diff options
Diffstat (limited to 'net/sched')
-rw-r--r-- | net/sched/sch_red.c | 321 |
1 files changed, 74 insertions, 247 deletions
diff --git a/net/sched/sch_red.c b/net/sched/sch_red.c index 7845d045eec4..0dabcc9091be 100644 --- a/net/sched/sch_red.c +++ b/net/sched/sch_red.c | |||
@@ -41,44 +41,10 @@ | |||
41 | #include <net/pkt_sched.h> | 41 | #include <net/pkt_sched.h> |
42 | #include <net/inet_ecn.h> | 42 | #include <net/inet_ecn.h> |
43 | #include <net/dsfield.h> | 43 | #include <net/dsfield.h> |
44 | #include <net/red.h> | ||
44 | 45 | ||
45 | 46 | ||
46 | /* Random Early Detection (RED) algorithm. | 47 | /* Parameters, settable by user: |
47 | ======================================= | ||
48 | |||
49 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | ||
50 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | ||
51 | |||
52 | This file codes a "divisionless" version of RED algorithm | ||
53 | as written down in Fig.17 of the paper. | ||
54 | |||
55 | Short description. | ||
56 | ------------------ | ||
57 | |||
58 | When a new packet arrives we calculate the average queue length: | ||
59 | |||
60 | avg = (1-W)*avg + W*current_queue_len, | ||
61 | |||
62 | W is the filter time constant (chosen as 2^(-Wlog)), it controls | ||
63 | the inertia of the algorithm. To allow larger bursts, W should be | ||
64 | decreased. | ||
65 | |||
66 | if (avg > th_max) -> packet marked (dropped). | ||
67 | if (avg < th_min) -> packet passes. | ||
68 | if (th_min < avg < th_max) we calculate probability: | ||
69 | |||
70 | Pb = max_P * (avg - th_min)/(th_max-th_min) | ||
71 | |||
72 | and mark (drop) packet with this probability. | ||
73 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | ||
74 | max_P should be small (not 1), usually 0.01..0.02 is good value. | ||
75 | |||
76 | max_P is chosen as a number, so that max_P/(th_max-th_min) | ||
77 | is a negative power of two in order arithmetics to contain | ||
78 | only shifts. | ||
79 | |||
80 | |||
81 | Parameters, settable by user: | ||
82 | ----------------------------- | 48 | ----------------------------- |
83 | 49 | ||
84 | limit - bytes (must be > qth_max + burst) | 50 | limit - bytes (must be > qth_max + burst) |
@@ -89,92 +55,19 @@ Short description. | |||
89 | arbitrarily high (well, less than ram size) | 55 | arbitrarily high (well, less than ram size) |
90 | Really, this limit will never be reached | 56 | Really, this limit will never be reached |
91 | if RED works correctly. | 57 | if RED works correctly. |
92 | |||
93 | qth_min - bytes (should be < qth_max/2) | ||
94 | qth_max - bytes (should be at least 2*qth_min and less limit) | ||
95 | Wlog - bits (<32) log(1/W). | ||
96 | Plog - bits (<32) | ||
97 | |||
98 | Plog is related to max_P by formula: | ||
99 | |||
100 | max_P = (qth_max-qth_min)/2^Plog; | ||
101 | |||
102 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | ||
103 | corresponds to max_P=0.02 | ||
104 | |||
105 | Scell_log | ||
106 | Stab | ||
107 | |||
108 | Lookup table for log((1-W)^(t/t_ave). | ||
109 | |||
110 | |||
111 | NOTES: | ||
112 | |||
113 | Upper bound on W. | ||
114 | ----------------- | ||
115 | |||
116 | If you want to allow bursts of L packets of size S, | ||
