aboutsummaryrefslogtreecommitdiffstats
path: root/net/sctp/socket.c
diff options
context:
space:
mode:
Diffstat (limited to 'net/sctp/socket.c')
-rw-r--r--net/sctp/socket.c4797
1 files changed, 4797 insertions, 0 deletions
diff --git a/net/sctp/socket.c b/net/sctp/socket.c
new file mode 100644
index 000000000000..e8c210182571
--- /dev/null
+++ b/net/sctp/socket.c
@@ -0,0 +1,4797 @@
1/* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel reference Implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60#include <linux/config.h>
61#include <linux/types.h>
62#include <linux/kernel.h>
63#include <linux/wait.h>
64#include <linux/time.h>
65#include <linux/ip.h>
66#include <linux/fcntl.h>
67#include <linux/poll.h>
68#include <linux/init.h>
69#include <linux/crypto.h>
70
71#include <net/ip.h>
72#include <net/icmp.h>
73#include <net/route.h>
74#include <net/ipv6.h>
75#include <net/inet_common.h>
76
77#include <linux/socket.h> /* for sa_family_t */
78#include <net/sock.h>
79#include <net/sctp/sctp.h>
80#include <net/sctp/sm.h>
81
82/* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87/* Forward declarations for internal helper functions. */
88static int sctp_writeable(struct sock *sk);
89static void sctp_wfree(struct sk_buff *skb);
90static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94static int sctp_wait_for_accept(struct sock *sk, long timeo);
95static void sctp_wait_for_close(struct sock *sk, long timeo);
96static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105static int sctp_autobind(struct sock *sk);
106static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110extern kmem_cache_t *sctp_bucket_cachep;
111
112/* Get the sndbuf space available at the time on the association. */
113static inline int sctp_wspace(struct sctp_association *asoc)
114{
115 struct sock *sk = asoc->base.sk;
116 int amt = 0;
117
118 amt = sk->sk_sndbuf - asoc->sndbuf_used;
119 if (amt < 0)
120 amt = 0;
121 return amt;
122}
123
124/* Increment the used sndbuf space count of the corresponding association by
125 * the size of the outgoing data chunk.
126 * Also, set the skb destructor for sndbuf accounting later.
127 *
128 * Since it is always 1-1 between chunk and skb, and also a new skb is always
129 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
130 * destructor in the data chunk skb for the purpose of the sndbuf space
131 * tracking.
132 */
133static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
134{
135 struct sctp_association *asoc = chunk->asoc;
136 struct sock *sk = asoc->base.sk;
137
138 /* The sndbuf space is tracked per association. */
139 sctp_association_hold(asoc);
140
141 chunk->skb->destructor = sctp_wfree;
142 /* Save the chunk pointer in skb for sctp_wfree to use later. */
143 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
144
145 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk);
146 sk->sk_wmem_queued += SCTP_DATA_SNDSIZE(chunk);
147}
148
149/* Verify that this is a valid address. */
150static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
151 int len)
152{
153 struct sctp_af *af;
154
155 /* Verify basic sockaddr. */
156 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
157 if (!af)
158 return -EINVAL;
159
160 /* Is this a valid SCTP address? */
161 if (!af->addr_valid(addr, sctp_sk(sk)))
162 return -EINVAL;
163
164 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
165 return -EINVAL;
166
167 return 0;
168}
169
170/* Look up the association by its id. If this is not a UDP-style
171 * socket, the ID field is always ignored.
172 */
173struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
174{
175 struct sctp_association *asoc = NULL;
176
177 /* If this is not a UDP-style socket, assoc id should be ignored. */
178 if (!sctp_style(sk, UDP)) {
179 /* Return NULL if the socket state is not ESTABLISHED. It
180 * could be a TCP-style listening socket or a socket which
181 * hasn't yet called connect() to establish an association.
182 */
183 if (!sctp_sstate(sk, ESTABLISHED))
184 return NULL;
185
186 /* Get the first and the only association from the list. */
187 if (!list_empty(&sctp_sk(sk)->ep->asocs))
188 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
189 struct sctp_association, asocs);
190 return asoc;
191 }
192
193 /* Otherwise this is a UDP-style socket. */
194 if (!id || (id == (sctp_assoc_t)-1))
195 return NULL;
196
197 spin_lock_bh(&sctp_assocs_id_lock);
198 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
199 spin_unlock_bh(&sctp_assocs_id_lock);
200
201 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
202 return NULL;
203
204 return asoc;
205}
206
207/* Look up the transport from an address and an assoc id. If both address and
208 * id are specified, the associations matching the address and the id should be
209 * the same.
210 */
211static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
212 struct sockaddr_storage *addr,
213 sctp_assoc_t id)
214{
215 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
216 struct sctp_transport *transport;
217 union sctp_addr *laddr = (union sctp_addr *)addr;
218
219 laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
220 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
221 (union sctp_addr *)addr,
222 &transport);
223 laddr->v4.sin_port = htons(laddr->v4.sin_port);
224
225 if (!addr_asoc)
226 return NULL;
227
228 id_asoc = sctp_id2assoc(sk, id);
229 if (id_asoc && (id_asoc != addr_asoc))
230 return NULL;
231
232 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
233 (union sctp_addr *)addr);
234
235 return transport;
236}
237
238/* API 3.1.2 bind() - UDP Style Syntax
239 * The syntax of bind() is,
240 *
241 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
242 *
243 * sd - the socket descriptor returned by socket().
244 * addr - the address structure (struct sockaddr_in or struct
245 * sockaddr_in6 [RFC 2553]),
246 * addr_len - the size of the address structure.
247 */
248SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len)
249{
250 int retval = 0;
251
252 sctp_lock_sock(sk);
253
254 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, uaddr: %p, addr_len: %d)\n",
255 sk, uaddr, addr_len);
256
257 /* Disallow binding twice. */
258 if (!sctp_sk(sk)->ep->base.bind_addr.port)
259 retval = sctp_do_bind(sk, (union sctp_addr *)uaddr,
260 addr_len);
261 else
262 retval = -EINVAL;
263
264 sctp_release_sock(sk);
265
266 return retval;
267}
268
269static long sctp_get_port_local(struct sock *, union sctp_addr *);
270
271/* Verify this is a valid sockaddr. */
272static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
273 union sctp_addr *addr, int len)
274{
275 struct sctp_af *af;
276
277 /* Check minimum size. */
278 if (len < sizeof (struct sockaddr))
279 return NULL;
280
281 /* Does this PF support this AF? */
282 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
283 return NULL;
284
285 /* If we get this far, af is valid. */
286 af = sctp_get_af_specific(addr->sa.sa_family);
287
288 if (len < af->sockaddr_len)
289 return NULL;
290
291 return af;
292}
293
294/* Bind a local address either to an endpoint or to an association. */
295SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
296{
297 struct sctp_sock *sp = sctp_sk(sk);
298 struct sctp_endpoint *ep = sp->ep;
299 struct sctp_bind_addr *bp = &ep->base.bind_addr;
300 struct sctp_af *af;
301 unsigned short snum;
302 int ret = 0;
303
304 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d)\n",
305 sk, addr, len);
306
307 /* Common sockaddr verification. */
308 af = sctp_sockaddr_af(sp, addr, len);
309 if (!af)
310 return -EINVAL;
311
312 /* PF specific bind() address verification. */
313 if (!sp->pf->bind_verify(sp, addr))
314 return -EADDRNOTAVAIL;
315
316 snum= ntohs(addr->v4.sin_port);
317
318 SCTP_DEBUG_PRINTK("sctp_do_bind: port: %d, new port: %d\n",
319 bp->port, snum);
320
321 /* We must either be unbound, or bind to the same port. */
322 if (bp->port && (snum != bp->port)) {
323 SCTP_DEBUG_PRINTK("sctp_do_bind:"
324 " New port %d does not match existing port "
325 "%d.\n", snum, bp->port);
326 return -EINVAL;
327 }
328
329 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
330 return -EACCES;
331
332 /* Make sure we are allowed to bind here.
333 * The function sctp_get_port_local() does duplicate address
334 * detection.
335 */
336 if ((ret = sctp_get_port_local(sk, addr))) {
337 if (ret == (long) sk) {
338 /* This endpoint has a conflicting address. */
339 return -EINVAL;
340 } else {
341 return -EADDRINUSE;
342 }
343 }
344
345 /* Refresh ephemeral port. */
346 if (!bp->port)
347 bp->port = inet_sk(sk)->num;
348
349 /* Add the address to the bind address list. */
350 sctp_local_bh_disable();
351 sctp_write_lock(&ep->base.addr_lock);
352
353 /* Use GFP_ATOMIC since BHs are disabled. */
354 addr->v4.sin_port = ntohs(addr->v4.sin_port);
355 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
356 addr->v4.sin_port = htons(addr->v4.sin_port);
357 sctp_write_unlock(&ep->base.addr_lock);
358 sctp_local_bh_enable();
359
360 /* Copy back into socket for getsockname() use. */
361 if (!ret) {
362 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
363 af->to_sk_saddr(addr, sk);
364 }
365
366 return ret;
367}
368
369 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
370 *
371 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
372 * at any one time. If a sender, after sending an ASCONF chunk, decides
373 * it needs to transfer another ASCONF Chunk, it MUST wait until the
374 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
375 * subsequent ASCONF. Note this restriction binds each side, so at any
376 * time two ASCONF may be in-transit on any given association (one sent
377 * from each endpoint).
378 */
379static int sctp_send_asconf(struct sctp_association *asoc,
380 struct sctp_chunk *chunk)
381{
382 int retval = 0;
383
384 /* If there is an outstanding ASCONF chunk, queue it for later
385 * transmission.
386 */
387 if (asoc->addip_last_asconf) {
388 __skb_queue_tail(&asoc->addip_chunks, (struct sk_buff *)chunk);
389 goto out;
390 }
391
392 /* Hold the chunk until an ASCONF_ACK is received. */
393 sctp_chunk_hold(chunk);
394 retval = sctp_primitive_ASCONF(asoc, chunk);
395 if (retval)
396 sctp_chunk_free(chunk);
397 else
398 asoc->addip_last_asconf = chunk;
399
400out:
401 return retval;
402}
403
404/* Add a list of addresses as bind addresses to local endpoint or
405 * association.
406 *
407 * Basically run through each address specified in the addrs/addrcnt
408 * array/length pair, determine if it is IPv6 or IPv4 and call
409 * sctp_do_bind() on it.
410 *
411 * If any of them fails, then the operation will be reversed and the
412 * ones that were added will be removed.
413 *
414 * Only sctp_setsockopt_bindx() is supposed to call this function.
415 */
416int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
417{
418 int cnt;
419 int retval = 0;
420 void *addr_buf;
421 struct sockaddr *sa_addr;
422 struct sctp_af *af;
423
424 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
425 sk, addrs, addrcnt);
426
427 addr_buf = addrs;
428 for (cnt = 0; cnt < addrcnt; cnt++) {
429 /* The list may contain either IPv4 or IPv6 address;
430 * determine the address length for walking thru the list.
431 */
432 sa_addr = (struct sockaddr *)addr_buf;
433 af = sctp_get_af_specific(sa_addr->sa_family);
434 if (!af) {
435 retval = -EINVAL;
436 goto err_bindx_add;
437 }
438
439 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
440 af->sockaddr_len);
441
442 addr_buf += af->sockaddr_len;
443
444err_bindx_add:
445 if (retval < 0) {
446 /* Failed. Cleanup the ones that have been added */
447 if (cnt > 0)
448 sctp_bindx_rem(sk, addrs, cnt);
449 return retval;
450 }
451 }
452
453 return retval;
454}
455
456/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
457 * associations that are part of the endpoint indicating that a list of local
458 * addresses are added to the endpoint.
459 *
460 * If any of the addresses is already in the bind address list of the
461 * association, we do not send the chunk for that association. But it will not
462 * affect other associations.
463 *
464 * Only sctp_setsockopt_bindx() is supposed to call this function.
465 */
466static int sctp_send_asconf_add_ip(struct sock *sk,
467 struct sockaddr *addrs,
468 int addrcnt)
469{
470 struct sctp_sock *sp;
471 struct sctp_endpoint *ep;
472 struct sctp_association *asoc;
473 struct sctp_bind_addr *bp;
474 struct sctp_chunk *chunk;
475 struct sctp_sockaddr_entry *laddr;
476 union sctp_addr *addr;
477 void *addr_buf;
478 struct sctp_af *af;
479 struct list_head *pos;
480 struct list_head *p;
481 int i;
482 int retval = 0;
483
484 if (!sctp_addip_enable)
485 return retval;
486
487 sp = sctp_sk(sk);
488 ep = sp->ep;
489
490 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
491 __FUNCTION__, sk, addrs, addrcnt);
492
493 list_for_each(pos, &ep->asocs) {
494 asoc = list_entry(pos, struct sctp_association, asocs);
495
496 if (!asoc->peer.asconf_capable)
497 continue;
498
499 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
500 continue;
501
502 if (!sctp_state(asoc, ESTABLISHED))
503 continue;
504
505 /* Check if any address in the packed array of addresses is
506 * in the bind address list of the association. If so,
507 * do not send the asconf chunk to its peer, but continue with
508 * other associations.
509 */
510 addr_buf = addrs;
511 for (i = 0; i < addrcnt; i++) {
512 addr = (union sctp_addr *)addr_buf;
513 af = sctp_get_af_specific(addr->v4.sin_family);
514 if (!af) {
515 retval = -EINVAL;
516 goto out;
517 }
518
519 if (sctp_assoc_lookup_laddr(asoc, addr))
520 break;
521
522 addr_buf += af->sockaddr_len;
523 }
524 if (i < addrcnt)
525 continue;
526
527 /* Use the first address in bind addr list of association as
528 * Address Parameter of ASCONF CHUNK.
529 */
530 sctp_read_lock(&asoc->base.addr_lock);
531 bp = &asoc->base.bind_addr;
532 p = bp->address_list.next;
533 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
534 sctp_read_unlock(&asoc->base.addr_lock);
535
536 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
537 addrcnt, SCTP_PARAM_ADD_IP);
538 if (!chunk) {
539 retval = -ENOMEM;
540 goto out;
541 }
542
543 retval = sctp_send_asconf(asoc, chunk);
544
545 /* FIXME: After sending the add address ASCONF chunk, we
546 * cannot append the address to the association's binding
547 * address list, because the new address may be used as the
548 * source of a message sent to the peer before the ASCONF
549 * chunk is received by the peer. So we should wait until
550 * ASCONF_ACK is received.
551 */
552 }
553
554out:
555 return retval;
556}
557
558/* Remove a list of addresses from bind addresses list. Do not remove the
559 * last address.
560 *
561 * Basically run through each address specified in the addrs/addrcnt
562 * array/length pair, determine if it is IPv6 or IPv4 and call
563 * sctp_del_bind() on it.
564 *
565 * If any of them fails, then the operation will be reversed and the
566 * ones that were removed will be added back.
567 *
568 * At least one address has to be left; if only one address is
569 * available, the operation will return -EBUSY.
570 *
571 * Only sctp_setsockopt_bindx() is supposed to call this function.
572 */
573int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
574{
575 struct sctp_sock *sp = sctp_sk(sk);
576 struct sctp_endpoint *ep = sp->ep;
577 int cnt;
578 struct sctp_bind_addr *bp = &ep->base.bind_addr;
579 int retval = 0;
580 union sctp_addr saveaddr;
581 void *addr_buf;
582 struct sockaddr *sa_addr;
583 struct sctp_af *af;
584
585 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
586 sk, addrs, addrcnt);
587
588 addr_buf = addrs;
589 for (cnt = 0; cnt < addrcnt; cnt++) {
590 /* If the bind address list is empty or if there is only one
591 * bind address, there is nothing more to be removed (we need
592 * at least one address here).
593 */
594 if (list_empty(&bp->address_list) ||
595 (sctp_list_single_entry(&bp->address_list))) {
596 retval = -EBUSY;
597 goto err_bindx_rem;
598 }
599
600 /* The list may contain either IPv4 or IPv6 address;
601 * determine the address length to copy the address to
602 * saveaddr.
603 */
604 sa_addr = (struct sockaddr *)addr_buf;
605 af = sctp_get_af_specific(sa_addr->sa_family);
606 if (!af) {
607 retval = -EINVAL;
608 goto err_bindx_rem;
609 }
610 memcpy(&saveaddr, sa_addr, af->sockaddr_len);
611 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
612 if (saveaddr.v4.sin_port != bp->port) {
613 retval = -EINVAL;
614 goto err_bindx_rem;
615 }
616
617 /* FIXME - There is probably a need to check if sk->sk_saddr and
618 * sk->sk_rcv_addr are currently set to one of the addresses to
619 * be removed. This is something which needs to be looked into
620 * when we are fixing the outstanding issues with multi-homing
621 * socket routing and failover schemes. Refer to comments in
622 * sctp_do_bind(). -daisy
623 */
624 sctp_local_bh_disable();
625 sctp_write_lock(&ep->base.addr_lock);
626
627 retval = sctp_del_bind_addr(bp, &saveaddr);
628
629 sctp_write_unlock(&ep->base.addr_lock);
630 sctp_local_bh_enable();
631
632 addr_buf += af->sockaddr_len;
633err_bindx_rem:
634 if (retval < 0) {
635 /* Failed. Add the ones that has been removed back */
636 if (cnt > 0)
637 sctp_bindx_add(sk, addrs, cnt);
638 return retval;
639 }
640 }
641
642 return retval;
643}
644
645/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
646 * the associations that are part of the endpoint indicating that a list of
647 * local addresses are removed from the endpoint.
648 *
649 * If any of the addresses is already in the bind address list of the
650 * association, we do not send the chunk for that association. But it will not
651 * affect other associations.
652 *
653 * Only sctp_setsockopt_bindx() is supposed to call this function.
