diff options
Diffstat (limited to 'security/keys/encrypted.c')
-rw-r--r-- | security/keys/encrypted.c | 903 |
1 files changed, 903 insertions, 0 deletions
diff --git a/security/keys/encrypted.c b/security/keys/encrypted.c new file mode 100644 index 000000000000..9e7e4ce3fae8 --- /dev/null +++ b/security/keys/encrypted.c | |||
@@ -0,0 +1,903 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2010 IBM Corporation | ||
3 | * | ||
4 | * Author: | ||
5 | * Mimi Zohar <zohar@us.ibm.com> | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License as published by | ||
9 | * the Free Software Foundation, version 2 of the License. | ||
10 | * | ||
11 | * See Documentation/keys-trusted-encrypted.txt | ||
12 | */ | ||
13 | |||
14 | #include <linux/uaccess.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/slab.h> | ||
18 | #include <linux/parser.h> | ||
19 | #include <linux/string.h> | ||
20 | #include <linux/err.h> | ||
21 | #include <keys/user-type.h> | ||
22 | #include <keys/trusted-type.h> | ||
23 | #include <keys/encrypted-type.h> | ||
24 | #include <linux/key-type.h> | ||
25 | #include <linux/random.h> | ||
26 | #include <linux/rcupdate.h> | ||
27 | #include <linux/scatterlist.h> | ||
28 | #include <linux/crypto.h> | ||
29 | #include <crypto/hash.h> | ||
30 | #include <crypto/sha.h> | ||
31 | #include <crypto/aes.h> | ||
32 | |||
33 | #include "encrypted.h" | ||
34 | |||
35 | static const char KEY_TRUSTED_PREFIX[] = "trusted:"; | ||
36 | static const char KEY_USER_PREFIX[] = "user:"; | ||
37 | static const char hash_alg[] = "sha256"; | ||
38 | static const char hmac_alg[] = "hmac(sha256)"; | ||
39 | static const char blkcipher_alg[] = "cbc(aes)"; | ||
40 | static unsigned int ivsize; | ||
41 | static int blksize; | ||
42 | |||
43 | #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) | ||
44 | #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) | ||
45 | #define HASH_SIZE SHA256_DIGEST_SIZE | ||
46 | #define MAX_DATA_SIZE 4096 | ||
47 | #define MIN_DATA_SIZE 20 | ||
48 | |||
49 | struct sdesc { | ||
50 | struct shash_desc shash; | ||
51 | char ctx[]; | ||
52 | }; | ||
53 | |||
54 | static struct crypto_shash *hashalg; | ||
55 | static struct crypto_shash *hmacalg; | ||
56 | |||
57 | enum { | ||
58 | Opt_err = -1, Opt_new, Opt_load, Opt_update | ||
59 | }; | ||
60 | |||
61 | static const match_table_t key_tokens = { | ||
62 | {Opt_new, "new"}, | ||
63 | {Opt_load, "load"}, | ||
64 | {Opt_update, "update"}, | ||
65 | {Opt_err, NULL} | ||
66 | }; | ||
67 | |||
68 | static int aes_get_sizes(void) | ||
69 | { | ||
70 | struct crypto_blkcipher *tfm; | ||
71 | |||
72 | tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | ||
73 | if (IS_ERR(tfm)) { | ||
74 | pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", | ||
75 | PTR_ERR(tfm)); | ||
76 | return PTR_ERR(tfm); | ||
77 | } | ||
78 | ivsize = crypto_blkcipher_ivsize(tfm); | ||
79 | blksize = crypto_blkcipher_blocksize(tfm); | ||
80 | crypto_free_blkcipher(tfm); | ||
81 | return 0; | ||
82 | } | ||
83 | |||
84 | /* | ||
85 | * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key | ||
86 | * | ||
87 | * key-type:= "trusted:" | "encrypted:" | ||
88 | * desc:= master-key description | ||
89 | * | ||
90 | * Verify that 'key-type' is valid and that 'desc' exists. On key update, | ||
91 | * only the master key description is permitted to change, not the key-type. | ||
92 | * The key-type remains constant. | ||
93 | * | ||
94 | * On success returns 0, otherwise -EINVAL. | ||
95 | */ | ||
96 | static int valid_master_desc(const char *new_desc, const char *orig_desc) | ||
97 | { | ||
98 | if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { | ||
99 | if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN) | ||
100 | goto out; | ||
101 | if (orig_desc) | ||
102 | if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN)) | ||
103 | goto out; | ||
