diff options
Diffstat (limited to 'security/keys/encrypted.c')
| -rw-r--r-- | security/keys/encrypted.c | 903 |
1 files changed, 903 insertions, 0 deletions
diff --git a/security/keys/encrypted.c b/security/keys/encrypted.c new file mode 100644 index 000000000000..9e7e4ce3fae8 --- /dev/null +++ b/security/keys/encrypted.c | |||
| @@ -0,0 +1,903 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2010 IBM Corporation | ||
| 3 | * | ||
| 4 | * Author: | ||
| 5 | * Mimi Zohar <zohar@us.ibm.com> | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or modify | ||
| 8 | * it under the terms of the GNU General Public License as published by | ||
| 9 | * the Free Software Foundation, version 2 of the License. | ||
| 10 | * | ||
| 11 | * See Documentation/keys-trusted-encrypted.txt | ||
| 12 | */ | ||
| 13 | |||
| 14 | #include <linux/uaccess.h> | ||
| 15 | #include <linux/module.h> | ||
| 16 | #include <linux/init.h> | ||
| 17 | #include <linux/slab.h> | ||
| 18 | #include <linux/parser.h> | ||
| 19 | #include <linux/string.h> | ||
| 20 | #include <linux/err.h> | ||
| 21 | #include <keys/user-type.h> | ||
| 22 | #include <keys/trusted-type.h> | ||
| 23 | #include <keys/encrypted-type.h> | ||
| 24 | #include <linux/key-type.h> | ||
| 25 | #include <linux/random.h> | ||
| 26 | #include <linux/rcupdate.h> | ||
| 27 | #include <linux/scatterlist.h> | ||
| 28 | #include <linux/crypto.h> | ||
| 29 | #include <crypto/hash.h> | ||
| 30 | #include <crypto/sha.h> | ||
| 31 | #include <crypto/aes.h> | ||
| 32 | |||
| 33 | #include "encrypted.h" | ||
| 34 | |||
| 35 | static const char KEY_TRUSTED_PREFIX[] = "trusted:"; | ||
| 36 | static const char KEY_USER_PREFIX[] = "user:"; | ||
| 37 | static const char hash_alg[] = "sha256"; | ||
| 38 | static const char hmac_alg[] = "hmac(sha256)"; | ||
| 39 | static const char blkcipher_alg[] = "cbc(aes)"; | ||
| 40 | static unsigned int ivsize; | ||
| 41 | static int blksize; | ||
| 42 | |||
| 43 | #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) | ||
| 44 | #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) | ||
| 45 | #define HASH_SIZE SHA256_DIGEST_SIZE | ||
| 46 | #define MAX_DATA_SIZE 4096 | ||
| 47 | #define MIN_DATA_SIZE 20 | ||
| 48 | |||
| 49 | struct sdesc { | ||
| 50 | struct shash_desc shash; | ||
| 51 | char ctx[]; | ||
| 52 | }; | ||
| 53 | |||
| 54 | static struct crypto_shash *hashalg; | ||
| 55 | static struct crypto_shash *hmacalg; | ||
| 56 | |||
| 57 | enum { | ||
| 58 | Opt_err = -1, Opt_new, Opt_load, Opt_update | ||
| 59 | }; | ||
| 60 | |||
| 61 | static const match_table_t key_tokens = { | ||
| 62 | {Opt_new, "new"}, | ||
| 63 | {Opt_load, "load"}, | ||
| 64 | {Opt_update, "update"}, | ||
| 65 | {Opt_err, NULL} | ||
| 66 | }; | ||
| 67 | |||
| 68 | static int aes_get_sizes(void) | ||
| 69 | { | ||
| 70 | struct crypto_blkcipher *tfm; | ||
| 71 | |||
| 72 | tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | ||
| 73 | if (IS_ERR(tfm)) { | ||
| 74 | pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", | ||
| 75 | PTR_ERR(tfm)); | ||
| 76 | return PTR_ERR(tfm); | ||
| 77 | } | ||
| 78 | ivsize = crypto_blkcipher_ivsize(tfm); | ||
| 79 | blksize = crypto_blkcipher_blocksize(tfm); | ||
| 80 | crypto_free_blkcipher(tfm); | ||
| 81 | return 0; | ||
| 82 | } | ||
| 83 | |||
| 84 | /* | ||
| 85 | * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key | ||
| 86 | * | ||
| 87 | * key-type:= "trusted:" | "encrypted:" | ||
| 88 | * desc:= master-key description | ||
| 89 | * | ||
| 90 | * Verify that 'key-type' is valid and that 'desc' exists. On key update, | ||
| 91 | * only the master key description is permitted to change, not the key-type. | ||
| 92 | * The key-type remains constant. | ||
| 93 | * | ||
| 94 | * On success returns 0, otherwise -EINVAL. | ||
| 95 | */ | ||
| 96 | static int valid_master_desc(const char *new_desc, const char *orig_desc) | ||
| 97 | { | ||
| 98 | if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { | ||
| 99 | if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN) | ||
| 100 | goto out; | ||
| 101 | if (orig_desc) | ||
| 102 | if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN)) | ||
