aboutsummaryrefslogtreecommitdiffstats
path: root/net/ipv4
diff options
context:
space:
mode:
Diffstat (limited to 'net/ipv4')
-rw-r--r--net/ipv4/af_inet.c11
-rw-r--r--net/ipv4/fib_trie.c202
-rw-r--r--net/ipv4/ip_output.c16
-rw-r--r--net/ipv4/route.c126
-rw-r--r--net/ipv4/tcp.c44
-rw-r--r--net/ipv4/tcp_input.c76
-rw-r--r--net/ipv4/tcp_ipv4.c2
-rw-r--r--net/ipv4/tcp_output.c544
8 files changed, 751 insertions, 270 deletions
diff --git a/net/ipv4/af_inet.c b/net/ipv4/af_inet.c
index 658e7977924d..ef7468376ae6 100644
--- a/net/ipv4/af_inet.c
+++ b/net/ipv4/af_inet.c
@@ -1009,6 +1009,15 @@ static int __init init_ipv4_mibs(void)
1009static int ipv4_proc_init(void); 1009static int ipv4_proc_init(void);
1010extern void ipfrag_init(void); 1010extern void ipfrag_init(void);
1011 1011
1012/*
1013 * IP protocol layer initialiser
1014 */
1015
1016static struct packet_type ip_packet_type = {
1017 .type = __constant_htons(ETH_P_IP),
1018 .func = ip_rcv,
1019};
1020
1012static int __init inet_init(void) 1021static int __init inet_init(void)
1013{ 1022{
1014 struct sk_buff *dummy_skb; 1023 struct sk_buff *dummy_skb;
@@ -1102,6 +1111,8 @@ static int __init inet_init(void)
1102 1111
1103 ipfrag_init(); 1112 ipfrag_init();
1104 1113
1114 dev_add_pack(&ip_packet_type);
1115
1105 rc = 0; 1116 rc = 0;
1106out: 1117out:
1107 return rc; 1118 return rc;
diff --git a/net/ipv4/fib_trie.c b/net/ipv4/fib_trie.c
index b56e88edf1b3..4be234c7d8c3 100644
--- a/net/ipv4/fib_trie.c
+++ b/net/ipv4/fib_trie.c
@@ -43,7 +43,7 @@
43 * 2 of the License, or (at your option) any later version. 43 * 2 of the License, or (at your option) any later version.
44 */ 44 */
45 45
46#define VERSION "0.324" 46#define VERSION "0.325"
47 47
48#include <linux/config.h> 48#include <linux/config.h>
49#include <asm/uaccess.h> 49#include <asm/uaccess.h>
@@ -136,6 +136,7 @@ struct trie_use_stats {
136 unsigned int semantic_match_passed; 136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss; 137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit; 138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
139}; 140};
140#endif 141#endif
141 142
@@ -164,8 +165,8 @@ static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
164static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); 165static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
165static int tnode_child_length(struct tnode *tn); 166static int tnode_child_length(struct tnode *tn);
166static struct node *resize(struct trie *t, struct tnode *tn); 167static struct node *resize(struct trie *t, struct tnode *tn);
167static struct tnode *inflate(struct trie *t, struct tnode *tn); 168static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err);
168static struct tnode *halve(struct trie *t, struct tnode *tn); 169static struct tnode *halve(struct trie *t, struct tnode *tn, int *err);
169static void tnode_free(struct tnode *tn); 170static void tnode_free(struct tnode *tn);
170static void trie_dump_seq(struct seq_file *seq, struct trie *t); 171static void trie_dump_seq(struct seq_file *seq, struct trie *t);
171extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio); 172extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio);
@@ -358,11 +359,32 @@ static inline void free_leaf_info(struct leaf_info *li)
358 kfree(li); 359 kfree(li);
359} 360}
360 361
362static struct tnode *tnode_alloc(unsigned int size)
363{
364 if (size <= PAGE_SIZE) {
365 return kmalloc(size, GFP_KERNEL);
366 } else {
367 return (struct tnode *)
368 __get_free_pages(GFP_KERNEL, get_order(size));
369 }
370}
371
372static void __tnode_free(struct tnode *tn)
373{
374 unsigned int size = sizeof(struct tnode) +
375 (1<<tn->bits) * sizeof(struct node *);
376
377 if (size <= PAGE_SIZE)
378 kfree(tn);
379 else
380 free_pages((unsigned long)tn, get_order(size));
381}
382
361static struct tnode* tnode_new(t_key key, int pos, int bits) 383static struct tnode* tnode_new(t_key key, int pos, int bits)
362{ 384{
363 int nchildren = 1<<bits; 385 int nchildren = 1<<bits;
364 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); 386 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
365 struct tnode *tn = kmalloc(sz, GFP_KERNEL); 387 struct tnode *tn = tnode_alloc(sz);
366 388
367 if(tn) { 389 if(tn) {
368 memset(tn, 0, sz); 390 memset(tn, 0, sz);
@@ -390,7 +412,7 @@ static void tnode_free(struct tnode *tn)
390 printk("FL %p \n", tn); 412 printk("FL %p \n", tn);
391 } 413 }
392 else if(IS_TNODE(tn)) { 414 else if(IS_TNODE(tn)) {
393 kfree(tn); 415 __tnode_free(tn);
394 if(trie_debug > 0 ) 416 if(trie_debug > 0 )
395 printk("FT %p \n", tn); 417 printk("FT %p \n", tn);
396 } 418 }
@@ -460,6 +482,7 @@ static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int w
460static struct node *resize(struct trie *t, struct tnode *tn) 482static struct node *resize(struct trie *t, struct tnode *tn)
461{ 483{
462 int i; 484 int i;
485 int err = 0;
463 486
464 if (!tn) 487 if (!tn)
465 return NULL; 488 return NULL;
@@ -556,12 +579,20 @@ static struct node *resize(struct trie *t, struct tnode *tn)
556 */ 579 */
557 580
558 check_tnode(tn); 581 check_tnode(tn);
559 582
583 err = 0;
560 while ((tn->full_children > 0 && 584 while ((tn->full_children > 0 &&
561 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= 585 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
562 inflate_threshold * tnode_child_length(tn))) { 586 inflate_threshold * tnode_child_length(tn))) {
563 587
564 tn = inflate(t, tn); 588 tn = inflate(t, tn, &err);
589
590 if(err) {
591#ifdef CONFIG_IP_FIB_TRIE_STATS
592 t->stats.resize_node_skipped++;
593#endif
594 break;
595 }
565 } 596 }
566 597
567 check_tnode(tn); 598 check_tnode(tn);
@@ -570,11 +601,22 @@ static struct node *resize(struct trie *t, struct tnode *tn)
570 * Halve as long as the number of empty children in this 601 * Halve as long as the number of empty children in this
571 * node is above threshold. 602 * node is above threshold.
572 */ 603 */
604
605 err = 0;
573 while (tn->bits > 1 && 606 while (tn->bits > 1 &&
574 100 * (tnode_child_length(tn) - tn->empty_children) < 607 100 * (tnode_child_length(tn) - tn->empty_children) <
575 halve_threshold * tnode_child_length(tn)) 608 halve_threshold * tnode_child_length(tn)) {
609
610 tn = halve(t, tn, &err);
611
612 if(err) {
613#ifdef CONFIG_IP_FIB_TRIE_STATS
614 t->stats.resize_node_skipped++;
615#endif
616 break;
617 }
618 }
576 619
577 tn = halve(t, tn);
578 620
579 /* Only one child remains */ 621 /* Only one child remains */
580 622
@@ -599,7 +641,7 @@ static struct node *resize(struct trie *t, struct tnode *tn)
599 return (struct node *) tn; 641 return (struct node *) tn;
600} 642}
601 643
602static struct tnode *inflate(struct trie *t, struct tnode *tn) 644static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err)
603{ 645{
604 struct tnode *inode; 646 struct tnode *inode;
605 struct tnode *oldtnode = tn; 647 struct tnode *oldtnode = tn;
@@ -611,8 +653,63 @@ static struct tnode *inflate(struct trie *t, struct tnode *tn)
611 653
612 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 654 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
613 655
614 if (!tn) 656 if (!tn) {
615 trie_bug("tnode_new failed"); 657 *err = -ENOMEM;
658 return oldtnode;
659 }
660
661 /*
662 * Preallocate and store tnodes before the actual work so we
663 * don't get into an inconsistent state if memory allocation
664 * fails. In case of failure we return the oldnode and inflate
665 * of tnode is ignored.
