diff options
Diffstat (limited to 'net/rds/iw_rdma.c')
-rw-r--r-- | net/rds/iw_rdma.c | 888 |
1 files changed, 888 insertions, 0 deletions
diff --git a/net/rds/iw_rdma.c b/net/rds/iw_rdma.c new file mode 100644 index 000000000000..1c02a8f952d0 --- /dev/null +++ b/net/rds/iw_rdma.c | |||
@@ -0,0 +1,888 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the | ||
8 | * OpenIB.org BSD license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or | ||
11 | * without modification, are permitted provided that the following | ||
12 | * conditions are met: | ||
13 | * | ||
14 | * - Redistributions of source code must retain the above | ||
15 | * copyright notice, this list of conditions and the following | ||
16 | * disclaimer. | ||
17 | * | ||
18 | * - Redistributions in binary form must reproduce the above | ||
19 | * copyright notice, this list of conditions and the following | ||
20 | * disclaimer in the documentation and/or other materials | ||
21 | * provided with the distribution. | ||
22 | * | ||
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
30 | * SOFTWARE. | ||
31 | * | ||
32 | */ | ||
33 | #include <linux/kernel.h> | ||
34 | |||
35 | #include "rds.h" | ||
36 | #include "rdma.h" | ||
37 | #include "iw.h" | ||
38 | |||
39 | |||
40 | /* | ||
41 | * This is stored as mr->r_trans_private. | ||
42 | */ | ||
43 | struct rds_iw_mr { | ||
44 | struct rds_iw_device *device; | ||
45 | struct rds_iw_mr_pool *pool; | ||
46 | struct rdma_cm_id *cm_id; | ||
47 | |||
48 | struct ib_mr *mr; | ||
49 | struct ib_fast_reg_page_list *page_list; | ||
50 | |||
51 | struct rds_iw_mapping mapping; | ||
52 | unsigned char remap_count; | ||
53 | }; | ||
54 | |||
55 | /* | ||
56 | * Our own little MR pool | ||
57 | */ | ||
58 | struct rds_iw_mr_pool { | ||
59 | struct rds_iw_device *device; /* back ptr to the device that owns us */ | ||
60 | |||
61 | struct mutex flush_lock; /* serialize fmr invalidate */ | ||
62 | struct work_struct flush_worker; /* flush worker */ | ||
63 | |||
64 | spinlock_t list_lock; /* protect variables below */ | ||
65 | atomic_t item_count; /* total # of MRs */ | ||
66 | atomic_t dirty_count; /* # dirty of MRs */ | ||
67 | struct list_head dirty_list; /* dirty mappings */ | ||
68 | struct list_head clean_list; /* unused & unamapped MRs */ | ||
69 | atomic_t free_pinned; /* memory pinned by free MRs */ | ||
70 | unsigned long max_message_size; /* in pages */ | ||
71 | unsigned long max_items; | ||
72 | unsigned long max_items_soft; | ||
73 | unsigned long max_free_pinned; | ||
74 | int max_pages; | ||
75 | }; | ||
76 | |||
77 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); | ||
78 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work); | ||
79 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | ||
80 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | ||
81 | struct rds_iw_mr *ibmr, | ||
82 | struct scatterlist *sg, unsigned int nents); | ||
83 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | ||
84 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | ||
85 | struct list_head *unmap_list, | ||
86 | struct list_head *kill_list); | ||
87 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | ||
88 | |||
89 | static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) | ||
90 | { | ||
91 | struct rds_iw_device *iwdev; | ||
92 | struct rds_iw_cm_id *i_cm_id; | ||
93 | |||
94 | *rds_iwdev = NULL; | ||
95 | *cm_id = NULL; | ||
96 | |||
97 | list_for_each_entry(iwdev, &rds_iw_devices, list) { | ||
98 | spin_lock_irq(&iwdev->spinlock); | ||
99 | list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { | ||
100 | struct sockaddr_in *src_addr, *dst_addr; | ||
101 | |||
102 | src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; | ||
103 | dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; | ||
104 | |||
105 | rdsdebug("local ipaddr = %x port %d, " | ||
106 | "remote ipaddr = %x port %d" | ||
107 | "..looking for %x port %d, " | ||
108 | "remote ipaddr = %x port %d\n", | ||
