diff options
Diffstat (limited to 'net/irda/af_irda.c')
-rw-r--r-- | net/irda/af_irda.c | 2586 |
1 files changed, 2586 insertions, 0 deletions
diff --git a/net/irda/af_irda.c b/net/irda/af_irda.c new file mode 100644 index 000000000000..92c6e8d4e731 --- /dev/null +++ b/net/irda/af_irda.c | |||
@@ -0,0 +1,2586 @@ | |||
1 | /********************************************************************* | ||
2 | * | ||
3 | * Filename: af_irda.c | ||
4 | * Version: 0.9 | ||
5 | * Description: IrDA sockets implementation | ||
6 | * Status: Stable | ||
7 | * Author: Dag Brattli <dagb@cs.uit.no> | ||
8 | * Created at: Sun May 31 10:12:43 1998 | ||
9 | * Modified at: Sat Dec 25 21:10:23 1999 | ||
10 | * Modified by: Dag Brattli <dag@brattli.net> | ||
11 | * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc. | ||
12 | * | ||
13 | * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no> | ||
14 | * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com> | ||
15 | * All Rights Reserved. | ||
16 | * | ||
17 | * This program is free software; you can redistribute it and/or | ||
18 | * modify it under the terms of the GNU General Public License as | ||
19 | * published by the Free Software Foundation; either version 2 of | ||
20 | * the License, or (at your option) any later version. | ||
21 | * | ||
22 | * This program is distributed in the hope that it will be useful, | ||
23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
25 | * GNU General Public License for more details. | ||
26 | * | ||
27 | * You should have received a copy of the GNU General Public License | ||
28 | * along with this program; if not, write to the Free Software | ||
29 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | ||
30 | * MA 02111-1307 USA | ||
31 | * | ||
32 | * Linux-IrDA now supports four different types of IrDA sockets: | ||
33 | * | ||
34 | * o SOCK_STREAM: TinyTP connections with SAR disabled. The | ||
35 | * max SDU size is 0 for conn. of this type | ||
36 | * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may | ||
37 | * fragment the messages, but will preserve | ||
38 | * the message boundaries | ||
39 | * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata | ||
40 | * (unreliable) transfers | ||
41 | * IRDAPROTO_ULTRA: Connectionless and unreliable data | ||
42 | * | ||
43 | ********************************************************************/ | ||
44 | |||
45 | #include <linux/config.h> | ||
46 | #include <linux/module.h> | ||
47 | #include <linux/types.h> | ||
48 | #include <linux/socket.h> | ||
49 | #include <linux/sockios.h> | ||
50 | #include <linux/init.h> | ||
51 | #include <linux/net.h> | ||
52 | #include <linux/irda.h> | ||
53 | #include <linux/poll.h> | ||
54 | |||
55 | #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */ | ||
56 | #include <asm/uaccess.h> | ||
57 | |||
58 | #include <net/sock.h> | ||
59 | #include <net/tcp.h> | ||
60 | |||
61 | #include <net/irda/af_irda.h> | ||
62 | |||
63 | static int irda_create(struct socket *sock, int protocol); | ||
64 | |||
65 | static struct proto_ops irda_stream_ops; | ||
66 | static struct proto_ops irda_seqpacket_ops; | ||
67 | static struct proto_ops irda_dgram_ops; | ||
68 | |||
69 | #ifdef CONFIG_IRDA_ULTRA | ||
70 | static struct proto_ops irda_ultra_ops; | ||
71 | #define ULTRA_MAX_DATA 382 | ||
72 | #endif /* CONFIG_IRDA_ULTRA */ | ||
73 | |||
74 | #define IRDA_MAX_HEADER (TTP_MAX_HEADER) | ||
75 | |||
76 | /* | ||
77 | * Function irda_data_indication (instance, sap, skb) | ||
78 | * | ||
79 | * Received some data from TinyTP. Just queue it on the receive queue | ||
80 | * | ||
81 | */ | ||
82 | static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb) | ||
83 | { | ||
84 | struct irda_sock *self; | ||
85 | struct sock *sk; | ||
86 | int err; | ||
87 | |||
88 | IRDA_DEBUG(3, "%s()\n", __FUNCTION__); | ||
89 | |||
90 | self = instance; | ||
91 | sk = instance; | ||
92 | IRDA_ASSERT(sk != NULL, return -1;); | ||
93 | |||
94 | err = sock_queue_rcv_skb(sk, skb); | ||
95 | if (err) { | ||
96 | IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__); | ||
97 | self->rx_flow = FLOW_STOP; | ||
98 | |||
99 | /* When we return error, TTP will need to requeue the skb */ | ||
100 | return err; | ||
101 | } | ||
102 | |||
103 | return 0; | ||
104 | } | ||
105 | |||
106 | /* | ||
107 | * Function irda_disconnect_indication (instance, sap, reason, skb) | ||
108 | * | ||
109 | * Connection has been closed. Check reason to find out why | ||
110 | * | ||
111 | */ | ||
112 | static void irda_disconnect_indication(void *instance, void *sap, | ||
113 | LM_REASON reason, struct sk_buff *skb) | ||
114 | { | ||
115 | struct irda_sock *self; | ||
116 | struct sock *sk; | ||
117 | |||
118 | self = instance; | ||
119 | |||
120 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
121 | |||
122 | /* Don't care about it, but let's not leak it */ | ||
123 | if(skb) | ||
124 | dev_kfree_skb(skb); | ||
125 | |||
126 | sk = instance; | ||
127 | if (sk == NULL) { | ||
128 | IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n", | ||
129 | __FUNCTION__, self); | ||
130 | return; | ||
131 | } | ||
132 | |||
133 | /* Prevent race conditions with irda_release() and irda_shutdown() */ | ||
134 | if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) { | ||
135 | sk->sk_state = TCP_CLOSE; | ||
136 | sk->sk_err = ECONNRESET; | ||
137 | sk->sk_shutdown |= SEND_SHUTDOWN; | ||
138 | |||
139 | sk->sk_state_change(sk); | ||
140 | /* Uh-oh... Should use sock_orphan ? */ | ||
141 | sock_set_flag(sk, SOCK_DEAD); | ||
142 | |||
143 | /* Close our TSAP. | ||
144 | * If we leave it open, IrLMP put it back into the list of | ||
145 | * unconnected LSAPs. The problem is that any incoming request | ||
146 | * can then be matched to this socket (and it will be, because | ||
147 | * it is at the head of the list). This would prevent any | ||
148 | * listening socket waiting on the same TSAP to get those | ||
149 | * requests. Some apps forget to close sockets, or hang to it | ||
150 | * a bit too long, so we may stay in this dead state long | ||
151 | * enough to be noticed... | ||
152 | * Note : all socket function do check sk->sk_state, so we are | ||
153 | * safe... | ||
154 | * Jean II | ||
155 | */ | ||
156 | if (self->tsap) { | ||
157 | irttp_close_tsap(self->tsap); | ||
158 | self->tsap = NULL; | ||
159 | } | ||
160 | } | ||
161 | |||
162 | /* Note : once we are there, there is not much you want to do | ||
163 | * with the socket anymore, apart from closing it. | ||
164 | * For example, bind() and connect() won't reset sk->sk_err, | ||
165 | * sk->sk_shutdown and sk->sk_flags to valid values... | ||
166 | * Jean II | ||
167 | */ | ||
168 | } | ||
169 | |||
170 | /* | ||
171 | * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb) | ||
172 | * | ||
173 | * Connections has been confirmed by the remote device | ||
174 | * | ||
175 | */ | ||
176 | static void irda_connect_confirm(void *instance, void *sap, | ||
177 | struct qos_info *qos, | ||
178 | __u32 max_sdu_size, __u8 max_header_size, | ||
179 | struct sk_buff *skb) | ||
180 | { | ||
181 | struct irda_sock *self; | ||
182 | struct sock *sk; | ||
183 | |||
184 | self = instance; | ||
185 | |||
186 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
187 | |||
188 | sk = instance; | ||
189 | if (sk == NULL) { | ||
190 | dev_kfree_skb(skb); | ||
191 | return; | ||
192 | } | ||
193 | |||
194 | dev_kfree_skb(skb); | ||
195 | // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb); | ||
196 | |||
197 | /* How much header space do we need to reserve */ | ||
198 | self->max_header_size = max_header_size; | ||
199 | |||
200 | /* IrTTP max SDU size in transmit direction */ | ||
201 | self->max_sdu_size_tx = max_sdu_size; | ||
202 | |||
203 | /* Find out what the largest chunk of data that we can transmit is */ | ||
204 | switch (sk->sk_type) { | ||
205 | case SOCK_STREAM: | ||
206 | if (max_sdu_size != 0) { | ||
207 | IRDA_ERROR("%s: max_sdu_size must be 0\n", | ||
208 | __FUNCTION__); | ||
209 | return; | ||
210 | } | ||
211 | self->max_data_size = irttp_get_max_seg_size(self->tsap); | ||
212 | break; | ||
213 | case SOCK_SEQPACKET: | ||
214 | if (max_sdu_size == 0) { | ||
215 | IRDA_ERROR("%s: max_sdu_size cannot be 0\n", | ||
216 | __FUNCTION__); | ||
217 | return; | ||
218 | } | ||
219 | self->max_data_size = max_sdu_size; | ||
220 | break; | ||
221 | default: | ||
222 | self->max_data_size = irttp_get_max_seg_size(self->tsap); | ||
223 | }; | ||
224 | |||
225 | IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__, | ||
226 | self->max_data_size); | ||
227 | |||
228 | memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); | ||
229 | |||
230 | /* We are now connected! */ | ||
231 | sk->sk_state = TCP_ESTABLISHED; | ||
232 | sk->sk_state_change(sk); | ||
233 | } | ||
234 | |||
235 | /* | ||
236 | * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata) | ||
237 | * | ||
238 | * Incoming connection | ||
239 | * | ||
240 | */ | ||
241 | static void irda_connect_indication(void *instance, void *sap, | ||
242 | struct qos_info *qos, __u32 max_sdu_size, | ||
243 | __u8 max_header_size, struct sk_buff *skb) | ||
244 | { | ||
245 | struct irda_sock *self; | ||
246 | struct sock *sk; | ||
247 | |||
248 | self = instance; | ||
249 | |||
250 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
251 | |||
252 | sk = instance; | ||
253 | if (sk == NULL) { | ||
254 | dev_kfree_skb(skb); | ||
255 | return; | ||
256 | } | ||
257 | |||
258 | /* How much header space do we need to reserve */ | ||
259 | self->max_header_size = max_header_size; | ||
260 | |||
261 | /* IrTTP max SDU size in transmit direction */ | ||
262 | self->max_sdu_size_tx = max_sdu_size; | ||
263 | |||
264 | /* Find out what the largest chunk of data that we can transmit is */ | ||
265 | switch (sk->sk_type) { | ||
266 | case SOCK_STREAM: | ||
267 | if (max_sdu_size != 0) { | ||
268 | IRDA_ERROR("%s: max_sdu_size must be 0\n", | ||
269 | __FUNCTION__); | ||
270 | kfree_skb(skb); | ||
271 | return; | ||
272 | } | ||
273 | self->max_data_size = irttp_get_max_seg_size(self->tsap); | ||
274 | break; | ||
275 | case SOCK_SEQPACKET: | ||
276 | if (max_sdu_size == 0) { | ||
277 | IRDA_ERROR("%s: max_sdu_size cannot be 0\n", | ||
278 | __FUNCTION__); | ||
279 | kfree_skb(skb); | ||
280 | return; | ||
281 | } | ||
282 | self->max_data_size = max_sdu_size; | ||
283 | break; | ||
284 | default: | ||
285 | self->max_data_size = irttp_get_max_seg_size(self->tsap); | ||
286 | }; | ||
287 | |||
288 | IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__, | ||
289 | self->max_data_size); | ||
290 | |||
291 | memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); | ||
292 | |||
293 | skb_queue_tail(&sk->sk_receive_queue, skb); | ||
294 | sk->sk_state_change(sk); | ||
295 | } | ||
296 | |||
297 | /* | ||
298 | * Function irda_connect_response (handle) | ||
299 | * | ||
300 | * Accept incoming connection | ||
301 | * | ||
302 | */ | ||
303 | static void irda_connect_response(struct irda_sock *self) | ||
304 | { | ||
305 | struct sk_buff *skb; | ||
306 | |||
307 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
308 | |||
309 | IRDA_ASSERT(self != NULL, return;); | ||
310 | |||
311 | skb = dev_alloc_skb(64); | ||
312 | if (skb == NULL) { | ||
313 | IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n", | ||
314 | __FUNCTION__); | ||
315 | return; | ||
316 | } | ||
317 | |||
318 | /* Reserve space for MUX_CONTROL and LAP header */ | ||
319 | skb_reserve(skb, IRDA_MAX_HEADER); | ||
320 | |||
321 | irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb); | ||
322 | } | ||
323 | |||
324 | /* | ||