104 | } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { | ||
105 | if (strlen(new_desc) == KEY_USER_PREFIX_LEN) | ||
106 | goto out; | ||
107 | if (orig_desc) | ||
108 | if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN)) | ||
109 | goto out; | ||
110 | } else | ||
111 | goto out; | ||
112 | return 0; | ||
113 | out: | ||
114 | return -EINVAL; | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * datablob_parse - parse the keyctl data | ||
119 | * | ||
120 | * datablob format: | ||
121 | * new <master-key name> <decrypted data length> | ||
122 | * load <master-key name> <decrypted data length> <encrypted iv + data> | ||
123 | * update <new-master-key name> | ||
124 | * | ||
125 | * Tokenizes a copy of the keyctl data, returning a pointer to each token, | ||
126 | * which is null terminated. | ||
127 | * | ||
128 | * On success returns 0, otherwise -EINVAL. | ||
129 | */ | ||
130 | static int datablob_parse(char *datablob, char **master_desc, | ||
131 | char **decrypted_datalen, char **hex_encoded_iv) | ||
132 | { | ||
133 | substring_t args[MAX_OPT_ARGS]; | ||
134 | int ret = -EINVAL; | ||
135 | int key_cmd; | ||
136 | char *p; | ||
137 | |||
138 | p = strsep(&datablob, " \t"); | ||
139 | if (!p) | ||
140 | return ret; | ||
141 | key_cmd = match_token(p, key_tokens, args); | ||
142 | |||
143 | *master_desc = strsep(&datablob, " \t"); | ||
144 | if (!*master_desc) | ||
145 | goto out; | ||
146 | |||
147 | if (valid_master_desc(*master_desc, NULL) < 0) | ||
148 | goto out; | ||
149 | |||
150 | if (decrypted_datalen) { | ||
151 | *decrypted_datalen = strsep(&datablob, " \t"); | ||
152 | if (!*decrypted_datalen) | ||
153 | goto out; | ||
154 | } | ||
155 | |||
156 | switch (key_cmd) { | ||
157 | case Opt_new: | ||
158 | if (!decrypted_datalen) | ||
159 | break; | ||
160 | ret = 0; | ||
161 | break; | ||
162 | case Opt_load: | ||
163 | if (!decrypted_datalen) | ||
164 | break; | ||
165 | *hex_encoded_iv = strsep(&datablob, " \t"); | ||
166 | if (!*hex_encoded_iv) | ||
167 | break; | ||
168 | ret = 0; | ||
169 | break; | ||
170 | case Opt_update: | ||
171 | if (decrypted_datalen) | ||
172 | break; | ||
173 | ret = 0; | ||
174 | break; | ||
175 | case Opt_err: | ||
176 | break; | ||
177 | } | ||
178 | out: | ||
179 | return ret; | ||
180 | } | ||
181 | |||
182 | /* | ||
183 | * datablob_format - format as an ascii string, before copying to userspace | ||
184 | */ | ||
185 | static char *datablob_format(struct encrypted_key_payload *epayload, | ||
186 | size_t asciiblob_len) | ||
187 | { | ||
188 | char *ascii_buf, *bufp; | ||
189 | u8 *iv = epayload->iv; | ||
190 | int len; | ||
191 | int i; | ||
192 | |||
193 | ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); | ||
194 | if (!ascii_buf) | ||
195 | goto out; | ||
196 | |||
197 | ascii_buf[asciiblob_len] = '\0'; | ||
198 | |||
199 | /* copy datablob master_desc and datalen strings */ | ||
200 | len = sprintf(ascii_buf, "%s %s ", epayload->master_desc, | ||
201 | epayload->datalen); | ||
202 | |||
203 | /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ | ||
204 | bufp = &ascii_buf[len]; | ||
205 | for (i = 0; i < (asciiblob_len - len) / 2; i++) | ||
206 | bufp = pack_hex_byte(bufp, iv[i]); | ||
207 | out: | ||
208 | return ascii_buf; | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * request_trusted_key - request the trusted key | ||
213 | * | ||
214 | * Trusted keys are sealed to PCRs and other metadata. Although userspace | ||
215 | * manages both trusted/encrypted key-types, like the encrypted key type | ||
216 | * data, trusted key type data is not visible decrypted from userspace. | ||
217 | */ | ||
218 | static struct key *request_trusted_key(const char *trusted_desc, | ||
219 | u8 **master_key, size_t *master_keylen) | ||
220 | { | ||
221 | struct trusted_key_payload *tpayload; | ||
222 | struct key *tkey; | ||
223 | |||
224 | tkey = request_key(&key_type_trusted, trusted_desc, NULL); | ||
