diff options
Diffstat (limited to 'net/sunrpc/xprtrdma/transport.c')
-rw-r--r-- | net/sunrpc/xprtrdma/transport.c | 800 |
1 files changed, 800 insertions, 0 deletions
diff --git a/net/sunrpc/xprtrdma/transport.c b/net/sunrpc/xprtrdma/transport.c new file mode 100644 index 000000000000..dc55cc974c90 --- /dev/null +++ b/net/sunrpc/xprtrdma/transport.c | |||
@@ -0,0 +1,800 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the BSD-type | ||
8 | * license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or without | ||
11 | * modification, are permitted provided that the following conditions | ||
12 | * are met: | ||
13 | * | ||
14 | * Redistributions of source code must retain the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer. | ||
16 | * | ||
17 | * Redistributions in binary form must reproduce the above | ||
18 | * copyright notice, this list of conditions and the following | ||
19 | * disclaimer in the documentation and/or other materials provided | ||
20 | * with the distribution. | ||
21 | * | ||
22 | * Neither the name of the Network Appliance, Inc. nor the names of | ||
23 | * its contributors may be used to endorse or promote products | ||
24 | * derived from this software without specific prior written | ||
25 | * permission. | ||
26 | * | ||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
30 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
31 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
32 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
33 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
34 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
35 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
36 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
37 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
38 | */ | ||
39 | |||
40 | /* | ||
41 | * transport.c | ||
42 | * | ||
43 | * This file contains the top-level implementation of an RPC RDMA | ||
44 | * transport. | ||
45 | * | ||
46 | * Naming convention: functions beginning with xprt_ are part of the | ||
47 | * transport switch. All others are RPC RDMA internal. | ||
48 | */ | ||
49 | |||
50 | #include <linux/module.h> | ||
51 | #include <linux/init.h> | ||
52 | #include <linux/seq_file.h> | ||
53 | |||
54 | #include "xprt_rdma.h" | ||
55 | |||
56 | #ifdef RPC_DEBUG | ||
57 | # define RPCDBG_FACILITY RPCDBG_TRANS | ||
58 | #endif | ||
59 | |||
60 | MODULE_LICENSE("Dual BSD/GPL"); | ||
61 | |||
62 | MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); | ||
63 | MODULE_AUTHOR("Network Appliance, Inc."); | ||
64 | |||
65 | /* | ||
66 | * tunables | ||
67 | */ | ||
68 | |||
69 | static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; | ||
70 | static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; | ||
71 | static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; | ||
72 | static unsigned int xprt_rdma_inline_write_padding; | ||
73 | #if !RPCRDMA_PERSISTENT_REGISTRATION | ||
74 | static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_REGISTER; /* FMR? */ | ||
75 | #else | ||
76 | static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_ALLPHYSICAL; | ||
77 | #endif | ||
78 | |||
79 | #ifdef RPC_DEBUG | ||
80 | |||
81 | static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; | ||
82 | static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; | ||
83 | static unsigned int zero; | ||
84 | static unsigned int max_padding = PAGE_SIZE; | ||
85 | static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; | ||
86 | static unsigned int max_memreg = RPCRDMA_LAST - 1; | ||
87 | |||
88 | static struct ctl_table_header *sunrpc_table_header; | ||
89 | |||
90 | static ctl_table xr_tunables_table[] = { | ||
91 | { | ||