654 */
655static int sctp_send_asconf_del_ip(struct sock *sk,
656 struct sockaddr *addrs,
657 int addrcnt)
658{
659 struct sctp_sock *sp;
660 struct sctp_endpoint *ep;
661 struct sctp_association *asoc;
662 struct sctp_bind_addr *bp;
663 struct sctp_chunk *chunk;
664 union sctp_addr *laddr;
665 void *addr_buf;
666 struct sctp_af *af;
667 struct list_head *pos;
668 int i;
669 int retval = 0;
670
671 if (!sctp_addip_enable)
672 return retval;
673
674 sp = sctp_sk(sk);
675 ep = sp->ep;
676
677 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
678 __FUNCTION__, sk, addrs, addrcnt);
679
680 list_for_each(pos, &ep->asocs) {
681 asoc = list_entry(pos, struct sctp_association, asocs);
682
683 if (!asoc->peer.asconf_capable)
684 continue;
685
686 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
687 continue;
688
689 if (!sctp_state(asoc, ESTABLISHED))
690 continue;
691
692 /* Check if any address in the packed array of addresses is
693 * not present in the bind address list of the association.
694 * If so, do not send the asconf chunk to its peer, but
695 * continue with other associations.
696 */
697 addr_buf = addrs;
698 for (i = 0; i < addrcnt; i++) {
699 laddr = (union sctp_addr *)addr_buf;
700 af = sctp_get_af_specific(laddr->v4.sin_family);
701 if (!af) {
702 retval = -EINVAL;
703 goto out;
704 }
705
706 if (!sctp_assoc_lookup_laddr(asoc, laddr))
707 break;
708
709 addr_buf += af->sockaddr_len;
710 }
711 if (i < addrcnt)
712 continue;
713
714 /* Find one address in the association's bind address list
715 * that is not in the packed array of addresses. This is to
716 * make sure that we do not delete all the addresses in the
717 * association.
718 */
719 sctp_read_lock(&asoc->base.addr_lock);
720 bp = &asoc->base.bind_addr;
721 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
722 addrcnt, sp);
723 sctp_read_unlock(&asoc->base.addr_lock);
724 if (!laddr)
725 continue;
726
727 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
728 SCTP_PARAM_DEL_IP);
729 if (!chunk) {
730 retval = -ENOMEM;
731 goto out;
732 }
733
734 retval = sctp_send_asconf(asoc, chunk);
735
736 /* FIXME: After sending the delete address ASCONF chunk, we
737 * cannot remove the addresses from the association's bind
738 * address list, because there maybe some packet send to
739 * the delete addresses, so we should wait until ASCONF_ACK
740 * packet is received.
741 */
742 }
743out:
744 return retval;
745}
746
747/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
748 *
749 * API 8.1
750 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
751 * int flags);
752 *
753 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
754 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
755 * or IPv6 addresses.
756 *
757 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
758 * Section 3.1.2 for this usage.
759 *
760 * addrs is a pointer to an array of one or more socket addresses. Each
761 * address is contained in its appropriate structure (i.e. struct
762 * sockaddr_in or struct sockaddr_in6) the family of the address type
763 * must be used to distengish the address length (note that this
764 * representation is termed a "packed array" of addresses). The caller
765 * specifies the number of addresses in the array with addrcnt.
766 *
767 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
768 * -1, and sets errno to the appropriate error code.
769 *
770 * For SCTP, the port given in each socket address must be the same, or
771 * sctp_bindx() will fail, setting errno to EINVAL.
772 *
773 * The flags parameter is formed from the bitwise OR of zero or more of
774 * the following currently defined flags:
775 *
776 * SCTP_BINDX_ADD_ADDR
777 *
778 * SCTP_BINDX_REM_ADDR
779 *
780 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
781 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
782 * addresses from the association. The two flags are mutually exclusive;
783 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
784 * not remove all addresses from an association; sctp_bindx() will
785 * reject such an attempt with EINVAL.
786 *
787 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
788 * additional addresses with an endpoint after calling bind(). Or use
789 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
790 * socket is associated with so that no new association accepted will be
791 * associated with those addresses. If the endpoint supports dynamic
792 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
793 * endpoint to send the appropriate message to the peer to change the
794 * peers address lists.
795 *
796 * Adding and removing addresses from a connected association is
797 * optional functionality. Implementations that do not support this
798 * functionality should return EOPNOTSUPP.
799 *
800 * Basically do nothing but copying the addresses from user to kernel
801 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
802 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace.
803 *
804 * We don't use copy_from_user() for optimization: we first do the
805 * sanity checks (buffer size -fast- and access check-healthy
806 * pointer); if all of those succeed, then we can alloc the memory
807 * (expensive operation) needed to copy the data to kernel. Then we do
808 * the copying without checking the user space area
809 * (__copy_from_user()).
810 *
811 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
812 * it.
813 *
814 * sk The sk of the socket
815 * addrs The pointer to the addresses in user land
816 * addrssize Size of the addrs buffer
817 * op Operation to perform (add or remove, see the flags of
818 * sctp_bindx)
819 *
820 * Returns 0 if ok, <0 errno code on error.
821 */
822SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
823 struct sockaddr __user *addrs,
824 int addrs_size, int op)
825{
826 struct sockaddr *kaddrs;
827 int err;
828 int addrcnt = 0;
829 int walk_size = 0;
830 struct sockaddr *sa_addr;
831 void *addr_buf;
832 struct sctp_af *af;
833
834 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
835 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
836
837 if (unlikely(addrs_size <= 0))
838 return -EINVAL;
839
840 /* Check the user passed a healthy pointer. */
841 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
842 return -EFAULT;
843
844 /* Alloc space for the address array in kernel memory. */
845 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
846 if (unlikely(!kaddrs))
847 return -ENOMEM;
848
849 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
850 kfree(kaddrs);
851 return -EFAULT;
852 }
853
854 /* Walk through the addrs buffer and count the number of addresses. */
855 addr_buf = kaddrs;
856 while (walk_size < addrs_size) {
857 sa_addr = (struct sockaddr *)addr_buf;
858 af = sctp_get_af_specific(sa_addr->sa_family);
859
860 /* If the address family is not supported or if this address
861 * causes the address buffer to overflow return EINVAL.
862 */
863 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
864 kfree(kaddrs);
865 return -EINVAL;
866 }
867 addrcnt++;
868 addr_buf += af->sockaddr_len;
869 walk_size += af->sockaddr_len;
870 }
871
872 /* Do the work. */
873 switch (op) {
874 case SCTP_BINDX_ADD_ADDR:
875 err = sctp_bindx_add(sk, kaddrs, addrcnt);
876 if (err)
877 goto out;
878 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
879 break;
880
881 case SCTP_BINDX_REM_ADDR:
882 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
883 if (err)
884 goto out;
885 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
886 break;
887
888 default:
889 err = -EINVAL;
890 break;
891 };
892
893out:
894 kfree(kaddrs);
895
896 return err;
897}
898
899/* API 3.1.4 close() - UDP Style Syntax
900 * Applications use close() to perform graceful shutdown (as described in
901 * Section 10.1 of [SCTP]) on ALL the associations currently represented
902 * by a UDP-style socket.
903 *
904 * The syntax is
905 *
906 * ret = close(int sd);
907 *
908 * sd - the socket descriptor of the associations to be closed.
909 *
910 * To gracefully shutdown a specific association represented by the
911 * UDP-style socket, an application should use the sendmsg() call,
912 * passing no user data, but including the appropriate flag in the
913 * ancillary data (see Section xxxx).
914 *
915 * If sd in the close() call is a branched-off socket representing only
916 * one association, the shutdown is performed on that association only.
917 *
918 * 4.1.6 close() - TCP Style Syntax
919 *
920 * Applications use close() to gracefully close down an association.
921 *
922 * The syntax is:
923 *
924 * int close(int sd);
925 *
926 * sd - the socket descriptor of the association to be closed.
927 *
928 * After an application calls close() on a socket descriptor, no further
929 * socket operations will succeed on that descriptor.
930 *
931 * API 7.1.4 SO_LINGER
932 *
933 * An application using the TCP-style socket can use this option to
934 * perform the SCTP ABORT primitive. The linger option structure is:
935 *
936 * struct linger {
937 * int l_onoff; // option on/off
938 * int l_linger; // linger time
939 * };
940 *
941 * To enable the option, set l_onoff to 1. If the l_linger value is set
942 * to 0, calling close() is the same as the ABORT primitive. If the
943 * value is set to a negative value, the setsockopt() call will return
944 * an error. If the value is set to a positive value linger_time, the
945 * close() can be blocked for at most linger_time ms. If the graceful
946 * shutdown phase does not finish during this period, close() will
947 * return but the graceful shutdown phase continues in the system.
948 */
949SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
950{
951 struct sctp_endpoint *ep;
952 struct sctp_association *asoc;
953 struct list_head *pos, *temp;
954
955 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
956
957 sctp_lock_sock(sk);
958 sk->sk_shutdown = SHUTDOWN_MASK;
959
960 ep = sctp_sk(sk)->ep;
961
962 /* Walk all associations on a socket, not on an endpoint. */
963 list_for_each_safe(pos, temp, &ep->asocs) {
964 asoc = list_entry(pos, struct sctp_association, asocs);
965
966 if (sctp_style(sk, TCP)) {
967 /* A closed association can still be in the list if
968 * it belongs to a TCP-style listening socket that is
969 * not yet accepted. If so, free it. If not, send an
970 * ABORT or SHUTDOWN based on the linger options.
971 */
972 if (sctp_state(asoc, CLOSED)) {
973 sctp_unhash_established(asoc);
974 sctp_association_free(asoc);
975
976 } else if (sock_flag(sk, SOCK_LINGER) &&
977 !sk->sk_lingertime)
978 sctp_primitive_ABORT(asoc, NULL);
979 else
980 sctp_primitive_SHUTDOWN(asoc, NULL);
981 } else
982 sctp_primitive_SHUTDOWN(asoc, NULL);
983 }
984
985 /* Clean up any skbs sitting on the receive queue. */
986 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
987 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
988
989 /* On a TCP-style socket, block for at most linger_time if set. */
990 if (sctp_style(sk, TCP) && timeout)
991 sctp_wait_for_close(sk, timeout);
992
993 /* This will run the backlog queue. */
994 sctp_release_sock(sk);
995
996 /* Supposedly, no process has access to the socket, but
997 * the net layers still may.
998 */
999 sctp_local_bh_disable();
1000 sctp_bh_lock_sock(sk);
1001
1002 /* Hold the sock, since sk_common_release() will put sock_put()
1003 * and we have just a little more cleanup.
1004 */
1005 sock_hold(sk);
1006 sk_common_release(sk);
1007
1008 sctp_bh_unlock_sock(sk);
1009 sctp_local_bh_enable();
1010
1011 sock_put(sk);
1012
1013 SCTP_DBG_OBJCNT_DEC(sock);
1014}
1015
1016/* Handle EPIPE error. */
1017static int sctp_error(struct sock *sk, int flags, int err)
1018{
1019 if (err == -EPIPE)
1020 err = sock_error(sk) ? : -EPIPE;
1021 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1022 send_sig(SIGPIPE, current, 0);
1023 return err;
1024}
1025
1026/* API 3.1.3 sendmsg() - UDP Style Syntax
1027 *
1028 * An application uses sendmsg() and recvmsg() calls to transmit data to
1029 * and receive data from its peer.
1030 *
1031 * ssize_t sendmsg(int socket, const struct msghdr *message,
1032 * int flags);
1033 *
1034 * socket - the socket descriptor of the endpoint.
1035 * message - pointer to the msghdr structure which contains a single
1036 * user message and possibly some ancillary data.
1037 *
1038 * See Section 5 for complete description of the data
1039 * structures.
1040 *
1041 * flags - flags sent or received with the user message, see Section
1042 * 5 for complete description of the flags.
1043 *
1044 * Note: This function could use a rewrite especially when explicit
1045 * connect support comes in.
1046 */
1047/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1048
1049SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1050
1051SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1052 struct msghdr *msg, size_t msg_len)
1053{
1054 struct sctp_sock *sp;
1055 struct sctp_endpoint *ep;
1056 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1057 struct sctp_transport *transport, *chunk_tp;
1058 struct sctp_chunk *chunk;
1059 union sctp_addr to;
1060 struct sockaddr *msg_name = NULL;
1061 struct sctp_sndrcvinfo default_sinfo = { 0 };
1062 struct sctp_sndrcvinfo *sinfo;
1063 struct sctp_initmsg *sinit;
1064 sctp_assoc_t associd = 0;
1065 sctp_cmsgs_t cmsgs = { NULL };
1066 int err;
1067 sctp_scope_t scope;
1068 long timeo;
1069 __u16 sinfo_flags = 0;
1070 struct sctp_datamsg *datamsg;
1071 struct list_head *pos;
1072 int msg_flags = msg->msg_flags;
1073
1074 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1075 sk, msg, msg_len);
1076
1077 err = 0;
1078 sp = sctp_sk(sk);
1079 ep = sp->ep;
1080
1081 SCTP_DEBUG_PRINTK("Using endpoint: %s.\n", ep->debug_name);
1082
1083 /* We cannot send a message over a TCP-style listening socket. */
1084 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1085 err = -EPIPE;
1086 goto out_nounlock;
1087 }
1088
1089 /* Parse out the SCTP CMSGs. */
1090 err = sctp_msghdr_parse(msg, &cmsgs);
1091
1092 if (err) {
1093 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1094 goto out_nounlock;
1095 }
1096
1097 /* Fetch the destination address for this packet. This
1098 * address only selects the association--it is not necessarily
1099 * the address we will send to.
1100 * For a peeled-off socket, msg_name is ignored.
1101 */
1102 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1103 int msg_namelen = msg->msg_namelen;
1104
1105 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1106 msg_namelen);
1107 if (err)
1108 return err;
1109
1110 if (msg_namelen > sizeof(to))
1111 msg_namelen = sizeof(to);
1112 memcpy(&to, msg->msg_name, msg_namelen);
1113 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1114 "0x%x:%u.\n",
1115 to.v4.sin_addr.s_addr, to.v4.sin_port);
1116
1117 to.v4.sin_port = ntohs(to.v4.sin_port);
1118 msg_name = msg->msg_name;
1119 }
1120
1121 sinfo = cmsgs.info;
1122 sinit = cmsgs.init;
1123
1124 /* Did the user specify SNDRCVINFO? */
1125 if (sinfo) {
1126 sinfo_flags = sinfo->sinfo_flags;
1127 associd = sinfo->sinfo_assoc_id;
1128 }
1129
1130 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1131 msg_len, sinfo_flags);
1132
1133 /* MSG_EOF or MSG_ABORT cannot be set on a TCP-style socket. */
1134 if (sctp_style(sk, TCP) && (sinfo_flags & (MSG_EOF | MSG_ABORT))) {
1135 err = -EINVAL;
1136 goto out_nounlock;
1137 }
1138
1139 /* If MSG_EOF is set, no data can be sent. Disallow sending zero
1140 * length messages when MSG_EOF|MSG_ABORT is not set.
1141 * If MSG_ABORT is set, the message length could be non zero with
1142 * the msg_iov set to the user abort reason.
1143 */
1144 if (((sinfo_flags & MSG_EOF) && (msg_len > 0)) ||
1145 (!(sinfo_flags & (MSG_EOF|MSG_ABORT)) && (msg_len == 0))) {
1146 err = -EINVAL;
1147 goto out_nounlock;
1148 }
1149
1150 /* If MSG_ADDR_OVER is set, there must be an address
1151 * specified in msg_name.
1152 */
1153 if ((sinfo_flags & MSG_ADDR_OVER) && (!msg->msg_name)) {
1154 err = -EINVAL;
1155 goto out_nounlock;
1156 }
1157
1158 transport = NULL;
1159
1160 SCTP_DEBUG_PRINTK("About to look up association.\n");
1161
1162 sctp_lock_sock(sk);
1163
1164 /* If a msg_name has been specified, assume this is to be used. */
1165 if (msg_name) {
1166 /* Look for a matching association on the endpoint. */
1167 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1168 if (!asoc) {
1169 /* If we could not find a matching association on the
1170 * endpoint, make sure that it is not a TCP-style
1171 * socket that already has an association or there is
1172 * no peeled-off association on another socket.
1173 */
1174 if ((sctp_style(sk, TCP) &&
1175 sctp_sstate(sk, ESTABLISHED)) ||
1176 sctp_endpoint_is_peeled_off(ep, &to)) {
1177 err = -EADDRNOTAVAIL;
1178 goto out_unlock;
1179 }
1180 }
1181 } else {
1182 asoc = sctp_id2assoc(sk, associd);
1183 if (!asoc) {
1184 err = -EPIPE;
1185 goto out_unlock;
1186 }
1187 }
1188
1189 if (asoc) {
1190 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1191
1192 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1193 * socket that has an association in CLOSED state. This can
1194 * happen when an accepted socket has an association that is
1195 * already CLOSED.
1196 */
1197 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1198 err = -EPIPE;
1199 goto out_unlock;
1200 }
1201
1202 if (sinfo_flags & MSG_EOF) {
1203 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1204 asoc);
1205 sctp_primitive_SHUTDOWN(asoc, NULL);
1206 err = 0;
1207 goto out_unlock;
1208 }
1209 if (sinfo_flags & MSG_ABORT) {
1210 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1211 sctp_primitive_ABORT(asoc, msg);
1212 err = 0;
1213 goto out_unlock;
1214 }
1215 }
1216
1217 /* Do we need to create the association? */
1218 if (!asoc) {
1219 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1220
1221 if (sinfo_flags & (MSG_EOF | MSG_ABORT)) {
1222 err = -EINVAL;
1223 goto out_unlock;
1224 }
1225
1226 /* Check for invalid stream against the stream counts,
1227 * either the default or the user specified stream counts.
1228 */
1229 if (sinfo) {
1230 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1231 /* Check against the defaults. */
1232 if (sinfo->sinfo_stream >=
1233 sp->initmsg.sinit_num_ostreams) {
1234 err = -EINVAL;
1235 goto out_unlock;
1236 }
1237 } else {
1238 /* Check against the requested. */
1239 if (sinfo->sinfo_stream >=
1240 sinit->sinit_num_ostreams) {
1241 err = -EINVAL;
1242 goto out_unlock;
1243 }
1244 }
1245 }
1246
1247 /*
1248 * API 3.1.2 bind() - UDP Style Syntax
1249 * If a bind() or sctp_bindx() is not called prior to a
1250 * sendmsg() call that initiates a new association, the
1251 * system picks an ephemeral port and will choose an address
1252 * set equivalent to binding with a wildcard address.