117 | you should choose W: | ||
118 | |||
119 | L + 1 - th_min/S < (1-(1-W)^L)/W | ||
120 | |||
121 | th_min/S = 32 th_min/S = 4 | ||
122 | |||
123 | log(W) L | ||
124 | -1 33 | ||
125 | -2 35 | ||
126 | -3 39 | ||
127 | -4 46 | ||
128 | -5 57 | ||
129 | -6 75 | ||
130 | -7 101 | ||
131 | -8 135 | ||
132 | -9 190 | ||
133 | etc. | ||
134 | */ | 58 | */ |
135 | 59 | ||
136 | struct red_sched_data | 60 | struct red_sched_data |
137 | { | 61 | { |
138 | /* Parameters */ | 62 | u32 limit; /* HARD maximal queue length */ |
139 | u32 limit; /* HARD maximal queue length */ | 63 | unsigned char flags; |
140 | u32 qth_min; /* Min average length threshold: A scaled */ | 64 | struct red_parms parms; |
141 | u32 qth_max; /* Max average length threshold: A scaled */ | 65 | struct red_stats stats; |
142 | u32 Rmask; | ||
143 | u32 Scell_max; | ||
144 | unsigned char flags; | ||
145 | char Wlog; /* log(W) */ | ||
146 | char Plog; /* random number bits */ | ||
147 | char Scell_log; | ||
148 | u8 Stab[256]; | ||
149 | |||
150 | /* Variables */ | ||
151 | unsigned long qave; /* Average queue length: A scaled */ | ||
152 | int qcount; /* Packets since last random number generation */ | ||
153 | u32 qR; /* Cached random number */ | ||
154 | |||
155 | psched_time_t qidlestart; /* Start of idle period */ | ||
156 | struct tc_red_xstats st; | ||
157 | }; | 66 | }; |
158 | 67 | ||
159 | static int red_ecn_mark(struct sk_buff *skb) | 68 | static inline int red_use_ecn(struct red_sched_data *q) |
160 | { | 69 | { |
161 | if (skb->nh.raw + 20 > skb->tail) | 70 | return q->flags & TC_RED_ECN; |
162 | return 0; | ||
163 | |||
164 | switch (skb->protocol) { | ||
165 | case __constant_htons(ETH_P_IP): | ||
166 | if (INET_ECN_is_not_ect(skb->nh.iph->tos)) | ||
167 | return 0; | ||
168 | IP_ECN_set_ce(skb->nh.iph); | ||
169 | return 1; | ||
170 | case __constant_htons(ETH_P_IPV6): | ||
171 | if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h))) | ||
172 | return 0; | ||
173 | IP6_ECN_set_ce(skb->nh.ipv6h); | ||
174 | return 1; | ||
175 | default: | ||
176 | return 0; | ||
177 | } | ||
178 | } | 71 | } |
179 | 72 | ||
180 | static int | 73 | static int |
@@ -182,119 +75,50 @@ red_enqueue(struct sk_buff *skb, struct Qdisc* sch) | |||
182 | { | 75 | { |
183 | struct red_sched_data *q = qdisc_priv(sch); | 76 | struct red_sched_data *q = qdisc_priv(sch); |
184 | 77 | ||
185 | psched_time_t now; | 78 | q->parms.qavg = red_calc_qavg(&q->parms, sch->qstats.backlog); |
186 | 79 | ||
187 | if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) { | 80 | if (red_is_idling(&q->parms)) |
188 | long us_idle; | 81 | red_end_of_idle_period(&q->parms); |
189 | int shift; | ||
190 | 82 | ||
191 | PSCHED_GET_TIME(now); | 83 | switch (red_action(&q->parms, q->parms.qavg)) { |
192 | us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max); | 84 | case RED_DONT_MARK: |
193 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 85 | break; |
194 | 86 | ||
195 | /* | 87 | case RED_PROB_MARK: |
196 | The problem: ideally, average length queue recalcultion should | 88 | sch->qstats.overlimits++; |
197 | be done over constant clock intervals. This is too expensive, so that | 89 | if (!red_use_ecn(q) || !INET_ECN_set_ce(skb)) { |