92 | .ctl_name = CTL_SLOTTABLE_RDMA, | ||
93 | .procname = "rdma_slot_table_entries", | ||
94 | .data = &xprt_rdma_slot_table_entries, | ||
95 | .maxlen = sizeof(unsigned int), | ||
96 | .mode = 0644, | ||
97 | .proc_handler = &proc_dointvec_minmax, | ||
98 | .strategy = &sysctl_intvec, | ||
99 | .extra1 = &min_slot_table_size, | ||
100 | .extra2 = &max_slot_table_size | ||
101 | }, | ||
102 | { | ||
103 | .ctl_name = CTL_RDMA_MAXINLINEREAD, | ||
104 | .procname = "rdma_max_inline_read", | ||
105 | .data = &xprt_rdma_max_inline_read, | ||
106 | .maxlen = sizeof(unsigned int), | ||
107 | .mode = 0644, | ||
108 | .proc_handler = &proc_dointvec, | ||
109 | .strategy = &sysctl_intvec, | ||
110 | }, | ||
111 | { | ||
112 | .ctl_name = CTL_RDMA_MAXINLINEWRITE, | ||
113 | .procname = "rdma_max_inline_write", | ||
114 | .data = &xprt_rdma_max_inline_write, | ||
115 | .maxlen = sizeof(unsigned int), | ||
116 | .mode = 0644, | ||
117 | .proc_handler = &proc_dointvec, | ||
118 | .strategy = &sysctl_intvec, | ||
119 | }, | ||
120 | { | ||
121 | .ctl_name = CTL_RDMA_WRITEPADDING, | ||
122 | .procname = "rdma_inline_write_padding", | ||
123 | .data = &xprt_rdma_inline_write_padding, | ||
124 | .maxlen = sizeof(unsigned int), | ||
125 | .mode = 0644, | ||
126 | .proc_handler = &proc_dointvec_minmax, | ||
127 | .strategy = &sysctl_intvec, | ||
128 | .extra1 = &zero, | ||
129 | .extra2 = &max_padding, | ||
130 | }, | ||
131 | { | ||
132 | .ctl_name = CTL_RDMA_MEMREG, | ||
133 | .procname = "rdma_memreg_strategy", | ||
134 | .data = &xprt_rdma_memreg_strategy, | ||
135 | .maxlen = sizeof(unsigned int), | ||
136 | .mode = 0644, | ||
137 | .proc_handler = &proc_dointvec_minmax, | ||
138 | .strategy = &sysctl_intvec, | ||
139 | .extra1 = &min_memreg, | ||
140 | .extra2 = &max_memreg, | ||
141 | }, | ||
142 | { | ||
143 | .ctl_name = 0, | ||
144 | }, | ||
145 | }; | ||
146 | |||
147 | static ctl_table sunrpc_table[] = { | ||
148 | { | ||
149 | .ctl_name = CTL_SUNRPC, | ||
150 | .procname = "sunrpc", | ||
151 | .mode = 0555, | ||
152 | .child = xr_tunables_table | ||
153 | }, | ||
154 | { | ||
155 | .ctl_name = 0, | ||
156 | }, | ||
157 | }; | ||
158 | |||
159 | #endif | ||
160 | |||
161 | static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ | ||
162 | |||
163 | static void | ||
164 | xprt_rdma_format_addresses(struct rpc_xprt *xprt) | ||
165 | { | ||
166 | struct sockaddr_in *addr = (struct sockaddr_in *) | ||
167 | &rpcx_to_rdmad(xprt).addr; | ||
168 | char *buf; | ||
169 | |||
170 | buf = kzalloc(20, GFP_KERNEL); | ||
171 | if (buf) | ||
172 | snprintf(buf, 20, NIPQUAD_FMT, NIPQUAD(addr->sin_addr.s_addr)); | ||
173 | xprt->address_strings[RPC_DISPLAY_ADDR] = buf; | ||
174 | |||
175 | buf = kzalloc(8, GFP_KERNEL); | ||
176 | if (buf) | ||
177 | snprintf(buf, 8, "%u", ntohs(addr->sin_port)); | ||
178 | xprt->address_strings[RPC_DISPLAY_PORT] = buf; | ||
179 | |||
180 | xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; | ||
181 | |||
182 | buf = kzalloc(48, GFP_KERNEL); | ||
183 | if (buf) | ||
184 | snprintf(buf, 48, "addr="NIPQUAD_FMT" port=%u proto=%s", | ||
185 | NIPQUAD(addr->sin_addr.s_addr), | ||
186 | ntohs(addr->sin_port), "rdma"); | ||
187 | xprt->address_strings[RPC_DISPLAY_ALL] = buf; | ||
188 | |||
189 | buf = kzalloc(10, GFP_KERNEL); | ||
190 | if (buf) | ||
191 | snprintf(buf, 10, "%02x%02x%02x%02x", | ||
192 | NIPQUAD(addr->sin_addr.s_addr)); | ||
193 | xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = buf; | ||
194 | |||
195 | buf = kzalloc(8, GFP_KERNEL); | ||
196 | if (buf) | ||
197 | snprintf(buf, 8, "%4hx", ntohs(addr->sin_port)); | ||
198 | xprt->address_strings[RPC_DISPLAY_HEX_PORT] = buf; | ||
199 | |||
200 | buf = kzalloc(30, GFP_KERNEL); | ||