225 | if (IS_ERR(tkey)) | ||
226 | goto error; | ||
227 | |||
228 | down_read(&tkey->sem); | ||
229 | tpayload = rcu_dereference(tkey->payload.data); | ||
230 | *master_key = tpayload->key; | ||
231 | *master_keylen = tpayload->key_len; | ||
232 | error: | ||
233 | return tkey; | ||
234 | } | ||
235 | |||
236 | /* | ||
237 | * request_user_key - request the user key | ||
238 | * | ||
239 | * Use a user provided key to encrypt/decrypt an encrypted-key. | ||
240 | */ | ||
241 | static struct key *request_user_key(const char *master_desc, u8 **master_key, | ||
242 | size_t *master_keylen) | ||
243 | { | ||
244 | struct user_key_payload *upayload; | ||
245 | struct key *ukey; | ||
246 | |||
247 | ukey = request_key(&key_type_user, master_desc, NULL); | ||
248 | if (IS_ERR(ukey)) | ||
249 | goto error; | ||
250 | |||
251 | down_read(&ukey->sem); | ||
252 | upayload = rcu_dereference(ukey->payload.data); | ||
253 | *master_key = upayload->data; | ||
254 | *master_keylen = upayload->datalen; | ||
255 | error: | ||
256 | return ukey; | ||
257 | } | ||
258 | |||
259 | static struct sdesc *alloc_sdesc(struct crypto_shash *alg) | ||
260 | { | ||
261 | struct sdesc *sdesc; | ||
262 | int size; | ||
263 | |||
264 | size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); | ||
265 | sdesc = kmalloc(size, GFP_KERNEL); | ||
266 | if (!sdesc) | ||
267 | return ERR_PTR(-ENOMEM); | ||
268 | sdesc->shash.tfm = alg; | ||
269 | sdesc->shash.flags = 0x0; | ||
270 | return sdesc; | ||
271 | } | ||
272 | |||
273 | static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, | ||
274 | const u8 *buf, unsigned int buflen) | ||
275 | { | ||
276 | struct sdesc *sdesc; | ||
277 | int ret; | ||
278 | |||
279 | sdesc = alloc_sdesc(hmacalg); | ||
280 | if (IS_ERR(sdesc)) { | ||
281 | pr_info("encrypted_key: can't alloc %s\n", hmac_alg); | ||
282 | return PTR_ERR(sdesc); | ||
283 | } | ||
284 | |||
285 | ret = crypto_shash_setkey(hmacalg, key, keylen); | ||
286 | if (!ret) | ||
287 | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | ||
288 | kfree(sdesc); | ||
289 | return ret; | ||
290 | } | ||
291 | |||
292 | static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen) | ||
293 | { | ||
294 | struct sdesc *sdesc; | ||
295 | int ret; | ||
296 | |||
297 | sdesc = alloc_sdesc(hashalg); | ||
298 | if (IS_ERR(sdesc)) { | ||
299 | pr_info("encrypted_key: can't alloc %s\n", hash_alg); | ||
300 | return PTR_ERR(sdesc); | ||
301 | } | ||
302 | |||
303 | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | ||
304 | kfree(sdesc); | ||
305 | return ret; | ||
306 | } | ||
307 | |||
308 | enum derived_key_type { ENC_KEY, AUTH_KEY }; | ||
309 | |||
310 | /* Derive authentication/encryption key from trusted key */ | ||
311 | static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, | ||
312 | const u8 *master_key, size_t master_keylen) | ||
313 | { | ||
314 | u8 *derived_buf; | ||
315 | unsigned int derived_buf_len; | ||
316 | int ret; | ||
317 | |||
318 | derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; | ||
319 | if (derived_buf_len < HASH_SIZE) | ||
320 | derived_buf_len = HASH_SIZE; | ||
321 | |||
322 | derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); | ||
323 | if (!derived_buf) { | ||
324 | pr_err("encrypted_key: out of memory\n"); | ||
325 | return -ENOMEM; | ||
326 | } | ||
327 | if (key_type) | ||
328 | strcpy(derived_buf, "AUTH_KEY"); | ||
329 | else | ||
330 | strcpy(derived_buf, "ENC_KEY"); | ||
331 | |||
332 | memcpy(derived_buf + strlen(derived_buf) + 1, master_key, | ||
333 | master_keylen); | ||
334 | ret = calc_hash(derived_key, derived_buf, derived_buf_len); | ||
335 | kfree(derived_buf); | ||
336 | return ret; | ||
337 | } | ||
338 | |||
339 | static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key, | ||
340 | unsigned int key_len, const u8 *iv, | ||
341 | unsigned int ivsize) | ||