325 | * Function irda_flow_indication (instance, sap, flow) | ||
326 | * | ||
327 | * Used by TinyTP to tell us if it can accept more data or not | ||
328 | * | ||
329 | */ | ||
330 | static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow) | ||
331 | { | ||
332 | struct irda_sock *self; | ||
333 | struct sock *sk; | ||
334 | |||
335 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
336 | |||
337 | self = instance; | ||
338 | sk = instance; | ||
339 | IRDA_ASSERT(sk != NULL, return;); | ||
340 | |||
341 | switch (flow) { | ||
342 | case FLOW_STOP: | ||
343 | IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n", | ||
344 | __FUNCTION__); | ||
345 | self->tx_flow = flow; | ||
346 | break; | ||
347 | case FLOW_START: | ||
348 | self->tx_flow = flow; | ||
349 | IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n", | ||
350 | __FUNCTION__); | ||
351 | wake_up_interruptible(sk->sk_sleep); | ||
352 | break; | ||
353 | default: | ||
354 | IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__); | ||
355 | /* Unknown flow command, better stop */ | ||
356 | self->tx_flow = flow; | ||
357 | break; | ||
358 | } | ||
359 | } | ||
360 | |||
361 | /* | ||
362 | * Function irda_getvalue_confirm (obj_id, value, priv) | ||
363 | * | ||
364 | * Got answer from remote LM-IAS, just pass object to requester... | ||
365 | * | ||
366 | * Note : duplicate from above, but we need our own version that | ||
367 | * doesn't touch the dtsap_sel and save the full value structure... | ||
368 | */ | ||
369 | static void irda_getvalue_confirm(int result, __u16 obj_id, | ||
370 | struct ias_value *value, void *priv) | ||
371 | { | ||
372 | struct irda_sock *self; | ||
373 | |||
374 | self = (struct irda_sock *) priv; | ||
375 | if (!self) { | ||
376 | IRDA_WARNING("%s: lost myself!\n", __FUNCTION__); | ||
377 | return; | ||
378 | } | ||
379 | |||
380 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
381 | |||
382 | /* We probably don't need to make any more queries */ | ||
383 | iriap_close(self->iriap); | ||
384 | self->iriap = NULL; | ||
385 | |||
386 | /* Check if request succeeded */ | ||
387 | if (result != IAS_SUCCESS) { | ||
388 | IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__, | ||
389 | result); | ||
390 | |||
391 | self->errno = result; /* We really need it later */ | ||
392 | |||
393 | /* Wake up any processes waiting for result */ | ||
394 | wake_up_interruptible(&self->query_wait); | ||
395 | |||
396 | return; | ||
397 | } | ||
398 | |||
399 | /* Pass the object to the caller (so the caller must delete it) */ | ||
400 | self->ias_result = value; | ||
401 | self->errno = 0; | ||
402 | |||
403 | /* Wake up any processes waiting for result */ | ||
404 | wake_up_interruptible(&self->query_wait); | ||
405 | } | ||
406 | |||
407 | /* | ||
408 | * Function irda_selective_discovery_indication (discovery) | ||
409 | * | ||
410 | * Got a selective discovery indication from IrLMP. | ||
411 | * | ||
412 | * IrLMP is telling us that this node is new and matching our hint bit | ||
413 | * filter. Wake up any process waiting for answer... | ||
414 | */ | ||
415 | static void irda_selective_discovery_indication(discinfo_t *discovery, | ||
416 | DISCOVERY_MODE mode, | ||
417 | void *priv) | ||
418 | { | ||
419 | struct irda_sock *self; | ||
420 | |||
421 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
422 | |||
423 | self = (struct irda_sock *) priv; | ||
424 | if (!self) { | ||
425 | IRDA_WARNING("%s: lost myself!\n", __FUNCTION__); | ||
426 | return; | ||
427 | } | ||
428 | |||
429 | /* Pass parameter to the caller */ | ||
430 | self->cachedaddr = discovery->daddr; | ||
431 | |||
432 | /* Wake up process if its waiting for device to be discovered */ | ||
433 | wake_up_interruptible(&self->query_wait); | ||
434 | } | ||
435 | |||
436 | /* | ||
437 | * Function irda_discovery_timeout (priv) | ||
438 | * | ||
439 | * Timeout in the selective discovery process | ||
440 | * | ||
441 | * We were waiting for a node to be discovered, but nothing has come up | ||
442 | * so far. Wake up the user and tell him that we failed... | ||
443 | */ | ||
444 | static void irda_discovery_timeout(u_long priv) | ||
445 | { | ||
446 | struct irda_sock *self; | ||
447 | |||
448 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
449 | |||
450 | self = (struct irda_sock *) priv; | ||
451 | IRDA_ASSERT(self != NULL, return;); | ||
452 | |||
453 | /* Nothing for the caller */ | ||
454 | self->cachelog = NULL; | ||
455 | self->cachedaddr = 0; | ||
456 | self->errno = -ETIME; | ||
457 | |||
458 | /* Wake up process if its still waiting... */ | ||
459 | wake_up_interruptible(&self->query_wait); | ||
460 | } | ||
461 | |||
462 | /* | ||
463 | * Function irda_open_tsap (self) | ||
464 | * | ||
465 | * Open local Transport Service Access Point (TSAP) | ||
466 | * | ||
467 | */ | ||
468 | static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name) | ||
469 | { | ||
470 | notify_t notify; | ||
471 | |||
472 | if (self->tsap) { | ||
473 | IRDA_WARNING("%s: busy!\n", __FUNCTION__); | ||
474 | return -EBUSY; | ||
475 | } | ||
476 | |||
477 | /* Initialize callbacks to be used by the IrDA stack */ | ||
478 | irda_notify_init(¬ify); | ||
479 | notify.connect_confirm = irda_connect_confirm; | ||
480 | notify.connect_indication = irda_connect_indication; | ||
481 | notify.disconnect_indication = irda_disconnect_indication; | ||
482 | notify.data_indication = irda_data_indication; | ||
483 | notify.udata_indication = irda_data_indication; | ||
484 | notify.flow_indication = irda_flow_indication; | ||
485 | notify.instance = self; | ||
486 | strncpy(notify.name, name, NOTIFY_MAX_NAME); | ||
487 | |||
488 | self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT, | ||
489 | ¬ify); | ||
490 | if (self->tsap == NULL) { | ||
491 | IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n", | ||
492 | __FUNCTION__); | ||
493 | return -ENOMEM; | ||
494 | } | ||
495 | /* Remember which TSAP selector we actually got */ | ||
496 | self->stsap_sel = self->tsap->stsap_sel; | ||
497 | |||
498 | return 0; | ||
499 | } | ||
500 | |||
501 | /* | ||
502 | * Function irda_open_lsap (self) | ||
503 | * | ||
504 | * Open local Link Service Access Point (LSAP). Used for opening Ultra | ||
505 | * sockets | ||
506 | */ | ||
507 | #ifdef CONFIG_IRDA_ULTRA | ||
508 | static int irda_open_lsap(struct irda_sock *self, int pid) | ||
509 | { | ||
510 | notify_t notify; | ||
511 | |||
512 | if (self->lsap) { | ||
513 | IRDA_WARNING("%s(), busy!\n", __FUNCTION__); | ||
514 | return -EBUSY; | ||
515 | } | ||
516 | |||
517 | /* Initialize callbacks to be used by the IrDA stack */ | ||
518 | irda_notify_init(¬ify); | ||
519 | notify.udata_indication = irda_data_indication; | ||
520 | notify.instance = self; | ||
521 | strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME); | ||
522 | |||
523 | self->lsap = irlmp_open_lsap(LSAP_CONNLESS, ¬ify, pid); | ||
524 | if (self->lsap == NULL) { | ||
525 | IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__); | ||
526 | return -ENOMEM; | ||
527 | } | ||
528 | |||
529 | return 0; | ||
530 | } | ||
531 | #endif /* CONFIG_IRDA_ULTRA */ | ||
532 | |||
533 | /* | ||
534 | * Function irda_find_lsap_sel (self, name) | ||
535 | * | ||
536 | * Try to lookup LSAP selector in remote LM-IAS | ||
537 | * | ||
538 | * Basically, we start a IAP query, and then go to sleep. When the query | ||
539 | * return, irda_getvalue_confirm will wake us up, and we can examine the | ||
540 | * result of the query... | ||
541 | * Note that in some case, the query fail even before we go to sleep, | ||
542 | * creating some races... | ||
543 | */ | ||
544 | static int irda_find_lsap_sel(struct irda_sock *self, char *name) | ||
545 | { | ||
546 | IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name); | ||
547 | |||
548 | IRDA_ASSERT(self != NULL, return -1;); | ||
549 | |||
550 | if (self->iriap) { | ||
551 | IRDA_WARNING("%s(): busy with a previous query\n", | ||
552 | __FUNCTION__); | ||
553 | return -EBUSY; | ||
554 | } | ||
555 | |||
556 | self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, | ||
557 | irda_getvalue_confirm); | ||
558 | if(self->iriap == NULL) | ||
559 | return -ENOMEM; | ||
560 | |||
561 | /* Treat unexpected wakeup as disconnect */ | ||
562 | self->errno = -EHOSTUNREACH; | ||
563 | |||
564 | /* Query remote LM-IAS */ | ||
565 | iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr, | ||
566 | name, "IrDA:TinyTP:LsapSel"); | ||
567 | |||
568 | /* Wait for answer, if not yet finished (or failed) */ | ||
569 | if (wait_event_interruptible(self->query_wait, (self->iriap==NULL))) | ||
570 | /* Treat signals as disconnect */ | ||
571 | return -EHOSTUNREACH; | ||
572 | |||
573 | /* Check what happened */ | ||
574 | if (self->errno) | ||
575 | { | ||
576 | /* Requested object/attribute doesn't exist */ | ||
577 | if((self->errno == IAS_CLASS_UNKNOWN) || | ||
578 | (self->errno == IAS_ATTRIB_UNKNOWN)) | ||
579 | return (-EADDRNOTAVAIL); | ||
580 | else | ||
581 | return (-EHOSTUNREACH); | ||
582 | } | ||
583 | |||
584 | /* Get the remote TSAP selector */ | ||
585 | switch (self->ias_result->type) { | ||
586 | case IAS_INTEGER: | ||
587 | IRDA_DEBUG(4, "%s() int=%d\n", | ||
588 | __FUNCTION__, self->ias_result->t.integer); | ||
589 | |||
590 | if (self->ias_result->t.integer != -1) | ||
591 | self->dtsap_sel = self->ias_result->t.integer; | ||
592 | else | ||
593 | self->dtsap_sel = 0; | ||
594 | break; | ||
595 | default: | ||
596 | self->dtsap_sel = 0; | ||
597 | IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__); | ||
598 | break; | ||
599 | } | ||
600 | if (self->ias_result) | ||
601 | irias_delete_value(self->ias_result); | ||
602 | |||
603 | if (self->dtsap_sel) | ||
604 | return 0; | ||
605 | |||
606 | return -EADDRNOTAVAIL; | ||
607 | } | ||
608 | |||
609 | /* | ||
610 | * Function irda_discover_daddr_and_lsap_sel (self, name) | ||
611 | * | ||
612 | * This try to find a device with the requested service. | ||
613 | * | ||
614 | * It basically look into the discovery log. For each address in the list, | ||
615 | * it queries the LM-IAS of the device to find if this device offer | ||
616 | * the requested service. | ||
617 | * If there is more than one node supporting the service, we complain | ||
618 | * to the user (it should move devices around). | ||
619 | * The, we set both the destination address and the lsap selector to point | ||
620 | * on the service on the unique device we have found. | ||
621 | * | ||
622 | * Note : this function fails if there is more than one device in range, | ||
623 | * because IrLMP doesn't disconnect the LAP when the last LSAP is closed. | ||
624 | * Moreover, we would need to wait the LAP disconnection... | ||
625 | */ | ||
626 | static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name) | ||
627 | { | ||
628 | discinfo_t *discoveries; /* Copy of the discovery log */ | ||
629 | int number; /* Number of nodes in the log */ | ||
630 | int i; | ||
631 | int err = -ENETUNREACH; | ||
632 | __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */ | ||
633 | __u8 dtsap_sel = 0x0; /* TSAP associated with it */ | ||
634 | |||
635 | IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name); | ||
636 | |||
637 | IRDA_ASSERT(self != NULL, return -1;); | ||
638 | |||
639 | /* Ask lmp for the current discovery log | ||
640 | * Note : we have to use irlmp_get_discoveries(), as opposed | ||
641 | * to play with the cachelog directly, because while we are | ||
642 | * making our ias query, le log might change... */ | ||
643 | discoveries = irlmp_get_discoveries(&number, self->mask.word, | ||