201 | if (buf) | ||
202 | snprintf(buf, 30, NIPQUAD_FMT".%u.%u", | ||
203 | NIPQUAD(addr->sin_addr.s_addr), | ||
204 | ntohs(addr->sin_port) >> 8, | ||
205 | ntohs(addr->sin_port) & 0xff); | ||
206 | xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR] = buf; | ||
207 | |||
208 | /* netid */ | ||
209 | xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; | ||
210 | } | ||
211 | |||
212 | static void | ||
213 | xprt_rdma_free_addresses(struct rpc_xprt *xprt) | ||
214 | { | ||
215 | kfree(xprt->address_strings[RPC_DISPLAY_ADDR]); | ||
216 | kfree(xprt->address_strings[RPC_DISPLAY_PORT]); | ||
217 | kfree(xprt->address_strings[RPC_DISPLAY_ALL]); | ||
218 | kfree(xprt->address_strings[RPC_DISPLAY_HEX_ADDR]); | ||
219 | kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); | ||
220 | kfree(xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR]); | ||
221 | } | ||
222 | |||
223 | static void | ||
224 | xprt_rdma_connect_worker(struct work_struct *work) | ||
225 | { | ||
226 | struct rpcrdma_xprt *r_xprt = | ||
227 | container_of(work, struct rpcrdma_xprt, rdma_connect.work); | ||
228 | struct rpc_xprt *xprt = &r_xprt->xprt; | ||
229 | int rc = 0; | ||
230 | |||
231 | if (!xprt->shutdown) { | ||
232 | xprt_clear_connected(xprt); | ||
233 | |||
234 | dprintk("RPC: %s: %sconnect\n", __func__, | ||
235 | r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); | ||
236 | rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); | ||
237 | if (rc) | ||
238 | goto out; | ||
239 | } | ||
240 | goto out_clear; | ||
241 | |||
242 | out: | ||
243 | xprt_wake_pending_tasks(xprt, rc); | ||
244 | |||
245 | out_clear: | ||
246 | dprintk("RPC: %s: exit\n", __func__); | ||
247 | xprt_clear_connecting(xprt); | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * xprt_rdma_destroy | ||
252 | * | ||
253 | * Destroy the xprt. | ||
254 | * Free all memory associated with the object, including its own. | ||
255 | * NOTE: none of the *destroy methods free memory for their top-level | ||
256 | * objects, even though they may have allocated it (they do free | ||
257 | * private memory). It's up to the caller to handle it. In this | ||
258 | * case (RDMA transport), all structure memory is inlined with the | ||
259 | * struct rpcrdma_xprt. | ||
260 | */ | ||
261 | static void | ||
262 | xprt_rdma_destroy(struct rpc_xprt *xprt) | ||
263 | { | ||
264 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
265 | int rc; | ||
266 | |||
267 | dprintk("RPC: %s: called\n", __func__); | ||
268 | |||
269 | cancel_delayed_work(&r_xprt->rdma_connect); | ||
270 | flush_scheduled_work(); | ||
271 | |||
272 | xprt_clear_connected(xprt); | ||
273 | |||
274 | rpcrdma_buffer_destroy(&r_xprt->rx_buf); | ||
275 | rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); | ||
276 | if (rc) | ||
277 | dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n", | ||
278 | __func__, rc); | ||
279 | rpcrdma_ia_close(&r_xprt->rx_ia); | ||
280 | |||
281 | xprt_rdma_free_addresses(xprt); | ||
282 | |||
283 | kfree(xprt->slot); | ||
284 | xprt->slot = NULL; | ||
285 | kfree(xprt); | ||
286 | |||
287 | dprintk("RPC: %s: returning\n", __func__); | ||
288 | |||
289 | module_put(THIS_MODULE); | ||
290 | } | ||
291 | |||
292 | /** | ||
293 | * xprt_setup_rdma - Set up transport to use RDMA | ||
294 | * | ||
295 | * @args: rpc transport arguments | ||
296 | */ | ||
297 | static struct rpc_xprt * | ||
298 | xprt_setup_rdma(struct xprt_create *args) | ||
299 | { | ||
300 | struct rpcrdma_create_data_internal cdata; | ||
301 | struct rpc_xprt *xprt; | ||
302 | struct rpcrdma_xprt *new_xprt; | ||
303 | struct rpcrdma_ep *new_ep; | ||
304 | struct sockaddr_in *sin; | ||
305 | int rc; | ||
306 | |||
