diff options
Diffstat (limited to 'security/commoncap.c')
| -rw-r--r-- | security/commoncap.c | 834 |
1 files changed, 539 insertions, 295 deletions
diff --git a/security/commoncap.c b/security/commoncap.c index 3976613db829..69fc9952650f 100644 --- a/security/commoncap.c +++ b/security/commoncap.c | |||
| @@ -8,6 +8,7 @@ | |||
| 8 | */ | 8 | */ |
| 9 | 9 | ||
| 10 | #include <linux/capability.h> | 10 | #include <linux/capability.h> |
| 11 | #include <linux/audit.h> | ||
| 11 | #include <linux/module.h> | 12 | #include <linux/module.h> |
| 12 | #include <linux/init.h> | 13 | #include <linux/init.h> |
| 13 | #include <linux/kernel.h> | 14 | #include <linux/kernel.h> |
| @@ -29,7 +30,7 @@ | |||
| 29 | 30 | ||
| 30 | int cap_netlink_send(struct sock *sk, struct sk_buff *skb) | 31 | int cap_netlink_send(struct sock *sk, struct sk_buff *skb) |
| 31 | { | 32 | { |
| 32 | NETLINK_CB(skb).eff_cap = current->cap_effective; | 33 | NETLINK_CB(skb).eff_cap = current_cap(); |
| 33 | return 0; | 34 | return 0; |
| 34 | } | 35 | } |
| 35 | 36 | ||
| @@ -39,23 +40,41 @@ int cap_netlink_recv(struct sk_buff *skb, int cap) | |||
| 39 | return -EPERM; | 40 | return -EPERM; |
| 40 | return 0; | 41 | return 0; |
| 41 | } | 42 | } |
| 42 | |||
| 43 | EXPORT_SYMBOL(cap_netlink_recv); | 43 | EXPORT_SYMBOL(cap_netlink_recv); |
| 44 | 44 | ||
| 45 | /* | 45 | /** |
| 46 | * cap_capable - Determine whether a task has a particular effective capability | ||
| 47 | * @tsk: The task to query | ||
| 48 | * @cap: The capability to check for | ||
| 49 | * @audit: Whether to write an audit message or not | ||
| 50 | * | ||
| 51 | * Determine whether the nominated task has the specified capability amongst | ||
| 52 | * its effective set, returning 0 if it does, -ve if it does not. | ||
| 53 | * | ||
| 46 | * NOTE WELL: cap_capable() cannot be used like the kernel's capable() | 54 | * NOTE WELL: cap_capable() cannot be used like the kernel's capable() |
| 47 | * function. That is, it has the reverse semantics: cap_capable() | 55 | * function. That is, it has the reverse semantics: cap_capable() returns 0 |
| 48 | * returns 0 when a task has a capability, but the kernel's capable() | 56 | * when a task has a capability, but the kernel's capable() returns 1 for this |
| 49 | * returns 1 for this case. | 57 | * case. |
| 50 | */ | 58 | */ |
| 51 | int cap_capable (struct task_struct *tsk, int cap) | 59 | int cap_capable(struct task_struct *tsk, int cap, int audit) |
| 52 | { | 60 | { |
| 61 | __u32 cap_raised; | ||
| 62 | |||
| 53 | /* Derived from include/linux/sched.h:capable. */ | 63 | /* Derived from include/linux/sched.h:capable. */ |
| 54 | if (cap_raised(tsk->cap_effective, cap)) | 64 | rcu_read_lock(); |
| 55 | return 0; | 65 | cap_raised = cap_raised(__task_cred(tsk)->cap_effective, cap); |
| 56 | return -EPERM; | 66 | rcu_read_unlock(); |
| 67 | return cap_raised ? 0 : -EPERM; | ||
| 57 | } | 68 | } |
| 58 | 69 | ||
| 70 | /** | ||
| 71 | * cap_settime - Determine whether the current process may set the system clock | ||
| 72 | * @ts: The time to set | ||
| 73 | * @tz: The timezone to set | ||
| 74 | * | ||
| 75 | * Determine whether the current process may set the system clock and timezone | ||
| 76 | * information, returning 0 if permission granted, -ve if denied. | ||
| 77 | */ | ||
| 59 | int cap_settime(struct timespec *ts, struct timezone *tz) | 78 | int cap_settime(struct timespec *ts, struct timezone *tz) |
| 60 | { | 79 | { |
| 61 | if (!capable(CAP_SYS_TIME)) | 80 | if (!capable(CAP_SYS_TIME)) |
| @@ -63,127 +82,163 @@ int cap_settime(struct timespec *ts, struct timezone *tz) | |||
| 63 | return 0; | 82 | return 0; |
| 64 | } | 83 | } |
| 65 | 84 | ||
| 85 | /** | ||
| 86 | * cap_ptrace_may_access - Determine whether the current process may access | ||
| 87 | * another | ||
| 88 | * @child: The process to be accessed | ||
| 89 | * @mode: The mode of attachment. | ||
| 90 | * | ||
| 91 | * Determine whether a process may access another, returning 0 if permission | ||
| 92 | * granted, -ve if denied. | ||
| 93 | */ | ||
| 66 | int cap_ptrace_may_access(struct task_struct *child, unsigned int mode) | 94 | int cap_ptrace_may_access(struct task_struct *child, unsigned int mode) |
| 67 | { | 95 | { |
| 68 | /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ | 96 | int ret = 0; |
| 69 | if (cap_issubset(child->cap_permitted, current->cap_permitted)) | 97 | |
| 70 | return 0; | 98 | rcu_read_lock(); |
| 71 | if (capable(CAP_SYS_PTRACE)) | 99 | if (!cap_issubset(__task_cred(child)->cap_permitted, |
| 72 | return 0; | 100 | current_cred()->cap_permitted) && |
| 73 | return -EPERM; | 101 | !capable(CAP_SYS_PTRACE)) |
| 102 | ret = -EPERM; | ||
| 103 | rcu_read_unlock(); | ||
| 104 | return ret; | ||
| 74 | } | 105 | } |
| 75 | 106 | ||
| 107 | /** | ||
| 108 | * cap_ptrace_traceme - Determine whether another process may trace the current | ||
| 109 | * @parent: The task proposed to be the tracer | ||
| 110 | * | ||
| 111 | * Determine whether the nominated task is permitted to trace the current | ||
| 112 | * process, returning 0 if permission is granted, -ve if denied. | ||
| 113 | */ | ||
| 76 | int cap_ptrace_traceme(struct task_struct *parent) | 114 | int cap_ptrace_traceme(struct task_struct *parent) |
| 77 | { | 115 | { |
| 78 | /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ | 116 | int ret = 0; |
| 79 | if (cap_issubset(current->cap_permitted, parent->cap_permitted)) | 117 | |
| 80 | return 0; | 118 | rcu_read_lock(); |
| 81 | if (has_capability(parent, CAP_SYS_PTRACE)) | 119 | if (!cap_issubset(current_cred()->cap_permitted, |
| 82 | return 0; | 120 | __task_cred(parent)->cap_permitted) && |
| 83 | return -EPERM; | 121 | !has_capability(parent, CAP_SYS_PTRACE)) |
| 122 | ret = -EPERM; | ||
| 123 | rcu_read_unlock(); | ||
| 124 | return ret; | ||
| 84 | } | 125 | } |
| 85 | 126 | ||
| 86 | int cap_capget (struct task_struct *target, kernel_cap_t *effective, | 127 | /** |
| 87 | kernel_cap_t *inheritable, kernel_cap_t *permitted) | 128 | * cap_capget - Retrieve a task's capability sets |
| 129 | * @target: The task from which to retrieve the capability sets | ||
| 130 | * @effective: The place to record the effective set | ||
| 131 | * @inheritable: The place to record the inheritable set | ||
| 132 | * @permitted: The place to record the permitted set | ||
| 133 | * | ||
| 134 | * This function retrieves the capabilities of the nominated task and returns | ||