644 | self->nslots); | ||
645 | /* Check if the we got some results */ | ||
646 | if (discoveries == NULL) | ||
647 | return -ENETUNREACH; /* No nodes discovered */ | ||
648 | |||
649 | /* | ||
650 | * Now, check all discovered devices (if any), and connect | ||
651 | * client only about the services that the client is | ||
652 | * interested in... | ||
653 | */ | ||
654 | for(i = 0; i < number; i++) { | ||
655 | /* Try the address in the log */ | ||
656 | self->daddr = discoveries[i].daddr; | ||
657 | self->saddr = 0x0; | ||
658 | IRDA_DEBUG(1, "%s(), trying daddr = %08x\n", | ||
659 | __FUNCTION__, self->daddr); | ||
660 | |||
661 | /* Query remote LM-IAS for this service */ | ||
662 | err = irda_find_lsap_sel(self, name); | ||
663 | switch (err) { | ||
664 | case 0: | ||
665 | /* We found the requested service */ | ||
666 | if(daddr != DEV_ADDR_ANY) { | ||
667 | IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n", | ||
668 | __FUNCTION__, name); | ||
669 | self->daddr = DEV_ADDR_ANY; | ||
670 | kfree(discoveries); | ||
671 | return(-ENOTUNIQ); | ||
672 | } | ||
673 | /* First time we found that one, save it ! */ | ||
674 | daddr = self->daddr; | ||
675 | dtsap_sel = self->dtsap_sel; | ||
676 | break; | ||
677 | case -EADDRNOTAVAIL: | ||
678 | /* Requested service simply doesn't exist on this node */ | ||
679 | break; | ||
680 | default: | ||
681 | /* Something bad did happen :-( */ | ||
682 | IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__); | ||
683 | self->daddr = DEV_ADDR_ANY; | ||
684 | kfree(discoveries); | ||
685 | return(-EHOSTUNREACH); | ||
686 | break; | ||
687 | } | ||
688 | } | ||
689 | /* Cleanup our copy of the discovery log */ | ||
690 | kfree(discoveries); | ||
691 | |||
692 | /* Check out what we found */ | ||
693 | if(daddr == DEV_ADDR_ANY) { | ||
694 | IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n", | ||
695 | __FUNCTION__, name); | ||
696 | self->daddr = DEV_ADDR_ANY; | ||
697 | return(-EADDRNOTAVAIL); | ||
698 | } | ||
699 | |||
700 | /* Revert back to discovered device & service */ | ||
701 | self->daddr = daddr; | ||
702 | self->saddr = 0x0; | ||
703 | self->dtsap_sel = dtsap_sel; | ||
704 | |||
705 | IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n", | ||
706 | __FUNCTION__, name, self->daddr); | ||
707 | |||
708 | return 0; | ||
709 | } | ||
710 | |||
711 | /* | ||
712 | * Function irda_getname (sock, uaddr, uaddr_len, peer) | ||
713 | * | ||
714 | * Return the our own, or peers socket address (sockaddr_irda) | ||
715 | * | ||
716 | */ | ||
717 | static int irda_getname(struct socket *sock, struct sockaddr *uaddr, | ||
718 | int *uaddr_len, int peer) | ||
719 | { | ||
720 | struct sockaddr_irda saddr; | ||
721 | struct sock *sk = sock->sk; | ||
722 | struct irda_sock *self = irda_sk(sk); | ||
723 | |||
724 | if (peer) { | ||
725 | if (sk->sk_state != TCP_ESTABLISHED) | ||
726 | return -ENOTCONN; | ||
727 | |||
728 | saddr.sir_family = AF_IRDA; | ||
729 | saddr.sir_lsap_sel = self->dtsap_sel; | ||
730 | saddr.sir_addr = self->daddr; | ||
731 | } else { | ||
732 | saddr.sir_family = AF_IRDA; | ||
733 | saddr.sir_lsap_sel = self->stsap_sel; | ||
734 | saddr.sir_addr = self->saddr; | ||
735 | } | ||
736 | |||
737 | IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel); | ||
738 | IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr); | ||
739 | |||
740 | /* uaddr_len come to us uninitialised */ | ||
741 | *uaddr_len = sizeof (struct sockaddr_irda); | ||
742 | memcpy(uaddr, &saddr, *uaddr_len); | ||
743 | |||
744 | return 0; | ||
745 | } | ||
746 | |||
747 | /* | ||
748 | * Function irda_listen (sock, backlog) | ||
749 | * | ||
750 | * Just move to the listen state | ||
751 | * | ||
752 | */ | ||
753 | static int irda_listen(struct socket *sock, int backlog) | ||
754 | { | ||
755 | struct sock *sk = sock->sk; | ||
756 | |||
757 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
758 | |||
759 | if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && | ||
760 | (sk->sk_type != SOCK_DGRAM)) | ||
761 | return -EOPNOTSUPP; | ||
762 | |||
763 | if (sk->sk_state != TCP_LISTEN) { | ||
764 | sk->sk_max_ack_backlog = backlog; | ||
765 | sk->sk_state = TCP_LISTEN; | ||
766 | |||
767 | return 0; | ||
768 | } | ||
769 | |||
770 | return -EOPNOTSUPP; | ||
771 | } | ||
772 | |||
773 | /* | ||
774 | * Function irda_bind (sock, uaddr, addr_len) | ||
775 | * | ||
776 | * Used by servers to register their well known TSAP | ||
777 | * | ||
778 | */ | ||
779 | static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) | ||
780 | { | ||
781 | struct sock *sk = sock->sk; | ||
782 | struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; | ||
783 | struct irda_sock *self = irda_sk(sk); | ||
784 | int err; | ||
785 | |||
786 | IRDA_ASSERT(self != NULL, return -1;); | ||
787 | |||
788 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
789 | |||
790 | if (addr_len != sizeof(struct sockaddr_irda)) | ||
791 | return -EINVAL; | ||
792 | |||
793 | #ifdef CONFIG_IRDA_ULTRA | ||
794 | /* Special care for Ultra sockets */ | ||
795 | if ((sk->sk_type == SOCK_DGRAM) && | ||
796 | (sk->sk_protocol == IRDAPROTO_ULTRA)) { | ||
797 | self->pid = addr->sir_lsap_sel; | ||
798 | if (self->pid & 0x80) { | ||
799 | IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__); | ||
800 | return -EOPNOTSUPP; | ||
801 | } | ||
802 | err = irda_open_lsap(self, self->pid); | ||
803 | if (err < 0) | ||
804 | return err; | ||
805 | |||
806 | /* Pretend we are connected */ | ||
807 | sock->state = SS_CONNECTED; | ||
808 | sk->sk_state = TCP_ESTABLISHED; | ||
809 | |||
810 | return 0; | ||
811 | } | ||
812 | #endif /* CONFIG_IRDA_ULTRA */ | ||
813 | |||
814 | err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name); | ||
815 | if (err < 0) | ||
816 | return err; | ||
817 | |||
818 | /* Register with LM-IAS */ | ||
819 | self->ias_obj = irias_new_object(addr->sir_name, jiffies); | ||
820 | irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel", | ||
821 | self->stsap_sel, IAS_KERNEL_ATTR); | ||
822 | irias_insert_object(self->ias_obj); | ||
823 | |||
824 | return 0; | ||
825 | } | ||
826 | |||
827 | /* | ||
828 | * Function irda_accept (sock, newsock, flags) | ||
829 | * | ||
830 | * Wait for incoming connection | ||
831 | * | ||
832 | */ | ||
833 | static int irda_accept(struct socket *sock, struct socket *newsock, int flags) | ||
834 | { | ||
835 | struct sock *sk = sock->sk; | ||
836 | struct irda_sock *new, *self = irda_sk(sk); | ||
837 | struct sock *newsk; | ||
838 | struct sk_buff *skb; | ||
839 | int err; | ||
840 | |||
841 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
842 | |||
843 | IRDA_ASSERT(self != NULL, return -1;); | ||
844 | |||
845 | err = irda_create(newsock, sk->sk_protocol); | ||
846 | if (err) | ||
847 | return err; | ||
848 | |||
849 | if (sock->state != SS_UNCONNECTED) | ||
850 | return -EINVAL; | ||
851 | |||
852 | if ((sk = sock->sk) == NULL) | ||
853 | return -EINVAL; | ||
854 | |||
855 | if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && | ||
856 | (sk->sk_type != SOCK_DGRAM)) | ||
857 | return -EOPNOTSUPP; | ||
858 | |||
859 | if (sk->sk_state != TCP_LISTEN) | ||
860 | return -EINVAL; | ||
861 | |||
862 | /* | ||
863 | * The read queue this time is holding sockets ready to use | ||
864 | * hooked into the SABM we saved | ||
865 | */ | ||
866 | |||
867 | /* | ||
868 | * We can perform the accept only if there is incoming data | ||
869 | * on the listening socket. | ||
870 | * So, we will block the caller until we receive any data. | ||
871 | * If the caller was waiting on select() or poll() before | ||
872 | * calling us, the data is waiting for us ;-) | ||
873 | * Jean II | ||
874 | */ | ||
875 | skb = skb_dequeue(&sk->sk_receive_queue); | ||
876 | if (skb == NULL) { | ||
877 | int ret = 0; | ||
878 | DECLARE_WAITQUEUE(waitq, current); | ||
879 | |||
880 | /* Non blocking operation */ | ||
881 | if (flags & O_NONBLOCK) | ||
882 | return -EWOULDBLOCK; | ||
883 | |||
884 | /* The following code is a cut'n'paste of the | ||
885 | * wait_event_interruptible() macro. | ||
886 | * We don't us the macro because the condition has | ||
887 | * side effects : we want to make sure that only one | ||
888 | * skb get dequeued - Jean II */ | ||
889 | add_wait_queue(sk->sk_sleep, &waitq); | ||
890 | for (;;) { | ||
891 | set_current_state(TASK_INTERRUPTIBLE); | ||
892 | skb = skb_dequeue(&sk->sk_receive_queue); | ||
893 | if (skb != NULL) | ||
894 | break; | ||
895 | if (!signal_pending(current)) { | ||
896 | schedule(); | ||
897 | continue; | ||
898 | } | ||
899 | ret = -ERESTARTSYS; | ||
900 | break; | ||
901 | } | ||
902 | current->state = TASK_RUNNING; | ||
903 | remove_wait_queue(sk->sk_sleep, &waitq); | ||
904 | if(ret) | ||
905 | return -ERESTARTSYS; | ||
906 | } | ||
907 | |||
908 | newsk = newsock->sk; | ||
909 | newsk->sk_state = TCP_ESTABLISHED; | ||
910 | |||
911 | new = irda_sk(newsk); | ||
912 | IRDA_ASSERT(new != NULL, return -1;); | ||
913 | |||
914 | /* Now attach up the new socket */ | ||
915 | new->tsap = irttp_dup(self->tsap, new); | ||
916 | if (!new->tsap) { | ||
917 | IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__); | ||
918 | kfree_skb(skb); | ||
919 | return -1; | ||
920 | } | ||
921 | |||
922 | new->stsap_sel = new->tsap->stsap_sel; | ||
923 | new->dtsap_sel = new->tsap->dtsap_sel; | ||
924 | new->saddr = irttp_get_saddr(new->tsap); | ||
925 | new->daddr = irttp_get_daddr(new->tsap); | ||
926 | |||
927 | new->max_sdu_size_tx = self->max_sdu_size_tx; | ||
928 | new->max_sdu_size_rx = self->max_sdu_size_rx; | ||
929 | new->max_data_size = self->max_data_size; | ||
930 | new->max_header_size = self->max_header_size; | ||
931 | |||
932 | memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info)); | ||
933 | |||
934 | /* Clean up the original one to keep it in listen state */ | ||
935 | irttp_listen(self->tsap); | ||
936 | |||
937 | /* Wow ! What is that ? Jean II */ | ||
938 | skb->sk = NULL; | ||
939 | skb->destructor = NULL; | ||
940 | kfree_skb(skb); | ||
941 | sk->sk_ack_backlog--; | ||
942 | |||
943 | newsock->state = SS_CONNECTED; | ||
944 | |||
945 | irda_connect_response(new); | ||
946 | |||
947 | return 0; | ||
948 | } | ||
949 | |||
950 | /* | ||
951 | * Function irda_connect (sock, uaddr, addr_len, flags) | ||
952 | * | ||
953 | * Connect to a IrDA device | ||
954 | * | ||
955 | * The main difference with a "standard" connect is that with IrDA we need | ||
956 | * to resolve the service name into a TSAP selector (in TCP, port number | ||
957 | * doesn't have to be resolved). | ||
958 | * Because of this service name resoltion, we can offer "auto-connect", | ||
959 | * where we connect to a service without specifying a destination address. | ||
960 | * | ||
961 | * Note : by consulting "errno", the user space caller may learn the cause | ||
962 | * of the failure. Most of them are visible in the function, others may come | ||
963 | * from subroutines called and are listed here : | ||
964 | * o EBUSY : already processing a connect | ||
965 | * o EHOSTUNREACH : bad addr->sir_addr argument | ||
966 | * o EADDRNOTAVAIL : bad addr->sir_name argument | ||
967 | * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect) | ||
968 | * o ENETUNREACH : no node found on the network (auto-connect) | ||
969 | */ | ||
970 | static int irda_connect(struct socket *sock, struct sockaddr *uaddr, | ||
971 | int addr_len, int flags) | ||
972 | { | ||
973 | struct sock *sk = sock->sk; | ||
974 | struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; | ||
975 | struct irda_sock *self = irda_sk(sk); | ||
976 | int err; | ||
977 | |||