666 */
667
668 for(i = 0; i < olen; i++) {
669 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
670
671 if (inode &&
672 IS_TNODE(inode) &&
673 inode->pos == oldtnode->pos + oldtnode->bits &&
674 inode->bits > 1) {
675 struct tnode *left, *right;
676
677 t_key m = TKEY_GET_MASK(inode->pos, 1);
678
679 left = tnode_new(inode->key&(~m), inode->pos + 1,
680 inode->bits - 1);
681
682 if(!left) {
683 *err = -ENOMEM;
684 break;
685 }
686
687 right = tnode_new(inode->key|m, inode->pos + 1,
688 inode->bits - 1);
689
690 if(!right) {
691 *err = -ENOMEM;
692 break;
693 }
694
695 put_child(t, tn, 2*i, (struct node *) left);
696 put_child(t, tn, 2*i+1, (struct node *) right);
697 }
698 }
699
700 if(*err) {
701 int size = tnode_child_length(tn);
702 int j;
703
704 for(j = 0; j < size; j++)
705 if( tn->child[j])
706 tnode_free((struct tnode *)tn->child[j]);
707
708 tnode_free(tn);
709
710 *err = -ENOMEM;
711 return oldtnode;
712 }
616 713
617 for(i = 0; i < olen; i++) { 714 for(i = 0; i < olen; i++) {
618 struct node *node = tnode_get_child(oldtnode, i); 715 struct node *node = tnode_get_child(oldtnode, i);
@@ -625,7 +722,7 @@ static struct tnode *inflate(struct trie *t, struct tnode *tn)
625 722
626 if(IS_LEAF(node) || ((struct tnode *) node)->pos > 723 if(IS_LEAF(node) || ((struct tnode *) node)->pos >
627 tn->pos + tn->bits - 1) { 724 tn->pos + tn->bits - 1) {
628 if(tkey_extract_bits(node->key, tn->pos + tn->bits - 1, 725 if(tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
629 1) == 0) 726 1) == 0)
630 put_child(t, tn, 2*i, node); 727 put_child(t, tn, 2*i, node);
631 else 728 else
@@ -665,27 +762,22 @@ static struct tnode *inflate(struct trie *t, struct tnode *tn)
665 * the position (inode->pos) 762 * the position (inode->pos)
666 */ 763 */
667 764
668 t_key m = TKEY_GET_MASK(inode->pos, 1);
669
670 /* Use the old key, but set the new significant 765 /* Use the old key, but set the new significant
671 * bit to zero. 766 * bit to zero.
672 */ 767 */
673 left = tnode_new(inode->key&(~m), inode->pos + 1,
674 inode->bits - 1);
675 768
676 if(!left) 769 left = (struct tnode *) tnode_get_child(tn, 2*i);
677 trie_bug("tnode_new failed"); 770 put_child(t, tn, 2*i, NULL);
678 771
679 772 if(!left)
680 /* Use the old key, but set the new significant 773 BUG();
681 * bit to one. 774
682 */ 775 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
683 right = tnode_new(inode->key|m, inode->pos + 1, 776 put_child(t, tn, 2*i+1, NULL);
684 inode->bits - 1); 777
778 if(!right)
779 BUG();
685 780
686 if(!right)
687 trie_bug("tnode_new failed");
688
689 size = tnode_child_length(left); 781 size = tnode_child_length(left);
690 for(j = 0; j < size; j++) { 782 for(j = 0; j < size; j++) {
691 put_child(t, left, j, inode->child[j]); 783 put_child(t, left, j, inode->child[j]);
@@ -701,7 +793,7 @@ static struct tnode *inflate(struct trie *t, struct tnode *tn)
701 return tn; 793 return tn;
702} 794}
703 795
704static struct tnode *halve(struct trie *t, struct tnode *tn) 796static struct tnode *halve(struct trie *t, struct tnode *tn, int *err)
705{ 797{
706 struct tnode *oldtnode = tn; 798 struct tnode *oldtnode = tn;
707 struct node *left, *right; 799 struct node *left, *right;
@@ -712,8 +804,48 @@ static struct tnode *halve(struct trie *t, struct tnode *tn)
712 804
713 tn=tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 805 tn=tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
714 806
715 if(!tn) 807 if (!tn) {
716 trie_bug("tnode_new failed"); 808 *err = -ENOMEM;
809 return oldtnode;
810 }
811
812 /*
813 * Preallocate and store tnodes before the actual work so we
814 * don't get into an inconsistent state if memory allocation
815 * fails. In case of failure we return the oldnode and halve
816 * of tnode is ignored.
817 */
818
819 for(i = 0; i < olen; i += 2) {
820 left = tnode_get_child(oldtnode, i);
821 right = tnode_get_child(oldtnode, i+1);
822
823 /* Two nonempty children */
824 if( left && right) {
825 struct tnode *newBinNode =
826 tnode_new(left->key, tn->pos + tn->bits, 1);
827
828 if(!newBinNode) {
829 *err = -ENOMEM;
830 break;
831 }
832 put_child(t, tn, i/2, (struct node *)newBinNode);
833 }
834 }
835
836 if(*err) {
837 int size = tnode_child_length(tn);
838 int j;
839
840 for(j = 0; j < size; j++)
841 if( tn->child[j])
842 tnode_free((struct tnode *)tn->child[j]);
843
844 tnode_free(tn);
845
846 *err = -ENOMEM;
847 return oldtnode;
848 }
717 849
718 for(i = 0; i < olen; i += 2) { 850 for(i = 0; i < olen; i += 2) {
719 left = tnode_get_child(oldtnode, i); 851 left = tnode_get_child(oldtnode, i);
@@ -730,10 +862,11 @@ static struct tnode *halve(struct trie *t, struct tnode *tn)
730 /* Two nonempty children */ 862 /* Two nonempty children */
731 else { 863 else {
732 struct tnode *newBinNode = 864 struct tnode *newBinNode =
733 tnode_new(left->key, tn->pos + tn->bits, 1); 865 (struct tnode *) tnode_get_child(tn, i/2);
866 put_child(t, tn, i/2, NULL);
734 867
735 if(!newBinNode) 868 if(!newBinNode)
736 trie_bug("tnode_new failed"); 869 BUG();
737 870
738 put_child(t, newBinNode, 0, left); 871 put_child(t, newBinNode, 0, left);
739 put_child(t, newBinNode, 1, right); 872 put_child(t, newBinNode, 1, right);
@@ -2301,6 +2434,7 @@ static void collect_and_show(struct trie *t, struct seq_file *seq)
2301 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed); 2434 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2302 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss); 2435 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2303 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit); 2436 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2437 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2304#ifdef CLEAR_STATS 2438#ifdef CLEAR_STATS
2305 memset(&(t->stats), 0, sizeof(t->stats)); 2439 memset(&(t->stats), 0, sizeof(t->stats));
2306#endif 2440#endif
diff --git a/net/ipv4/ip_output.c b/net/ipv4/ip_output.c
index 6ce5c3292f9f..9de83e6e0f1d 100644
--- a/net/ipv4/ip_output.c
+++ b/net/ipv4/ip_output.c
@@ -389,7 +389,6 @@ static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
389 to->pkt_type = from->pkt_type; 389 to->pkt_type = from->pkt_type;
390 to->priority = from->priority; 390 to->priority = from->priority;
391 to->protocol = from->protocol; 391 to->protocol = from->protocol;
392 to->security = from->security;
393 dst_release(to->dst); 392 dst_release(to->dst);
394 to->dst = dst_clone(from->dst); 393 to->dst = dst_clone(from->dst);
395 to->dev = from->dev; 394 to->dev = from->dev;
@@ -1329,23 +1328,8 @@ void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *ar
1329 ip_rt_put(rt); 1328 ip_rt_put(rt);
1330} 1329}
1331 1330
1332/*
1333 * IP protocol layer initialiser
1334 */
1335
1336static struct packet_type ip_packet_type = {
1337 .type = __constant_htons(ETH_P_IP),
1338 .func = ip_rcv,
1339};
1340
1341/*
1342 * IP registers the packet type and then calls the subprotocol initialisers
1343 */
1344
1345void __init ip_init(void) 1331void __init ip_init(void)
1346{ 1332{
1347 dev_add_pack(&ip_packet_type);
1348
1349 ip_rt_init(); 1333 ip_rt_init();
1350 inet_initpeers(); 1334 inet_initpeers();
1351 1335
diff --git a/net/ipv4/route.c b/net/ipv4/route.c
index 12a1cf306f67..726ea5e8180a 100644
--- a/net/ipv4/route.c
+++ b/net/ipv4/route.c
@@ -54,6 +54,7 @@
54 * Marc Boucher : routing by fwmark 54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics 55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file 56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
57 * 58 *
58 * This program is free software; you can redistribute it and/or 59 * This program is free software; you can redistribute it and/or
59 * modify it under the terms of the GNU General Public License 60 * modify it under the terms of the GNU General Public License
@@ -70,6 +71,7 @@
70#include <linux/kernel.h> 71#include <linux/kernel.h>
71#include <linux/sched.h> 72#include <linux/sched.h>
72#include <linux/mm.h> 73#include <linux/mm.h>
74#include <linux/bootmem.h>
73#include <linux/string.h> 75#include <linux/string.h>
74#include <linux/socket.h> 76#include <linux/socket.h>
75#include <linux/sockios.h> 77#include <linux/sockios.h>
@@ -201,8 +203,37 @@ __u8 ip_tos2prio[16] = {
201 203
202struct rt_hash_bucket { 204struct rt_hash_bucket {
203 struct rtable *chain; 205 struct rtable *chain;
204 spinlock_t lock; 206};
205} __attribute__((__aligned__(8))); 207#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
208/*
209 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
210 * The size of this table is a power of two and depends on the number of CPUS.