1253 */
1254 if (!ep->base.bind_addr.port) {
1255 if (sctp_autobind(sk)) {
1256 err = -EAGAIN;
1257 goto out_unlock;
1258 }
1259 }
1260
1261 scope = sctp_scope(&to);
1262 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1263 if (!new_asoc) {
1264 err = -ENOMEM;
1265 goto out_unlock;
1266 }
1267 asoc = new_asoc;
1268
1269 /* If the SCTP_INIT ancillary data is specified, set all
1270 * the association init values accordingly.
1271 */
1272 if (sinit) {
1273 if (sinit->sinit_num_ostreams) {
1274 asoc->c.sinit_num_ostreams =
1275 sinit->sinit_num_ostreams;
1276 }
1277 if (sinit->sinit_max_instreams) {
1278 asoc->c.sinit_max_instreams =
1279 sinit->sinit_max_instreams;
1280 }
1281 if (sinit->sinit_max_attempts) {
1282 asoc->max_init_attempts
1283 = sinit->sinit_max_attempts;
1284 }
1285 if (sinit->sinit_max_init_timeo) {
1286 asoc->max_init_timeo =
1287 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1288 }
1289 }
1290
1291 /* Prime the peer's transport structures. */
1292 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
1293 if (!transport) {
1294 err = -ENOMEM;
1295 goto out_free;
1296 }
1297 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1298 if (err < 0) {
1299 err = -ENOMEM;
1300 goto out_free;
1301 }
1302 }
1303
1304 /* ASSERT: we have a valid association at this point. */
1305 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1306
1307 if (!sinfo) {
1308 /* If the user didn't specify SNDRCVINFO, make up one with
1309 * some defaults.
1310 */
1311 default_sinfo.sinfo_stream = asoc->default_stream;
1312 default_sinfo.sinfo_flags = asoc->default_flags;
1313 default_sinfo.sinfo_ppid = asoc->default_ppid;
1314 default_sinfo.sinfo_context = asoc->default_context;
1315 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1316 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1317 sinfo = &default_sinfo;
1318 }
1319
1320 /* API 7.1.7, the sndbuf size per association bounds the
1321 * maximum size of data that can be sent in a single send call.
1322 */
1323 if (msg_len > sk->sk_sndbuf) {
1324 err = -EMSGSIZE;
1325 goto out_free;
1326 }
1327
1328 /* If fragmentation is disabled and the message length exceeds the
1329 * association fragmentation point, return EMSGSIZE. The I-D
1330 * does not specify what this error is, but this looks like
1331 * a great fit.
1332 */
1333 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1334 err = -EMSGSIZE;
1335 goto out_free;
1336 }
1337
1338 if (sinfo) {
1339 /* Check for invalid stream. */
1340 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1341 err = -EINVAL;
1342 goto out_free;
1343 }
1344 }
1345
1346 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1347 if (!sctp_wspace(asoc)) {
1348 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1349 if (err)
1350 goto out_free;
1351 }
1352
1353 /* If an address is passed with the sendto/sendmsg call, it is used
1354 * to override the primary destination address in the TCP model, or
1355 * when MSG_ADDR_OVER flag is set in the UDP model.
1356 */
1357 if ((sctp_style(sk, TCP) && msg_name) ||
1358 (sinfo_flags & MSG_ADDR_OVER)) {
1359 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1360 if (!chunk_tp) {
1361 err = -EINVAL;
1362 goto out_free;
1363 }
1364 } else
1365 chunk_tp = NULL;
1366
1367 /* Auto-connect, if we aren't connected already. */
1368 if (sctp_state(asoc, CLOSED)) {
1369 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1370 if (err < 0)
1371 goto out_free;
1372 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1373 }
1374
1375 /* Break the message into multiple chunks of maximum size. */
1376 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1377 if (!datamsg) {
1378 err = -ENOMEM;
1379 goto out_free;
1380 }
1381
1382 /* Now send the (possibly) fragmented message. */
1383 list_for_each(pos, &datamsg->chunks) {
1384 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1385 sctp_datamsg_track(chunk);
1386
1387 /* Do accounting for the write space. */
1388 sctp_set_owner_w(chunk);
1389
1390 chunk->transport = chunk_tp;
1391
1392 /* Send it to the lower layers. Note: all chunks
1393 * must either fail or succeed. The lower layer
1394 * works that way today. Keep it that way or this
1395 * breaks.
1396 */
1397 err = sctp_primitive_SEND(asoc, chunk);
1398 /* Did the lower layer accept the chunk? */
1399 if (err)
1400 sctp_chunk_free(chunk);
1401 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1402 }
1403
1404 sctp_datamsg_free(datamsg);
1405 if (err)
1406 goto out_free;
1407 else
1408 err = msg_len;
1409
1410 /* If we are already past ASSOCIATE, the lower
1411 * layers are responsible for association cleanup.
1412 */
1413 goto out_unlock;
1414
1415out_free:
1416 if (new_asoc)
1417 sctp_association_free(asoc);
1418out_unlock:
1419 sctp_release_sock(sk);
1420
1421out_nounlock:
1422 return sctp_error(sk, msg_flags, err);
1423
1424#if 0
1425do_sock_err:
1426 if (msg_len)
1427 err = msg_len;
1428 else
1429 err = sock_error(sk);
1430 goto out;
1431
1432do_interrupted:
1433 if (msg_len)
1434 err = msg_len;
1435 goto out;
1436#endif /* 0 */
1437}
1438
1439/* This is an extended version of skb_pull() that removes the data from the
1440 * start of a skb even when data is spread across the list of skb's in the
1441 * frag_list. len specifies the total amount of data that needs to be removed.
1442 * when 'len' bytes could be removed from the skb, it returns 0.
1443 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1444 * could not be removed.
1445 */
1446static int sctp_skb_pull(struct sk_buff *skb, int len)
1447{
1448 struct sk_buff *list;
1449 int skb_len = skb_headlen(skb);
1450 int rlen;
1451
1452 if (len <= skb_len) {
1453 __skb_pull(skb, len);
1454 return 0;
1455 }
1456 len -= skb_len;
1457 __skb_pull(skb, skb_len);
1458
1459 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1460 rlen = sctp_skb_pull(list, len);
1461 skb->len -= (len-rlen);
1462 skb->data_len -= (len-rlen);
1463
1464 if (!rlen)
1465 return 0;
1466
1467 len = rlen;
1468 }
1469
1470 return len;
1471}
1472
1473/* API 3.1.3 recvmsg() - UDP Style Syntax
1474 *
1475 * ssize_t recvmsg(int socket, struct msghdr *message,
1476 * int flags);
1477 *
1478 * socket - the socket descriptor of the endpoint.
1479 * message - pointer to the msghdr structure which contains a single
1480 * user message and possibly some ancillary data.
1481 *
1482 * See Section 5 for complete description of the data
1483 * structures.
1484 *
1485 * flags - flags sent or received with the user message, see Section
1486 * 5 for complete description of the flags.
1487 */
1488static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1489
1490SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1491 struct msghdr *msg, size_t len, int noblock,
1492 int flags, int *addr_len)
1493{
1494 struct sctp_ulpevent *event = NULL;
1495 struct sctp_sock *sp = sctp_sk(sk);
1496 struct sk_buff *skb;
1497 int copied;
1498 int err = 0;
1499 int skb_len;
1500
1501 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1502 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1503 "len", len, "knoblauch", noblock,
1504 "flags", flags, "addr_len", addr_len);
1505
1506 sctp_lock_sock(sk);
1507
1508 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1509 err = -ENOTCONN;
1510 goto out;
1511 }
1512
1513 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1514 if (!skb)
1515 goto out;
1516
1517 /* Get the total length of the skb including any skb's in the
1518 * frag_list.
1519 */
1520 skb_len = skb->len;
1521
1522 copied = skb_len;
1523 if (copied > len)
1524 copied = len;
1525
1526 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1527
1528 event = sctp_skb2event(skb);
1529
1530 if (err)
1531 goto out_free;
1532
1533 sock_recv_timestamp(msg, sk, skb);
1534 if (sctp_ulpevent_is_notification(event)) {
1535 msg->msg_flags |= MSG_NOTIFICATION;
1536 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1537 } else {
1538 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1539 }
1540
1541 /* Check if we allow SCTP_SNDRCVINFO. */
1542 if (sp->subscribe.sctp_data_io_event)
1543 sctp_ulpevent_read_sndrcvinfo(event, msg);
1544#if 0
1545 /* FIXME: we should be calling IP/IPv6 layers. */
1546 if (sk->sk_protinfo.af_inet.cmsg_flags)
1547 ip_cmsg_recv(msg, skb);
1548#endif
1549
1550 err = copied;
1551
1552 /* If skb's length exceeds the user's buffer, update the skb and
1553 * push it back to the receive_queue so that the next call to
1554 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1555 */
1556 if (skb_len > copied) {
1557 msg->msg_flags &= ~MSG_EOR;
1558 if (flags & MSG_PEEK)
1559 goto out_free;
1560 sctp_skb_pull(skb, copied);
1561 skb_queue_head(&sk->sk_receive_queue, skb);
1562
1563 /* When only partial message is copied to the user, increase
1564 * rwnd by that amount. If all the data in the skb is read,
1565 * rwnd is updated when the event is freed.
1566 */
1567 sctp_assoc_rwnd_increase(event->asoc, copied);
1568 goto out;
1569 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1570 (event->msg_flags & MSG_EOR))
1571 msg->msg_flags |= MSG_EOR;
1572 else
1573 msg->msg_flags &= ~MSG_EOR;
1574
1575out_free:
1576 if (flags & MSG_PEEK) {
1577 /* Release the skb reference acquired after peeking the skb in
1578 * sctp_skb_recv_datagram().
1579 */
1580 kfree_skb(skb);
1581 } else {
1582 /* Free the event which includes releasing the reference to
1583 * the owner of the skb, freeing the skb and updating the
1584 * rwnd.
1585 */
1586 sctp_ulpevent_free(event);
1587 }
1588out:
1589 sctp_release_sock(sk);
1590 return err;
1591}
1592
1593/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1594 *
1595 * This option is a on/off flag. If enabled no SCTP message
1596 * fragmentation will be performed. Instead if a message being sent
1597 * exceeds the current PMTU size, the message will NOT be sent and
1598 * instead a error will be indicated to the user.
1599 */
1600static int sctp_setsockopt_disable_fragments(struct sock *sk,
1601 char __user *optval, int optlen)
1602{
1603 int val;
1604
1605 if (optlen < sizeof(int))
1606 return -EINVAL;
1607
1608 if (get_user(val, (int __user *)optval))
1609 return -EFAULT;
1610
1611 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1612
1613 return 0;
1614}
1615
1616static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1617 int optlen)
1618{
1619 if (optlen != sizeof(struct sctp_event_subscribe))
1620 return -EINVAL;
1621 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1622 return -EFAULT;
1623 return 0;
1624}
1625
1626/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1627 *
1628 * This socket option is applicable to the UDP-style socket only. When
1629 * set it will cause associations that are idle for more than the
1630 * specified number of seconds to automatically close. An association
1631 * being idle is defined an association that has NOT sent or received
1632 * user data. The special value of '0' indicates that no automatic
1633 * close of any associations should be performed. The option expects an
1634 * integer defining the number of seconds of idle time before an
1635 * association is closed.
1636 */
1637static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1638 int optlen)
1639{
1640 struct sctp_sock *sp = sctp_sk(sk);
1641
1642 /* Applicable to UDP-style socket only */
1643 if (sctp_style(sk, TCP))
1644 return -EOPNOTSUPP;
1645 if (optlen != sizeof(int))
1646 return -EINVAL;
1647 if (copy_from_user(&sp->autoclose, optval, optlen))
1648 return -EFAULT;
1649
1650 sp->ep->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
1651 return 0;
1652}
1653
1654/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1655 *
1656 * Applications can enable or disable heartbeats for any peer address of
1657 * an association, modify an address's heartbeat interval, force a
1658 * heartbeat to be sent immediately, and adjust the address's maximum
1659 * number of retransmissions sent before an address is considered
1660 * unreachable. The following structure is used to access and modify an
1661 * address's parameters:
1662 *
1663 * struct sctp_paddrparams {
1664 * sctp_assoc_t spp_assoc_id;
1665 * struct sockaddr_storage spp_address;
1666 * uint32_t spp_hbinterval;
1667 * uint16_t spp_pathmaxrxt;
1668 * };
1669 *
1670 * spp_assoc_id - (UDP style socket) This is filled in the application,
1671 * and identifies the association for this query.
1672 * spp_address - This specifies which address is of interest.
1673 * spp_hbinterval - This contains the value of the heartbeat interval,
1674 * in milliseconds. A value of 0, when modifying the
1675 * parameter, specifies that the heartbeat on this
1676 * address should be disabled. A value of UINT32_MAX
1677 * (4294967295), when modifying the parameter,
1678 * specifies that a heartbeat should be sent
1679 * immediately to the peer address, and the current
1680 * interval should remain unchanged.
1681 * spp_pathmaxrxt - This contains the maximum number of
1682 * retransmissions before this address shall be
1683 * considered unreachable.
1684 */
1685static int sctp_setsockopt_peer_addr_params(struct sock *sk,
1686 char __user *optval, int optlen)
1687{
1688 struct sctp_paddrparams params;
1689 struct sctp_transport *trans;
1690 int error;
1691
1692 if (optlen != sizeof(struct sctp_paddrparams))
1693 return -EINVAL;
1694 if (copy_from_user(&params, optval, optlen))
1695 return -EFAULT;
1696
1697 /*
1698 * API 7. Socket Options (setting the default value for the endpoint)
1699 * All options that support specific settings on an association by
1700 * filling in either an association id variable or a sockaddr_storage
1701 * SHOULD also support setting of the same value for the entire endpoint
1702 * (i.e. future associations). To accomplish this the following logic is
1703 * used when setting one of these options:
1704
1705 * c) If neither the sockaddr_storage or association identification is
1706 * set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and
1707 * the association identification is 0, the settings are a default
1708 * and to be applied to the endpoint (all future associations).
1709 */
1710
1711 /* update default value for endpoint (all future associations) */
1712 if (!params.spp_assoc_id &&
1713 sctp_is_any(( union sctp_addr *)&params.spp_address)) {
1714 /* Manual heartbeat on an endpoint is invalid. */
1715 if (0xffffffff == params.spp_hbinterval)
1716 return -EINVAL;
1717 else if (params.spp_hbinterval)
1718 sctp_sk(sk)->paddrparam.spp_hbinterval =
1719 params.spp_hbinterval;
1720 if (params.spp_pathmaxrxt)
1721 sctp_sk(sk)->paddrparam.spp_pathmaxrxt =
1722 params.spp_pathmaxrxt;
1723 return 0;
1724 }
1725
1726 trans = sctp_addr_id2transport(sk, &params.spp_address,
1727 params.spp_assoc_id);
1728 if (!trans)
1729 return -EINVAL;
1730
1731 /* Applications can enable or disable heartbeats for any peer address
1732 * of an association, modify an address's heartbeat interval, force a
1733 * heartbeat to be sent immediately, and adjust the address's maximum
1734 * number of retransmissions sent before an address is considered
1735 * unreachable.
1736 *
1737 * The value of the heartbeat interval, in milliseconds. A value of
1738 * UINT32_MAX (4294967295), when modifying the parameter, specifies
1739 * that a heartbeat should be sent immediately to the peer address,
1740 * and the current interval should remain unchanged.
1741 */
1742 if (0xffffffff == params.spp_hbinterval) {
1743 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
1744 if (error)
1745 return error;
1746 } else {
1747 /* The value of the heartbeat interval, in milliseconds. A value of 0,
1748 * when modifying the parameter, specifies that the heartbeat on this
1749 * address should be disabled.
1750 */
1751 if (params.spp_hbinterval) {
1752 trans->hb_allowed = 1;
1753 trans->hb_interval =
1754 msecs_to_jiffies(params.spp_hbinterval);
1755 } else
1756 trans->hb_allowed = 0;
1757 }
1758
1759 /* spp_pathmaxrxt contains the maximum number of retransmissions
1760 * before this address shall be considered unreachable.
1761 */
1762 if (params.spp_pathmaxrxt)
1763 trans->max_retrans = params.spp_pathmaxrxt;
1764
1765 return 0;
1766}
1767
1768/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
1769 *
1770 * Applications can specify protocol parameters for the default association
1771 * initialization. The option name argument to setsockopt() and getsockopt()
1772 * is SCTP_INITMSG.
1773 *
1774 * Setting initialization parameters is effective only on an unconnected
1775 * socket (for UDP-style sockets only future associations are effected
1776 * by the change). With TCP-style sockets, this option is inherited by
1777 * sockets derived from a listener socket.
1778 */
1779static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
1780{
1781 struct sctp_initmsg sinit;
1782 struct sctp_sock *sp = sctp_sk(sk);
1783
1784 if (optlen != sizeof(struct sctp_initmsg))
1785 return -EINVAL;
1786 if (copy_from_user(&sinit, optval, optlen))
1787 return -EFAULT;
1788
1789 if (sinit.sinit_num_ostreams)
1790 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
1791 if (sinit.sinit_max_instreams)
1792 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
1793 if (sinit.sinit_max_attempts)
1794 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
1795 if (sinit.sinit_max_init_timeo)
1796 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
1797
1798 return 0;
1799}
1800
1801/*
1802 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
1803 *
1804 * Applications that wish to use the sendto() system call may wish to
1805 * specify a default set of parameters that would normally be supplied
1806 * through the inclusion of ancillary data. This socket option allows
1807 * such an application to set the default sctp_sndrcvinfo structure.
1808 * The application that wishes to use this socket option simply passes
1809 * in to this call the sctp_sndrcvinfo structure defined in Section
1810 * 5.2.2) The input parameters accepted by this call include
1811 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
1812 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
1813 * to this call if the caller is using the UDP model.