109 | src_addr->sin_addr.s_addr, | ||
110 | src_addr->sin_port, | ||
111 | dst_addr->sin_addr.s_addr, | ||
112 | dst_addr->sin_port, | ||
113 | rs->rs_bound_addr, | ||
114 | rs->rs_bound_port, | ||
115 | rs->rs_conn_addr, | ||
116 | rs->rs_conn_port); | ||
117 | #ifdef WORKING_TUPLE_DETECTION | ||
118 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && | ||
119 | src_addr->sin_port == rs->rs_bound_port && | ||
120 | dst_addr->sin_addr.s_addr == rs->rs_conn_addr && | ||
121 | dst_addr->sin_port == rs->rs_conn_port) { | ||
122 | #else | ||
123 | /* FIXME - needs to compare the local and remote | ||
124 | * ipaddr/port tuple, but the ipaddr is the only | ||
125 | * available infomation in the rds_sock (as the rest are | ||
126 | * zero'ed. It doesn't appear to be properly populated | ||
127 | * during connection setup... | ||
128 | */ | ||
129 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { | ||
130 | #endif | ||
131 | spin_unlock_irq(&iwdev->spinlock); | ||
132 | *rds_iwdev = iwdev; | ||
133 | *cm_id = i_cm_id->cm_id; | ||
134 | return 0; | ||
135 | } | ||
136 | } | ||
137 | spin_unlock_irq(&iwdev->spinlock); | ||
138 | } | ||
139 | |||
140 | return 1; | ||
141 | } | ||
142 | |||
143 | static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | ||
144 | { | ||
145 | struct rds_iw_cm_id *i_cm_id; | ||
146 | |||
147 | i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); | ||
148 | if (!i_cm_id) | ||
149 | return -ENOMEM; | ||
150 | |||
151 | i_cm_id->cm_id = cm_id; | ||
152 | |||
153 | spin_lock_irq(&rds_iwdev->spinlock); | ||
154 | list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); | ||
155 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
156 | |||
157 | return 0; | ||
158 | } | ||
159 | |||
160 | void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | ||
161 | { | ||
162 | struct rds_iw_cm_id *i_cm_id; | ||
163 | |||
164 | spin_lock_irq(&rds_iwdev->spinlock); | ||
165 | list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { | ||
166 | if (i_cm_id->cm_id == cm_id) { | ||
167 | list_del(&i_cm_id->list); | ||
168 | kfree(i_cm_id); | ||
169 | break; | ||
170 | } | ||
171 | } | ||
172 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
173 | } | ||
174 | |||
175 | |||
176 | int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | ||
177 | { | ||
178 | struct sockaddr_in *src_addr, *dst_addr; | ||
179 | struct rds_iw_device *rds_iwdev_old; | ||
180 | struct rds_sock rs; | ||
181 | struct rdma_cm_id *pcm_id; | ||
182 | int rc; | ||
183 | |||
184 | src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; | ||
185 | dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; | ||
186 | |||
187 | rs.rs_bound_addr = src_addr->sin_addr.s_addr; | ||
188 | rs.rs_bound_port = src_addr->sin_port; | ||
189 | rs.rs_conn_addr = dst_addr->sin_addr.s_addr; | ||
190 | rs.rs_conn_port = dst_addr->sin_port; | ||
191 | |||
192 | rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); | ||
193 | if (rc) | ||
194 | rds_iw_remove_cm_id(rds_iwdev, cm_id); | ||
195 | |||
196 | return rds_iw_add_cm_id(rds_iwdev, cm_id); | ||
197 | } | ||
198 | |||
199 | int rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) | ||
200 | { | ||
201 | struct rds_iw_connection *ic = conn->c_transport_data; | ||
202 | |||
203 | /* conn was previously on the nodev_conns_list */ | ||
204 | spin_lock_irq(&iw_nodev_conns_lock); | ||
205 | BUG_ON(list_empty(&iw_nodev_conns)); | ||
206 | BUG_ON(list_empty(&ic->iw_node)); | ||
207 | list_del(&ic->iw_node); | ||
208 | spin_unlock_irq(&iw_nodev_conns_lock); | ||
209 | |||
210 | spin_lock_irq(&rds_iwdev->spinlock); | ||
211 | list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); | ||
212 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
213 | |||
214 | ic->rds_iwdev = rds_iwdev; | ||
215 | |||
216 | return 0; | ||
217 | } | ||
218 | |||
219 | void rds_iw_remove_nodev_conns(void) | ||
220 | { | ||
221 | struct rds_iw_connection *ic, *_ic; | ||
222 | LIST_HEAD(tmp_list); | ||
223 | |||