211 */
212#if NR_CPUS >= 32
213#define RT_HASH_LOCK_SZ 4096
214#elif NR_CPUS >= 16
215#define RT_HASH_LOCK_SZ 2048
216#elif NR_CPUS >= 8
217#define RT_HASH_LOCK_SZ 1024
218#elif NR_CPUS >= 4
219#define RT_HASH_LOCK_SZ 512
220#else
221#define RT_HASH_LOCK_SZ 256
222#endif
223
224static spinlock_t *rt_hash_locks;
225# define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
226# define rt_hash_lock_init() { \
227 int i; \
228 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ, GFP_KERNEL); \
229 if (!rt_hash_locks) panic("IP: failed to allocate rt_hash_locks\n"); \
230 for (i = 0; i < RT_HASH_LOCK_SZ; i++) \
231 spin_lock_init(&rt_hash_locks[i]); \
232 }
233#else
234# define rt_hash_lock_addr(slot) NULL
235# define rt_hash_lock_init()
236#endif
206 237
207static struct rt_hash_bucket *rt_hash_table; 238static struct rt_hash_bucket *rt_hash_table;
208static unsigned rt_hash_mask; 239static unsigned rt_hash_mask;
@@ -575,19 +606,26 @@ static struct rtable **rt_remove_balanced_route(struct rtable **chain_head,
575/* This runs via a timer and thus is always in BH context. */ 606/* This runs via a timer and thus is always in BH context. */
576static void rt_check_expire(unsigned long dummy) 607static void rt_check_expire(unsigned long dummy)
577{ 608{
578 static int rover; 609 static unsigned int rover;
579 int i = rover, t; 610 unsigned int i = rover, goal;
580 struct rtable *rth, **rthp; 611 struct rtable *rth, **rthp;
581 unsigned long now = jiffies; 612 unsigned long now = jiffies;
582 613 u64 mult;
583 for (t = ip_rt_gc_interval << rt_hash_log; t >= 0; 614
584 t -= ip_rt_gc_timeout) { 615 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
616 if (ip_rt_gc_timeout > 1)
617 do_div(mult, ip_rt_gc_timeout);
618 goal = (unsigned int)mult;
619 if (goal > rt_hash_mask) goal = rt_hash_mask + 1;
620 for (; goal > 0; goal--) {
585 unsigned long tmo = ip_rt_gc_timeout; 621 unsigned long tmo = ip_rt_gc_timeout;
586 622
587 i = (i + 1) & rt_hash_mask; 623 i = (i + 1) & rt_hash_mask;
588 rthp = &rt_hash_table[i].chain; 624 rthp = &rt_hash_table[i].chain;
589 625
590 spin_lock(&rt_hash_table[i].lock); 626 if (*rthp == 0)
627 continue;
628 spin_lock(rt_hash_lock_addr(i));
591 while ((rth = *rthp) != NULL) { 629 while ((rth = *rthp) != NULL) {
592 if (rth->u.dst.expires) { 630 if (rth->u.dst.expires) {
593 /* Entry is expired even if it is in use */ 631 /* Entry is expired even if it is in use */
@@ -620,14 +658,14 @@ static void rt_check_expire(unsigned long dummy)
620 rt_free(rth); 658 rt_free(rth);
621#endif /* CONFIG_IP_ROUTE_MULTIPATH_CACHED */ 659#endif /* CONFIG_IP_ROUTE_MULTIPATH_CACHED */
622 } 660 }
623 spin_unlock(&rt_hash_table[i].lock); 661 spin_unlock(rt_hash_lock_addr(i));
624 662
625 /* Fallback loop breaker. */ 663 /* Fallback loop breaker. */
626 if (time_after(jiffies, now)) 664 if (time_after(jiffies, now))
627 break; 665 break;
628 } 666 }
629 rover = i; 667 rover = i;
630 mod_timer(&rt_periodic_timer, now + ip_rt_gc_interval); 668 mod_timer(&rt_periodic_timer, jiffies + ip_rt_gc_interval);
631} 669}
632 670
633/* This can run from both BH and non-BH contexts, the latter 671/* This can run from both BH and non-BH contexts, the latter
@@ -643,11 +681,11 @@ static void rt_run_flush(unsigned long dummy)
643 get_random_bytes(&rt_hash_rnd, 4); 681 get_random_bytes(&rt_hash_rnd, 4);
644 682
645 for (i = rt_hash_mask; i >= 0; i--) { 683 for (i = rt_hash_mask; i >= 0; i--) {
646 spin_lock_bh(&rt_hash_table[i].lock); 684 spin_lock_bh(rt_hash_lock_addr(i));
647 rth = rt_hash_table[i].chain; 685 rth = rt_hash_table[i].chain;
648 if (rth) 686 if (rth)
649 rt_hash_table[i].chain = NULL; 687 rt_hash_table[i].chain = NULL;
650 spin_unlock_bh(&rt_hash_table[i].lock); 688 spin_unlock_bh(rt_hash_lock_addr(i));
651 689
652 for (; rth; rth = next) { 690 for (; rth; rth = next) {
653 next = rth->u.rt_next; 691 next = rth->u.rt_next;
@@ -780,7 +818,7 @@ static int rt_garbage_collect(void)
780 818
781 k = (k + 1) & rt_hash_mask; 819 k = (k + 1) & rt_hash_mask;
782 rthp = &rt_hash_table[k].chain; 820 rthp = &rt_hash_table[k].chain;
783 spin_lock_bh(&rt_hash_table[k].lock); 821 spin_lock_bh(rt_hash_lock_addr(k));
784 while ((rth = *rthp) != NULL) { 822 while ((rth = *rthp) != NULL) {
785 if (!rt_may_expire(rth, tmo, expire)) { 823 if (!rt_may_expire(rth, tmo, expire)) {
786 tmo >>= 1; 824 tmo >>= 1;
@@ -812,7 +850,7 @@ static int rt_garbage_collect(void)
812 goal--; 850 goal--;
813#endif /* CONFIG_IP_ROUTE_MULTIPATH_CACHED */ 851#endif /* CONFIG_IP_ROUTE_MULTIPATH_CACHED */
814 } 852 }
815 spin_unlock_bh(&rt_hash_table[k].lock); 853 spin_unlock_bh(rt_hash_lock_addr(k));
816 if (goal <= 0) 854 if (goal <= 0)
817 break; 855 break;
818 } 856 }
@@ -882,7 +920,7 @@ restart:
882 920
883 rthp = &rt_hash_table[hash].chain; 921 rthp = &rt_hash_table[hash].chain;
884 922
885 spin_lock_bh(&rt_hash_table[hash].lock); 923 spin_lock_bh(rt_hash_lock_addr(hash));
886 while ((rth = *rthp) != NULL) { 924 while ((rth = *rthp) != NULL) {
887#ifdef CONFIG_IP_ROUTE_MULTIPATH_CACHED 925#ifdef CONFIG_IP_ROUTE_MULTIPATH_CACHED
888 if (!(rth->u.dst.flags & DST_BALANCED) && 926 if (!(rth->u.dst.flags & DST_BALANCED) &&
@@ -908,7 +946,7 @@ restart:
908 rth->u.dst.__use++; 946 rth->u.dst.__use++;
909 dst_hold(&rth->u.dst); 947 dst_hold(&rth->u.dst);
910 rth->u.dst.lastuse = now; 948 rth->u.dst.lastuse = now;
911 spin_unlock_bh(&rt_hash_table[hash].lock); 949 spin_unlock_bh(rt_hash_lock_addr(hash));
912 950
913 rt_drop(rt); 951 rt_drop(rt);
914 *rp = rth; 952 *rp = rth;
@@ -949,7 +987,7 @@ restart:
949 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) { 987 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
950 int err = arp_bind_neighbour(&rt->u.dst); 988 int err = arp_bind_neighbour(&rt->u.dst);
951 if (err) { 989 if (err) {
952 spin_unlock_bh(&rt_hash_table[hash].lock); 990 spin_unlock_bh(rt_hash_lock_addr(hash));
953 991
954 if (err != -ENOBUFS) { 992 if (err != -ENOBUFS) {
955 rt_drop(rt); 993 rt_drop(rt);
@@ -990,7 +1028,7 @@ restart:
990 } 1028 }
991#endif 1029#endif
992 rt_hash_table[hash].chain = rt; 1030 rt_hash_table[hash].chain = rt;
993 spin_unlock_bh(&rt_hash_table[hash].lock); 1031 spin_unlock_bh(rt_hash_lock_addr(hash));
994 *rp = rt; 1032 *rp = rt;
995 return 0; 1033 return 0;
996} 1034}
@@ -1058,7 +1096,7 @@ static void rt_del(unsigned hash, struct rtable *rt)
1058{ 1096{
1059 struct rtable **rthp; 1097 struct rtable **rthp;
1060 1098
1061 spin_lock_bh(&rt_hash_table[hash].lock); 1099 spin_lock_bh(rt_hash_lock_addr(hash));
1062 ip_rt_put(rt); 1100 ip_rt_put(rt);
1063 for (rthp = &rt_hash_table[hash].chain; *rthp; 1101 for (rthp = &rt_hash_table[hash].chain; *rthp;
1064 rthp = &(*rthp)->u.rt_next) 1102 rthp = &(*rthp)->u.rt_next)
@@ -1067,7 +1105,7 @@ static void rt_del(unsigned hash, struct rtable *rt)
1067 rt_free(rt); 1105 rt_free(rt);
1068 break; 1106 break;
1069 } 1107 }
1070 spin_unlock_bh(&rt_hash_table[hash].lock); 1108 spin_unlock_bh(rt_hash_lock_addr(hash));
1071} 1109}
1072 1110
1073void ip_rt_redirect(u32 old_gw, u32 daddr, u32 new_gw, 1111void ip_rt_redirect(u32 old_gw, u32 daddr, u32 new_gw,
@@ -3073,12 +3111,14 @@ __setup("rhash_entries=", set_rhash_entries);
3073 3111
3074int __init ip_rt_init(void) 3112int __init ip_rt_init(void)
3075{ 3113{
3076 int i, order, goal, rc = 0; 3114 int rc = 0;
3077 3115
3078 rt_hash_rnd = (int) ((num_physpages ^ (num_physpages>>8)) ^ 3116 rt_hash_rnd = (int) ((num_physpages ^ (num_physpages>>8)) ^
3079 (jiffies ^ (jiffies >> 7))); 3117 (jiffies ^ (jiffies >> 7)));
3080 3118
3081#ifdef CONFIG_NET_CLS_ROUTE 3119#ifdef CONFIG_NET_CLS_ROUTE
3120 {
3121 int order;
