diff options
Diffstat (limited to 'net/sched/sch_red.c')
-rw-r--r-- | net/sched/sch_red.c | 459 |
1 files changed, 459 insertions, 0 deletions
diff --git a/net/sched/sch_red.c b/net/sched/sch_red.c new file mode 100644 index 000000000000..664d0e47374f --- /dev/null +++ b/net/sched/sch_red.c | |||
@@ -0,0 +1,459 @@ | |||
1 | /* | ||
2 | * net/sched/sch_red.c Random Early Detection queue. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation; either version | ||
7 | * 2 of the License, or (at your option) any later version. | ||
8 | * | ||
9 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | ||
10 | * | ||
11 | * Changes: | ||
12 | * J Hadi Salim <hadi@nortel.com> 980914: computation fixes | ||
13 | * Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly. | ||
14 | * J Hadi Salim <hadi@nortelnetworks.com> 980816: ECN support | ||
15 | */ | ||
16 | |||
17 | #include <linux/config.h> | ||
18 | #include <linux/module.h> | ||
19 | #include <asm/uaccess.h> | ||
20 | #include <asm/system.h> | ||
21 | #include <linux/bitops.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/sched.h> | ||
25 | #include <linux/string.h> | ||
26 | #include <linux/mm.h> | ||
27 | #include <linux/socket.h> | ||
28 | #include <linux/sockios.h> | ||
29 | #include <linux/in.h> | ||
30 | #include <linux/errno.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | #include <linux/if_ether.h> | ||
33 | #include <linux/inet.h> | ||
34 | #include <linux/netdevice.h> | ||
35 | #include <linux/etherdevice.h> | ||
36 | #include <linux/notifier.h> | ||
37 | #include <net/ip.h> | ||
38 | #include <net/route.h> | ||
39 | #include <linux/skbuff.h> | ||
40 | #include <net/sock.h> | ||
41 | #include <net/pkt_sched.h> | ||
42 | #include <net/inet_ecn.h> | ||
43 | #include <net/dsfield.h> | ||
44 | |||
45 | |||
46 | /* Random Early Detection (RED) algorithm. | ||
47 | ======================================= | ||
48 | |||
49 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | ||
50 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | ||
51 | |||
52 | This file codes a "divisionless" version of RED algorithm | ||
53 | as written down in Fig.17 of the paper. | ||
54 | |||
55 | Short description. | ||
56 | ------------------ | ||
57 | |||
58 | When a new packet arrives we calculate the average queue length: | ||
59 | |||
60 | avg = (1-W)*avg + W*current_queue_len, | ||
61 | |||
62 | W is the filter time constant (chosen as 2^(-Wlog)), it controls | ||
63 | the inertia of the algorithm. To allow larger bursts, W should be | ||
64 | decreased. | ||
65 | |||
66 | if (avg > th_max) -> packet marked (dropped). | ||
67 | if (avg < th_min) -> packet passes. | ||
68 | if (th_min < avg < th_max) we calculate probability: | ||
69 | |||
70 | Pb = max_P * (avg - th_min)/(th_max-th_min) | ||
71 | |||
72 | and mark (drop) packet with this probability. | ||
73 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | ||
74 | max_P should be small (not 1), usually 0.01..0.02 is good value. | ||
75 | |||
76 | max_P is chosen as a number, so that max_P/(th_max-th_min) | ||
77 | is a negative power of two in order arithmetics to contain | ||
78 | only shifts. | ||
79 | |||
80 | |||
81 | Parameters, settable by user: | ||
82 | ----------------------------- | ||
83 | |||
84 | limit - bytes (must be > qth_max + burst) | ||
85 | |||
86 | Hard limit on queue length, should be chosen >qth_max | ||
87 | to allow packet bursts. This parameter does not | ||
88 | affect the algorithms behaviour and can be chosen | ||
89 | arbitrarily high (well, less than ram size) | ||
90 | Really, this limit will never be reached | ||
91 | if RED works correctly. | ||
92 | |||
93 | qth_min - bytes (should be < qth_max/2) | ||
94 | qth_max - bytes (should be at least 2*qth_min and less limit) | ||
95 | Wlog - bits (<32) log(1/W). | ||
96 | Plog - bits (<32) | ||
97 | |||