| 135 | * them to the caller. | ||
| 136 | */ | ||
| 137 | int cap_capget(struct task_struct *target, kernel_cap_t *effective, | ||
| 138 | kernel_cap_t *inheritable, kernel_cap_t *permitted) | ||
| 88 | { | 139 | { |
| 140 | const struct cred *cred; | ||
| 141 | |||
| 89 | /* Derived from kernel/capability.c:sys_capget. */ | 142 | /* Derived from kernel/capability.c:sys_capget. */ |
| 90 | *effective = target->cap_effective; | 143 | rcu_read_lock(); |
| 91 | *inheritable = target->cap_inheritable; | 144 | cred = __task_cred(target); |
| 92 | *permitted = target->cap_permitted; | 145 | *effective = cred->cap_effective; |
| 146 | *inheritable = cred->cap_inheritable; | ||
| 147 | *permitted = cred->cap_permitted; | ||
| 148 | rcu_read_unlock(); | ||
| 93 | return 0; | 149 | return 0; |
| 94 | } | 150 | } |
| 95 | 151 | ||
| 96 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | 152 | /* |
| 97 | 153 | * Determine whether the inheritable capabilities are limited to the old | |
| 98 | static inline int cap_block_setpcap(struct task_struct *target) | 154 | * permitted set. Returns 1 if they are limited, 0 if they are not. |
| 99 | { | 155 | */ |
| 100 | /* | ||
| 101 | * No support for remote process capability manipulation with | ||
| 102 | * filesystem capability support. | ||
| 103 | */ | ||
| 104 | return (target != current); | ||
| 105 | } | ||
| 106 | |||
| 107 | static inline int cap_inh_is_capped(void) | 156 | static inline int cap_inh_is_capped(void) |
| 108 | { | 157 | { |
| 109 | /* | 158 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| 110 | * Return 1 if changes to the inheritable set are limited | ||
| 111 | * to the old permitted set. That is, if the current task | ||
| 112 | * does *not* possess the CAP_SETPCAP capability. | ||
| 113 | */ | ||
| 114 | return (cap_capable(current, CAP_SETPCAP) != 0); | ||
| 115 | } | ||
| 116 | |||
| 117 | static inline int cap_limit_ptraced_target(void) { return 1; } | ||
| 118 | |||
| 119 | #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */ | ||
| 120 | 159 | ||
| 121 | static inline int cap_block_setpcap(struct task_struct *t) { return 0; } | 160 | /* they are so limited unless the current task has the CAP_SETPCAP |
| 122 | static inline int cap_inh_is_capped(void) { return 1; } | 161 | * capability |
| 123 | static inline int cap_limit_ptraced_target(void) | 162 | */ |
| 124 | { | 163 | if (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0) |
| 125 | return !capable(CAP_SETPCAP); | 164 | return 0; |
| 165 | #endif | ||
| 166 | return 1; | ||
| 126 | } | 167 | } |
| 127 | 168 | ||
| 128 | #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ | 169 | /** |
| 129 | 170 | * cap_capset - Validate and apply proposed changes to current's capabilities | |
| 130 | int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, | 171 | * @new: The proposed new credentials; alterations should be made here |
| 131 | kernel_cap_t *inheritable, kernel_cap_t *permitted) | 172 | * @old: The current task's current credentials |
| 132 | { | 173 | * @effective: A pointer to the proposed new effective capabilities set |
| 133 | if (cap_block_setpcap(target)) { | 174 | * @inheritable: A pointer to the proposed new inheritable capabilities set |
| 134 | return -EPERM; | 175 | * @permitted: A pointer to the proposed new permitted capabilities set |
| 135 | } | 176 | * |
| 136 | if (cap_inh_is_capped() | 177 | * This function validates and applies a proposed mass change to the current |
| 137 | && !cap_issubset(*inheritable, | 178 | * process's capability sets. The changes are made to the proposed new |
| 138 | cap_combine(target->cap_inheritable, | 179 | * credentials, and assuming no error, will be committed by the caller of LSM. |
| 139 | current->cap_permitted))) { | 180 | */ |
| 181 | int cap_capset(struct cred *new, | ||
| 182 | const struct cred *old, | ||
| 183 | const kernel_cap_t *effective, | ||
| 184 | const kernel_cap_t *inheritable, | ||
| 185 | const kernel_cap_t *permitted) | ||
| 186 | { | ||
| 187 | if (cap_inh_is_capped() && | ||
| 188 | !cap_issubset(*inheritable, | ||
| 189 | cap_combine(old->cap_inheritable, | ||
| 190 | old->cap_permitted))) | ||
| 140 | /* incapable of using this inheritable set */ | 191 | /* incapable of using this inheritable set */ |
| 141 | return -EPERM; | 192 | return -EPERM; |
| 142 | } | 193 | |
| 143 | if (!cap_issubset(*inheritable, | 194 | if (!cap_issubset(*inheritable, |
| 144 | cap_combine(target->cap_inheritable, | 195 | cap_combine(old->cap_inheritable, |
| 145 | current->cap_bset))) { | 196 | old->cap_bset))) |
| 146 | /* no new pI capabilities outside bounding set */ | 197 | /* no new pI capabilities outside bounding set */ |
| 147 | return -EPERM; | 198 | return -EPERM; |
| 148 | } | ||
| 149 | 199 | ||
| 150 | /* verify restrictions on target's new Permitted set */ | 200 | /* verify restrictions on target's new Permitted set */ |
| 151 | if (!cap_issubset (*permitted, | 201 | if (!cap_issubset(*permitted, old->cap_permitted)) |
| 152 | cap_combine (target->cap_permitted, | ||
| 153 | current->cap_permitted))) { | ||
| 154 | return -EPERM; | 202 | return -EPERM; |
| 155 | } | ||
| 156 | 203 | ||
| 157 | /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ | 204 | /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ |
| 158 | if (!cap_issubset (*effective, *permitted)) { | 205 | if (!cap_issubset(*effective, *permitted)) |
| 159 | return -EPERM; | 206 | return -EPERM; |
| 160 | } | ||
| 161 | 207 | ||
| 208 | new->cap_effective = *effective; | ||
| 209 | new->cap_inheritable = *inheritable; | ||
| 210 | new->cap_permitted = *permitted; | ||
| 162 | return 0; | 211 | return 0; |
| 163 | } | 212 | } |
| 164 | 213 | ||
| 165 | void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, | 214 | /* |
| 166 | kernel_cap_t *inheritable, kernel_cap_t *permitted) | 215 | * Clear proposed capability sets for execve(). |
| 167 | { | 216 | */ |
| 168 | target->cap_effective = *effective; | ||
| 169 | target->cap_inheritable = *inheritable; | ||
| 170 | target->cap_permitted = *permitted; | ||
| 171 | } | ||
| 172 | |||
| 173 | static inline void bprm_clear_caps(struct linux_binprm *bprm) | 217 | static inline void bprm_clear_caps(struct linux_binprm *bprm) |
| 174 | { | 218 | { |
| 175 | cap_clear(bprm->cap_post_exec_permitted); | 219 | cap_clear(bprm->cred->cap_permitted); |
| 176 | bprm->cap_effective = false; | 220 | bprm->cap_effective = false; |