3082 for (order = 0; 3122 for (order = 0;
3083 (PAGE_SIZE << order) < 256 * sizeof(struct ip_rt_acct) * NR_CPUS; order++) 3123 (PAGE_SIZE << order) < 256 * sizeof(struct ip_rt_acct) * NR_CPUS; order++)
3084 /* NOTHING */; 3124 /* NOTHING */;
@@ -3086,6 +3126,7 @@ int __init ip_rt_init(void)
3086 if (!ip_rt_acct) 3126 if (!ip_rt_acct)
3087 panic("IP: failed to allocate ip_rt_acct\n"); 3127 panic("IP: failed to allocate ip_rt_acct\n");
3088 memset(ip_rt_acct, 0, PAGE_SIZE << order); 3128 memset(ip_rt_acct, 0, PAGE_SIZE << order);
3129 }
3089#endif 3130#endif
3090 3131
3091 ipv4_dst_ops.kmem_cachep = kmem_cache_create("ip_dst_cache", 3132 ipv4_dst_ops.kmem_cachep = kmem_cache_create("ip_dst_cache",
@@ -3096,36 +3137,19 @@ int __init ip_rt_init(void)
3096 if (!ipv4_dst_ops.kmem_cachep) 3137 if (!ipv4_dst_ops.kmem_cachep)
3097 panic("IP: failed to allocate ip_dst_cache\n"); 3138 panic("IP: failed to allocate ip_dst_cache\n");
3098 3139
3099 goal = num_physpages >> (26 - PAGE_SHIFT); 3140 rt_hash_table = (struct rt_hash_bucket *)
3100 if (rhash_entries) 3141 alloc_large_system_hash("IP route cache",
3101 goal = (rhash_entries * sizeof(struct rt_hash_bucket)) >> PAGE_SHIFT; 3142 sizeof(struct rt_hash_bucket),
3102 for (order = 0; (1UL << order) < goal; order++) 3143 rhash_entries,
3103 /* NOTHING */; 3144 (num_physpages >= 128 * 1024) ?
3104 3145 (27 - PAGE_SHIFT) :
3105 do { 3146 (29 - PAGE_SHIFT),
3106 rt_hash_mask = (1UL << order) * PAGE_SIZE / 3147 HASH_HIGHMEM,
3107 sizeof(struct rt_hash_bucket); 3148 &rt_hash_log,
3108 while (rt_hash_mask & (rt_hash_mask - 1)) 3149 &rt_hash_mask,
3109 rt_hash_mask--; 3150 0);
3110 rt_hash_table = (struct rt_hash_bucket *) 3151 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3111 __get_free_pages(GFP_ATOMIC, order); 3152 rt_hash_lock_init();
3112 } while (rt_hash_table == NULL && --order > 0);
3113
3114 if (!rt_hash_table)
3115 panic("Failed to allocate IP route cache hash table\n");
3116
3117 printk(KERN_INFO "IP: routing cache hash table of %u buckets, %ldKbytes\n",
3118 rt_hash_mask,
3119 (long) (rt_hash_mask * sizeof(struct rt_hash_bucket)) / 1024);
3120
3121 for (rt_hash_log = 0; (1 << rt_hash_log) != rt_hash_mask; rt_hash_log++)
3122 /* NOTHING */;
3123
3124 rt_hash_mask--;
3125 for (i = 0; i <= rt_hash_mask; i++) {
3126 spin_lock_init(&rt_hash_table[i].lock);
3127 rt_hash_table[i].chain = NULL;
3128 }
3129 3153
3130 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1); 3154 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3131 ip_rt_max_size = (rt_hash_mask + 1) * 16; 3155 ip_rt_max_size = (rt_hash_mask + 1) * 16;
diff --git a/net/ipv4/tcp.c b/net/ipv4/tcp.c
index 882436da9a3a..29894c749163 100644
--- a/net/ipv4/tcp.c
+++ b/net/ipv4/tcp.c
@@ -615,7 +615,7 @@ static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffse
615 size_t psize, int flags) 615 size_t psize, int flags)
616{ 616{
617 struct tcp_sock *tp = tcp_sk(sk); 617 struct tcp_sock *tp = tcp_sk(sk);
618 int mss_now; 618 int mss_now, size_goal;
619 int err; 619 int err;
620 ssize_t copied; 620 ssize_t copied;
621 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 621 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
@@ -628,6 +628,7 @@ static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffse
628 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 628 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
629 629
630 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB)); 630 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
631 size_goal = tp->xmit_size_goal;
631 copied = 0; 632 copied = 0;
632 633
633 err = -EPIPE; 634 err = -EPIPE;
@@ -641,7 +642,7 @@ static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffse
641 int offset = poffset % PAGE_SIZE; 642 int offset = poffset % PAGE_SIZE;
642 int size = min_t(size_t, psize, PAGE_SIZE - offset); 643 int size = min_t(size_t, psize, PAGE_SIZE - offset);
643 644
644 if (!sk->sk_send_head || (copy = mss_now - skb->len) <= 0) { 645 if (!sk->sk_send_head || (copy = size_goal - skb->len) <= 0) {
645new_segment: 646new_segment:
646 if (!sk_stream_memory_free(sk)) 647 if (!sk_stream_memory_free(sk))
647 goto wait_for_sndbuf; 648 goto wait_for_sndbuf;
@@ -652,7 +653,7 @@ new_segment:
652 goto wait_for_memory; 653 goto wait_for_memory;
653 654
654 skb_entail(sk, tp, skb); 655 skb_entail(sk, tp, skb);
655 copy = mss_now; 656 copy = size_goal;
656 } 657 }
657 658
658 if (copy > size) 659 if (copy > size)
@@ -693,7 +694,7 @@ new_segment:
693 if (!(psize -= copy)) 694 if (!(psize -= copy))
694 goto out; 695 goto out;
695 696
696 if (skb->len != mss_now || (flags & MSG_OOB)) 697 if (skb->len < mss_now || (flags & MSG_OOB))
697 continue; 698 continue;
698 699
699 if (forced_push(tp)) { 700 if (forced_push(tp)) {
@@ -713,6 +714,7 @@ wait_for_memory:
713 goto do_error; 714 goto do_error;
714 715
715 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB)); 716 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
717 size_goal = tp->xmit_size_goal;
716 } 718 }
717 719
718out: 720out:
@@ -754,15 +756,20 @@ ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
754 756
755static inline int select_size(struct sock *sk, struct tcp_sock *tp) 757static inline int select_size(struct sock *sk, struct tcp_sock *tp)
756{ 758{
757 int tmp = tp->mss_cache_std; 759 int tmp = tp->mss_cache;
758 760
759 if (sk->sk_route_caps & NETIF_F_SG) { 761 if (sk->sk_route_caps & NETIF_F_SG) {
760 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 762 if (sk->sk_route_caps & NETIF_F_TSO)
763 tmp = 0;
764 else {
765 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
761 766
762 if (tmp >= pgbreak && 767 if (tmp >= pgbreak &&
763 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 768 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
764 tmp = pgbreak; 769 tmp = pgbreak;
770 }
765 } 771 }
772
766 return tmp; 773 return tmp;
767} 774}
768 775
@@ -773,7 +780,7 @@ int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
773 struct tcp_sock *tp = tcp_sk(sk); 780 struct tcp_sock *tp = tcp_sk(sk);
774 struct sk_buff *skb; 781 struct sk_buff *skb;
775 int iovlen, flags; 782 int iovlen, flags;
776 int mss_now; 783 int mss_now, size_goal;
777 int err, copied; 784 int err, copied;
778 long timeo; 785 long timeo;
779 786
@@ -792,6 +799,7 @@ int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
792 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 799 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
793 800
794 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB)); 801 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
802 size_goal = tp->xmit_size_goal;
795 803
796 /* Ok commence sending. */ 804 /* Ok commence sending. */
797 iovlen = msg->msg_iovlen; 805 iovlen = msg->msg_iovlen;
@@ -814,7 +822,7 @@ int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
814 skb = sk->sk_write_queue.prev; 822 skb = sk->sk_write_queue.prev;
815 823
816 if (!sk->sk_send_head || 824 if (!sk->sk_send_head ||
817 (copy = mss_now - skb->len) <= 0) { 825 (copy = size_goal - skb->len) <= 0) {
818 826
819new_segment: 827new_segment:
820 /* Allocate new segment. If the interface is SG, 828 /* Allocate new segment. If the interface is SG,
@@ -837,7 +845,7 @@ new_segment:
837 skb->ip_summed = CHECKSUM_HW; 845 skb->ip_summed = CHECKSUM_HW;
838 846
839 skb_entail(sk, tp, skb); 847 skb_entail(sk, tp, skb);
840 copy = mss_now; 848 copy = size_goal;
841 } 849 }
842 850
843 /* Try to append data to the end of skb. */ 851 /* Try to append data to the end of skb. */
@@ -872,11 +880,6 @@ new_segment:
872 tcp_mark_push(tp, skb); 880 tcp_mark_push(tp, skb);
873 goto new_segment; 881 goto new_segment;