1814 */
1815static int sctp_setsockopt_default_send_param(struct sock *sk,
1816 char __user *optval, int optlen)
1817{
1818 struct sctp_sndrcvinfo info;
1819 struct sctp_association *asoc;
1820 struct sctp_sock *sp = sctp_sk(sk);
1821
1822 if (optlen != sizeof(struct sctp_sndrcvinfo))
1823 return -EINVAL;
1824 if (copy_from_user(&info, optval, optlen))
1825 return -EFAULT;
1826
1827 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
1828 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
1829 return -EINVAL;
1830
1831 if (asoc) {
1832 asoc->default_stream = info.sinfo_stream;
1833 asoc->default_flags = info.sinfo_flags;
1834 asoc->default_ppid = info.sinfo_ppid;
1835 asoc->default_context = info.sinfo_context;
1836 asoc->default_timetolive = info.sinfo_timetolive;
1837 } else {
1838 sp->default_stream = info.sinfo_stream;
1839 sp->default_flags = info.sinfo_flags;
1840 sp->default_ppid = info.sinfo_ppid;
1841 sp->default_context = info.sinfo_context;
1842 sp->default_timetolive = info.sinfo_timetolive;
1843 }
1844
1845 return 0;
1846}
1847
1848/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
1849 *
1850 * Requests that the local SCTP stack use the enclosed peer address as
1851 * the association primary. The enclosed address must be one of the
1852 * association peer's addresses.
1853 */
1854static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
1855 int optlen)
1856{
1857 struct sctp_prim prim;
1858 struct sctp_transport *trans;
1859
1860 if (optlen != sizeof(struct sctp_prim))
1861 return -EINVAL;
1862
1863 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
1864 return -EFAULT;
1865
1866 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
1867 if (!trans)
1868 return -EINVAL;
1869
1870 sctp_assoc_set_primary(trans->asoc, trans);
1871
1872 return 0;
1873}
1874
1875/*
1876 * 7.1.5 SCTP_NODELAY
1877 *
1878 * Turn on/off any Nagle-like algorithm. This means that packets are
1879 * generally sent as soon as possible and no unnecessary delays are
1880 * introduced, at the cost of more packets in the network. Expects an
1881 * integer boolean flag.
1882 */
1883static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
1884 int optlen)
1885{
1886 int val;
1887
1888 if (optlen < sizeof(int))
1889 return -EINVAL;
1890 if (get_user(val, (int __user *)optval))
1891 return -EFAULT;
1892
1893 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
1894 return 0;
1895}
1896
1897/*
1898 *
1899 * 7.1.1 SCTP_RTOINFO
1900 *
1901 * The protocol parameters used to initialize and bound retransmission
1902 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
1903 * and modify these parameters.
1904 * All parameters are time values, in milliseconds. A value of 0, when
1905 * modifying the parameters, indicates that the current value should not
1906 * be changed.
1907 *
1908 */
1909static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
1910 struct sctp_rtoinfo rtoinfo;
1911 struct sctp_association *asoc;
1912
1913 if (optlen != sizeof (struct sctp_rtoinfo))
1914 return -EINVAL;
1915
1916 if (copy_from_user(&rtoinfo, optval, optlen))
1917 return -EFAULT;
1918
1919 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
1920
1921 /* Set the values to the specific association */
1922 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
1923 return -EINVAL;
1924
1925 if (asoc) {
1926 if (rtoinfo.srto_initial != 0)
1927 asoc->rto_initial =
1928 msecs_to_jiffies(rtoinfo.srto_initial);
1929 if (rtoinfo.srto_max != 0)
1930 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
1931 if (rtoinfo.srto_min != 0)
1932 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
1933 } else {
1934 /* If there is no association or the association-id = 0
1935 * set the values to the endpoint.
1936 */
1937 struct sctp_sock *sp = sctp_sk(sk);
1938
1939 if (rtoinfo.srto_initial != 0)
1940 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
1941 if (rtoinfo.srto_max != 0)
1942 sp->rtoinfo.srto_max = rtoinfo.srto_max;
1943 if (rtoinfo.srto_min != 0)
1944 sp->rtoinfo.srto_min = rtoinfo.srto_min;
1945 }
1946
1947 return 0;
1948}
1949
1950/*
1951 *
1952 * 7.1.2 SCTP_ASSOCINFO
1953 *
1954 * This option is used to tune the the maximum retransmission attempts
1955 * of the association.
1956 * Returns an error if the new association retransmission value is
1957 * greater than the sum of the retransmission value of the peer.
1958 * See [SCTP] for more information.
1959 *
1960 */
1961static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
1962{
1963
1964 struct sctp_assocparams assocparams;
1965 struct sctp_association *asoc;
1966
1967 if (optlen != sizeof(struct sctp_assocparams))
1968 return -EINVAL;
1969 if (copy_from_user(&assocparams, optval, optlen))
1970 return -EFAULT;
1971
1972 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
1973
1974 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
1975 return -EINVAL;
1976
1977 /* Set the values to the specific association */
1978 if (asoc) {
1979 if (assocparams.sasoc_asocmaxrxt != 0)
1980 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
1981 if (assocparams.sasoc_cookie_life != 0) {
1982 asoc->cookie_life.tv_sec =
1983 assocparams.sasoc_cookie_life / 1000;
1984 asoc->cookie_life.tv_usec =
1985 (assocparams.sasoc_cookie_life % 1000)
1986 * 1000;
1987 }
1988 } else {
1989 /* Set the values to the endpoint */
1990 struct sctp_sock *sp = sctp_sk(sk);
1991
1992 if (assocparams.sasoc_asocmaxrxt != 0)
1993 sp->assocparams.sasoc_asocmaxrxt =
1994 assocparams.sasoc_asocmaxrxt;
1995 if (assocparams.sasoc_cookie_life != 0)
1996 sp->assocparams.sasoc_cookie_life =
1997 assocparams.sasoc_cookie_life;
1998 }
1999 return 0;
2000}
2001
2002/*
2003 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2004 *
2005 * This socket option is a boolean flag which turns on or off mapped V4
2006 * addresses. If this option is turned on and the socket is type
2007 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2008 * If this option is turned off, then no mapping will be done of V4
2009 * addresses and a user will receive both PF_INET6 and PF_INET type
2010 * addresses on the socket.
2011 */
2012static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2013{
2014 int val;
2015 struct sctp_sock *sp = sctp_sk(sk);
2016
2017 if (optlen < sizeof(int))
2018 return -EINVAL;
2019 if (get_user(val, (int __user *)optval))
2020 return -EFAULT;
2021 if (val)
2022 sp->v4mapped = 1;
2023 else
2024 sp->v4mapped = 0;
2025
2026 return 0;
2027}
2028
2029/*
2030 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2031 *
2032 * This socket option specifies the maximum size to put in any outgoing
2033 * SCTP chunk. If a message is larger than this size it will be
2034 * fragmented by SCTP into the specified size. Note that the underlying
2035 * SCTP implementation may fragment into smaller sized chunks when the
2036 * PMTU of the underlying association is smaller than the value set by
2037 * the user.
2038 */
2039static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2040{
2041 struct sctp_association *asoc;
2042 struct list_head *pos;
2043 struct sctp_sock *sp = sctp_sk(sk);
2044 int val;
2045
2046 if (optlen < sizeof(int))
2047 return -EINVAL;
2048 if (get_user(val, (int __user *)optval))
2049 return -EFAULT;
2050 if ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))
2051 return -EINVAL;
2052 sp->user_frag = val;
2053
2054 if (val) {
2055 /* Update the frag_point of the existing associations. */
2056 list_for_each(pos, &(sp->ep->asocs)) {
2057 asoc = list_entry(pos, struct sctp_association, asocs);
2058 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
2059 }
2060 }
2061
2062 return 0;
2063}
2064
2065
2066/*
2067 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2068 *
2069 * Requests that the peer mark the enclosed address as the association
2070 * primary. The enclosed address must be one of the association's
2071 * locally bound addresses. The following structure is used to make a
2072 * set primary request:
2073 */
2074static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2075 int optlen)
2076{
2077 struct sctp_sock *sp;
2078 struct sctp_endpoint *ep;
2079 struct sctp_association *asoc = NULL;
2080 struct sctp_setpeerprim prim;
2081 struct sctp_chunk *chunk;
2082 int err;
2083
2084 sp = sctp_sk(sk);
2085 ep = sp->ep;
2086
2087 if (!sctp_addip_enable)
2088 return -EPERM;
2089
2090 if (optlen != sizeof(struct sctp_setpeerprim))
2091 return -EINVAL;
2092
2093 if (copy_from_user(&prim, optval, optlen))
2094 return -EFAULT;
2095
2096 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2097 if (!asoc)
2098 return -EINVAL;
2099
2100 if (!asoc->peer.asconf_capable)
2101 return -EPERM;
2102
2103 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2104 return -EPERM;
2105
2106 if (!sctp_state(asoc, ESTABLISHED))
2107 return -ENOTCONN;
2108
2109 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2110 return -EADDRNOTAVAIL;
2111
2112 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2113 chunk = sctp_make_asconf_set_prim(asoc,
2114 (union sctp_addr *)&prim.sspp_addr);
2115 if (!chunk)
2116 return -ENOMEM;
2117
2118 err = sctp_send_asconf(asoc, chunk);
2119
2120 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2121
2122 return err;
2123}
2124
2125static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2126 int optlen)
2127{
2128 __u32 val;
2129
2130 if (optlen < sizeof(__u32))
2131 return -EINVAL;
2132 if (copy_from_user(&val, optval, sizeof(__u32)))
2133 return -EFAULT;
2134
2135 sctp_sk(sk)->adaption_ind = val;
2136
2137 return 0;
2138}
2139
2140/* API 6.2 setsockopt(), getsockopt()
2141 *
2142 * Applications use setsockopt() and getsockopt() to set or retrieve
2143 * socket options. Socket options are used to change the default
2144 * behavior of sockets calls. They are described in Section 7.
2145 *
2146 * The syntax is:
2147 *
2148 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2149 * int __user *optlen);
2150 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2151 * int optlen);
2152 *
2153 * sd - the socket descript.
2154 * level - set to IPPROTO_SCTP for all SCTP options.
2155 * optname - the option name.
2156 * optval - the buffer to store the value of the option.
2157 * optlen - the size of the buffer.
2158 */
2159SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2160 char __user *optval, int optlen)
2161{
2162 int retval = 0;
2163
2164 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2165 sk, optname);
2166
2167 /* I can hardly begin to describe how wrong this is. This is
2168 * so broken as to be worse than useless. The API draft
2169 * REALLY is NOT helpful here... I am not convinced that the
2170 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2171 * are at all well-founded.
2172 */
2173 if (level != SOL_SCTP) {
2174 struct sctp_af *af = sctp_sk(sk)->pf->af;
2175 retval = af->setsockopt(sk, level, optname, optval, optlen);
2176 goto out_nounlock;
2177 }
2178
2179 sctp_lock_sock(sk);
2180
2181 switch (optname) {
2182 case SCTP_SOCKOPT_BINDX_ADD:
2183 /* 'optlen' is the size of the addresses buffer. */
2184 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2185 optlen, SCTP_BINDX_ADD_ADDR);
2186 break;
2187
2188 case SCTP_SOCKOPT_BINDX_REM:
2189 /* 'optlen' is the size of the addresses buffer. */
2190 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2191 optlen, SCTP_BINDX_REM_ADDR);
2192 break;
2193
2194 case SCTP_DISABLE_FRAGMENTS:
2195 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2196 break;
2197
2198 case SCTP_EVENTS:
2199 retval = sctp_setsockopt_events(sk, optval, optlen);
2200 break;
2201
2202 case SCTP_AUTOCLOSE:
2203 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2204 break;
2205
2206 case SCTP_PEER_ADDR_PARAMS:
2207 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2208 break;
2209
2210 case SCTP_INITMSG:
2211 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2212 break;
2213 case SCTP_DEFAULT_SEND_PARAM:
2214 retval = sctp_setsockopt_default_send_param(sk, optval,
2215 optlen);
2216 break;
2217 case SCTP_PRIMARY_ADDR:
2218 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2219 break;
2220 case SCTP_SET_PEER_PRIMARY_ADDR:
2221 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2222 break;
2223 case SCTP_NODELAY:
2224 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2225 break;
2226 case SCTP_RTOINFO:
2227 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2228 break;
2229 case SCTP_ASSOCINFO:
2230 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2231 break;
2232 case SCTP_I_WANT_MAPPED_V4_ADDR:
2233 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2234 break;
2235 case SCTP_MAXSEG:
2236 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2237 break;
2238 case SCTP_ADAPTION_LAYER:
2239 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2240 break;
2241
2242 default:
2243 retval = -ENOPROTOOPT;
2244 break;
2245 };
2246
2247 sctp_release_sock(sk);
2248
2249out_nounlock:
2250 return retval;
2251}
2252
2253/* API 3.1.6 connect() - UDP Style Syntax
2254 *
2255 * An application may use the connect() call in the UDP model to initiate an
2256 * association without sending data.
2257 *
2258 * The syntax is:
2259 *
2260 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2261 *
2262 * sd: the socket descriptor to have a new association added to.
2263 *
2264 * nam: the address structure (either struct sockaddr_in or struct
2265 * sockaddr_in6 defined in RFC2553 [7]).
2266 *
2267 * len: the size of the address.
2268 */
2269SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *uaddr,
2270 int addr_len)
2271{
2272 struct sctp_sock *sp;
2273 struct sctp_endpoint *ep;
2274 struct sctp_association *asoc;
2275 struct sctp_transport *transport;
2276 union sctp_addr to;
2277 struct sctp_af *af;
2278 sctp_scope_t scope;
2279 long timeo;
2280 int err = 0;
2281
2282 sctp_lock_sock(sk);
2283
2284 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d)\n",
2285 __FUNCTION__, sk, uaddr, addr_len);
2286
2287 sp = sctp_sk(sk);
2288 ep = sp->ep;
2289
2290 /* connect() cannot be done on a socket that is already in ESTABLISHED
2291 * state - UDP-style peeled off socket or a TCP-style socket that
2292 * is already connected.
2293 * It cannot be done even on a TCP-style listening socket.
2294 */
2295 if (sctp_sstate(sk, ESTABLISHED) ||
2296 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
2297 err = -EISCONN;
2298 goto out_unlock;
2299 }
2300
2301 err = sctp_verify_addr(sk, (union sctp_addr *)uaddr, addr_len);
2302 if (err)
2303 goto out_unlock;
2304
2305 if (addr_len > sizeof(to))
2306 addr_len = sizeof(to);
2307 memcpy(&to, uaddr, addr_len);
2308 to.v4.sin_port = ntohs(to.v4.sin_port);
2309
2310 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
2311 if (asoc) {
2312 if (asoc->state >= SCTP_STATE_ESTABLISHED)
2313 err = -EISCONN;
2314 else
2315 err = -EALREADY;
2316 goto out_unlock;
2317 }
2318
2319 /* If we could not find a matching association on the endpoint,
2320 * make sure that there is no peeled-off association matching the
2321 * peer address even on another socket.
2322 */
2323 if (sctp_endpoint_is_peeled_off(ep, &to)) {
2324 err = -EADDRNOTAVAIL;
2325 goto out_unlock;
2326 }
2327
2328 /* If a bind() or sctp_bindx() is not called prior to a connect()
2329 * call, the system picks an ephemeral port and will choose an address
2330 * set equivalent to binding with a wildcard address.
2331 */
2332 if (!ep->base.bind_addr.port) {
2333 if (sctp_autobind(sk)) {
2334 err = -EAGAIN;
2335 goto out_unlock;
2336 }
2337 }
2338
2339 scope = sctp_scope(&to);
2340 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
2341 if (!asoc) {
2342 err = -ENOMEM;
2343 goto out_unlock;
2344 }
2345
2346 /* Prime the peer's transport structures. */
2347 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
2348 if (!transport) {
2349 sctp_association_free(asoc);
2350 goto out_unlock;
2351 }
2352 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
2353 if (err < 0) {
2354 sctp_association_free(asoc);
2355 goto out_unlock;
2356 }
2357
2358 err = sctp_primitive_ASSOCIATE(asoc, NULL);
2359 if (err < 0) {
2360 sctp_association_free(asoc);
2361 goto out_unlock;
2362 }
2363
2364 /* Initialize sk's dport and daddr for getpeername() */
2365 inet_sk(sk)->dport = htons(asoc->peer.port);
2366 af = sctp_get_af_specific(to.sa.sa_family);
2367 af->to_sk_daddr(&to, sk);
2368
2369 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2370 err = sctp_wait_for_connect(asoc, &timeo);
2371
2372out_unlock:
2373 sctp_release_sock(sk);
2374
2375 return err;
2376}
2377
2378/* FIXME: Write comments. */
2379SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2380{
2381 return -EOPNOTSUPP; /* STUB */
2382}
2383
2384/* 4.1.4 accept() - TCP Style Syntax
2385 *
2386 * Applications use accept() call to remove an established SCTP
2387 * association from the accept queue of the endpoint. A new socket
2388 * descriptor will be returned from accept() to represent the newly
2389 * formed association.
2390 */
2391SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2392{
2393 struct sctp_sock *sp;
2394 struct sctp_endpoint *ep;
2395 struct sock *newsk = NULL;
2396 struct sctp_association *asoc;
2397 long timeo;
2398 int error = 0;
2399
2400 sctp_lock_sock(sk);
2401
2402 sp = sctp_sk(sk);
2403 ep = sp->ep;
2404
2405 if (!sctp_style(sk, TCP)) {
2406 error = -EOPNOTSUPP;
2407 goto out;
2408 }
2409
2410 if (!sctp_sstate(sk, LISTENING)) {
2411 error = -EINVAL;
2412 goto out;
2413 }
2414
2415 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2416
2417 error = sctp_wait_for_accept(sk, timeo);
2418 if (error)
2419 goto out;
2420
2421 /* We treat the list of associations on the endpoint as the accept
2422 * queue and pick the first association on the list.
2423 */
2424 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2425
2426 newsk = sp->pf->create_accept_sk(sk, asoc);
2427 if (!newsk) {
2428 error = -ENOMEM;
2429 goto out;
2430 }
2431
2432 /* Populate the fields of the newsk from the oldsk and migrate the
2433 * asoc to the newsk.
2434 */
2435 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2436
2437out:
2438 sctp_release_sock(sk);
2439 *err = error;
2440 return newsk;
2441}
2442
2443/* The SCTP ioctl handler. */
2444SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2445{
2446 return -ENOIOCTLCMD;
2447}
2448
2449/* This is the function which gets called during socket creation to
2450 * initialized the SCTP-specific portion of the sock.
2451 * The sock structure should already be zero-filled memory.