978 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
979 | |||
980 | /* Don't allow connect for Ultra sockets */ | ||
981 | if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA)) | ||
982 | return -ESOCKTNOSUPPORT; | ||
983 | |||
984 | if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { | ||
985 | sock->state = SS_CONNECTED; | ||
986 | return 0; /* Connect completed during a ERESTARTSYS event */ | ||
987 | } | ||
988 | |||
989 | if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { | ||
990 | sock->state = SS_UNCONNECTED; | ||
991 | return -ECONNREFUSED; | ||
992 | } | ||
993 | |||
994 | if (sk->sk_state == TCP_ESTABLISHED) | ||
995 | return -EISCONN; /* No reconnect on a seqpacket socket */ | ||
996 | |||
997 | sk->sk_state = TCP_CLOSE; | ||
998 | sock->state = SS_UNCONNECTED; | ||
999 | |||
1000 | if (addr_len != sizeof(struct sockaddr_irda)) | ||
1001 | return -EINVAL; | ||
1002 | |||
1003 | /* Check if user supplied any destination device address */ | ||
1004 | if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) { | ||
1005 | /* Try to find one suitable */ | ||
1006 | err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name); | ||
1007 | if (err) { | ||
1008 | IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__); | ||
1009 | return err; | ||
1010 | } | ||
1011 | } else { | ||
1012 | /* Use the one provided by the user */ | ||
1013 | self->daddr = addr->sir_addr; | ||
1014 | IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr); | ||
1015 | |||
1016 | /* If we don't have a valid service name, we assume the | ||
1017 | * user want to connect on a specific LSAP. Prevent | ||
1018 | * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */ | ||
1019 | if((addr->sir_name[0] != '\0') || | ||
1020 | (addr->sir_lsap_sel >= 0x70)) { | ||
1021 | /* Query remote LM-IAS using service name */ | ||
1022 | err = irda_find_lsap_sel(self, addr->sir_name); | ||
1023 | if (err) { | ||
1024 | IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__); | ||
1025 | return err; | ||
1026 | } | ||
1027 | } else { | ||
1028 | /* Directly connect to the remote LSAP | ||
1029 | * specified by the sir_lsap field. | ||
1030 | * Please use with caution, in IrDA LSAPs are | ||
1031 | * dynamic and there is no "well-known" LSAP. */ | ||
1032 | self->dtsap_sel = addr->sir_lsap_sel; | ||
1033 | } | ||
1034 | } | ||
1035 | |||
1036 | /* Check if we have opened a local TSAP */ | ||
1037 | if (!self->tsap) | ||
1038 | irda_open_tsap(self, LSAP_ANY, addr->sir_name); | ||
1039 | |||
1040 | /* Move to connecting socket, start sending Connect Requests */ | ||
1041 | sock->state = SS_CONNECTING; | ||
1042 | sk->sk_state = TCP_SYN_SENT; | ||
1043 | |||
1044 | /* Connect to remote device */ | ||
1045 | err = irttp_connect_request(self->tsap, self->dtsap_sel, | ||
1046 | self->saddr, self->daddr, NULL, | ||
1047 | self->max_sdu_size_rx, NULL); | ||
1048 | if (err) { | ||
1049 | IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__); | ||
1050 | return err; | ||
1051 | } | ||
1052 | |||
1053 | /* Now the loop */ | ||
1054 | if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) | ||
1055 | return -EINPROGRESS; | ||
1056 | |||
1057 | if (wait_event_interruptible(*(sk->sk_sleep), | ||
1058 | (sk->sk_state != TCP_SYN_SENT))) | ||
1059 | return -ERESTARTSYS; | ||
1060 | |||
1061 | if (sk->sk_state != TCP_ESTABLISHED) { | ||
1062 | sock->state = SS_UNCONNECTED; | ||
1063 | return sock_error(sk); /* Always set at this point */ | ||
1064 | } | ||
1065 | |||
1066 | sock->state = SS_CONNECTED; | ||
1067 | |||
1068 | /* At this point, IrLMP has assigned our source address */ | ||
1069 | self->saddr = irttp_get_saddr(self->tsap); | ||
1070 | |||
1071 | return 0; | ||
1072 | } | ||
1073 | |||
1074 | static struct proto irda_proto = { | ||
1075 | .name = "IRDA", | ||
1076 | .owner = THIS_MODULE, | ||
1077 | .obj_size = sizeof(struct irda_sock), | ||
1078 | }; | ||
1079 | |||
1080 | /* | ||
1081 | * Function irda_create (sock, protocol) | ||
1082 | * | ||
1083 | * Create IrDA socket | ||
1084 | * | ||
1085 | */ | ||
1086 | static int irda_create(struct socket *sock, int protocol) | ||
1087 | { | ||
1088 | struct sock *sk; | ||
1089 | struct irda_sock *self; | ||
1090 | |||
1091 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
1092 | |||
1093 | /* Check for valid socket type */ | ||
1094 | switch (sock->type) { | ||
1095 | case SOCK_STREAM: /* For TTP connections with SAR disabled */ | ||
1096 | case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */ | ||
1097 | case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */ | ||
1098 | break; | ||
1099 | default: | ||
1100 | return -ESOCKTNOSUPPORT; | ||
1101 | } | ||
1102 | |||
1103 | /* Allocate networking socket */ | ||
1104 | sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1); | ||
1105 | if (sk == NULL) | ||
1106 | return -ENOMEM; | ||
1107 | |||
1108 | self = irda_sk(sk); | ||
1109 | IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self); | ||
1110 | |||
1111 | init_waitqueue_head(&self->query_wait); | ||
1112 | |||
1113 | /* Initialise networking socket struct */ | ||
1114 | sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */ | ||
1115 | sk->sk_family = PF_IRDA; | ||
1116 | sk->sk_protocol = protocol; | ||
1117 | |||
1118 | switch (sock->type) { | ||
1119 | case SOCK_STREAM: | ||
1120 | sock->ops = &irda_stream_ops; | ||
1121 | self->max_sdu_size_rx = TTP_SAR_DISABLE; | ||
1122 | break; | ||
1123 | case SOCK_SEQPACKET: | ||
1124 | sock->ops = &irda_seqpacket_ops; | ||
1125 | self->max_sdu_size_rx = TTP_SAR_UNBOUND; | ||
1126 | break; | ||
1127 | case SOCK_DGRAM: | ||
1128 | switch (protocol) { | ||
1129 | #ifdef CONFIG_IRDA_ULTRA | ||
1130 | case IRDAPROTO_ULTRA: | ||
1131 | sock->ops = &irda_ultra_ops; | ||
1132 | /* Initialise now, because we may send on unbound | ||
1133 | * sockets. Jean II */ | ||
1134 | self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER; | ||
1135 | self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER; | ||
1136 | break; | ||
1137 | #endif /* CONFIG_IRDA_ULTRA */ | ||
1138 | case IRDAPROTO_UNITDATA: | ||
1139 | sock->ops = &irda_dgram_ops; | ||
1140 | /* We let Unitdata conn. be like seqpack conn. */ | ||
1141 | self->max_sdu_size_rx = TTP_SAR_UNBOUND; | ||
1142 | break; | ||
1143 | default: | ||
1144 | IRDA_ERROR("%s: protocol not supported!\n", | ||
1145 | __FUNCTION__); | ||
1146 | return -ESOCKTNOSUPPORT; | ||
1147 | } | ||
1148 | break; | ||
1149 | default: | ||
1150 | return -ESOCKTNOSUPPORT; | ||
1151 | } | ||
1152 | |||
1153 | /* Register as a client with IrLMP */ | ||
1154 | self->ckey = irlmp_register_client(0, NULL, NULL, NULL); | ||
1155 | self->mask.word = 0xffff; | ||
1156 | self->rx_flow = self->tx_flow = FLOW_START; | ||
1157 | self->nslots = DISCOVERY_DEFAULT_SLOTS; | ||
1158 | self->daddr = DEV_ADDR_ANY; /* Until we get connected */ | ||
1159 | self->saddr = 0x0; /* so IrLMP assign us any link */ | ||
1160 | return 0; | ||
1161 | } | ||
1162 | |||
1163 | /* | ||
1164 | * Function irda_destroy_socket (self) | ||
1165 | * | ||
1166 | * Destroy socket | ||
1167 | * | ||
1168 | */ | ||
1169 | static void irda_destroy_socket(struct irda_sock *self) | ||
1170 | { | ||
1171 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
1172 | |||
1173 | IRDA_ASSERT(self != NULL, return;); | ||
1174 | |||
1175 | /* Unregister with IrLMP */ | ||
1176 | irlmp_unregister_client(self->ckey); | ||
1177 | irlmp_unregister_service(self->skey); | ||
1178 | |||
1179 | /* Unregister with LM-IAS */ | ||
1180 | if (self->ias_obj) { | ||
1181 | irias_delete_object(self->ias_obj); | ||
1182 | self->ias_obj = NULL; | ||
1183 | } | ||
1184 | |||
1185 | if (self->iriap) { | ||
1186 | iriap_close(self->iriap); | ||
1187 | self->iriap = NULL; | ||
1188 | } | ||
1189 | |||
1190 | if (self->tsap) { | ||
1191 | irttp_disconnect_request(self->tsap, NULL, P_NORMAL); | ||
1192 | irttp_close_tsap(self->tsap); | ||
1193 | self->tsap = NULL; | ||
1194 | } | ||
1195 | #ifdef CONFIG_IRDA_ULTRA | ||
1196 | if (self->lsap) { | ||
1197 | irlmp_close_lsap(self->lsap); | ||
1198 | self->lsap = NULL; | ||
1199 | } | ||
1200 | #endif /* CONFIG_IRDA_ULTRA */ | ||
1201 | } | ||
1202 | |||
1203 | /* | ||
1204 | * Function irda_release (sock) | ||
1205 | */ | ||
1206 | static int irda_release(struct socket *sock) | ||
1207 | { | ||
1208 | struct sock *sk = sock->sk; | ||
1209 | |||
1210 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
1211 | |||
1212 | if (sk == NULL) | ||
1213 | return 0; | ||
1214 | |||
1215 | sk->sk_state = TCP_CLOSE; | ||
1216 | sk->sk_shutdown |= SEND_SHUTDOWN; | ||
1217 | sk->sk_state_change(sk); | ||
1218 | |||
1219 | /* Destroy IrDA socket */ | ||
1220 | irda_destroy_socket(irda_sk(sk)); | ||
1221 | |||
1222 | sock_orphan(sk); | ||
1223 | sock->sk = NULL; | ||
1224 | |||
1225 | /* Purge queues (see sock_init_data()) */ | ||
1226 | skb_queue_purge(&sk->sk_receive_queue); | ||
1227 | |||
1228 | /* Destroy networking socket if we are the last reference on it, | ||
1229 | * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */ | ||
1230 | sock_put(sk); | ||
1231 | |||
1232 | /* Notes on socket locking and deallocation... - Jean II | ||
1233 | * In theory we should put pairs of sock_hold() / sock_put() to | ||
1234 | * prevent the socket to be destroyed whenever there is an | ||
1235 | * outstanding request or outstanding incoming packet or event. | ||
1236 | * | ||
1237 | * 1) This may include IAS request, both in connect and getsockopt. | ||
1238 | * Unfortunately, the situation is a bit more messy than it looks, | ||
1239 | * because we close iriap and kfree(self) above. | ||
1240 | * | ||
1241 | * 2) This may include selective discovery in getsockopt. | ||
1242 | * Same stuff as above, irlmp registration and self are gone. | ||
1243 | * | ||
1244 | * Probably 1 and 2 may not matter, because it's all triggered | ||
1245 | * by a process and the socket layer already prevent the | ||
1246 | * socket to go away while a process is holding it, through | ||
1247 | * sockfd_put() and fput()... | ||
1248 | * | ||
1249 | * 3) This may include deferred TSAP closure. In particular, | ||
1250 | * we may receive a late irda_disconnect_indication() | ||
1251 | * Fortunately, (tsap_cb *)->close_pend should protect us | ||
1252 | * from that. | ||
1253 | * | ||
1254 | * I did some testing on SMP, and it looks solid. And the socket | ||
1255 | * memory leak is now gone... - Jean II | ||
1256 | */ | ||
1257 | |||
1258 | return 0; | ||
1259 | } | ||
1260 | |||
1261 | /* | ||
1262 | * Function irda_sendmsg (iocb, sock, msg, len) | ||
1263 | * | ||
1264 | * Send message down to TinyTP. This function is used for both STREAM and | ||
1265 | * SEQPACK services. This is possible since it forces the client to | ||
1266 | * fragment the message if necessary | ||
1267 | */ | ||
1268 | static int irda_sendmsg(struct kiocb *iocb, struct socket *sock, | ||
1269 | struct msghdr *msg, size_t len) | ||
1270 | { | ||
1271 | struct sock *sk = sock->sk; | ||
1272 | struct irda_sock *self; | ||
1273 | struct sk_buff *skb; | ||
1274 | unsigned char *asmptr; | ||
1275 | int err; | ||
1276 | |||
1277 | IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); | ||
1278 | |||
1279 | /* Note : socket.c set MSG_EOR on SEQPACKET sockets */ | ||
1280 | if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) | ||
1281 | return -EINVAL; | ||
1282 | |||
1283 | if (sk->sk_shutdown & SEND_SHUTDOWN) { | ||
1284 | send_sig(SIGPIPE, current, 0); | ||
1285 | return -EPIPE; | ||
1286 | } | ||
1287 | |||
1288 | if (sk->sk_state != TCP_ESTABLISHED) | ||
1289 | return -ENOTCONN; | ||
1290 | |||
1291 | self = irda_sk(sk); | ||