874 } else if (page) { 882 } else if (page) {
875 /* If page is cached, align
876 * offset to L1 cache boundary
877 */
878 off = (off + L1_CACHE_BYTES - 1) &
879 ~(L1_CACHE_BYTES - 1);
880 if (off == PAGE_SIZE) { 883 if (off == PAGE_SIZE) {
881 put_page(page); 884 put_page(page);
882 TCP_PAGE(sk) = page = NULL; 885 TCP_PAGE(sk) = page = NULL;
@@ -937,7 +940,7 @@ new_segment:
937 if ((seglen -= copy) == 0 && iovlen == 0) 940 if ((seglen -= copy) == 0 && iovlen == 0)
938 goto out; 941 goto out;
939 942
940 if (skb->len != mss_now || (flags & MSG_OOB)) 943 if (skb->len < mss_now || (flags & MSG_OOB))
941 continue; 944 continue;
942 945
943 if (forced_push(tp)) { 946 if (forced_push(tp)) {
@@ -957,6 +960,7 @@ wait_for_memory:
957 goto do_error; 960 goto do_error;
958 961
959 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB)); 962 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
963 size_goal = tp->xmit_size_goal;
960 } 964 }
961 } 965 }
962 966
@@ -2128,7 +2132,7 @@ void tcp_get_info(struct sock *sk, struct tcp_info *info)
2128 2132
2129 info->tcpi_rto = jiffies_to_usecs(tp->rto); 2133 info->tcpi_rto = jiffies_to_usecs(tp->rto);
2130 info->tcpi_ato = jiffies_to_usecs(tp->ack.ato); 2134 info->tcpi_ato = jiffies_to_usecs(tp->ack.ato);
2131 info->tcpi_snd_mss = tp->mss_cache_std; 2135 info->tcpi_snd_mss = tp->mss_cache;
2132 info->tcpi_rcv_mss = tp->ack.rcv_mss; 2136 info->tcpi_rcv_mss = tp->ack.rcv_mss;
2133 2137
2134 info->tcpi_unacked = tp->packets_out; 2138 info->tcpi_unacked = tp->packets_out;
@@ -2178,7 +2182,7 @@ int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2178 2182
2179 switch (optname) { 2183 switch (optname) {
2180 case TCP_MAXSEG: 2184 case TCP_MAXSEG:
2181 val = tp->mss_cache_std; 2185 val = tp->mss_cache;
2182 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2186 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2183 val = tp->rx_opt.user_mss; 2187 val = tp->rx_opt.user_mss;
2184 break; 2188 break;
diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
index 7bbbbc33eb4b..8de2f1071c2b 100644
--- a/net/ipv4/tcp_input.c
+++ b/net/ipv4/tcp_input.c
@@ -740,10 +740,10 @@ __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
740 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 740 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
741 741
742 if (!cwnd) { 742 if (!cwnd) {
743 if (tp->mss_cache_std > 1460) 743 if (tp->mss_cache > 1460)
744 cwnd = 2; 744 cwnd = 2;
745 else 745 else
746 cwnd = (tp->mss_cache_std > 1095) ? 3 : 4; 746 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
747 } 747 }
748 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 748 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
749} 749}
@@ -914,7 +914,7 @@ tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_
914 if (sk->sk_route_caps & NETIF_F_TSO) { 914 if (sk->sk_route_caps & NETIF_F_TSO) {
915 sk->sk_route_caps &= ~NETIF_F_TSO; 915 sk->sk_route_caps &= ~NETIF_F_TSO;
916 sock_set_flag(sk, SOCK_NO_LARGESEND); 916 sock_set_flag(sk, SOCK_NO_LARGESEND);
917 tp->mss_cache = tp->mss_cache_std; 917 tp->mss_cache = tp->mss_cache;
918 } 918 }
919 919
920 if (!tp->sacked_out) 920 if (!tp->sacked_out)
@@ -1077,7 +1077,7 @@ tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_
1077 (IsFack(tp) || 1077 (IsFack(tp) ||
1078 !before(lost_retrans, 1078 !before(lost_retrans,
1079 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1079 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1080 tp->mss_cache_std))) { 1080 tp->mss_cache))) {
1081 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1081 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1082 tp->retrans_out -= tcp_skb_pcount(skb); 1082 tp->retrans_out -= tcp_skb_pcount(skb);
1083 1083
@@ -1957,15 +1957,6 @@ static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1957 } 1957 }
1958} 1958}
1959 1959
1960/* There is one downside to this scheme. Although we keep the
1961 * ACK clock ticking, adjusting packet counters and advancing
1962 * congestion window, we do not liberate socket send buffer
1963 * space.
1964 *
1965 * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
1966 * then making a write space wakeup callback is a possible
1967 * future enhancement. WARNING: it is not trivial to make.
1968 */
1969static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 1960static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1970 __u32 now, __s32 *seq_rtt) 1961 __u32 now, __s32 *seq_rtt)
1971{ 1962{
@@ -2047,7 +2038,8 @@ static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt
2047 * the other end. 2038 * the other end.
2048 */ 2039 */
2049 if (after(scb->end_seq, tp->snd_una)) { 2040 if (after(scb->end_seq, tp->snd_una)) {
2050 if (tcp_skb_pcount(skb) > 1) 2041 if (tcp_skb_pcount(skb) > 1 &&
2042 after(tp->snd_una, scb->seq))
2051 acked |= tcp_tso_acked(sk, skb, 2043 acked |= tcp_tso_acked(sk, skb,
2052 now, &seq_rtt); 2044 now, &seq_rtt);
2053 break; 2045 break;
@@ -3308,6 +3300,28 @@ void tcp_cwnd_application_limited(struct sock *sk)
3308 tp->snd_cwnd_stamp = tcp_time_stamp; 3300 tp->snd_cwnd_stamp = tcp_time_stamp;
3309} 3301}
3310 3302
3303static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3304{
3305 /* If the user specified a specific send buffer setting, do
3306 * not modify it.
3307 */
3308 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3309 return 0;
3310
3311 /* If we are under global TCP memory pressure, do not expand. */
3312 if (tcp_memory_pressure)
3313 return 0;
3314
3315 /* If we are under soft global TCP memory pressure, do not expand. */
3316 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3317 return 0;
3318
3319 /* If we filled the congestion window, do not expand. */
3320 if (tp->packets_out >= tp->snd_cwnd)
3321 return 0;
3322
3323 return 1;
3324}
3311 3325
3312/* When incoming ACK allowed to free some skb from write_queue, 3326/* When incoming ACK allowed to free some skb from write_queue,
3313 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3327 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
@@ -3319,11 +3333,8 @@ static void tcp_new_space(struct sock *sk)
3319{ 3333{
3320 struct tcp_sock *tp = tcp_sk(sk); 3334 struct tcp_sock *tp = tcp_sk(sk);
3321 3335
3322 if (tp->packets_out < tp->snd_cwnd && 3336 if (tcp_should_expand_sndbuf(sk, tp)) {
3323 !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) && 3337 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3324 !tcp_memory_pressure &&
3325 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
3326 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
3327 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3338 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3328 demanded = max_t(unsigned int, tp->snd_cwnd, 3339 demanded = max_t(unsigned int, tp->snd_cwnd,
3329 tp->reordering + 1); 3340 tp->reordering + 1);
@@ -3346,22 +3357,9 @@ static inline void tcp_check_space(struct sock *sk)
3346 } 3357 }
3347} 3358}
3348 3359
3349static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb) 3360static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3350{
3351 struct tcp_sock *tp = tcp_sk(sk);
3352
3353 if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
3354 tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
3355 tcp_write_xmit(sk, tp->nonagle))
3356 tcp_check_probe_timer(sk, tp);
3357}
3358
3359static __inline__ void tcp_data_snd_check(struct sock *sk)
3360{ 3361{
3361 struct sk_buff *skb = sk->sk_send_head; 3362 tcp_push_pending_frames(sk, tp);
3362
3363 if (skb != NULL)
3364 __tcp_data_snd_check(sk, skb);
3365 tcp_check_space(sk); 3363 tcp_check_space(sk);
3366} 3364}
3367 3365