| 103 | goto out; | ||
| 104 | } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { | ||
| 105 | if (strlen(new_desc) == KEY_USER_PREFIX_LEN) | ||
| 106 | goto out; | ||
| 107 | if (orig_desc) | ||
| 108 | if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN)) | ||
| 109 | goto out; | ||
| 110 | } else | ||
| 111 | goto out; | ||
| 112 | return 0; | ||
| 113 | out: | ||
| 114 | return -EINVAL; | ||
| 115 | } | ||
| 116 | |||
| 117 | /* | ||
| 118 | * datablob_parse - parse the keyctl data | ||
| 119 | * | ||
| 120 | * datablob format: | ||
| 121 | * new <master-key name> <decrypted data length> | ||
| 122 | * load <master-key name> <decrypted data length> <encrypted iv + data> | ||
| 123 | * update <new-master-key name> | ||
| 124 | * | ||
| 125 | * Tokenizes a copy of the keyctl data, returning a pointer to each token, | ||
| 126 | * which is null terminated. | ||
| 127 | * | ||
| 128 | * On success returns 0, otherwise -EINVAL. | ||
| 129 | */ | ||
| 130 | static int datablob_parse(char *datablob, char **master_desc, | ||
| 131 | char **decrypted_datalen, char **hex_encoded_iv) | ||
| 132 | { | ||
| 133 | substring_t args[MAX_OPT_ARGS]; | ||
| 134 | int ret = -EINVAL; | ||
| 135 | int key_cmd; | ||
| 136 | char *p; | ||
| 137 | |||
| 138 | p = strsep(&datablob, " \t"); | ||
| 139 | if (!p) | ||
| 140 | return ret; | ||
| 141 | key_cmd = match_token(p, key_tokens, args); | ||
| 142 | |||
| 143 | *master_desc = strsep(&datablob, " \t"); | ||
| 144 | if (!*master_desc) | ||
| 145 | goto out; | ||
| 146 | |||
| 147 | if (valid_master_desc(*master_desc, NULL) < 0) | ||
| 148 | goto out; | ||
| 149 | |||
| 150 | if (decrypted_datalen) { | ||
| 151 | *decrypted_datalen = strsep(&datablob, " \t"); | ||
| 152 | if (!*decrypted_datalen) | ||
| 153 | goto out; | ||
| 154 | } | ||
| 155 | |||
| 156 | switch (key_cmd) { | ||
| 157 | case Opt_new: | ||
| 158 | if (!decrypted_datalen) | ||
| 159 | break; | ||
| 160 | ret = 0; | ||
| 161 | break; | ||
| 162 | case Opt_load: | ||
| 163 | if (!decrypted_datalen) | ||
| 164 | break; | ||
| 165 | *hex_encoded_iv = strsep(&datablob, " \t"); | ||
| 166 | if (!*hex_encoded_iv) | ||
| 167 | break; | ||
| 168 | ret = 0; | ||
| 169 | break; | ||
| 170 | case Opt_update: | ||
| 171 | if (decrypted_datalen) | ||
| 172 | break; | ||
| 173 | ret = 0; | ||
| 174 | break; | ||
| 175 | case Opt_err: | ||
| 176 | break; | ||
| 177 | } | ||
| 178 | out: | ||
| 179 | return ret; | ||
| 180 | } | ||
| 181 | |||
| 182 | /* | ||
| 183 | * datablob_format - format as an ascii string, before copying to userspace | ||
| 184 | */ | ||
| 185 | static char *datablob_format(struct encrypted_key_payload *epayload, | ||
| 186 | size_t asciiblob_len) | ||
| 187 | { | ||
| 188 | char *ascii_buf, *bufp; | ||
| 189 | u8 *iv = epayload->iv; | ||
| 190 | int len; | ||
| 191 | int i; | ||
| 192 | |||
| 193 | ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); | ||
| 194 | if (!ascii_buf) | ||
| 195 | goto out; | ||
| 196 | |||
| 197 | ascii_buf[asciiblob_len] = '\0'; | ||
| 198 | |||
| 199 | /* copy datablob master_desc and datalen strings */ | ||
| 200 | len = sprintf(ascii_buf, "%s %s ", epayload->master_desc, | ||
| 201 | epayload->datalen); | ||
| 202 | |||
| 203 | /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ | ||
| 204 | bufp = &ascii_buf[len]; | ||
| 205 | for (i = 0; i < (asciiblob_len - len) / 2; i++) | ||
| 206 | bufp = pack_hex_byte(bufp, iv[i]); | ||
| 207 | out: | ||
| 208 | return ascii_buf; | ||
| 209 | } | ||
| 210 | |||
| 211 | /* | ||
| 212 | * request_trusted_key - request the trusted key | ||
| 213 | * | ||
| 214 | * Trusted keys are sealed to PCRs and other metadata. Although userspace | ||
| 215 | * manages both trusted/encrypted key-types, like the encrypted key type | ||
| 216 | * data, trusted key type data is not visible decrypted from userspace. | ||
| 217 | */ | ||
| 218 | static struct key *request_trusted_key(const char *trusted_desc, | ||
| 219 | u8 **master_key, size_t *master_keylen) | ||
| 220 | { | ||
| 221 | struct trusted_key_payload *tpayload; | ||
| 222 | struct key *tkey; | ||
