | outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); | ||
1099 | udelay(10); | ||
1100 | |||
1101 | count = 0xffff; | ||
1102 | while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | ||
1103 | udelay(1); | ||
1104 | |||
1105 | /* Now that we've finished the reset, find out what's attached. | ||
1106 | */ | ||
1107 | status = inl(io + SIS_AC97_STATUS); | ||
1108 | if (status & SIS_AC97_STATUS_CODEC_READY) | ||
1109 | sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; | ||
1110 | if (status & SIS_AC97_STATUS_CODEC2_READY) | ||
1111 | sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; | ||
1112 | if (status & SIS_AC97_STATUS_CODEC3_READY) | ||
1113 | sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; | ||
1114 | |||
1115 | /* All done, let go of the semaphore, and check for errors | ||
1116 | */ | ||
1117 | outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | ||
1118 | if (!sis->codecs_present || !count) | ||
1119 | return -EIO; | ||
1120 | |||
1121 | /* Let the hardware know that the audio driver is alive, | ||
1122 | * and enable PCM slots on the AC-link for L/R playback (3 & 4) and | ||
1123 | * record channels. We're going to want to use Variable Rate Audio | ||
1124 | * for recording, to avoid needlessly resampling from 48kHZ. | ||
1125 | */ | ||
1126 | outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); | ||
1127 | outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | | ||
1128 | SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | | ||
1129 | SIS_AC97_CONF_PCM_CAP_LR_ENABLE | | ||
1130 | SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); | ||
1131 | |||
1132 | /* All AC97 PCM slots should be sourced from sub-mixer 0. | ||
1133 | */ | ||
1134 | outl(0, io + SIS_AC97_PSR); | ||
1135 | |||
1136 | /* There is only one valid DMA setup for a PCI environment. | ||
1137 | */ | ||
1138 | outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); | ||
1139 | |||
1140 | /* Reset the syncronization groups for all of the channels | ||
1141 | * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc. | ||
1142 | * we'll need to change how we handle these. Until then, we just | ||
1143 | * assign sub-mixer 0 to all playback channels, and avoid any | ||
1144 | * attenuation on the audio. | ||
1145 | */ | ||
1146 | outl(0, io + SIS_PLAY_SYNC_GROUP_A); | ||
1147 | outl(0, io + SIS_PLAY_SYNC_GROUP_B); | ||
1148 | outl(0, io + SIS_PLAY_SYNC_GROUP_C); | ||
1149 | outl(0, io + SIS_PLAY_SYNC_GROUP_D); | ||
1150 | outl(0, io + SIS_MIXER_SYNC_GROUP); | ||
1151 | |||
1152 | for (i = 0; i < 64; i++) { | ||
1153 | writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); | ||
1154 | writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | | ||
1155 | SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); | ||
1156 | } | ||
1157 | |||
1158 | /* Don't attenuate any audio set for the wave amplifier. | ||
1159 | * | ||
1160 | * FIXME: Maximum attenuation is set for the music amp, which will | ||
1161 | * need to change if we start using the synth engine. | ||
1162 | */ | ||
1163 | outl(0xffff0000, io + SIS_WEVCR); | ||
1164 | |||
1165 | /* Ensure that the wave engine is in normal operating mode. | ||
1166 | */ | ||
1167 | outl(0, io + SIS_WECCR); | ||
1168 | |||