198 | the calculation is driven by outgoing packets. | 90 | q->stats.prob_drop++; |
199 | When the queue is idle we have to model this clock by hand. | 91 | goto congestion_drop; |
200 | 92 | } | |
201 | SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth) | ||
202 | dummy packets as a burst after idle time, i.e. | ||
203 | |||
204 | q->qave *= (1-W)^m | ||
205 | |||
206 | This is an apparently overcomplicated solution (f.e. we have to precompute | ||
207 | a table to make this calculation in reasonable time) | ||
208 | I believe that a simpler model may be used here, | ||
209 | but it is field for experiments. | ||
210 | */ | ||
211 | shift = q->Stab[us_idle>>q->Scell_log]; | ||
212 | |||
213 | if (shift) { | ||
214 | q->qave >>= shift; | ||
215 | } else { | ||
216 | /* Approximate initial part of exponent | ||
217 | with linear function: | ||
218 | (1-W)^m ~= 1-mW + ... | ||
219 | |||
220 | Seems, it is the best solution to | ||
221 | problem of too coarce exponent tabulation. | ||
222 | */ | ||
223 | |||
224 | us_idle = (q->qave * us_idle)>>q->Scell_log; | ||
225 | if (us_idle < q->qave/2) | ||
226 | q->qave -= us_idle; | ||
227 | else | ||
228 | q->qave >>= 1; | ||
229 | } | ||
230 | } else { | ||
231 | q->qave += sch->qstats.backlog - (q->qave >> q->Wlog); | ||
232 | /* NOTE: | ||
233 | q->qave is fixed point number with point at Wlog. | ||
234 | The formulae above is equvalent to floating point | ||
235 | version: | ||
236 | |||
237 | qave = qave*(1-W) + sch->qstats.backlog*W; | ||
238 | --ANK (980924) | ||
239 | */ | ||
240 | } | ||
241 | 93 | ||
242 | if (q->qave < q->qth_min) { | 94 | q->stats.prob_mark++; |
243 | q->qcount = -1; | 95 | break; |
244 | enqueue: | 96 | |
245 | if (sch->qstats.backlog + skb->len <= q->limit) { | 97 | case RED_HARD_MARK: |
246 | __skb_queue_tail(&sch->q, skb); | 98 | sch->qstats.overlimits++; |
247 | sch->qstats.backlog += skb->len; | 99 | if (!red_use_ecn(q) || !INET_ECN_set_ce(skb)) { |
248 | sch->bstats.bytes += skb->len; | 100 | q->stats.forced_drop++; |
249 | sch->bstats.packets++; | 101 | goto congestion_drop; |
250 | return NET_XMIT_SUCCESS; | 102 | } |
251 | } else { | 103 | |
252 | q->st.pdrop++; | 104 | q->stats.forced_mark++; |
253 | } | 105 | break; |
254 | kfree_skb(skb); | ||
255 | sch->qstats.drops++; | ||
256 | return NET_XMIT_DROP; | ||
257 | } | ||
258 | if (q->qave >= q->qth_max) { | ||
259 | q->qcount = -1; | ||
260 | sch->qstats.overlimits++; | ||
261 | mark: | ||
262 | if (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) { | ||
263 | q->st.early++; | ||
264 | goto drop; | ||
265 | } | ||
266 | q->st.marked++; | ||
267 | goto enqueue; | ||
268 | } | 106 | } |
269 | 107 | ||
270 | if (++q->qcount) { | 108 | if (sch->qstats.backlog + skb->len <= q->limit) { |
271 | /* The formula used below causes questions. | 109 | __skb_queue_tail(&sch->q, skb); |
272 | 110 | sch->qstats.backlog += skb->len; | |
273 | OK. qR is random number in the interval 0..Rmask | 111 | sch->bstats.bytes += skb->len; |
274 | i.e. 0..(2^Plog). If we used floating point | 112 | sch->bstats.packets++; |
275 | arithmetics, it would be: (2^Plog)*rnd_num, | 113 | return NET_XMIT_SUCCESS; |