| 223 | |||
| 224 | tkey = request_key(&key_type_trusted, trusted_desc, NULL); | ||
| 225 | if (IS_ERR(tkey)) | ||
| 226 | goto error; | ||
| 227 | |||
| 228 | down_read(&tkey->sem); | ||
| 229 | tpayload = rcu_dereference(tkey->payload.data); | ||
| 230 | *master_key = tpayload->key; | ||
| 231 | *master_keylen = tpayload->key_len; | ||
| 232 | error: | ||
| 233 | return tkey; | ||
| 234 | } | ||
| 235 | |||
| 236 | /* | ||
| 237 | * request_user_key - request the user key | ||
| 238 | * | ||
| 239 | * Use a user provided key to encrypt/decrypt an encrypted-key. | ||
| 240 | */ | ||
| 241 | static struct key *request_user_key(const char *master_desc, u8 **master_key, | ||
| 242 | size_t *master_keylen) | ||
| 243 | { | ||
| 244 | struct user_key_payload *upayload; | ||
| 245 | struct key *ukey; | ||
| 246 | |||
| 247 | ukey = request_key(&key_type_user, master_desc, NULL); | ||
| 248 | if (IS_ERR(ukey)) | ||
| 249 | goto error; | ||
| 250 | |||
| 251 | down_read(&ukey->sem); | ||
| 252 | upayload = rcu_dereference(ukey->payload.data); | ||
| 253 | *master_key = upayload->data; | ||
| 254 | *master_keylen = upayload->datalen; | ||
| 255 | error: | ||
| 256 | return ukey; | ||
| 257 | } | ||
| 258 | |||
| 259 | static struct sdesc *alloc_sdesc(struct crypto_shash *alg) | ||
| 260 | { | ||
| 261 | struct sdesc *sdesc; | ||
| 262 | int size; | ||
| 263 | |||
| 264 | size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); | ||
| 265 | sdesc = kmalloc(size, GFP_KERNEL); | ||
| 266 | if (!sdesc) | ||
| 267 | return ERR_PTR(-ENOMEM); | ||
| 268 | sdesc->shash.tfm = alg; | ||
| 269 | sdesc->shash.flags = 0x0; | ||
| 270 | return sdesc; | ||
| 271 | } | ||
| 272 | |||
| 273 | static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, | ||
| 274 | const u8 *buf, unsigned int buflen) | ||
| 275 | { | ||
| 276 | struct sdesc *sdesc; | ||
| 277 | int ret; | ||
| 278 | |||
| 279 | sdesc = alloc_sdesc(hmacalg); | ||
| 280 | if (IS_ERR(sdesc)) { | ||
| 281 | pr_info("encrypted_key: can't alloc %s\n", hmac_alg); | ||
| 282 | return PTR_ERR(sdesc); | ||
| 283 | } | ||
| 284 | |||
| 285 | ret = crypto_shash_setkey(hmacalg, key, keylen); | ||
| 286 | if (!ret) | ||
| 287 | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | ||
| 288 | kfree(sdesc); | ||
| 289 | return ret; | ||
| 290 | } | ||
| 291 | |||
| 292 | static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen) | ||
| 293 | { | ||
| 294 | struct sdesc *sdesc; | ||
| 295 | int ret; | ||
| 296 | |||
| 297 | sdesc = alloc_sdesc(hashalg); | ||
| 298 | if (IS_ERR(sdesc)) { | ||
| 299 | pr_info("encrypted_key: can't alloc %s\n", hash_alg); | ||
| 300 | return PTR_ERR(sdesc); | ||
| 301 | } | ||
| 302 | |||
| 303 | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | ||
| 304 | kfree(sdesc); | ||
| 305 | return ret; | ||
| 306 | } | ||
| 307 | |||
| 308 | enum derived_key_type { ENC_KEY, AUTH_KEY }; | ||
| 309 | |||
| 310 | /* Derive authentication/encryption key from trusted key */ | ||
| 311 | static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, | ||
| 312 | const u8 *master_key, size_t master_keylen) | ||
| 313 | { | ||
| 314 | u8 *derived_buf; | ||
| 315 | unsigned int derived_buf_len; | ||
| 316 | int ret; | ||
| 317 | |||
| 318 | derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; | ||
| 319 | if (derived_buf_len < HASH_SIZE) | ||
| 320 | derived_buf_len = HASH_SIZE; | ||
| 321 | |||
| 322 | derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); | ||
| 323 | if (!derived_buf) { | ||
| 324 | pr_err("encrypted_key: out of memory\n"); | ||
| 325 | return -ENOMEM; | ||
| 326 | } | ||
| 327 | if (key_type) | ||
| 328 | strcpy(derived_buf, "AUTH_KEY"); | ||
| 329 | else | ||
| 330 | strcpy(derived_buf, "ENC_KEY"); | ||
| 331 | |||
| 332 | memcpy(derived_buf + strlen(derived_buf) + 1, master_key, | ||
| 333 | master_keylen); | ||
| 334 | ret = calc_hash(derived_key, derived_buf, derived_buf_len); | ||
| 335 | kfree(derived_buf); | ||
| 336 | return ret; | ||
| 337 | } | ||
| 338 | |||
| 339 | static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key, | ||