1169 | /* Go ahead and enable the DMA interrupts. They won't go live | ||
1170 | * until we start a channel. | ||
1171 | */ | ||
1172 | outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | | ||
1173 | SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); | ||
1174 | |||
1175 | return 0; | ||
1176 | } | ||
1177 | |||
1178 | #ifdef CONFIG_PM | ||
1179 | static int sis_suspend(struct pci_dev *pci, pm_message_t state) | ||
1180 | { | ||
1181 | struct snd_card *card = pci_get_drvdata(pci); | ||
1182 | struct sis7019 *sis = card->private_data; | ||
1183 | void __iomem *ioaddr = sis->ioaddr; | ||
1184 | int i; | ||
1185 | |||
1186 | snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); | ||
1187 | snd_pcm_suspend_all(sis->pcm); | ||
1188 | if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | ||
1189 | snd_ac97_suspend(sis->ac97[0]); | ||
1190 | if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | ||
1191 | snd_ac97_suspend(sis->ac97[1]); | ||
1192 | if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | ||
1193 | snd_ac97_suspend(sis->ac97[2]); | ||
1194 | |||
1195 | /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. | ||
1196 | */ | ||
1197 | if (sis->irq >= 0) { | ||
1198 | synchronize_irq(sis->irq); | ||
1199 | free_irq(sis->irq, sis); | ||
1200 | sis->irq = -1; | ||
1201 | } | ||
1202 | |||
1203 | /* Save the internal state away | ||
1204 | */ | ||
1205 | for (i = 0; i < 4; i++) { | ||
1206 | memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); | ||
1207 | ioaddr += 4096; | ||
1208 | } | ||
1209 | |||
1210 | pci_disable_device(pci); | ||
1211 | pci_save_state(pci); | ||
1212 | pci_set_power_state(pci, pci_choose_state(pci, state)); | ||
1213 | return 0; | ||
1214 | } | ||
1215 | |||
1216 | static int sis_resume(struct pci_dev *pci) | ||
1217 | { | ||
1218 | struct snd_card *card = pci_get_drvdata(pci); | ||
1219 | struct sis7019 *sis = card->private_data; | ||
1220 | void __iomem *ioaddr = sis->ioaddr; | ||
1221 | int i; | ||
1222 | |||
1223 | pci_set_power_state(pci, PCI_D0); | ||
1224 | pci_restore_state(pci); | ||
1225 | |||
1226 | if (pci_enable_device(pci) < 0) { | ||
1227 | printk(KERN_ERR "sis7019: unable to re-enable device\n"); | ||
1228 | goto error; | ||
1229 | } | ||
1230 | |||
1231 | if (sis_chip_init(sis)) { | ||
1232 | printk(KERN_ERR "sis7019: unable to re-init controller\n"); | ||
1233 | goto error; | ||
1234 | } | ||
1235 | |||
1236 | if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, | ||
1237 | card->shortname, sis)) { | ||
1238 | printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq); | ||
1239 | goto error; | ||
1240 | } | ||
1241 | |||
1242 | /* Restore saved state, then clear out the page we use for the | ||
1243 | * silence buffer. | ||
1244 | */ | ||
1245 | for (i = 0; i < 4; i++) { | ||
1246 | memcpy_toio(ioaddr, sis->suspend_state[i], 4096); | ||
1247 | ioaddr += 4096; | ||
1248 | } | ||
1249 | |||
1250 | memset(sis->suspend_state[0], 0, 4096); | ||
1251 | |||
1252 | sis->irq = pci->irq; | ||
1253 | pci_set_master(pci); | ||
1254 | |||
1255 | if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | ||
1256 | snd_ac97_resume(sis->ac97[0]); | ||
1257 | if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | ||
1258 | snd_ac97_resume(sis->ac97[1]); | ||