1292 | IRDA_ASSERT(self != NULL, return -1;); | ||
1293 | |||
1294 | /* Check if IrTTP is wants us to slow down */ | ||
1295 | |||
1296 | if (wait_event_interruptible(*(sk->sk_sleep), | ||
1297 | (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) | ||
1298 | return -ERESTARTSYS; | ||
1299 | |||
1300 | /* Check if we are still connected */ | ||
1301 | if (sk->sk_state != TCP_ESTABLISHED) | ||
1302 | return -ENOTCONN; | ||
1303 | |||
1304 | /* Check that we don't send out to big frames */ | ||
1305 | if (len > self->max_data_size) { | ||
1306 | IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n", | ||
1307 | __FUNCTION__, len, self->max_data_size); | ||
1308 | len = self->max_data_size; | ||
1309 | } | ||
1310 | |||
1311 | skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16, | ||
1312 | msg->msg_flags & MSG_DONTWAIT, &err); | ||
1313 | if (!skb) | ||
1314 | return -ENOBUFS; | ||
1315 | |||
1316 | skb_reserve(skb, self->max_header_size + 16); | ||
1317 | |||
1318 | asmptr = skb->h.raw = skb_put(skb, len); | ||
1319 | err = memcpy_fromiovec(asmptr, msg->msg_iov, len); | ||
1320 | if (err) { | ||
1321 | kfree_skb(skb); | ||
1322 | return err; | ||
1323 | } | ||
1324 | |||
1325 | /* | ||
1326 | * Just send the message to TinyTP, and let it deal with possible | ||
1327 | * errors. No need to duplicate all that here | ||
1328 | */ | ||
1329 | err = irttp_data_request(self->tsap, skb); | ||
1330 | if (err) { | ||
1331 | IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); | ||
1332 | return err; | ||
1333 | } | ||
1334 | /* Tell client how much data we actually sent */ | ||
1335 | return len; | ||
1336 | } | ||
1337 | |||
1338 | /* | ||
1339 | * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags) | ||
1340 | * | ||
1341 | * Try to receive message and copy it to user. The frame is discarded | ||
1342 | * after being read, regardless of how much the user actually read | ||
1343 | */ | ||
1344 | static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock, | ||
1345 | struct msghdr *msg, size_t size, int flags) | ||
1346 | { | ||
1347 | struct sock *sk = sock->sk; | ||
1348 | struct irda_sock *self = irda_sk(sk); | ||
1349 | struct sk_buff *skb; | ||
1350 | size_t copied; | ||
1351 | int err; | ||
1352 | |||
1353 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
1354 | |||
1355 | IRDA_ASSERT(self != NULL, return -1;); | ||
1356 | |||
1357 | skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, | ||
1358 | flags & MSG_DONTWAIT, &err); | ||
1359 | if (!skb) | ||
1360 | return err; | ||
1361 | |||
1362 | skb->h.raw = skb->data; | ||
1363 | copied = skb->len; | ||
1364 | |||
1365 | if (copied > size) { | ||
1366 | IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n", | ||
1367 | __FUNCTION__, copied, size); | ||
1368 | copied = size; | ||
1369 | msg->msg_flags |= MSG_TRUNC; | ||
1370 | } | ||
1371 | skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); | ||
1372 | |||
1373 | skb_free_datagram(sk, skb); | ||
1374 | |||
1375 | /* | ||
1376 | * Check if we have previously stopped IrTTP and we know | ||
1377 | * have more free space in our rx_queue. If so tell IrTTP | ||
1378 | * to start delivering frames again before our rx_queue gets | ||
1379 | * empty | ||
1380 | */ | ||
1381 | if (self->rx_flow == FLOW_STOP) { | ||
1382 | if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { | ||
1383 | IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__); | ||
1384 | self->rx_flow = FLOW_START; | ||
1385 | irttp_flow_request(self->tsap, FLOW_START); | ||
1386 | } | ||
1387 | } | ||
1388 | |||
1389 | return copied; | ||
1390 | } | ||
1391 | |||
1392 | /* | ||
1393 | * Function irda_recvmsg_stream (iocb, sock, msg, size, flags) | ||
1394 | */ | ||
1395 | static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock, | ||
1396 | struct msghdr *msg, size_t size, int flags) | ||
1397 | { | ||
1398 | struct sock *sk = sock->sk; | ||
1399 | struct irda_sock *self = irda_sk(sk); | ||
1400 | int noblock = flags & MSG_DONTWAIT; | ||
1401 | size_t copied = 0; | ||
1402 | int target = 1; | ||
1403 | DECLARE_WAITQUEUE(waitq, current); | ||
1404 | |||
1405 | IRDA_DEBUG(3, "%s()\n", __FUNCTION__); | ||
1406 | |||
1407 | IRDA_ASSERT(self != NULL, return -1;); | ||
1408 | |||
1409 | if (sock->flags & __SO_ACCEPTCON) | ||
1410 | return(-EINVAL); | ||
1411 | |||
1412 | if (flags & MSG_OOB) | ||
1413 | return -EOPNOTSUPP; | ||
1414 | |||
1415 | if (flags & MSG_WAITALL) | ||
1416 | target = size; | ||
1417 | |||
1418 | msg->msg_namelen = 0; | ||
1419 | |||
1420 | do { | ||
1421 | int chunk; | ||
1422 | struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue); | ||
1423 | |||
1424 | if (skb==NULL) { | ||
1425 | int ret = 0; | ||
1426 | |||
1427 | if (copied >= target) | ||
1428 | break; | ||
1429 | |||
1430 | /* The following code is a cut'n'paste of the | ||
1431 | * wait_event_interruptible() macro. | ||
1432 | * We don't us the macro because the test condition | ||
1433 | * is messy. - Jean II */ | ||
1434 | set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); | ||
1435 | add_wait_queue(sk->sk_sleep, &waitq); | ||
1436 | set_current_state(TASK_INTERRUPTIBLE); | ||
1437 | |||
1438 | /* | ||
1439 | * POSIX 1003.1g mandates this order. | ||
1440 | */ | ||
1441 | if (sk->sk_err) | ||
1442 | ret = sock_error(sk); | ||
1443 | else if (sk->sk_shutdown & RCV_SHUTDOWN) | ||
1444 | ; | ||
1445 | else if (noblock) | ||
1446 | ret = -EAGAIN; | ||
1447 | else if (signal_pending(current)) | ||
1448 | ret = -ERESTARTSYS; | ||
1449 | else if (skb_peek(&sk->sk_receive_queue) == NULL) | ||
1450 | /* Wait process until data arrives */ | ||
1451 | schedule(); | ||
1452 | |||
1453 | current->state = TASK_RUNNING; | ||
1454 | remove_wait_queue(sk->sk_sleep, &waitq); | ||
1455 | clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); | ||
1456 | |||
1457 | if(ret) | ||
1458 | return(ret); | ||
1459 | if (sk->sk_shutdown & RCV_SHUTDOWN) | ||
1460 | break; | ||
1461 | |||
1462 | continue; | ||
1463 | } | ||
1464 | |||
1465 | chunk = min_t(unsigned int, skb->len, size); | ||
1466 | if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { | ||
1467 | skb_queue_head(&sk->sk_receive_queue, skb); | ||
1468 | if (copied == 0) | ||
1469 | copied = -EFAULT; | ||
1470 | break; | ||
1471 | } | ||
1472 | copied += chunk; | ||
1473 | size -= chunk; | ||
1474 | |||
1475 | /* Mark read part of skb as used */ | ||
1476 | if (!(flags & MSG_PEEK)) { | ||
1477 | skb_pull(skb, chunk); | ||
1478 | |||
1479 | /* put the skb back if we didn't use it up.. */ | ||
1480 | if (skb->len) { | ||
1481 | IRDA_DEBUG(1, "%s(), back on q!\n", | ||
1482 | __FUNCTION__); | ||
1483 | skb_queue_head(&sk->sk_receive_queue, skb); | ||
1484 | break; | ||
1485 | } | ||
1486 | |||
1487 | kfree_skb(skb); | ||
1488 | } else { | ||
1489 | IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__); | ||
1490 | |||
1491 | /* put message back and return */ | ||
1492 | skb_queue_head(&sk->sk_receive_queue, skb); | ||
1493 | break; | ||
1494 | } | ||
1495 | } while (size); | ||
1496 | |||
1497 | /* | ||
1498 | * Check if we have previously stopped IrTTP and we know | ||
1499 | * have more free space in our rx_queue. If so tell IrTTP | ||
1500 | * to start delivering frames again before our rx_queue gets | ||
1501 | * empty | ||
1502 | */ | ||
1503 | if (self->rx_flow == FLOW_STOP) { | ||
1504 | if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { | ||
1505 | IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__); | ||
1506 | self->rx_flow = FLOW_START; | ||
1507 | irttp_flow_request(self->tsap, FLOW_START); | ||
1508 | } | ||
1509 | } | ||
1510 | |||
1511 | return copied; | ||
1512 | } | ||
1513 | |||
1514 | /* | ||
1515 | * Function irda_sendmsg_dgram (iocb, sock, msg, len) | ||
1516 | * | ||
1517 | * Send message down to TinyTP for the unreliable sequenced | ||
1518 | * packet service... | ||
1519 | * | ||
1520 | */ | ||
1521 | static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock, | ||
1522 | struct msghdr *msg, size_t len) | ||
1523 | { | ||
1524 | struct sock *sk = sock->sk; | ||
1525 | struct irda_sock *self; | ||
1526 | struct sk_buff *skb; | ||
1527 | unsigned char *asmptr; | ||
1528 | int err; | ||
1529 | |||
1530 | IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); | ||
1531 | |||
1532 | if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) | ||
1533 | return -EINVAL; | ||
1534 | |||
1535 | if (sk->sk_shutdown & SEND_SHUTDOWN) { | ||
1536 | send_sig(SIGPIPE, current, 0); | ||
1537 | return -EPIPE; | ||
1538 | } | ||
1539 | |||
1540 | if (sk->sk_state != TCP_ESTABLISHED) | ||
1541 | return -ENOTCONN; | ||
1542 | |||
1543 | self = irda_sk(sk); | ||
1544 | IRDA_ASSERT(self != NULL, return -1;); | ||
1545 | |||
1546 | /* | ||
1547 | * Check that we don't send out to big frames. This is an unreliable | ||
1548 | * service, so we have no fragmentation and no coalescence | ||
1549 | */ | ||
1550 | if (len > self->max_data_size) { | ||
1551 | IRDA_DEBUG(0, "%s(), Warning to much data! " | ||
1552 | "Chopping frame from %zd to %d bytes!\n", | ||
1553 | __FUNCTION__, len, self->max_data_size); | ||
1554 | len = self->max_data_size; | ||
1555 | } | ||
1556 | |||
1557 | skb = sock_alloc_send_skb(sk, len + self->max_header_size, | ||
1558 | msg->msg_flags & MSG_DONTWAIT, &err); | ||
1559 | if (!skb) | ||
1560 | return -ENOBUFS; | ||
1561 | |||
1562 | skb_reserve(skb, self->max_header_size); | ||
1563 | |||
1564 | IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__); | ||
1565 | asmptr = skb->h.raw = skb_put(skb, len); | ||
1566 | err = memcpy_fromiovec(asmptr, msg->msg_iov, len); | ||
1567 | if (err) { | ||
1568 | kfree_skb(skb); | ||
1569 | return err; | ||
1570 | } | ||
1571 | |||
1572 | /* | ||
1573 | * Just send the message to TinyTP, and let it deal with possible | ||
1574 | * errors. No need to duplicate all that here | ||
1575 | */ | ||
1576 | err = irttp_udata_request(self->tsap, skb); | ||
1577 | if (err) { | ||
1578 | IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); | ||
1579 | return err; | ||
1580 | } | ||
1581 | return len; | ||
1582 | } | ||
1583 | |||
1584 | /* | ||
1585 | * Function irda_sendmsg_ultra (iocb, sock, msg, len) | ||
1586 | * | ||
1587 | * Send message down to IrLMP for the unreliable Ultra | ||
1588 | * packet service... | ||
1589 | */ | ||
1590 | #ifdef CONFIG_IRDA_ULTRA | ||
1591 | static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock, | ||
1592 | struct msghdr *msg, size_t len) | ||
1593 | { | ||
1594 | struct sock *sk = sock->sk; | ||
1595 | struct irda_sock *self; | ||
1596 | __u8 pid = 0; | ||
1597 | int bound = 0; | ||
1598 | struct sk_buff *skb; | ||
1599 | unsigned char *asmptr; | ||
1600 | int err; | ||
1601 | |||
1602 | IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); | ||
1603 | |||
1604 | if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) | ||
1605 | return -EINVAL; | ||
1606 | |||
1607 | if (sk->sk_shutdown & SEND_SHUTDOWN) { | ||
1608 | send_sig(SIGPIPE, current, 0); | ||
1609 | return -EPIPE; | ||
1610 | } | ||
1611 | |||
1612 | self = irda_sk(sk); | ||
1613 | IRDA_ASSERT(self != NULL, return -1;); | ||
1614 | |||
1615 | /* Check if an address was specified with sendto. Jean II */ | ||
1616 | if (msg->msg_name) { | ||
1617 | struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name; | ||
1618 | /* Check address, extract pid. Jean II */ | ||
1619 | if (msg->msg_namelen < sizeof(*addr)) | ||
1620 | return -EINVAL; | ||
1621 | if (addr->sir_family != AF_IRDA) | ||
1622 | return -EINVAL; | ||
1623 | |||
1624 | pid = addr->sir_lsap_sel; | ||
1625 | if (pid & 0x80) { | ||