307 | if (args->addrlen > sizeof(xprt->addr)) { | ||
308 | dprintk("RPC: %s: address too large\n", __func__); | ||
309 | return ERR_PTR(-EBADF); | ||
310 | } | ||
311 | |||
312 | xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL); | ||
313 | if (xprt == NULL) { | ||
314 | dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", | ||
315 | __func__); | ||
316 | return ERR_PTR(-ENOMEM); | ||
317 | } | ||
318 | |||
319 | xprt->max_reqs = xprt_rdma_slot_table_entries; | ||
320 | xprt->slot = kcalloc(xprt->max_reqs, | ||
321 | sizeof(struct rpc_rqst), GFP_KERNEL); | ||
322 | if (xprt->slot == NULL) { | ||
323 | kfree(xprt); | ||
324 | dprintk("RPC: %s: couldn't allocate %d slots\n", | ||
325 | __func__, xprt->max_reqs); | ||
326 | return ERR_PTR(-ENOMEM); | ||
327 | } | ||
328 | |||
329 | /* 60 second timeout, no retries */ | ||
330 | xprt_set_timeout(&xprt->timeout, 0, 60UL * HZ); | ||
331 | xprt->bind_timeout = (60U * HZ); | ||
332 | xprt->connect_timeout = (60U * HZ); | ||
333 | xprt->reestablish_timeout = (5U * HZ); | ||
334 | xprt->idle_timeout = (5U * 60 * HZ); | ||
335 | |||
336 | xprt->resvport = 0; /* privileged port not needed */ | ||
337 | xprt->tsh_size = 0; /* RPC-RDMA handles framing */ | ||
338 | xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE; | ||
339 | xprt->ops = &xprt_rdma_procs; | ||
340 | |||
341 | /* | ||
342 | * Set up RDMA-specific connect data. | ||
343 | */ | ||
344 | |||
345 | /* Put server RDMA address in local cdata */ | ||
346 | memcpy(&cdata.addr, args->dstaddr, args->addrlen); | ||
347 | |||
348 | /* Ensure xprt->addr holds valid server TCP (not RDMA) | ||
349 | * address, for any side protocols which peek at it */ | ||
350 | xprt->prot = IPPROTO_TCP; | ||
351 | xprt->addrlen = args->addrlen; | ||
352 | memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); | ||
353 | |||
354 | sin = (struct sockaddr_in *)&cdata.addr; | ||
355 | if (ntohs(sin->sin_port) != 0) | ||
356 | xprt_set_bound(xprt); | ||
357 | |||
358 | dprintk("RPC: %s: %u.%u.%u.%u:%u\n", __func__, | ||
359 | NIPQUAD(sin->sin_addr.s_addr), ntohs(sin->sin_port)); | ||
360 | |||
361 | /* Set max requests */ | ||
362 | cdata.max_requests = xprt->max_reqs; | ||
363 | |||
364 | /* Set some length limits */ | ||
365 | cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ | ||
366 | cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ | ||
367 | |||
368 | cdata.inline_wsize = xprt_rdma_max_inline_write; | ||
369 | if (cdata.inline_wsize > cdata.wsize) | ||
370 | cdata.inline_wsize = cdata.wsize; | ||
371 | |||
372 | cdata.inline_rsize = xprt_rdma_max_inline_read; | ||
373 | if (cdata.inline_rsize > cdata.rsize) | ||
374 | cdata.inline_rsize = cdata.rsize; | ||
375 | |||
376 | cdata.padding = xprt_rdma_inline_write_padding; | ||
377 | |||
378 | /* | ||
379 | * Create new transport instance, which includes initialized | ||
380 | * o ia | ||
381 | * o endpoint | ||
382 | * o buffers | ||
383 | */ | ||
384 | |||
385 | new_xprt = rpcx_to_rdmax(xprt); | ||
386 | |||
387 | rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, | ||
388 | xprt_rdma_memreg_strategy); | ||
389 | if (rc) | ||
390 | goto out1; | ||
391 | |||
392 | /* | ||
393 | * initialize and create ep | ||
394 | */ | ||
395 | new_xprt->rx_data = cdata; | ||
396 | new_ep = &new_xprt->rx_ep; | ||
397 | new_ep->rep_remote_addr = cdata.addr; | ||
398 | |||
399 | rc = rpcrdma_ep_create(&new_xprt->rx_ep, | ||
400 | &new_xprt->rx_ia, &new_xprt->rx_data); | ||
401 | if (rc) | ||
402 | goto out2; | ||
403 | |||
404 | /* | ||
405 | * Allocate pre-registered send and receive buffers for headers and | ||
406 | * any inline data. Also specify any padding which will be provided | ||
407 | * from a preregistered zero buffer. | ||