224 | /* avoid calling conn_destroy with irqs off */ | ||
225 | spin_lock_irq(&iw_nodev_conns_lock); | ||
226 | list_splice(&iw_nodev_conns, &tmp_list); | ||
227 | INIT_LIST_HEAD(&iw_nodev_conns); | ||
228 | spin_unlock_irq(&iw_nodev_conns_lock); | ||
229 | |||
230 | list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) { | ||
231 | if (ic->conn->c_passive) | ||
232 | rds_conn_destroy(ic->conn->c_passive); | ||
233 | rds_conn_destroy(ic->conn); | ||
234 | } | ||
235 | } | ||
236 | |||
237 | void rds_iw_remove_conns(struct rds_iw_device *rds_iwdev) | ||
238 | { | ||
239 | struct rds_iw_connection *ic, *_ic; | ||
240 | LIST_HEAD(tmp_list); | ||
241 | |||
242 | /* avoid calling conn_destroy with irqs off */ | ||
243 | spin_lock_irq(&rds_iwdev->spinlock); | ||
244 | list_splice(&rds_iwdev->conn_list, &tmp_list); | ||
245 | INIT_LIST_HEAD(&rds_iwdev->conn_list); | ||
246 | spin_unlock_irq(&rds_iwdev->spinlock); | ||
247 | |||
248 | list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) { | ||
249 | if (ic->conn->c_passive) | ||
250 | rds_conn_destroy(ic->conn->c_passive); | ||
251 | rds_conn_destroy(ic->conn); | ||
252 | } | ||
253 | } | ||
254 | |||
255 | static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, | ||
256 | struct scatterlist *list, unsigned int sg_len) | ||
257 | { | ||
258 | sg->list = list; | ||
259 | sg->len = sg_len; | ||
260 | sg->dma_len = 0; | ||
261 | sg->dma_npages = 0; | ||
262 | sg->bytes = 0; | ||
263 | } | ||
264 | |||
265 | static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, | ||
266 | struct rds_iw_scatterlist *sg, | ||
267 | unsigned int dma_page_shift) | ||
268 | { | ||
269 | struct ib_device *dev = rds_iwdev->dev; | ||
270 | u64 *dma_pages = NULL; | ||
271 | u64 dma_mask; | ||
272 | unsigned int dma_page_size; | ||
273 | int i, j, ret; | ||
274 | |||
275 | dma_page_size = 1 << dma_page_shift; | ||
276 | dma_mask = dma_page_size - 1; | ||
277 | |||
278 | WARN_ON(sg->dma_len); | ||
279 | |||
280 | sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | ||
281 | if (unlikely(!sg->dma_len)) { | ||
282 | printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); | ||
283 | return ERR_PTR(-EBUSY); | ||
284 | } | ||
285 | |||
286 | sg->bytes = 0; | ||
287 | sg->dma_npages = 0; | ||
288 | |||
289 | ret = -EINVAL; | ||
290 | for (i = 0; i < sg->dma_len; ++i) { | ||
291 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | ||
292 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | ||
293 | u64 end_addr; | ||
294 | |||
295 | sg->bytes += dma_len; | ||
296 | |||
297 | end_addr = dma_addr + dma_len; | ||
298 | if (dma_addr & dma_mask) { | ||
299 | if (i > 0) | ||
300 | goto out_unmap; | ||
301 | dma_addr &= ~dma_mask; | ||
302 | } | ||
303 | if (end_addr & dma_mask) { | ||
304 | if (i < sg->dma_len - 1) | ||
305 | goto out_unmap; | ||
306 | end_addr = (end_addr + dma_mask) & ~dma_mask; | ||
307 | } | ||
308 | |||
309 | sg->dma_npages += (end_addr - dma_addr) >> dma_page_shift; | ||
310 | } | ||
311 | |||
312 | /* Now gather the dma addrs into one list */ | ||
313 | if (sg->dma_npages > fastreg_message_size) | ||
314 | goto out_unmap; | ||
315 | |||
316 | dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); | ||
317 | if (!dma_pages) { | ||
318 | ret = -ENOMEM; | ||
319 | goto out_unmap; | ||
320 | } | ||
321 | |||
322 | for (i = j = 0; i < sg->dma_len; ++i) { | ||
323 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | ||
324 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | ||
325 | u64 end_addr; | ||
326 | |||
327 | end_addr = dma_addr + dma_len; | ||
328 | dma_addr &= ~dma_mask; | ||
329 | for (; dma_addr < end_addr; dma_addr += dma_page_size) | ||
330 | dma_pages[j++] = dma_addr; | ||
331 | BUG_ON(j > sg->dma_npages); | ||
332 | } | ||
333 | |||
334 | return dma_pages; | ||
335 | |||
336 | out_unmap: | ||
337 | ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | ||
338 | sg->dma_len = 0; | ||
339 | kfree(dma_pages); | ||
340 | return ERR_PTR(ret); | ||
341 | } | ||
342 | |||
343 | |||