1259 | if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | ||
1260 | snd_ac97_resume(sis->ac97[2]); | ||
1261 | |||
1262 | snd_power_change_state(card, SNDRV_CTL_POWER_D0); | ||
1263 | return 0; | ||
1264 | |||
1265 | error: | ||
1266 | snd_card_disconnect(card); | ||
1267 | return -EIO; | ||
1268 | } | ||
1269 | #endif /* CONFIG_PM */ | ||
1270 | |||
1271 | static int sis_alloc_suspend(struct sis7019 *sis) | ||
1272 | { | ||
1273 | int i; | ||
1274 | |||
1275 | /* We need 16K to store the internal wave engine state during a | ||
1276 | * suspend, but we don't need it to be contiguous, so play nice | ||
1277 | * with the memory system. We'll also use this area for a silence | ||
1278 | * buffer. | ||
1279 | */ | ||
1280 | for (i = 0; i < SIS_SUSPEND_PAGES; i++) { | ||
1281 | sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); | ||
1282 | if (!sis->suspend_state[i]) | ||
1283 | return -ENOMEM; | ||
1284 | } | ||
1285 | memset(sis->suspend_state[0], 0, 4096); | ||
1286 | |||
1287 | return 0; | ||
1288 | } | ||
1289 | |||
1290 | static int __devinit sis_chip_create(struct snd_card *card, | ||
1291 | struct pci_dev *pci) | ||
1292 | { | ||
1293 | struct sis7019 *sis = card->private_data; | ||
1294 | struct voice *voice; | ||
1295 | static struct snd_device_ops ops = { | ||
1296 | .dev_free = sis_dev_free, | ||
1297 | }; | ||
1298 | int rc; | ||
1299 | int i; | ||
1300 | |||
1301 | rc = pci_enable_device(pci); | ||
1302 | if (rc) | ||
1303 | goto error_out; | ||
1304 | |||
1305 | if (pci_set_dma_mask(pci, DMA_30BIT_MASK) < 0) { | ||
1306 | printk(KERN_ERR "sis7019: architecture does not support " | ||
1307 | "30-bit PCI busmaster DMA"); | ||
1308 | goto error_out_enabled; | ||
1309 | } | ||
1310 | |||
1311 | memset(sis, 0, sizeof(*sis)); | ||
1312 | mutex_init(&sis->ac97_mutex); | ||
1313 | spin_lock_init(&sis->voice_lock); | ||
1314 | sis->card = card; | ||
1315 | sis->pci = pci; | ||
1316 | sis->irq = -1; | ||
1317 | sis->ioport = pci_resource_start(pci, 0); | ||
1318 | |||
1319 | rc = pci_request_regions(pci, "SiS7019"); | ||
1320 | if (rc) { | ||
1321 | printk(KERN_ERR "sis7019: unable request regions\n"); | ||
1322 | goto error_out_enabled; | ||
1323 | } | ||
1324 | |||
1325 | rc = -EIO; | ||
1326 | sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); | ||
1327 | if (!sis->ioaddr) { | ||
1328 | printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n"); | ||
1329 | goto error_out_cleanup; | ||
1330 | } | ||
1331 | |||
1332 | rc = sis_alloc_suspend(sis); | ||
1333 | if (rc < 0) { | ||
1334 | printk(KERN_ERR "sis7019: unable to allocate state storage\n"); | ||
1335 | goto error_out_cleanup; | ||
1336 | } | ||
1337 | |||
1338 | rc = sis_chip_init(sis); | ||
1339 | if (rc) | ||
1340 | goto error_out_cleanup; | ||
1341 | |||
1342 | if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, | ||
1343 | card->shortname, sis)) { | ||
1344 | printk(KERN_ERR "unable to allocate irq %d\n", sis->irq); | ||
1345 | goto error_out_cleanup; | ||
1346 | } | ||
1347 | |||
1348 | sis->irq = pci->irq; | ||
1349 | pci_set_master(pci); | ||
1350 | |||
1351 | for (i = 0; i < 64; i++) { | ||
1352 | voice = &sis->voices[i]; | ||
1353 | voice->num = i; | ||
