diff options
Diffstat (limited to 'security/selinux/ss/hashtab.c')
-rw-r--r-- | security/selinux/ss/hashtab.c | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/security/selinux/ss/hashtab.c b/security/selinux/ss/hashtab.c new file mode 100644 index 000000000000..26661fcc00ce --- /dev/null +++ b/security/selinux/ss/hashtab.c | |||
@@ -0,0 +1,167 @@ | |||
1 | /* | ||
2 | * Implementation of the hash table type. | ||
3 | * | ||
4 | * Author : Stephen Smalley, <sds@epoch.ncsc.mil> | ||
5 | */ | ||
6 | #include <linux/kernel.h> | ||
7 | #include <linux/slab.h> | ||
8 | #include <linux/errno.h> | ||
9 | #include "hashtab.h" | ||
10 | |||
11 | struct hashtab *hashtab_create(u32 (*hash_value)(struct hashtab *h, void *key), | ||
12 | int (*keycmp)(struct hashtab *h, void *key1, void *key2), | ||
13 | u32 size) | ||
14 | { | ||
15 | struct hashtab *p; | ||
16 | u32 i; | ||
17 | |||
18 | p = kmalloc(sizeof(*p), GFP_KERNEL); | ||
19 | if (p == NULL) | ||
20 | return p; | ||
21 | |||
22 | memset(p, 0, sizeof(*p)); | ||
23 | p->size = size; | ||
24 | p->nel = 0; | ||
25 | p->hash_value = hash_value; | ||
26 | p->keycmp = keycmp; | ||
27 | p->htable = kmalloc(sizeof(*(p->htable)) * size, GFP_KERNEL); | ||
28 | if (p->htable == NULL) { | ||
29 | kfree(p); | ||
30 | return NULL; | ||
31 | } | ||
32 | |||
33 | for (i = 0; i < size; i++) | ||
34 | p->htable[i] = NULL; | ||
35 | |||
36 | return p; | ||
37 | } | ||
38 | |||
39 | int hashtab_insert(struct hashtab *h, void *key, void *datum) | ||
40 | { | ||
41 | u32 hvalue; | ||
42 | struct hashtab_node *prev, *cur, *newnode; | ||
43 | |||
44 | if (!h || h->nel == HASHTAB_MAX_NODES) | ||
45 | return -EINVAL; | ||
46 | |||
47 | hvalue = h->hash_value(h, key); | ||
48 | prev = NULL; | ||
49 | cur = h->htable[hvalue]; | ||
50 | while (cur && h->keycmp(h, key, cur->key) > 0) { | ||
51 | prev = cur; | ||
52 | cur = cur->next; | ||
53 | } | ||
54 | |||
55 | if (cur && (h->keycmp(h, key, cur->key) == 0)) | ||
56 | return -EEXIST; | ||
57 | |||
58 | newnode = kmalloc(sizeof(*newnode), GFP_KERNEL); | ||
59 | if (newnode == NULL) | ||
60 | return -ENOMEM; | ||
61 | memset(newnode, 0, sizeof(*newnode)); | ||
62 | newnode->key = key; | ||
63 | newnode->datum = datum; | ||
64 | if (prev) { | ||
65 | newnode->next = prev->next; | ||
66 | prev->next = newnode; | ||
67 | } else { | ||
68 | newnode->next = h->htable[hvalue]; | ||
69 | h->htable[hvalue] = newnode; | ||
70 | } | ||
71 | |||
72 | h->nel++; | ||
73 | return 0; | ||
74 | } | ||
75 | |||
76 | void *hashtab_search(struct hashtab *h, void *key) | ||
77 | { | ||
78 | u32 hvalue; | ||
79 | struct hashtab_node *cur; | ||
80 | |||
81 | if (!h) | ||
82 | return NULL; | ||
83 | |||
84 | hvalue = h->hash_value(h, key); | ||
85 | cur = h->htable[hvalue]; | ||
86 | while (cur != NULL && h->keycmp(h, key, cur->key) > 0) | ||
87 | cur = cur->next; | ||
88 | |||
89 | if (cur == NULL || (h->keycmp(h, key, cur->key) != 0)) | ||
90 | return NULL; | ||
91 | |||
92 | return cur->datum; | ||
93 | } | ||
94 | |||
95 | void hashtab_destroy(struct hashtab *h) | ||
96 | { | ||
97 | u32 i; | ||
98 | struct hashtab_node *cur, *temp; | ||
99 | |||
100 | if (!h) | ||
101 | return; | ||
102 | |||
103 | for (i = 0; i < h->size; i++) { | ||
104 | cur = h->htable[i]; | ||
105 | while (cur != NULL) { | ||
106 | temp = cur; | ||
107 | cur = cur->next; | ||
108 | kfree(temp); | ||
109 | } | ||
110 | h->htable[i] = NULL; | ||
111 | } | ||
112 | |||
113 | kfree(h->htable); | ||
114 | h->htable = NULL; | ||
115 | |||
116 | kfree(h); | ||
117 | } | ||
118 | |||
119 | int hashtab_map(struct hashtab *h, | ||
120 | int (*apply)(void *k, void *d, void *args), | ||
121 | void *args) | ||
122 | { | ||
123 | u32 i; | ||
124 | int ret; | ||
125 | struct hashtab_node *cur; | ||
126 | |||
127 | if (!h) | ||
128 | return 0; | ||
129 | |||
130 | for (i = 0; i < h->size; i++) { | ||
131 | cur = h->htable[i]; | ||
132 | while (cur != NULL) { | ||
133 | ret = apply(cur->key, cur->datum, args); | ||
134 | if (ret) | ||
135 | return ret; | ||
136 | cur = cur->next; | ||
137 | } | ||
138 | } | ||
139 | return 0; | ||
140 | } | ||
141 | |||
142 | |||
143 | void hashtab_stat(struct hashtab *h, struct hashtab_info *info) | ||
144 | { | ||
145 | u32 i, chain_len, slots_used, max_chain_len; | ||
146 | struct hashtab_node *cur; | ||
147 | |||
148 | slots_used = 0; | ||
149 | max_chain_len = 0; | ||
150 | for (slots_used = max_chain_len = i = 0; i < h->size; i++) { | ||
151 | cur = h->htable[i]; | ||
152 | if (cur) { | ||
153 | slots_used++; | ||
154 | chain_len = 0; | ||
155 | while (cur) { | ||
156 | chain_len++; | ||
157 | cur = cur->next; | ||
158 | } | ||
159 | |||
160 | if (chain_len > max_chain_len) | ||
161 | max_chain_len = chain_len; | ||
162 | } | ||
163 | } | ||
164 | |||
165 | info->slots_used = slots_used; | ||
166 | info->max_chain_len = max_chain_len; | ||
167 | } | ||