344 | struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) | ||
345 | { | ||
346 | struct rds_iw_mr_pool *pool; | ||
347 | |||
348 | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | ||
349 | if (!pool) { | ||
350 | printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); | ||
351 | return ERR_PTR(-ENOMEM); | ||
352 | } | ||
353 | |||
354 | pool->device = rds_iwdev; | ||
355 | INIT_LIST_HEAD(&pool->dirty_list); | ||
356 | INIT_LIST_HEAD(&pool->clean_list); | ||
357 | mutex_init(&pool->flush_lock); | ||
358 | spin_lock_init(&pool->list_lock); | ||
359 | INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); | ||
360 | |||
361 | pool->max_message_size = fastreg_message_size; | ||
362 | pool->max_items = fastreg_pool_size; | ||
363 | pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; | ||
364 | pool->max_pages = fastreg_message_size; | ||
365 | |||
366 | /* We never allow more than max_items MRs to be allocated. | ||
367 | * When we exceed more than max_items_soft, we start freeing | ||
368 | * items more aggressively. | ||
369 | * Make sure that max_items > max_items_soft > max_items / 2 | ||
370 | */ | ||
371 | pool->max_items_soft = pool->max_items * 3 / 4; | ||
372 | |||
373 | return pool; | ||
374 | } | ||
375 | |||
376 | void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) | ||
377 | { | ||
378 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | ||
379 | |||
380 | iinfo->rdma_mr_max = pool->max_items; | ||
381 | iinfo->rdma_mr_size = pool->max_pages; | ||
382 | } | ||
383 | |||
384 | void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) | ||
385 | { | ||
386 | flush_workqueue(rds_wq); | ||
387 | rds_iw_flush_mr_pool(pool, 1); | ||
388 | BUG_ON(atomic_read(&pool->item_count)); | ||
389 | BUG_ON(atomic_read(&pool->free_pinned)); | ||
390 | kfree(pool); | ||
391 | } | ||
392 | |||
393 | static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) | ||
394 | { | ||
395 | struct rds_iw_mr *ibmr = NULL; | ||
396 | unsigned long flags; | ||
397 | |||
398 | spin_lock_irqsave(&pool->list_lock, flags); | ||
399 | if (!list_empty(&pool->clean_list)) { | ||
400 | ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); | ||
401 | list_del_init(&ibmr->mapping.m_list); | ||
402 | } | ||
403 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
404 | |||
405 | return ibmr; | ||
406 | } | ||
407 | |||
408 | static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) | ||
409 | { | ||
410 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | ||
411 | struct rds_iw_mr *ibmr = NULL; | ||
412 | int err = 0, iter = 0; | ||
413 | |||
414 | while (1) { | ||
415 | ibmr = rds_iw_reuse_fmr(pool); | ||
416 | if (ibmr) | ||
417 | return ibmr; | ||
418 | |||
419 | /* No clean MRs - now we have the choice of either | ||
420 | * allocating a fresh MR up to the limit imposed by the | ||
421 | * driver, or flush any dirty unused MRs. | ||
422 | * We try to avoid stalling in the send path if possible, | ||
423 | * so we allocate as long as we're allowed to. | ||
424 | * | ||
425 | * We're fussy with enforcing the FMR limit, though. If the driver | ||
426 | * tells us we can't use more than N fmrs, we shouldn't start | ||
427 | * arguing with it */ | ||
428 | if (atomic_inc_return(&pool->item_count) <= pool->max_items) | ||
429 | break; | ||
430 | |||
431 | atomic_dec(&pool->item_count); | ||
432 | |||
433 | if (++iter > 2) { | ||
434 | rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); | ||
435 | return ERR_PTR(-EAGAIN); | ||
436 | } | ||
437 | |||
438 | /* We do have some empty MRs. Flush them out. */ | ||
439 | rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); | ||
440 | rds_iw_flush_mr_pool(pool, 0); | ||
441 | } | ||
442 | |||
443 | ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); | ||
444 | if (!ibmr) { | ||
445 | err = -ENOMEM; | ||
446 | goto out_no_cigar; | ||
447 | } | ||
448 | |||
449 | spin_lock_init(&ibmr->mapping.m_lock); | ||
450 | INIT_LIST_HEAD(&ibmr->mapping.m_list); | ||