342 | { | ||
343 | int ret; | ||
344 | |||
345 | desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | ||
346 | if (IS_ERR(desc->tfm)) { | ||
347 | pr_err("encrypted_key: failed to load %s transform (%ld)\n", | ||
348 | blkcipher_alg, PTR_ERR(desc->tfm)); | ||
349 | return PTR_ERR(desc->tfm); | ||
350 | } | ||
351 | desc->flags = 0; | ||
352 | |||
353 | ret = crypto_blkcipher_setkey(desc->tfm, key, key_len); | ||
354 | if (ret < 0) { | ||
355 | pr_err("encrypted_key: failed to setkey (%d)\n", ret); | ||
356 | crypto_free_blkcipher(desc->tfm); | ||
357 | return ret; | ||
358 | } | ||
359 | crypto_blkcipher_set_iv(desc->tfm, iv, ivsize); | ||
360 | return 0; | ||
361 | } | ||
362 | |||
363 | static struct key *request_master_key(struct encrypted_key_payload *epayload, | ||
364 | u8 **master_key, size_t *master_keylen) | ||
365 | { | ||
366 | struct key *mkey = NULL; | ||
367 | |||
368 | if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, | ||
369 | KEY_TRUSTED_PREFIX_LEN)) { | ||
370 | mkey = request_trusted_key(epayload->master_desc + | ||
371 | KEY_TRUSTED_PREFIX_LEN, | ||
372 | master_key, master_keylen); | ||
373 | } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, | ||
374 | KEY_USER_PREFIX_LEN)) { | ||
375 | mkey = request_user_key(epayload->master_desc + | ||
376 | KEY_USER_PREFIX_LEN, | ||
377 | master_key, master_keylen); | ||
378 | } else | ||
379 | goto out; | ||
380 | |||
381 | if (IS_ERR(mkey)) | ||
382 | pr_info("encrypted_key: key %s not found", | ||
383 | epayload->master_desc); | ||
384 | if (mkey) | ||
385 | dump_master_key(*master_key, *master_keylen); | ||
386 | out: | ||
387 | return mkey; | ||
388 | } | ||
389 | |||
390 | /* Before returning data to userspace, encrypt decrypted data. */ | ||
391 | static int derived_key_encrypt(struct encrypted_key_payload *epayload, | ||
392 | const u8 *derived_key, | ||
393 | unsigned int derived_keylen) | ||
394 | { | ||
395 | struct scatterlist sg_in[2]; | ||
396 | struct scatterlist sg_out[1]; | ||
397 | struct blkcipher_desc desc; | ||
398 | unsigned int encrypted_datalen; | ||
399 | unsigned int padlen; | ||
400 | char pad[16]; | ||
401 | int ret; | ||
402 | |||
403 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
404 | padlen = encrypted_datalen - epayload->decrypted_datalen; | ||
405 | |||
406 | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | ||
407 | epayload->iv, ivsize); | ||
408 | if (ret < 0) | ||
409 | goto out; | ||
410 | dump_decrypted_data(epayload); | ||
411 | |||
412 | memset(pad, 0, sizeof pad); | ||
413 | sg_init_table(sg_in, 2); | ||
414 | sg_set_buf(&sg_in[0], epayload->decrypted_data, | ||
415 | epayload->decrypted_datalen); | ||
416 | sg_set_buf(&sg_in[1], pad, padlen); | ||
417 | |||
418 | sg_init_table(sg_out, 1); | ||
419 | sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); | ||
420 | |||
421 | ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen); | ||
422 | crypto_free_blkcipher(desc.tfm); | ||
423 | if (ret < 0) | ||
424 | pr_err("encrypted_key: failed to encrypt (%d)\n", ret); | ||
425 | else | ||
426 | dump_encrypted_data(epayload, encrypted_datalen); | ||
427 | out: | ||
428 | return ret; | ||
429 | } | ||
430 | |||
431 | static int datablob_hmac_append(struct encrypted_key_payload *epayload, | ||
432 | const u8 *master_key, size_t master_keylen) | ||
433 | { | ||
434 | u8 derived_key[HASH_SIZE]; | ||
435 | u8 *digest; | ||
436 | int ret; | ||
437 | |||
438 | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | ||
439 | if (ret < 0) | ||
440 | goto out; | ||
441 | |||
442 | digest = epayload->master_desc + epayload->datablob_len; | ||
443 | ret = calc_hmac(digest, derived_key, sizeof derived_key, | ||
444 | epayload->master_desc, epayload->datablob_len); | ||
445 | if (!ret) | ||
446 | dump_hmac(NULL, digest, HASH_SIZE); | ||
447 | out: | ||
448 | return ret; | ||
449 | } | ||
450 | |||