408 | */ | ||
409 | rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia, | ||
410 | &new_xprt->rx_data); | ||
411 | if (rc) | ||
412 | goto out3; | ||
413 | |||
414 | /* | ||
415 | * Register a callback for connection events. This is necessary because | ||
416 | * connection loss notification is async. We also catch connection loss | ||
417 | * when reaping receives. | ||
418 | */ | ||
419 | INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker); | ||
420 | new_ep->rep_func = rpcrdma_conn_func; | ||
421 | new_ep->rep_xprt = xprt; | ||
422 | |||
423 | xprt_rdma_format_addresses(xprt); | ||
424 | |||
425 | if (!try_module_get(THIS_MODULE)) | ||
426 | goto out4; | ||
427 | |||
428 | return xprt; | ||
429 | |||
430 | out4: | ||
431 | xprt_rdma_free_addresses(xprt); | ||
432 | rc = -EINVAL; | ||
433 | out3: | ||
434 | (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); | ||
435 | out2: | ||
436 | rpcrdma_ia_close(&new_xprt->rx_ia); | ||
437 | out1: | ||
438 | kfree(xprt->slot); | ||
439 | kfree(xprt); | ||
440 | return ERR_PTR(rc); | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * Close a connection, during shutdown or timeout/reconnect | ||
445 | */ | ||
446 | static void | ||
447 | xprt_rdma_close(struct rpc_xprt *xprt) | ||
448 | { | ||
449 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
450 | |||
451 | dprintk("RPC: %s: closing\n", __func__); | ||
452 | xprt_disconnect(xprt); | ||
453 | (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); | ||
454 | } | ||
455 | |||
456 | static void | ||
457 | xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) | ||
458 | { | ||
459 | struct sockaddr_in *sap; | ||
460 | |||
461 | sap = (struct sockaddr_in *)&xprt->addr; | ||
462 | sap->sin_port = htons(port); | ||
463 | sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; | ||
464 | sap->sin_port = htons(port); | ||
465 | dprintk("RPC: %s: %u\n", __func__, port); | ||
466 | } | ||
467 | |||
468 | static void | ||
469 | xprt_rdma_connect(struct rpc_task *task) | ||
470 | { | ||
471 | struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt; | ||
472 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
473 | |||
474 | if (!xprt_test_and_set_connecting(xprt)) { | ||
475 | if (r_xprt->rx_ep.rep_connected != 0) { | ||
476 | /* Reconnect */ | ||
477 | schedule_delayed_work(&r_xprt->rdma_connect, | ||
478 | xprt->reestablish_timeout); | ||
479 | } else { | ||
480 | schedule_delayed_work(&r_xprt->rdma_connect, 0); | ||
481 | if (!RPC_IS_ASYNC(task)) | ||
482 | flush_scheduled_work(); | ||
483 | } | ||
484 | } | ||
485 | } | ||
486 | |||
487 | static int | ||
488 | xprt_rdma_reserve_xprt(struct rpc_task *task) | ||
489 | { | ||
490 | struct rpc_xprt *xprt = task->tk_xprt; | ||
491 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
492 | int credits = atomic_read(&r_xprt->rx_buf.rb_credits); | ||
493 | |||
494 | /* == RPC_CWNDSCALE @ init, but *after* setup */ | ||
495 | if (r_xprt->rx_buf.rb_cwndscale == 0UL) { | ||
496 | r_xprt->rx_buf.rb_cwndscale = xprt->cwnd; | ||
497 | dprintk("RPC: %s: cwndscale %lu\n", __func__, | ||
498 | r_xprt->rx_buf.rb_cwndscale); | ||
499 | BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0); | ||
500 | } | ||
501 | xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale; | ||
502 | return xprt_reserve_xprt_cong(task); | ||
503 | } | ||
504 | |||
505 | /* | ||
506 | * The RDMA allocate/free functions need the task structure as a place | ||
507 | * to hide the struct rpcrdma_req, which is necessary for the actual send/recv | ||
508 | * sequence. For this reason, the recv buffers are attached to send | ||
509 | * buffers for portions of the RPC. Note that the RPC layer allocates | ||