98 | Plog is related to max_P by formula: | ||
99 | |||
100 | max_P = (qth_max-qth_min)/2^Plog; | ||
101 | |||
102 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | ||
103 | corresponds to max_P=0.02 | ||
104 | |||
105 | Scell_log | ||
106 | Stab | ||
107 | |||
108 | Lookup table for log((1-W)^(t/t_ave). | ||
109 | |||
110 | |||
111 | NOTES: | ||
112 | |||
113 | Upper bound on W. | ||
114 | ----------------- | ||
115 | |||
116 | If you want to allow bursts of L packets of size S, | ||
117 | you should choose W: | ||
118 | |||
119 | L + 1 - th_min/S < (1-(1-W)^L)/W | ||
120 | |||
121 | th_min/S = 32 th_min/S = 4 | ||
122 | |||
123 | log(W) L | ||
124 | -1 33 | ||
125 | -2 35 | ||
126 | -3 39 | ||
127 | -4 46 | ||
128 | -5 57 | ||
129 | -6 75 | ||
130 | -7 101 | ||
131 | -8 135 | ||
132 | -9 190 | ||
133 | etc. | ||
134 | */ | ||
135 | |||
136 | struct red_sched_data | ||
137 | { | ||
138 | /* Parameters */ | ||
139 | u32 limit; /* HARD maximal queue length */ | ||
140 | u32 qth_min; /* Min average length threshold: A scaled */ | ||
141 | u32 qth_max; /* Max average length threshold: A scaled */ | ||
142 | u32 Rmask; | ||
143 | u32 Scell_max; | ||
144 | unsigned char flags; | ||
145 | char Wlog; /* log(W) */ | ||
146 | char Plog; /* random number bits */ | ||
147 | char Scell_log; | ||
148 | u8 Stab[256]; | ||
149 | |||
150 | /* Variables */ | ||
151 | unsigned long qave; /* Average queue length: A scaled */ | ||
152 | int qcount; /* Packets since last random number generation */ | ||
153 | u32 qR; /* Cached random number */ | ||
154 | |||
155 | psched_time_t qidlestart; /* Start of idle period */ | ||
156 | struct tc_red_xstats st; | ||
157 | }; | ||
158 | |||
159 | static int red_ecn_mark(struct sk_buff *skb) | ||
160 | { | ||
161 | if (skb->nh.raw + 20 > skb->tail) | ||
162 | return 0; | ||
163 | |||
164 | switch (skb->protocol) { | ||
165 | case __constant_htons(ETH_P_IP): | ||
166 | if (INET_ECN_is_not_ect(skb->nh.iph->tos)) | ||
167 | return 0; | ||
168 | IP_ECN_set_ce(skb->nh.iph); | ||
169 | return 1; | ||
170 | case __constant_htons(ETH_P_IPV6): | ||
171 | if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h))) | ||
172 | return 0; | ||
173 | IP6_ECN_set_ce(skb->nh.ipv6h); | ||
174 | return 1; | ||
175 | default: | ||
176 | return 0; | ||
177 | } | ||
178 | } | ||
179 | |||
180 | static int | ||
181 | red_enqueue(struct sk_buff *skb, struct Qdisc* sch) | ||
182 | { | ||
183 | struct red_sched_data *q = qdisc_priv(sch); | ||
184 | |||
185 | psched_time_t now; | ||
186 | |||
187 | if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) { | ||
188 | long us_idle; | ||
189 | int shift; | ||
190 | |||
191 | PSCHED_GET_TIME(now); | ||
192 | us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max); | ||
193 | PSCHED_SET_PASTPERFECT(q->qidlestart); | ||
194 | |||
195 | /* | ||
196 | The problem: ideally, average length queue recalcultion should | ||
197 | be done over constant clock intervals. This is too expensive, so that | ||
198 | the calculation is driven by outgoing packets. | ||
199 | When the queue is idle we have to model this clock by hand. | ||
200 | |||
201 | SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth) | ||
202 | dummy packets as a burst after idle time, i.e. | ||
203 | |||
204 | q->qave *= (1-W)^m | ||
205 | |||
206 | This is an apparently overcomplicated solution (f.e. we have to precompute | ||
207 | a table to make this calculation in reasonable time) | ||
208 | I believe that a simpler model may be used here, | ||
209 | but it is field for experiments. | ||
210 | */ | ||
211 | shift = q->Stab[us_idle>>q->Scell_log]; | ||
212 | |||
213 | if (shift) { | ||
214 | q->qave >>= shift; | ||
215 | } else { | ||
216 | /* Approximate initial part of exponent | ||
217 | with linear function: | ||
218 | (1-W)^m ~= 1-mW + ... | ||
219 | |||
220 | Seems, it is the best solution to | ||