451 | /* verify HMAC before decrypting encrypted key */ | ||
452 | static int datablob_hmac_verify(struct encrypted_key_payload *epayload, | ||
453 | const u8 *master_key, size_t master_keylen) | ||
454 | { | ||
455 | u8 derived_key[HASH_SIZE]; | ||
456 | u8 digest[HASH_SIZE]; | ||
457 | int ret; | ||
458 | |||
459 | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | ||
460 | if (ret < 0) | ||
461 | goto out; | ||
462 | |||
463 | ret = calc_hmac(digest, derived_key, sizeof derived_key, | ||
464 | epayload->master_desc, epayload->datablob_len); | ||
465 | if (ret < 0) | ||
466 | goto out; | ||
467 | ret = memcmp(digest, epayload->master_desc + epayload->datablob_len, | ||
468 | sizeof digest); | ||
469 | if (ret) { | ||
470 | ret = -EINVAL; | ||
471 | dump_hmac("datablob", | ||
472 | epayload->master_desc + epayload->datablob_len, | ||
473 | HASH_SIZE); | ||
474 | dump_hmac("calc", digest, HASH_SIZE); | ||
475 | } | ||
476 | out: | ||
477 | return ret; | ||
478 | } | ||
479 | |||
480 | static int derived_key_decrypt(struct encrypted_key_payload *epayload, | ||
481 | const u8 *derived_key, | ||
482 | unsigned int derived_keylen) | ||
483 | { | ||
484 | struct scatterlist sg_in[1]; | ||
485 | struct scatterlist sg_out[2]; | ||
486 | struct blkcipher_desc desc; | ||
487 | unsigned int encrypted_datalen; | ||
488 | char pad[16]; | ||
489 | int ret; | ||
490 | |||
491 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
492 | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | ||
493 | epayload->iv, ivsize); | ||
494 | if (ret < 0) | ||
495 | goto out; | ||
496 | dump_encrypted_data(epayload, encrypted_datalen); | ||
497 | |||
498 | memset(pad, 0, sizeof pad); | ||
499 | sg_init_table(sg_in, 1); | ||
500 | sg_init_table(sg_out, 2); | ||
501 | sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); | ||
502 | sg_set_buf(&sg_out[0], epayload->decrypted_data, | ||
503 | epayload->decrypted_datalen); | ||
504 | sg_set_buf(&sg_out[1], pad, sizeof pad); | ||
505 | |||
506 | ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen); | ||
507 | crypto_free_blkcipher(desc.tfm); | ||
508 | if (ret < 0) | ||
509 | goto out; | ||
510 | dump_decrypted_data(epayload); | ||
511 | out: | ||
512 | return ret; | ||
513 | } | ||
514 | |||
515 | /* Allocate memory for decrypted key and datablob. */ | ||
516 | static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, | ||
517 | const char *master_desc, | ||
518 | const char *datalen) | ||
519 | { | ||
520 | struct encrypted_key_payload *epayload = NULL; | ||
521 | unsigned short datablob_len; | ||
522 | unsigned short decrypted_datalen; | ||
523 | unsigned int encrypted_datalen; | ||
524 | long dlen; | ||
525 | int ret; | ||
526 | |||
527 | ret = strict_strtol(datalen, 10, &dlen); | ||
528 | if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) | ||
529 | return ERR_PTR(-EINVAL); | ||
530 | |||
531 | decrypted_datalen = dlen; | ||
532 | encrypted_datalen = roundup(decrypted_datalen, blksize); | ||
533 | |||
534 | datablob_len = strlen(master_desc) + 1 + strlen(datalen) + 1 | ||
535 | + ivsize + 1 + encrypted_datalen; | ||
536 | |||
537 | ret = key_payload_reserve(key, decrypted_datalen + datablob_len | ||
538 | + HASH_SIZE + 1); | ||
539 | if (ret < 0) | ||
540 | return ERR_PTR(ret); | ||
541 | |||
542 | epayload = kzalloc(sizeof(*epayload) + decrypted_datalen + | ||
543 | datablob_len + HASH_SIZE + 1, GFP_KERNEL); | ||
544 | if (!epayload) | ||
545 | return ERR_PTR(-ENOMEM); | ||
546 | |||
547 | epayload->decrypted_datalen = decrypted_datalen; | ||
548 | epayload->datablob_len = datablob_len; | ||
549 | return epayload; | ||
550 | } | ||
551 | |||
552 | static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, | ||
553 | const char *hex_encoded_iv) | ||
554 | { | ||
555 | struct key *mkey; | ||
556 | u8 derived_key[HASH_SIZE]; | ||
557 | u8 *master_key; | ||
558 | u8 *hmac; | ||
559 | const char *hex_encoded_data; | ||