1626 | IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__); | ||
1627 | return -EOPNOTSUPP; | ||
1628 | } | ||
1629 | } else { | ||
1630 | /* Check that the socket is properly bound to an Ultra | ||
1631 | * port. Jean II */ | ||
1632 | if ((self->lsap == NULL) || | ||
1633 | (sk->sk_state != TCP_ESTABLISHED)) { | ||
1634 | IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n", | ||
1635 | __FUNCTION__); | ||
1636 | return -ENOTCONN; | ||
1637 | } | ||
1638 | /* Use PID from socket */ | ||
1639 | bound = 1; | ||
1640 | } | ||
1641 | |||
1642 | /* | ||
1643 | * Check that we don't send out to big frames. This is an unreliable | ||
1644 | * service, so we have no fragmentation and no coalescence | ||
1645 | */ | ||
1646 | if (len > self->max_data_size) { | ||
1647 | IRDA_DEBUG(0, "%s(), Warning to much data! " | ||
1648 | "Chopping frame from %zd to %d bytes!\n", | ||
1649 | __FUNCTION__, len, self->max_data_size); | ||
1650 | len = self->max_data_size; | ||
1651 | } | ||
1652 | |||
1653 | skb = sock_alloc_send_skb(sk, len + self->max_header_size, | ||
1654 | msg->msg_flags & MSG_DONTWAIT, &err); | ||
1655 | if (!skb) | ||
1656 | return -ENOBUFS; | ||
1657 | |||
1658 | skb_reserve(skb, self->max_header_size); | ||
1659 | |||
1660 | IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__); | ||
1661 | asmptr = skb->h.raw = skb_put(skb, len); | ||
1662 | err = memcpy_fromiovec(asmptr, msg->msg_iov, len); | ||
1663 | if (err) { | ||
1664 | kfree_skb(skb); | ||
1665 | return err; | ||
1666 | } | ||
1667 | |||
1668 | err = irlmp_connless_data_request((bound ? self->lsap : NULL), | ||
1669 | skb, pid); | ||
1670 | if (err) { | ||
1671 | IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); | ||
1672 | return err; | ||
1673 | } | ||
1674 | return len; | ||
1675 | } | ||
1676 | #endif /* CONFIG_IRDA_ULTRA */ | ||
1677 | |||
1678 | /* | ||
1679 | * Function irda_shutdown (sk, how) | ||
1680 | */ | ||
1681 | static int irda_shutdown(struct socket *sock, int how) | ||
1682 | { | ||
1683 | struct sock *sk = sock->sk; | ||
1684 | struct irda_sock *self = irda_sk(sk); | ||
1685 | |||
1686 | IRDA_ASSERT(self != NULL, return -1;); | ||
1687 | |||
1688 | IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self); | ||
1689 | |||
1690 | sk->sk_state = TCP_CLOSE; | ||
1691 | sk->sk_shutdown |= SEND_SHUTDOWN; | ||
1692 | sk->sk_state_change(sk); | ||
1693 | |||
1694 | if (self->iriap) { | ||
1695 | iriap_close(self->iriap); | ||
1696 | self->iriap = NULL; | ||
1697 | } | ||
1698 | |||
1699 | if (self->tsap) { | ||
1700 | irttp_disconnect_request(self->tsap, NULL, P_NORMAL); | ||
1701 | irttp_close_tsap(self->tsap); | ||
1702 | self->tsap = NULL; | ||
1703 | } | ||
1704 | |||
1705 | /* A few cleanup so the socket look as good as new... */ | ||
1706 | self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */ | ||
1707 | self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */ | ||
1708 | self->saddr = 0x0; /* so IrLMP assign us any link */ | ||
1709 | |||
1710 | return 0; | ||
1711 | } | ||
1712 | |||
1713 | /* | ||
1714 | * Function irda_poll (file, sock, wait) | ||
1715 | */ | ||
1716 | static unsigned int irda_poll(struct file * file, struct socket *sock, | ||
1717 | poll_table *wait) | ||
1718 | { | ||
1719 | struct sock *sk = sock->sk; | ||
1720 | struct irda_sock *self = irda_sk(sk); | ||
1721 | unsigned int mask; | ||
1722 | |||
1723 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
1724 | |||
1725 | poll_wait(file, sk->sk_sleep, wait); | ||
1726 | mask = 0; | ||
1727 | |||
1728 | /* Exceptional events? */ | ||
1729 | if (sk->sk_err) | ||
1730 | mask |= POLLERR; | ||
1731 | if (sk->sk_shutdown & RCV_SHUTDOWN) { | ||
1732 | IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__); | ||
1733 | mask |= POLLHUP; | ||
1734 | } | ||
1735 | |||
1736 | /* Readable? */ | ||
1737 | if (!skb_queue_empty(&sk->sk_receive_queue)) { | ||
1738 | IRDA_DEBUG(4, "Socket is readable\n"); | ||
1739 | mask |= POLLIN | POLLRDNORM; | ||
1740 | } | ||
1741 | |||
1742 | /* Connection-based need to check for termination and startup */ | ||
1743 | switch (sk->sk_type) { | ||
1744 | case SOCK_STREAM: | ||
1745 | if (sk->sk_state == TCP_CLOSE) { | ||
1746 | IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__); | ||
1747 | mask |= POLLHUP; | ||
1748 | } | ||
1749 | |||
1750 | if (sk->sk_state == TCP_ESTABLISHED) { | ||
1751 | if ((self->tx_flow == FLOW_START) && | ||
1752 | sock_writeable(sk)) | ||
1753 | { | ||
1754 | mask |= POLLOUT | POLLWRNORM | POLLWRBAND; | ||
1755 | } | ||
1756 | } | ||
1757 | break; | ||
1758 | case SOCK_SEQPACKET: | ||
1759 | if ((self->tx_flow == FLOW_START) && | ||
1760 | sock_writeable(sk)) | ||
1761 | { | ||
1762 | mask |= POLLOUT | POLLWRNORM | POLLWRBAND; | ||
1763 | } | ||
1764 | break; | ||
1765 | case SOCK_DGRAM: | ||
1766 | if (sock_writeable(sk)) | ||
1767 | mask |= POLLOUT | POLLWRNORM | POLLWRBAND; | ||
1768 | break; | ||
1769 | default: | ||
1770 | break; | ||
1771 | } | ||
1772 | return mask; | ||
1773 | } | ||
1774 | |||
1775 | /* | ||
1776 | * Function irda_ioctl (sock, cmd, arg) | ||
1777 | */ | ||
1778 | static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) | ||
1779 | { | ||
1780 | struct sock *sk = sock->sk; | ||
1781 | |||
1782 | IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd); | ||
1783 | |||
1784 | switch (cmd) { | ||
1785 | case TIOCOUTQ: { | ||
1786 | long amount; | ||
1787 | amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); | ||
1788 | if (amount < 0) | ||
1789 | amount = 0; | ||
1790 | if (put_user(amount, (unsigned int __user *)arg)) | ||
1791 | return -EFAULT; | ||
1792 | return 0; | ||
1793 | } | ||
1794 | |||
1795 | case TIOCINQ: { | ||
1796 | struct sk_buff *skb; | ||
1797 | long amount = 0L; | ||
1798 | /* These two are safe on a single CPU system as only user tasks fiddle here */ | ||
1799 | if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) | ||
1800 | amount = skb->len; | ||
1801 | if (put_user(amount, (unsigned int __user *)arg)) | ||
1802 | return -EFAULT; | ||
1803 | return 0; | ||
1804 | } | ||
1805 | |||
1806 | case SIOCGSTAMP: | ||
1807 | if (sk != NULL) | ||
1808 | return sock_get_timestamp(sk, (struct timeval __user *)arg); | ||
1809 | return -EINVAL; | ||
1810 | |||
1811 | case SIOCGIFADDR: | ||
1812 | case SIOCSIFADDR: | ||
1813 | case SIOCGIFDSTADDR: | ||
1814 | case SIOCSIFDSTADDR: | ||
1815 | case SIOCGIFBRDADDR: | ||
1816 | case SIOCSIFBRDADDR: | ||
1817 | case SIOCGIFNETMASK: | ||
1818 | case SIOCSIFNETMASK: | ||
1819 | case SIOCGIFMETRIC: | ||
1820 | case SIOCSIFMETRIC: | ||
1821 | return -EINVAL; | ||
1822 | default: | ||
1823 | IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__); | ||
1824 | return dev_ioctl(cmd, (void __user *) arg); | ||
1825 | } | ||
1826 | |||
1827 | /*NOTREACHED*/ | ||
1828 | return 0; | ||
1829 | } | ||
1830 | |||
1831 | /* | ||
1832 | * Function irda_setsockopt (sock, level, optname, optval, optlen) | ||
1833 | * | ||
1834 | * Set some options for the socket | ||
1835 | * | ||
1836 | */ | ||
1837 | static int irda_setsockopt(struct socket *sock, int level, int optname, | ||
1838 | char __user *optval, int optlen) | ||
1839 | { | ||
1840 | struct sock *sk = sock->sk; | ||
1841 | struct irda_sock *self = irda_sk(sk); | ||
1842 | struct irda_ias_set *ias_opt; | ||
1843 | struct ias_object *ias_obj; | ||
1844 | struct ias_attrib * ias_attr; /* Attribute in IAS object */ | ||
1845 | int opt; | ||
1846 | |||
1847 | IRDA_ASSERT(self != NULL, return -1;); | ||
1848 | |||
1849 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
1850 | |||
1851 | if (level != SOL_IRLMP) | ||
1852 | return -ENOPROTOOPT; | ||
1853 | |||
1854 | switch (optname) { | ||
1855 | case IRLMP_IAS_SET: | ||
1856 | /* The user want to add an attribute to an existing IAS object | ||
1857 | * (in the IAS database) or to create a new object with this | ||
1858 | * attribute. | ||
1859 | * We first query IAS to know if the object exist, and then | ||
1860 | * create the right attribute... | ||
1861 | */ | ||
1862 | |||
1863 | if (optlen != sizeof(struct irda_ias_set)) | ||
1864 | return -EINVAL; | ||
1865 | |||
1866 | ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); | ||
1867 | if (ias_opt == NULL) | ||
1868 | return -ENOMEM; | ||
1869 | |||
1870 | /* Copy query to the driver. */ | ||
1871 | if (copy_from_user(ias_opt, optval, optlen)) { | ||
1872 | kfree(ias_opt); | ||
1873 | return -EFAULT; | ||
1874 | } | ||
1875 | |||
1876 | /* Find the object we target. | ||
1877 | * If the user gives us an empty string, we use the object | ||
1878 | * associated with this socket. This will workaround | ||
1879 | * duplicated class name - Jean II */ | ||
1880 | if(ias_opt->irda_class_name[0] == '\0') { | ||
1881 | if(self->ias_obj == NULL) { | ||
1882 | kfree(ias_opt); | ||
1883 | return -EINVAL; | ||
1884 | } | ||
1885 | ias_obj = self->ias_obj; | ||
1886 | } else | ||
1887 | ias_obj = irias_find_object(ias_opt->irda_class_name); | ||
1888 | |||
1889 | /* Only ROOT can mess with the global IAS database. | ||
1890 | * Users can only add attributes to the object associated | ||
1891 | * with the socket they own - Jean II */ | ||
1892 | if((!capable(CAP_NET_ADMIN)) && | ||
1893 | ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { | ||
1894 | kfree(ias_opt); | ||
1895 | return -EPERM; | ||
1896 | } | ||
1897 | |||
1898 | /* If the object doesn't exist, create it */ | ||
1899 | if(ias_obj == (struct ias_object *) NULL) { | ||
1900 | /* Create a new object */ | ||
1901 | ias_obj = irias_new_object(ias_opt->irda_class_name, | ||
1902 | jiffies); | ||
1903 | } | ||
1904 | |||
1905 | /* Do we have the attribute already ? */ | ||
1906 | if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) { | ||
1907 | kfree(ias_opt); | ||
1908 | return -EINVAL; | ||
1909 | } | ||
1910 | |||
1911 | /* Look at the type */ | ||
1912 | switch(ias_opt->irda_attrib_type) { | ||
1913 | case IAS_INTEGER: | ||
1914 | /* Add an integer attribute */ | ||
1915 | irias_add_integer_attrib( | ||
1916 | ias_obj, | ||
1917 | ias_opt->irda_attrib_name, | ||
1918 | ias_opt->attribute.irda_attrib_int, | ||
1919 | IAS_USER_ATTR); | ||
1920 | break; | ||
1921 | case IAS_OCT_SEQ: | ||
1922 | /* Check length */ | ||
1923 | if(ias_opt->attribute.irda_attrib_octet_seq.len > | ||
1924 | IAS_MAX_OCTET_STRING) { | ||
1925 | kfree(ias_opt); | ||
1926 | return -EINVAL; | ||
1927 | } | ||
1928 | /* Add an octet sequence attribute */ | ||
1929 | irias_add_octseq_attrib( | ||
1930 | ias_obj, | ||
1931 | ias_opt->irda_attrib_name, | ||
1932 | ias_opt->attribute.irda_attrib_octet_seq.octet_seq, | ||
1933 | ias_opt->attribute.irda_attrib_octet_seq.len, | ||
1934 | IAS_USER_ATTR); | ||
1935 | break; | ||
1936 | case IAS_STRING: | ||
1937 | /* Should check charset & co */ | ||
1938 | /* Check length */ | ||
1939 | /* The length is encoded in a __u8, and | ||
1940 | * IAS_MAX_STRING == 256, so there is no way | ||
1941 | * userspace can pass us a string too large. | ||
1942 | * Jean II */ | ||
1943 | /* NULL terminate the string (avoid troubles) */ | ||
1944 | ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0'; | ||
1945 | /* Add a string attribute */ | ||
1946 | irias_add_string_attrib( | ||
1947 | ias_obj, | ||
1948 | ias_opt->irda_attrib_name, | ||
1949 | ias_opt->attribute.irda_attrib_string.string, | ||
1950 | IAS_USER_ATTR); | ||
1951 | break; | ||
1952 | default : | ||
1953 | kfree(ias_opt); | ||
1954 | return -EINVAL; | ||
1955 | } | ||
1956 | irias_insert_object(ias_obj); | ||
1957 | kfree(ias_opt); | ||
1958 | break; | ||
1959 | case IRLMP_IAS_DEL: | ||