510 | * both send and receive buffers in the same call. We may register | ||
511 | * the receive buffer portion when using reply chunks. | ||
512 | */ | ||
513 | static void * | ||
514 | xprt_rdma_allocate(struct rpc_task *task, size_t size) | ||
515 | { | ||
516 | struct rpc_xprt *xprt = task->tk_xprt; | ||
517 | struct rpcrdma_req *req, *nreq; | ||
518 | |||
519 | req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf); | ||
520 | BUG_ON(NULL == req); | ||
521 | |||
522 | if (size > req->rl_size) { | ||
523 | dprintk("RPC: %s: size %zd too large for buffer[%zd]: " | ||
524 | "prog %d vers %d proc %d\n", | ||
525 | __func__, size, req->rl_size, | ||
526 | task->tk_client->cl_prog, task->tk_client->cl_vers, | ||
527 | task->tk_msg.rpc_proc->p_proc); | ||
528 | /* | ||
529 | * Outgoing length shortage. Our inline write max must have | ||
530 | * been configured to perform direct i/o. | ||
531 | * | ||
532 | * This is therefore a large metadata operation, and the | ||
533 | * allocate call was made on the maximum possible message, | ||
534 | * e.g. containing long filename(s) or symlink data. In | ||
535 | * fact, while these metadata operations *might* carry | ||
536 | * large outgoing payloads, they rarely *do*. However, we | ||
537 | * have to commit to the request here, so reallocate and | ||
538 | * register it now. The data path will never require this | ||
539 | * reallocation. | ||
540 | * | ||
541 | * If the allocation or registration fails, the RPC framework | ||
542 | * will (doggedly) retry. | ||
543 | */ | ||
544 | if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy == | ||
545 | RPCRDMA_BOUNCEBUFFERS) { | ||
546 | /* forced to "pure inline" */ | ||
547 | dprintk("RPC: %s: too much data (%zd) for inline " | ||
548 | "(r/w max %d/%d)\n", __func__, size, | ||
549 | rpcx_to_rdmad(xprt).inline_rsize, | ||
550 | rpcx_to_rdmad(xprt).inline_wsize); | ||
551 | size = req->rl_size; | ||
552 | rpc_exit(task, -EIO); /* fail the operation */ | ||
553 | rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; | ||
554 | goto out; | ||
555 | } | ||
556 | if (task->tk_flags & RPC_TASK_SWAPPER) | ||
557 | nreq = kmalloc(sizeof *req + size, GFP_ATOMIC); | ||
558 | else | ||
559 | nreq = kmalloc(sizeof *req + size, GFP_NOFS); | ||
560 | if (nreq == NULL) | ||
561 | goto outfail; | ||
562 | |||
563 | if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia, | ||
564 | nreq->rl_base, size + sizeof(struct rpcrdma_req) | ||
565 | - offsetof(struct rpcrdma_req, rl_base), | ||
566 | &nreq->rl_handle, &nreq->rl_iov)) { | ||
567 | kfree(nreq); | ||
568 | goto outfail; | ||
569 | } | ||
570 | rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size; | ||
571 | nreq->rl_size = size; | ||
572 | nreq->rl_niovs = 0; | ||
573 | nreq->rl_nchunks = 0; | ||
574 | nreq->rl_buffer = (struct rpcrdma_buffer *)req; | ||
575 | nreq->rl_reply = req->rl_reply; | ||
576 | memcpy(nreq->rl_segments, | ||
577 | req->rl_segments, sizeof nreq->rl_segments); | ||
578 | /* flag the swap with an unused field */ | ||
579 | nreq->rl_iov.length = 0; | ||
580 | req->rl_reply = NULL; | ||
581 | req = nreq; | ||
582 | } | ||
583 | dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); | ||
584 | out: | ||
585 | return req->rl_xdr_buf; | ||
586 | |||
587 | outfail: | ||
588 | rpcrdma_buffer_put(req); | ||
589 | rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; | ||
590 | return NULL; | ||
591 | } | ||
592 | |||
593 | /* | ||
594 | * This function returns all RDMA resources to the pool. | ||
595 | */ | ||
596 | static void | ||
597 | xprt_rdma_free(void *buffer) | ||
598 | { | ||
599 | struct rpcrdma_req *req; | ||
600 | struct rpcrdma_xprt *r_xprt; | ||
601 | struct rpcrdma_rep *rep; | ||