560 | unsigned int encrypted_datalen; | ||
561 | size_t master_keylen; | ||
562 | size_t asciilen; | ||
563 | int ret; | ||
564 | |||
565 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
566 | asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; | ||
567 | if (strlen(hex_encoded_iv) != asciilen) | ||
568 | return -EINVAL; | ||
569 | |||
570 | hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; | ||
571 | hex2bin(epayload->iv, hex_encoded_iv, ivsize); | ||
572 | hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen); | ||
573 | |||
574 | hmac = epayload->master_desc + epayload->datablob_len; | ||
575 | hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE); | ||
576 | |||
577 | mkey = request_master_key(epayload, &master_key, &master_keylen); | ||
578 | if (IS_ERR(mkey)) | ||
579 | return PTR_ERR(mkey); | ||
580 | |||
581 | ret = datablob_hmac_verify(epayload, master_key, master_keylen); | ||
582 | if (ret < 0) { | ||
583 | pr_err("encrypted_key: bad hmac (%d)\n", ret); | ||
584 | goto out; | ||
585 | } | ||
586 | |||
587 | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | ||
588 | if (ret < 0) | ||
589 | goto out; | ||
590 | |||
591 | ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); | ||
592 | if (ret < 0) | ||
593 | pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); | ||
594 | out: | ||
595 | up_read(&mkey->sem); | ||
596 | key_put(mkey); | ||
597 | return ret; | ||
598 | } | ||
599 | |||
600 | static void __ekey_init(struct encrypted_key_payload *epayload, | ||
601 | const char *master_desc, const char *datalen) | ||
602 | { | ||
603 | epayload->master_desc = epayload->decrypted_data | ||
604 | + epayload->decrypted_datalen; | ||
605 | epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; | ||
606 | epayload->iv = epayload->datalen + strlen(datalen) + 1; | ||
607 | epayload->encrypted_data = epayload->iv + ivsize + 1; | ||
608 | |||
609 | memcpy(epayload->master_desc, master_desc, strlen(master_desc)); | ||
610 | memcpy(epayload->datalen, datalen, strlen(datalen)); | ||
611 | } | ||
612 | |||
613 | /* | ||
614 | * encrypted_init - initialize an encrypted key | ||
615 | * | ||
616 | * For a new key, use a random number for both the iv and data | ||
617 | * itself. For an old key, decrypt the hex encoded data. | ||
618 | */ | ||
619 | static int encrypted_init(struct encrypted_key_payload *epayload, | ||
620 | const char *master_desc, const char *datalen, | ||
621 | const char *hex_encoded_iv) | ||
622 | { | ||
623 | int ret = 0; | ||
624 | |||
625 | __ekey_init(epayload, master_desc, datalen); | ||
626 | if (!hex_encoded_iv) { | ||
627 | get_random_bytes(epayload->iv, ivsize); | ||
628 | |||
629 | get_random_bytes(epayload->decrypted_data, | ||
630 | epayload->decrypted_datalen); | ||
631 | } else | ||
632 | ret = encrypted_key_decrypt(epayload, hex_encoded_iv); | ||
633 | return ret; | ||
634 | } | ||
635 | |||
636 | /* | ||
637 | * encrypted_instantiate - instantiate an encrypted key | ||
638 | * | ||
639 | * Decrypt an existing encrypted datablob or create a new encrypted key | ||
640 | * based on a kernel random number. | ||
641 | * | ||
642 | * On success, return 0. Otherwise return errno. | ||
643 | */ | ||
644 | static int encrypted_instantiate(struct key *key, const void *data, | ||
645 | size_t datalen) | ||
646 | { | ||
647 | struct encrypted_key_payload *epayload = NULL; | ||
648 | char *datablob = NULL; | ||
649 | char *master_desc = NULL; | ||
650 | char *decrypted_datalen = NULL; | ||
651 | char *hex_encoded_iv = NULL; | ||
652 | int ret; | ||
653 | |||
654 | if (datalen <= 0 || datalen > 32767 || !data) | ||
655 | return -EINVAL; | ||
656 | |||
657 | datablob = kmalloc(datalen + 1, GFP_KERNEL); | ||
658 | if (!datablob) | ||
659 | return -ENOMEM; | ||
660 | datablob[datalen] = 0; | ||
661 | memcpy(datablob, data, datalen); | ||