| 177 | } | 221 | } |
| 178 | 222 | ||
| 179 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | 223 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| 180 | 224 | ||
| 225 | /** | ||
| 226 | * cap_inode_need_killpriv - Determine if inode change affects privileges | ||
| 227 | * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV | ||
| 228 | * | ||
| 229 | * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV | ||
| 230 | * affects the security markings on that inode, and if it is, should | ||
| 231 | * inode_killpriv() be invoked or the change rejected? | ||
| 232 | * | ||
| 233 | * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and | ||
| 234 | * -ve to deny the change. | ||
| 235 | */ | ||
| 181 | int cap_inode_need_killpriv(struct dentry *dentry) | 236 | int cap_inode_need_killpriv(struct dentry *dentry) |
| 182 | { | 237 | { |
| 183 | struct inode *inode = dentry->d_inode; | 238 | struct inode *inode = dentry->d_inode; |
| 184 | int error; | 239 | int error; |
| 185 | 240 | ||
| 186 | if (!inode->i_op || !inode->i_op->getxattr) | 241 | if (!inode->i_op->getxattr) |
| 187 | return 0; | 242 | return 0; |
| 188 | 243 | ||
| 189 | error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); | 244 | error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); |
| @@ -192,29 +247,93 @@ int cap_inode_need_killpriv(struct dentry *dentry) | |||
| 192 | return 1; | 247 | return 1; |
| 193 | } | 248 | } |
| 194 | 249 | ||
| 250 | /** | ||
| 251 | * cap_inode_killpriv - Erase the security markings on an inode | ||
| 252 | * @dentry: The inode/dentry to alter | ||
| 253 | * | ||
| 254 | * Erase the privilege-enhancing security markings on an inode. | ||
| 255 | * | ||
| 256 | * Returns 0 if successful, -ve on error. | ||
| 257 | */ | ||
| 195 | int cap_inode_killpriv(struct dentry *dentry) | 258 | int cap_inode_killpriv(struct dentry *dentry) |
| 196 | { | 259 | { |
| 197 | struct inode *inode = dentry->d_inode; | 260 | struct inode *inode = dentry->d_inode; |
| 198 | 261 | ||
| 199 | if (!inode->i_op || !inode->i_op->removexattr) | 262 | if (!inode->i_op->removexattr) |
| 200 | return 0; | 263 | return 0; |
| 201 | 264 | ||
| 202 | return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); | 265 | return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); |
| 203 | } | 266 | } |
| 204 | 267 | ||
| 205 | static inline int cap_from_disk(struct vfs_cap_data *caps, | 268 | /* |
| 206 | struct linux_binprm *bprm, unsigned size) | 269 | * Calculate the new process capability sets from the capability sets attached |
| 270 | * to a file. | ||
| 271 | */ | ||
| 272 | static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, | ||
| 273 | struct linux_binprm *bprm, | ||
| 274 | bool *effective) | ||
| 207 | { | 275 | { |
| 276 | struct cred *new = bprm->cred; | ||
| 277 | unsigned i; | ||
| 278 | int ret = 0; | ||
| 279 | |||
| 280 | if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) | ||
| 281 | *effective = true; | ||
| 282 | |||
| 283 | CAP_FOR_EACH_U32(i) { | ||
| 284 | __u32 permitted = caps->permitted.cap[i]; | ||
| 285 | __u32 inheritable = caps->inheritable.cap[i]; | ||
| 286 | |||
| 287 | /* | ||
| 288 | * pP' = (X & fP) | (pI & fI) | ||
| 289 | */ | ||
| 290 | new->cap_permitted.cap[i] = | ||
| 291 | (new->cap_bset.cap[i] & permitted) | | ||
| 292 | (new->cap_inheritable.cap[i] & inheritable); | ||
| 293 | |||
| 294 | if (permitted & ~new->cap_permitted.cap[i]) | ||
| 295 | /* insufficient to execute correctly */ | ||
| 296 | ret = -EPERM; | ||
| 297 | } | ||
| 298 | |||
| 299 | /* | ||
| 300 | * For legacy apps, with no internal support for recognizing they | ||
| 301 | * do not have enough capabilities, we return an error if they are | ||
| 302 | * missing some "forced" (aka file-permitted) capabilities. | ||
| 303 | */ | ||
| 304 | return *effective ? ret : 0; | ||
| 305 | } | ||
| 306 | |||
| 307 | /* | ||
| 308 | * Extract the on-exec-apply capability sets for an executable file. | ||
| 309 | */ | ||
| 310 | int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) | ||
| 311 | { | ||
| 312 | struct inode *inode = dentry->d_inode; | ||
| 208 | __u32 magic_etc; | 313 | __u32 magic_etc; |
| 209 | unsigned tocopy, i; | 314 | unsigned tocopy, i; |
| 210 | int ret; | 315 | int size; |
| 316 | struct vfs_cap_data caps; | ||
| 317 | |||
| 318 | memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); | ||
| 319 | |||
| 320 | if (!inode || !inode->i_op->getxattr) | ||
| 321 | return -ENODATA; | ||
| 322 | |||
| 323 | size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps, | ||
| 324 | XATTR_CAPS_SZ); | ||
| 325 | if (size == -ENODATA || size == -EOPNOTSUPP) | ||
| 326 | /* no data, that's ok */ | ||
| 327 | return -ENODATA; | ||
| 328 | if (size < 0) | ||
| 329 | return size; | ||
| 211 | 330 | ||
| 212 | if (size < sizeof(magic_etc)) | 331 | if (size < sizeof(magic_etc)) |
| 213 | return -EINVAL; | 332 | return -EINVAL; |
| 214 | 333 | ||
| 215 | magic_etc = le32_to_cpu(caps->magic_etc); | 334 | cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc); |
| 216 | 335 | ||
| 217 | switch ((magic_etc & VFS_CAP_REVISION_MASK)) { | 336 | switch (magic_etc & VFS_CAP_REVISION_MASK) { |
| 218 | case VFS_CAP_REVISION_1: | 337 | case VFS_CAP_REVISION_1: |
| 219 | if (size != XATTR_CAPS_SZ_1) | 338 | if (size != XATTR_CAPS_SZ_1) |
| 220 | return -EINVAL; | 339 | return -EINVAL; |
| @@ -229,77 +348,48 @@ static inline int cap_from_disk(struct vfs_cap_data *caps, | |||
| 229 | return -EINVAL; | 348 | return -EINVAL; |
| 230 | } | 349 | } |
| 231 | 350 | ||
| 232 | if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) { | ||
| 233 | bprm->cap_effective = true; | ||
| 234 | } else { | ||
| 235 | bprm->cap_effective = false; | ||
| 236 | } | ||
| 237 | |||
| 238 | ret = 0; | ||
| 239 | |||
| 240 | CAP_FOR_EACH_U32(i) { | 351 | CAP_FOR_EACH_U32(i) { |
| 241 | __u32 value_cpu; | 352 | if (i >= tocopy) |
| 242 | 353 | break; | |
| 243 | if (i >= tocopy) { | 354 | cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted); |
| 244 | /* | 355 | cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable); |
| 245 | * Legacy capability sets have no upper bits | ||
| 246 | */ | ||
| 247 | bprm->cap_post_exec_permitted.cap[i] = 0; | ||
| 248 | continue; | ||
| 249 | } | ||
| 250 | /* | ||
| 251 | * pP' = (X & fP) | (pI & fI) | ||
| 252 | */ | ||
| 253 | value_cpu = le32_to_cpu(caps->data[i].permitted); | ||