| 340 | unsigned int key_len, const u8 *iv, | ||
| 341 | unsigned int ivsize) | ||
| 342 | { | ||
| 343 | int ret; | ||
| 344 | |||
| 345 | desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | ||
| 346 | if (IS_ERR(desc->tfm)) { | ||
| 347 | pr_err("encrypted_key: failed to load %s transform (%ld)\n", | ||
| 348 | blkcipher_alg, PTR_ERR(desc->tfm)); | ||
| 349 | return PTR_ERR(desc->tfm); | ||
| 350 | } | ||
| 351 | desc->flags = 0; | ||
| 352 | |||
| 353 | ret = crypto_blkcipher_setkey(desc->tfm, key, key_len); | ||
| 354 | if (ret < 0) { | ||
| 355 | pr_err("encrypted_key: failed to setkey (%d)\n", ret); | ||
| 356 | crypto_free_blkcipher(desc->tfm); | ||
| 357 | return ret; | ||
| 358 | } | ||
| 359 | crypto_blkcipher_set_iv(desc->tfm, iv, ivsize); | ||
| 360 | return 0; | ||
| 361 | } | ||
| 362 | |||
| 363 | static struct key *request_master_key(struct encrypted_key_payload *epayload, | ||
| 364 | u8 **master_key, size_t *master_keylen) | ||
| 365 | { | ||
| 366 | struct key *mkey = NULL; | ||
| 367 | |||
| 368 | if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, | ||
| 369 | KEY_TRUSTED_PREFIX_LEN)) { | ||
| 370 | mkey = request_trusted_key(epayload->master_desc + | ||
| 371 | KEY_TRUSTED_PREFIX_LEN, | ||
| 372 | master_key, master_keylen); | ||
| 373 | } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, | ||
| 374 | KEY_USER_PREFIX_LEN)) { | ||
| 375 | mkey = request_user_key(epayload->master_desc + | ||
| 376 | KEY_USER_PREFIX_LEN, | ||
| 377 | master_key, master_keylen); | ||
| 378 | } else | ||
| 379 | goto out; | ||
| 380 | |||
| 381 | if (IS_ERR(mkey)) | ||
| 382 | pr_info("encrypted_key: key %s not found", | ||
| 383 | epayload->master_desc); | ||
| 384 | if (mkey) | ||
| 385 | dump_master_key(*master_key, *master_keylen); | ||
| 386 | out: | ||
| 387 | return mkey; | ||
| 388 | } | ||
| 389 | |||
| 390 | /* Before returning data to userspace, encrypt decrypted data. */ | ||
| 391 | static int derived_key_encrypt(struct encrypted_key_payload *epayload, | ||
| 392 | const u8 *derived_key, | ||
| 393 | unsigned int derived_keylen) | ||
| 394 | { | ||
| 395 | struct scatterlist sg_in[2]; | ||
| 396 | struct scatterlist sg_out[1]; | ||
| 397 | struct blkcipher_desc desc; | ||
| 398 | unsigned int encrypted_datalen; | ||
| 399 | unsigned int padlen; | ||
| 400 | char pad[16]; | ||
| 401 | int ret; | ||
| 402 | |||
| 403 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
| 404 | padlen = encrypted_datalen - epayload->decrypted_datalen; | ||
| 405 | |||
| 406 | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | ||
| 407 | epayload->iv, ivsize); | ||
| 408 | if (ret < 0) | ||
| 409 | goto out; | ||
| 410 | dump_decrypted_data(epayload); | ||
| 411 | |||
| 412 | memset(pad, 0, sizeof pad); | ||
| 413 | sg_init_table(sg_in, 2); | ||
| 414 | sg_set_buf(&sg_in[0], epayload->decrypted_data, | ||
| 415 | epayload->decrypted_datalen); | ||
| 416 | sg_set_buf(&sg_in[1], pad, padlen); | ||
| 417 | |||
| 418 | sg_init_table(sg_out, 1); | ||
| 419 | sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); | ||
| 420 | |||
| 421 | ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen); | ||
| 422 | crypto_free_blkcipher(desc.tfm); | ||
| 423 | if (ret < 0) | ||
| 424 | pr_err("encrypted_key: failed to encrypt (%d)\n", ret); | ||
| 425 | else | ||
| 426 | dump_encrypted_data(epayload, encrypted_datalen); | ||
| 427 | out: | ||
| 428 | return ret; | ||
| 429 | } | ||
| 430 | |||
| 431 | static int datablob_hmac_append(struct encrypted_key_payload *epayload, | ||
| 432 | const u8 *master_key, size_t master_keylen) | ||
| 433 | { | ||
| 434 | u8 derived_key[HASH_SIZE]; | ||
| 435 | u8 *digest; | ||
| 436 | int ret; | ||
| 437 | |||
| 438 | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | ||
| 439 | if (ret < 0) | ||
| 440 | goto out; | ||
| 441 | |||
| 442 | digest = epayload->master_desc + epayload->datablob_len; | ||
| 443 | ret = calc_hmac(digest, derived_key, sizeof derived_key, | ||
| 444 | epayload->master_desc, epayload->datablob_len); | ||
| 445 | if (!ret) | ||
| 446 | dump_hmac(NULL, digest, HASH_SIZE); | ||
| 447 | out: | ||
| 448 | return ret; | ||