662 | ret = datablob_parse(datablob, &master_desc, &decrypted_datalen, | ||
663 | &hex_encoded_iv); | ||
664 | if (ret < 0) | ||
665 | goto out; | ||
666 | |||
667 | epayload = encrypted_key_alloc(key, master_desc, decrypted_datalen); | ||
668 | if (IS_ERR(epayload)) { | ||
669 | ret = PTR_ERR(epayload); | ||
670 | goto out; | ||
671 | } | ||
672 | ret = encrypted_init(epayload, master_desc, decrypted_datalen, | ||
673 | hex_encoded_iv); | ||
674 | if (ret < 0) { | ||
675 | kfree(epayload); | ||
676 | goto out; | ||
677 | } | ||
678 | |||
679 | rcu_assign_pointer(key->payload.data, epayload); | ||
680 | out: | ||
681 | kfree(datablob); | ||
682 | return ret; | ||
683 | } | ||
684 | |||
685 | static void encrypted_rcu_free(struct rcu_head *rcu) | ||
686 | { | ||
687 | struct encrypted_key_payload *epayload; | ||
688 | |||
689 | epayload = container_of(rcu, struct encrypted_key_payload, rcu); | ||
690 | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | ||
691 | kfree(epayload); | ||
692 | } | ||
693 | |||
694 | /* | ||
695 | * encrypted_update - update the master key description | ||
696 | * | ||
697 | * Change the master key description for an existing encrypted key. | ||
698 | * The next read will return an encrypted datablob using the new | ||
699 | * master key description. | ||
700 | * | ||
701 | * On success, return 0. Otherwise return errno. | ||
702 | */ | ||
703 | static int encrypted_update(struct key *key, const void *data, size_t datalen) | ||
704 | { | ||
705 | struct encrypted_key_payload *epayload = key->payload.data; | ||
706 | struct encrypted_key_payload *new_epayload; | ||
707 | char *buf; | ||
708 | char *new_master_desc = NULL; | ||
709 | int ret = 0; | ||
710 | |||
711 | if (datalen <= 0 || datalen > 32767 || !data) | ||
712 | return -EINVAL; | ||
713 | |||
714 | buf = kmalloc(datalen + 1, GFP_KERNEL); | ||
715 | if (!buf) | ||
716 | return -ENOMEM; | ||
717 | |||
718 | buf[datalen] = 0; | ||
719 | memcpy(buf, data, datalen); | ||
720 | ret = datablob_parse(buf, &new_master_desc, NULL, NULL); | ||
721 | if (ret < 0) | ||
722 | goto out; | ||
723 | |||
724 | ret = valid_master_desc(new_master_desc, epayload->master_desc); | ||
725 | if (ret < 0) | ||
726 | goto out; | ||
727 | |||
728 | new_epayload = encrypted_key_alloc(key, new_master_desc, | ||
729 | epayload->datalen); | ||
730 | if (IS_ERR(new_epayload)) { | ||
731 | ret = PTR_ERR(new_epayload); | ||
732 | goto out; | ||
733 | } | ||
734 | |||
735 | __ekey_init(new_epayload, new_master_desc, epayload->datalen); | ||
736 | |||
737 | memcpy(new_epayload->iv, epayload->iv, ivsize); | ||
738 | memcpy(new_epayload->decrypted_data, epayload->decrypted_data, | ||
739 | epayload->decrypted_datalen); | ||
740 | |||
741 | rcu_assign_pointer(key->payload.data, new_epayload); | ||
742 | call_rcu(&epayload->rcu, encrypted_rcu_free); | ||
743 | out: | ||
744 | kfree(buf); | ||
745 | return ret; | ||
746 | } | ||
747 | |||
748 | /* | ||
749 | * encrypted_read - format and copy the encrypted data to userspace | ||
750 | * | ||
751 | * The resulting datablob format is: | ||
752 | * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> | ||
753 | * | ||
754 | * On success, return to userspace the encrypted key datablob size. | ||
755 | */ | ||
756 | static long encrypted_read(const struct key *key, char __user *buffer, | ||
757 | size_t buflen) | ||
758 | { | ||
759 | struct encrypted_key_payload *epayload; | ||
760 | struct key *mkey; | ||
761 | u8 *master_key; | ||
762 | size_t master_keylen; | ||
763 | char derived_key[HASH_SIZE]; | ||
764 | char *ascii_buf; | ||
765 | size_t asciiblob_len; | ||
766 | int ret; | ||
767 | |||
768 | epayload = rcu_dereference_protected(key->payload.data, | ||
769 | rwsem_is_locked(&((struct key *)key)->sem)); | ||
770 | |||
771 | /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ | ||
772 | asciiblob_len = epayload->datablob_len + ivsize + 1 | ||