221 | problem of too coarce exponent tabulation. | ||
222 | */ | ||
223 | |||
224 | us_idle = (q->qave * us_idle)>>q->Scell_log; | ||
225 | if (us_idle < q->qave/2) | ||
226 | q->qave -= us_idle; | ||
227 | else | ||
228 | q->qave >>= 1; | ||
229 | } | ||
230 | } else { | ||
231 | q->qave += sch->qstats.backlog - (q->qave >> q->Wlog); | ||
232 | /* NOTE: | ||
233 | q->qave is fixed point number with point at Wlog. | ||
234 | The formulae above is equvalent to floating point | ||
235 | version: | ||
236 | |||
237 | qave = qave*(1-W) + sch->qstats.backlog*W; | ||
238 | --ANK (980924) | ||
239 | */ | ||
240 | } | ||
241 | |||
242 | if (q->qave < q->qth_min) { | ||
243 | q->qcount = -1; | ||
244 | enqueue: | ||
245 | if (sch->qstats.backlog + skb->len <= q->limit) { | ||
246 | __skb_queue_tail(&sch->q, skb); | ||
247 | sch->qstats.backlog += skb->len; | ||
248 | sch->bstats.bytes += skb->len; | ||
249 | sch->bstats.packets++; | ||
250 | return NET_XMIT_SUCCESS; | ||
251 | } else { | ||
252 | q->st.pdrop++; | ||
253 | } | ||
254 | kfree_skb(skb); | ||
255 | sch->qstats.drops++; | ||
256 | return NET_XMIT_DROP; | ||
257 | } | ||
258 | if (q->qave >= q->qth_max) { | ||
259 | q->qcount = -1; | ||
260 | sch->qstats.overlimits++; | ||
261 | mark: | ||
262 | if (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) { | ||
263 | q->st.early++; | ||
264 | goto drop; | ||
265 | } | ||
266 | q->st.marked++; | ||
267 | goto enqueue; | ||
268 | } | ||
269 | |||
270 | if (++q->qcount) { | ||
271 | /* The formula used below causes questions. | ||
272 | |||
273 | OK. qR is random number in the interval 0..Rmask | ||
274 | i.e. 0..(2^Plog). If we used floating point | ||
275 | arithmetics, it would be: (2^Plog)*rnd_num, | ||
276 | where rnd_num is less 1. | ||
277 | |||
278 | Taking into account, that qave have fixed | ||
279 | point at Wlog, and Plog is related to max_P by | ||
280 | max_P = (qth_max-qth_min)/2^Plog; two lines | ||
281 | below have the following floating point equivalent: | ||
282 | |||
283 | max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount | ||
284 | |||
285 | Any questions? --ANK (980924) | ||
286 | */ | ||
287 | if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) | ||
288 | goto enqueue; | ||
289 | q->qcount = 0; | ||
290 | q->qR = net_random()&q->Rmask; | ||
291 | sch->qstats.overlimits++; | ||
292 | goto mark; | ||
293 | } | ||
294 | q->qR = net_random()&q->Rmask; | ||
295 | goto enqueue; | ||
296 | |||
297 | drop: | ||
298 | kfree_skb(skb); | ||
299 | sch->qstats.drops++; | ||
300 | return NET_XMIT_CN; | ||
301 | } | ||
302 | |||
303 | static int | ||
304 | red_requeue(struct sk_buff *skb, struct Qdisc* sch) | ||
305 | { | ||
306 | struct red_sched_data *q = qdisc_priv(sch); | ||
307 | |||
308 | PSCHED_SET_PASTPERFECT(q->qidlestart); | ||
309 | |||
310 | __skb_queue_head(&sch->q, skb); | ||
311 | sch->qstats.backlog += skb->len; | ||
312 | sch->qstats.requeues++; | ||
313 | return 0; | ||
314 | } | ||
315 | |||
316 | static struct sk_buff * | ||
317 | red_dequeue(struct Qdisc* sch) | ||
318 | { | ||
319 | struct sk_buff *skb; | ||
320 | struct red_sched_data *q = qdisc_priv(sch); | ||
321 | |||
322 | skb = __skb_dequeue(&sch->q); | ||
323 | if (skb) { | ||
324 | sch->qstats.backlog -= skb->len; | ||
325 | return skb; | ||
326 | } | ||
327 | PSCHED_GET_TIME(q->qidlestart); | ||
328 | return NULL; | ||
329 | } | ||
330 | |||
331 | static unsigned int red_drop(struct Qdisc* sch) | ||
332 | { | ||
333 | struct sk_buff *skb; | ||
334 | struct red_sched_data *q = qdisc_priv(sch); | ||
335 | |||
336 | skb = __skb_dequeue_tail(&sch->q); | ||
337 | if (skb) { | ||
338 | unsigned int len = skb->len; | ||
339 | sch->qstats.backlog -= len; | ||
340 | sch->qstats.drops++; | ||
341 | q->st.other++; | ||
342 | kfree_skb(skb); | ||
343 | return len; | ||
344 | } | ||