2452 */
2453SCTP_STATIC int sctp_init_sock(struct sock *sk)
2454{
2455 struct sctp_endpoint *ep;
2456 struct sctp_sock *sp;
2457
2458 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2459
2460 sp = sctp_sk(sk);
2461
2462 /* Initialize the SCTP per socket area. */
2463 switch (sk->sk_type) {
2464 case SOCK_SEQPACKET:
2465 sp->type = SCTP_SOCKET_UDP;
2466 break;
2467 case SOCK_STREAM:
2468 sp->type = SCTP_SOCKET_TCP;
2469 break;
2470 default:
2471 return -ESOCKTNOSUPPORT;
2472 }
2473
2474 /* Initialize default send parameters. These parameters can be
2475 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2476 */
2477 sp->default_stream = 0;
2478 sp->default_ppid = 0;
2479 sp->default_flags = 0;
2480 sp->default_context = 0;
2481 sp->default_timetolive = 0;
2482
2483 /* Initialize default setup parameters. These parameters
2484 * can be modified with the SCTP_INITMSG socket option or
2485 * overridden by the SCTP_INIT CMSG.
2486 */
2487 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
2488 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
2489 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
2490 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2491
2492 /* Initialize default RTO related parameters. These parameters can
2493 * be modified for with the SCTP_RTOINFO socket option.
2494 */
2495 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2496 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max);
2497 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min);
2498
2499 /* Initialize default association related parameters. These parameters
2500 * can be modified with the SCTP_ASSOCINFO socket option.
2501 */
2502 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2503 sp->assocparams.sasoc_number_peer_destinations = 0;
2504 sp->assocparams.sasoc_peer_rwnd = 0;
2505 sp->assocparams.sasoc_local_rwnd = 0;
2506 sp->assocparams.sasoc_cookie_life =
2507 jiffies_to_msecs(sctp_valid_cookie_life);
2508
2509 /* Initialize default event subscriptions. By default, all the
2510 * options are off.
2511 */
2512 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2513
2514 /* Default Peer Address Parameters. These defaults can
2515 * be modified via SCTP_PEER_ADDR_PARAMS
2516 */
2517 sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval);
2518 sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path;
2519
2520 /* If enabled no SCTP message fragmentation will be performed.
2521 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
2522 */
2523 sp->disable_fragments = 0;
2524
2525 /* Turn on/off any Nagle-like algorithm. */
2526 sp->nodelay = 1;
2527
2528 /* Enable by default. */
2529 sp->v4mapped = 1;
2530
2531 /* Auto-close idle associations after the configured
2532 * number of seconds. A value of 0 disables this
2533 * feature. Configure through the SCTP_AUTOCLOSE socket option,
2534 * for UDP-style sockets only.
2535 */
2536 sp->autoclose = 0;
2537
2538 /* User specified fragmentation limit. */
2539 sp->user_frag = 0;
2540
2541 sp->adaption_ind = 0;
2542
2543 sp->pf = sctp_get_pf_specific(sk->sk_family);
2544
2545 /* Control variables for partial data delivery. */
2546 sp->pd_mode = 0;
2547 skb_queue_head_init(&sp->pd_lobby);
2548
2549 /* Create a per socket endpoint structure. Even if we
2550 * change the data structure relationships, this may still
2551 * be useful for storing pre-connect address information.
2552 */
2553 ep = sctp_endpoint_new(sk, GFP_KERNEL);
2554 if (!ep)
2555 return -ENOMEM;
2556
2557 sp->ep = ep;
2558 sp->hmac = NULL;
2559
2560 SCTP_DBG_OBJCNT_INC(sock);
2561 return 0;
2562}
2563
2564/* Cleanup any SCTP per socket resources. */
2565SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
2566{
2567 struct sctp_endpoint *ep;
2568
2569 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
2570
2571 /* Release our hold on the endpoint. */
2572 ep = sctp_sk(sk)->ep;
2573 sctp_endpoint_free(ep);
2574
2575 return 0;
2576}
2577
2578/* API 4.1.7 shutdown() - TCP Style Syntax
2579 * int shutdown(int socket, int how);
2580 *
2581 * sd - the socket descriptor of the association to be closed.
2582 * how - Specifies the type of shutdown. The values are
2583 * as follows:
2584 * SHUT_RD
2585 * Disables further receive operations. No SCTP
2586 * protocol action is taken.
2587 * SHUT_WR
2588 * Disables further send operations, and initiates
2589 * the SCTP shutdown sequence.
2590 * SHUT_RDWR
2591 * Disables further send and receive operations
2592 * and initiates the SCTP shutdown sequence.
2593 */
2594SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
2595{
2596 struct sctp_endpoint *ep;
2597 struct sctp_association *asoc;
2598
2599 if (!sctp_style(sk, TCP))
2600 return;
2601
2602 if (how & SEND_SHUTDOWN) {
2603 ep = sctp_sk(sk)->ep;
2604 if (!list_empty(&ep->asocs)) {
2605 asoc = list_entry(ep->asocs.next,
2606 struct sctp_association, asocs);
2607 sctp_primitive_SHUTDOWN(asoc, NULL);
2608 }
2609 }
2610}
2611
2612/* 7.2.1 Association Status (SCTP_STATUS)
2613
2614 * Applications can retrieve current status information about an
2615 * association, including association state, peer receiver window size,
2616 * number of unacked data chunks, and number of data chunks pending
2617 * receipt. This information is read-only.
2618 */
2619static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
2620 char __user *optval,
2621 int __user *optlen)
2622{
2623 struct sctp_status status;
2624 struct sctp_association *asoc = NULL;
2625 struct sctp_transport *transport;
2626 sctp_assoc_t associd;
2627 int retval = 0;
2628
2629 if (len != sizeof(status)) {
2630 retval = -EINVAL;
2631 goto out;
2632 }
2633
2634 if (copy_from_user(&status, optval, sizeof(status))) {
2635 retval = -EFAULT;
2636 goto out;
2637 }
2638
2639 associd = status.sstat_assoc_id;
2640 asoc = sctp_id2assoc(sk, associd);
2641 if (!asoc) {
2642 retval = -EINVAL;
2643 goto out;
2644 }
2645
2646 transport = asoc->peer.primary_path;
2647
2648 status.sstat_assoc_id = sctp_assoc2id(asoc);
2649 status.sstat_state = asoc->state;
2650 status.sstat_rwnd = asoc->peer.rwnd;
2651 status.sstat_unackdata = asoc->unack_data;
2652
2653 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
2654 status.sstat_instrms = asoc->c.sinit_max_instreams;
2655 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
2656 status.sstat_fragmentation_point = asoc->frag_point;
2657 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2658 memcpy(&status.sstat_primary.spinfo_address,
2659 &(transport->ipaddr), sizeof(union sctp_addr));
2660 /* Map ipv4 address into v4-mapped-on-v6 address. */
2661 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
2662 (union sctp_addr *)&status.sstat_primary.spinfo_address);
2663 status.sstat_primary.spinfo_state = transport->active;
2664 status.sstat_primary.spinfo_cwnd = transport->cwnd;
2665 status.sstat_primary.spinfo_srtt = transport->srtt;
2666 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
2667 status.sstat_primary.spinfo_mtu = transport->pmtu;
2668
2669 if (put_user(len, optlen)) {
2670 retval = -EFAULT;
2671 goto out;
2672 }
2673
2674 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
2675 len, status.sstat_state, status.sstat_rwnd,
2676 status.sstat_assoc_id);
2677
2678 if (copy_to_user(optval, &status, len)) {
2679 retval = -EFAULT;
2680 goto out;
2681 }
2682
2683out:
2684 return (retval);
2685}
2686
2687
2688/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
2689 *
2690 * Applications can retrieve information about a specific peer address
2691 * of an association, including its reachability state, congestion
2692 * window, and retransmission timer values. This information is
2693 * read-only.
2694 */
2695static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
2696 char __user *optval,
2697 int __user *optlen)
2698{
2699 struct sctp_paddrinfo pinfo;
2700 struct sctp_transport *transport;
2701 int retval = 0;
2702
2703 if (len != sizeof(pinfo)) {
2704 retval = -EINVAL;
2705 goto out;
2706 }
2707
2708 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
2709 retval = -EFAULT;
2710 goto out;
2711 }
2712
2713 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
2714 pinfo.spinfo_assoc_id);
2715 if (!transport)
2716 return -EINVAL;
2717
2718 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2719 pinfo.spinfo_state = transport->active;
2720 pinfo.spinfo_cwnd = transport->cwnd;
2721 pinfo.spinfo_srtt = transport->srtt;
2722 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
2723 pinfo.spinfo_mtu = transport->pmtu;
2724
2725 if (put_user(len, optlen)) {
2726 retval = -EFAULT;
2727 goto out;
2728 }
2729
2730 if (copy_to_user(optval, &pinfo, len)) {
2731 retval = -EFAULT;
2732 goto out;
2733 }
2734
2735out:
2736 return (retval);
2737}
2738
2739/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2740 *
2741 * This option is a on/off flag. If enabled no SCTP message
2742 * fragmentation will be performed. Instead if a message being sent
2743 * exceeds the current PMTU size, the message will NOT be sent and
2744 * instead a error will be indicated to the user.
2745 */
2746static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
2747 char __user *optval, int __user *optlen)
2748{
2749 int val;
2750
2751 if (len < sizeof(int))
2752 return -EINVAL;
2753
2754 len = sizeof(int);
2755 val = (sctp_sk(sk)->disable_fragments == 1);
2756 if (put_user(len, optlen))
2757 return -EFAULT;
2758 if (copy_to_user(optval, &val, len))
2759 return -EFAULT;
2760 return 0;
2761}
2762
2763/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
2764 *
2765 * This socket option is used to specify various notifications and
2766 * ancillary data the user wishes to receive.
2767 */
2768static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
2769 int __user *optlen)
2770{
2771 if (len != sizeof(struct sctp_event_subscribe))
2772 return -EINVAL;
2773 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
2774 return -EFAULT;
2775 return 0;
2776}
2777
2778/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2779 *
2780 * This socket option is applicable to the UDP-style socket only. When
2781 * set it will cause associations that are idle for more than the
2782 * specified number of seconds to automatically close. An association
2783 * being idle is defined an association that has NOT sent or received
2784 * user data. The special value of '0' indicates that no automatic
2785 * close of any associations should be performed. The option expects an
2786 * integer defining the number of seconds of idle time before an
2787 * association is closed.
2788 */
2789static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
2790{
2791 /* Applicable to UDP-style socket only */
2792 if (sctp_style(sk, TCP))
2793 return -EOPNOTSUPP;
2794 if (len != sizeof(int))
2795 return -EINVAL;
2796 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
2797 return -EFAULT;
2798 return 0;
2799}
2800
2801/* Helper routine to branch off an association to a new socket. */
2802SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
2803 struct socket **sockp)
2804{
2805 struct sock *sk = asoc->base.sk;
2806 struct socket *sock;
2807 int err = 0;
2808
2809 /* An association cannot be branched off from an already peeled-off
2810 * socket, nor is this supported for tcp style sockets.
2811 */
2812 if (!sctp_style(sk, UDP))
2813 return -EINVAL;
2814
2815 /* Create a new socket. */
2816 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
2817 if (err < 0)
2818 return err;
2819
2820 /* Populate the fields of the newsk from the oldsk and migrate the
2821 * asoc to the newsk.
2822 */
2823 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
2824 *sockp = sock;
2825
2826 return err;
2827}
2828
2829static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
2830{
2831 sctp_peeloff_arg_t peeloff;
2832 struct socket *newsock;
2833 int retval = 0;
2834 struct sctp_association *asoc;
2835
2836 if (len != sizeof(sctp_peeloff_arg_t))
2837 return -EINVAL;
2838 if (copy_from_user(&peeloff, optval, len))
2839 return -EFAULT;
2840
2841 asoc = sctp_id2assoc(sk, peeloff.associd);
2842 if (!asoc) {
2843 retval = -EINVAL;
2844 goto out;
2845 }
2846
2847 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
2848
2849 retval = sctp_do_peeloff(asoc, &newsock);
2850 if (retval < 0)
2851 goto out;
2852
2853 /* Map the socket to an unused fd that can be returned to the user. */
2854 retval = sock_map_fd(newsock);
2855 if (retval < 0) {
2856 sock_release(newsock);
2857 goto out;
2858 }
2859
2860 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
2861 __FUNCTION__, sk, asoc, newsock->sk, retval);
2862
2863 /* Return the fd mapped to the new socket. */
2864 peeloff.sd = retval;
2865 if (copy_to_user(optval, &peeloff, len))
2866 retval = -EFAULT;
2867
2868out:
2869 return retval;
2870}
2871
2872/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2873 *
2874 * Applications can enable or disable heartbeats for any peer address of
2875 * an association, modify an address's heartbeat interval, force a
2876 * heartbeat to be sent immediately, and adjust the address's maximum
2877 * number of retransmissions sent before an address is considered
2878 * unreachable. The following structure is used to access and modify an
2879 * address's parameters:
2880 *
2881 * struct sctp_paddrparams {
2882 * sctp_assoc_t spp_assoc_id;
2883 * struct sockaddr_storage spp_address;
2884 * uint32_t spp_hbinterval;
2885 * uint16_t spp_pathmaxrxt;
2886 * };
2887 *
2888 * spp_assoc_id - (UDP style socket) This is filled in the application,
2889 * and identifies the association for this query.
2890 * spp_address - This specifies which address is of interest.
2891 * spp_hbinterval - This contains the value of the heartbeat interval,
2892 * in milliseconds. A value of 0, when modifying the
2893 * parameter, specifies that the heartbeat on this
2894 * address should be disabled. A value of UINT32_MAX
2895 * (4294967295), when modifying the parameter,
2896 * specifies that a heartbeat should be sent
2897 * immediately to the peer address, and the current
2898 * interval should remain unchanged.
2899 * spp_pathmaxrxt - This contains the maximum number of
2900 * retransmissions before this address shall be
2901 * considered unreachable.
2902 */
2903static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
2904 char __user *optval, int __user *optlen)
2905{
2906 struct sctp_paddrparams params;
2907 struct sctp_transport *trans;
2908
2909 if (len != sizeof(struct sctp_paddrparams))
2910 return -EINVAL;
2911 if (copy_from_user(&params, optval, len))
2912 return -EFAULT;
2913
2914 /* If no association id is specified retrieve the default value
2915 * for the endpoint that will be used for all future associations
2916 */
2917 if (!params.spp_assoc_id &&
2918 sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2919 params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval;
2920 params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt;
2921
2922 goto done;
2923 }
2924
2925 trans = sctp_addr_id2transport(sk, &params.spp_address,
2926 params.spp_assoc_id);
2927 if (!trans)
2928 return -EINVAL;
2929
2930 /* The value of the heartbeat interval, in milliseconds. A value of 0,
2931 * when modifying the parameter, specifies that the heartbeat on this
2932 * address should be disabled.
2933 */
2934 if (!trans->hb_allowed)
2935 params.spp_hbinterval = 0;
2936 else
2937 params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval);
2938
2939 /* spp_pathmaxrxt contains the maximum number of retransmissions
2940 * before this address shall be considered unreachable.
2941 */
2942 params.spp_pathmaxrxt = trans->max_retrans;
2943
2944done:
2945 if (copy_to_user(optval, &params, len))
2946 return -EFAULT;
2947
2948 if (put_user(len, optlen))
2949 return -EFAULT;
2950
2951 return 0;
2952}
2953
2954/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2955 *
2956 * Applications can specify protocol parameters for the default association
2957 * initialization. The option name argument to setsockopt() and getsockopt()
2958 * is SCTP_INITMSG.
2959 *
2960 * Setting initialization parameters is effective only on an unconnected
2961 * socket (for UDP-style sockets only future associations are effected
2962 * by the change). With TCP-style sockets, this option is inherited by
2963 * sockets derived from a listener socket.
2964 */
2965static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
2966{
2967 if (len != sizeof(struct sctp_initmsg))
2968 return -EINVAL;
2969 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
2970 return -EFAULT;
2971 return 0;
2972}
2973
2974static int sctp_getsockopt_peer_addrs_num(struct sock *sk, int len,
2975 char __user *optval, int __user *optlen)
2976{
2977 sctp_assoc_t id;
2978 struct sctp_association *asoc;
2979 struct list_head *pos;
2980 int cnt = 0;
2981
2982 if (len != sizeof(sctp_assoc_t))
2983 return -EINVAL;
2984
2985 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
2986 return -EFAULT;
2987
2988 /* For UDP-style sockets, id specifies the association to query. */
2989 asoc = sctp_id2assoc(sk, id);
2990 if (!asoc)
2991 return -EINVAL;
2992
2993 list_for_each(pos, &asoc->peer.transport_addr_list) {
2994 cnt ++;
2995 }
2996
2997 return cnt;
2998}
2999
3000static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3001 char __user *optval, int __user *optlen)
3002{
3003 struct sctp_association *asoc;
3004 struct list_head *pos;
3005 int cnt = 0;
3006 struct sctp_getaddrs getaddrs;
3007 struct sctp_transport *from;
3008 void __user *to;
3009 union sctp_addr temp;
3010 struct sctp_sock *sp = sctp_sk(sk);
3011 int addrlen;
3012
3013 if (len != sizeof(struct sctp_getaddrs))
3014 return -EINVAL;
3015
3016 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3017 return -EFAULT;
3018
3019 if (getaddrs.addr_num <= 0) return -EINVAL;
3020
3021 /* For UDP-style sockets, id specifies the association to query. */
3022 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3023 if (!asoc)
3024 return -EINVAL;
3025
3026 to = (void __user *)getaddrs.addrs;
3027 list_for_each(pos, &asoc->peer.transport_addr_list) {
3028 from = list_entry(pos, struct sctp_transport, transports);
3029 memcpy(&temp, &from->ipaddr, sizeof(temp));
3030 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3031 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3032 temp.v4.sin_port = htons(temp.v4.sin_port);
3033 if (copy_to_user(to, &temp, addrlen))
3034 return -EFAULT;
3035 to += addrlen ;
3036 cnt ++;
3037 if (cnt >= getaddrs.addr_num) break;
3038 }
3039 getaddrs.addr_num = cnt;
3040 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3041 return -EFAULT;
3042
3043 return 0;
3044}
3045
3046static int sctp_getsockopt_local_addrs_num(struct sock *sk, int len,
3047 char __user *optval,
3048 int __user *optlen)
3049{
3050 sctp_assoc_t id;
3051 struct sctp_bind_addr *bp;
3052 struct sctp_association *asoc;
3053 struct list_head *pos;
3054 struct sctp_sockaddr_entry *addr;
3055 rwlock_t *addr_lock;
3056 unsigned long flags;
3057 int cnt = 0;
3058
3059 if (len != sizeof(sctp_assoc_t))
3060 return -EINVAL;
3061
3062 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3063 return -EFAULT;
3064
3065 /*
3066 * For UDP-style sockets, id specifies the association to query.