451 | ibmr->mapping.m_mr = ibmr; | ||
452 | |||
453 | err = rds_iw_init_fastreg(pool, ibmr); | ||
454 | if (err) | ||
455 | goto out_no_cigar; | ||
456 | |||
457 | rds_iw_stats_inc(s_iw_rdma_mr_alloc); | ||
458 | return ibmr; | ||
459 | |||
460 | out_no_cigar: | ||
461 | if (ibmr) { | ||
462 | rds_iw_destroy_fastreg(pool, ibmr); | ||
463 | kfree(ibmr); | ||
464 | } | ||
465 | atomic_dec(&pool->item_count); | ||
466 | return ERR_PTR(err); | ||
467 | } | ||
468 | |||
469 | void rds_iw_sync_mr(void *trans_private, int direction) | ||
470 | { | ||
471 | struct rds_iw_mr *ibmr = trans_private; | ||
472 | struct rds_iw_device *rds_iwdev = ibmr->device; | ||
473 | |||
474 | switch (direction) { | ||
475 | case DMA_FROM_DEVICE: | ||
476 | ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, | ||
477 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | ||
478 | break; | ||
479 | case DMA_TO_DEVICE: | ||
480 | ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, | ||
481 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | ||
482 | break; | ||
483 | } | ||
484 | } | ||
485 | |||
486 | static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all) | ||
487 | { | ||
488 | unsigned int item_count; | ||
489 | |||
490 | item_count = atomic_read(&pool->item_count); | ||
491 | if (free_all) | ||
492 | return item_count; | ||
493 | |||
494 | return 0; | ||
495 | } | ||
496 | |||
497 | /* | ||
498 | * Flush our pool of MRs. | ||
499 | * At a minimum, all currently unused MRs are unmapped. | ||
500 | * If the number of MRs allocated exceeds the limit, we also try | ||
501 | * to free as many MRs as needed to get back to this limit. | ||
502 | */ | ||
503 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) | ||
504 | { | ||
505 | struct rds_iw_mr *ibmr, *next; | ||
506 | LIST_HEAD(unmap_list); | ||
507 | LIST_HEAD(kill_list); | ||
508 | unsigned long flags; | ||
509 | unsigned int nfreed = 0, ncleaned = 0, free_goal; | ||
510 | int ret = 0; | ||
511 | |||
512 | rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); | ||
513 | |||
514 | mutex_lock(&pool->flush_lock); | ||
515 | |||
516 | spin_lock_irqsave(&pool->list_lock, flags); | ||
517 | /* Get the list of all mappings to be destroyed */ | ||
518 | list_splice_init(&pool->dirty_list, &unmap_list); | ||
519 | if (free_all) | ||
520 | list_splice_init(&pool->clean_list, &kill_list); | ||
521 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
522 | |||
523 | free_goal = rds_iw_flush_goal(pool, free_all); | ||
524 | |||
525 | /* Batched invalidate of dirty MRs. | ||
526 | * For FMR based MRs, the mappings on the unmap list are | ||
527 | * actually members of an ibmr (ibmr->mapping). They either | ||
528 | * migrate to the kill_list, or have been cleaned and should be | ||
529 | * moved to the clean_list. | ||
530 | * For fastregs, they will be dynamically allocated, and | ||
531 | * will be destroyed by the unmap function. | ||
532 | */ | ||
533 | if (!list_empty(&unmap_list)) { | ||
534 | ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list); | ||
535 | /* If we've been asked to destroy all MRs, move those | ||
536 | * that were simply cleaned to the kill list */ | ||
537 | if (free_all) | ||
538 | list_splice_init(&unmap_list, &kill_list); | ||
539 | } | ||
540 | |||
541 | /* Destroy any MRs that are past their best before date */ | ||
542 | list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { | ||
543 | rds_iw_stats_inc(s_iw_rdma_mr_free); | ||
544 | list_del(&ibmr->mapping.m_list); | ||
545 | rds_iw_destroy_fastreg(pool, ibmr); | ||
546 | kfree(ibmr); | ||
547 | nfreed++; | ||
548 | } | ||
549 | |||
550 | /* Anything that remains are laundered ibmrs, which we can add | ||
551 | * back to the clean list. */ | ||
552 | if (!list_empty(&unmap_list)) { | ||
553 | spin_lock_irqsave(&pool->list_lock, flags); | ||
554 | list_splice(&unmap_list, &pool->clean_list); | ||
555 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
556 | } | ||
557 | |||
558 | atomic_sub(ncleaned, &pool->dirty_count); | ||