773 | + roundup(epayload->decrypted_datalen, blksize) | ||
774 | + (HASH_SIZE * 2); | ||
775 | |||
776 | if (!buffer || buflen < asciiblob_len) | ||
777 | return asciiblob_len; | ||
778 | |||
779 | mkey = request_master_key(epayload, &master_key, &master_keylen); | ||
780 | if (IS_ERR(mkey)) | ||
781 | return PTR_ERR(mkey); | ||
782 | |||
783 | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | ||
784 | if (ret < 0) | ||
785 | goto out; | ||
786 | |||
787 | ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); | ||
788 | if (ret < 0) | ||
789 | goto out; | ||
790 | |||
791 | ret = datablob_hmac_append(epayload, master_key, master_keylen); | ||
792 | if (ret < 0) | ||
793 | goto out; | ||
794 | |||
795 | ascii_buf = datablob_format(epayload, asciiblob_len); | ||
796 | if (!ascii_buf) { | ||
797 | ret = -ENOMEM; | ||
798 | goto out; | ||
799 | } | ||
800 | |||
801 | up_read(&mkey->sem); | ||
802 | key_put(mkey); | ||
803 | |||
804 | if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) | ||
805 | ret = -EFAULT; | ||
806 | kfree(ascii_buf); | ||
807 | |||
808 | return asciiblob_len; | ||
809 | out: | ||
810 | up_read(&mkey->sem); | ||
811 | key_put(mkey); | ||
812 | return ret; | ||
813 | } | ||
814 | |||
815 | /* | ||
816 | * encrypted_destroy - before freeing the key, clear the decrypted data | ||
817 | * | ||
818 | * Before freeing the key, clear the memory containing the decrypted | ||
819 | * key data. | ||
820 | */ | ||
821 | static void encrypted_destroy(struct key *key) | ||
822 | { | ||
823 | struct encrypted_key_payload *epayload = key->payload.data; | ||
824 | |||
825 | if (!epayload) | ||
826 | return; | ||
827 | |||
828 | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | ||
829 | kfree(key->payload.data); | ||
830 | } | ||
831 | |||
832 | struct key_type key_type_encrypted = { | ||
833 | .name = "encrypted", | ||
834 | .instantiate = encrypted_instantiate, | ||
835 | .update = encrypted_update, | ||
836 | .match = user_match, | ||
837 | .destroy = encrypted_destroy, | ||
838 | .describe = user_describe, | ||
839 | .read = encrypted_read, | ||
840 | }; | ||
841 | EXPORT_SYMBOL_GPL(key_type_encrypted); | ||
842 | |||
843 | static void encrypted_shash_release(void) | ||
844 | { | ||
845 | if (hashalg) | ||
846 | crypto_free_shash(hashalg); | ||
847 | if (hmacalg) | ||
848 | crypto_free_shash(hmacalg); | ||
849 | } | ||
850 | |||
851 | static int __init encrypted_shash_alloc(void) | ||
852 | { | ||
853 | int ret; | ||
854 | |||
855 | hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); | ||
856 | if (IS_ERR(hmacalg)) { | ||
857 | pr_info("encrypted_key: could not allocate crypto %s\n", | ||
858 | hmac_alg); | ||
859 | return PTR_ERR(hmacalg); | ||
860 | } | ||
861 | |||
862 | hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); | ||
863 | if (IS_ERR(hashalg)) { | ||
864 | pr_info("encrypted_key: could not allocate crypto %s\n", | ||
865 | hash_alg); | ||
866 | ret = PTR_ERR(hashalg); | ||
867 | goto hashalg_fail; | ||
868 | } | ||
869 | |||
870 | return 0; | ||
871 | |||
872 | hashalg_fail: | ||
873 | crypto_free_shash(hmacalg); | ||
874 | return ret; | ||
875 | } | ||
876 | |||
877 | static int __init init_encrypted(void) | ||
878 | { | ||
879 | int ret; | ||
880 | |||
881 | ret = encrypted_shash_alloc(); | ||
882 | if (ret < 0) | ||
883 | return ret; | ||
884 | ret = register_key_type(&key_type_encrypted); | ||
885 | if (ret < 0) | ||
886 | goto out; | ||
887 | return aes_get_sizes(); | ||
888 | out: | ||
889 | encrypted_shash_release(); | ||
890 | return ret; | ||
891 | |||
892 | } | ||
893 | |||
894 | static void __exit cleanup_encrypted(void) | ||
895 | { | ||
896 | encrypted_shash_release(); | ||
897 | unregister_key_type(&key_type_encrypted); | ||
898 | } | ||
899 | |||
900 | late_initcall(init_encrypted); | ||
901 | module_exit(cleanup_encrypted); | ||
902 | |||
903 | MODULE_LICENSE("GPL"); | ||