| 449 | } | ||
| 450 | |||
| 451 | /* verify HMAC before decrypting encrypted key */ | ||
| 452 | static int datablob_hmac_verify(struct encrypted_key_payload *epayload, | ||
| 453 | const u8 *master_key, size_t master_keylen) | ||
| 454 | { | ||
| 455 | u8 derived_key[HASH_SIZE]; | ||
| 456 | u8 digest[HASH_SIZE]; | ||
| 457 | int ret; | ||
| 458 | |||
| 459 | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | ||
| 460 | if (ret < 0) | ||
| 461 | goto out; | ||
| 462 | |||
| 463 | ret = calc_hmac(digest, derived_key, sizeof derived_key, | ||
| 464 | epayload->master_desc, epayload->datablob_len); | ||
| 465 | if (ret < 0) | ||
| 466 | goto out; | ||
| 467 | ret = memcmp(digest, epayload->master_desc + epayload->datablob_len, | ||
| 468 | sizeof digest); | ||
| 469 | if (ret) { | ||
| 470 | ret = -EINVAL; | ||
| 471 | dump_hmac("datablob", | ||
| 472 | epayload->master_desc + epayload->datablob_len, | ||
| 473 | HASH_SIZE); | ||
| 474 | dump_hmac("calc", digest, HASH_SIZE); | ||
| 475 | } | ||
| 476 | out: | ||
| 477 | return ret; | ||
| 478 | } | ||
| 479 | |||
| 480 | static int derived_key_decrypt(struct encrypted_key_payload *epayload, | ||
| 481 | const u8 *derived_key, | ||
| 482 | unsigned int derived_keylen) | ||
| 483 | { | ||
| 484 | struct scatterlist sg_in[1]; | ||
| 485 | struct scatterlist sg_out[2]; | ||
| 486 | struct blkcipher_desc desc; | ||
| 487 | unsigned int encrypted_datalen; | ||
| 488 | char pad[16]; | ||
| 489 | int ret; | ||
| 490 | |||
| 491 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
| 492 | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | ||
| 493 | epayload->iv, ivsize); | ||
| 494 | if (ret < 0) | ||
| 495 | goto out; | ||
| 496 | dump_encrypted_data(epayload, encrypted_datalen); | ||
| 497 | |||
| 498 | memset(pad, 0, sizeof pad); | ||
| 499 | sg_init_table(sg_in, 1); | ||
| 500 | sg_init_table(sg_out, 2); | ||
| 501 | sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); | ||
| 502 | sg_set_buf(&sg_out[0], epayload->decrypted_data, | ||
| 503 | epayload->decrypted_datalen); | ||
| 504 | sg_set_buf(&sg_out[1], pad, sizeof pad); | ||
| 505 | |||
| 506 | ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen); | ||
| 507 | crypto_free_blkcipher(desc.tfm); | ||
| 508 | if (ret < 0) | ||
| 509 | goto out; | ||
| 510 | dump_decrypted_data(epayload); | ||
| 511 | out: | ||
| 512 | return ret; | ||
| 513 | } | ||
| 514 | |||
| 515 | /* Allocate memory for decrypted key and datablob. */ | ||
| 516 | static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, | ||
| 517 | const char *master_desc, | ||
| 518 | const char *datalen) | ||
| 519 | { | ||
| 520 | struct encrypted_key_payload *epayload = NULL; | ||
| 521 | unsigned short datablob_len; | ||
| 522 | unsigned short decrypted_datalen; | ||
| 523 | unsigned int encrypted_datalen; | ||
| 524 | long dlen; | ||
| 525 | int ret; | ||
| 526 | |||
| 527 | ret = strict_strtol(datalen, 10, &dlen); | ||
| 528 | if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) | ||
| 529 | return ERR_PTR(-EINVAL); | ||
| 530 | |||
| 531 | decrypted_datalen = dlen; | ||
| 532 | encrypted_datalen = roundup(decrypted_datalen, blksize); | ||
| 533 | |||
| 534 | datablob_len = strlen(master_desc) + 1 + strlen(datalen) + 1 | ||
| 535 | + ivsize + 1 + encrypted_datalen; | ||
| 536 | |||
| 537 | ret = key_payload_reserve(key, decrypted_datalen + datablob_len | ||
| 538 | + HASH_SIZE + 1); | ||
| 539 | if (ret < 0) | ||
| 540 | return ERR_PTR(ret); | ||
| 541 | |||
| 542 | epayload = kzalloc(sizeof(*epayload) + decrypted_datalen + | ||
| 543 | datablob_len + HASH_SIZE + 1, GFP_KERNEL); | ||
| 544 | if (!epayload) | ||
| 545 | return ERR_PTR(-ENOMEM); | ||
| 546 | |||
| 547 | epayload->decrypted_datalen = decrypted_datalen; | ||
| 548 | epayload->datablob_len = datablob_len; | ||
| 549 | return epayload; | ||
| 550 | } | ||
| 551 | |||
| 552 | static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, | ||
| 553 | const char *hex_encoded_iv) | ||
| 554 | { | ||
| 555 | struct key *mkey; | ||
| 556 | u8 derived_key[HASH_SIZE]; | ||
| 557 | u8 *master_key; | ||
| 558 | u8 *hmac; | ||