559 | atomic_sub(nfreed, &pool->item_count); | ||
560 | |||
561 | mutex_unlock(&pool->flush_lock); | ||
562 | return ret; | ||
563 | } | ||
564 | |||
565 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work) | ||
566 | { | ||
567 | struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); | ||
568 | |||
569 | rds_iw_flush_mr_pool(pool, 0); | ||
570 | } | ||
571 | |||
572 | void rds_iw_free_mr(void *trans_private, int invalidate) | ||
573 | { | ||
574 | struct rds_iw_mr *ibmr = trans_private; | ||
575 | struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; | ||
576 | |||
577 | rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); | ||
578 | if (!pool) | ||
579 | return; | ||
580 | |||
581 | /* Return it to the pool's free list */ | ||
582 | rds_iw_free_fastreg(pool, ibmr); | ||
583 | |||
584 | /* If we've pinned too many pages, request a flush */ | ||
585 | if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned | ||
586 | || atomic_read(&pool->dirty_count) >= pool->max_items / 10) | ||
587 | queue_work(rds_wq, &pool->flush_worker); | ||
588 | |||
589 | if (invalidate) { | ||
590 | if (likely(!in_interrupt())) { | ||
591 | rds_iw_flush_mr_pool(pool, 0); | ||
592 | } else { | ||
593 | /* We get here if the user created a MR marked | ||
594 | * as use_once and invalidate at the same time. */ | ||
595 | queue_work(rds_wq, &pool->flush_worker); | ||
596 | } | ||
597 | } | ||
598 | } | ||
599 | |||
600 | void rds_iw_flush_mrs(void) | ||
601 | { | ||
602 | struct rds_iw_device *rds_iwdev; | ||
603 | |||
604 | list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { | ||
605 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | ||
606 | |||
607 | if (pool) | ||
608 | rds_iw_flush_mr_pool(pool, 0); | ||
609 | } | ||
610 | } | ||
611 | |||
612 | void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, | ||
613 | struct rds_sock *rs, u32 *key_ret) | ||
614 | { | ||
615 | struct rds_iw_device *rds_iwdev; | ||
616 | struct rds_iw_mr *ibmr = NULL; | ||
617 | struct rdma_cm_id *cm_id; | ||
618 | int ret; | ||
619 | |||
620 | ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); | ||
621 | if (ret || !cm_id) { | ||
622 | ret = -ENODEV; | ||
623 | goto out; | ||
624 | } | ||
625 | |||
626 | if (!rds_iwdev->mr_pool) { | ||
627 | ret = -ENODEV; | ||
628 | goto out; | ||
629 | } | ||
630 | |||
631 | ibmr = rds_iw_alloc_mr(rds_iwdev); | ||
632 | if (IS_ERR(ibmr)) | ||
633 | return ibmr; | ||
634 | |||
635 | ibmr->cm_id = cm_id; | ||
636 | ibmr->device = rds_iwdev; | ||
637 | |||
638 | ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); | ||
639 | if (ret == 0) | ||
640 | *key_ret = ibmr->mr->rkey; | ||
641 | else | ||
642 | printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); | ||
643 | |||
644 | out: | ||
645 | if (ret) { | ||
646 | if (ibmr) | ||
647 | rds_iw_free_mr(ibmr, 0); | ||
648 | ibmr = ERR_PTR(ret); | ||
649 | } | ||
650 | return ibmr; | ||
651 | } | ||
652 | |||
653 | /* | ||
654 | * iWARP fastreg handling | ||
655 | * | ||
656 | * The life cycle of a fastreg registration is a bit different from | ||
657 | * FMRs. | ||
658 | * The idea behind fastreg is to have one MR, to which we bind different | ||
659 | * mappings over time. To avoid stalling on the expensive map and invalidate | ||
660 | * operations, these operations are pipelined on the same send queue on | ||
661 | * which we want to send the message containing the r_key. | ||
662 | * | ||
663 | * This creates a bit of a problem for us, as we do not have the destination | ||
664 | * IP in GET_MR, so the connection must be setup prior to the GET_MR call for | ||
665 | * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit | ||
666 | * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request | ||
667 | * before queuing the SEND. When completions for these arrive, they are | ||
668 | * dispatched to the MR has a bit set showing that RDMa can be performed. | ||
669 | * | ||
670 | * There is another interesting aspect that's related to invalidation. | ||