1960 | /* The user want to delete an object from our local IAS | ||
1961 | * database. We just need to query the IAS, check is the | ||
1962 | * object is not owned by the kernel and delete it. | ||
1963 | */ | ||
1964 | |||
1965 | if (optlen != sizeof(struct irda_ias_set)) | ||
1966 | return -EINVAL; | ||
1967 | |||
1968 | ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); | ||
1969 | if (ias_opt == NULL) | ||
1970 | return -ENOMEM; | ||
1971 | |||
1972 | /* Copy query to the driver. */ | ||
1973 | if (copy_from_user(ias_opt, optval, optlen)) { | ||
1974 | kfree(ias_opt); | ||
1975 | return -EFAULT; | ||
1976 | } | ||
1977 | |||
1978 | /* Find the object we target. | ||
1979 | * If the user gives us an empty string, we use the object | ||
1980 | * associated with this socket. This will workaround | ||
1981 | * duplicated class name - Jean II */ | ||
1982 | if(ias_opt->irda_class_name[0] == '\0') | ||
1983 | ias_obj = self->ias_obj; | ||
1984 | else | ||
1985 | ias_obj = irias_find_object(ias_opt->irda_class_name); | ||
1986 | if(ias_obj == (struct ias_object *) NULL) { | ||
1987 | kfree(ias_opt); | ||
1988 | return -EINVAL; | ||
1989 | } | ||
1990 | |||
1991 | /* Only ROOT can mess with the global IAS database. | ||
1992 | * Users can only del attributes from the object associated | ||
1993 | * with the socket they own - Jean II */ | ||
1994 | if((!capable(CAP_NET_ADMIN)) && | ||
1995 | ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { | ||
1996 | kfree(ias_opt); | ||
1997 | return -EPERM; | ||
1998 | } | ||
1999 | |||
2000 | /* Find the attribute (in the object) we target */ | ||
2001 | ias_attr = irias_find_attrib(ias_obj, | ||
2002 | ias_opt->irda_attrib_name); | ||
2003 | if(ias_attr == (struct ias_attrib *) NULL) { | ||
2004 | kfree(ias_opt); | ||
2005 | return -EINVAL; | ||
2006 | } | ||
2007 | |||
2008 | /* Check is the user space own the object */ | ||
2009 | if(ias_attr->value->owner != IAS_USER_ATTR) { | ||
2010 | IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__); | ||
2011 | kfree(ias_opt); | ||
2012 | return -EPERM; | ||
2013 | } | ||
2014 | |||
2015 | /* Remove the attribute (and maybe the object) */ | ||
2016 | irias_delete_attrib(ias_obj, ias_attr, 1); | ||
2017 | kfree(ias_opt); | ||
2018 | break; | ||
2019 | case IRLMP_MAX_SDU_SIZE: | ||
2020 | if (optlen < sizeof(int)) | ||
2021 | return -EINVAL; | ||
2022 | |||
2023 | if (get_user(opt, (int __user *)optval)) | ||
2024 | return -EFAULT; | ||
2025 | |||
2026 | /* Only possible for a seqpacket service (TTP with SAR) */ | ||
2027 | if (sk->sk_type != SOCK_SEQPACKET) { | ||
2028 | IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n", | ||
2029 | __FUNCTION__, opt); | ||
2030 | self->max_sdu_size_rx = opt; | ||
2031 | } else { | ||
2032 | IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n", | ||
2033 | __FUNCTION__); | ||
2034 | return -ENOPROTOOPT; | ||
2035 | } | ||
2036 | break; | ||
2037 | case IRLMP_HINTS_SET: | ||
2038 | if (optlen < sizeof(int)) | ||
2039 | return -EINVAL; | ||
2040 | |||
2041 | /* The input is really a (__u8 hints[2]), easier as an int */ | ||
2042 | if (get_user(opt, (int __user *)optval)) | ||
2043 | return -EFAULT; | ||
2044 | |||
2045 | /* Unregister any old registration */ | ||
2046 | if (self->skey) | ||
2047 | irlmp_unregister_service(self->skey); | ||
2048 | |||
2049 | self->skey = irlmp_register_service((__u16) opt); | ||
2050 | break; | ||
2051 | case IRLMP_HINT_MASK_SET: | ||
2052 | /* As opposed to the previous case which set the hint bits | ||
2053 | * that we advertise, this one set the filter we use when | ||
2054 | * making a discovery (nodes which don't match any hint | ||
2055 | * bit in the mask are not reported). | ||
2056 | */ | ||
2057 | if (optlen < sizeof(int)) | ||
2058 | return -EINVAL; | ||
2059 | |||
2060 | /* The input is really a (__u8 hints[2]), easier as an int */ | ||
2061 | if (get_user(opt, (int __user *)optval)) | ||
2062 | return -EFAULT; | ||
2063 | |||
2064 | /* Set the new hint mask */ | ||
2065 | self->mask.word = (__u16) opt; | ||
2066 | /* Mask out extension bits */ | ||
2067 | self->mask.word &= 0x7f7f; | ||
2068 | /* Check if no bits */ | ||
2069 | if(!self->mask.word) | ||
2070 | self->mask.word = 0xFFFF; | ||
2071 | |||
2072 | break; | ||
2073 | default: | ||
2074 | return -ENOPROTOOPT; | ||
2075 | } | ||
2076 | return 0; | ||
2077 | } | ||
2078 | |||
2079 | /* | ||
2080 | * Function irda_extract_ias_value(ias_opt, ias_value) | ||
2081 | * | ||
2082 | * Translate internal IAS value structure to the user space representation | ||
2083 | * | ||
2084 | * The external representation of IAS values, as we exchange them with | ||
2085 | * user space program is quite different from the internal representation, | ||
2086 | * as stored in the IAS database (because we need a flat structure for | ||
2087 | * crossing kernel boundary). | ||
2088 | * This function transform the former in the latter. We also check | ||
2089 | * that the value type is valid. | ||
2090 | */ | ||
2091 | static int irda_extract_ias_value(struct irda_ias_set *ias_opt, | ||
2092 | struct ias_value *ias_value) | ||
2093 | { | ||
2094 | /* Look at the type */ | ||
2095 | switch (ias_value->type) { | ||
2096 | case IAS_INTEGER: | ||
2097 | /* Copy the integer */ | ||
2098 | ias_opt->attribute.irda_attrib_int = ias_value->t.integer; | ||
2099 | break; | ||
2100 | case IAS_OCT_SEQ: | ||
2101 | /* Set length */ | ||
2102 | ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len; | ||
2103 | /* Copy over */ | ||
2104 | memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq, | ||
2105 | ias_value->t.oct_seq, ias_value->len); | ||
2106 | break; | ||
2107 | case IAS_STRING: | ||
2108 | /* Set length */ | ||
2109 | ias_opt->attribute.irda_attrib_string.len = ias_value->len; | ||
2110 | ias_opt->attribute.irda_attrib_string.charset = ias_value->charset; | ||
2111 | /* Copy over */ | ||
2112 | memcpy(ias_opt->attribute.irda_attrib_string.string, | ||
2113 | ias_value->t.string, ias_value->len); | ||
2114 | /* NULL terminate the string (avoid troubles) */ | ||
2115 | ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0'; | ||
2116 | break; | ||
2117 | case IAS_MISSING: | ||
2118 | default : | ||
2119 | return -EINVAL; | ||
2120 | } | ||
2121 | |||
2122 | /* Copy type over */ | ||
2123 | ias_opt->irda_attrib_type = ias_value->type; | ||
2124 | |||
2125 | return 0; | ||
2126 | } | ||
2127 | |||
2128 | /* | ||
2129 | * Function irda_getsockopt (sock, level, optname, optval, optlen) | ||
2130 | */ | ||
2131 | static int irda_getsockopt(struct socket *sock, int level, int optname, | ||
2132 | char __user *optval, int __user *optlen) | ||
2133 | { | ||
2134 | struct sock *sk = sock->sk; | ||
2135 | struct irda_sock *self = irda_sk(sk); | ||
2136 | struct irda_device_list list; | ||
2137 | struct irda_device_info *discoveries; | ||
2138 | struct irda_ias_set * ias_opt; /* IAS get/query params */ | ||
2139 | struct ias_object * ias_obj; /* Object in IAS */ | ||
2140 | struct ias_attrib * ias_attr; /* Attribute in IAS object */ | ||
2141 | int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */ | ||
2142 | int val = 0; | ||
2143 | int len = 0; | ||
2144 | int err; | ||
2145 | int offset, total; | ||
2146 | |||
2147 | IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); | ||
2148 | |||
2149 | if (level != SOL_IRLMP) | ||
2150 | return -ENOPROTOOPT; | ||
2151 | |||
2152 | if (get_user(len, optlen)) | ||
2153 | return -EFAULT; | ||
2154 | |||
2155 | if(len < 0) | ||
2156 | return -EINVAL; | ||
2157 | |||
2158 | switch (optname) { | ||
2159 | case IRLMP_ENUMDEVICES: | ||
2160 | /* Ask lmp for the current discovery log */ | ||
2161 | discoveries = irlmp_get_discoveries(&list.len, self->mask.word, | ||
2162 | self->nslots); | ||
2163 | /* Check if the we got some results */ | ||
2164 | if (discoveries == NULL) | ||
2165 | return -EAGAIN; /* Didn't find any devices */ | ||
2166 | err = 0; | ||
2167 | |||
2168 | /* Write total list length back to client */ | ||
2169 | if (copy_to_user(optval, &list, | ||
2170 | sizeof(struct irda_device_list) - | ||
2171 | sizeof(struct irda_device_info))) | ||
2172 | err = -EFAULT; | ||
2173 | |||
2174 | /* Offset to first device entry */ | ||
2175 | offset = sizeof(struct irda_device_list) - | ||
2176 | sizeof(struct irda_device_info); | ||
2177 | |||
2178 | /* Copy the list itself - watch for overflow */ | ||
2179 | if(list.len > 2048) | ||
2180 | { | ||
2181 | err = -EINVAL; | ||
2182 | goto bed; | ||
2183 | } | ||
2184 | total = offset + (list.len * sizeof(struct irda_device_info)); | ||
2185 | if (total > len) | ||
2186 | total = len; | ||
2187 | if (copy_to_user(optval+offset, discoveries, total - offset)) | ||
2188 | err = -EFAULT; | ||
2189 | |||
2190 | /* Write total number of bytes used back to client */ | ||
2191 | if (put_user(total, optlen)) | ||
2192 | err = -EFAULT; | ||
2193 | bed: | ||
2194 | /* Free up our buffer */ | ||
2195 | kfree(discoveries); | ||
2196 | if (err) | ||
2197 | return err; | ||
2198 | break; | ||
2199 | case IRLMP_MAX_SDU_SIZE: | ||
2200 | val = self->max_data_size; | ||
2201 | len = sizeof(int); | ||
2202 | if (put_user(len, optlen)) | ||
2203 | return -EFAULT; | ||
2204 | |||
2205 | if (copy_to_user(optval, &val, len)) | ||
2206 | return -EFAULT; | ||
2207 | break; | ||
2208 | case IRLMP_IAS_GET: | ||
2209 | /* The user want an object from our local IAS database. | ||
2210 | * We just need to query the IAS and return the value | ||
2211 | * that we found */ | ||
2212 | |||
2213 | /* Check that the user has allocated the right space for us */ | ||
2214 | if (len != sizeof(struct irda_ias_set)) | ||
2215 | return -EINVAL; | ||
2216 | |||
2217 | ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); | ||
2218 | if (ias_opt == NULL) | ||
2219 | return -ENOMEM; | ||
2220 | |||
2221 | /* Copy query to the driver. */ | ||
2222 | if (copy_from_user(ias_opt, optval, len)) { | ||
2223 | kfree(ias_opt); | ||
2224 | return -EFAULT; | ||
2225 | } | ||
2226 | |||
2227 | /* Find the object we target. | ||
2228 | * If the user gives us an empty string, we use the object | ||
2229 | * associated with this socket. This will workaround | ||
2230 | * duplicated class name - Jean II */ | ||
2231 | if(ias_opt->irda_class_name[0] == '\0') | ||
2232 | ias_obj = self->ias_obj; | ||
2233 | else | ||
2234 | ias_obj = irias_find_object(ias_opt->irda_class_name); | ||
2235 | if(ias_obj == (struct ias_object *) NULL) { | ||
2236 | kfree(ias_opt); | ||
2237 | return -EINVAL; | ||
2238 | } | ||
2239 | |||
2240 | /* Find the attribute (in the object) we target */ | ||
2241 | ias_attr = irias_find_attrib(ias_obj, | ||
2242 | ias_opt->irda_attrib_name); | ||
2243 | if(ias_attr == (struct ias_attrib *) NULL) { | ||
2244 | kfree(ias_opt); | ||
2245 | return -EINVAL; | ||
2246 | } | ||
2247 | |||
2248 | /* Translate from internal to user structure */ | ||
2249 | err = irda_extract_ias_value(ias_opt, ias_attr->value); | ||
2250 | if(err) { | ||
2251 | kfree(ias_opt); | ||
2252 | return err; | ||
2253 | } | ||
2254 | |||
2255 | /* Copy reply to the user */ | ||
2256 | if (copy_to_user(optval, ias_opt, | ||
2257 | sizeof(struct irda_ias_set))) { | ||
2258 | kfree(ias_opt); | ||
2259 | return -EFAULT; | ||
2260 | } | ||
2261 | /* Note : don't need to put optlen, we checked it */ | ||
2262 | kfree(ias_opt); | ||
2263 | break; | ||
2264 | case IRLMP_IAS_QUERY: | ||
2265 | /* The user want an object from a remote IAS database. | ||
2266 | * We need to use IAP to query the remote database and | ||
2267 | * then wait for the answer to come back. */ | ||
2268 | |||
2269 | /* Check that the user has allocated the right space for us */ | ||