| 254 | bprm->cap_post_exec_permitted.cap[i] = | ||
| 255 | (current->cap_bset.cap[i] & value_cpu) | | ||
| 256 | (current->cap_inheritable.cap[i] & | ||
| 257 | le32_to_cpu(caps->data[i].inheritable)); | ||
| 258 | if (value_cpu & ~bprm->cap_post_exec_permitted.cap[i]) { | ||
| 259 | /* | ||
| 260 | * insufficient to execute correctly | ||
| 261 | */ | ||
| 262 | ret = -EPERM; | ||
| 263 | } | ||
| 264 | } | 356 | } |
| 265 | 357 | ||
| 266 | /* | 358 | return 0; |
| 267 | * For legacy apps, with no internal support for recognizing they | ||
| 268 | * do not have enough capabilities, we return an error if they are | ||
| 269 | * missing some "forced" (aka file-permitted) capabilities. | ||
| 270 | */ | ||
| 271 | return bprm->cap_effective ? ret : 0; | ||
| 272 | } | 359 | } |
| 273 | 360 | ||
| 274 | /* Locate any VFS capabilities: */ | 361 | /* |
| 275 | static int get_file_caps(struct linux_binprm *bprm) | 362 | * Attempt to get the on-exec apply capability sets for an executable file from |
| 363 | * its xattrs and, if present, apply them to the proposed credentials being | ||
| 364 | * constructed by execve(). | ||
| 365 | */ | ||
| 366 | static int get_file_caps(struct linux_binprm *bprm, bool *effective) | ||
| 276 | { | 367 | { |
| 277 | struct dentry *dentry; | 368 | struct dentry *dentry; |
| 278 | int rc = 0; | 369 | int rc = 0; |
| 279 | struct vfs_cap_data vcaps; | 370 | struct cpu_vfs_cap_data vcaps; |
| 280 | struct inode *inode; | ||
| 281 | 371 | ||
| 282 | bprm_clear_caps(bprm); | 372 | bprm_clear_caps(bprm); |
| 283 | 373 | ||
| 374 | if (!file_caps_enabled) | ||
| 375 | return 0; | ||
| 376 | |||
| 284 | if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) | 377 | if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) |
| 285 | return 0; | 378 | return 0; |
| 286 | 379 | ||
| 287 | dentry = dget(bprm->file->f_dentry); | 380 | dentry = dget(bprm->file->f_dentry); |
| 288 | inode = dentry->d_inode; | ||
| 289 | if (!inode->i_op || !inode->i_op->getxattr) | ||
| 290 | goto out; | ||
| 291 | 381 | ||
| 292 | rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps, | 382 | rc = get_vfs_caps_from_disk(dentry, &vcaps); |
| 293 | XATTR_CAPS_SZ); | 383 | if (rc < 0) { |
| 294 | if (rc == -ENODATA || rc == -EOPNOTSUPP) { | 384 | if (rc == -EINVAL) |
| 295 | /* no data, that's ok */ | 385 | printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n", |
| 296 | rc = 0; | 386 | __func__, rc, bprm->filename); |
| 387 | else if (rc == -ENODATA) | ||
| 388 | rc = 0; | ||
| 297 | goto out; | 389 | goto out; |
| 298 | } | 390 | } |
| 299 | if (rc < 0) | ||
| 300 | goto out; | ||
| 301 | 391 | ||
| 302 | rc = cap_from_disk(&vcaps, bprm, rc); | 392 | rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective); |
| 303 | if (rc == -EINVAL) | 393 | if (rc == -EINVAL) |
| 304 | printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", | 394 | printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", |
| 305 | __func__, rc, bprm->filename); | 395 | __func__, rc, bprm->filename); |
| @@ -323,18 +413,57 @@ int cap_inode_killpriv(struct dentry *dentry) | |||
| 323 | return 0; | 413 | return 0; |
| 324 | } | 414 | } |
| 325 | 415 | ||
| 326 | static inline int get_file_caps(struct linux_binprm *bprm) | 416 | int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) |
| 417 | { | ||
| 418 | memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); | ||
| 419 | return -ENODATA; | ||
| 420 | } | ||
| 421 | |||
| 422 | static inline int get_file_caps(struct linux_binprm *bprm, bool *effective) | ||
| 327 | { | 423 | { |
| 328 | bprm_clear_caps(bprm); | 424 | bprm_clear_caps(bprm); |
| 329 | return 0; | 425 | return 0; |
| 330 | } | 426 | } |
| 331 | #endif | 427 | #endif |
| 332 | 428 | ||
| 333 | int cap_bprm_set_security (struct linux_binprm *bprm) | 429 | /* |
| 430 | * Determine whether a exec'ing process's new permitted capabilities should be | ||
| 431 | * limited to just what it already has. | ||
| 432 | * | ||
| 433 | * This prevents processes that are being ptraced from gaining access to | ||
| 434 | * CAP_SETPCAP, unless the process they're tracing already has it, and the | ||
| 435 | * binary they're executing has filecaps that elevate it. | ||
| 436 | * | ||
| 437 | * Returns 1 if they should be limited, 0 if they are not. | ||
| 438 | */ | ||
| 439 | static inline int cap_limit_ptraced_target(void) | ||
| 440 | { | ||
| 441 | #ifndef CONFIG_SECURITY_FILE_CAPABILITIES | ||
| 442 | if (capable(CAP_SETPCAP)) | ||
| 443 | return 0; | ||
| 444 | #endif | ||
| 445 | return 1; | ||
| 446 | } | ||
| 447 | |||
| 448 | /** | ||
| 449 | * cap_bprm_set_creds - Set up the proposed credentials for execve(). | ||
| 450 | * @bprm: The execution parameters, including the proposed creds | ||
| 451 | * | ||
| 452 | * Set up the proposed credentials for a new execution context being | ||
| 453 | * constructed by execve(). The proposed creds in @bprm->cred is altered, | ||
| 454 | * which won't take effect immediately. Returns 0 if successful, -ve on error. | ||
| 455 | */ | ||
| 456 | int cap_bprm_set_creds(struct linux_binprm *bprm) | ||
| 334 | { | 457 | { |
| 458 | const struct cred *old = current_cred(); | ||
| 459 | struct cred *new = bprm->cred; | ||
| 460 | bool effective; | ||
| 335 | int ret; | 461 | int ret; |
| 336 | 462 | ||
| 337 | ret = get_file_caps(bprm); | 463 | effective = false; |
| 464 | ret = get_file_caps(bprm, &effective); | ||
| 465 | if (ret < 0) | ||
| 466 | return ret; | ||
| 338 | 467 | ||
| 339 | if (!issecure(SECURE_NOROOT)) { | 468 | if (!issecure(SECURE_NOROOT)) { |
| 340 | /* | 469 | /* |
| @@ -342,75 +471,113 @@ int cap_bprm_set_security (struct linux_binprm *bprm) | |||
| 342 | * executables under compatibility mode, we override the | 471 | * executables under compatibility mode, we override the |
| 343 | * capability sets for the file. | 472 | * capability sets for the file. |
| 344 | * | 473 | * |
| 345 | * If only the real uid is 0, we do not set the effective | 474 | * If only the real uid is 0, we do not set the effective bit. |
| 346 | * bit. | ||
| 347 | */ | 475 | */ |
| 348 | if (bprm->e_uid == 0 || current->uid == 0) { | 476 | if (new->euid == 0 || new->uid == 0) { |
| 349 | /* pP' = (cap_bset & ~0) | (pI & ~0) */ | 477 | /* pP' = (cap_bset & ~0) | (pI & ~0) */ |
| 350 | bprm->cap_post_exec_permitted = cap_combine( | 478 | new->cap_permitted = cap_combine(old->cap_bset, |