602 | int i; | ||
603 | |||
604 | if (buffer == NULL) | ||
605 | return; | ||
606 | |||
607 | req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]); | ||
608 | r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); | ||
609 | rep = req->rl_reply; | ||
610 | |||
611 | dprintk("RPC: %s: called on 0x%p%s\n", | ||
612 | __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : ""); | ||
613 | |||
614 | /* | ||
615 | * Finish the deregistration. When using mw bind, this was | ||
616 | * begun in rpcrdma_reply_handler(). In all other modes, we | ||
617 | * do it here, in thread context. The process is considered | ||
618 | * complete when the rr_func vector becomes NULL - this | ||
619 | * was put in place during rpcrdma_reply_handler() - the wait | ||
620 | * call below will not block if the dereg is "done". If | ||
621 | * interrupted, our framework will clean up. | ||
622 | */ | ||
623 | for (i = 0; req->rl_nchunks;) { | ||
624 | --req->rl_nchunks; | ||
625 | i += rpcrdma_deregister_external( | ||
626 | &req->rl_segments[i], r_xprt, NULL); | ||
627 | } | ||
628 | |||
629 | if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) { | ||
630 | rep->rr_func = NULL; /* abandon the callback */ | ||
631 | req->rl_reply = NULL; | ||
632 | } | ||
633 | |||
634 | if (req->rl_iov.length == 0) { /* see allocate above */ | ||
635 | struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer; | ||
636 | oreq->rl_reply = req->rl_reply; | ||
637 | (void) rpcrdma_deregister_internal(&r_xprt->rx_ia, | ||
638 | req->rl_handle, | ||
639 | &req->rl_iov); | ||
640 | kfree(req); | ||
641 | req = oreq; | ||
642 | } | ||
643 | |||
644 | /* Put back request+reply buffers */ | ||
645 | rpcrdma_buffer_put(req); | ||
646 | } | ||
647 | |||
648 | /* | ||
649 | * send_request invokes the meat of RPC RDMA. It must do the following: | ||
650 | * 1. Marshal the RPC request into an RPC RDMA request, which means | ||
651 | * putting a header in front of data, and creating IOVs for RDMA | ||
652 | * from those in the request. | ||
653 | * 2. In marshaling, detect opportunities for RDMA, and use them. | ||
654 | * 3. Post a recv message to set up asynch completion, then send | ||
655 | * the request (rpcrdma_ep_post). | ||
656 | * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). | ||
657 | */ | ||
658 | |||
659 | static int | ||
660 | xprt_rdma_send_request(struct rpc_task *task) | ||
661 | { | ||
662 | struct rpc_rqst *rqst = task->tk_rqstp; | ||
663 | struct rpc_xprt *xprt = task->tk_xprt; | ||
664 | struct rpcrdma_req *req = rpcr_to_rdmar(rqst); | ||
665 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
666 | |||
667 | /* marshal the send itself */ | ||
668 | if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) { | ||
669 | r_xprt->rx_stats.failed_marshal_count++; | ||
670 | dprintk("RPC: %s: rpcrdma_marshal_req failed\n", | ||
671 | __func__); | ||
672 | return -EIO; | ||
673 | } | ||
674 | |||
675 | if (req->rl_reply == NULL) /* e.g. reconnection */ | ||
676 | rpcrdma_recv_buffer_get(req); | ||
677 | |||
678 | if (req->rl_reply) { | ||
679 | req->rl_reply->rr_func = rpcrdma_reply_handler; | ||
680 | /* this need only be done once, but... */ | ||
681 | req->rl_reply->rr_xprt = xprt; | ||
682 | } | ||
683 | |||
684 | if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) { | ||
685 | xprt_disconnect(xprt); | ||
686 | return -ENOTCONN; /* implies disconnect */ | ||
687 | } | ||
688 | |||
689 | rqst->rq_bytes_sent = 0; | ||
690 | return 0; | ||
691 | } | ||
692 | |||
693 | static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) | ||
694 | { | ||
695 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
696 | long idle_time = 0; | ||
697 | |||
698 | if (xprt_connected(xprt)) | ||