3067 * If the id field is set to the value '0' then the locally bound
3068 * addresses are returned without regard to any particular
3069 * association.
3070 */
3071 if (0 == id) {
3072 bp = &sctp_sk(sk)->ep->base.bind_addr;
3073 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3074 } else {
3075 asoc = sctp_id2assoc(sk, id);
3076 if (!asoc)
3077 return -EINVAL;
3078 bp = &asoc->base.bind_addr;
3079 addr_lock = &asoc->base.addr_lock;
3080 }
3081
3082 sctp_read_lock(addr_lock);
3083
3084 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3085 * addresses from the global local address list.
3086 */
3087 if (sctp_list_single_entry(&bp->address_list)) {
3088 addr = list_entry(bp->address_list.next,
3089 struct sctp_sockaddr_entry, list);
3090 if (sctp_is_any(&addr->a)) {
3091 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3092 list_for_each(pos, &sctp_local_addr_list) {
3093 addr = list_entry(pos,
3094 struct sctp_sockaddr_entry,
3095 list);
3096 if ((PF_INET == sk->sk_family) &&
3097 (AF_INET6 == addr->a.sa.sa_family))
3098 continue;
3099 cnt++;
3100 }
3101 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3102 flags);
3103 } else {
3104 cnt = 1;
3105 }
3106 goto done;
3107 }
3108
3109 list_for_each(pos, &bp->address_list) {
3110 cnt ++;
3111 }
3112
3113done:
3114 sctp_read_unlock(addr_lock);
3115 return cnt;
3116}
3117
3118/* Helper function that copies local addresses to user and returns the number
3119 * of addresses copied.
3120 */
3121static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, int max_addrs,
3122 void __user *to)
3123{
3124 struct list_head *pos;
3125 struct sctp_sockaddr_entry *addr;
3126 unsigned long flags;
3127 union sctp_addr temp;
3128 int cnt = 0;
3129 int addrlen;
3130
3131 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3132 list_for_each(pos, &sctp_local_addr_list) {
3133 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3134 if ((PF_INET == sk->sk_family) &&
3135 (AF_INET6 == addr->a.sa.sa_family))
3136 continue;
3137 memcpy(&temp, &addr->a, sizeof(temp));
3138 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3139 &temp);
3140 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3141 temp.v4.sin_port = htons(port);
3142 if (copy_to_user(to, &temp, addrlen)) {
3143 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3144 flags);
3145 return -EFAULT;
3146 }
3147 to += addrlen;
3148 cnt ++;
3149 if (cnt >= max_addrs) break;
3150 }
3151 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3152
3153 return cnt;
3154}
3155
3156static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3157 char __user *optval, int __user *optlen)
3158{
3159 struct sctp_bind_addr *bp;
3160 struct sctp_association *asoc;
3161 struct list_head *pos;
3162 int cnt = 0;
3163 struct sctp_getaddrs getaddrs;
3164 struct sctp_sockaddr_entry *addr;
3165 void __user *to;
3166 union sctp_addr temp;
3167 struct sctp_sock *sp = sctp_sk(sk);
3168 int addrlen;
3169 rwlock_t *addr_lock;
3170 int err = 0;
3171
3172 if (len != sizeof(struct sctp_getaddrs))
3173 return -EINVAL;
3174
3175 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3176 return -EFAULT;
3177
3178 if (getaddrs.addr_num <= 0) return -EINVAL;
3179 /*
3180 * For UDP-style sockets, id specifies the association to query.
3181 * If the id field is set to the value '0' then the locally bound
3182 * addresses are returned without regard to any particular
3183 * association.
3184 */
3185 if (0 == getaddrs.assoc_id) {
3186 bp = &sctp_sk(sk)->ep->base.bind_addr;
3187 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3188 } else {
3189 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3190 if (!asoc)
3191 return -EINVAL;
3192 bp = &asoc->base.bind_addr;
3193 addr_lock = &asoc->base.addr_lock;
3194 }
3195
3196 to = getaddrs.addrs;
3197
3198 sctp_read_lock(addr_lock);
3199
3200 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3201 * addresses from the global local address list.
3202 */
3203 if (sctp_list_single_entry(&bp->address_list)) {
3204 addr = list_entry(bp->address_list.next,
3205 struct sctp_sockaddr_entry, list);
3206 if (sctp_is_any(&addr->a)) {
3207 cnt = sctp_copy_laddrs_to_user(sk, bp->port,
3208 getaddrs.addr_num, to);
3209 if (cnt < 0) {
3210 err = cnt;
3211 goto unlock;
3212 }
3213 goto copy_getaddrs;
3214 }
3215 }
3216
3217 list_for_each(pos, &bp->address_list) {
3218 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3219 memcpy(&temp, &addr->a, sizeof(temp));
3220 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3221 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3222 temp.v4.sin_port = htons(temp.v4.sin_port);
3223 if (copy_to_user(to, &temp, addrlen)) {
3224 err = -EFAULT;
3225 goto unlock;
3226 }
3227 to += addrlen;
3228 cnt ++;
3229 if (cnt >= getaddrs.addr_num) break;
3230 }
3231
3232copy_getaddrs:
3233 getaddrs.addr_num = cnt;
3234 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3235 err = -EFAULT;
3236
3237unlock:
3238 sctp_read_unlock(addr_lock);
3239 return err;
3240}
3241
3242/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3243 *
3244 * Requests that the local SCTP stack use the enclosed peer address as
3245 * the association primary. The enclosed address must be one of the
3246 * association peer's addresses.
3247 */
3248static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
3249 char __user *optval, int __user *optlen)
3250{
3251 struct sctp_prim prim;
3252 struct sctp_association *asoc;
3253 struct sctp_sock *sp = sctp_sk(sk);
3254
3255 if (len != sizeof(struct sctp_prim))
3256 return -EINVAL;
3257
3258 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3259 return -EFAULT;
3260
3261 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
3262 if (!asoc)
3263 return -EINVAL;
3264
3265 if (!asoc->peer.primary_path)
3266 return -ENOTCONN;
3267
3268 asoc->peer.primary_path->ipaddr.v4.sin_port =
3269 htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
3270 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
3271 sizeof(union sctp_addr));
3272 asoc->peer.primary_path->ipaddr.v4.sin_port =
3273 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
3274
3275 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
3276 (union sctp_addr *)&prim.ssp_addr);
3277
3278 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
3279 return -EFAULT;
3280
3281 return 0;
3282}
3283
3284/*
3285 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
3286 *
3287 * Requests that the local endpoint set the specified Adaption Layer
3288 * Indication parameter for all future INIT and INIT-ACK exchanges.
3289 */
3290static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
3291 char __user *optval, int __user *optlen)
3292{
3293 __u32 val;
3294
3295 if (len < sizeof(__u32))
3296 return -EINVAL;
3297
3298 len = sizeof(__u32);
3299 val = sctp_sk(sk)->adaption_ind;
3300 if (put_user(len, optlen))
3301 return -EFAULT;
3302 if (copy_to_user(optval, &val, len))
3303 return -EFAULT;
3304 return 0;
3305}
3306
3307/*
3308 *
3309 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
3310 *
3311 * Applications that wish to use the sendto() system call may wish to
3312 * specify a default set of parameters that would normally be supplied
3313 * through the inclusion of ancillary data. This socket option allows
3314 * such an application to set the default sctp_sndrcvinfo structure.
3315
3316
3317 * The application that wishes to use this socket option simply passes
3318 * in to this call the sctp_sndrcvinfo structure defined in Section
3319 * 5.2.2) The input parameters accepted by this call include
3320 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
3321 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
3322 * to this call if the caller is using the UDP model.
3323 *
3324 * For getsockopt, it get the default sctp_sndrcvinfo structure.
3325 */
3326static int sctp_getsockopt_default_send_param(struct sock *sk,
3327 int len, char __user *optval,
3328 int __user *optlen)
3329{
3330 struct sctp_sndrcvinfo info;
3331 struct sctp_association *asoc;
3332 struct sctp_sock *sp = sctp_sk(sk);
3333
3334 if (len != sizeof(struct sctp_sndrcvinfo))
3335 return -EINVAL;
3336 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
3337 return -EFAULT;
3338
3339 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3340 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3341 return -EINVAL;
3342
3343 if (asoc) {
3344 info.sinfo_stream = asoc->default_stream;
3345 info.sinfo_flags = asoc->default_flags;
3346 info.sinfo_ppid = asoc->default_ppid;
3347 info.sinfo_context = asoc->default_context;
3348 info.sinfo_timetolive = asoc->default_timetolive;
3349 } else {
3350 info.sinfo_stream = sp->default_stream;
3351 info.sinfo_flags = sp->default_flags;
3352 info.sinfo_ppid = sp->default_ppid;
3353 info.sinfo_context = sp->default_context;
3354 info.sinfo_timetolive = sp->default_timetolive;
3355 }
3356
3357 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
3358 return -EFAULT;
3359
3360 return 0;
3361}
3362
3363/*
3364 *
3365 * 7.1.5 SCTP_NODELAY
3366 *
3367 * Turn on/off any Nagle-like algorithm. This means that packets are
3368 * generally sent as soon as possible and no unnecessary delays are
3369 * introduced, at the cost of more packets in the network. Expects an
3370 * integer boolean flag.
3371 */
3372
3373static int sctp_getsockopt_nodelay(struct sock *sk, int len,
3374 char __user *optval, int __user *optlen)
3375{
3376 int val;
3377
3378 if (len < sizeof(int))
3379 return -EINVAL;
3380
3381 len = sizeof(int);
3382 val = (sctp_sk(sk)->nodelay == 1);
3383 if (put_user(len, optlen))
3384 return -EFAULT;
3385 if (copy_to_user(optval, &val, len))
3386 return -EFAULT;
3387 return 0;
3388}
3389
3390/*
3391 *
3392 * 7.1.1 SCTP_RTOINFO
3393 *
3394 * The protocol parameters used to initialize and bound retransmission
3395 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3396 * and modify these parameters.
3397 * All parameters are time values, in milliseconds. A value of 0, when
3398 * modifying the parameters, indicates that the current value should not
3399 * be changed.
3400 *
3401 */
3402static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
3403 char __user *optval,
3404 int __user *optlen) {
3405 struct sctp_rtoinfo rtoinfo;
3406 struct sctp_association *asoc;
3407
3408 if (len != sizeof (struct sctp_rtoinfo))
3409 return -EINVAL;
3410
3411 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
3412 return -EFAULT;
3413
3414 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3415
3416 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3417 return -EINVAL;
3418
3419 /* Values corresponding to the specific association. */
3420 if (asoc) {
3421 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
3422 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
3423 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
3424 } else {
3425 /* Values corresponding to the endpoint. */
3426 struct sctp_sock *sp = sctp_sk(sk);
3427
3428 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
3429 rtoinfo.srto_max = sp->rtoinfo.srto_max;
3430 rtoinfo.srto_min = sp->rtoinfo.srto_min;
3431 }
3432
3433 if (put_user(len, optlen))
3434 return -EFAULT;
3435
3436 if (copy_to_user(optval, &rtoinfo, len))
3437 return -EFAULT;
3438
3439 return 0;
3440}
3441
3442/*
3443 *
3444 * 7.1.2 SCTP_ASSOCINFO
3445 *
3446 * This option is used to tune the the maximum retransmission attempts
3447 * of the association.
3448 * Returns an error if the new association retransmission value is
3449 * greater than the sum of the retransmission value of the peer.
3450 * See [SCTP] for more information.
3451 *
3452 */
3453static int sctp_getsockopt_associnfo(struct sock *sk, int len,
3454 char __user *optval,
3455 int __user *optlen)
3456{
3457
3458 struct sctp_assocparams assocparams;
3459 struct sctp_association *asoc;
3460 struct list_head *pos;
3461 int cnt = 0;
3462
3463 if (len != sizeof (struct sctp_assocparams))
3464 return -EINVAL;
3465
3466 if (copy_from_user(&assocparams, optval,
3467 sizeof (struct sctp_assocparams)))
3468 return -EFAULT;
3469
3470 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3471
3472 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3473 return -EINVAL;
3474
3475 /* Values correspoinding to the specific association */
3476 if (assocparams.sasoc_assoc_id != 0) {
3477 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
3478 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
3479 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
3480 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
3481 * 1000) +
3482 (asoc->cookie_life.tv_usec
3483 / 1000);
3484
3485 list_for_each(pos, &asoc->peer.transport_addr_list) {
3486 cnt ++;
3487 }
3488
3489 assocparams.sasoc_number_peer_destinations = cnt;
3490 } else {
3491 /* Values corresponding to the endpoint */
3492 struct sctp_sock *sp = sctp_sk(sk);
3493
3494 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
3495 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
3496 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
3497 assocparams.sasoc_cookie_life =
3498 sp->assocparams.sasoc_cookie_life;
3499 assocparams.sasoc_number_peer_destinations =
3500 sp->assocparams.
3501 sasoc_number_peer_destinations;
3502 }
3503
3504 if (put_user(len, optlen))
3505 return -EFAULT;
3506
3507 if (copy_to_user(optval, &assocparams, len))
3508 return -EFAULT;
3509
3510 return 0;
3511}
3512
3513/*
3514 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3515 *
3516 * This socket option is a boolean flag which turns on or off mapped V4
3517 * addresses. If this option is turned on and the socket is type
3518 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3519 * If this option is turned off, then no mapping will be done of V4
3520 * addresses and a user will receive both PF_INET6 and PF_INET type
3521 * addresses on the socket.
3522 */
3523static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
3524 char __user *optval, int __user *optlen)
3525{
3526 int val;
3527 struct sctp_sock *sp = sctp_sk(sk);
3528
3529 if (len < sizeof(int))
3530 return -EINVAL;
3531
3532 len = sizeof(int);
3533 val = sp->v4mapped;
3534 if (put_user(len, optlen))
3535 return -EFAULT;
3536 if (copy_to_user(optval, &val, len))
3537 return -EFAULT;
3538
3539 return 0;
3540}
3541
3542/*
3543 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
3544 *
3545 * This socket option specifies the maximum size to put in any outgoing
3546 * SCTP chunk. If a message is larger than this size it will be
3547 * fragmented by SCTP into the specified size. Note that the underlying
3548 * SCTP implementation may fragment into smaller sized chunks when the
3549 * PMTU of the underlying association is smaller than the value set by
3550 * the user.
3551 */
3552static int sctp_getsockopt_maxseg(struct sock *sk, int len,
3553 char __user *optval, int __user *optlen)
3554{
3555 int val;
3556
3557 if (len < sizeof(int))
3558 return -EINVAL;
3559
3560 len = sizeof(int);
3561
3562 val = sctp_sk(sk)->user_frag;
3563 if (put_user(len, optlen))
3564 return -EFAULT;
3565 if (copy_to_user(optval, &val, len))
3566 return -EFAULT;
3567
3568 return 0;
3569}
3570
3571SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
3572 char __user *optval, int __user *optlen)
3573{
3574 int retval = 0;
3575 int len;
3576
3577 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p, ...)\n", sk);
3578
3579 /* I can hardly begin to describe how wrong this is. This is
3580 * so broken as to be worse than useless. The API draft
3581 * REALLY is NOT helpful here... I am not convinced that the
3582 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
3583 * are at all well-founded.
3584 */
3585 if (level != SOL_SCTP) {
3586 struct sctp_af *af = sctp_sk(sk)->pf->af;
3587
3588 retval = af->getsockopt(sk, level, optname, optval, optlen);
3589 return retval;
3590 }
3591
3592 if (get_user(len, optlen))
3593 return -EFAULT;
3594
3595 sctp_lock_sock(sk);
3596
3597 switch (optname) {
3598 case SCTP_STATUS:
3599 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
3600 break;
3601 case SCTP_DISABLE_FRAGMENTS:
3602 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
3603 optlen);
3604 break;
3605 case SCTP_EVENTS:
3606 retval = sctp_getsockopt_events(sk, len, optval, optlen);
3607 break;
3608 case SCTP_AUTOCLOSE:
3609 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
3610 break;
3611 case SCTP_SOCKOPT_PEELOFF:
3612 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
3613 break;
3614 case SCTP_PEER_ADDR_PARAMS:
3615 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
3616 optlen);
3617 break;
3618 case SCTP_INITMSG:
3619 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
3620 break;
3621 case SCTP_GET_PEER_ADDRS_NUM:
3622 retval = sctp_getsockopt_peer_addrs_num(sk, len, optval,
3623 optlen);
3624 break;
3625 case SCTP_GET_LOCAL_ADDRS_NUM:
3626 retval = sctp_getsockopt_local_addrs_num(sk, len, optval,
3627 optlen);
3628 break;
3629 case SCTP_GET_PEER_ADDRS:
3630 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
3631 optlen);
3632 break;
3633 case SCTP_GET_LOCAL_ADDRS:
3634 retval = sctp_getsockopt_local_addrs(sk, len, optval,
3635 optlen);
3636 break;
3637 case SCTP_DEFAULT_SEND_PARAM:
3638 retval = sctp_getsockopt_default_send_param(sk, len,
3639 optval, optlen);
3640 break;
3641 case SCTP_PRIMARY_ADDR:
3642 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
3643 break;
3644 case SCTP_NODELAY:
3645 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
3646 break;
3647 case SCTP_RTOINFO:
3648 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
3649 break;
3650 case SCTP_ASSOCINFO:
3651 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
3652 break;
3653 case SCTP_I_WANT_MAPPED_V4_ADDR:
3654 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
3655 break;
3656 case SCTP_MAXSEG:
3657 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
3658 break;
3659 case SCTP_GET_PEER_ADDR_INFO:
3660 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
3661 optlen);
3662 break;
3663 case SCTP_ADAPTION_LAYER:
3664 retval = sctp_getsockopt_adaption_layer(sk, len, optval,
3665 optlen);
3666 break;
3667 default:
3668 retval = -ENOPROTOOPT;
3669 break;
3670 };
3671
3672 sctp_release_sock(sk);
3673 return retval;
3674}
3675
3676static void sctp_hash(struct sock *sk)
3677{
3678 /* STUB */
3679}
3680
3681static void sctp_unhash(struct sock *sk)
3682{
3683 /* STUB */
3684}
3685
3686/* Check if port is acceptable. Possibly find first available port.