| 351 | current->cap_bset, current->cap_inheritable | 479 | old->cap_inheritable); |
| 352 | ); | ||
| 353 | bprm->cap_effective = (bprm->e_uid == 0); | ||
| 354 | ret = 0; | ||
| 355 | } | 480 | } |
| 481 | if (new->euid == 0) | ||
| 482 | effective = true; | ||
| 356 | } | 483 | } |
| 357 | 484 | ||
| 358 | return ret; | 485 | /* Don't let someone trace a set[ug]id/setpcap binary with the revised |
| 359 | } | 486 | * credentials unless they have the appropriate permit |
| 360 | 487 | */ | |
| 361 | void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) | 488 | if ((new->euid != old->uid || |
| 362 | { | 489 | new->egid != old->gid || |
| 363 | if (bprm->e_uid != current->uid || bprm->e_gid != current->gid || | 490 | !cap_issubset(new->cap_permitted, old->cap_permitted)) && |
| 364 | !cap_issubset(bprm->cap_post_exec_permitted, | 491 | bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) { |
| 365 | current->cap_permitted)) { | 492 | /* downgrade; they get no more than they had, and maybe less */ |
| 366 | set_dumpable(current->mm, suid_dumpable); | 493 | if (!capable(CAP_SETUID)) { |
| 367 | current->pdeath_signal = 0; | 494 | new->euid = new->uid; |
| 368 | 495 | new->egid = new->gid; | |
| 369 | if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) { | ||
| 370 | if (!capable(CAP_SETUID)) { | ||
| 371 | bprm->e_uid = current->uid; | ||
| 372 | bprm->e_gid = current->gid; | ||
| 373 | } | ||
| 374 | if (cap_limit_ptraced_target()) { | ||
| 375 | bprm->cap_post_exec_permitted = cap_intersect( | ||
| 376 | bprm->cap_post_exec_permitted, | ||
| 377 | current->cap_permitted); | ||
| 378 | } | ||
| 379 | } | 496 | } |
| 497 | if (cap_limit_ptraced_target()) | ||
| 498 | new->cap_permitted = cap_intersect(new->cap_permitted, | ||
| 499 | old->cap_permitted); | ||
| 380 | } | 500 | } |
| 381 | 501 | ||
| 382 | current->suid = current->euid = current->fsuid = bprm->e_uid; | 502 | new->suid = new->fsuid = new->euid; |
| 383 | current->sgid = current->egid = current->fsgid = bprm->e_gid; | 503 | new->sgid = new->fsgid = new->egid; |
| 384 | 504 | ||
| 385 | /* For init, we want to retain the capabilities set | 505 | /* For init, we want to retain the capabilities set in the initial |
| 386 | * in the init_task struct. Thus we skip the usual | 506 | * task. Thus we skip the usual capability rules |
| 387 | * capability rules */ | 507 | */ |
| 388 | if (!is_global_init(current)) { | 508 | if (!is_global_init(current)) { |
| 389 | current->cap_permitted = bprm->cap_post_exec_permitted; | 509 | if (effective) |
| 390 | if (bprm->cap_effective) | 510 | new->cap_effective = new->cap_permitted; |
| 391 | current->cap_effective = bprm->cap_post_exec_permitted; | ||
| 392 | else | 511 | else |
| 393 | cap_clear(current->cap_effective); | 512 | cap_clear(new->cap_effective); |
| 394 | } | 513 | } |
| 514 | bprm->cap_effective = effective; | ||
| 395 | 515 | ||
| 396 | /* AUD: Audit candidate if current->cap_effective is set */ | 516 | /* |
| 517 | * Audit candidate if current->cap_effective is set | ||
| 518 | * | ||
| 519 | * We do not bother to audit if 3 things are true: | ||
| 520 | * 1) cap_effective has all caps | ||
| 521 | * 2) we are root | ||
| 522 | * 3) root is supposed to have all caps (SECURE_NOROOT) | ||
| 523 | * Since this is just a normal root execing a process. | ||
| 524 | * | ||
| 525 | * Number 1 above might fail if you don't have a full bset, but I think | ||
| 526 | * that is interesting information to audit. | ||
| 527 | */ | ||
| 528 | if (!cap_isclear(new->cap_effective)) { | ||
| 529 | if (!cap_issubset(CAP_FULL_SET, new->cap_effective) || | ||
| 530 | new->euid != 0 || new->uid != 0 || | ||
| 531 | issecure(SECURE_NOROOT)) { | ||
| 532 | ret = audit_log_bprm_fcaps(bprm, new, old); | ||
| 533 | if (ret < 0) | ||
| 534 | return ret; | ||
| 535 | } | ||
| 536 | } | ||
| 397 | 537 | ||
| 398 | current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); | 538 | new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); |
| 539 | return 0; | ||
| 399 | } | 540 | } |
| 400 | 541 | ||
| 401 | int cap_bprm_secureexec (struct linux_binprm *bprm) | 542 | /** |
| 543 | * cap_bprm_secureexec - Determine whether a secure execution is required | ||
| 544 | * @bprm: The execution parameters | ||
| 545 | * | ||
| 546 | * Determine whether a secure execution is required, return 1 if it is, and 0 | ||
| 547 | * if it is not. | ||
| 548 | * | ||
| 549 | * The credentials have been committed by this point, and so are no longer | ||
| 550 | * available through @bprm->cred. | ||
| 551 | */ | ||
| 552 | int cap_bprm_secureexec(struct linux_binprm *bprm) | ||
| 402 | { | 553 | { |
| 403 | if (current->uid != 0) { | 554 | const struct cred *cred = current_cred(); |
| 555 | |||
| 556 | if (cred->uid != 0) { | ||
| 404 | if (bprm->cap_effective) | 557 | if (bprm->cap_effective) |
| 405 | return 1; | 558 | return 1; |
| 406 | if (!cap_isclear(bprm->cap_post_exec_permitted)) | 559 | if (!cap_isclear(cred->cap_permitted)) |
| 407 | return 1; | 560 | return 1; |
| 408 | } | 561 | } |
| 409 | 562 | ||
| 410 | return (current->euid != current->uid || | 563 | return (cred->euid != cred->uid || |
| 411 | current->egid != current->gid); | 564 | cred->egid != cred->gid); |
| 412 | } | 565 | } |
| 413 | 566 | ||
| 567 | /** | ||
| 568 | * cap_inode_setxattr - Determine whether an xattr may be altered | ||
| 569 | * @dentry: The inode/dentry being altered | ||
| 570 | * @name: The name of the xattr to be changed | ||
| 571 | * @value: The value that the xattr will be changed to | ||
| 572 | * @size: The size of value | ||
| 573 | * @flags: The replacement flag | ||
| 574 | * | ||
| 575 | * Determine whether an xattr may be altered or set on an inode, returning 0 if | ||
| 576 | * permission is granted, -ve if denied. | ||
| 577 | * | ||
| 578 | * This is used to make sure security xattrs don't get updated or set by those | ||
| 579 | * who aren't privileged to do so. | ||
| 580 | */ | ||
| 414 | int cap_inode_setxattr(struct dentry *dentry, const char *name, | 581 | int cap_inode_setxattr(struct dentry *dentry, const char *name, |
| 415 | const void *value, size_t size, int flags) | 582 | const void *value, size_t size, int flags) |
| 416 | { | 583 | { |
| @@ -418,28 +585,42 @@ int cap_inode_setxattr(struct dentry *dentry, const char *name, | |||
| 418 | if (!capable(CAP_SETFCAP)) | 585 | if (!capable(CAP_SETFCAP)) |
| 419 | return -EPERM; | 586 | return -EPERM; |
| 420 | return 0; | 587 | return 0; |