| 559 | const char *hex_encoded_data; | ||
| 560 | unsigned int encrypted_datalen; | ||
| 561 | size_t master_keylen; | ||
| 562 | size_t asciilen; | ||
| 563 | int ret; | ||
| 564 | |||
| 565 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
| 566 | asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; | ||
| 567 | if (strlen(hex_encoded_iv) != asciilen) | ||
| 568 | return -EINVAL; | ||
| 569 | |||
| 570 | hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; | ||
| 571 | hex2bin(epayload->iv, hex_encoded_iv, ivsize); | ||
| 572 | hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen); | ||
| 573 | |||
| 574 | hmac = epayload->master_desc + epayload->datablob_len; | ||
| 575 | hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE); | ||
| 576 | |||
| 577 | mkey = request_master_key(epayload, &master_key, &master_keylen); | ||
| 578 | if (IS_ERR(mkey)) | ||
| 579 | return PTR_ERR(mkey); | ||
| 580 | |||
| 581 | ret = datablob_hmac_verify(epayload, master_key, master_keylen); | ||
| 582 | if (ret < 0) { | ||
| 583 | pr_err("encrypted_key: bad hmac (%d)\n", ret); | ||
| 584 | goto out; | ||
| 585 | } | ||
| 586 | |||
| 587 | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | ||
| 588 | if (ret < 0) | ||
| 589 | goto out; | ||
| 590 | |||
| 591 | ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); | ||
| 592 | if (ret < 0) | ||
| 593 | pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); | ||
| 594 | out: | ||
| 595 | up_read(&mkey->sem); | ||
| 596 | key_put(mkey); | ||
| 597 | return ret; | ||
| 598 | } | ||
| 599 | |||
| 600 | static void __ekey_init(struct encrypted_key_payload *epayload, | ||
| 601 | const char *master_desc, const char *datalen) | ||
| 602 | { | ||
| 603 | epayload->master_desc = epayload->decrypted_data | ||
| 604 | + epayload->decrypted_datalen; | ||
| 605 | epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; | ||
| 606 | epayload->iv = epayload->datalen + strlen(datalen) + 1; | ||
| 607 | epayload->encrypted_data = epayload->iv + ivsize + 1; | ||
| 608 | |||
| 609 | memcpy(epayload->master_desc, master_desc, strlen(master_desc)); | ||
| 610 | memcpy(epayload->datalen, datalen, strlen(datalen)); | ||
| 611 | } | ||
| 612 | |||
| 613 | /* | ||
| 614 | * encrypted_init - initialize an encrypted key | ||
| 615 | * | ||
| 616 | * For a new key, use a random number for both the iv and data | ||
| 617 | * itself. For an old key, decrypt the hex encoded data. | ||
| 618 | */ | ||
| 619 | static int encrypted_init(struct encrypted_key_payload *epayload, | ||
| 620 | const char *master_desc, const char *datalen, | ||
| 621 | const char *hex_encoded_iv) | ||
| 622 | { | ||
| 623 | int ret = 0; | ||
| 624 | |||
| 625 | __ekey_init(epayload, master_desc, datalen); | ||
| 626 | if (!hex_encoded_iv) { | ||
| 627 | get_random_bytes(epayload->iv, ivsize); | ||
| 628 | |||
| 629 | get_random_bytes(epayload->decrypted_data, | ||
| 630 | epayload->decrypted_datalen); | ||
| 631 | } else | ||
| 632 | ret = encrypted_key_decrypt(epayload, hex_encoded_iv); | ||
| 633 | return ret; | ||
| 634 | } | ||
| 635 | |||
| 636 | /* | ||
| 637 | * encrypted_instantiate - instantiate an encrypted key | ||
| 638 | * | ||
| 639 | * Decrypt an existing encrypted datablob or create a new encrypted key | ||
| 640 | * based on a kernel random number. | ||
| 641 | * | ||
| 642 | * On success, return 0. Otherwise return errno. | ||
| 643 | */ | ||
| 644 | static int encrypted_instantiate(struct key *key, const void *data, | ||
| 645 | size_t datalen) | ||
| 646 | { | ||
| 647 | struct encrypted_key_payload *epayload = NULL; | ||
| 648 | char *datablob = NULL; | ||
| 649 | char *master_desc = NULL; | ||
| 650 | char *decrypted_datalen = NULL; | ||
| 651 | char *hex_encoded_iv = NULL; | ||
| 652 | int ret; | ||
| 653 | |||
| 654 | if (datalen <= 0 || datalen > 32767 || !data) | ||
| 655 | return -EINVAL; | ||
| 656 | |||
| 657 | datablob = kmalloc(datalen + 1, GFP_KERNEL); | ||
| 658 | if (!datablob) | ||
| 659 | return -ENOMEM; | ||
| 660 | datablob[datalen] = 0; | ||
| 661 | memcpy(datablob, data, datalen); | ||