2270 | if (len != sizeof(struct irda_ias_set)) | ||
2271 | return -EINVAL; | ||
2272 | |||
2273 | ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); | ||
2274 | if (ias_opt == NULL) | ||
2275 | return -ENOMEM; | ||
2276 | |||
2277 | /* Copy query to the driver. */ | ||
2278 | if (copy_from_user(ias_opt, optval, len)) { | ||
2279 | kfree(ias_opt); | ||
2280 | return -EFAULT; | ||
2281 | } | ||
2282 | |||
2283 | /* At this point, there are two cases... | ||
2284 | * 1) the socket is connected - that's the easy case, we | ||
2285 | * just query the device we are connected to... | ||
2286 | * 2) the socket is not connected - the user doesn't want | ||
2287 | * to connect and/or may not have a valid service name | ||
2288 | * (so can't create a fake connection). In this case, | ||
2289 | * we assume that the user pass us a valid destination | ||
2290 | * address in the requesting structure... | ||
2291 | */ | ||
2292 | if(self->daddr != DEV_ADDR_ANY) { | ||
2293 | /* We are connected - reuse known daddr */ | ||
2294 | daddr = self->daddr; | ||
2295 | } else { | ||
2296 | /* We are not connected, we must specify a valid | ||
2297 | * destination address */ | ||
2298 | daddr = ias_opt->daddr; | ||
2299 | if((!daddr) || (daddr == DEV_ADDR_ANY)) { | ||
2300 | kfree(ias_opt); | ||
2301 | return -EINVAL; | ||
2302 | } | ||
2303 | } | ||
2304 | |||
2305 | /* Check that we can proceed with IAP */ | ||
2306 | if (self->iriap) { | ||
2307 | IRDA_WARNING("%s: busy with a previous query\n", | ||
2308 | __FUNCTION__); | ||
2309 | kfree(ias_opt); | ||
2310 | return -EBUSY; | ||
2311 | } | ||
2312 | |||
2313 | self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, | ||
2314 | irda_getvalue_confirm); | ||
2315 | |||
2316 | if (self->iriap == NULL) { | ||
2317 | kfree(ias_opt); | ||
2318 | return -ENOMEM; | ||
2319 | } | ||
2320 | |||
2321 | /* Treat unexpected wakeup as disconnect */ | ||
2322 | self->errno = -EHOSTUNREACH; | ||
2323 | |||
2324 | /* Query remote LM-IAS */ | ||
2325 | iriap_getvaluebyclass_request(self->iriap, | ||
2326 | self->saddr, daddr, | ||
2327 | ias_opt->irda_class_name, | ||
2328 | ias_opt->irda_attrib_name); | ||
2329 | |||
2330 | /* Wait for answer, if not yet finished (or failed) */ | ||
2331 | if (wait_event_interruptible(self->query_wait, | ||
2332 | (self->iriap == NULL))) { | ||
2333 | /* pending request uses copy of ias_opt-content | ||
2334 | * we can free it regardless! */ | ||
2335 | kfree(ias_opt); | ||
2336 | /* Treat signals as disconnect */ | ||
2337 | return -EHOSTUNREACH; | ||
2338 | } | ||
2339 | |||
2340 | /* Check what happened */ | ||
2341 | if (self->errno) | ||
2342 | { | ||
2343 | kfree(ias_opt); | ||
2344 | /* Requested object/attribute doesn't exist */ | ||
2345 | if((self->errno == IAS_CLASS_UNKNOWN) || | ||
2346 | (self->errno == IAS_ATTRIB_UNKNOWN)) | ||
2347 | return (-EADDRNOTAVAIL); | ||
2348 | else | ||
2349 | return (-EHOSTUNREACH); | ||
2350 | } | ||
2351 | |||
2352 | /* Translate from internal to user structure */ | ||
2353 | err = irda_extract_ias_value(ias_opt, self->ias_result); | ||
2354 | if (self->ias_result) | ||
2355 | irias_delete_value(self->ias_result); | ||
2356 | if (err) { | ||
2357 | kfree(ias_opt); | ||
2358 | return err; | ||
2359 | } | ||
2360 | |||
2361 | /* Copy reply to the user */ | ||
2362 | if (copy_to_user(optval, ias_opt, | ||
2363 | sizeof(struct irda_ias_set))) { | ||
2364 | kfree(ias_opt); | ||
2365 | return -EFAULT; | ||
2366 | } | ||
2367 | /* Note : don't need to put optlen, we checked it */ | ||
2368 | kfree(ias_opt); | ||
2369 | break; | ||
2370 | case IRLMP_WAITDEVICE: | ||
2371 | /* This function is just another way of seeing life ;-) | ||
2372 | * IRLMP_ENUMDEVICES assumes that you have a static network, | ||
2373 | * and that you just want to pick one of the devices present. | ||
2374 | * On the other hand, in here we assume that no device is | ||
2375 | * present and that at some point in the future a device will | ||
2376 | * come into range. When this device arrive, we just wake | ||
2377 | * up the caller, so that he has time to connect to it before | ||
2378 | * the device goes away... | ||
2379 | * Note : once the node has been discovered for more than a | ||
2380 | * few second, it won't trigger this function, unless it | ||
2381 | * goes away and come back changes its hint bits (so we | ||
2382 | * might call it IRLMP_WAITNEWDEVICE). | ||
2383 | */ | ||
2384 | |||
2385 | /* Check that the user is passing us an int */ | ||
2386 | if (len != sizeof(int)) | ||
2387 | return -EINVAL; | ||
2388 | /* Get timeout in ms (max time we block the caller) */ | ||
2389 | if (get_user(val, (int __user *)optval)) | ||
2390 | return -EFAULT; | ||
2391 | |||
2392 | /* Tell IrLMP we want to be notified */ | ||
2393 | irlmp_update_client(self->ckey, self->mask.word, | ||
2394 | irda_selective_discovery_indication, | ||
2395 | NULL, (void *) self); | ||
2396 | |||
2397 | /* Do some discovery (and also return cached results) */ | ||
2398 | irlmp_discovery_request(self->nslots); | ||
2399 | |||
2400 | /* Wait until a node is discovered */ | ||
2401 | if (!self->cachedaddr) { | ||
2402 | int ret = 0; | ||
2403 | |||
2404 | IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__); | ||
2405 | |||
2406 | /* Set watchdog timer to expire in <val> ms. */ | ||
2407 | self->errno = 0; | ||
2408 | init_timer(&self->watchdog); | ||
2409 | self->watchdog.function = irda_discovery_timeout; | ||
2410 | self->watchdog.data = (unsigned long) self; | ||
2411 | self->watchdog.expires = jiffies + (val * HZ/1000); | ||
2412 | add_timer(&(self->watchdog)); | ||
2413 | |||
2414 | /* Wait for IR-LMP to call us back */ | ||
2415 | __wait_event_interruptible(self->query_wait, | ||
2416 | (self->cachedaddr != 0 || self->errno == -ETIME), | ||
2417 | ret); | ||
2418 | |||
2419 | /* If watchdog is still activated, kill it! */ | ||
2420 | if(timer_pending(&(self->watchdog))) | ||
2421 | del_timer(&(self->watchdog)); | ||
2422 | |||
2423 | IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__); | ||
2424 | |||
2425 | if (ret != 0) | ||
2426 | return ret; | ||
2427 | } | ||
2428 | else | ||
2429 | IRDA_DEBUG(1, "%s(), found immediately !\n", | ||
2430 | __FUNCTION__); | ||
2431 | |||
2432 | /* Tell IrLMP that we have been notified */ | ||
2433 | irlmp_update_client(self->ckey, self->mask.word, | ||
2434 | NULL, NULL, NULL); | ||
2435 | |||
2436 | /* Check if the we got some results */ | ||
2437 | if (!self->cachedaddr) | ||
2438 | return -EAGAIN; /* Didn't find any devices */ | ||
2439 | daddr = self->cachedaddr; | ||
2440 | /* Cleanup */ | ||
2441 | self->cachedaddr = 0; | ||
2442 | |||
2443 | /* We return the daddr of the device that trigger the | ||
2444 | * wakeup. As irlmp pass us only the new devices, we | ||
2445 | * are sure that it's not an old device. | ||
2446 | * If the user want more details, he should query | ||
2447 | * the whole discovery log and pick one device... | ||
2448 | */ | ||
2449 | if (put_user(daddr, (int __user *)optval)) | ||
2450 | return -EFAULT; | ||
2451 | |||
2452 | break; | ||
2453 | default: | ||
2454 | return -ENOPROTOOPT; | ||
2455 | } | ||
2456 | |||
2457 | return 0; | ||
2458 | } | ||
2459 | |||
2460 | static struct net_proto_family irda_family_ops = { | ||
2461 | .family = PF_IRDA, | ||
2462 | .create = irda_create, | ||
2463 | .owner = THIS_MODULE, | ||
2464 | }; | ||
2465 | |||
2466 | static struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = { | ||
2467 | .family = PF_IRDA, | ||
2468 | .owner = THIS_MODULE, | ||
2469 | .release = irda_release, | ||
2470 | .bind = irda_bind, | ||
2471 | .connect = irda_connect, | ||
2472 | .socketpair = sock_no_socketpair, | ||
2473 | .accept = irda_accept, | ||
2474 | .getname = irda_getname, | ||
2475 | .poll = irda_poll, | ||
2476 | .ioctl = irda_ioctl, | ||
2477 | .listen = irda_listen, | ||
2478 | .shutdown = irda_shutdown, | ||
2479 | .setsockopt = irda_setsockopt, | ||
2480 | .getsockopt = irda_getsockopt, | ||
2481 | .sendmsg = irda_sendmsg, | ||
2482 | .recvmsg = irda_recvmsg_stream, | ||
2483 | .mmap = sock_no_mmap, | ||
2484 | .sendpage = sock_no_sendpage, | ||
2485 | }; | ||
2486 | |||
2487 | static struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = { | ||
2488 | .family = PF_IRDA, | ||
2489 | .owner = THIS_MODULE, | ||
2490 | .release = irda_release, | ||
2491 | .bind = irda_bind, | ||
2492 | .connect = irda_connect, | ||
2493 | .socketpair = sock_no_socketpair, | ||
2494 | .accept = irda_accept, | ||
2495 | .getname = irda_getname, | ||
2496 | .poll = datagram_poll, | ||
2497 | .ioctl = irda_ioctl, | ||
2498 | .listen = irda_listen, | ||
2499 | .shutdown = irda_shutdown, | ||
2500 | .setsockopt = irda_setsockopt, | ||
2501 | .getsockopt = irda_getsockopt, | ||
2502 | .sendmsg = irda_sendmsg, | ||
2503 | .recvmsg = irda_recvmsg_dgram, | ||
2504 | .mmap = sock_no_mmap, | ||
2505 | .sendpage = sock_no_sendpage, | ||
2506 | }; | ||
2507 | |||
2508 | static struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = { | ||
2509 | .family = PF_IRDA, | ||
2510 | .owner = THIS_MODULE, | ||
2511 | .release = irda_release, | ||
2512 | .bind = irda_bind, | ||
2513 | .connect = irda_connect, | ||
2514 | .socketpair = sock_no_socketpair, | ||
2515 | .accept = irda_accept, | ||
2516 | .getname = irda_getname, | ||
2517 | .poll = datagram_poll, | ||
2518 | .ioctl = irda_ioctl, | ||
2519 | .listen = irda_listen, | ||
2520 | .shutdown = irda_shutdown, | ||
2521 | .setsockopt = irda_setsockopt, | ||
2522 | .getsockopt = irda_getsockopt, | ||
2523 | .sendmsg = irda_sendmsg_dgram, | ||
2524 | .recvmsg = irda_recvmsg_dgram, | ||
2525 | .mmap = sock_no_mmap, | ||
2526 | .sendpage = sock_no_sendpage, | ||
2527 | }; | ||
2528 | |||
2529 | #ifdef CONFIG_IRDA_ULTRA | ||
2530 | static struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = { | ||
2531 | .family = PF_IRDA, | ||
2532 | .owner = THIS_MODULE, | ||
2533 | .release = irda_release, | ||
2534 | .bind = irda_bind, | ||
2535 | .connect = sock_no_connect, | ||
2536 | .socketpair = sock_no_socketpair, | ||
2537 | .accept = sock_no_accept, | ||
2538 | .getname = irda_getname, | ||
2539 | .poll = datagram_poll, | ||
2540 | .ioctl = irda_ioctl, | ||
2541 | .listen = sock_no_listen, | ||
2542 | .shutdown = irda_shutdown, | ||
2543 | .setsockopt = irda_setsockopt, | ||
2544 | .getsockopt = irda_getsockopt, | ||
2545 | .sendmsg = irda_sendmsg_ultra, | ||
2546 | .recvmsg = irda_recvmsg_dgram, | ||
2547 | .mmap = sock_no_mmap, | ||
2548 | .sendpage = sock_no_sendpage, | ||
2549 | }; | ||
2550 | #endif /* CONFIG_IRDA_ULTRA */ | ||
2551 | |||
2552 | #include <linux/smp_lock.h> | ||
2553 | SOCKOPS_WRAP(irda_stream, PF_IRDA); | ||
2554 | SOCKOPS_WRAP(irda_seqpacket, PF_IRDA); | ||
2555 | SOCKOPS_WRAP(irda_dgram, PF_IRDA); | ||
2556 | #ifdef CONFIG_IRDA_ULTRA | ||
2557 | SOCKOPS_WRAP(irda_ultra, PF_IRDA); | ||
2558 | #endif /* CONFIG_IRDA_ULTRA */ | ||
2559 | |||
2560 | /* | ||
2561 | * Function irsock_init (pro) | ||
2562 | * | ||
2563 | * Initialize IrDA protocol | ||
2564 | * | ||
2565 | */ | ||
2566 | int __init irsock_init(void) | ||
2567 | { | ||
2568 | int rc = proto_register(&irda_proto, 0); | ||
2569 | |||
2570 | if (rc == 0) | ||
2571 | rc = sock_register(&irda_family_ops); | ||
2572 | |||
2573 | return rc; | ||
2574 | } | ||
2575 | |||
2576 | /* | ||
2577 | * Function irsock_cleanup (void) | ||
2578 | * | ||
2579 | * Remove IrDA protocol | ||
2580 | * | ||
2581 | */ | ||
2582 | void __exit irsock_cleanup(void) | ||
2583 | { | ||
2584 | sock_unregister(PF_IRDA); | ||
2585 | proto_unregister(&irda_proto); | ||
2586 | } | ||