3687 *
3688 * The port hash table (contained in the 'global' SCTP protocol storage
3689 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
3690 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
3691 * list (the list number is the port number hashed out, so as you
3692 * would expect from a hash function, all the ports in a given list have
3693 * such a number that hashes out to the same list number; you were
3694 * expecting that, right?); so each list has a set of ports, with a
3695 * link to the socket (struct sock) that uses it, the port number and
3696 * a fastreuse flag (FIXME: NPI ipg).
3697 */
3698static struct sctp_bind_bucket *sctp_bucket_create(
3699 struct sctp_bind_hashbucket *head, unsigned short snum);
3700
3701static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
3702{
3703 struct sctp_bind_hashbucket *head; /* hash list */
3704 struct sctp_bind_bucket *pp; /* hash list port iterator */
3705 unsigned short snum;
3706 int ret;
3707
3708 /* NOTE: Remember to put this back to net order. */
3709 addr->v4.sin_port = ntohs(addr->v4.sin_port);
3710 snum = addr->v4.sin_port;
3711
3712 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
3713 sctp_local_bh_disable();
3714
3715 if (snum == 0) {
3716 /* Search for an available port.
3717 *
3718 * 'sctp_port_rover' was the last port assigned, so
3719 * we start to search from 'sctp_port_rover +
3720 * 1'. What we do is first check if port 'rover' is
3721 * already in the hash table; if not, we use that; if
3722 * it is, we try next.
3723 */
3724 int low = sysctl_local_port_range[0];
3725 int high = sysctl_local_port_range[1];
3726 int remaining = (high - low) + 1;
3727 int rover;
3728 int index;
3729
3730 sctp_spin_lock(&sctp_port_alloc_lock);
3731 rover = sctp_port_rover;
3732 do {
3733 rover++;
3734 if ((rover < low) || (rover > high))
3735 rover = low;
3736 index = sctp_phashfn(rover);
3737 head = &sctp_port_hashtable[index];
3738 sctp_spin_lock(&head->lock);
3739 for (pp = head->chain; pp; pp = pp->next)
3740 if (pp->port == rover)
3741 goto next;
3742 break;
3743 next:
3744 sctp_spin_unlock(&head->lock);
3745 } while (--remaining > 0);
3746 sctp_port_rover = rover;
3747 sctp_spin_unlock(&sctp_port_alloc_lock);
3748
3749 /* Exhausted local port range during search? */
3750 ret = 1;
3751 if (remaining <= 0)
3752 goto fail;
3753
3754 /* OK, here is the one we will use. HEAD (the port
3755 * hash table list entry) is non-NULL and we hold it's
3756 * mutex.
3757 */
3758 snum = rover;
3759 } else {
3760 /* We are given an specific port number; we verify
3761 * that it is not being used. If it is used, we will
3762 * exahust the search in the hash list corresponding
3763 * to the port number (snum) - we detect that with the
3764 * port iterator, pp being NULL.
3765 */
3766 head = &sctp_port_hashtable[sctp_phashfn(snum)];
3767 sctp_spin_lock(&head->lock);
3768 for (pp = head->chain; pp; pp = pp->next) {
3769 if (pp->port == snum)
3770 goto pp_found;
3771 }
3772 }
3773 pp = NULL;
3774 goto pp_not_found;
3775pp_found:
3776 if (!hlist_empty(&pp->owner)) {
3777 /* We had a port hash table hit - there is an
3778 * available port (pp != NULL) and it is being
3779 * used by other socket (pp->owner not empty); that other
3780 * socket is going to be sk2.
3781 */
3782 int reuse = sk->sk_reuse;
3783 struct sock *sk2;
3784 struct hlist_node *node;
3785
3786 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
3787 if (pp->fastreuse && sk->sk_reuse)
3788 goto success;
3789
3790 /* Run through the list of sockets bound to the port
3791 * (pp->port) [via the pointers bind_next and
3792 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
3793 * we get the endpoint they describe and run through
3794 * the endpoint's list of IP (v4 or v6) addresses,
3795 * comparing each of the addresses with the address of
3796 * the socket sk. If we find a match, then that means
3797 * that this port/socket (sk) combination are already
3798 * in an endpoint.
3799 */
3800 sk_for_each_bound(sk2, node, &pp->owner) {
3801 struct sctp_endpoint *ep2;
3802 ep2 = sctp_sk(sk2)->ep;
3803
3804 if (reuse && sk2->sk_reuse)
3805 continue;
3806
3807 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
3808 sctp_sk(sk))) {
3809 ret = (long)sk2;
3810 goto fail_unlock;
3811 }
3812 }
3813 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
3814 }
3815pp_not_found:
3816 /* If there was a hash table miss, create a new port. */
3817 ret = 1;
3818 if (!pp && !(pp = sctp_bucket_create(head, snum)))
3819 goto fail_unlock;
3820
3821 /* In either case (hit or miss), make sure fastreuse is 1 only
3822 * if sk->sk_reuse is too (that is, if the caller requested
3823 * SO_REUSEADDR on this socket -sk-).
3824 */
3825 if (hlist_empty(&pp->owner))
3826 pp->fastreuse = sk->sk_reuse ? 1 : 0;
3827 else if (pp->fastreuse && !sk->sk_reuse)
3828 pp->fastreuse = 0;
3829
3830 /* We are set, so fill up all the data in the hash table
3831 * entry, tie the socket list information with the rest of the
3832 * sockets FIXME: Blurry, NPI (ipg).
3833 */
3834success:
3835 inet_sk(sk)->num = snum;
3836 if (!sctp_sk(sk)->bind_hash) {
3837 sk_add_bind_node(sk, &pp->owner);
3838 sctp_sk(sk)->bind_hash = pp;
3839 }
3840 ret = 0;
3841
3842fail_unlock:
3843 sctp_spin_unlock(&head->lock);
3844
3845fail:
3846 sctp_local_bh_enable();
3847 addr->v4.sin_port = htons(addr->v4.sin_port);
3848 return ret;
3849}
3850
3851/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
3852 * port is requested.
3853 */
3854static int sctp_get_port(struct sock *sk, unsigned short snum)
3855{
3856 long ret;
3857 union sctp_addr addr;
3858 struct sctp_af *af = sctp_sk(sk)->pf->af;
3859
3860 /* Set up a dummy address struct from the sk. */
3861 af->from_sk(&addr, sk);
3862 addr.v4.sin_port = htons(snum);
3863
3864 /* Note: sk->sk_num gets filled in if ephemeral port request. */
3865 ret = sctp_get_port_local(sk, &addr);
3866
3867 return (ret ? 1 : 0);
3868}
3869
3870/*
3871 * 3.1.3 listen() - UDP Style Syntax
3872 *
3873 * By default, new associations are not accepted for UDP style sockets.
3874 * An application uses listen() to mark a socket as being able to
3875 * accept new associations.
3876 */
3877SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
3878{
3879 struct sctp_sock *sp = sctp_sk(sk);
3880 struct sctp_endpoint *ep = sp->ep;
3881
3882 /* Only UDP style sockets that are not peeled off are allowed to
3883 * listen().
3884 */
3885 if (!sctp_style(sk, UDP))
3886 return -EINVAL;
3887
3888 /* If backlog is zero, disable listening. */
3889 if (!backlog) {
3890 if (sctp_sstate(sk, CLOSED))
3891 return 0;
3892
3893 sctp_unhash_endpoint(ep);
3894 sk->sk_state = SCTP_SS_CLOSED;
3895 }
3896
3897 /* Return if we are already listening. */
3898 if (sctp_sstate(sk, LISTENING))
3899 return 0;
3900
3901 /*
3902 * If a bind() or sctp_bindx() is not called prior to a listen()
3903 * call that allows new associations to be accepted, the system
3904 * picks an ephemeral port and will choose an address set equivalent
3905 * to binding with a wildcard address.
3906 *
3907 * This is not currently spelled out in the SCTP sockets
3908 * extensions draft, but follows the practice as seen in TCP
3909 * sockets.
3910 */
3911 if (!ep->base.bind_addr.port) {
3912 if (sctp_autobind(sk))
3913 return -EAGAIN;
3914 }
3915 sk->sk_state = SCTP_SS_LISTENING;
3916 sctp_hash_endpoint(ep);
3917 return 0;
3918}
3919
3920/*
3921 * 4.1.3 listen() - TCP Style Syntax
3922 *
3923 * Applications uses listen() to ready the SCTP endpoint for accepting
3924 * inbound associations.
3925 */
3926SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
3927{
3928 struct sctp_sock *sp = sctp_sk(sk);
3929 struct sctp_endpoint *ep = sp->ep;
3930
3931 /* If backlog is zero, disable listening. */
3932 if (!backlog) {
3933 if (sctp_sstate(sk, CLOSED))
3934 return 0;
3935
3936 sctp_unhash_endpoint(ep);
3937 sk->sk_state = SCTP_SS_CLOSED;
3938 }
3939
3940 if (sctp_sstate(sk, LISTENING))
3941 return 0;
3942
3943 /*
3944 * If a bind() or sctp_bindx() is not called prior to a listen()
3945 * call that allows new associations to be accepted, the system
3946 * picks an ephemeral port and will choose an address set equivalent
3947 * to binding with a wildcard address.
3948 *
3949 * This is not currently spelled out in the SCTP sockets
3950 * extensions draft, but follows the practice as seen in TCP
3951 * sockets.
3952 */
3953 if (!ep->base.bind_addr.port) {
3954 if (sctp_autobind(sk))
3955 return -EAGAIN;
3956 }
3957 sk->sk_state = SCTP_SS_LISTENING;
3958 sk->sk_max_ack_backlog = backlog;
3959 sctp_hash_endpoint(ep);
3960 return 0;
3961}
3962
3963/*
3964 * Move a socket to LISTENING state.
3965 */
3966int sctp_inet_listen(struct socket *sock, int backlog)
3967{
3968 struct sock *sk = sock->sk;
3969 struct crypto_tfm *tfm=NULL;
3970 int err = -EINVAL;
3971
3972 if (unlikely(backlog < 0))
3973 goto out;
3974
3975 sctp_lock_sock(sk);
3976
3977 if (sock->state != SS_UNCONNECTED)
3978 goto out;
3979
3980 /* Allocate HMAC for generating cookie. */
3981 if (sctp_hmac_alg) {
3982 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
3983 if (!tfm) {
3984 err = -ENOSYS;
3985 goto out;
3986 }
3987 }
3988
3989 switch (sock->type) {
3990 case SOCK_SEQPACKET:
3991 err = sctp_seqpacket_listen(sk, backlog);
3992 break;
3993 case SOCK_STREAM:
3994 err = sctp_stream_listen(sk, backlog);
3995 break;
3996 default:
3997 break;
3998 };
3999 if (err)
4000 goto cleanup;
4001
4002 /* Store away the transform reference. */
4003 sctp_sk(sk)->hmac = tfm;
4004out:
4005 sctp_release_sock(sk);
4006 return err;
4007cleanup:
4008 if (tfm)
4009 sctp_crypto_free_tfm(tfm);
4010 goto out;
4011}
4012
4013/*
4014 * This function is done by modeling the current datagram_poll() and the
4015 * tcp_poll(). Note that, based on these implementations, we don't
4016 * lock the socket in this function, even though it seems that,
4017 * ideally, locking or some other mechanisms can be used to ensure
4018 * the integrity of the counters (sndbuf and wmem_queued) used
4019 * in this place. We assume that we don't need locks either until proven
4020 * otherwise.
4021 *
4022 * Another thing to note is that we include the Async I/O support
4023 * here, again, by modeling the current TCP/UDP code. We don't have
4024 * a good way to test with it yet.
4025 */
4026unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4027{
4028 struct sock *sk = sock->sk;
4029 struct sctp_sock *sp = sctp_sk(sk);
4030 unsigned int mask;
4031
4032 poll_wait(file, sk->sk_sleep, wait);
4033
4034 /* A TCP-style listening socket becomes readable when the accept queue
4035 * is not empty.
4036 */
4037 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4038 return (!list_empty(&sp->ep->asocs)) ?
4039 (POLLIN | POLLRDNORM) : 0;
4040
4041 mask = 0;
4042
4043 /* Is there any exceptional events? */
4044 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4045 mask |= POLLERR;
4046 if (sk->sk_shutdown == SHUTDOWN_MASK)
4047 mask |= POLLHUP;
4048
4049 /* Is it readable? Reconsider this code with TCP-style support. */
4050 if (!skb_queue_empty(&sk->sk_receive_queue) ||
4051 (sk->sk_shutdown & RCV_SHUTDOWN))
4052 mask |= POLLIN | POLLRDNORM;
4053
4054 /* The association is either gone or not ready. */
4055 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4056 return mask;
4057
4058 /* Is it writable? */
4059 if (sctp_writeable(sk)) {
4060 mask |= POLLOUT | POLLWRNORM;
4061 } else {
4062 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4063 /*
4064 * Since the socket is not locked, the buffer
4065 * might be made available after the writeable check and
4066 * before the bit is set. This could cause a lost I/O
4067 * signal. tcp_poll() has a race breaker for this race
4068 * condition. Based on their implementation, we put
4069 * in the following code to cover it as well.
4070 */
4071 if (sctp_writeable(sk))
4072 mask |= POLLOUT | POLLWRNORM;
4073 }
4074 return mask;
4075}
4076
4077/********************************************************************
4078 * 2nd Level Abstractions
4079 ********************************************************************/
4080
4081static struct sctp_bind_bucket *sctp_bucket_create(
4082 struct sctp_bind_hashbucket *head, unsigned short snum)
4083{
4084 struct sctp_bind_bucket *pp;
4085
4086 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4087 SCTP_DBG_OBJCNT_INC(bind_bucket);
4088 if (pp) {
4089 pp->port = snum;
4090 pp->fastreuse = 0;
4091 INIT_HLIST_HEAD(&pp->owner);
4092 if ((pp->next = head->chain) != NULL)
4093 pp->next->pprev = &pp->next;
4094 head->chain = pp;
4095 pp->pprev = &head->chain;
4096 }
4097 return pp;
4098}
4099
4100/* Caller must hold hashbucket lock for this tb with local BH disabled */
4101static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4102{
4103 if (hlist_empty(&pp->owner)) {
4104 if (pp->next)
4105 pp->next->pprev = pp->pprev;
4106 *(pp->pprev) = pp->next;
4107 kmem_cache_free(sctp_bucket_cachep, pp);
4108 SCTP_DBG_OBJCNT_DEC(bind_bucket);
4109 }
4110}
4111
4112/* Release this socket's reference to a local port. */
4113static inline void __sctp_put_port(struct sock *sk)
4114{
4115 struct sctp_bind_hashbucket *head =
4116 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4117 struct sctp_bind_bucket *pp;
4118
4119 sctp_spin_lock(&head->lock);
4120 pp = sctp_sk(sk)->bind_hash;
4121 __sk_del_bind_node(sk);
4122 sctp_sk(sk)->bind_hash = NULL;
4123 inet_sk(sk)->num = 0;
4124 sctp_bucket_destroy(pp);
4125 sctp_spin_unlock(&head->lock);
4126}
4127
4128void sctp_put_port(struct sock *sk)
4129{
4130 sctp_local_bh_disable();
4131 __sctp_put_port(sk);
4132 sctp_local_bh_enable();
4133}
4134
4135/*
4136 * The system picks an ephemeral port and choose an address set equivalent
4137 * to binding with a wildcard address.
4138 * One of those addresses will be the primary address for the association.
4139 * This automatically enables the multihoming capability of SCTP.
4140 */
4141static int sctp_autobind(struct sock *sk)
4142{
4143 union sctp_addr autoaddr;
4144 struct sctp_af *af;
4145 unsigned short port;
4146
4147 /* Initialize a local sockaddr structure to INADDR_ANY. */
4148 af = sctp_sk(sk)->pf->af;
4149
4150 port = htons(inet_sk(sk)->num);
4151 af->inaddr_any(&autoaddr, port);
4152
4153 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
4154}
4155
4156/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
4157 *
4158 * From RFC 2292
4159 * 4.2 The cmsghdr Structure *
4160 *
4161 * When ancillary data is sent or received, any number of ancillary data
4162 * objects can be specified by the msg_control and msg_controllen members of
4163 * the msghdr structure, because each object is preceded by
4164 * a cmsghdr structure defining the object's length (the cmsg_len member).
4165 * Historically Berkeley-derived implementations have passed only one object
4166 * at a time, but this API allows multiple objects to be
4167 * passed in a single call to sendmsg() or recvmsg(). The following example
4168 * shows two ancillary data objects in a control buffer.
4169 *
4170 * |<--------------------------- msg_controllen -------------------------->|
4171 * | |
4172 *
4173 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
4174 *
4175 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
4176 * | | |
4177 *
4178 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
4179 *
4180 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
4181 * | | | | |
4182 *
4183 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4184 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
4185 *
4186 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
4187 *
4188 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4189 * ^
4190 * |
4191 *
4192 * msg_control
4193 * points here
4194 */
4195SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
4196 sctp_cmsgs_t *cmsgs)
4197{
4198 struct cmsghdr *cmsg;
4199
4200 for (cmsg = CMSG_FIRSTHDR(msg);
4201 cmsg != NULL;
4202 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
4203 if (!CMSG_OK(msg, cmsg))
4204 return -EINVAL;
4205
4206 /* Should we parse this header or ignore? */
4207 if (cmsg->cmsg_level != IPPROTO_SCTP)
4208 continue;
4209
4210 /* Strictly check lengths following example in SCM code. */
4211 switch (cmsg->cmsg_type) {
4212 case SCTP_INIT:
4213 /* SCTP Socket API Extension
4214 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
4215 *
4216 * This cmsghdr structure provides information for
4217 * initializing new SCTP associations with sendmsg().
4218 * The SCTP_INITMSG socket option uses this same data
4219 * structure. This structure is not used for
4220 * recvmsg().