@@ -3655,7 +3653,7 @@ int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3655 */ 3653 */
3656 tcp_ack(sk, skb, 0); 3654 tcp_ack(sk, skb, 0);
3657 __kfree_skb(skb); 3655 __kfree_skb(skb);
3658 tcp_data_snd_check(sk); 3656 tcp_data_snd_check(sk, tp);
3659 return 0; 3657 return 0;
3660 } else { /* Header too small */ 3658 } else { /* Header too small */
3661 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3659 TCP_INC_STATS_BH(TCP_MIB_INERRS);
@@ -3721,7 +3719,7 @@ int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3721 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 3719 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3722 /* Well, only one small jumplet in fast path... */ 3720 /* Well, only one small jumplet in fast path... */
3723 tcp_ack(sk, skb, FLAG_DATA); 3721 tcp_ack(sk, skb, FLAG_DATA);
3724 tcp_data_snd_check(sk); 3722 tcp_data_snd_check(sk, tp);
3725 if (!tcp_ack_scheduled(tp)) 3723 if (!tcp_ack_scheduled(tp))
3726 goto no_ack; 3724 goto no_ack;
3727 } 3725 }
@@ -3799,7 +3797,7 @@ step5:
3799 /* step 7: process the segment text */ 3797 /* step 7: process the segment text */
3800 tcp_data_queue(sk, skb); 3798 tcp_data_queue(sk, skb);
3801 3799
3802 tcp_data_snd_check(sk); 3800 tcp_data_snd_check(sk, tp);
3803 tcp_ack_snd_check(sk); 3801 tcp_ack_snd_check(sk);
3804 return 0; 3802 return 0;
3805 3803
@@ -4109,7 +4107,7 @@ int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4109 /* Do step6 onward by hand. */ 4107 /* Do step6 onward by hand. */
4110 tcp_urg(sk, skb, th); 4108 tcp_urg(sk, skb, th);
4111 __kfree_skb(skb); 4109 __kfree_skb(skb);
4112 tcp_data_snd_check(sk); 4110 tcp_data_snd_check(sk, tp);
4113 return 0; 4111 return 0;
4114 } 4112 }
4115 4113
@@ -4300,7 +4298,7 @@ int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4300 4298
4301 /* tcp_data could move socket to TIME-WAIT */ 4299 /* tcp_data could move socket to TIME-WAIT */
4302 if (sk->sk_state != TCP_CLOSE) { 4300 if (sk->sk_state != TCP_CLOSE) {
4303 tcp_data_snd_check(sk); 4301 tcp_data_snd_check(sk, tp);
4304 tcp_ack_snd_check(sk); 4302 tcp_ack_snd_check(sk);
4305 } 4303 }
4306 4304
diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
index ebf112347a97..62f62bb05c2a 100644
--- a/net/ipv4/tcp_ipv4.c
+++ b/net/ipv4/tcp_ipv4.c
@@ -2045,7 +2045,7 @@ static int tcp_v4_init_sock(struct sock *sk)
2045 */ 2045 */
2046 tp->snd_ssthresh = 0x7fffffff; /* Infinity */ 2046 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
2047 tp->snd_cwnd_clamp = ~0; 2047 tp->snd_cwnd_clamp = ~0;
2048 tp->mss_cache_std = tp->mss_cache = 536; 2048 tp->mss_cache = 536;
2049 2049
2050 tp->reordering = sysctl_tcp_reordering; 2050 tp->reordering = sysctl_tcp_reordering;
2051 tp->ca_ops = &tcp_init_congestion_ops; 2051 tp->ca_ops = &tcp_init_congestion_ops;
diff --git a/net/ipv4/tcp_output.c b/net/ipv4/tcp_output.c
index 0e17c244875c..e041d057ec86 100644
--- a/net/ipv4/tcp_output.c
+++ b/net/ipv4/tcp_output.c
@@ -49,7 +49,7 @@ int sysctl_tcp_retrans_collapse = 1;
49 * will allow a single TSO frame to consume. Building TSO frames 49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty. 50 * which are too large can cause TCP streams to be bursty.
51 */ 51 */
52int sysctl_tcp_tso_win_divisor = 8; 52int sysctl_tcp_tso_win_divisor = 3;
53 53
54static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, 54static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb) 55 struct sk_buff *skb)
@@ -140,11 +140,11 @@ static inline void tcp_event_data_sent(struct tcp_sock *tp,
140 tp->ack.pingpong = 1; 140 tp->ack.pingpong = 1;
141} 141}
142 142
143static __inline__ void tcp_event_ack_sent(struct sock *sk) 143static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
144{ 144{
145 struct tcp_sock *tp = tcp_sk(sk); 145 struct tcp_sock *tp = tcp_sk(sk);
146 146
147 tcp_dec_quickack_mode(tp); 147 tcp_dec_quickack_mode(tp, pkts);
148 tcp_clear_xmit_timer(sk, TCP_TIME_DACK); 148 tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
149} 149}
150 150
@@ -355,7 +355,7 @@ static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
355 tp->af_specific->send_check(sk, th, skb->len, skb); 355 tp->af_specific->send_check(sk, th, skb->len, skb);
356 356
357 if (tcb->flags & TCPCB_FLAG_ACK) 357 if (tcb->flags & TCPCB_FLAG_ACK)
358 tcp_event_ack_sent(sk); 358 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
359 359
360 if (skb->len != tcp_header_size) 360 if (skb->len != tcp_header_size)
361 tcp_event_data_sent(tp, skb, sk); 361 tcp_event_data_sent(tp, skb, sk);
@@ -403,42 +403,11 @@ static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
403 sk->sk_send_head = skb; 403 sk->sk_send_head = skb;
404} 404}
405 405
406static inline void tcp_tso_set_push(struct sk_buff *skb) 406static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
407{
408 /* Force push to be on for any TSO frames to workaround
409 * problems with busted implementations like Mac OS-X that
410 * hold off socket receive wakeups until push is seen.
411 */
412 if (tcp_skb_pcount(skb) > 1)
413 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
414}
415
416/* Send _single_ skb sitting at the send head. This function requires
417 * true push pending frames to setup probe timer etc.
418 */
419void tcp_push_one(struct sock *sk, unsigned cur_mss)
420{ 407{
421 struct tcp_sock *tp = tcp_sk(sk); 408 struct tcp_sock *tp = tcp_sk(sk);
422 struct sk_buff *skb = sk->sk_send_head;
423 409
424 if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) { 410 if (skb->len <= tp->mss_cache ||
425 /* Send it out now. */
426 TCP_SKB_CB(skb)->when = tcp_time_stamp;
427 tcp_tso_set_push(skb);
428 if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
429 sk->sk_send_head = NULL;
430 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
431 tcp_packets_out_inc(sk, tp, skb);
432 return;
433 }
434 }
435}
436
437void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
438{
439 struct tcp_sock *tp = tcp_sk(sk);
440
441 if (skb->len <= tp->mss_cache_std ||
442 !(sk->sk_route_caps & NETIF_F_TSO)) { 411 !(sk->sk_route_caps & NETIF_F_TSO)) {
443 /* Avoid the costly divide in the normal 412 /* Avoid the costly divide in the normal
444 * non-TSO case. 413 * non-TSO case.
@@ -448,10 +417,10 @@ void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
448 } else { 417 } else {
449 unsigned int factor; 418 unsigned int factor;
450 419
451 factor = skb->len + (tp->mss_cache_std - 1); 420 factor = skb->len + (tp->mss_cache - 1);
452 factor /= tp->mss_cache_std; 421 factor /= tp->mss_cache;
453 skb_shinfo(skb)->tso_segs = factor; 422 skb_shinfo(skb)->tso_segs = factor;
454 skb_shinfo(skb)->tso_size = tp->mss_cache_std; 423 skb_shinfo(skb)->tso_size = tp->mss_cache;
455 } 424 }
456} 425}
457 426
@@ -537,6 +506,7 @@ static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
537 } 506 }
538 507
539 /* Link BUFF into the send queue. */ 508 /* Link BUFF into the send queue. */
509 skb_header_release(buff);
540 __skb_append(skb, buff); 510 __skb_append(skb, buff);
541 511
542 return 0; 512 return 0;
@@ -657,7 +627,7 @@ unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
657 627
658 /* And store cached results */ 628 /* And store cached results */
659 tp->pmtu_cookie = pmtu; 629 tp->pmtu_cookie = pmtu;
660 tp->mss_cache = tp->mss_cache_std = mss_now; 630 tp->mss_cache = mss_now;
661 631
662 return mss_now; 632 return mss_now;
663} 633}
@@ -669,57 +639,316 @@ unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
669 * cannot be large. However, taking into account rare use of URG, this 639 * cannot be large. However, taking into account rare use of URG, this
670 * is not a big flaw. 640 * is not a big flaw.