671 | * The application can request that a mapping is invalidated in FREE_MR. | ||
672 | * The expectation there is that this invalidation step includes ALL | ||
673 | * PREVIOUSLY FREED MRs. | ||
674 | */ | ||
675 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, | ||
676 | struct rds_iw_mr *ibmr) | ||
677 | { | ||
678 | struct rds_iw_device *rds_iwdev = pool->device; | ||
679 | struct ib_fast_reg_page_list *page_list = NULL; | ||
680 | struct ib_mr *mr; | ||
681 | int err; | ||
682 | |||
683 | mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); | ||
684 | if (IS_ERR(mr)) { | ||
685 | err = PTR_ERR(mr); | ||
686 | |||
687 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); | ||
688 | return err; | ||
689 | } | ||
690 | |||
691 | /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages | ||
692 | * is not filled in. | ||
693 | */ | ||
694 | page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); | ||
695 | if (IS_ERR(page_list)) { | ||
696 | err = PTR_ERR(page_list); | ||
697 | |||
698 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); | ||
699 | ib_dereg_mr(mr); | ||
700 | return err; | ||
701 | } | ||
702 | |||
703 | ibmr->page_list = page_list; | ||
704 | ibmr->mr = mr; | ||
705 | return 0; | ||
706 | } | ||
707 | |||
708 | static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) | ||
709 | { | ||
710 | struct rds_iw_mr *ibmr = mapping->m_mr; | ||
711 | struct ib_send_wr f_wr, *failed_wr; | ||
712 | int ret; | ||
713 | |||
714 | /* | ||
715 | * Perform a WR for the fast_reg_mr. Each individual page | ||
716 | * in the sg list is added to the fast reg page list and placed | ||
717 | * inside the fast_reg_mr WR. The key used is a rolling 8bit | ||
718 | * counter, which should guarantee uniqueness. | ||
719 | */ | ||
720 | ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); | ||
721 | mapping->m_rkey = ibmr->mr->rkey; | ||
722 | |||
723 | memset(&f_wr, 0, sizeof(f_wr)); | ||
724 | f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; | ||
725 | f_wr.opcode = IB_WR_FAST_REG_MR; | ||
726 | f_wr.wr.fast_reg.length = mapping->m_sg.bytes; | ||
727 | f_wr.wr.fast_reg.rkey = mapping->m_rkey; | ||
728 | f_wr.wr.fast_reg.page_list = ibmr->page_list; | ||
729 | f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; | ||
730 | f_wr.wr.fast_reg.page_shift = ibmr->device->page_shift; | ||
731 | f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | | ||
732 | IB_ACCESS_REMOTE_READ | | ||
733 | IB_ACCESS_REMOTE_WRITE; | ||
734 | f_wr.wr.fast_reg.iova_start = 0; | ||
735 | f_wr.send_flags = IB_SEND_SIGNALED; | ||
736 | |||
737 | failed_wr = &f_wr; | ||
738 | ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); | ||
739 | BUG_ON(failed_wr != &f_wr); | ||
740 | if (ret && printk_ratelimit()) | ||
741 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | ||
742 | __func__, __LINE__, ret); | ||
743 | return ret; | ||
744 | } | ||
745 | |||
746 | static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) | ||
747 | { | ||
748 | struct ib_send_wr s_wr, *failed_wr; | ||
749 | int ret = 0; | ||
750 | |||
751 | if (!ibmr->cm_id->qp || !ibmr->mr) | ||
752 | goto out; | ||
753 | |||
754 | memset(&s_wr, 0, sizeof(s_wr)); | ||
755 | s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; | ||
756 | s_wr.opcode = IB_WR_LOCAL_INV; | ||
757 | s_wr.ex.invalidate_rkey = ibmr->mr->rkey; | ||
758 | s_wr.send_flags = IB_SEND_SIGNALED; | ||
759 | |||
760 | failed_wr = &s_wr; | ||
761 | ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); | ||
762 | if (ret && printk_ratelimit()) { | ||
763 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | ||
764 | __func__, __LINE__, ret); | ||
765 | goto out; | ||
766 | } | ||
767 | out: | ||
768 | return ret; | ||
769 | } | ||
770 | |||
771 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | ||
772 | struct rds_iw_mr *ibmr, | ||
773 | struct scatterlist *sg, | ||
774 | unsigned int sg_len) | ||
775 | { | ||