| 662 | ret = datablob_parse(datablob, &master_desc, &decrypted_datalen, | ||
| 663 | &hex_encoded_iv); | ||
| 664 | if (ret < 0) | ||
| 665 | goto out; | ||
| 666 | |||
| 667 | epayload = encrypted_key_alloc(key, master_desc, decrypted_datalen); | ||
| 668 | if (IS_ERR(epayload)) { | ||
| 669 | ret = PTR_ERR(epayload); | ||
| 670 | goto out; | ||
| 671 | } | ||
| 672 | ret = encrypted_init(epayload, master_desc, decrypted_datalen, | ||
| 673 | hex_encoded_iv); | ||
| 674 | if (ret < 0) { | ||
| 675 | kfree(epayload); | ||
| 676 | goto out; | ||
| 677 | } | ||
| 678 | |||
| 679 | rcu_assign_pointer(key->payload.data, epayload); | ||
| 680 | out: | ||
| 681 | kfree(datablob); | ||
| 682 | return ret; | ||
| 683 | } | ||
| 684 | |||
| 685 | static void encrypted_rcu_free(struct rcu_head *rcu) | ||
| 686 | { | ||
| 687 | struct encrypted_key_payload *epayload; | ||
| 688 | |||
| 689 | epayload = container_of(rcu, struct encrypted_key_payload, rcu); | ||
| 690 | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | ||
| 691 | kfree(epayload); | ||
| 692 | } | ||
| 693 | |||
| 694 | /* | ||
| 695 | * encrypted_update - update the master key description | ||
| 696 | * | ||
| 697 | * Change the master key description for an existing encrypted key. | ||
| 698 | * The next read will return an encrypted datablob using the new | ||
| 699 | * master key description. | ||
| 700 | * | ||
| 701 | * On success, return 0. Otherwise return errno. | ||
| 702 | */ | ||
| 703 | static int encrypted_update(struct key *key, const void *data, size_t datalen) | ||
| 704 | { | ||
| 705 | struct encrypted_key_payload *epayload = key->payload.data; | ||
| 706 | struct encrypted_key_payload *new_epayload; | ||
| 707 | char *buf; | ||
| 708 | char *new_master_desc = NULL; | ||
| 709 | int ret = 0; | ||
| 710 | |||
| 711 | if (datalen <= 0 || datalen > 32767 || !data) | ||
| 712 | return -EINVAL; | ||
| 713 | |||
| 714 | buf = kmalloc(datalen + 1, GFP_KERNEL); | ||
| 715 | if (!buf) | ||
| 716 | return -ENOMEM; | ||
| 717 | |||
| 718 | buf[datalen] = 0; | ||
| 719 | memcpy(buf, data, datalen); | ||
| 720 | ret = datablob_parse(buf, &new_master_desc, NULL, NULL); | ||
| 721 | if (ret < 0) | ||
| 722 | goto out; | ||
| 723 | |||
| 724 | ret = valid_master_desc(new_master_desc, epayload->master_desc); | ||
| 725 | if (ret < 0) | ||
| 726 | goto out; | ||
| 727 | |||
| 728 | new_epayload = encrypted_key_alloc(key, new_master_desc, | ||
| 729 | epayload->datalen); | ||
| 730 | if (IS_ERR(new_epayload)) { | ||
| 731 | ret = PTR_ERR(new_epayload); | ||
| 732 | goto out; | ||
| 733 | } | ||
| 734 | |||
| 735 | __ekey_init(new_epayload, new_master_desc, epayload->datalen); | ||
| 736 | |||
| 737 | memcpy(new_epayload->iv, epayload->iv, ivsize); | ||
| 738 | memcpy(new_epayload->decrypted_data, epayload->decrypted_data, | ||
| 739 | epayload->decrypted_datalen); | ||
| 740 | |||
| 741 | rcu_assign_pointer(key->payload.data, new_epayload); | ||
| 742 | call_rcu(&epayload->rcu, encrypted_rcu_free); | ||
| 743 | out: | ||
| 744 | kfree(buf); | ||
| 745 | return ret; | ||
| 746 | } | ||
| 747 | |||
| 748 | /* | ||
| 749 | * encrypted_read - format and copy the encrypted data to userspace | ||
| 750 | * | ||
| 751 | * The resulting datablob format is: | ||
| 752 | * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> | ||
| 753 | * | ||
| 754 | * On success, return to userspace the encrypted key datablob size. | ||
| 755 | */ | ||
| 756 | static long encrypted_read(const struct key *key, char __user *buffer, | ||
| 757 | size_t buflen) | ||
| 758 | { | ||
| 759 | struct encrypted_key_payload *epayload; | ||
| 760 | struct key *mkey; | ||
| 761 | u8 *master_key; | ||
| 762 | size_t master_keylen; | ||
| 763 | char derived_key[HASH_SIZE]; | ||
| 764 | char *ascii_buf; | ||
| 765 | size_t asciiblob_len; | ||
| 766 | int ret; | ||
| 767 | |||
| 768 | epayload = rcu_dereference_protected(key->payload.data, | ||
| 769 | rwsem_is_locked(&((struct key *)key)->sem)); | ||
| 770 | |||
| 771 | /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ | ||
| 772 | asciiblob_len = epayload->datablob_len + ivsize + 1 | ||