| 421 | } else if (!strncmp(name, XATTR_SECURITY_PREFIX, | 588 | } |
| 589 | |||
| 590 | if (!strncmp(name, XATTR_SECURITY_PREFIX, | ||
| 422 | sizeof(XATTR_SECURITY_PREFIX) - 1) && | 591 | sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| 423 | !capable(CAP_SYS_ADMIN)) | 592 | !capable(CAP_SYS_ADMIN)) |
| 424 | return -EPERM; | 593 | return -EPERM; |
| 425 | return 0; | 594 | return 0; |
| 426 | } | 595 | } |
| 427 | 596 | ||
| 597 | /** | ||
| 598 | * cap_inode_removexattr - Determine whether an xattr may be removed | ||
| 599 | * @dentry: The inode/dentry being altered | ||
| 600 | * @name: The name of the xattr to be changed | ||
| 601 | * | ||
| 602 | * Determine whether an xattr may be removed from an inode, returning 0 if | ||
| 603 | * permission is granted, -ve if denied. | ||
| 604 | * | ||
| 605 | * This is used to make sure security xattrs don't get removed by those who | ||
| 606 | * aren't privileged to remove them. | ||
| 607 | */ | ||
| 428 | int cap_inode_removexattr(struct dentry *dentry, const char *name) | 608 | int cap_inode_removexattr(struct dentry *dentry, const char *name) |
| 429 | { | 609 | { |
| 430 | if (!strcmp(name, XATTR_NAME_CAPS)) { | 610 | if (!strcmp(name, XATTR_NAME_CAPS)) { |
| 431 | if (!capable(CAP_SETFCAP)) | 611 | if (!capable(CAP_SETFCAP)) |
| 432 | return -EPERM; | 612 | return -EPERM; |
| 433 | return 0; | 613 | return 0; |
| 434 | } else if (!strncmp(name, XATTR_SECURITY_PREFIX, | 614 | } |
| 615 | |||
| 616 | if (!strncmp(name, XATTR_SECURITY_PREFIX, | ||
| 435 | sizeof(XATTR_SECURITY_PREFIX) - 1) && | 617 | sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| 436 | !capable(CAP_SYS_ADMIN)) | 618 | !capable(CAP_SYS_ADMIN)) |
| 437 | return -EPERM; | 619 | return -EPERM; |
| 438 | return 0; | 620 | return 0; |
| 439 | } | 621 | } |
| 440 | 622 | ||
| 441 | /* moved from kernel/sys.c. */ | 623 | /* |
| 442 | /* | ||
| 443 | * cap_emulate_setxuid() fixes the effective / permitted capabilities of | 624 | * cap_emulate_setxuid() fixes the effective / permitted capabilities of |
| 444 | * a process after a call to setuid, setreuid, or setresuid. | 625 | * a process after a call to setuid, setreuid, or setresuid. |
| 445 | * | 626 | * |
| @@ -453,10 +634,10 @@ int cap_inode_removexattr(struct dentry *dentry, const char *name) | |||
| 453 | * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective | 634 | * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective |
| 454 | * capabilities are set to the permitted capabilities. | 635 | * capabilities are set to the permitted capabilities. |
| 455 | * | 636 | * |
| 456 | * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should | 637 | * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should |
| 457 | * never happen. | 638 | * never happen. |
| 458 | * | 639 | * |
| 459 | * -astor | 640 | * -astor |
| 460 | * | 641 | * |
| 461 | * cevans - New behaviour, Oct '99 | 642 | * cevans - New behaviour, Oct '99 |
| 462 | * A process may, via prctl(), elect to keep its capabilities when it | 643 | * A process may, via prctl(), elect to keep its capabilities when it |
| @@ -468,61 +649,60 @@ int cap_inode_removexattr(struct dentry *dentry, const char *name) | |||
| 468 | * files.. | 649 | * files.. |
| 469 | * Thanks to Olaf Kirch and Peter Benie for spotting this. | 650 | * Thanks to Olaf Kirch and Peter Benie for spotting this. |
| 470 | */ | 651 | */ |
| 471 | static inline void cap_emulate_setxuid (int old_ruid, int old_euid, | 652 | static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) |
| 472 | int old_suid) | ||
| 473 | { | 653 | { |
| 474 | if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) && | 654 | if ((old->uid == 0 || old->euid == 0 || old->suid == 0) && |
| 475 | (current->uid != 0 && current->euid != 0 && current->suid != 0) && | 655 | (new->uid != 0 && new->euid != 0 && new->suid != 0) && |
| 476 | !issecure(SECURE_KEEP_CAPS)) { | 656 | !issecure(SECURE_KEEP_CAPS)) { |
| 477 | cap_clear (current->cap_permitted); | 657 | cap_clear(new->cap_permitted); |
| 478 | cap_clear (current->cap_effective); | 658 | cap_clear(new->cap_effective); |
| 479 | } | ||
| 480 | if (old_euid == 0 && current->euid != 0) { | ||
| 481 | cap_clear (current->cap_effective); | ||
| 482 | } | ||
| 483 | if (old_euid != 0 && current->euid == 0) { | ||
| 484 | current->cap_effective = current->cap_permitted; | ||
| 485 | } | 659 | } |
| 660 | if (old->euid == 0 && new->euid != 0) | ||
| 661 | cap_clear(new->cap_effective); | ||
| 662 | if (old->euid != 0 && new->euid == 0) | ||
| 663 | new->cap_effective = new->cap_permitted; | ||
| 486 | } | 664 | } |
| 487 | 665 | ||
| 488 | int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, | 666 | /** |
| 489 | int flags) | 667 | * cap_task_fix_setuid - Fix up the results of setuid() call |
| 668 | * @new: The proposed credentials | ||
| 669 | * @old: The current task's current credentials | ||
| 670 | * @flags: Indications of what has changed | ||
| 671 | * | ||
| 672 | * Fix up the results of setuid() call before the credential changes are | ||
| 673 | * actually applied, returning 0 to grant the changes, -ve to deny them. | ||
| 674 | */ | ||
| 675 | int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) | ||
| 490 | { | 676 | { |
| 491 | switch (flags) { | 677 | switch (flags) { |
| 492 | case LSM_SETID_RE: | 678 | case LSM_SETID_RE: |
| 493 | case LSM_SETID_ID: | 679 | case LSM_SETID_ID: |
| 494 | case LSM_SETID_RES: | 680 | case LSM_SETID_RES: |
| 495 | /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */ | 681 | /* juggle the capabilities to follow [RES]UID changes unless |
| 496 | if (!issecure (SECURE_NO_SETUID_FIXUP)) { | 682 | * otherwise suppressed */ |
| 497 | cap_emulate_setxuid (old_ruid, old_euid, old_suid); | 683 | if (!issecure(SECURE_NO_SETUID_FIXUP)) |
| 498 | } | 684 | cap_emulate_setxuid(new, old); |
| 499 | break; | 685 | break; |
| 500 | case LSM_SETID_FS: | ||
| 501 | { | ||
| 502 | uid_t old_fsuid = old_ruid; | ||
| 503 | 686 | ||
| 504 | /* Copied from kernel/sys.c:setfsuid. */ | 687 | case LSM_SETID_FS: |
| 505 | 688 | /* juggle the capabilties to follow FSUID changes, unless | |
| 506 | /* | 689 | * otherwise suppressed |
| 507 | * FIXME - is fsuser used for all CAP_FS_MASK capabilities? | 690 | * |
| 508 | * if not, we might be a bit too harsh here. | 691 | * FIXME - is fsuser used for all CAP_FS_MASK capabilities? |
| 509 | */ | 692 | * if not, we might be a bit too harsh here. |