776 | struct rds_iw_device *rds_iwdev = pool->device; | ||
777 | struct rds_iw_mapping *mapping = &ibmr->mapping; | ||
778 | u64 *dma_pages; | ||
779 | int i, ret = 0; | ||
780 | |||
781 | rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); | ||
782 | |||
783 | dma_pages = rds_iw_map_scatterlist(rds_iwdev, | ||
784 | &mapping->m_sg, | ||
785 | rds_iwdev->page_shift); | ||
786 | if (IS_ERR(dma_pages)) { | ||
787 | ret = PTR_ERR(dma_pages); | ||
788 | dma_pages = NULL; | ||
789 | goto out; | ||
790 | } | ||
791 | |||
792 | if (mapping->m_sg.dma_len > pool->max_message_size) { | ||
793 | ret = -EMSGSIZE; | ||
794 | goto out; | ||
795 | } | ||
796 | |||
797 | for (i = 0; i < mapping->m_sg.dma_npages; ++i) | ||
798 | ibmr->page_list->page_list[i] = dma_pages[i]; | ||
799 | |||
800 | ret = rds_iw_rdma_build_fastreg(mapping); | ||
801 | if (ret) | ||
802 | goto out; | ||
803 | |||
804 | rds_iw_stats_inc(s_iw_rdma_mr_used); | ||
805 | |||
806 | out: | ||
807 | kfree(dma_pages); | ||
808 | |||
809 | return ret; | ||
810 | } | ||
811 | |||
812 | /* | ||
813 | * "Free" a fastreg MR. | ||
814 | */ | ||
815 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, | ||
816 | struct rds_iw_mr *ibmr) | ||
817 | { | ||
818 | unsigned long flags; | ||
819 | int ret; | ||
820 | |||
821 | if (!ibmr->mapping.m_sg.dma_len) | ||
822 | return; | ||
823 | |||
824 | ret = rds_iw_rdma_fastreg_inv(ibmr); | ||
825 | if (ret) | ||
826 | return; | ||
827 | |||
828 | /* Try to post the LOCAL_INV WR to the queue. */ | ||
829 | spin_lock_irqsave(&pool->list_lock, flags); | ||
830 | |||
831 | list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); | ||
832 | atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); | ||
833 | atomic_inc(&pool->dirty_count); | ||
834 | |||
835 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
836 | } | ||
837 | |||
838 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | ||
839 | struct list_head *unmap_list, | ||
840 | struct list_head *kill_list) | ||
841 | { | ||
842 | struct rds_iw_mapping *mapping, *next; | ||
843 | unsigned int ncleaned = 0; | ||
844 | LIST_HEAD(laundered); | ||
845 | |||
846 | /* Batched invalidation of fastreg MRs. | ||
847 | * Why do we do it this way, even though we could pipeline unmap | ||
848 | * and remap? The reason is the application semantics - when the | ||
849 | * application requests an invalidation of MRs, it expects all | ||
850 | * previously released R_Keys to become invalid. | ||
851 | * | ||
852 | * If we implement MR reuse naively, we risk memory corruption | ||
853 | * (this has actually been observed). So the default behavior | ||
854 | * requires that a MR goes through an explicit unmap operation before | ||
855 | * we can reuse it again. | ||
856 | * | ||
857 | * We could probably improve on this a little, by allowing immediate | ||
858 | * reuse of a MR on the same socket (eg you could add small | ||
859 | * cache of unused MRs to strct rds_socket - GET_MR could grab one | ||
860 | * of these without requiring an explicit invalidate). | ||
861 | */ | ||
862 | while (!list_empty(unmap_list)) { | ||
863 | unsigned long flags; | ||
864 | |||
865 | spin_lock_irqsave(&pool->list_lock, flags); | ||
866 | list_for_each_entry_safe(mapping, next, unmap_list, m_list) { | ||
867 | list_move(&mapping->m_list, &laundered); | ||
868 | ncleaned++; | ||
869 | } | ||
870 | spin_unlock_irqrestore(&pool->list_lock, flags); | ||
871 | } | ||
872 | |||
873 | /* Move all laundered mappings back to the unmap list. | ||
874 | * We do not kill any WRs right now - it doesn't seem the | ||
875 | * fastreg API has a max_remap limit. */ | ||
876 | list_splice_init(&laundered, unmap_list); | ||
877 | |||
878 | return ncleaned; | ||
879 | } | ||
880 | |||
881 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, | ||
882 | struct rds_iw_mr *ibmr) | ||
883 | { | ||
884 | if (ibmr->page_list) | ||
885 | ib_free_fast_reg_page_list(ibmr->page_list); | ||
886 | if (ibmr->mr) | ||
887 | ib_dereg_mr(ibmr->mr); | ||
888 | } | ||