699 | idle_time = (long)(jiffies - xprt->last_used) / HZ; | ||
700 | |||
701 | seq_printf(seq, | ||
702 | "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " | ||
703 | "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", | ||
704 | |||
705 | 0, /* need a local port? */ | ||
706 | xprt->stat.bind_count, | ||
707 | xprt->stat.connect_count, | ||
708 | xprt->stat.connect_time, | ||
709 | idle_time, | ||
710 | xprt->stat.sends, | ||
711 | xprt->stat.recvs, | ||
712 | xprt->stat.bad_xids, | ||
713 | xprt->stat.req_u, | ||
714 | xprt->stat.bklog_u, | ||
715 | |||
716 | r_xprt->rx_stats.read_chunk_count, | ||
717 | r_xprt->rx_stats.write_chunk_count, | ||
718 | r_xprt->rx_stats.reply_chunk_count, | ||
719 | r_xprt->rx_stats.total_rdma_request, | ||
720 | r_xprt->rx_stats.total_rdma_reply, | ||
721 | r_xprt->rx_stats.pullup_copy_count, | ||
722 | r_xprt->rx_stats.fixup_copy_count, | ||
723 | r_xprt->rx_stats.hardway_register_count, | ||
724 | r_xprt->rx_stats.failed_marshal_count, | ||
725 | r_xprt->rx_stats.bad_reply_count); | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | * Plumbing for rpc transport switch and kernel module | ||
730 | */ | ||
731 | |||
732 | static struct rpc_xprt_ops xprt_rdma_procs = { | ||
733 | .reserve_xprt = xprt_rdma_reserve_xprt, | ||
734 | .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ | ||
735 | .release_request = xprt_release_rqst_cong, /* ditto */ | ||
736 | .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ | ||
737 | .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ | ||
738 | .set_port = xprt_rdma_set_port, | ||
739 | .connect = xprt_rdma_connect, | ||
740 | .buf_alloc = xprt_rdma_allocate, | ||
741 | .buf_free = xprt_rdma_free, | ||
742 | .send_request = xprt_rdma_send_request, | ||
743 | .close = xprt_rdma_close, | ||
744 | .destroy = xprt_rdma_destroy, | ||
745 | .print_stats = xprt_rdma_print_stats | ||
746 | }; | ||
747 | |||
748 | static struct xprt_class xprt_rdma = { | ||
749 | .list = LIST_HEAD_INIT(xprt_rdma.list), | ||
750 | .name = "rdma", | ||
751 | .owner = THIS_MODULE, | ||
752 | .ident = XPRT_TRANSPORT_RDMA, | ||
753 | .setup = xprt_setup_rdma, | ||
754 | }; | ||
755 | |||
756 | static void __exit xprt_rdma_cleanup(void) | ||
757 | { | ||
758 | int rc; | ||
759 | |||
760 | dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); | ||
761 | #ifdef RPC_DEBUG | ||
762 | if (sunrpc_table_header) { | ||
763 | unregister_sysctl_table(sunrpc_table_header); | ||
764 | sunrpc_table_header = NULL; | ||
765 | } | ||
766 | #endif | ||
767 | rc = xprt_unregister_transport(&xprt_rdma); | ||
768 | if (rc) | ||
769 | dprintk("RPC: %s: xprt_unregister returned %i\n", | ||
770 | __func__, rc); | ||
771 | } | ||
772 | |||
773 | static int __init xprt_rdma_init(void) | ||
774 | { | ||
775 | int rc; | ||
776 | |||
777 | rc = xprt_register_transport(&xprt_rdma); | ||
778 | |||
779 | if (rc) | ||
780 | return rc; | ||
781 | |||
782 | dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n"); | ||
783 | |||
784 | dprintk(KERN_INFO "Defaults:\n"); | ||
785 | dprintk(KERN_INFO "\tSlots %d\n" | ||
786 | "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", | ||
787 | xprt_rdma_slot_table_entries, | ||
788 | xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); | ||
789 | dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n", | ||
790 | xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); | ||
791 | |||
792 | #ifdef RPC_DEBUG | ||
793 | if (!sunrpc_table_header) | ||
794 | sunrpc_table_header = register_sysctl_table(sunrpc_table); | ||
795 | #endif | ||
796 | return 0; | ||
797 | } | ||
798 | |||
799 | module_init(xprt_rdma_init); | ||
800 | module_exit(xprt_rdma_cleanup); | ||