| 510 | 693 | */ | |
| 511 | if (!issecure (SECURE_NO_SETUID_FIXUP)) { | 694 | if (!issecure(SECURE_NO_SETUID_FIXUP)) { |
| 512 | if (old_fsuid == 0 && current->fsuid != 0) { | 695 | if (old->fsuid == 0 && new->fsuid != 0) |
| 513 | current->cap_effective = | 696 | new->cap_effective = |
| 514 | cap_drop_fs_set( | 697 | cap_drop_fs_set(new->cap_effective); |
| 515 | current->cap_effective); | 698 | |
| 516 | } | 699 | if (old->fsuid != 0 && new->fsuid == 0) |
| 517 | if (old_fsuid != 0 && current->fsuid == 0) { | 700 | new->cap_effective = |
| 518 | current->cap_effective = | 701 | cap_raise_fs_set(new->cap_effective, |
| 519 | cap_raise_fs_set( | 702 | new->cap_permitted); |
| 520 | current->cap_effective, | ||
| 521 | current->cap_permitted); | ||
| 522 | } | ||
| 523 | } | ||
| 524 | break; | ||
| 525 | } | 703 | } |
| 704 | break; | ||
| 705 | |||
| 526 | default: | 706 | default: |
| 527 | return -EINVAL; | 707 | return -EINVAL; |
| 528 | } | 708 | } |
| @@ -543,42 +723,71 @@ int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, | |||
| 543 | */ | 723 | */ |
| 544 | static int cap_safe_nice(struct task_struct *p) | 724 | static int cap_safe_nice(struct task_struct *p) |
| 545 | { | 725 | { |
| 546 | if (!cap_issubset(p->cap_permitted, current->cap_permitted) && | 726 | int is_subset; |
| 547 | !capable(CAP_SYS_NICE)) | 727 | |
| 728 | rcu_read_lock(); | ||
| 729 | is_subset = cap_issubset(__task_cred(p)->cap_permitted, | ||
| 730 | current_cred()->cap_permitted); | ||
| 731 | rcu_read_unlock(); | ||
| 732 | |||
| 733 | if (!is_subset && !capable(CAP_SYS_NICE)) | ||
| 548 | return -EPERM; | 734 | return -EPERM; |
| 549 | return 0; | 735 | return 0; |
| 550 | } | 736 | } |
| 551 | 737 | ||
| 552 | int cap_task_setscheduler (struct task_struct *p, int policy, | 738 | /** |
| 739 | * cap_task_setscheduler - Detemine if scheduler policy change is permitted | ||
| 740 | * @p: The task to affect | ||
| 741 | * @policy: The policy to effect | ||
| 742 | * @lp: The parameters to the scheduling policy | ||
| 743 | * | ||
| 744 | * Detemine if the requested scheduler policy change is permitted for the | ||
| 745 | * specified task, returning 0 if permission is granted, -ve if denied. | ||
| 746 | */ | ||
| 747 | int cap_task_setscheduler(struct task_struct *p, int policy, | ||
| 553 | struct sched_param *lp) | 748 | struct sched_param *lp) |
| 554 | { | 749 | { |
| 555 | return cap_safe_nice(p); | 750 | return cap_safe_nice(p); |
| 556 | } | 751 | } |
| 557 | 752 | ||
| 558 | int cap_task_setioprio (struct task_struct *p, int ioprio) | 753 | /** |
| 754 | * cap_task_ioprio - Detemine if I/O priority change is permitted | ||
| 755 | * @p: The task to affect | ||
| 756 | * @ioprio: The I/O priority to set | ||
| 757 | * | ||
| 758 | * Detemine if the requested I/O priority change is permitted for the specified | ||
| 759 | * task, returning 0 if permission is granted, -ve if denied. | ||
| 760 | */ | ||
| 761 | int cap_task_setioprio(struct task_struct *p, int ioprio) | ||
| 559 | { | 762 | { |
| 560 | return cap_safe_nice(p); | 763 | return cap_safe_nice(p); |
| 561 | } | 764 | } |
| 562 | 765 | ||
| 563 | int cap_task_setnice (struct task_struct *p, int nice) | 766 | /** |
| 767 | * cap_task_ioprio - Detemine if task priority change is permitted | ||
| 768 | * @p: The task to affect | ||
| 769 | * @nice: The nice value to set | ||
| 770 | * | ||
| 771 | * Detemine if the requested task priority change is permitted for the | ||
| 772 | * specified task, returning 0 if permission is granted, -ve if denied. | ||
| 773 | */ | ||
| 774 | int cap_task_setnice(struct task_struct *p, int nice) | ||
| 564 | { | 775 | { |
| 565 | return cap_safe_nice(p); | 776 | return cap_safe_nice(p); |
| 566 | } | 777 | } |
| 567 | 778 | ||
| 568 | /* | 779 | /* |
| 569 | * called from kernel/sys.c for prctl(PR_CABSET_DROP) | 780 | * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from |
| 570 | * done without task_capability_lock() because it introduces | 781 | * the current task's bounding set. Returns 0 on success, -ve on error. |
| 571 | * no new races - i.e. only another task doing capget() on | ||
| 572 | * this task could get inconsistent info. There can be no | ||
| 573 | * racing writer bc a task can only change its own caps. | ||
| 574 | */ | 782 | */ |
| 575 | static long cap_prctl_drop(unsigned long cap) | 783 | static long cap_prctl_drop(struct cred *new, unsigned long cap) |
| 576 | { | 784 | { |
| 577 | if (!capable(CAP_SETPCAP)) | 785 | if (!capable(CAP_SETPCAP)) |
| 578 | return -EPERM; | 786 | return -EPERM; |
| 579 | if (!cap_valid(cap)) | 787 | if (!cap_valid(cap)) |
| 580 | return -EINVAL; | 788 | return -EINVAL; |
| 581 | cap_lower(current->cap_bset, cap); | 789 | |
| 790 | cap_lower(new->cap_bset, cap); | ||
| 582 | return 0; | 791 | return 0; |
| 583 | } | 792 | } |
| 584 | 793 | ||
| @@ -598,22 +807,42 @@ int cap_task_setnice (struct task_struct *p, int nice) | |||
| 598 | } | 807 | } |
| 599 | #endif | 808 | #endif |
| 600 | 809 | ||
| 810 | /** | ||
| 811 | * cap_task_prctl - Implement process control functions for this security module | ||
| 812 | * @option: The process control function requested | ||
| 813 | * @arg2, @arg3, @arg4, @arg5: The argument data for this function | ||
| 814 | * | ||
| 815 | * Allow process control functions (sys_prctl()) to alter capabilities; may | ||
| 816 | * also deny access to other functions not otherwise implemented here. | ||
| 817 | * | ||
| 818 | * Returns 0 or +ve on success, -ENOSYS if this function is not implemented | ||
| 819 | * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM | ||
| 820 | * modules will consider performing the function. | ||
| 821 | */ | ||
| 601 | int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, | 822 | int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, |
| 602 | unsigned long arg4, unsigned long arg5, long *rc_p) | 823 | unsigned long arg4, unsigned long arg5) |
| 603 | { | 824 | { |
| 825 | struct cred *new; | ||
| 604 | long error = 0; | 826 | long error = 0; |
| 605 | 827 | ||
| 828 | new = prepare_creds(); | ||
| 829 | if (!new) | ||
| 830 | return -ENOMEM; | ||
| 831 | |||
| 606 | switch (option) { | 832 | switch (option) { |
| 607 | case PR_CAPBSET_READ: | 833 | case PR_CAPBSET_READ: |
| 834 | error = -EINVAL; | ||
| 608 | if (!cap_valid(arg2)) | 835 | if (!cap_valid(arg2)) |
| 609 | error = -EINVAL; | 836 | goto error; |