276 | where rnd_num is less 1. | ||
277 | |||
278 | Taking into account, that qave have fixed | ||
279 | point at Wlog, and Plog is related to max_P by | ||
280 | max_P = (qth_max-qth_min)/2^Plog; two lines | ||
281 | below have the following floating point equivalent: | ||
282 | |||
283 | max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount | ||
284 | |||
285 | Any questions? --ANK (980924) | ||
286 | */ | ||
287 | if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) | ||
288 | goto enqueue; | ||
289 | q->qcount = 0; | ||
290 | q->qR = net_random()&q->Rmask; | ||
291 | sch->qstats.overlimits++; | ||
292 | goto mark; | ||
293 | } | 114 | } |
294 | q->qR = net_random()&q->Rmask; | ||
295 | goto enqueue; | ||
296 | 115 | ||
297 | drop: | 116 | q->stats.pdrop++; |
117 | kfree_skb(skb); | ||
118 | sch->qstats.drops++; | ||
119 | return NET_XMIT_DROP; | ||
120 | |||
121 | congestion_drop: | ||
298 | kfree_skb(skb); | 122 | kfree_skb(skb); |
299 | sch->qstats.drops++; | 123 | sch->qstats.drops++; |
300 | return NET_XMIT_CN; | 124 | return NET_XMIT_CN; |
@@ -305,7 +129,8 @@ red_requeue(struct sk_buff *skb, struct Qdisc* sch) | |||
305 | { | 129 | { |
306 | struct red_sched_data *q = qdisc_priv(sch); | 130 | struct red_sched_data *q = qdisc_priv(sch); |
307 | 131 | ||
308 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 132 | if (red_is_idling(&q->parms)) |
133 | red_end_of_idle_period(&q->parms); | ||
309 | 134 | ||
310 | __skb_queue_head(&sch->q, skb); | 135 | __skb_queue_head(&sch->q, skb); |
311 | sch->qstats.backlog += skb->len; | 136 | sch->qstats.backlog += skb->len; |
@@ -324,7 +149,8 @@ red_dequeue(struct Qdisc* sch) | |||
324 | sch->qstats.backlog -= skb->len; | 149 | sch->qstats.backlog -= skb->len; |
325 | return skb; | 150 | return skb; |
326 | } | 151 | } |
327 | PSCHED_GET_TIME(q->qidlestart); | 152 | |
153 | red_start_of_idle_period(&q->parms); | ||
328 | return NULL; | 154 | return NULL; |
329 | } | 155 | } |
330 | 156 | ||
@@ -338,11 +164,12 @@ static unsigned int red_drop(struct Qdisc* sch) | |||
338 | unsigned int len = skb->len; | 164 | unsigned int len = skb->len; |
339 | sch->qstats.backlog -= len; | 165 | sch->qstats.backlog -= len; |
340 | sch->qstats.drops++; | 166 | sch->qstats.drops++; |
341 | q->st.other++; | 167 | q->stats.other++; |
342 | kfree_skb(skb); | 168 | kfree_skb(skb); |
343 | return len; | 169 | return len; |
344 | } | 170 | } |
345 | PSCHED_GET_TIME(q->qidlestart); | 171 | |
172 | red_start_of_idle_period(&q->parms); | ||
346 | return 0; | 173 | return 0; |
347 | } | 174 | } |
348 | 175 | ||
@@ -352,9 +179,7 @@ static void red_reset(struct Qdisc* sch) | |||
352 | 179 | ||
353 | __skb_queue_purge(&sch->q); | 180 | __skb_queue_purge(&sch->q); |
354 | sch->qstats.backlog = 0; | 181 | sch->qstats.backlog = 0; |
355 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 182 | red_restart(&q->parms); |
356 | q->qave = 0; | ||
357 | q->qcount = -1; | ||
358 | } | 183 | } |
359 | 184 | ||
360 | static int red_change(struct Qdisc *sch, struct rtattr *opt) | 185 | static int red_change(struct Qdisc *sch, struct rtattr *opt) |
@@ -374,19 +199,14 @@ static int red_change(struct Qdisc *sch, struct rtattr *opt) | |||
374 | 199 | ||