1354 | voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); | ||
1355 | voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); | ||
1356 | } | ||
1357 | |||
1358 | voice = &sis->capture_voice; | ||
1359 | voice->flags = VOICE_CAPTURE; | ||
1360 | voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; | ||
1361 | voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); | ||
1362 | |||
1363 | rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); | ||
1364 | if (rc) | ||
1365 | goto error_out_cleanup; | ||
1366 | |||
1367 | snd_card_set_dev(card, &pci->dev); | ||
1368 | |||
1369 | return 0; | ||
1370 | |||
1371 | error_out_cleanup: | ||
1372 | sis_chip_free(sis); | ||
1373 | |||
1374 | error_out_enabled: | ||
1375 | pci_disable_device(pci); | ||
1376 | |||
1377 | error_out: | ||
1378 | return rc; | ||
1379 | } | ||
1380 | |||
1381 | static int __devinit snd_sis7019_probe(struct pci_dev *pci, | ||
1382 | const struct pci_device_id *pci_id) | ||
1383 | { | ||
1384 | struct snd_card *card; | ||
1385 | struct sis7019 *sis; | ||
1386 | int rc; | ||
1387 | |||
1388 | rc = -ENOENT; | ||
1389 | if (!enable) | ||
1390 | goto error_out; | ||
1391 | |||
1392 | rc = -ENOMEM; | ||
1393 | card = snd_card_new(index, id, THIS_MODULE, sizeof(*sis)); | ||
1394 | if (!card) | ||
1395 | goto error_out; | ||
1396 | |||
1397 | strcpy(card->driver, "SiS7019"); | ||
1398 | strcpy(card->shortname, "SiS7019"); | ||
1399 | rc = sis_chip_create(card, pci); | ||
1400 | if (rc) | ||
1401 | goto card_error_out; | ||
1402 | |||
1403 | sis = card->private_data; | ||
1404 | |||
1405 | rc = sis_mixer_create(sis); | ||
1406 | if (rc) | ||
1407 | goto card_error_out; | ||
1408 | |||
1409 | rc = sis_pcm_create(sis); | ||
1410 | if (rc) | ||
1411 | goto card_error_out; | ||
1412 | |||
1413 | snprintf(card->longname, sizeof(card->longname), | ||
1414 | "%s Audio Accelerator with %s at 0x%lx, irq %d", | ||
1415 | card->shortname, snd_ac97_get_short_name(sis->ac97[0]), | ||
1416 | sis->ioport, sis->irq); | ||
1417 | |||
1418 | rc = snd_card_register(card); | ||
1419 | if (rc) | ||
1420 | goto card_error_out; | ||
1421 | |||
1422 | pci_set_drvdata(pci, card); | ||
1423 | return 0; | ||
1424 | |||
1425 | card_error_out: | ||
1426 | snd_card_free(card); | ||
1427 | |||
1428 | error_out: | ||
1429 | return rc; | ||
1430 | } | ||
1431 | |||
1432 | static void __devexit snd_sis7019_remove(struct pci_dev *pci) | ||
1433 | { | ||
1434 | snd_card_free(pci_get_drvdata(pci)); | ||
1435 | pci_set_drvdata(pci, NULL); | ||
1436 | } | ||
1437 | |||
1438 | static struct pci_driver sis7019_driver = { | ||
1439 | .name = "SiS7019", | ||
1440 | .id_table = snd_sis7019_ids, | ||
1441 | .probe = snd_sis7019_probe, | ||
1442 | .remove = __devexit_p(snd_sis7019_remove), | ||
1443 | |||
1444 | #ifdef CONFIG_PM | ||
1445 | .suspend = sis_suspend, | ||
1446 | .resume = sis_resume, | ||
1447 | #endif | ||
1448 | }; | ||
1449 | |||
1450 | static int __init sis7019_init(void) | ||
1451 | { | ||
1452 | return pci_register_driver(&sis7019_driver); | ||
1453 | } | ||
1454 | |||
1455 | static void __exit sis7019_exit(void) | ||
1456 | { | ||
1457 | pci_unregister_driver(&sis7019_driver); | ||
1458 | } | ||
1459 | |||
1460 | module_init(sis7019_init); | ||
1461 | module_exit(sis7019_exit); | ||