| 610 | else | 837 | error = !!cap_raised(new->cap_bset, arg2); |
| 611 | error = !!cap_raised(current->cap_bset, arg2); | 838 | goto no_change; |
| 612 | break; | 839 | |
| 613 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | 840 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES |
| 614 | case PR_CAPBSET_DROP: | 841 | case PR_CAPBSET_DROP: |
| 615 | error = cap_prctl_drop(arg2); | 842 | error = cap_prctl_drop(new, arg2); |
| 616 | break; | 843 | if (error < 0) |
| 844 | goto error; | ||
| 845 | goto changed; | ||
| 617 | 846 | ||
| 618 | /* | 847 | /* |
| 619 | * The next four prctl's remain to assist with transitioning a | 848 | * The next four prctl's remain to assist with transitioning a |
| @@ -635,12 +864,12 @@ int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, | |||
| 635 | * capability-based-privilege environment. | 864 | * capability-based-privilege environment. |
| 636 | */ | 865 | */ |
| 637 | case PR_SET_SECUREBITS: | 866 | case PR_SET_SECUREBITS: |
| 638 | if ((((current->securebits & SECURE_ALL_LOCKS) >> 1) | 867 | error = -EPERM; |
| 639 | & (current->securebits ^ arg2)) /*[1]*/ | 868 | if ((((new->securebits & SECURE_ALL_LOCKS) >> 1) |
| 640 | || ((current->securebits & SECURE_ALL_LOCKS | 869 | & (new->securebits ^ arg2)) /*[1]*/ |
| 641 | & ~arg2)) /*[2]*/ | 870 | || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ |
| 642 | || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ | 871 | || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ |
| 643 | || (cap_capable(current, CAP_SETPCAP) != 0)) { /*[4]*/ | 872 | || (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0) /*[4]*/ |
| 644 | /* | 873 | /* |
| 645 | * [1] no changing of bits that are locked | 874 | * [1] no changing of bits that are locked |
| 646 | * [2] no unlocking of locks | 875 | * [2] no unlocking of locks |
| @@ -648,65 +877,80 @@ int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, | |||
| 648 | * [4] doing anything requires privilege (go read about | 877 | * [4] doing anything requires privilege (go read about |
| 649 | * the "sendmail capabilities bug") | 878 | * the "sendmail capabilities bug") |
| 650 | */ | 879 | */ |
| 651 | error = -EPERM; /* cannot change a locked bit */ | 880 | ) |
| 652 | } else { | 881 | /* cannot change a locked bit */ |
| 653 | current->securebits = arg2; | 882 | goto error; |
| 654 | } | 883 | new->securebits = arg2; |
| 655 | break; | 884 | goto changed; |
| 885 | |||
| 656 | case PR_GET_SECUREBITS: | 886 | case PR_GET_SECUREBITS: |
| 657 | error = current->securebits; | 887 | error = new->securebits; |
| 658 | break; | 888 | goto no_change; |
| 659 | 889 | ||
| 660 | #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ | 890 | #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ |
| 661 | 891 | ||
| 662 | case PR_GET_KEEPCAPS: | 892 | case PR_GET_KEEPCAPS: |
| 663 | if (issecure(SECURE_KEEP_CAPS)) | 893 | if (issecure(SECURE_KEEP_CAPS)) |
| 664 | error = 1; | 894 | error = 1; |
| 665 | break; | 895 | goto no_change; |
| 896 | |||
| 666 | case PR_SET_KEEPCAPS: | 897 | case PR_SET_KEEPCAPS: |
| 898 | error = -EINVAL; | ||
| 667 | if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ | 899 | if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ |
| 668 | error = -EINVAL; | 900 | goto error; |
| 669 | else if (issecure(SECURE_KEEP_CAPS_LOCKED)) | 901 | error = -EPERM; |
| 670 | error = -EPERM; | 902 | if (issecure(SECURE_KEEP_CAPS_LOCKED)) |
| 671 | else if (arg2) | 903 | goto error; |
| 672 | current->securebits |= issecure_mask(SECURE_KEEP_CAPS); | 904 | if (arg2) |
| 905 | new->securebits |= issecure_mask(SECURE_KEEP_CAPS); | ||
| 673 | else | 906 | else |
| 674 | current->securebits &= | 907 | new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); |
| 675 | ~issecure_mask(SECURE_KEEP_CAPS); | 908 | goto changed; |
| 676 | break; | ||
| 677 | 909 | ||
| 678 | default: | 910 | default: |
| 679 | /* No functionality available - continue with default */ | 911 | /* No functionality available - continue with default */ |
| 680 | return 0; | 912 | error = -ENOSYS; |
| 913 | goto error; | ||
| 681 | } | 914 | } |
| 682 | 915 | ||
| 683 | /* Functionality provided */ | 916 | /* Functionality provided */ |
| 684 | *rc_p = error; | 917 | changed: |
| 685 | return 1; | 918 | return commit_creds(new); |
| 686 | } | ||
| 687 | 919 | ||
| 688 | void cap_task_reparent_to_init (struct task_struct *p) | 920 | no_change: |
| 689 | { | 921 | error = 0; |
| 690 | cap_set_init_eff(p->cap_effective); | 922 | error: |
| 691 | cap_clear(p->cap_inheritable); | 923 | abort_creds(new); |
| 692 | cap_set_full(p->cap_permitted); | 924 | return error; |
| 693 | p->securebits = SECUREBITS_DEFAULT; | ||
| 694 | return; | ||
| 695 | } | 925 | } |
| 696 | 926 | ||
| 697 | int cap_syslog (int type) | 927 | /** |
| 928 | * cap_syslog - Determine whether syslog function is permitted | ||
| 929 | * @type: Function requested | ||
| 930 | * | ||
| 931 | * Determine whether the current process is permitted to use a particular | ||
| 932 | * syslog function, returning 0 if permission is granted, -ve if not. | ||
| 933 | */ | ||
| 934 | int cap_syslog(int type) | ||
| 698 | { | 935 | { |
| 699 | if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN)) | 936 | if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN)) |
| 700 | return -EPERM; | 937 | return -EPERM; |
| 701 | return 0; | 938 | return 0; |
| 702 | } | 939 | } |
| 703 | 940 | ||
| 941 | /** | ||
| 942 | * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted | ||
| 943 | * @mm: The VM space in which the new mapping is to be made | ||
| 944 | * @pages: The size of the mapping | ||
| 945 | * | ||
| 946 | * Determine whether the allocation of a new virtual mapping by the current | ||
| 947 | * task is permitted, returning 0 if permission is granted, -ve if not. | ||
| 948 | */ | ||
| 704 | int cap_vm_enough_memory(struct mm_struct *mm, long pages) | 949 | int cap_vm_enough_memory(struct mm_struct *mm, long pages) |
| 705 | { | 950 | { |
| 706 | int cap_sys_admin = 0; | 951 | int cap_sys_admin = 0; |
| 707 | 952 | ||
| 708 | if (cap_capable(current, CAP_SYS_ADMIN) == 0) | 953 | if (cap_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0) |
| 709 | cap_sys_admin = 1; | 954 | cap_sys_admin = 1; |
| 710 | return __vm_enough_memory(mm, pages, cap_sys_admin); | 955 | return __vm_enough_memory(mm, pages, cap_sys_admin); |
| 711 | } | 956 | } |
| 712 | |||