671 */ 641 */
672 642unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
673unsigned int tcp_current_mss(struct sock *sk, int large)
674{ 643{
675 struct tcp_sock *tp = tcp_sk(sk); 644 struct tcp_sock *tp = tcp_sk(sk);
676 struct dst_entry *dst = __sk_dst_get(sk); 645 struct dst_entry *dst = __sk_dst_get(sk);
677 unsigned int do_large, mss_now; 646 u32 mss_now;
647 u16 xmit_size_goal;
648 int doing_tso = 0;
649
650 mss_now = tp->mss_cache;
651
652 if (large_allowed &&
653 (sk->sk_route_caps & NETIF_F_TSO) &&
654 !tp->urg_mode)
655 doing_tso = 1;
678 656
679 mss_now = tp->mss_cache_std;
680 if (dst) { 657 if (dst) {
681 u32 mtu = dst_mtu(dst); 658 u32 mtu = dst_mtu(dst);
682 if (mtu != tp->pmtu_cookie) 659 if (mtu != tp->pmtu_cookie)
683 mss_now = tcp_sync_mss(sk, mtu); 660 mss_now = tcp_sync_mss(sk, mtu);
684 } 661 }
685 662
686 do_large = (large && 663 if (tp->rx_opt.eff_sacks)
687 (sk->sk_route_caps & NETIF_F_TSO) && 664 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
688 !tp->urg_mode); 665 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
689 666
690 if (do_large) { 667 xmit_size_goal = mss_now;
691 unsigned int large_mss, factor, limit;
692 668
693 large_mss = 65535 - tp->af_specific->net_header_len - 669 if (doing_tso) {
670 xmit_size_goal = 65535 -
671 tp->af_specific->net_header_len -
694 tp->ext_header_len - tp->tcp_header_len; 672 tp->ext_header_len - tp->tcp_header_len;
695 673
696 if (tp->max_window && large_mss > (tp->max_window>>1)) 674 if (tp->max_window &&
697 large_mss = max((tp->max_window>>1), 675 (xmit_size_goal > (tp->max_window >> 1)))
698 68U - tp->tcp_header_len); 676 xmit_size_goal = max((tp->max_window >> 1),
677 68U - tp->tcp_header_len);
678
679 xmit_size_goal -= (xmit_size_goal % mss_now);
680 }
681 tp->xmit_size_goal = xmit_size_goal;
699 682
700 factor = large_mss / mss_now; 683 return mss_now;
684}
701 685
702 /* Always keep large mss multiple of real mss, but 686/* Congestion window validation. (RFC2861) */
703 * do not exceed 1/tso_win_divisor of the congestion window
704 * so we can keep the ACK clock ticking and minimize
705 * bursting.
706 */
707 limit = tp->snd_cwnd;
708 if (sysctl_tcp_tso_win_divisor)
709 limit /= sysctl_tcp_tso_win_divisor;
710 limit = max(1U, limit);
711 if (factor > limit)
712 factor = limit;
713 687
714 tp->mss_cache = mss_now * factor; 688static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
689{
690 __u32 packets_out = tp->packets_out;
691
692 if (packets_out >= tp->snd_cwnd) {
693 /* Network is feed fully. */
694 tp->snd_cwnd_used = 0;
695 tp->snd_cwnd_stamp = tcp_time_stamp;
696 } else {
697 /* Network starves. */
698 if (tp->packets_out > tp->snd_cwnd_used)
699 tp->snd_cwnd_used = tp->packets_out;
715 700
716 mss_now = tp->mss_cache; 701 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
702 tcp_cwnd_application_limited(sk);
717 } 703 }
704}
718 705
719 if (tp->rx_opt.eff_sacks) 706static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
720 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 707{
721 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 708 u32 window, cwnd_len;
722 return mss_now; 709
710 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
711 cwnd_len = mss_now * cwnd;
712 return min(window, cwnd_len);
713}
714
715/* Can at least one segment of SKB be sent right now, according to the
716 * congestion window rules? If so, return how many segments are allowed.
717 */
718static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
719{
720 u32 in_flight, cwnd;
721
722 /* Don't be strict about the congestion window for the final FIN. */
723 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
724 return 1;
725
726 in_flight = tcp_packets_in_flight(tp);
727 cwnd = tp->snd_cwnd;
728 if (in_flight < cwnd)
729 return (cwnd - in_flight);
730
731 return 0;
732}
733
734/* This must be invoked the first time we consider transmitting
735 * SKB onto the wire.
736 */
737static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb)
738{
739 int tso_segs = tcp_skb_pcount(skb);
740
741 if (!tso_segs) {
742 tcp_set_skb_tso_segs(sk, skb);
743 tso_segs = tcp_skb_pcount(skb);
744 }
745 return tso_segs;
746}
747
748static inline int tcp_minshall_check(const struct tcp_sock *tp)
749{
750 return after(tp->snd_sml,tp->snd_una) &&
751 !after(tp->snd_sml, tp->snd_nxt);
752}
753
754/* Return 0, if packet can be sent now without violation Nagle's rules:
755 * 1. It is full sized.
756 * 2. Or it contains FIN. (already checked by caller)
757 * 3. Or TCP_NODELAY was set.
758 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
759 * With Minshall's modification: all sent small packets are ACKed.
760 */
761
762static inline int tcp_nagle_check(const struct tcp_sock *tp,
763 const struct sk_buff *skb,
764 unsigned mss_now, int nonagle)
765{
766 return (skb->len < mss_now &&
767 ((nonagle&TCP_NAGLE_CORK) ||
768 (!nonagle &&
769 tp->packets_out &&
770 tcp_minshall_check(tp))));
771}
772
773/* Return non-zero if the Nagle test allows this packet to be
774 * sent now.
775 */
776static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
777 unsigned int cur_mss, int nonagle)
778{
779 /* Nagle rule does not apply to frames, which sit in the middle of the
780 * write_queue (they have no chances to get new data).
781 *
782 * This is implemented in the callers, where they modify the 'nonagle'
783 * argument based upon the location of SKB in the send queue.
784 */
785 if (nonagle & TCP_NAGLE_PUSH)
786 return 1;
787
788 /* Don't use the nagle rule for urgent data (or for the final FIN). */
789 if (tp->urg_mode ||
790 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
791 return 1;
792
793 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
794 return 1;
795
796 return 0;
797}
798
799/* Does at least the first segment of SKB fit into the send window? */
800static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
801{
802 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
803
804 if (skb->len > cur_mss)
805 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
806
807 return !after(end_seq, tp->snd_una + tp->snd_wnd);
808}
809
810/* This checks if the data bearing packet SKB (usually sk->sk_send_head)
811 * should be put on the wire right now. If so, it returns the number of
812 * packets allowed by the congestion window.
813 */
814static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
815 unsigned int cur_mss, int nonagle)
816{
817 struct tcp_sock *tp = tcp_sk(sk);
818 unsigned int cwnd_quota;
819
820 tcp_init_tso_segs(sk, skb);
821
822 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
823 return 0;
824
825 cwnd_quota = tcp_cwnd_test(tp, skb);
826 if (cwnd_quota &&
827 !tcp_snd_wnd_test(tp, skb, cur_mss))
828 cwnd_quota = 0;
829
830 return cwnd_quota;
831}
832
833static inline int tcp_skb_is_last(const struct sock *sk,
834 const struct sk_buff *skb)
835{
836 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
837}
838
839int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
840{
841 struct sk_buff *skb = sk->sk_send_head;
842
843 return (skb &&
844 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
845 (tcp_skb_is_last(sk, skb) ?
846 TCP_NAGLE_PUSH :
847 tp->nonagle)));
848}
849
850/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
851 * which is put after SKB on the list. It is very much like
852 * tcp_fragment() except that it may make several kinds of assumptions
853 * in order to speed up the splitting operation. In particular, we
854 * know that all the data is in scatter-gather pages, and that the
855 * packet has never been sent out before (and thus is not cloned).
856 */
857static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len)
858{
859 struct sk_buff *buff;
860 int nlen = skb->len - len;
861 u16 flags;
862
863 /* All of a TSO frame must be composed of paged data. */
864 BUG_ON(skb->len != skb->data_len);
865
866 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
867 if (unlikely(buff == NULL))
868 return -ENOMEM;
869
870 buff->truesize = nlen;
871 skb->truesize -= nlen;
872
873 /* Correct the sequence numbers. */
874 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
875 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
876 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
877
878 /* PSH and FIN should only be set in the second packet. */
879 flags = TCP_SKB_CB(skb)->flags;
880 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
881 TCP_SKB_CB(buff)->flags = flags;
882
883 /* This packet was never sent out yet, so no SACK bits. */
884 TCP_SKB_CB(buff)->sacked = 0;
885
886 buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
887 skb_split(skb, buff, len);
888
889 /* Fix up tso_factor for both original and new SKB. */
890 tcp_set_skb_tso_segs(sk, skb);
891 tcp_set_skb_tso_segs(sk, buff);
892
893 /* Link BUFF into the send queue. */
894 skb_header_release(buff);
895 __skb_append(skb, buff);
896
897 return 0;
898}
899
900/* Try to defer sending, if possible, in order to minimize the amount
901 * of TSO splitting we do. View it as a kind of TSO Nagle test.
902 *
903 * This algorithm is from John Heffner.
904 */
905static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
906{
907 u32 send_win, cong_win, limit, in_flight;
908
909 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
910 return 0;
911
912 if (tp->ca_state != TCP_CA_Open)
913 return 0;
914
915 in_flight = tcp_packets_in_flight(tp);
916
917 BUG_ON(tcp_skb_pcount(skb) <= 1 ||
918 (tp->snd_cwnd <= in_flight));
919
920 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
921
922 /* From in_flight test above, we know that cwnd > in_flight. */
923 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
924
925 limit = min(send_win, cong_win);
926
927 /* If sk_send_head can be sent fully now, just do it. */
928 if (skb->len <= limit)
929 return 0;
930
931 if (sysctl_tcp_tso_win_divisor) {
932 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
933
934 /* If at least some fraction of a window is available,
935 * just use it.
936 */
937 chunk /= sysctl_tcp_tso_win_divisor;
938 if (limit >= chunk)
939 return 0;
940 } else {
941 /* Different approach, try not to defer past a single
942 * ACK. Receiver should ACK every other full sized
943 * frame, so if we have space for more than 3 frames
944 * then send now.
945 */
946 if (limit > tcp_max_burst(tp) * tp->mss_cache)
947 return 0;
948 }
949
950 /* Ok, it looks like it is advisable to defer. */
951 return 1;
723} 952}
724 953
725/* This routine writes packets to the network. It advances the 954/* This routine writes packets to the network. It advances the
@@ -729,57 +958,158 @@ unsigned int tcp_current_mss(struct sock *sk, int large)
729 * Returns 1, if no segments are in flight and we have queued segments, but 958 * Returns 1, if no segments are in flight and we have queued segments, but
730 * cannot send anything now because of SWS or another problem. 959 * cannot send anything now because of SWS or another problem.
731 */ 960 */
732int tcp_write_xmit(struct sock *sk, int nonagle) 961static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
733{ 962{
734 struct tcp_sock *tp = tcp_sk(sk); 963 struct tcp_sock *tp = tcp_sk(sk);
735 unsigned int mss_now; 964 struct sk_buff *skb;
965 unsigned int tso_segs, sent_pkts;
966 int cwnd_quota;
736 967
737 /* If we are closed, the bytes will have to remain here. 968 /* If we are closed, the bytes will have to remain here.
738 * In time closedown will finish, we empty the write queue and all 969 * In time closedown will finish, we empty the write queue and all
739 * will be happy. 970 * will be happy.
740 */ 971 */
741 if (sk->sk_state != TCP_CLOSE) { 972 if (unlikely(sk->sk_state == TCP_CLOSE))
742 struct sk_buff *skb; 973 return 0;
743 int sent_pkts = 0; 974
975 skb = sk->sk_send_head;
976 if (unlikely(!skb))
977 return 0;
978
979 tso_segs = tcp_init_tso_segs(sk, skb);
980 cwnd_quota = tcp_cwnd_test(tp, skb);
981 if (unlikely(!cwnd_quota))
982 goto out;
983
984 sent_pkts = 0;
985 while (likely(tcp_snd_wnd_test(tp, skb, mss_now))) {
986 BUG_ON(!tso_segs);
987
988 if (tso_segs == 1) {
989 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
990 (tcp_skb_is_last(sk, skb) ?
991 nonagle : TCP_NAGLE_PUSH))))
992 break;
993 } else {
994 if (tcp_tso_should_defer(sk, tp, skb))
995 break;
996 }
744 997
745 /* Account for SACKS, we may need to fragment due to this. 998 if (tso_segs > 1) {
746 * It is just like the real MSS changing on us midstream. 999 u32 limit = tcp_window_allows(tp, skb,
747 * We also handle things correctly when the user adds some 1000 mss_now, cwnd_quota);
748 * IP options mid-stream. Silly to do, but cover it. 1001
749 */ 1002 if (skb->len < limit) {
750 mss_now = tcp_current_mss(sk, 1); 1003 unsigned int trim = skb->len % mss_now;
751 1004
752 while ((skb = sk->sk_send_head) && 1005 if (trim)
753 tcp_snd_test(sk, skb, mss_now, 1006 limit = skb->len - trim;
754 tcp_skb_is_last(sk, skb) ? nonagle : 1007 }
755 TCP_NAGLE_PUSH)) { 1008 if (skb->len > limit) {
756 if (skb->len > mss_now) { 1009 if (tso_fragment(sk, skb, limit))
757 if (tcp_fragment(sk, skb, mss_now))
758 break; 1010 break;
759 } 1011 }
760 1012 } else if (unlikely(skb->len > mss_now)) {
761 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1013 if (unlikely(tcp_fragment(sk, skb, mss_now)))
762 tcp_tso_set_push(skb);
763 if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))
764 break; 1014 break;
1015 }
765 1016
766 /* Advance the send_head. This one is sent out. 1017 TCP_SKB_CB(skb)->when = tcp_time_stamp;
767 * This call will increment packets_out. 1018
768 */ 1019 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))))
769 update_send_head(sk, tp, skb); 1020 break;
1021
1022 /* Advance the send_head. This one is sent out.
1023 * This call will increment packets_out.
1024 */
1025 update_send_head(sk, tp, skb);
1026
1027 tcp_minshall_update(tp, mss_now, skb);
1028 sent_pkts++;
1029
1030 /* Do not optimize this to use tso_segs. If we chopped up
1031 * the packet above, tso_segs will no longer be valid.
1032 */
1033 cwnd_quota -= tcp_skb_pcount(skb);
1034
1035 BUG_ON(cwnd_quota < 0);
1036 if (!cwnd_quota)
1037 break;
1038
1039 skb = sk->sk_send_head;
1040 if (!skb)
1041 break;
1042 tso_segs = tcp_init_tso_segs(sk, skb);
1043 }
1044
1045 if (likely(sent_pkts)) {
1046 tcp_cwnd_validate(sk, tp);
1047 return 0;
1048 }
1049out:
1050 return !tp->packets_out && sk->sk_send_head;
1051}
1052
1053/* Push out any pending frames which were held back due to
1054 * TCP_CORK or attempt at coalescing tiny packets.
1055 * The socket must be locked by the caller.
1056 */
1057void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1058 unsigned int cur_mss, int nonagle)
1059{
1060 struct sk_buff *skb = sk->sk_send_head;
770 1061
771 tcp_minshall_update(tp, mss_now, skb); 1062 if (skb) {
772 sent_pkts = 1; 1063 if (tcp_write_xmit(sk, cur_mss, nonagle))
1064 tcp_check_probe_timer(sk, tp);
1065 }
1066}
1067
1068/* Send _single_ skb sitting at the send head. This function requires
1069 * true push pending frames to setup probe timer etc.
1070 */
1071void tcp_push_one(struct sock *sk, unsigned int mss_now)
1072{
1073 struct tcp_sock *tp = tcp_sk(sk);
1074 struct sk_buff *skb = sk->sk_send_head;
1075 unsigned int tso_segs, cwnd_quota;
1076
1077 BUG_ON(!skb || skb->len < mss_now);
1078
1079 tso_segs = tcp_init_tso_segs(sk, skb);
1080 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1081
1082 if (likely(cwnd_quota)) {
1083 BUG_ON(!tso_segs);
1084
1085 if (tso_segs > 1) {
1086 u32 limit = tcp_window_allows(tp, skb,
1087 mss_now, cwnd_quota);
1088
1089 if (skb->len < limit) {
1090 unsigned int trim = skb->len % mss_now;
1091
1092 if (trim)
1093 limit = skb->len - trim;
1094 }
1095 if (skb->len > limit) {
1096 if (unlikely(tso_fragment(sk, skb, limit)))
1097 return;
1098 }
1099 } else if (unlikely(skb->len > mss_now)) {
1100 if (unlikely(tcp_fragment(sk, skb, mss_now)))
1101 return;
773 } 1102 }
774 1103
775 if (sent_pkts) { 1104 /* Send it out now. */
1105 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1106
1107 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) {
1108 update_send_head(sk, tp, skb);
776 tcp_cwnd_validate(sk, tp); 1109 tcp_cwnd_validate(sk, tp);
777 return 0; 1110 return;
778 } 1111 }
779
780 return !tp->packets_out && sk->sk_send_head;
781 } 1112 }
782 return 0;
783} 1113}
784 1114
785/* This function returns the amount that we can raise the 1115/* This function returns the amount that we can raise the
@@ -1039,7 +1369,6 @@ int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1039 if (sk->sk_route_caps & NETIF_F_TSO) { 1369 if (sk->sk_route_caps & NETIF_F_TSO) {
1040 sk->sk_route_caps &= ~NETIF_F_TSO; 1370 sk->sk_route_caps &= ~NETIF_F_TSO;
1041 sock_set_flag(sk, SOCK_NO_LARGESEND); 1371 sock_set_flag(sk, SOCK_NO_LARGESEND);
1042 tp->mss_cache = tp->mss_cache_std;
1043 } 1372 }
1044 1373
1045 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1374 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
@@ -1101,7 +1430,6 @@ int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1101 * is still in somebody's hands, else make a clone. 1430 * is still in somebody's hands, else make a clone.
1102 */ 1431 */
1103 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1432 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1104 tcp_tso_set_push(skb);
1105 1433
1106 err = tcp_transmit_skb(sk, (skb_cloned(skb) ? 1434 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1107 pskb_copy(skb, GFP_ATOMIC): 1435 pskb_copy(skb, GFP_ATOMIC):
@@ -1670,14 +1998,12 @@ int tcp_write_wakeup(struct sock *sk)
1670 if (sk->sk_route_caps & NETIF_F_TSO) { 1998 if (sk->sk_route_caps & NETIF_F_TSO) {
1671 sock_set_flag(sk, SOCK_NO_LARGESEND); 1999 sock_set_flag(sk, SOCK_NO_LARGESEND);
1672 sk->sk_route_caps &= ~NETIF_F_TSO; 2000 sk->sk_route_caps &= ~NETIF_F_TSO;
1673 tp->mss_cache = tp->mss_cache_std;
1674 } 2001 }
1675 } else if (!tcp_skb_pcount(skb)) 2002 } else if (!tcp_skb_pcount(skb))
1676 tcp_set_skb_tso_segs(sk, skb); 2003 tcp_set_skb_tso_segs(sk, skb);
1677 2004
1678 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2005 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1679 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2006 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1680 tcp_tso_set_push(skb);
1681 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 2007 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1682 if (!err) { 2008 if (!err) {
1683 update_send_head(sk, tp, skb); 2009 update_send_head(sk, tp, skb);