345 | PSCHED_GET_TIME(q->qidlestart); | ||
346 | return 0; | ||
347 | } | ||
348 | |||
349 | static void red_reset(struct Qdisc* sch) | ||
350 | { | ||
351 | struct red_sched_data *q = qdisc_priv(sch); | ||
352 | |||
353 | __skb_queue_purge(&sch->q); | ||
354 | sch->qstats.backlog = 0; | ||
355 | PSCHED_SET_PASTPERFECT(q->qidlestart); | ||
356 | q->qave = 0; | ||
357 | q->qcount = -1; | ||
358 | } | ||
359 | |||
360 | static int red_change(struct Qdisc *sch, struct rtattr *opt) | ||
361 | { | ||
362 | struct red_sched_data *q = qdisc_priv(sch); | ||
363 | struct rtattr *tb[TCA_RED_STAB]; | ||
364 | struct tc_red_qopt *ctl; | ||
365 | |||
366 | if (opt == NULL || | ||
367 | rtattr_parse_nested(tb, TCA_RED_STAB, opt) || | ||
368 | tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 || | ||
369 | RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) || | ||
370 | RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256) | ||
371 | return -EINVAL; | ||
372 | |||
373 | ctl = RTA_DATA(tb[TCA_RED_PARMS-1]); | ||
374 | |||
375 | sch_tree_lock(sch); | ||
376 | q->flags = ctl->flags; | ||
377 | q->Wlog = ctl->Wlog; | ||
378 | q->Plog = ctl->Plog; | ||
379 | q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL; | ||
380 | q->Scell_log = ctl->Scell_log; | ||
381 | q->Scell_max = (255<<q->Scell_log); | ||
382 | q->qth_min = ctl->qth_min<<ctl->Wlog; | ||
383 | q->qth_max = ctl->qth_max<<ctl->Wlog; | ||
384 | q->limit = ctl->limit; | ||
385 | memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256); | ||
386 | |||
387 | q->qcount = -1; | ||
388 | if (skb_queue_len(&sch->q) == 0) | ||
389 | PSCHED_SET_PASTPERFECT(q->qidlestart); | ||
390 | sch_tree_unlock(sch); | ||
391 | return 0; | ||
392 | } | ||
393 | |||
394 | static int red_init(struct Qdisc* sch, struct rtattr *opt) | ||
395 | { | ||
396 | return red_change(sch, opt); | ||
397 | } | ||
398 | |||
399 | static int red_dump(struct Qdisc *sch, struct sk_buff *skb) | ||
400 | { | ||
401 | struct red_sched_data *q = qdisc_priv(sch); | ||
402 | unsigned char *b = skb->tail; | ||
403 | struct rtattr *rta; | ||
404 | struct tc_red_qopt opt; | ||
405 | |||
406 | rta = (struct rtattr*)b; | ||
407 | RTA_PUT(skb, TCA_OPTIONS, 0, NULL); | ||
408 | opt.limit = q->limit; | ||
409 | opt.qth_min = q->qth_min>>q->Wlog; | ||
410 | opt.qth_max = q->qth_max>>q->Wlog; | ||
411 | opt.Wlog = q->Wlog; | ||
412 | opt.Plog = q->Plog; | ||
413 | opt.Scell_log = q->Scell_log; | ||
414 | opt.flags = q->flags; | ||
415 | RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); | ||
416 | rta->rta_len = skb->tail - b; | ||
417 | |||
418 | return skb->len; | ||
419 | |||
420 | rtattr_failure: | ||
421 | skb_trim(skb, b - skb->data); | ||
422 | return -1; | ||
423 | } | ||
424 | |||
425 | static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | ||
426 | { | ||
427 | struct red_sched_data *q = qdisc_priv(sch); | ||
428 | |||
429 | return gnet_stats_copy_app(d, &q->st, sizeof(q->st)); | ||
430 | } | ||
431 | |||
432 | static struct Qdisc_ops red_qdisc_ops = { | ||
433 | .next = NULL, | ||
434 | .cl_ops = NULL, | ||
435 | .id = "red", | ||
436 | .priv_size = sizeof(struct red_sched_data), | ||
437 | .enqueue = red_enqueue, | ||
438 | .dequeue = red_dequeue, | ||
439 | .requeue = red_requeue, | ||
440 | .drop = red_drop, | ||
441 | .init = red_init, | ||
442 | .reset = red_reset, | ||
443 | .change = red_change, | ||
444 | .dump = red_dump, | ||
445 | .dump_stats = red_dump_stats, | ||
446 | .owner = THIS_MODULE, | ||
447 | }; | ||
448 | |||
449 | static int __init red_module_init(void) | ||
450 | { | ||
451 | return register_qdisc(&red_qdisc_ops); | ||
452 | } | ||
453 | static void __exit red_module_exit(void) | ||
454 | { | ||
455 | unregister_qdisc(&red_qdisc_ops); | ||
456 | } | ||
457 | module_init(red_module_init) | ||
458 | module_exit(red_module_exit) | ||
459 | MODULE_LICENSE("GPL"); | ||