| 773 | + roundup(epayload->decrypted_datalen, blksize) | ||
| 774 | + (HASH_SIZE * 2); | ||
| 775 | |||
| 776 | if (!buffer || buflen < asciiblob_len) | ||
| 777 | return asciiblob_len; | ||
| 778 | |||
| 779 | mkey = request_master_key(epayload, &master_key, &master_keylen); | ||
| 780 | if (IS_ERR(mkey)) | ||
| 781 | return PTR_ERR(mkey); | ||
| 782 | |||
| 783 | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | ||
| 784 | if (ret < 0) | ||
| 785 | goto out; | ||
| 786 | |||
| 787 | ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); | ||
| 788 | if (ret < 0) | ||
| 789 | goto out; | ||
| 790 | |||
| 791 | ret = datablob_hmac_append(epayload, master_key, master_keylen); | ||
| 792 | if (ret < 0) | ||
| 793 | goto out; | ||
| 794 | |||
| 795 | ascii_buf = datablob_format(epayload, asciiblob_len); | ||
| 796 | if (!ascii_buf) { | ||
| 797 | ret = -ENOMEM; | ||
| 798 | goto out; | ||
| 799 | } | ||
| 800 | |||
| 801 | up_read(&mkey->sem); | ||
| 802 | key_put(mkey); | ||
| 803 | |||
| 804 | if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) | ||
| 805 | ret = -EFAULT; | ||
| 806 | kfree(ascii_buf); | ||
| 807 | |||
| 808 | return asciiblob_len; | ||
| 809 | out: | ||
| 810 | up_read(&mkey->sem); | ||
| 811 | key_put(mkey); | ||
| 812 | return ret; | ||
| 813 | } | ||
| 814 | |||
| 815 | /* | ||
| 816 | * encrypted_destroy - before freeing the key, clear the decrypted data | ||
| 817 | * | ||
| 818 | * Before freeing the key, clear the memory containing the decrypted | ||
| 819 | * key data. | ||
| 820 | */ | ||
| 821 | static void encrypted_destroy(struct key *key) | ||
| 822 | { | ||
| 823 | struct encrypted_key_payload *epayload = key->payload.data; | ||
| 824 | |||
| 825 | if (!epayload) | ||
| 826 | return; | ||
| 827 | |||
| 828 | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | ||
| 829 | kfree(key->payload.data); | ||
| 830 | } | ||
| 831 | |||
| 832 | struct key_type key_type_encrypted = { | ||
| 833 | .name = "encrypted", | ||
| 834 | .instantiate = encrypted_instantiate, | ||
| 835 | .update = encrypted_update, | ||
| 836 | .match = user_match, | ||
| 837 | .destroy = encrypted_destroy, | ||
| 838 | .describe = user_describe, | ||
| 839 | .read = encrypted_read, | ||
| 840 | }; | ||
| 841 | EXPORT_SYMBOL_GPL(key_type_encrypted); | ||
| 842 | |||
| 843 | static void encrypted_shash_release(void) | ||
| 844 | { | ||
| 845 | if (hashalg) | ||
| 846 | crypto_free_shash(hashalg); | ||
| 847 | if (hmacalg) | ||
| 848 | crypto_free_shash(hmacalg); | ||
| 849 | } | ||
| 850 | |||
| 851 | static int __init encrypted_shash_alloc(void) | ||
| 852 | { | ||
| 853 | int ret; | ||
| 854 | |||
| 855 | hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); | ||
| 856 | if (IS_ERR(hmacalg)) { | ||
| 857 | pr_info("encrypted_key: could not allocate crypto %s\n", | ||
| 858 | hmac_alg); | ||
| 859 | return PTR_ERR(hmacalg); | ||
| 860 | } | ||
| 861 | |||
| 862 | hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); | ||
| 863 | if (IS_ERR(hashalg)) { | ||
| 864 | pr_info("encrypted_key: could not allocate crypto %s\n", | ||
| 865 | hash_alg); | ||
| 866 | ret = PTR_ERR(hashalg); | ||
| 867 | goto hashalg_fail; | ||
| 868 | } | ||
| 869 | |||
| 870 | return 0; | ||
| 871 | |||
| 872 | hashalg_fail: | ||
| 873 | crypto_free_shash(hmacalg); | ||
| 874 | return ret; | ||
| 875 | } | ||
| 876 | |||
| 877 | static int __init init_encrypted(void) | ||
| 878 | { | ||
| 879 | int ret; | ||
| 880 | |||
| 881 | ret = encrypted_shash_alloc(); | ||
| 882 | if (ret < 0) | ||
| 883 | return ret; | ||
| 884 | ret = register_key_type(&key_type_encrypted); | ||
| 885 | if (ret < 0) | ||
| 886 | goto out; | ||
| 887 | return aes_get_sizes(); | ||
| 888 | out: | ||
| 889 | encrypted_shash_release(); | ||
| 890 | return ret; | ||
| 891 | |||
| 892 | } | ||
| 893 | |||
| 894 | static void __exit cleanup_encrypted(void) | ||
| 895 | { | ||
| 896 | encrypted_shash_release(); | ||
| 897 | unregister_key_type(&key_type_encrypted); | ||
| 898 | } | ||
| 899 | |||
| 900 | late_initcall(init_encrypted); | ||
| 901 | module_exit(cleanup_encrypted); | ||
| 902 | |||
| 903 | MODULE_LICENSE("GPL"); | ||