375 | sch_tree_lock(sch); | 200 | sch_tree_lock(sch); |
376 | q->flags = ctl->flags; | 201 | q->flags = ctl->flags; |
377 | q->Wlog = ctl->Wlog; | ||
378 | q->Plog = ctl->Plog; | ||
379 | q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL; | ||
380 | q->Scell_log = ctl->Scell_log; | ||
381 | q->Scell_max = (255<<q->Scell_log); | ||
382 | q->qth_min = ctl->qth_min<<ctl->Wlog; | ||
383 | q->qth_max = ctl->qth_max<<ctl->Wlog; | ||
384 | q->limit = ctl->limit; | 202 | q->limit = ctl->limit; |
385 | memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256); | ||
386 | 203 | ||
387 | q->qcount = -1; | 204 | red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog, |
205 | ctl->Plog, ctl->Scell_log, | ||
206 | RTA_DATA(tb[TCA_RED_STAB-1])); | ||
207 | |||
388 | if (skb_queue_empty(&sch->q)) | 208 | if (skb_queue_empty(&sch->q)) |
389 | PSCHED_SET_PASTPERFECT(q->qidlestart); | 209 | red_end_of_idle_period(&q->parms); |
390 | sch_tree_unlock(sch); | 210 | sch_tree_unlock(sch); |
391 | return 0; | 211 | return 0; |
392 | } | 212 | } |
@@ -401,17 +221,18 @@ static int red_dump(struct Qdisc *sch, struct sk_buff *skb) | |||
401 | struct red_sched_data *q = qdisc_priv(sch); | 221 | struct red_sched_data *q = qdisc_priv(sch); |
402 | unsigned char *b = skb->tail; | 222 | unsigned char *b = skb->tail; |
403 | struct rtattr *rta; | 223 | struct rtattr *rta; |
404 | struct tc_red_qopt opt; | 224 | struct tc_red_qopt opt = { |
225 | .limit = q->limit, | ||
226 | .flags = q->flags, | ||
227 | .qth_min = q->parms.qth_min >> q->parms.Wlog, | ||
228 | .qth_max = q->parms.qth_max >> q->parms.Wlog, | ||
229 | .Wlog = q->parms.Wlog, | ||
230 | .Plog = q->parms.Plog, | ||
231 | .Scell_log = q->parms.Scell_log, | ||
232 | }; | ||
405 | 233 | ||
406 | rta = (struct rtattr*)b; | 234 | rta = (struct rtattr*)b; |
407 | RTA_PUT(skb, TCA_OPTIONS, 0, NULL); | 235 | RTA_PUT(skb, TCA_OPTIONS, 0, NULL); |
408 | opt.limit = q->limit; | ||
409 | opt.qth_min = q->qth_min>>q->Wlog; | ||
410 | opt.qth_max = q->qth_max>>q->Wlog; | ||
411 | opt.Wlog = q->Wlog; | ||
412 | opt.Plog = q->Plog; | ||
413 | opt.Scell_log = q->Scell_log; | ||
414 | opt.flags = q->flags; | ||
415 | RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); | 236 | RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); |
416 | rta->rta_len = skb->tail - b; | 237 | rta->rta_len = skb->tail - b; |
417 | 238 | ||
@@ -425,8 +246,14 @@ rtattr_failure: | |||
425 | static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 246 | static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
426 | { | 247 | { |
427 | struct red_sched_data *q = qdisc_priv(sch); | 248 | struct red_sched_data *q = qdisc_priv(sch); |
428 | 249 | struct tc_red_xstats st = { | |
429 | return gnet_stats_copy_app(d, &q->st, sizeof(q->st)); | 250 | .early = q->stats.prob_drop + q->stats.forced_drop, |
251 | .pdrop = q->stats.pdrop, | ||
252 | .other = q->stats.other, | ||
253 | .marked = q->stats.prob_mark + q->stats.forced_mark, | ||
254 | }; | ||
255 | |||
256 | return gnet_stats_copy_app(d, &st, sizeof(st)); | ||
430 | } | 257 | } |
431 | 258 | ||
432 | static struct Qdisc_ops red_qdisc_ops = { | 259 | static struct Qdisc_ops red_qdisc_ops = { |