4221 *
4222 * cmsg_level cmsg_type cmsg_data[]
4223 * ------------ ------------ ----------------------
4224 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
4225 */
4226 if (cmsg->cmsg_len !=
4227 CMSG_LEN(sizeof(struct sctp_initmsg)))
4228 return -EINVAL;
4229 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
4230 break;
4231
4232 case SCTP_SNDRCV:
4233 /* SCTP Socket API Extension
4234 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
4235 *
4236 * This cmsghdr structure specifies SCTP options for
4237 * sendmsg() and describes SCTP header information
4238 * about a received message through recvmsg().
4239 *
4240 * cmsg_level cmsg_type cmsg_data[]
4241 * ------------ ------------ ----------------------
4242 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
4243 */
4244 if (cmsg->cmsg_len !=
4245 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
4246 return -EINVAL;
4247
4248 cmsgs->info =
4249 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
4250
4251 /* Minimally, validate the sinfo_flags. */
4252 if (cmsgs->info->sinfo_flags &
4253 ~(MSG_UNORDERED | MSG_ADDR_OVER |
4254 MSG_ABORT | MSG_EOF))
4255 return -EINVAL;
4256 break;
4257
4258 default:
4259 return -EINVAL;
4260 };
4261 }
4262 return 0;
4263}
4264
4265/*
4266 * Wait for a packet..
4267 * Note: This function is the same function as in core/datagram.c
4268 * with a few modifications to make lksctp work.
4269 */
4270static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
4271{
4272 int error;
4273 DEFINE_WAIT(wait);
4274
4275 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4276
4277 /* Socket errors? */
4278 error = sock_error(sk);
4279 if (error)
4280 goto out;
4281
4282 if (!skb_queue_empty(&sk->sk_receive_queue))
4283 goto ready;
4284
4285 /* Socket shut down? */
4286 if (sk->sk_shutdown & RCV_SHUTDOWN)
4287 goto out;
4288
4289 /* Sequenced packets can come disconnected. If so we report the
4290 * problem.
4291 */
4292 error = -ENOTCONN;
4293
4294 /* Is there a good reason to think that we may receive some data? */
4295 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
4296 goto out;
4297
4298 /* Handle signals. */
4299 if (signal_pending(current))
4300 goto interrupted;
4301
4302 /* Let another process have a go. Since we are going to sleep
4303 * anyway. Note: This may cause odd behaviors if the message
4304 * does not fit in the user's buffer, but this seems to be the
4305 * only way to honor MSG_DONTWAIT realistically.
4306 */
4307 sctp_release_sock(sk);
4308 *timeo_p = schedule_timeout(*timeo_p);
4309 sctp_lock_sock(sk);
4310
4311ready:
4312 finish_wait(sk->sk_sleep, &wait);
4313 return 0;
4314
4315interrupted:
4316 error = sock_intr_errno(*timeo_p);
4317
4318out:
4319 finish_wait(sk->sk_sleep, &wait);
4320 *err = error;
4321 return error;
4322}
4323
4324/* Receive a datagram.
4325 * Note: This is pretty much the same routine as in core/datagram.c
4326 * with a few changes to make lksctp work.
4327 */
4328static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
4329 int noblock, int *err)
4330{
4331 int error;
4332 struct sk_buff *skb;
4333 long timeo;
4334
4335 /* Caller is allowed not to check sk->sk_err before calling. */
4336 error = sock_error(sk);
4337 if (error)
4338 goto no_packet;
4339
4340 timeo = sock_rcvtimeo(sk, noblock);
4341
4342 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
4343 timeo, MAX_SCHEDULE_TIMEOUT);
4344
4345 do {
4346 /* Again only user level code calls this function,
4347 * so nothing interrupt level
4348 * will suddenly eat the receive_queue.
4349 *
4350 * Look at current nfs client by the way...
4351 * However, this function was corrent in any case. 8)
4352 */
4353 if (flags & MSG_PEEK) {
4354 unsigned long cpu_flags;
4355
4356 sctp_spin_lock_irqsave(&sk->sk_receive_queue.lock,
4357 cpu_flags);
4358 skb = skb_peek(&sk->sk_receive_queue);
4359 if (skb)
4360 atomic_inc(&skb->users);
4361 sctp_spin_unlock_irqrestore(&sk->sk_receive_queue.lock,
4362 cpu_flags);
4363 } else {
4364 skb = skb_dequeue(&sk->sk_receive_queue);
4365 }
4366
4367 if (skb)
4368 return skb;
4369
4370 if (sk->sk_shutdown & RCV_SHUTDOWN)
4371 break;
4372
4373 /* User doesn't want to wait. */
4374 error = -EAGAIN;
4375 if (!timeo)
4376 goto no_packet;
4377 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
4378
4379 return NULL;
4380
4381no_packet:
4382 *err = error;
4383 return NULL;
4384}
4385
4386/* If sndbuf has changed, wake up per association sndbuf waiters. */
4387static void __sctp_write_space(struct sctp_association *asoc)
4388{
4389 struct sock *sk = asoc->base.sk;
4390 struct socket *sock = sk->sk_socket;
4391
4392 if ((sctp_wspace(asoc) > 0) && sock) {
4393 if (waitqueue_active(&asoc->wait))
4394 wake_up_interruptible(&asoc->wait);
4395
4396 if (sctp_writeable(sk)) {
4397 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
4398 wake_up_interruptible(sk->sk_sleep);
4399
4400 /* Note that we try to include the Async I/O support
4401 * here by modeling from the current TCP/UDP code.
4402 * We have not tested with it yet.
4403 */
4404 if (sock->fasync_list &&
4405 !(sk->sk_shutdown & SEND_SHUTDOWN))
4406 sock_wake_async(sock, 2, POLL_OUT);
4407 }
4408 }
4409}
4410
4411/* Do accounting for the sndbuf space.
4412 * Decrement the used sndbuf space of the corresponding association by the
4413 * data size which was just transmitted(freed).
4414 */
4415static void sctp_wfree(struct sk_buff *skb)
4416{
4417 struct sctp_association *asoc;
4418 struct sctp_chunk *chunk;
4419 struct sock *sk;
4420
4421 /* Get the saved chunk pointer. */
4422 chunk = *((struct sctp_chunk **)(skb->cb));
4423 asoc = chunk->asoc;
4424 sk = asoc->base.sk;
4425 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk);
4426 sk->sk_wmem_queued -= SCTP_DATA_SNDSIZE(chunk);
4427 __sctp_write_space(asoc);
4428
4429 sctp_association_put(asoc);
4430}
4431
4432/* Helper function to wait for space in the sndbuf. */
4433static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
4434 size_t msg_len)
4435{
4436 struct sock *sk = asoc->base.sk;
4437 int err = 0;
4438 long current_timeo = *timeo_p;
4439 DEFINE_WAIT(wait);
4440
4441 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
4442 asoc, (long)(*timeo_p), msg_len);
4443
4444 /* Increment the association's refcnt. */
4445 sctp_association_hold(asoc);
4446
4447 /* Wait on the association specific sndbuf space. */
4448 for (;;) {
4449 prepare_to_wait_exclusive(&asoc->wait, &wait,
4450 TASK_INTERRUPTIBLE);
4451 if (!*timeo_p)
4452 goto do_nonblock;
4453 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4454 asoc->base.dead)
4455 goto do_error;
4456 if (signal_pending(current))
4457 goto do_interrupted;
4458 if (msg_len <= sctp_wspace(asoc))
4459 break;
4460
4461 /* Let another process have a go. Since we are going
4462 * to sleep anyway.
4463 */
4464 sctp_release_sock(sk);
4465 current_timeo = schedule_timeout(current_timeo);
4466 sctp_lock_sock(sk);
4467
4468 *timeo_p = current_timeo;
4469 }
4470
4471out:
4472 finish_wait(&asoc->wait, &wait);
4473
4474 /* Release the association's refcnt. */
4475 sctp_association_put(asoc);
4476
4477 return err;
4478
4479do_error:
4480 err = -EPIPE;
4481 goto out;
4482
4483do_interrupted:
4484 err = sock_intr_errno(*timeo_p);
4485 goto out;
4486
4487do_nonblock:
4488 err = -EAGAIN;
4489 goto out;
4490}
4491
4492/* If socket sndbuf has changed, wake up all per association waiters. */
4493void sctp_write_space(struct sock *sk)
4494{
4495 struct sctp_association *asoc;
4496 struct list_head *pos;
4497
4498 /* Wake up the tasks in each wait queue. */
4499 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
4500 asoc = list_entry(pos, struct sctp_association, asocs);
4501 __sctp_write_space(asoc);
4502 }
4503}
4504
4505/* Is there any sndbuf space available on the socket?
4506 *
4507 * Note that wmem_queued is the sum of the send buffers on all of the
4508 * associations on the same socket. For a UDP-style socket with
4509 * multiple associations, it is possible for it to be "unwriteable"
4510 * prematurely. I assume that this is acceptable because
4511 * a premature "unwriteable" is better than an accidental "writeable" which
4512 * would cause an unwanted block under certain circumstances. For the 1-1
4513 * UDP-style sockets or TCP-style sockets, this code should work.
4514 * - Daisy
4515 */
4516static int sctp_writeable(struct sock *sk)
4517{
4518 int amt = 0;
4519
4520 amt = sk->sk_sndbuf - sk->sk_wmem_queued;
4521 if (amt < 0)
4522 amt = 0;
4523 return amt;
4524}
4525
4526/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
4527 * returns immediately with EINPROGRESS.
4528 */
4529static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
4530{
4531 struct sock *sk = asoc->base.sk;
4532 int err = 0;
4533 long current_timeo = *timeo_p;
4534 DEFINE_WAIT(wait);
4535
4536 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
4537 (long)(*timeo_p));
4538
4539 /* Increment the association's refcnt. */
4540 sctp_association_hold(asoc);
4541
4542 for (;;) {
4543 prepare_to_wait_exclusive(&asoc->wait, &wait,
4544 TASK_INTERRUPTIBLE);
4545 if (!*timeo_p)
4546 goto do_nonblock;
4547 if (sk->sk_shutdown & RCV_SHUTDOWN)
4548 break;
4549 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4550 asoc->base.dead)
4551 goto do_error;
4552 if (signal_pending(current))
4553 goto do_interrupted;
4554
4555 if (sctp_state(asoc, ESTABLISHED))
4556 break;
4557
4558 /* Let another process have a go. Since we are going
4559 * to sleep anyway.
4560 */
4561 sctp_release_sock(sk);
4562 current_timeo = schedule_timeout(current_timeo);
4563 sctp_lock_sock(sk);
4564
4565 *timeo_p = current_timeo;
4566 }
4567
4568out:
4569 finish_wait(&asoc->wait, &wait);
4570
4571 /* Release the association's refcnt. */
4572 sctp_association_put(asoc);
4573
4574 return err;
4575
4576do_error:
4577 if (asoc->counters[SCTP_COUNTER_INIT_ERROR] + 1 >=
4578 asoc->max_init_attempts)
4579 err = -ETIMEDOUT;
4580 else
4581 err = -ECONNREFUSED;
4582 goto out;
4583
4584do_interrupted:
4585 err = sock_intr_errno(*timeo_p);
4586 goto out;
4587
4588do_nonblock:
4589 err = -EINPROGRESS;
4590 goto out;
4591}
4592
4593static int sctp_wait_for_accept(struct sock *sk, long timeo)
4594{
4595 struct sctp_endpoint *ep;
4596 int err = 0;
4597 DEFINE_WAIT(wait);
4598
4599 ep = sctp_sk(sk)->ep;
4600
4601
4602 for (;;) {
4603 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
4604 TASK_INTERRUPTIBLE);
4605
4606 if (list_empty(&ep->asocs)) {
4607 sctp_release_sock(sk);
4608 timeo = schedule_timeout(timeo);
4609 sctp_lock_sock(sk);
4610 }
4611
4612 err = -EINVAL;
4613 if (!sctp_sstate(sk, LISTENING))
4614 break;
4615
4616 err = 0;
4617 if (!list_empty(&ep->asocs))
4618 break;
4619
4620 err = sock_intr_errno(timeo);
4621 if (signal_pending(current))
4622 break;
4623
4624 err = -EAGAIN;
4625 if (!timeo)
4626 break;
4627 }
4628
4629 finish_wait(sk->sk_sleep, &wait);
4630
4631 return err;
4632}
4633
4634void sctp_wait_for_close(struct sock *sk, long timeout)
4635{
4636 DEFINE_WAIT(wait);
4637
4638 do {
4639 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4640 if (list_empty(&sctp_sk(sk)->ep->asocs))
4641 break;
4642 sctp_release_sock(sk);
4643 timeout = schedule_timeout(timeout);
4644 sctp_lock_sock(sk);
4645 } while (!signal_pending(current) && timeout);
4646
4647 finish_wait(sk->sk_sleep, &wait);
4648}
4649
4650/* Populate the fields of the newsk from the oldsk and migrate the assoc
4651 * and its messages to the newsk.
4652 */
4653static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
4654 struct sctp_association *assoc,
4655 sctp_socket_type_t type)
4656{
4657 struct sctp_sock *oldsp = sctp_sk(oldsk);
4658 struct sctp_sock *newsp = sctp_sk(newsk);
4659 struct sctp_bind_bucket *pp; /* hash list port iterator */
4660 struct sctp_endpoint *newep = newsp->ep;
4661 struct sk_buff *skb, *tmp;
4662 struct sctp_ulpevent *event;
4663
4664 /* Migrate socket buffer sizes and all the socket level options to the
4665 * new socket.
4666 */
4667 newsk->sk_sndbuf = oldsk->sk_sndbuf;
4668 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
4669 /* Brute force copy old sctp opt. */
4670 inet_sk_copy_descendant(newsk, oldsk);
4671
4672 /* Restore the ep value that was overwritten with the above structure
4673 * copy.
4674 */
4675 newsp->ep = newep;
4676 newsp->hmac = NULL;
4677
4678 /* Hook this new socket in to the bind_hash list. */
4679 pp = sctp_sk(oldsk)->bind_hash;
4680 sk_add_bind_node(newsk, &pp->owner);
4681 sctp_sk(newsk)->bind_hash = pp;
4682 inet_sk(newsk)->num = inet_sk(oldsk)->num;
4683
4684 /* Move any messages in the old socket's receive queue that are for the
4685 * peeled off association to the new socket's receive queue.
4686 */
4687 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
4688 event = sctp_skb2event(skb);
4689 if (event->asoc == assoc) {
4690 __skb_unlink(skb, skb->list);
4691 __skb_queue_tail(&newsk->sk_receive_queue, skb);
4692 }
4693 }
4694
4695 /* Clean up any messages pending delivery due to partial
4696 * delivery. Three cases:
4697 * 1) No partial deliver; no work.
4698 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
4699 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
4700 */
4701 skb_queue_head_init(&newsp->pd_lobby);
4702 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
4703
4704 if (sctp_sk(oldsk)->pd_mode) {
4705 struct sk_buff_head *queue;
4706
4707 /* Decide which queue to move pd_lobby skbs to. */
4708 if (assoc->ulpq.pd_mode) {
4709 queue = &newsp->pd_lobby;
4710 } else
4711 queue = &newsk->sk_receive_queue;
4712
4713 /* Walk through the pd_lobby, looking for skbs that
4714 * need moved to the new socket.
4715 */
4716 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
4717 event = sctp_skb2event(skb);
4718 if (event->asoc == assoc) {
4719 __skb_unlink(skb, skb->list);
4720 __skb_queue_tail(queue, skb);
4721 }
4722 }
4723
4724 /* Clear up any skbs waiting for the partial
4725 * delivery to finish.
4726 */
4727 if (assoc->ulpq.pd_mode)
4728 sctp_clear_pd(oldsk);
4729
4730 }
4731
4732 /* Set the type of socket to indicate that it is peeled off from the
4733 * original UDP-style socket or created with the accept() call on a
4734 * TCP-style socket..
4735 */
4736 newsp->type = type;
4737
4738 /* Migrate the association to the new socket. */
4739 sctp_assoc_migrate(assoc, newsk);
4740
4741 /* If the association on the newsk is already closed before accept()
4742 * is called, set RCV_SHUTDOWN flag.
4743 */
4744 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
4745 newsk->sk_shutdown |= RCV_SHUTDOWN;
4746
4747 newsk->sk_state = SCTP_SS_ESTABLISHED;
4748}
4749
4750/* This proto struct describes the ULP interface for SCTP. */
4751struct proto sctp_prot = {
4752 .name = "SCTP",
4753 .owner = THIS_MODULE,
4754 .close = sctp_close,
4755 .connect = sctp_connect,
4756 .disconnect = sctp_disconnect,
4757 .accept = sctp_accept,
4758 .ioctl = sctp_ioctl,
4759 .init = sctp_init_sock,
4760 .destroy = sctp_destroy_sock,
4761 .shutdown = sctp_shutdown,
4762 .setsockopt = sctp_setsockopt,
4763 .getsockopt = sctp_getsockopt,
4764 .sendmsg = sctp_sendmsg,
4765 .recvmsg = sctp_recvmsg,
4766 .bind = sctp_bind,
4767 .backlog_rcv = sctp_backlog_rcv,
4768 .hash = sctp_hash,
4769 .unhash = sctp_unhash,
4770 .get_port = sctp_get_port,
4771 .obj_size = sizeof(struct sctp_sock),
4772};
4773
4774#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4775struct proto sctpv6_prot = {
4776 .name = "SCTPv6",
4777 .owner = THIS_MODULE,
4778 .close = sctp_close,
4779 .connect = sctp_connect,
4780 .disconnect = sctp_disconnect,
4781 .accept = sctp_accept,
4782 .ioctl = sctp_ioctl,
4783 .init = sctp_init_sock,
4784 .destroy = sctp_destroy_sock,
4785 .shutdown = sctp_shutdown,
4786 .setsockopt = sctp_setsockopt,
4787 .getsockopt = sctp_getsockopt,
4788 .sendmsg = sctp_sendmsg,
4789 .recvmsg = sctp_recvmsg,
4790 .bind = sctp_bind,
4791 .backlog_rcv = sctp_backlog_rcv,
4792 .hash = sctp_hash,
4793 .unhash = sctp_unhash,
4794 .get_port = sctp_get_port,
4795 .obj_size = sizeof(struct sctp6_sock),
4796};
4797#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */