diff options
Diffstat (limited to 'net/ipv4/tcp_input.c')
-rw-r--r-- | net/ipv4/tcp_input.c | 4959 |
1 files changed, 4959 insertions, 0 deletions
diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c new file mode 100644 index 000000000000..250492735902 --- /dev/null +++ b/net/ipv4/tcp_input.c | |||
@@ -0,0 +1,4959 @@ | |||
1 | /* | ||
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | ||
3 | * operating system. INET is implemented using the BSD Socket | ||
4 | * interface as the means of communication with the user level. | ||
5 | * | ||
6 | * Implementation of the Transmission Control Protocol(TCP). | ||
7 | * | ||
8 | * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ | ||
9 | * | ||
10 | * Authors: Ross Biro, <bir7@leland.Stanford.Edu> | ||
11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | ||
12 | * Mark Evans, <evansmp@uhura.aston.ac.uk> | ||
13 | * Corey Minyard <wf-rch!minyard@relay.EU.net> | ||
14 | * Florian La Roche, <flla@stud.uni-sb.de> | ||
15 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | ||
16 | * Linus Torvalds, <torvalds@cs.helsinki.fi> | ||
17 | * Alan Cox, <gw4pts@gw4pts.ampr.org> | ||
18 | * Matthew Dillon, <dillon@apollo.west.oic.com> | ||
19 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> | ||
20 | * Jorge Cwik, <jorge@laser.satlink.net> | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | * Changes: | ||
25 | * Pedro Roque : Fast Retransmit/Recovery. | ||
26 | * Two receive queues. | ||
27 | * Retransmit queue handled by TCP. | ||
28 | * Better retransmit timer handling. | ||
29 | * New congestion avoidance. | ||
30 | * Header prediction. | ||
31 | * Variable renaming. | ||
32 | * | ||
33 | * Eric : Fast Retransmit. | ||
34 | * Randy Scott : MSS option defines. | ||
35 | * Eric Schenk : Fixes to slow start algorithm. | ||
36 | * Eric Schenk : Yet another double ACK bug. | ||
37 | * Eric Schenk : Delayed ACK bug fixes. | ||
38 | * Eric Schenk : Floyd style fast retrans war avoidance. | ||
39 | * David S. Miller : Don't allow zero congestion window. | ||
40 | * Eric Schenk : Fix retransmitter so that it sends | ||
41 | * next packet on ack of previous packet. | ||
42 | * Andi Kleen : Moved open_request checking here | ||
43 | * and process RSTs for open_requests. | ||
44 | * Andi Kleen : Better prune_queue, and other fixes. | ||
45 | * Andrey Savochkin: Fix RTT measurements in the presnce of | ||
46 | * timestamps. | ||
47 | * Andrey Savochkin: Check sequence numbers correctly when | ||
48 | * removing SACKs due to in sequence incoming | ||
49 | * data segments. | ||
50 | * Andi Kleen: Make sure we never ack data there is not | ||
51 | * enough room for. Also make this condition | ||
52 | * a fatal error if it might still happen. | ||
53 | * Andi Kleen: Add tcp_measure_rcv_mss to make | ||
54 | * connections with MSS<min(MTU,ann. MSS) | ||
55 | * work without delayed acks. | ||
56 | * Andi Kleen: Process packets with PSH set in the | ||
57 | * fast path. | ||
58 | * J Hadi Salim: ECN support | ||
59 | * Andrei Gurtov, | ||
60 | * Pasi Sarolahti, | ||
61 | * Panu Kuhlberg: Experimental audit of TCP (re)transmission | ||
62 | * engine. Lots of bugs are found. | ||
63 | * Pasi Sarolahti: F-RTO for dealing with spurious RTOs | ||
64 | * Angelo Dell'Aera: TCP Westwood+ support | ||
65 | */ | ||
66 | |||
67 | #include <linux/config.h> | ||
68 | #include <linux/mm.h> | ||
69 | #include <linux/module.h> | ||
70 | #include <linux/sysctl.h> | ||
71 | #include <net/tcp.h> | ||
72 | #include <net/inet_common.h> | ||
73 | #include <linux/ipsec.h> | ||
74 | #include <asm/unaligned.h> | ||
75 | |||
76 | int sysctl_tcp_timestamps = 1; | ||
77 | int sysctl_tcp_window_scaling = 1; | ||
78 | int sysctl_tcp_sack = 1; | ||
79 | int sysctl_tcp_fack = 1; | ||
80 | int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; | ||
81 | int sysctl_tcp_ecn; | ||
82 | int sysctl_tcp_dsack = 1; | ||
83 | int sysctl_tcp_app_win = 31; | ||
84 | int sysctl_tcp_adv_win_scale = 2; | ||
85 | |||
86 | int sysctl_tcp_stdurg; | ||
87 | int sysctl_tcp_rfc1337; | ||
88 | int sysctl_tcp_max_orphans = NR_FILE; | ||
89 | int sysctl_tcp_frto; | ||
90 | int sysctl_tcp_nometrics_save; | ||
91 | int sysctl_tcp_westwood; | ||
92 | int sysctl_tcp_vegas_cong_avoid; | ||
93 | |||
94 | int sysctl_tcp_moderate_rcvbuf = 1; | ||
95 | |||
96 | /* Default values of the Vegas variables, in fixed-point representation | ||
97 | * with V_PARAM_SHIFT bits to the right of the binary point. | ||
98 | */ | ||
99 | #define V_PARAM_SHIFT 1 | ||
100 | int sysctl_tcp_vegas_alpha = 1<<V_PARAM_SHIFT; | ||
101 | int sysctl_tcp_vegas_beta = 3<<V_PARAM_SHIFT; | ||
102 | int sysctl_tcp_vegas_gamma = 1<<V_PARAM_SHIFT; | ||
103 | int sysctl_tcp_bic = 1; | ||
104 | int sysctl_tcp_bic_fast_convergence = 1; | ||
105 | int sysctl_tcp_bic_low_window = 14; | ||
106 | int sysctl_tcp_bic_beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */ | ||
107 | |||
108 | #define FLAG_DATA 0x01 /* Incoming frame contained data. */ | ||
109 | #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ | ||
110 | #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ | ||
111 | #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ | ||
112 | #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ | ||
113 | #define FLAG_DATA_SACKED 0x20 /* New SACK. */ | ||
114 | #define FLAG_ECE 0x40 /* ECE in this ACK */ | ||
115 | #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ | ||
116 | #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ | ||
117 | |||
118 | #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) | ||
119 | #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) | ||
120 | #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) | ||
121 | #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) | ||
122 | |||
123 | #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) | ||
124 | #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) | ||
125 | #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) | ||
126 | |||
127 | #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) | ||
128 | |||
129 | /* Adapt the MSS value used to make delayed ack decision to the | ||
130 | * real world. | ||
131 | */ | ||
132 | static inline void tcp_measure_rcv_mss(struct tcp_sock *tp, | ||
133 | struct sk_buff *skb) | ||
134 | { | ||
135 | unsigned int len, lss; | ||
136 | |||
137 | lss = tp->ack.last_seg_size; | ||
138 | tp->ack.last_seg_size = 0; | ||
139 | |||
140 | /* skb->len may jitter because of SACKs, even if peer | ||
141 | * sends good full-sized frames. | ||
142 | */ | ||
143 | len = skb->len; | ||
144 | if (len >= tp->ack.rcv_mss) { | ||
145 | tp->ack.rcv_mss = len; | ||
146 | } else { | ||
147 | /* Otherwise, we make more careful check taking into account, | ||
148 | * that SACKs block is variable. | ||
149 | * | ||
150 | * "len" is invariant segment length, including TCP header. | ||
151 | */ | ||
152 | len += skb->data - skb->h.raw; | ||
153 | if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || | ||
154 | /* If PSH is not set, packet should be | ||
155 | * full sized, provided peer TCP is not badly broken. | ||
156 | * This observation (if it is correct 8)) allows | ||
157 | * to handle super-low mtu links fairly. | ||
158 | */ | ||
159 | (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && | ||
160 | !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { | ||
161 | /* Subtract also invariant (if peer is RFC compliant), | ||
162 | * tcp header plus fixed timestamp option length. | ||
163 | * Resulting "len" is MSS free of SACK jitter. | ||
164 | */ | ||
165 | len -= tp->tcp_header_len; | ||
166 | tp->ack.last_seg_size = len; | ||
167 | if (len == lss) { | ||
168 | tp->ack.rcv_mss = len; | ||
169 | return; | ||
170 | } | ||
171 | } | ||
172 | tp->ack.pending |= TCP_ACK_PUSHED; | ||
173 | } | ||
174 | } | ||
175 | |||
176 | static void tcp_incr_quickack(struct tcp_sock *tp) | ||
177 | { | ||
178 | unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss); | ||
179 | |||
180 | if (quickacks==0) | ||
181 | quickacks=2; | ||
182 | if (quickacks > tp->ack.quick) | ||
183 | tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS); | ||
184 | } | ||
185 | |||
186 | void tcp_enter_quickack_mode(struct tcp_sock *tp) | ||
187 | { | ||
188 | tcp_incr_quickack(tp); | ||
189 | tp->ack.pingpong = 0; | ||
190 | tp->ack.ato = TCP_ATO_MIN; | ||
191 | } | ||
192 | |||
193 | /* Send ACKs quickly, if "quick" count is not exhausted | ||
194 | * and the session is not interactive. | ||
195 | */ | ||
196 | |||
197 | static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp) | ||
198 | { | ||
199 | return (tp->ack.quick && !tp->ack.pingpong); | ||
200 | } | ||
201 | |||
202 | /* Buffer size and advertised window tuning. | ||
203 | * | ||
204 | * 1. Tuning sk->sk_sndbuf, when connection enters established state. | ||
205 | */ | ||
206 | |||
207 | static void tcp_fixup_sndbuf(struct sock *sk) | ||
208 | { | ||
209 | int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + | ||
210 | sizeof(struct sk_buff); | ||
211 | |||
212 | if (sk->sk_sndbuf < 3 * sndmem) | ||
213 | sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); | ||
214 | } | ||
215 | |||
216 | /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) | ||
217 | * | ||
218 | * All tcp_full_space() is split to two parts: "network" buffer, allocated | ||
219 | * forward and advertised in receiver window (tp->rcv_wnd) and | ||
220 | * "application buffer", required to isolate scheduling/application | ||
221 | * latencies from network. | ||
222 | * window_clamp is maximal advertised window. It can be less than | ||
223 | * tcp_full_space(), in this case tcp_full_space() - window_clamp | ||
224 | * is reserved for "application" buffer. The less window_clamp is | ||
225 | * the smoother our behaviour from viewpoint of network, but the lower | ||
226 | * throughput and the higher sensitivity of the connection to losses. 8) | ||
227 | * | ||
228 | * rcv_ssthresh is more strict window_clamp used at "slow start" | ||
229 | * phase to predict further behaviour of this connection. | ||
230 | * It is used for two goals: | ||
231 | * - to enforce header prediction at sender, even when application | ||
232 | * requires some significant "application buffer". It is check #1. | ||
233 | * - to prevent pruning of receive queue because of misprediction | ||
234 | * of receiver window. Check #2. | ||
235 | * | ||
236 | * The scheme does not work when sender sends good segments opening | ||
237 | * window and then starts to feed us spagetti. But it should work | ||
238 | * in common situations. Otherwise, we have to rely on queue collapsing. | ||
239 | */ | ||
240 | |||
241 | /* Slow part of check#2. */ | ||
242 | static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp, | ||
243 | struct sk_buff *skb) | ||
244 | { | ||
245 | /* Optimize this! */ | ||
246 | int truesize = tcp_win_from_space(skb->truesize)/2; | ||
247 | int window = tcp_full_space(sk)/2; | ||
248 | |||
249 | while (tp->rcv_ssthresh <= window) { | ||
250 | if (truesize <= skb->len) | ||
251 | return 2*tp->ack.rcv_mss; | ||
252 | |||
253 | truesize >>= 1; | ||
254 | window >>= 1; | ||
255 | } | ||
256 | return 0; | ||
257 | } | ||
258 | |||
259 | static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, | ||
260 | struct sk_buff *skb) | ||
261 | { | ||
262 | /* Check #1 */ | ||
263 | if (tp->rcv_ssthresh < tp->window_clamp && | ||
264 | (int)tp->rcv_ssthresh < tcp_space(sk) && | ||
265 | !tcp_memory_pressure) { | ||
266 | int incr; | ||
267 | |||
268 | /* Check #2. Increase window, if skb with such overhead | ||
269 | * will fit to rcvbuf in future. | ||
270 | */ | ||
271 | if (tcp_win_from_space(skb->truesize) <= skb->len) | ||
272 | incr = 2*tp->advmss; | ||
273 | else | ||
274 | incr = __tcp_grow_window(sk, tp, skb); | ||
275 | |||
276 | if (incr) { | ||
277 | tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); | ||
278 | tp->ack.quick |= 1; | ||
279 | } | ||
280 | } | ||
281 | } | ||
282 | |||
283 | /* 3. Tuning rcvbuf, when connection enters established state. */ | ||
284 | |||
285 | static void tcp_fixup_rcvbuf(struct sock *sk) | ||
286 | { | ||
287 | struct tcp_sock *tp = tcp_sk(sk); | ||
288 | int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); | ||
289 | |||
290 | /* Try to select rcvbuf so that 4 mss-sized segments | ||
291 | * will fit to window and correspoding skbs will fit to our rcvbuf. | ||
292 | * (was 3; 4 is minimum to allow fast retransmit to work.) | ||
293 | */ | ||
294 | while (tcp_win_from_space(rcvmem) < tp->advmss) | ||
295 | rcvmem += 128; | ||
296 | if (sk->sk_rcvbuf < 4 * rcvmem) | ||
297 | sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); | ||
298 | } | ||
299 | |||
300 | /* 4. Try to fixup all. It is made iimediately after connection enters | ||
301 | * established state. | ||
302 | */ | ||
303 | static void tcp_init_buffer_space(struct sock *sk) | ||
304 | { | ||
305 | struct tcp_sock *tp = tcp_sk(sk); | ||
306 | int maxwin; | ||
307 | |||
308 | if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) | ||
309 | tcp_fixup_rcvbuf(sk); | ||
310 | if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) | ||
311 | tcp_fixup_sndbuf(sk); | ||
312 | |||
313 | tp->rcvq_space.space = tp->rcv_wnd; | ||
314 | |||
315 | maxwin = tcp_full_space(sk); | ||
316 | |||
317 | if (tp->window_clamp >= maxwin) { | ||
318 | tp->window_clamp = maxwin; | ||
319 | |||
320 | if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) | ||
321 | tp->window_clamp = max(maxwin - | ||
322 | (maxwin >> sysctl_tcp_app_win), | ||
323 | 4 * tp->advmss); | ||
324 | } | ||
325 | |||
326 | /* Force reservation of one segment. */ | ||
327 | if (sysctl_tcp_app_win && | ||
328 | tp->window_clamp > 2 * tp->advmss && | ||
329 | tp->window_clamp + tp->advmss > maxwin) | ||
330 | tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); | ||
331 | |||
332 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); | ||
333 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
334 | } | ||
335 | |||
336 | static void init_bictcp(struct tcp_sock *tp) | ||
337 | { | ||
338 | tp->bictcp.cnt = 0; | ||
339 | |||
340 | tp->bictcp.last_max_cwnd = 0; | ||
341 | tp->bictcp.last_cwnd = 0; | ||
342 | tp->bictcp.last_stamp = 0; | ||
343 | } | ||
344 | |||
345 | /* 5. Recalculate window clamp after socket hit its memory bounds. */ | ||
346 | static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) | ||
347 | { | ||
348 | struct sk_buff *skb; | ||
349 | unsigned int app_win = tp->rcv_nxt - tp->copied_seq; | ||
350 | int ofo_win = 0; | ||
351 | |||
352 | tp->ack.quick = 0; | ||
353 | |||
354 | skb_queue_walk(&tp->out_of_order_queue, skb) { | ||
355 | ofo_win += skb->len; | ||
356 | } | ||
357 | |||
358 | /* If overcommit is due to out of order segments, | ||
359 | * do not clamp window. Try to expand rcvbuf instead. | ||
360 | */ | ||
361 | if (ofo_win) { | ||
362 | if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && | ||
363 | !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && | ||
364 | !tcp_memory_pressure && | ||
365 | atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) | ||
366 | sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), | ||
367 | sysctl_tcp_rmem[2]); | ||
368 | } | ||
369 | if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) { | ||
370 | app_win += ofo_win; | ||
371 | if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf) | ||
372 | app_win >>= 1; | ||
373 | if (app_win > tp->ack.rcv_mss) | ||
374 | app_win -= tp->ack.rcv_mss; | ||
375 | app_win = max(app_win, 2U*tp->advmss); | ||
376 | |||
377 | if (!ofo_win) | ||
378 | tp->window_clamp = min(tp->window_clamp, app_win); | ||
379 | tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); | ||
380 | } | ||
381 | } | ||
382 | |||
383 | /* Receiver "autotuning" code. | ||
384 | * | ||
385 | * The algorithm for RTT estimation w/o timestamps is based on | ||
386 | * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. | ||
387 | * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> | ||
388 | * | ||
389 | * More detail on this code can be found at | ||
390 | * <http://www.psc.edu/~jheffner/senior_thesis.ps>, | ||
391 | * though this reference is out of date. A new paper | ||
392 | * is pending. | ||
393 | */ | ||
394 | static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) | ||
395 | { | ||
396 | u32 new_sample = tp->rcv_rtt_est.rtt; | ||
397 | long m = sample; | ||
398 | |||
399 | if (m == 0) | ||
400 | m = 1; | ||
401 | |||
402 | if (new_sample != 0) { | ||
403 | /* If we sample in larger samples in the non-timestamp | ||
404 | * case, we could grossly overestimate the RTT especially | ||
405 | * with chatty applications or bulk transfer apps which | ||
406 | * are stalled on filesystem I/O. | ||
407 | * | ||
408 | * Also, since we are only going for a minimum in the | ||
409 | * non-timestamp case, we do not smoothe things out | ||
410 | * else with timestamps disabled convergance takes too | ||
411 | * long. | ||
412 | */ | ||
413 | if (!win_dep) { | ||
414 | m -= (new_sample >> 3); | ||
415 | new_sample += m; | ||
416 | } else if (m < new_sample) | ||
417 | new_sample = m << 3; | ||
418 | } else { | ||
419 | /* No previous mesaure. */ | ||
420 | new_sample = m << 3; | ||
421 | } | ||
422 | |||
423 | if (tp->rcv_rtt_est.rtt != new_sample) | ||
424 | tp->rcv_rtt_est.rtt = new_sample; | ||
425 | } | ||
426 | |||
427 | static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) | ||
428 | { | ||
429 | if (tp->rcv_rtt_est.time == 0) | ||
430 | goto new_measure; | ||
431 | if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) | ||
432 | return; | ||
433 | tcp_rcv_rtt_update(tp, | ||
434 | jiffies - tp->rcv_rtt_est.time, | ||
435 | 1); | ||
436 | |||
437 | new_measure: | ||
438 | tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; | ||
439 | tp->rcv_rtt_est.time = tcp_time_stamp; | ||
440 | } | ||
441 | |||
442 | static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb) | ||
443 | { | ||
444 | if (tp->rx_opt.rcv_tsecr && | ||
445 | (TCP_SKB_CB(skb)->end_seq - | ||
446 | TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss)) | ||
447 | tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); | ||
448 | } | ||
449 | |||
450 | /* | ||
451 | * This function should be called every time data is copied to user space. | ||
452 | * It calculates the appropriate TCP receive buffer space. | ||
453 | */ | ||
454 | void tcp_rcv_space_adjust(struct sock *sk) | ||
455 | { | ||
456 | struct tcp_sock *tp = tcp_sk(sk); | ||
457 | int time; | ||
458 | int space; | ||
459 | |||
460 | if (tp->rcvq_space.time == 0) | ||
461 | goto new_measure; | ||
462 | |||
463 | time = tcp_time_stamp - tp->rcvq_space.time; | ||
464 | if (time < (tp->rcv_rtt_est.rtt >> 3) || | ||
465 | tp->rcv_rtt_est.rtt == 0) | ||
466 | return; | ||
467 | |||
468 | space = 2 * (tp->copied_seq - tp->rcvq_space.seq); | ||
469 | |||
470 | space = max(tp->rcvq_space.space, space); | ||
471 | |||
472 | if (tp->rcvq_space.space != space) { | ||
473 | int rcvmem; | ||
474 | |||
475 | tp->rcvq_space.space = space; | ||
476 | |||
477 | if (sysctl_tcp_moderate_rcvbuf) { | ||
478 | int new_clamp = space; | ||
479 | |||
480 | /* Receive space grows, normalize in order to | ||
481 | * take into account packet headers and sk_buff | ||
482 | * structure overhead. | ||
483 | */ | ||
484 | space /= tp->advmss; | ||
485 | if (!space) | ||
486 | space = 1; | ||
487 | rcvmem = (tp->advmss + MAX_TCP_HEADER + | ||
488 | 16 + sizeof(struct sk_buff)); | ||
489 | while (tcp_win_from_space(rcvmem) < tp->advmss) | ||
490 | rcvmem += 128; | ||
491 | space *= rcvmem; | ||
492 | space = min(space, sysctl_tcp_rmem[2]); | ||
493 | if (space > sk->sk_rcvbuf) { | ||
494 | sk->sk_rcvbuf = space; | ||
495 | |||
496 | /* Make the window clamp follow along. */ | ||
497 | tp->window_clamp = new_clamp; | ||
498 | } | ||
499 | } | ||
500 | } | ||
501 | |||
502 | new_measure: | ||
503 | tp->rcvq_space.seq = tp->copied_seq; | ||
504 | tp->rcvq_space.time = tcp_time_stamp; | ||
505 | } | ||
506 | |||
507 | /* There is something which you must keep in mind when you analyze the | ||
508 | * behavior of the tp->ato delayed ack timeout interval. When a | ||
509 | * connection starts up, we want to ack as quickly as possible. The | ||
510 | * problem is that "good" TCP's do slow start at the beginning of data | ||
511 | * transmission. The means that until we send the first few ACK's the | ||
512 | * sender will sit on his end and only queue most of his data, because | ||
513 | * he can only send snd_cwnd unacked packets at any given time. For | ||
514 | * each ACK we send, he increments snd_cwnd and transmits more of his | ||
515 | * queue. -DaveM | ||
516 | */ | ||
517 | static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) | ||
518 | { | ||
519 | u32 now; | ||
520 | |||
521 | tcp_schedule_ack(tp); | ||
522 | |||
523 | tcp_measure_rcv_mss(tp, skb); | ||
524 | |||
525 | tcp_rcv_rtt_measure(tp); | ||
526 | |||
527 | now = tcp_time_stamp; | ||
528 | |||
529 | if (!tp->ack.ato) { | ||
530 | /* The _first_ data packet received, initialize | ||
531 | * delayed ACK engine. | ||
532 | */ | ||
533 | tcp_incr_quickack(tp); | ||
534 | tp->ack.ato = TCP_ATO_MIN; | ||
535 | } else { | ||
536 | int m = now - tp->ack.lrcvtime; | ||
537 | |||
538 | if (m <= TCP_ATO_MIN/2) { | ||
539 | /* The fastest case is the first. */ | ||
540 | tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2; | ||
541 | } else if (m < tp->ack.ato) { | ||
542 | tp->ack.ato = (tp->ack.ato>>1) + m; | ||
543 | if (tp->ack.ato > tp->rto) | ||
544 | tp->ack.ato = tp->rto; | ||
545 | } else if (m > tp->rto) { | ||
546 | /* Too long gap. Apparently sender falled to | ||
547 | * restart window, so that we send ACKs quickly. | ||
548 | */ | ||
549 | tcp_incr_quickack(tp); | ||
550 | sk_stream_mem_reclaim(sk); | ||
551 | } | ||
552 | } | ||
553 | tp->ack.lrcvtime = now; | ||
554 | |||
555 | TCP_ECN_check_ce(tp, skb); | ||
556 | |||
557 | if (skb->len >= 128) | ||
558 | tcp_grow_window(sk, tp, skb); | ||
559 | } | ||
560 | |||
561 | /* When starting a new connection, pin down the current choice of | ||
562 | * congestion algorithm. | ||
563 | */ | ||
564 | void tcp_ca_init(struct tcp_sock *tp) | ||
565 | { | ||
566 | if (sysctl_tcp_westwood) | ||
567 | tp->adv_cong = TCP_WESTWOOD; | ||
568 | else if (sysctl_tcp_bic) | ||
569 | tp->adv_cong = TCP_BIC; | ||
570 | else if (sysctl_tcp_vegas_cong_avoid) { | ||
571 | tp->adv_cong = TCP_VEGAS; | ||
572 | tp->vegas.baseRTT = 0x7fffffff; | ||
573 | tcp_vegas_enable(tp); | ||
574 | } | ||
575 | } | ||
576 | |||
577 | /* Do RTT sampling needed for Vegas. | ||
578 | * Basically we: | ||
579 | * o min-filter RTT samples from within an RTT to get the current | ||
580 | * propagation delay + queuing delay (we are min-filtering to try to | ||
581 | * avoid the effects of delayed ACKs) | ||
582 | * o min-filter RTT samples from a much longer window (forever for now) | ||
583 | * to find the propagation delay (baseRTT) | ||
584 | */ | ||
585 | static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt) | ||
586 | { | ||
587 | __u32 vrtt = rtt + 1; /* Never allow zero rtt or baseRTT */ | ||
588 | |||
589 | /* Filter to find propagation delay: */ | ||
590 | if (vrtt < tp->vegas.baseRTT) | ||
591 | tp->vegas.baseRTT = vrtt; | ||
592 | |||
593 | /* Find the min RTT during the last RTT to find | ||
594 | * the current prop. delay + queuing delay: | ||
595 | */ | ||
596 | tp->vegas.minRTT = min(tp->vegas.minRTT, vrtt); | ||
597 | tp->vegas.cntRTT++; | ||
598 | } | ||
599 | |||
600 | /* Called to compute a smoothed rtt estimate. The data fed to this | ||
601 | * routine either comes from timestamps, or from segments that were | ||
602 | * known _not_ to have been retransmitted [see Karn/Partridge | ||
603 | * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 | ||
604 | * piece by Van Jacobson. | ||
605 | * NOTE: the next three routines used to be one big routine. | ||
606 | * To save cycles in the RFC 1323 implementation it was better to break | ||
607 | * it up into three procedures. -- erics | ||
608 | */ | ||
609 | static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt) | ||
610 | { | ||
611 | long m = mrtt; /* RTT */ | ||
612 | |||
613 | if (tcp_vegas_enabled(tp)) | ||
614 | vegas_rtt_calc(tp, mrtt); | ||
615 | |||
616 | /* The following amusing code comes from Jacobson's | ||
617 | * article in SIGCOMM '88. Note that rtt and mdev | ||
618 | * are scaled versions of rtt and mean deviation. | ||
619 | * This is designed to be as fast as possible | ||
620 | * m stands for "measurement". | ||
621 | * | ||
622 | * On a 1990 paper the rto value is changed to: | ||
623 | * RTO = rtt + 4 * mdev | ||
624 | * | ||
625 | * Funny. This algorithm seems to be very broken. | ||
626 | * These formulae increase RTO, when it should be decreased, increase | ||
627 | * too slowly, when it should be incresed fastly, decrease too fastly | ||
628 | * etc. I guess in BSD RTO takes ONE value, so that it is absolutely | ||
629 | * does not matter how to _calculate_ it. Seems, it was trap | ||
630 | * that VJ failed to avoid. 8) | ||
631 | */ | ||
632 | if(m == 0) | ||
633 | m = 1; | ||
634 | if (tp->srtt != 0) { | ||
635 | m -= (tp->srtt >> 3); /* m is now error in rtt est */ | ||
636 | tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ | ||
637 | if (m < 0) { | ||
638 | m = -m; /* m is now abs(error) */ | ||
639 | m -= (tp->mdev >> 2); /* similar update on mdev */ | ||
640 | /* This is similar to one of Eifel findings. | ||
641 | * Eifel blocks mdev updates when rtt decreases. | ||
642 | * This solution is a bit different: we use finer gain | ||
643 | * for mdev in this case (alpha*beta). | ||
644 | * Like Eifel it also prevents growth of rto, | ||
645 | * but also it limits too fast rto decreases, | ||
646 | * happening in pure Eifel. | ||
647 | */ | ||
648 | if (m > 0) | ||
649 | m >>= 3; | ||
650 | } else { | ||
651 | m -= (tp->mdev >> 2); /* similar update on mdev */ | ||
652 | } | ||
653 | tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ | ||
654 | if (tp->mdev > tp->mdev_max) { | ||
655 | tp->mdev_max = tp->mdev; | ||
656 | if (tp->mdev_max > tp->rttvar) | ||
657 | tp->rttvar = tp->mdev_max; | ||
658 | } | ||
659 | if (after(tp->snd_una, tp->rtt_seq)) { | ||
660 | if (tp->mdev_max < tp->rttvar) | ||
661 | tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; | ||
662 | tp->rtt_seq = tp->snd_nxt; | ||
663 | tp->mdev_max = TCP_RTO_MIN; | ||
664 | } | ||
665 | } else { | ||
666 | /* no previous measure. */ | ||
667 | tp->srtt = m<<3; /* take the measured time to be rtt */ | ||
668 | tp->mdev = m<<1; /* make sure rto = 3*rtt */ | ||
669 | tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); | ||
670 | tp->rtt_seq = tp->snd_nxt; | ||
671 | } | ||
672 | |||
673 | tcp_westwood_update_rtt(tp, tp->srtt >> 3); | ||
674 | } | ||
675 | |||
676 | /* Calculate rto without backoff. This is the second half of Van Jacobson's | ||
677 | * routine referred to above. | ||
678 | */ | ||
679 | static inline void tcp_set_rto(struct tcp_sock *tp) | ||
680 | { | ||
681 | /* Old crap is replaced with new one. 8) | ||
682 | * | ||
683 | * More seriously: | ||
684 | * 1. If rtt variance happened to be less 50msec, it is hallucination. | ||
685 | * It cannot be less due to utterly erratic ACK generation made | ||
686 | * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ | ||
687 | * to do with delayed acks, because at cwnd>2 true delack timeout | ||
688 | * is invisible. Actually, Linux-2.4 also generates erratic | ||
689 | * ACKs in some curcumstances. | ||
690 | */ | ||
691 | tp->rto = (tp->srtt >> 3) + tp->rttvar; | ||
692 | |||
693 | /* 2. Fixups made earlier cannot be right. | ||
694 | * If we do not estimate RTO correctly without them, | ||
695 | * all the algo is pure shit and should be replaced | ||
696 | * with correct one. It is exaclty, which we pretend to do. | ||
697 | */ | ||
698 | } | ||
699 | |||
700 | /* NOTE: clamping at TCP_RTO_MIN is not required, current algo | ||
701 | * guarantees that rto is higher. | ||
702 | */ | ||
703 | static inline void tcp_bound_rto(struct tcp_sock *tp) | ||
704 | { | ||
705 | if (tp->rto > TCP_RTO_MAX) | ||
706 | tp->rto = TCP_RTO_MAX; | ||
707 | } | ||
708 | |||
709 | /* Save metrics learned by this TCP session. | ||
710 | This function is called only, when TCP finishes successfully | ||
711 | i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. | ||
712 | */ | ||
713 | void tcp_update_metrics(struct sock *sk) | ||
714 | { | ||
715 | struct tcp_sock *tp = tcp_sk(sk); | ||
716 | struct dst_entry *dst = __sk_dst_get(sk); | ||
717 | |||
718 | if (sysctl_tcp_nometrics_save) | ||
719 | return; | ||
720 | |||
721 | dst_confirm(dst); | ||
722 | |||
723 | if (dst && (dst->flags&DST_HOST)) { | ||
724 | int m; | ||
725 | |||
726 | if (tp->backoff || !tp->srtt) { | ||
727 | /* This session failed to estimate rtt. Why? | ||
728 | * Probably, no packets returned in time. | ||
729 | * Reset our results. | ||
730 | */ | ||
731 | if (!(dst_metric_locked(dst, RTAX_RTT))) | ||
732 | dst->metrics[RTAX_RTT-1] = 0; | ||
733 | return; | ||
734 | } | ||
735 | |||
736 | m = dst_metric(dst, RTAX_RTT) - tp->srtt; | ||
737 | |||
738 | /* If newly calculated rtt larger than stored one, | ||
739 | * store new one. Otherwise, use EWMA. Remember, | ||
740 | * rtt overestimation is always better than underestimation. | ||
741 | */ | ||
742 | if (!(dst_metric_locked(dst, RTAX_RTT))) { | ||
743 | if (m <= 0) | ||
744 | dst->metrics[RTAX_RTT-1] = tp->srtt; | ||
745 | else | ||
746 | dst->metrics[RTAX_RTT-1] -= (m>>3); | ||
747 | } | ||
748 | |||
749 | if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { | ||
750 | if (m < 0) | ||
751 | m = -m; | ||
752 | |||
753 | /* Scale deviation to rttvar fixed point */ | ||
754 | m >>= 1; | ||
755 | if (m < tp->mdev) | ||
756 | m = tp->mdev; | ||
757 | |||
758 | if (m >= dst_metric(dst, RTAX_RTTVAR)) | ||
759 | dst->metrics[RTAX_RTTVAR-1] = m; | ||
760 | else | ||
761 | dst->metrics[RTAX_RTTVAR-1] -= | ||
762 | (dst->metrics[RTAX_RTTVAR-1] - m)>>2; | ||
763 | } | ||
764 | |||
765 | if (tp->snd_ssthresh >= 0xFFFF) { | ||
766 | /* Slow start still did not finish. */ | ||
767 | if (dst_metric(dst, RTAX_SSTHRESH) && | ||
768 | !dst_metric_locked(dst, RTAX_SSTHRESH) && | ||
769 | (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) | ||
770 | dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; | ||
771 | if (!dst_metric_locked(dst, RTAX_CWND) && | ||
772 | tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) | ||
773 | dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; | ||
774 | } else if (tp->snd_cwnd > tp->snd_ssthresh && | ||
775 | tp->ca_state == TCP_CA_Open) { | ||
776 | /* Cong. avoidance phase, cwnd is reliable. */ | ||
777 | if (!dst_metric_locked(dst, RTAX_SSTHRESH)) | ||
778 | dst->metrics[RTAX_SSTHRESH-1] = | ||
779 | max(tp->snd_cwnd >> 1, tp->snd_ssthresh); | ||
780 | if (!dst_metric_locked(dst, RTAX_CWND)) | ||
781 | dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; | ||
782 | } else { | ||
783 | /* Else slow start did not finish, cwnd is non-sense, | ||
784 | ssthresh may be also invalid. | ||
785 | */ | ||
786 | if (!dst_metric_locked(dst, RTAX_CWND)) | ||
787 | dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; | ||
788 | if (dst->metrics[RTAX_SSTHRESH-1] && | ||
789 | !dst_metric_locked(dst, RTAX_SSTHRESH) && | ||
790 | tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) | ||
791 | dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; | ||
792 | } | ||
793 | |||
794 | if (!dst_metric_locked(dst, RTAX_REORDERING)) { | ||
795 | if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && | ||
796 | tp->reordering != sysctl_tcp_reordering) | ||
797 | dst->metrics[RTAX_REORDERING-1] = tp->reordering; | ||
798 | } | ||
799 | } | ||
800 | } | ||
801 | |||
802 | /* Numbers are taken from RFC2414. */ | ||
803 | __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) | ||
804 | { | ||
805 | __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); | ||
806 | |||
807 | if (!cwnd) { | ||
808 | if (tp->mss_cache_std > 1460) | ||
809 | cwnd = 2; | ||
810 | else | ||
811 | cwnd = (tp->mss_cache_std > 1095) ? 3 : 4; | ||
812 | } | ||
813 | return min_t(__u32, cwnd, tp->snd_cwnd_clamp); | ||
814 | } | ||
815 | |||
816 | /* Initialize metrics on socket. */ | ||
817 | |||
818 | static void tcp_init_metrics(struct sock *sk) | ||
819 | { | ||
820 | struct tcp_sock *tp = tcp_sk(sk); | ||
821 | struct dst_entry *dst = __sk_dst_get(sk); | ||
822 | |||
823 | if (dst == NULL) | ||
824 | goto reset; | ||
825 | |||
826 | dst_confirm(dst); | ||
827 | |||
828 | if (dst_metric_locked(dst, RTAX_CWND)) | ||
829 | tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); | ||
830 | if (dst_metric(dst, RTAX_SSTHRESH)) { | ||
831 | tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); | ||
832 | if (tp->snd_ssthresh > tp->snd_cwnd_clamp) | ||
833 | tp->snd_ssthresh = tp->snd_cwnd_clamp; | ||
834 | } | ||
835 | if (dst_metric(dst, RTAX_REORDERING) && | ||
836 | tp->reordering != dst_metric(dst, RTAX_REORDERING)) { | ||
837 | tp->rx_opt.sack_ok &= ~2; | ||
838 | tp->reordering = dst_metric(dst, RTAX_REORDERING); | ||
839 | } | ||
840 | |||
841 | if (dst_metric(dst, RTAX_RTT) == 0) | ||
842 | goto reset; | ||
843 | |||
844 | if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) | ||
845 | goto reset; | ||
846 | |||
847 | /* Initial rtt is determined from SYN,SYN-ACK. | ||
848 | * The segment is small and rtt may appear much | ||
849 | * less than real one. Use per-dst memory | ||
850 | * to make it more realistic. | ||
851 | * | ||
852 | * A bit of theory. RTT is time passed after "normal" sized packet | ||
853 | * is sent until it is ACKed. In normal curcumstances sending small | ||
854 | * packets force peer to delay ACKs and calculation is correct too. | ||
855 | * The algorithm is adaptive and, provided we follow specs, it | ||
856 | * NEVER underestimate RTT. BUT! If peer tries to make some clever | ||
857 | * tricks sort of "quick acks" for time long enough to decrease RTT | ||
858 | * to low value, and then abruptly stops to do it and starts to delay | ||
859 | * ACKs, wait for troubles. | ||
860 | */ | ||
861 | if (dst_metric(dst, RTAX_RTT) > tp->srtt) { | ||
862 | tp->srtt = dst_metric(dst, RTAX_RTT); | ||
863 | tp->rtt_seq = tp->snd_nxt; | ||
864 | } | ||
865 | if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { | ||
866 | tp->mdev = dst_metric(dst, RTAX_RTTVAR); | ||
867 | tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); | ||
868 | } | ||
869 | tcp_set_rto(tp); | ||
870 | tcp_bound_rto(tp); | ||
871 | if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) | ||
872 | goto reset; | ||
873 | tp->snd_cwnd = tcp_init_cwnd(tp, dst); | ||
874 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
875 | return; | ||
876 | |||
877 | reset: | ||
878 | /* Play conservative. If timestamps are not | ||
879 | * supported, TCP will fail to recalculate correct | ||
880 | * rtt, if initial rto is too small. FORGET ALL AND RESET! | ||
881 | */ | ||
882 | if (!tp->rx_opt.saw_tstamp && tp->srtt) { | ||
883 | tp->srtt = 0; | ||
884 | tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; | ||
885 | tp->rto = TCP_TIMEOUT_INIT; | ||
886 | } | ||
887 | } | ||
888 | |||
889 | static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts) | ||
890 | { | ||
891 | if (metric > tp->reordering) { | ||
892 | tp->reordering = min(TCP_MAX_REORDERING, metric); | ||
893 | |||
894 | /* This exciting event is worth to be remembered. 8) */ | ||
895 | if (ts) | ||
896 | NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); | ||
897 | else if (IsReno(tp)) | ||
898 | NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); | ||
899 | else if (IsFack(tp)) | ||
900 | NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); | ||
901 | else | ||
902 | NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); | ||
903 | #if FASTRETRANS_DEBUG > 1 | ||
904 | printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", | ||
905 | tp->rx_opt.sack_ok, tp->ca_state, | ||
906 | tp->reordering, | ||
907 | tp->fackets_out, | ||
908 | tp->sacked_out, | ||
909 | tp->undo_marker ? tp->undo_retrans : 0); | ||
910 | #endif | ||
911 | /* Disable FACK yet. */ | ||
912 | tp->rx_opt.sack_ok &= ~2; | ||
913 | } | ||
914 | } | ||
915 | |||
916 | /* This procedure tags the retransmission queue when SACKs arrive. | ||
917 | * | ||
918 | * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). | ||
919 | * Packets in queue with these bits set are counted in variables | ||
920 | * sacked_out, retrans_out and lost_out, correspondingly. | ||
921 | * | ||
922 | * Valid combinations are: | ||
923 | * Tag InFlight Description | ||
924 | * 0 1 - orig segment is in flight. | ||
925 | * S 0 - nothing flies, orig reached receiver. | ||
926 | * L 0 - nothing flies, orig lost by net. | ||
927 | * R 2 - both orig and retransmit are in flight. | ||
928 | * L|R 1 - orig is lost, retransmit is in flight. | ||
929 | * S|R 1 - orig reached receiver, retrans is still in flight. | ||
930 | * (L|S|R is logically valid, it could occur when L|R is sacked, | ||
931 | * but it is equivalent to plain S and code short-curcuits it to S. | ||
932 | * L|S is logically invalid, it would mean -1 packet in flight 8)) | ||
933 | * | ||
934 | * These 6 states form finite state machine, controlled by the following events: | ||
935 | * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) | ||
936 | * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) | ||
937 | * 3. Loss detection event of one of three flavors: | ||
938 | * A. Scoreboard estimator decided the packet is lost. | ||
939 | * A'. Reno "three dupacks" marks head of queue lost. | ||
940 | * A''. Its FACK modfication, head until snd.fack is lost. | ||
941 | * B. SACK arrives sacking data transmitted after never retransmitted | ||
942 | * hole was sent out. | ||
943 | * C. SACK arrives sacking SND.NXT at the moment, when the | ||
944 | * segment was retransmitted. | ||
945 | * 4. D-SACK added new rule: D-SACK changes any tag to S. | ||
946 | * | ||
947 | * It is pleasant to note, that state diagram turns out to be commutative, | ||
948 | * so that we are allowed not to be bothered by order of our actions, | ||
949 | * when multiple events arrive simultaneously. (see the function below). | ||
950 | * | ||
951 | * Reordering detection. | ||
952 | * -------------------- | ||
953 | * Reordering metric is maximal distance, which a packet can be displaced | ||
954 | * in packet stream. With SACKs we can estimate it: | ||
955 | * | ||
956 | * 1. SACK fills old hole and the corresponding segment was not | ||
957 | * ever retransmitted -> reordering. Alas, we cannot use it | ||
958 | * when segment was retransmitted. | ||
959 | * 2. The last flaw is solved with D-SACK. D-SACK arrives | ||
960 | * for retransmitted and already SACKed segment -> reordering.. | ||
961 | * Both of these heuristics are not used in Loss state, when we cannot | ||
962 | * account for retransmits accurately. | ||
963 | */ | ||
964 | static int | ||
965 | tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) | ||
966 | { | ||
967 | struct tcp_sock *tp = tcp_sk(sk); | ||
968 | unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; | ||
969 | struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); | ||
970 | int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; | ||
971 | int reord = tp->packets_out; | ||
972 | int prior_fackets; | ||
973 | u32 lost_retrans = 0; | ||
974 | int flag = 0; | ||
975 | int i; | ||
976 | |||
977 | /* So, SACKs for already sent large segments will be lost. | ||
978 | * Not good, but alternative is to resegment the queue. */ | ||
979 | if (sk->sk_route_caps & NETIF_F_TSO) { | ||
980 | sk->sk_route_caps &= ~NETIF_F_TSO; | ||
981 | sock_set_flag(sk, SOCK_NO_LARGESEND); | ||
982 | tp->mss_cache = tp->mss_cache_std; | ||
983 | } | ||
984 | |||
985 | if (!tp->sacked_out) | ||
986 | tp->fackets_out = 0; | ||
987 | prior_fackets = tp->fackets_out; | ||
988 | |||
989 | for (i=0; i<num_sacks; i++, sp++) { | ||
990 | struct sk_buff *skb; | ||
991 | __u32 start_seq = ntohl(sp->start_seq); | ||
992 | __u32 end_seq = ntohl(sp->end_seq); | ||
993 | int fack_count = 0; | ||
994 | int dup_sack = 0; | ||
995 | |||
996 | /* Check for D-SACK. */ | ||
997 | if (i == 0) { | ||
998 | u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; | ||
999 | |||
1000 | if (before(start_seq, ack)) { | ||
1001 | dup_sack = 1; | ||
1002 | tp->rx_opt.sack_ok |= 4; | ||
1003 | NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); | ||
1004 | } else if (num_sacks > 1 && | ||
1005 | !after(end_seq, ntohl(sp[1].end_seq)) && | ||
1006 | !before(start_seq, ntohl(sp[1].start_seq))) { | ||
1007 | dup_sack = 1; | ||
1008 | tp->rx_opt.sack_ok |= 4; | ||
1009 | NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); | ||
1010 | } | ||
1011 | |||
1012 | /* D-SACK for already forgotten data... | ||
1013 | * Do dumb counting. */ | ||
1014 | if (dup_sack && | ||
1015 | !after(end_seq, prior_snd_una) && | ||
1016 | after(end_seq, tp->undo_marker)) | ||
1017 | tp->undo_retrans--; | ||
1018 | |||
1019 | /* Eliminate too old ACKs, but take into | ||
1020 | * account more or less fresh ones, they can | ||
1021 | * contain valid SACK info. | ||
1022 | */ | ||
1023 | if (before(ack, prior_snd_una - tp->max_window)) | ||
1024 | return 0; | ||
1025 | } | ||
1026 | |||
1027 | /* Event "B" in the comment above. */ | ||
1028 | if (after(end_seq, tp->high_seq)) | ||
1029 | flag |= FLAG_DATA_LOST; | ||
1030 | |||
1031 | sk_stream_for_retrans_queue(skb, sk) { | ||
1032 | u8 sacked = TCP_SKB_CB(skb)->sacked; | ||
1033 | int in_sack; | ||
1034 | |||
1035 | /* The retransmission queue is always in order, so | ||
1036 | * we can short-circuit the walk early. | ||
1037 | */ | ||
1038 | if(!before(TCP_SKB_CB(skb)->seq, end_seq)) | ||
1039 | break; | ||
1040 | |||
1041 | fack_count += tcp_skb_pcount(skb); | ||
1042 | |||
1043 | in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && | ||
1044 | !before(end_seq, TCP_SKB_CB(skb)->end_seq); | ||
1045 | |||
1046 | /* Account D-SACK for retransmitted packet. */ | ||
1047 | if ((dup_sack && in_sack) && | ||
1048 | (sacked & TCPCB_RETRANS) && | ||
1049 | after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) | ||
1050 | tp->undo_retrans--; | ||
1051 | |||
1052 | /* The frame is ACKed. */ | ||
1053 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { | ||
1054 | if (sacked&TCPCB_RETRANS) { | ||
1055 | if ((dup_sack && in_sack) && | ||
1056 | (sacked&TCPCB_SACKED_ACKED)) | ||
1057 | reord = min(fack_count, reord); | ||
1058 | } else { | ||
1059 | /* If it was in a hole, we detected reordering. */ | ||
1060 | if (fack_count < prior_fackets && | ||
1061 | !(sacked&TCPCB_SACKED_ACKED)) | ||
1062 | reord = min(fack_count, reord); | ||
1063 | } | ||
1064 | |||
1065 | /* Nothing to do; acked frame is about to be dropped. */ | ||
1066 | continue; | ||
1067 | } | ||
1068 | |||
1069 | if ((sacked&TCPCB_SACKED_RETRANS) && | ||
1070 | after(end_seq, TCP_SKB_CB(skb)->ack_seq) && | ||
1071 | (!lost_retrans || after(end_seq, lost_retrans))) | ||
1072 | lost_retrans = end_seq; | ||
1073 | |||
1074 | if (!in_sack) | ||
1075 | continue; | ||
1076 | |||
1077 | if (!(sacked&TCPCB_SACKED_ACKED)) { | ||
1078 | if (sacked & TCPCB_SACKED_RETRANS) { | ||
1079 | /* If the segment is not tagged as lost, | ||
1080 | * we do not clear RETRANS, believing | ||
1081 | * that retransmission is still in flight. | ||
1082 | */ | ||
1083 | if (sacked & TCPCB_LOST) { | ||
1084 | TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); | ||
1085 | tp->lost_out -= tcp_skb_pcount(skb); | ||
1086 | tp->retrans_out -= tcp_skb_pcount(skb); | ||
1087 | } | ||
1088 | } else { | ||
1089 | /* New sack for not retransmitted frame, | ||
1090 | * which was in hole. It is reordering. | ||
1091 | */ | ||
1092 | if (!(sacked & TCPCB_RETRANS) && | ||
1093 | fack_count < prior_fackets) | ||
1094 | reord = min(fack_count, reord); | ||
1095 | |||
1096 | if (sacked & TCPCB_LOST) { | ||
1097 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; | ||
1098 | tp->lost_out -= tcp_skb_pcount(skb); | ||
1099 | } | ||
1100 | } | ||
1101 | |||
1102 | TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; | ||
1103 | flag |= FLAG_DATA_SACKED; | ||
1104 | tp->sacked_out += tcp_skb_pcount(skb); | ||
1105 | |||
1106 | if (fack_count > tp->fackets_out) | ||
1107 | tp->fackets_out = fack_count; | ||
1108 | } else { | ||
1109 | if (dup_sack && (sacked&TCPCB_RETRANS)) | ||
1110 | reord = min(fack_count, reord); | ||
1111 | } | ||
1112 | |||
1113 | /* D-SACK. We can detect redundant retransmission | ||
1114 | * in S|R and plain R frames and clear it. | ||
1115 | * undo_retrans is decreased above, L|R frames | ||
1116 | * are accounted above as well. | ||
1117 | */ | ||
1118 | if (dup_sack && | ||
1119 | (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { | ||
1120 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | ||
1121 | tp->retrans_out -= tcp_skb_pcount(skb); | ||
1122 | } | ||
1123 | } | ||
1124 | } | ||
1125 | |||
1126 | /* Check for lost retransmit. This superb idea is | ||
1127 | * borrowed from "ratehalving". Event "C". | ||
1128 | * Later note: FACK people cheated me again 8), | ||
1129 | * we have to account for reordering! Ugly, | ||
1130 | * but should help. | ||
1131 | */ | ||
1132 | if (lost_retrans && tp->ca_state == TCP_CA_Recovery) { | ||
1133 | struct sk_buff *skb; | ||
1134 | |||
1135 | sk_stream_for_retrans_queue(skb, sk) { | ||
1136 | if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) | ||
1137 | break; | ||
1138 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | ||
1139 | continue; | ||
1140 | if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && | ||
1141 | after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && | ||
1142 | (IsFack(tp) || | ||
1143 | !before(lost_retrans, | ||
1144 | TCP_SKB_CB(skb)->ack_seq + tp->reordering * | ||
1145 | tp->mss_cache_std))) { | ||
1146 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | ||
1147 | tp->retrans_out -= tcp_skb_pcount(skb); | ||
1148 | |||
1149 | if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { | ||
1150 | tp->lost_out += tcp_skb_pcount(skb); | ||
1151 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | ||
1152 | flag |= FLAG_DATA_SACKED; | ||
1153 | NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); | ||
1154 | } | ||
1155 | } | ||
1156 | } | ||
1157 | } | ||
1158 | |||
1159 | tp->left_out = tp->sacked_out + tp->lost_out; | ||
1160 | |||
1161 | if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss) | ||
1162 | tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0); | ||
1163 | |||
1164 | #if FASTRETRANS_DEBUG > 0 | ||
1165 | BUG_TRAP((int)tp->sacked_out >= 0); | ||
1166 | BUG_TRAP((int)tp->lost_out >= 0); | ||
1167 | BUG_TRAP((int)tp->retrans_out >= 0); | ||
1168 | BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); | ||
1169 | #endif | ||
1170 | return flag; | ||
1171 | } | ||
1172 | |||
1173 | /* RTO occurred, but do not yet enter loss state. Instead, transmit two new | ||
1174 | * segments to see from the next ACKs whether any data was really missing. | ||
1175 | * If the RTO was spurious, new ACKs should arrive. | ||
1176 | */ | ||
1177 | void tcp_enter_frto(struct sock *sk) | ||
1178 | { | ||
1179 | struct tcp_sock *tp = tcp_sk(sk); | ||
1180 | struct sk_buff *skb; | ||
1181 | |||
1182 | tp->frto_counter = 1; | ||
1183 | |||
1184 | if (tp->ca_state <= TCP_CA_Disorder || | ||
1185 | tp->snd_una == tp->high_seq || | ||
1186 | (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) { | ||
1187 | tp->prior_ssthresh = tcp_current_ssthresh(tp); | ||
1188 | if (!tcp_westwood_ssthresh(tp)) | ||
1189 | tp->snd_ssthresh = tcp_recalc_ssthresh(tp); | ||
1190 | } | ||
1191 | |||
1192 | /* Have to clear retransmission markers here to keep the bookkeeping | ||
1193 | * in shape, even though we are not yet in Loss state. | ||
1194 | * If something was really lost, it is eventually caught up | ||
1195 | * in tcp_enter_frto_loss. | ||
1196 | */ | ||
1197 | tp->retrans_out = 0; | ||
1198 | tp->undo_marker = tp->snd_una; | ||
1199 | tp->undo_retrans = 0; | ||
1200 | |||
1201 | sk_stream_for_retrans_queue(skb, sk) { | ||
1202 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; | ||
1203 | } | ||
1204 | tcp_sync_left_out(tp); | ||
1205 | |||
1206 | tcp_set_ca_state(tp, TCP_CA_Open); | ||
1207 | tp->frto_highmark = tp->snd_nxt; | ||
1208 | } | ||
1209 | |||
1210 | /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, | ||
1211 | * which indicates that we should follow the traditional RTO recovery, | ||
1212 | * i.e. mark everything lost and do go-back-N retransmission. | ||
1213 | */ | ||
1214 | static void tcp_enter_frto_loss(struct sock *sk) | ||
1215 | { | ||
1216 | struct tcp_sock *tp = tcp_sk(sk); | ||
1217 | struct sk_buff *skb; | ||
1218 | int cnt = 0; | ||
1219 | |||
1220 | tp->sacked_out = 0; | ||
1221 | tp->lost_out = 0; | ||
1222 | tp->fackets_out = 0; | ||
1223 | |||
1224 | sk_stream_for_retrans_queue(skb, sk) { | ||
1225 | cnt += tcp_skb_pcount(skb); | ||
1226 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; | ||
1227 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { | ||
1228 | |||
1229 | /* Do not mark those segments lost that were | ||
1230 | * forward transmitted after RTO | ||
1231 | */ | ||
1232 | if (!after(TCP_SKB_CB(skb)->end_seq, | ||
1233 | tp->frto_highmark)) { | ||
1234 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | ||
1235 | tp->lost_out += tcp_skb_pcount(skb); | ||
1236 | } | ||
1237 | } else { | ||
1238 | tp->sacked_out += tcp_skb_pcount(skb); | ||
1239 | tp->fackets_out = cnt; | ||
1240 | } | ||
1241 | } | ||
1242 | tcp_sync_left_out(tp); | ||
1243 | |||
1244 | tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; | ||
1245 | tp->snd_cwnd_cnt = 0; | ||
1246 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
1247 | tp->undo_marker = 0; | ||
1248 | tp->frto_counter = 0; | ||
1249 | |||
1250 | tp->reordering = min_t(unsigned int, tp->reordering, | ||
1251 | sysctl_tcp_reordering); | ||
1252 | tcp_set_ca_state(tp, TCP_CA_Loss); | ||
1253 | tp->high_seq = tp->frto_highmark; | ||
1254 | TCP_ECN_queue_cwr(tp); | ||
1255 | |||
1256 | init_bictcp(tp); | ||
1257 | } | ||
1258 | |||
1259 | void tcp_clear_retrans(struct tcp_sock *tp) | ||
1260 | { | ||
1261 | tp->left_out = 0; | ||
1262 | tp->retrans_out = 0; | ||
1263 | |||
1264 | tp->fackets_out = 0; | ||
1265 | tp->sacked_out = 0; | ||
1266 | tp->lost_out = 0; | ||
1267 | |||
1268 | tp->undo_marker = 0; | ||
1269 | tp->undo_retrans = 0; | ||
1270 | } | ||
1271 | |||
1272 | /* Enter Loss state. If "how" is not zero, forget all SACK information | ||
1273 | * and reset tags completely, otherwise preserve SACKs. If receiver | ||
1274 | * dropped its ofo queue, we will know this due to reneging detection. | ||
1275 | */ | ||
1276 | void tcp_enter_loss(struct sock *sk, int how) | ||
1277 | { | ||
1278 | struct tcp_sock *tp = tcp_sk(sk); | ||
1279 | struct sk_buff *skb; | ||
1280 | int cnt = 0; | ||
1281 | |||
1282 | /* Reduce ssthresh if it has not yet been made inside this window. */ | ||
1283 | if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || | ||
1284 | (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) { | ||
1285 | tp->prior_ssthresh = tcp_current_ssthresh(tp); | ||
1286 | tp->snd_ssthresh = tcp_recalc_ssthresh(tp); | ||
1287 | } | ||
1288 | tp->snd_cwnd = 1; | ||
1289 | tp->snd_cwnd_cnt = 0; | ||
1290 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
1291 | |||
1292 | tcp_clear_retrans(tp); | ||
1293 | |||
1294 | /* Push undo marker, if it was plain RTO and nothing | ||
1295 | * was retransmitted. */ | ||
1296 | if (!how) | ||
1297 | tp->undo_marker = tp->snd_una; | ||
1298 | |||
1299 | sk_stream_for_retrans_queue(skb, sk) { | ||
1300 | cnt += tcp_skb_pcount(skb); | ||
1301 | if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) | ||
1302 | tp->undo_marker = 0; | ||
1303 | TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; | ||
1304 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { | ||
1305 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; | ||
1306 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | ||
1307 | tp->lost_out += tcp_skb_pcount(skb); | ||
1308 | } else { | ||
1309 | tp->sacked_out += tcp_skb_pcount(skb); | ||
1310 | tp->fackets_out = cnt; | ||
1311 | } | ||
1312 | } | ||
1313 | tcp_sync_left_out(tp); | ||
1314 | |||
1315 | tp->reordering = min_t(unsigned int, tp->reordering, | ||
1316 | sysctl_tcp_reordering); | ||
1317 | tcp_set_ca_state(tp, TCP_CA_Loss); | ||
1318 | tp->high_seq = tp->snd_nxt; | ||
1319 | TCP_ECN_queue_cwr(tp); | ||
1320 | } | ||
1321 | |||
1322 | static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp) | ||
1323 | { | ||
1324 | struct sk_buff *skb; | ||
1325 | |||
1326 | /* If ACK arrived pointing to a remembered SACK, | ||
1327 | * it means that our remembered SACKs do not reflect | ||
1328 | * real state of receiver i.e. | ||
1329 | * receiver _host_ is heavily congested (or buggy). | ||
1330 | * Do processing similar to RTO timeout. | ||
1331 | */ | ||
1332 | if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && | ||
1333 | (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { | ||
1334 | NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); | ||
1335 | |||
1336 | tcp_enter_loss(sk, 1); | ||
1337 | tp->retransmits++; | ||
1338 | tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); | ||
1339 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | ||
1340 | return 1; | ||
1341 | } | ||
1342 | return 0; | ||
1343 | } | ||
1344 | |||
1345 | static inline int tcp_fackets_out(struct tcp_sock *tp) | ||
1346 | { | ||
1347 | return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; | ||
1348 | } | ||
1349 | |||
1350 | static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb) | ||
1351 | { | ||
1352 | return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto); | ||
1353 | } | ||
1354 | |||
1355 | static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) | ||
1356 | { | ||
1357 | return tp->packets_out && | ||
1358 | tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue)); | ||
1359 | } | ||
1360 | |||
1361 | /* Linux NewReno/SACK/FACK/ECN state machine. | ||
1362 | * -------------------------------------- | ||
1363 | * | ||
1364 | * "Open" Normal state, no dubious events, fast path. | ||
1365 | * "Disorder" In all the respects it is "Open", | ||
1366 | * but requires a bit more attention. It is entered when | ||
1367 | * we see some SACKs or dupacks. It is split of "Open" | ||
1368 | * mainly to move some processing from fast path to slow one. | ||
1369 | * "CWR" CWND was reduced due to some Congestion Notification event. | ||
1370 | * It can be ECN, ICMP source quench, local device congestion. | ||
1371 | * "Recovery" CWND was reduced, we are fast-retransmitting. | ||
1372 | * "Loss" CWND was reduced due to RTO timeout or SACK reneging. | ||
1373 | * | ||
1374 | * tcp_fastretrans_alert() is entered: | ||
1375 | * - each incoming ACK, if state is not "Open" | ||
1376 | * - when arrived ACK is unusual, namely: | ||
1377 | * * SACK | ||
1378 | * * Duplicate ACK. | ||
1379 | * * ECN ECE. | ||
1380 | * | ||
1381 | * Counting packets in flight is pretty simple. | ||
1382 | * | ||
1383 | * in_flight = packets_out - left_out + retrans_out | ||
1384 | * | ||
1385 | * packets_out is SND.NXT-SND.UNA counted in packets. | ||
1386 | * | ||
1387 | * retrans_out is number of retransmitted segments. | ||
1388 | * | ||
1389 | * left_out is number of segments left network, but not ACKed yet. | ||
1390 | * | ||
1391 | * left_out = sacked_out + lost_out | ||
1392 | * | ||
1393 | * sacked_out: Packets, which arrived to receiver out of order | ||
1394 | * and hence not ACKed. With SACKs this number is simply | ||
1395 | * amount of SACKed data. Even without SACKs | ||
1396 | * it is easy to give pretty reliable estimate of this number, | ||
1397 | * counting duplicate ACKs. | ||
1398 | * | ||
1399 | * lost_out: Packets lost by network. TCP has no explicit | ||
1400 | * "loss notification" feedback from network (for now). | ||
1401 | * It means that this number can be only _guessed_. | ||
1402 | * Actually, it is the heuristics to predict lossage that | ||
1403 | * distinguishes different algorithms. | ||
1404 | * | ||
1405 | * F.e. after RTO, when all the queue is considered as lost, | ||
1406 | * lost_out = packets_out and in_flight = retrans_out. | ||
1407 | * | ||
1408 | * Essentially, we have now two algorithms counting | ||
1409 | * lost packets. | ||
1410 | * | ||
1411 | * FACK: It is the simplest heuristics. As soon as we decided | ||
1412 | * that something is lost, we decide that _all_ not SACKed | ||
1413 | * packets until the most forward SACK are lost. I.e. | ||
1414 | * lost_out = fackets_out - sacked_out and left_out = fackets_out. | ||
1415 | * It is absolutely correct estimate, if network does not reorder | ||
1416 | * packets. And it loses any connection to reality when reordering | ||
1417 | * takes place. We use FACK by default until reordering | ||
1418 | * is suspected on the path to this destination. | ||
1419 | * | ||
1420 | * NewReno: when Recovery is entered, we assume that one segment | ||
1421 | * is lost (classic Reno). While we are in Recovery and | ||
1422 | * a partial ACK arrives, we assume that one more packet | ||
1423 | * is lost (NewReno). This heuristics are the same in NewReno | ||
1424 | * and SACK. | ||
1425 | * | ||
1426 | * Imagine, that's all! Forget about all this shamanism about CWND inflation | ||
1427 | * deflation etc. CWND is real congestion window, never inflated, changes | ||
1428 | * only according to classic VJ rules. | ||
1429 | * | ||
1430 | * Really tricky (and requiring careful tuning) part of algorithm | ||
1431 | * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). | ||
1432 | * The first determines the moment _when_ we should reduce CWND and, | ||
1433 | * hence, slow down forward transmission. In fact, it determines the moment | ||
1434 | * when we decide that hole is caused by loss, rather than by a reorder. | ||
1435 | * | ||
1436 | * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill | ||
1437 | * holes, caused by lost packets. | ||
1438 | * | ||
1439 | * And the most logically complicated part of algorithm is undo | ||
1440 | * heuristics. We detect false retransmits due to both too early | ||
1441 | * fast retransmit (reordering) and underestimated RTO, analyzing | ||
1442 | * timestamps and D-SACKs. When we detect that some segments were | ||
1443 | * retransmitted by mistake and CWND reduction was wrong, we undo | ||
1444 | * window reduction and abort recovery phase. This logic is hidden | ||
1445 | * inside several functions named tcp_try_undo_<something>. | ||
1446 | */ | ||
1447 | |||
1448 | /* This function decides, when we should leave Disordered state | ||
1449 | * and enter Recovery phase, reducing congestion window. | ||
1450 | * | ||
1451 | * Main question: may we further continue forward transmission | ||
1452 | * with the same cwnd? | ||
1453 | */ | ||
1454 | static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) | ||
1455 | { | ||
1456 | __u32 packets_out; | ||
1457 | |||
1458 | /* Trick#1: The loss is proven. */ | ||
1459 | if (tp->lost_out) | ||
1460 | return 1; | ||
1461 | |||
1462 | /* Not-A-Trick#2 : Classic rule... */ | ||
1463 | if (tcp_fackets_out(tp) > tp->reordering) | ||
1464 | return 1; | ||
1465 | |||
1466 | /* Trick#3 : when we use RFC2988 timer restart, fast | ||
1467 | * retransmit can be triggered by timeout of queue head. | ||
1468 | */ | ||
1469 | if (tcp_head_timedout(sk, tp)) | ||
1470 | return 1; | ||
1471 | |||
1472 | /* Trick#4: It is still not OK... But will it be useful to delay | ||
1473 | * recovery more? | ||
1474 | */ | ||
1475 | packets_out = tp->packets_out; | ||
1476 | if (packets_out <= tp->reordering && | ||
1477 | tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && | ||
1478 | !tcp_may_send_now(sk, tp)) { | ||
1479 | /* We have nothing to send. This connection is limited | ||
1480 | * either by receiver window or by application. | ||
1481 | */ | ||
1482 | return 1; | ||
1483 | } | ||
1484 | |||
1485 | return 0; | ||
1486 | } | ||
1487 | |||
1488 | /* If we receive more dupacks than we expected counting segments | ||
1489 | * in assumption of absent reordering, interpret this as reordering. | ||
1490 | * The only another reason could be bug in receiver TCP. | ||
1491 | */ | ||
1492 | static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend) | ||
1493 | { | ||
1494 | u32 holes; | ||
1495 | |||
1496 | holes = max(tp->lost_out, 1U); | ||
1497 | holes = min(holes, tp->packets_out); | ||
1498 | |||
1499 | if ((tp->sacked_out + holes) > tp->packets_out) { | ||
1500 | tp->sacked_out = tp->packets_out - holes; | ||
1501 | tcp_update_reordering(tp, tp->packets_out+addend, 0); | ||
1502 | } | ||
1503 | } | ||
1504 | |||
1505 | /* Emulate SACKs for SACKless connection: account for a new dupack. */ | ||
1506 | |||
1507 | static void tcp_add_reno_sack(struct tcp_sock *tp) | ||
1508 | { | ||
1509 | tp->sacked_out++; | ||
1510 | tcp_check_reno_reordering(tp, 0); | ||
1511 | tcp_sync_left_out(tp); | ||
1512 | } | ||
1513 | |||
1514 | /* Account for ACK, ACKing some data in Reno Recovery phase. */ | ||
1515 | |||
1516 | static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) | ||
1517 | { | ||
1518 | if (acked > 0) { | ||
1519 | /* One ACK acked hole. The rest eat duplicate ACKs. */ | ||
1520 | if (acked-1 >= tp->sacked_out) | ||
1521 | tp->sacked_out = 0; | ||
1522 | else | ||
1523 | tp->sacked_out -= acked-1; | ||
1524 | } | ||
1525 | tcp_check_reno_reordering(tp, acked); | ||
1526 | tcp_sync_left_out(tp); | ||
1527 | } | ||
1528 | |||
1529 | static inline void tcp_reset_reno_sack(struct tcp_sock *tp) | ||
1530 | { | ||
1531 | tp->sacked_out = 0; | ||
1532 | tp->left_out = tp->lost_out; | ||
1533 | } | ||
1534 | |||
1535 | /* Mark head of queue up as lost. */ | ||
1536 | static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, | ||
1537 | int packets, u32 high_seq) | ||
1538 | { | ||
1539 | struct sk_buff *skb; | ||
1540 | int cnt = packets; | ||
1541 | |||
1542 | BUG_TRAP(cnt <= tp->packets_out); | ||
1543 | |||
1544 | sk_stream_for_retrans_queue(skb, sk) { | ||
1545 | cnt -= tcp_skb_pcount(skb); | ||
1546 | if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq)) | ||
1547 | break; | ||
1548 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { | ||
1549 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | ||
1550 | tp->lost_out += tcp_skb_pcount(skb); | ||
1551 | } | ||
1552 | } | ||
1553 | tcp_sync_left_out(tp); | ||
1554 | } | ||
1555 | |||
1556 | /* Account newly detected lost packet(s) */ | ||
1557 | |||
1558 | static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) | ||
1559 | { | ||
1560 | if (IsFack(tp)) { | ||
1561 | int lost = tp->fackets_out - tp->reordering; | ||
1562 | if (lost <= 0) | ||
1563 | lost = 1; | ||
1564 | tcp_mark_head_lost(sk, tp, lost, tp->high_seq); | ||
1565 | } else { | ||
1566 | tcp_mark_head_lost(sk, tp, 1, tp->high_seq); | ||
1567 | } | ||
1568 | |||
1569 | /* New heuristics: it is possible only after we switched | ||
1570 | * to restart timer each time when something is ACKed. | ||
1571 | * Hence, we can detect timed out packets during fast | ||
1572 | * retransmit without falling to slow start. | ||
1573 | */ | ||
1574 | if (tcp_head_timedout(sk, tp)) { | ||
1575 | struct sk_buff *skb; | ||
1576 | |||
1577 | sk_stream_for_retrans_queue(skb, sk) { | ||
1578 | if (tcp_skb_timedout(tp, skb) && | ||
1579 | !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { | ||
1580 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | ||
1581 | tp->lost_out += tcp_skb_pcount(skb); | ||
1582 | } | ||
1583 | } | ||
1584 | tcp_sync_left_out(tp); | ||
1585 | } | ||
1586 | } | ||
1587 | |||
1588 | /* CWND moderation, preventing bursts due to too big ACKs | ||
1589 | * in dubious situations. | ||
1590 | */ | ||
1591 | static inline void tcp_moderate_cwnd(struct tcp_sock *tp) | ||
1592 | { | ||
1593 | tp->snd_cwnd = min(tp->snd_cwnd, | ||
1594 | tcp_packets_in_flight(tp)+tcp_max_burst(tp)); | ||
1595 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
1596 | } | ||
1597 | |||
1598 | /* Decrease cwnd each second ack. */ | ||
1599 | |||
1600 | static void tcp_cwnd_down(struct tcp_sock *tp) | ||
1601 | { | ||
1602 | int decr = tp->snd_cwnd_cnt + 1; | ||
1603 | __u32 limit; | ||
1604 | |||
1605 | /* | ||
1606 | * TCP Westwood | ||
1607 | * Here limit is evaluated as BWestimation*RTTmin (for obtaining it | ||
1608 | * in packets we use mss_cache). If sysctl_tcp_westwood is off | ||
1609 | * tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is | ||
1610 | * still used as usual. It prevents other strange cases in which | ||
1611 | * BWE*RTTmin could assume value 0. It should not happen but... | ||
1612 | */ | ||
1613 | |||
1614 | if (!(limit = tcp_westwood_bw_rttmin(tp))) | ||
1615 | limit = tp->snd_ssthresh/2; | ||
1616 | |||
1617 | tp->snd_cwnd_cnt = decr&1; | ||
1618 | decr >>= 1; | ||
1619 | |||
1620 | if (decr && tp->snd_cwnd > limit) | ||
1621 | tp->snd_cwnd -= decr; | ||
1622 | |||
1623 | tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); | ||
1624 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
1625 | } | ||
1626 | |||
1627 | /* Nothing was retransmitted or returned timestamp is less | ||
1628 | * than timestamp of the first retransmission. | ||
1629 | */ | ||
1630 | static inline int tcp_packet_delayed(struct tcp_sock *tp) | ||
1631 | { | ||
1632 | return !tp->retrans_stamp || | ||
1633 | (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | ||
1634 | (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); | ||
1635 | } | ||
1636 | |||
1637 | /* Undo procedures. */ | ||
1638 | |||
1639 | #if FASTRETRANS_DEBUG > 1 | ||
1640 | static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) | ||
1641 | { | ||
1642 | struct inet_sock *inet = inet_sk(sk); | ||
1643 | printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", | ||
1644 | msg, | ||
1645 | NIPQUAD(inet->daddr), ntohs(inet->dport), | ||
1646 | tp->snd_cwnd, tp->left_out, | ||
1647 | tp->snd_ssthresh, tp->prior_ssthresh, | ||
1648 | tp->packets_out); | ||
1649 | } | ||
1650 | #else | ||
1651 | #define DBGUNDO(x...) do { } while (0) | ||
1652 | #endif | ||
1653 | |||
1654 | static void tcp_undo_cwr(struct tcp_sock *tp, int undo) | ||
1655 | { | ||
1656 | if (tp->prior_ssthresh) { | ||
1657 | if (tcp_is_bic(tp)) | ||
1658 | tp->snd_cwnd = max(tp->snd_cwnd, tp->bictcp.last_max_cwnd); | ||
1659 | else | ||
1660 | tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); | ||
1661 | |||
1662 | if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { | ||
1663 | tp->snd_ssthresh = tp->prior_ssthresh; | ||
1664 | TCP_ECN_withdraw_cwr(tp); | ||
1665 | } | ||
1666 | } else { | ||
1667 | tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); | ||
1668 | } | ||
1669 | tcp_moderate_cwnd(tp); | ||
1670 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
1671 | } | ||
1672 | |||
1673 | static inline int tcp_may_undo(struct tcp_sock *tp) | ||
1674 | { | ||
1675 | return tp->undo_marker && | ||
1676 | (!tp->undo_retrans || tcp_packet_delayed(tp)); | ||
1677 | } | ||
1678 | |||
1679 | /* People celebrate: "We love our President!" */ | ||
1680 | static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) | ||
1681 | { | ||
1682 | if (tcp_may_undo(tp)) { | ||
1683 | /* Happy end! We did not retransmit anything | ||
1684 | * or our original transmission succeeded. | ||
1685 | */ | ||
1686 | DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans"); | ||
1687 | tcp_undo_cwr(tp, 1); | ||
1688 | if (tp->ca_state == TCP_CA_Loss) | ||
1689 | NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); | ||
1690 | else | ||
1691 | NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); | ||
1692 | tp->undo_marker = 0; | ||
1693 | } | ||
1694 | if (tp->snd_una == tp->high_seq && IsReno(tp)) { | ||
1695 | /* Hold old state until something *above* high_seq | ||
1696 | * is ACKed. For Reno it is MUST to prevent false | ||
1697 | * fast retransmits (RFC2582). SACK TCP is safe. */ | ||
1698 | tcp_moderate_cwnd(tp); | ||
1699 | return 1; | ||
1700 | } | ||
1701 | tcp_set_ca_state(tp, TCP_CA_Open); | ||
1702 | return 0; | ||
1703 | } | ||
1704 | |||
1705 | /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ | ||
1706 | static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) | ||
1707 | { | ||
1708 | if (tp->undo_marker && !tp->undo_retrans) { | ||
1709 | DBGUNDO(sk, tp, "D-SACK"); | ||
1710 | tcp_undo_cwr(tp, 1); | ||
1711 | tp->undo_marker = 0; | ||
1712 | NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); | ||
1713 | } | ||
1714 | } | ||
1715 | |||
1716 | /* Undo during fast recovery after partial ACK. */ | ||
1717 | |||
1718 | static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, | ||
1719 | int acked) | ||
1720 | { | ||
1721 | /* Partial ACK arrived. Force Hoe's retransmit. */ | ||
1722 | int failed = IsReno(tp) || tp->fackets_out>tp->reordering; | ||
1723 | |||
1724 | if (tcp_may_undo(tp)) { | ||
1725 | /* Plain luck! Hole if filled with delayed | ||
1726 | * packet, rather than with a retransmit. | ||
1727 | */ | ||
1728 | if (tp->retrans_out == 0) | ||
1729 | tp->retrans_stamp = 0; | ||
1730 | |||
1731 | tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1); | ||
1732 | |||
1733 | DBGUNDO(sk, tp, "Hoe"); | ||
1734 | tcp_undo_cwr(tp, 0); | ||
1735 | NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); | ||
1736 | |||
1737 | /* So... Do not make Hoe's retransmit yet. | ||
1738 | * If the first packet was delayed, the rest | ||
1739 | * ones are most probably delayed as well. | ||
1740 | */ | ||
1741 | failed = 0; | ||
1742 | } | ||
1743 | return failed; | ||
1744 | } | ||
1745 | |||
1746 | /* Undo during loss recovery after partial ACK. */ | ||
1747 | static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) | ||
1748 | { | ||
1749 | if (tcp_may_undo(tp)) { | ||
1750 | struct sk_buff *skb; | ||
1751 | sk_stream_for_retrans_queue(skb, sk) { | ||
1752 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; | ||
1753 | } | ||
1754 | DBGUNDO(sk, tp, "partial loss"); | ||
1755 | tp->lost_out = 0; | ||
1756 | tp->left_out = tp->sacked_out; | ||
1757 | tcp_undo_cwr(tp, 1); | ||
1758 | NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); | ||
1759 | tp->retransmits = 0; | ||
1760 | tp->undo_marker = 0; | ||
1761 | if (!IsReno(tp)) | ||
1762 | tcp_set_ca_state(tp, TCP_CA_Open); | ||
1763 | return 1; | ||
1764 | } | ||
1765 | return 0; | ||
1766 | } | ||
1767 | |||
1768 | static inline void tcp_complete_cwr(struct tcp_sock *tp) | ||
1769 | { | ||
1770 | if (tcp_westwood_cwnd(tp)) | ||
1771 | tp->snd_ssthresh = tp->snd_cwnd; | ||
1772 | else | ||
1773 | tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); | ||
1774 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
1775 | } | ||
1776 | |||
1777 | static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) | ||
1778 | { | ||
1779 | tp->left_out = tp->sacked_out; | ||
1780 | |||
1781 | if (tp->retrans_out == 0) | ||
1782 | tp->retrans_stamp = 0; | ||
1783 | |||
1784 | if (flag&FLAG_ECE) | ||
1785 | tcp_enter_cwr(tp); | ||
1786 | |||
1787 | if (tp->ca_state != TCP_CA_CWR) { | ||
1788 | int state = TCP_CA_Open; | ||
1789 | |||
1790 | if (tp->left_out || tp->retrans_out || tp->undo_marker) | ||
1791 | state = TCP_CA_Disorder; | ||
1792 | |||
1793 | if (tp->ca_state != state) { | ||
1794 | tcp_set_ca_state(tp, state); | ||
1795 | tp->high_seq = tp->snd_nxt; | ||
1796 | } | ||
1797 | tcp_moderate_cwnd(tp); | ||
1798 | } else { | ||
1799 | tcp_cwnd_down(tp); | ||
1800 | } | ||
1801 | } | ||
1802 | |||
1803 | /* Process an event, which can update packets-in-flight not trivially. | ||
1804 | * Main goal of this function is to calculate new estimate for left_out, | ||
1805 | * taking into account both packets sitting in receiver's buffer and | ||
1806 | * packets lost by network. | ||
1807 | * | ||
1808 | * Besides that it does CWND reduction, when packet loss is detected | ||
1809 | * and changes state of machine. | ||
1810 | * | ||
1811 | * It does _not_ decide what to send, it is made in function | ||
1812 | * tcp_xmit_retransmit_queue(). | ||
1813 | */ | ||
1814 | static void | ||
1815 | tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, | ||
1816 | int prior_packets, int flag) | ||
1817 | { | ||
1818 | struct tcp_sock *tp = tcp_sk(sk); | ||
1819 | int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); | ||
1820 | |||
1821 | /* Some technical things: | ||
1822 | * 1. Reno does not count dupacks (sacked_out) automatically. */ | ||
1823 | if (!tp->packets_out) | ||
1824 | tp->sacked_out = 0; | ||
1825 | /* 2. SACK counts snd_fack in packets inaccurately. */ | ||
1826 | if (tp->sacked_out == 0) | ||
1827 | tp->fackets_out = 0; | ||
1828 | |||
1829 | /* Now state machine starts. | ||
1830 | * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ | ||
1831 | if (flag&FLAG_ECE) | ||
1832 | tp->prior_ssthresh = 0; | ||
1833 | |||
1834 | /* B. In all the states check for reneging SACKs. */ | ||
1835 | if (tp->sacked_out && tcp_check_sack_reneging(sk, tp)) | ||
1836 | return; | ||
1837 | |||
1838 | /* C. Process data loss notification, provided it is valid. */ | ||
1839 | if ((flag&FLAG_DATA_LOST) && | ||
1840 | before(tp->snd_una, tp->high_seq) && | ||
1841 | tp->ca_state != TCP_CA_Open && | ||
1842 | tp->fackets_out > tp->reordering) { | ||
1843 | tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); | ||
1844 | NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); | ||
1845 | } | ||
1846 | |||
1847 | /* D. Synchronize left_out to current state. */ | ||
1848 | tcp_sync_left_out(tp); | ||
1849 | |||
1850 | /* E. Check state exit conditions. State can be terminated | ||
1851 | * when high_seq is ACKed. */ | ||
1852 | if (tp->ca_state == TCP_CA_Open) { | ||
1853 | if (!sysctl_tcp_frto) | ||
1854 | BUG_TRAP(tp->retrans_out == 0); | ||
1855 | tp->retrans_stamp = 0; | ||
1856 | } else if (!before(tp->snd_una, tp->high_seq)) { | ||
1857 | switch (tp->ca_state) { | ||
1858 | case TCP_CA_Loss: | ||
1859 | tp->retransmits = 0; | ||
1860 | if (tcp_try_undo_recovery(sk, tp)) | ||
1861 | return; | ||
1862 | break; | ||
1863 | |||
1864 | case TCP_CA_CWR: | ||
1865 | /* CWR is to be held something *above* high_seq | ||
1866 | * is ACKed for CWR bit to reach receiver. */ | ||
1867 | if (tp->snd_una != tp->high_seq) { | ||
1868 | tcp_complete_cwr(tp); | ||
1869 | tcp_set_ca_state(tp, TCP_CA_Open); | ||
1870 | } | ||
1871 | break; | ||
1872 | |||
1873 | case TCP_CA_Disorder: | ||
1874 | tcp_try_undo_dsack(sk, tp); | ||
1875 | if (!tp->undo_marker || | ||
1876 | /* For SACK case do not Open to allow to undo | ||
1877 | * catching for all duplicate ACKs. */ | ||
1878 | IsReno(tp) || tp->snd_una != tp->high_seq) { | ||
1879 | tp->undo_marker = 0; | ||
1880 | tcp_set_ca_state(tp, TCP_CA_Open); | ||
1881 | } | ||
1882 | break; | ||
1883 | |||
1884 | case TCP_CA_Recovery: | ||
1885 | if (IsReno(tp)) | ||
1886 | tcp_reset_reno_sack(tp); | ||
1887 | if (tcp_try_undo_recovery(sk, tp)) | ||
1888 | return; | ||
1889 | tcp_complete_cwr(tp); | ||
1890 | break; | ||
1891 | } | ||
1892 | } | ||
1893 | |||
1894 | /* F. Process state. */ | ||
1895 | switch (tp->ca_state) { | ||
1896 | case TCP_CA_Recovery: | ||
1897 | if (prior_snd_una == tp->snd_una) { | ||
1898 | if (IsReno(tp) && is_dupack) | ||
1899 | tcp_add_reno_sack(tp); | ||
1900 | } else { | ||
1901 | int acked = prior_packets - tp->packets_out; | ||
1902 | if (IsReno(tp)) | ||
1903 | tcp_remove_reno_sacks(sk, tp, acked); | ||
1904 | is_dupack = tcp_try_undo_partial(sk, tp, acked); | ||
1905 | } | ||
1906 | break; | ||
1907 | case TCP_CA_Loss: | ||
1908 | if (flag&FLAG_DATA_ACKED) | ||
1909 | tp->retransmits = 0; | ||
1910 | if (!tcp_try_undo_loss(sk, tp)) { | ||
1911 | tcp_moderate_cwnd(tp); | ||
1912 | tcp_xmit_retransmit_queue(sk); | ||
1913 | return; | ||
1914 | } | ||
1915 | if (tp->ca_state != TCP_CA_Open) | ||
1916 | return; | ||
1917 | /* Loss is undone; fall through to processing in Open state. */ | ||
1918 | default: | ||
1919 | if (IsReno(tp)) { | ||
1920 | if (tp->snd_una != prior_snd_una) | ||
1921 | tcp_reset_reno_sack(tp); | ||
1922 | if (is_dupack) | ||
1923 | tcp_add_reno_sack(tp); | ||
1924 | } | ||
1925 | |||
1926 | if (tp->ca_state == TCP_CA_Disorder) | ||
1927 | tcp_try_undo_dsack(sk, tp); | ||
1928 | |||
1929 | if (!tcp_time_to_recover(sk, tp)) { | ||
1930 | tcp_try_to_open(sk, tp, flag); | ||
1931 | return; | ||
1932 | } | ||
1933 | |||
1934 | /* Otherwise enter Recovery state */ | ||
1935 | |||
1936 | if (IsReno(tp)) | ||
1937 | NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); | ||
1938 | else | ||
1939 | NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); | ||
1940 | |||
1941 | tp->high_seq = tp->snd_nxt; | ||
1942 | tp->prior_ssthresh = 0; | ||
1943 | tp->undo_marker = tp->snd_una; | ||
1944 | tp->undo_retrans = tp->retrans_out; | ||
1945 | |||
1946 | if (tp->ca_state < TCP_CA_CWR) { | ||
1947 | if (!(flag&FLAG_ECE)) | ||
1948 | tp->prior_ssthresh = tcp_current_ssthresh(tp); | ||
1949 | tp->snd_ssthresh = tcp_recalc_ssthresh(tp); | ||
1950 | TCP_ECN_queue_cwr(tp); | ||
1951 | } | ||
1952 | |||
1953 | tp->snd_cwnd_cnt = 0; | ||
1954 | tcp_set_ca_state(tp, TCP_CA_Recovery); | ||
1955 | } | ||
1956 | |||
1957 | if (is_dupack || tcp_head_timedout(sk, tp)) | ||
1958 | tcp_update_scoreboard(sk, tp); | ||
1959 | tcp_cwnd_down(tp); | ||
1960 | tcp_xmit_retransmit_queue(sk); | ||
1961 | } | ||
1962 | |||
1963 | /* Read draft-ietf-tcplw-high-performance before mucking | ||
1964 | * with this code. (Superceeds RFC1323) | ||
1965 | */ | ||
1966 | static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag) | ||
1967 | { | ||
1968 | __u32 seq_rtt; | ||
1969 | |||
1970 | /* RTTM Rule: A TSecr value received in a segment is used to | ||
1971 | * update the averaged RTT measurement only if the segment | ||
1972 | * acknowledges some new data, i.e., only if it advances the | ||
1973 | * left edge of the send window. | ||
1974 | * | ||
1975 | * See draft-ietf-tcplw-high-performance-00, section 3.3. | ||
1976 | * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> | ||
1977 | * | ||
1978 | * Changed: reset backoff as soon as we see the first valid sample. | ||
1979 | * If we do not, we get strongly overstimated rto. With timestamps | ||
1980 | * samples are accepted even from very old segments: f.e., when rtt=1 | ||
1981 | * increases to 8, we retransmit 5 times and after 8 seconds delayed | ||
1982 | * answer arrives rto becomes 120 seconds! If at least one of segments | ||
1983 | * in window is lost... Voila. --ANK (010210) | ||
1984 | */ | ||
1985 | seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; | ||
1986 | tcp_rtt_estimator(tp, seq_rtt); | ||
1987 | tcp_set_rto(tp); | ||
1988 | tp->backoff = 0; | ||
1989 | tcp_bound_rto(tp); | ||
1990 | } | ||
1991 | |||
1992 | static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag) | ||
1993 | { | ||
1994 | /* We don't have a timestamp. Can only use | ||
1995 | * packets that are not retransmitted to determine | ||
1996 | * rtt estimates. Also, we must not reset the | ||
1997 | * backoff for rto until we get a non-retransmitted | ||
1998 | * packet. This allows us to deal with a situation | ||
1999 | * where the network delay has increased suddenly. | ||
2000 | * I.e. Karn's algorithm. (SIGCOMM '87, p5.) | ||
2001 | */ | ||
2002 | |||
2003 | if (flag & FLAG_RETRANS_DATA_ACKED) | ||
2004 | return; | ||
2005 | |||
2006 | tcp_rtt_estimator(tp, seq_rtt); | ||
2007 | tcp_set_rto(tp); | ||
2008 | tp->backoff = 0; | ||
2009 | tcp_bound_rto(tp); | ||
2010 | } | ||
2011 | |||
2012 | static inline void tcp_ack_update_rtt(struct tcp_sock *tp, | ||
2013 | int flag, s32 seq_rtt) | ||
2014 | { | ||
2015 | /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ | ||
2016 | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) | ||
2017 | tcp_ack_saw_tstamp(tp, flag); | ||
2018 | else if (seq_rtt >= 0) | ||
2019 | tcp_ack_no_tstamp(tp, seq_rtt, flag); | ||
2020 | } | ||
2021 | |||
2022 | /* | ||
2023 | * Compute congestion window to use. | ||
2024 | * | ||
2025 | * This is from the implementation of BICTCP in | ||
2026 | * Lison-Xu, Kahaled Harfoush, and Injog Rhee. | ||
2027 | * "Binary Increase Congestion Control for Fast, Long Distance | ||
2028 | * Networks" in InfoComm 2004 | ||
2029 | * Available from: | ||
2030 | * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf | ||
2031 | * | ||
2032 | * Unless BIC is enabled and congestion window is large | ||
2033 | * this behaves the same as the original Reno. | ||
2034 | */ | ||
2035 | static inline __u32 bictcp_cwnd(struct tcp_sock *tp) | ||
2036 | { | ||
2037 | /* orignal Reno behaviour */ | ||
2038 | if (!tcp_is_bic(tp)) | ||
2039 | return tp->snd_cwnd; | ||
2040 | |||
2041 | if (tp->bictcp.last_cwnd == tp->snd_cwnd && | ||
2042 | (s32)(tcp_time_stamp - tp->bictcp.last_stamp) <= (HZ>>5)) | ||
2043 | return tp->bictcp.cnt; | ||
2044 | |||
2045 | tp->bictcp.last_cwnd = tp->snd_cwnd; | ||
2046 | tp->bictcp.last_stamp = tcp_time_stamp; | ||
2047 | |||
2048 | /* start off normal */ | ||
2049 | if (tp->snd_cwnd <= sysctl_tcp_bic_low_window) | ||
2050 | tp->bictcp.cnt = tp->snd_cwnd; | ||
2051 | |||
2052 | /* binary increase */ | ||
2053 | else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd) { | ||
2054 | __u32 dist = (tp->bictcp.last_max_cwnd - tp->snd_cwnd) | ||
2055 | / BICTCP_B; | ||
2056 | |||
2057 | if (dist > BICTCP_MAX_INCREMENT) | ||
2058 | /* linear increase */ | ||
2059 | tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT; | ||
2060 | else if (dist <= 1U) | ||
2061 | /* binary search increase */ | ||
2062 | tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR | ||
2063 | / BICTCP_B; | ||
2064 | else | ||
2065 | /* binary search increase */ | ||
2066 | tp->bictcp.cnt = tp->snd_cwnd / dist; | ||
2067 | } else { | ||
2068 | /* slow start amd linear increase */ | ||
2069 | if (tp->snd_cwnd < tp->bictcp.last_max_cwnd + BICTCP_B) | ||
2070 | /* slow start */ | ||
2071 | tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR | ||
2072 | / BICTCP_B; | ||
2073 | else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd | ||
2074 | + BICTCP_MAX_INCREMENT*(BICTCP_B-1)) | ||
2075 | /* slow start */ | ||
2076 | tp->bictcp.cnt = tp->snd_cwnd * (BICTCP_B-1) | ||
2077 | / (tp->snd_cwnd-tp->bictcp.last_max_cwnd); | ||
2078 | else | ||
2079 | /* linear increase */ | ||
2080 | tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT; | ||
2081 | } | ||
2082 | return tp->bictcp.cnt; | ||
2083 | } | ||
2084 | |||
2085 | /* This is Jacobson's slow start and congestion avoidance. | ||
2086 | * SIGCOMM '88, p. 328. | ||
2087 | */ | ||
2088 | static inline void reno_cong_avoid(struct tcp_sock *tp) | ||
2089 | { | ||
2090 | if (tp->snd_cwnd <= tp->snd_ssthresh) { | ||
2091 | /* In "safe" area, increase. */ | ||
2092 | if (tp->snd_cwnd < tp->snd_cwnd_clamp) | ||
2093 | tp->snd_cwnd++; | ||
2094 | } else { | ||
2095 | /* In dangerous area, increase slowly. | ||
2096 | * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd | ||
2097 | */ | ||
2098 | if (tp->snd_cwnd_cnt >= bictcp_cwnd(tp)) { | ||
2099 | if (tp->snd_cwnd < tp->snd_cwnd_clamp) | ||
2100 | tp->snd_cwnd++; | ||
2101 | tp->snd_cwnd_cnt=0; | ||
2102 | } else | ||
2103 | tp->snd_cwnd_cnt++; | ||
2104 | } | ||
2105 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
2106 | } | ||
2107 | |||
2108 | /* This is based on the congestion detection/avoidance scheme described in | ||
2109 | * Lawrence S. Brakmo and Larry L. Peterson. | ||
2110 | * "TCP Vegas: End to end congestion avoidance on a global internet." | ||
2111 | * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480, | ||
2112 | * October 1995. Available from: | ||
2113 | * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps | ||
2114 | * | ||
2115 | * See http://www.cs.arizona.edu/xkernel/ for their implementation. | ||
2116 | * The main aspects that distinguish this implementation from the | ||
2117 | * Arizona Vegas implementation are: | ||
2118 | * o We do not change the loss detection or recovery mechanisms of | ||
2119 | * Linux in any way. Linux already recovers from losses quite well, | ||
2120 | * using fine-grained timers, NewReno, and FACK. | ||
2121 | * o To avoid the performance penalty imposed by increasing cwnd | ||
2122 | * only every-other RTT during slow start, we increase during | ||
2123 | * every RTT during slow start, just like Reno. | ||
2124 | * o Largely to allow continuous cwnd growth during slow start, | ||
2125 | * we use the rate at which ACKs come back as the "actual" | ||
2126 | * rate, rather than the rate at which data is sent. | ||
2127 | * o To speed convergence to the right rate, we set the cwnd | ||
2128 | * to achieve the right ("actual") rate when we exit slow start. | ||
2129 | * o To filter out the noise caused by delayed ACKs, we use the | ||
2130 | * minimum RTT sample observed during the last RTT to calculate | ||
2131 | * the actual rate. | ||
2132 | * o When the sender re-starts from idle, it waits until it has | ||
2133 | * received ACKs for an entire flight of new data before making | ||
2134 | * a cwnd adjustment decision. The original Vegas implementation | ||
2135 | * assumed senders never went idle. | ||
2136 | */ | ||
2137 | static void vegas_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt) | ||
2138 | { | ||
2139 | /* The key players are v_beg_snd_una and v_beg_snd_nxt. | ||
2140 | * | ||
2141 | * These are so named because they represent the approximate values | ||
2142 | * of snd_una and snd_nxt at the beginning of the current RTT. More | ||
2143 | * precisely, they represent the amount of data sent during the RTT. | ||
2144 | * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt, | ||
2145 | * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding | ||
2146 | * bytes of data have been ACKed during the course of the RTT, giving | ||
2147 | * an "actual" rate of: | ||
2148 | * | ||
2149 | * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration) | ||
2150 | * | ||
2151 | * Unfortunately, v_beg_snd_una is not exactly equal to snd_una, | ||
2152 | * because delayed ACKs can cover more than one segment, so they | ||
2153 | * don't line up nicely with the boundaries of RTTs. | ||
2154 | * | ||
2155 | * Another unfortunate fact of life is that delayed ACKs delay the | ||
2156 | * advance of the left edge of our send window, so that the number | ||
2157 | * of bytes we send in an RTT is often less than our cwnd will allow. | ||
2158 | * So we keep track of our cwnd separately, in v_beg_snd_cwnd. | ||
2159 | */ | ||
2160 | |||
2161 | if (after(ack, tp->vegas.beg_snd_nxt)) { | ||
2162 | /* Do the Vegas once-per-RTT cwnd adjustment. */ | ||
2163 | u32 old_wnd, old_snd_cwnd; | ||
2164 | |||
2165 | |||
2166 | /* Here old_wnd is essentially the window of data that was | ||
2167 | * sent during the previous RTT, and has all | ||
2168 | * been acknowledged in the course of the RTT that ended | ||
2169 | * with the ACK we just received. Likewise, old_snd_cwnd | ||
2170 | * is the cwnd during the previous RTT. | ||
2171 | */ | ||
2172 | old_wnd = (tp->vegas.beg_snd_nxt - tp->vegas.beg_snd_una) / | ||
2173 | tp->mss_cache_std; | ||
2174 | old_snd_cwnd = tp->vegas.beg_snd_cwnd; | ||
2175 | |||
2176 | /* Save the extent of the current window so we can use this | ||
2177 | * at the end of the next RTT. | ||
2178 | */ | ||
2179 | tp->vegas.beg_snd_una = tp->vegas.beg_snd_nxt; | ||
2180 | tp->vegas.beg_snd_nxt = tp->snd_nxt; | ||
2181 | tp->vegas.beg_snd_cwnd = tp->snd_cwnd; | ||
2182 | |||
2183 | /* Take into account the current RTT sample too, to | ||
2184 | * decrease the impact of delayed acks. This double counts | ||
2185 | * this sample since we count it for the next window as well, | ||
2186 | * but that's not too awful, since we're taking the min, | ||
2187 | * rather than averaging. | ||
2188 | */ | ||
2189 | vegas_rtt_calc(tp, seq_rtt); | ||
2190 | |||
2191 | /* We do the Vegas calculations only if we got enough RTT | ||
2192 | * samples that we can be reasonably sure that we got | ||
2193 | * at least one RTT sample that wasn't from a delayed ACK. | ||
2194 | * If we only had 2 samples total, | ||
2195 | * then that means we're getting only 1 ACK per RTT, which | ||
2196 | * means they're almost certainly delayed ACKs. | ||
2197 | * If we have 3 samples, we should be OK. | ||
2198 | */ | ||
2199 | |||
2200 | if (tp->vegas.cntRTT <= 2) { | ||
2201 | /* We don't have enough RTT samples to do the Vegas | ||
2202 | * calculation, so we'll behave like Reno. | ||
2203 | */ | ||
2204 | if (tp->snd_cwnd > tp->snd_ssthresh) | ||
2205 | tp->snd_cwnd++; | ||
2206 | } else { | ||
2207 | u32 rtt, target_cwnd, diff; | ||
2208 | |||
2209 | /* We have enough RTT samples, so, using the Vegas | ||
2210 | * algorithm, we determine if we should increase or | ||
2211 | * decrease cwnd, and by how much. | ||
2212 | */ | ||
2213 | |||
2214 | /* Pluck out the RTT we are using for the Vegas | ||
2215 | * calculations. This is the min RTT seen during the | ||
2216 | * last RTT. Taking the min filters out the effects | ||
2217 | * of delayed ACKs, at the cost of noticing congestion | ||
2218 | * a bit later. | ||
2219 | */ | ||
2220 | rtt = tp->vegas.minRTT; | ||
2221 | |||
2222 | /* Calculate the cwnd we should have, if we weren't | ||
2223 | * going too fast. | ||
2224 | * | ||
2225 | * This is: | ||
2226 | * (actual rate in segments) * baseRTT | ||
2227 | * We keep it as a fixed point number with | ||
2228 | * V_PARAM_SHIFT bits to the right of the binary point. | ||
2229 | */ | ||
2230 | target_cwnd = ((old_wnd * tp->vegas.baseRTT) | ||
2231 | << V_PARAM_SHIFT) / rtt; | ||
2232 | |||
2233 | /* Calculate the difference between the window we had, | ||
2234 | * and the window we would like to have. This quantity | ||
2235 | * is the "Diff" from the Arizona Vegas papers. | ||
2236 | * | ||
2237 | * Again, this is a fixed point number with | ||
2238 | * V_PARAM_SHIFT bits to the right of the binary | ||
2239 | * point. | ||
2240 | */ | ||
2241 | diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd; | ||
2242 | |||
2243 | if (tp->snd_cwnd < tp->snd_ssthresh) { | ||
2244 | /* Slow start. */ | ||
2245 | if (diff > sysctl_tcp_vegas_gamma) { | ||
2246 | /* Going too fast. Time to slow down | ||
2247 | * and switch to congestion avoidance. | ||
2248 | */ | ||
2249 | tp->snd_ssthresh = 2; | ||
2250 | |||
2251 | /* Set cwnd to match the actual rate | ||
2252 | * exactly: | ||
2253 | * cwnd = (actual rate) * baseRTT | ||
2254 | * Then we add 1 because the integer | ||
2255 | * truncation robs us of full link | ||
2256 | * utilization. | ||
2257 | */ | ||
2258 | tp->snd_cwnd = min(tp->snd_cwnd, | ||
2259 | (target_cwnd >> | ||
2260 | V_PARAM_SHIFT)+1); | ||
2261 | |||
2262 | } | ||
2263 | } else { | ||
2264 | /* Congestion avoidance. */ | ||
2265 | u32 next_snd_cwnd; | ||
2266 | |||
2267 | /* Figure out where we would like cwnd | ||
2268 | * to be. | ||
2269 | */ | ||
2270 | if (diff > sysctl_tcp_vegas_beta) { | ||
2271 | /* The old window was too fast, so | ||
2272 | * we slow down. | ||
2273 | */ | ||
2274 | next_snd_cwnd = old_snd_cwnd - 1; | ||
2275 | } else if (diff < sysctl_tcp_vegas_alpha) { | ||
2276 | /* We don't have enough extra packets | ||
2277 | * in the network, so speed up. | ||
2278 | */ | ||
2279 | next_snd_cwnd = old_snd_cwnd + 1; | ||
2280 | } else { | ||
2281 | /* Sending just as fast as we | ||
2282 | * should be. | ||
2283 | */ | ||
2284 | next_snd_cwnd = old_snd_cwnd; | ||
2285 | } | ||
2286 | |||
2287 | /* Adjust cwnd upward or downward, toward the | ||
2288 | * desired value. | ||
2289 | */ | ||
2290 | if (next_snd_cwnd > tp->snd_cwnd) | ||
2291 | tp->snd_cwnd++; | ||
2292 | else if (next_snd_cwnd < tp->snd_cwnd) | ||
2293 | tp->snd_cwnd--; | ||
2294 | } | ||
2295 | } | ||
2296 | |||
2297 | /* Wipe the slate clean for the next RTT. */ | ||
2298 | tp->vegas.cntRTT = 0; | ||
2299 | tp->vegas.minRTT = 0x7fffffff; | ||
2300 | } | ||
2301 | |||
2302 | /* The following code is executed for every ack we receive, | ||
2303 | * except for conditions checked in should_advance_cwnd() | ||
2304 | * before the call to tcp_cong_avoid(). Mainly this means that | ||
2305 | * we only execute this code if the ack actually acked some | ||
2306 | * data. | ||
2307 | */ | ||
2308 | |||
2309 | /* If we are in slow start, increase our cwnd in response to this ACK. | ||
2310 | * (If we are not in slow start then we are in congestion avoidance, | ||
2311 | * and adjust our congestion window only once per RTT. See the code | ||
2312 | * above.) | ||
2313 | */ | ||
2314 | if (tp->snd_cwnd <= tp->snd_ssthresh) | ||
2315 | tp->snd_cwnd++; | ||
2316 | |||
2317 | /* to keep cwnd from growing without bound */ | ||
2318 | tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp); | ||
2319 | |||
2320 | /* Make sure that we are never so timid as to reduce our cwnd below | ||
2321 | * 2 MSS. | ||
2322 | * | ||
2323 | * Going below 2 MSS would risk huge delayed ACKs from our receiver. | ||
2324 | */ | ||
2325 | tp->snd_cwnd = max(tp->snd_cwnd, 2U); | ||
2326 | |||
2327 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
2328 | } | ||
2329 | |||
2330 | static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt) | ||
2331 | { | ||
2332 | if (tcp_vegas_enabled(tp)) | ||
2333 | vegas_cong_avoid(tp, ack, seq_rtt); | ||
2334 | else | ||
2335 | reno_cong_avoid(tp); | ||
2336 | } | ||
2337 | |||
2338 | /* Restart timer after forward progress on connection. | ||
2339 | * RFC2988 recommends to restart timer to now+rto. | ||
2340 | */ | ||
2341 | |||
2342 | static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) | ||
2343 | { | ||
2344 | if (!tp->packets_out) { | ||
2345 | tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS); | ||
2346 | } else { | ||
2347 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | ||
2348 | } | ||
2349 | } | ||
2350 | |||
2351 | /* There is one downside to this scheme. Although we keep the | ||
2352 | * ACK clock ticking, adjusting packet counters and advancing | ||
2353 | * congestion window, we do not liberate socket send buffer | ||
2354 | * space. | ||
2355 | * | ||
2356 | * Mucking with skb->truesize and sk->sk_wmem_alloc et al. | ||
2357 | * then making a write space wakeup callback is a possible | ||
2358 | * future enhancement. WARNING: it is not trivial to make. | ||
2359 | */ | ||
2360 | static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, | ||
2361 | __u32 now, __s32 *seq_rtt) | ||
2362 | { | ||
2363 | struct tcp_sock *tp = tcp_sk(sk); | ||
2364 | struct tcp_skb_cb *scb = TCP_SKB_CB(skb); | ||
2365 | __u32 seq = tp->snd_una; | ||
2366 | __u32 packets_acked; | ||
2367 | int acked = 0; | ||
2368 | |||
2369 | /* If we get here, the whole TSO packet has not been | ||
2370 | * acked. | ||
2371 | */ | ||
2372 | BUG_ON(!after(scb->end_seq, seq)); | ||
2373 | |||
2374 | packets_acked = tcp_skb_pcount(skb); | ||
2375 | if (tcp_trim_head(sk, skb, seq - scb->seq)) | ||
2376 | return 0; | ||
2377 | packets_acked -= tcp_skb_pcount(skb); | ||
2378 | |||
2379 | if (packets_acked) { | ||
2380 | __u8 sacked = scb->sacked; | ||
2381 | |||
2382 | acked |= FLAG_DATA_ACKED; | ||
2383 | if (sacked) { | ||
2384 | if (sacked & TCPCB_RETRANS) { | ||
2385 | if (sacked & TCPCB_SACKED_RETRANS) | ||
2386 | tp->retrans_out -= packets_acked; | ||
2387 | acked |= FLAG_RETRANS_DATA_ACKED; | ||
2388 | *seq_rtt = -1; | ||
2389 | } else if (*seq_rtt < 0) | ||
2390 | *seq_rtt = now - scb->when; | ||
2391 | if (sacked & TCPCB_SACKED_ACKED) | ||
2392 | tp->sacked_out -= packets_acked; | ||
2393 | if (sacked & TCPCB_LOST) | ||
2394 | tp->lost_out -= packets_acked; | ||
2395 | if (sacked & TCPCB_URG) { | ||
2396 | if (tp->urg_mode && | ||
2397 | !before(seq, tp->snd_up)) | ||
2398 | tp->urg_mode = 0; | ||
2399 | } | ||
2400 | } else if (*seq_rtt < 0) | ||
2401 | *seq_rtt = now - scb->when; | ||
2402 | |||
2403 | if (tp->fackets_out) { | ||
2404 | __u32 dval = min(tp->fackets_out, packets_acked); | ||
2405 | tp->fackets_out -= dval; | ||
2406 | } | ||
2407 | tp->packets_out -= packets_acked; | ||
2408 | |||
2409 | BUG_ON(tcp_skb_pcount(skb) == 0); | ||
2410 | BUG_ON(!before(scb->seq, scb->end_seq)); | ||
2411 | } | ||
2412 | |||
2413 | return acked; | ||
2414 | } | ||
2415 | |||
2416 | |||
2417 | /* Remove acknowledged frames from the retransmission queue. */ | ||
2418 | static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) | ||
2419 | { | ||
2420 | struct tcp_sock *tp = tcp_sk(sk); | ||
2421 | struct sk_buff *skb; | ||
2422 | __u32 now = tcp_time_stamp; | ||
2423 | int acked = 0; | ||
2424 | __s32 seq_rtt = -1; | ||
2425 | |||
2426 | while ((skb = skb_peek(&sk->sk_write_queue)) && | ||
2427 | skb != sk->sk_send_head) { | ||
2428 | struct tcp_skb_cb *scb = TCP_SKB_CB(skb); | ||
2429 | __u8 sacked = scb->sacked; | ||
2430 | |||
2431 | /* If our packet is before the ack sequence we can | ||
2432 | * discard it as it's confirmed to have arrived at | ||
2433 | * the other end. | ||
2434 | */ | ||
2435 | if (after(scb->end_seq, tp->snd_una)) { | ||
2436 | if (tcp_skb_pcount(skb) > 1) | ||
2437 | acked |= tcp_tso_acked(sk, skb, | ||
2438 | now, &seq_rtt); | ||
2439 | break; | ||
2440 | } | ||
2441 | |||
2442 | /* Initial outgoing SYN's get put onto the write_queue | ||
2443 | * just like anything else we transmit. It is not | ||
2444 | * true data, and if we misinform our callers that | ||
2445 | * this ACK acks real data, we will erroneously exit | ||
2446 | * connection startup slow start one packet too | ||
2447 | * quickly. This is severely frowned upon behavior. | ||
2448 | */ | ||
2449 | if (!(scb->flags & TCPCB_FLAG_SYN)) { | ||
2450 | acked |= FLAG_DATA_ACKED; | ||
2451 | } else { | ||
2452 | acked |= FLAG_SYN_ACKED; | ||
2453 | tp->retrans_stamp = 0; | ||
2454 | } | ||
2455 | |||
2456 | if (sacked) { | ||
2457 | if (sacked & TCPCB_RETRANS) { | ||
2458 | if(sacked & TCPCB_SACKED_RETRANS) | ||
2459 | tp->retrans_out -= tcp_skb_pcount(skb); | ||
2460 | acked |= FLAG_RETRANS_DATA_ACKED; | ||
2461 | seq_rtt = -1; | ||
2462 | } else if (seq_rtt < 0) | ||
2463 | seq_rtt = now - scb->when; | ||
2464 | if (sacked & TCPCB_SACKED_ACKED) | ||
2465 | tp->sacked_out -= tcp_skb_pcount(skb); | ||
2466 | if (sacked & TCPCB_LOST) | ||
2467 | tp->lost_out -= tcp_skb_pcount(skb); | ||
2468 | if (sacked & TCPCB_URG) { | ||
2469 | if (tp->urg_mode && | ||
2470 | !before(scb->end_seq, tp->snd_up)) | ||
2471 | tp->urg_mode = 0; | ||
2472 | } | ||
2473 | } else if (seq_rtt < 0) | ||
2474 | seq_rtt = now - scb->when; | ||
2475 | tcp_dec_pcount_approx(&tp->fackets_out, skb); | ||
2476 | tcp_packets_out_dec(tp, skb); | ||
2477 | __skb_unlink(skb, skb->list); | ||
2478 | sk_stream_free_skb(sk, skb); | ||
2479 | } | ||
2480 | |||
2481 | if (acked&FLAG_ACKED) { | ||
2482 | tcp_ack_update_rtt(tp, acked, seq_rtt); | ||
2483 | tcp_ack_packets_out(sk, tp); | ||
2484 | } | ||
2485 | |||
2486 | #if FASTRETRANS_DEBUG > 0 | ||
2487 | BUG_TRAP((int)tp->sacked_out >= 0); | ||
2488 | BUG_TRAP((int)tp->lost_out >= 0); | ||
2489 | BUG_TRAP((int)tp->retrans_out >= 0); | ||
2490 | if (!tp->packets_out && tp->rx_opt.sack_ok) { | ||
2491 | if (tp->lost_out) { | ||
2492 | printk(KERN_DEBUG "Leak l=%u %d\n", | ||
2493 | tp->lost_out, tp->ca_state); | ||
2494 | tp->lost_out = 0; | ||
2495 | } | ||
2496 | if (tp->sacked_out) { | ||
2497 | printk(KERN_DEBUG "Leak s=%u %d\n", | ||
2498 | tp->sacked_out, tp->ca_state); | ||
2499 | tp->sacked_out = 0; | ||
2500 | } | ||
2501 | if (tp->retrans_out) { | ||
2502 | printk(KERN_DEBUG "Leak r=%u %d\n", | ||
2503 | tp->retrans_out, tp->ca_state); | ||
2504 | tp->retrans_out = 0; | ||
2505 | } | ||
2506 | } | ||
2507 | #endif | ||
2508 | *seq_rtt_p = seq_rtt; | ||
2509 | return acked; | ||
2510 | } | ||
2511 | |||
2512 | static void tcp_ack_probe(struct sock *sk) | ||
2513 | { | ||
2514 | struct tcp_sock *tp = tcp_sk(sk); | ||
2515 | |||
2516 | /* Was it a usable window open? */ | ||
2517 | |||
2518 | if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, | ||
2519 | tp->snd_una + tp->snd_wnd)) { | ||
2520 | tp->backoff = 0; | ||
2521 | tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0); | ||
2522 | /* Socket must be waked up by subsequent tcp_data_snd_check(). | ||
2523 | * This function is not for random using! | ||
2524 | */ | ||
2525 | } else { | ||
2526 | tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0, | ||
2527 | min(tp->rto << tp->backoff, TCP_RTO_MAX)); | ||
2528 | } | ||
2529 | } | ||
2530 | |||
2531 | static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag) | ||
2532 | { | ||
2533 | return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || | ||
2534 | tp->ca_state != TCP_CA_Open); | ||
2535 | } | ||
2536 | |||
2537 | static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag) | ||
2538 | { | ||
2539 | return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && | ||
2540 | !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR)); | ||
2541 | } | ||
2542 | |||
2543 | /* Check that window update is acceptable. | ||
2544 | * The function assumes that snd_una<=ack<=snd_next. | ||
2545 | */ | ||
2546 | static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack, | ||
2547 | u32 ack_seq, u32 nwin) | ||
2548 | { | ||
2549 | return (after(ack, tp->snd_una) || | ||
2550 | after(ack_seq, tp->snd_wl1) || | ||
2551 | (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); | ||
2552 | } | ||
2553 | |||
2554 | /* Update our send window. | ||
2555 | * | ||
2556 | * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 | ||
2557 | * and in FreeBSD. NetBSD's one is even worse.) is wrong. | ||
2558 | */ | ||
2559 | static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, | ||
2560 | struct sk_buff *skb, u32 ack, u32 ack_seq) | ||
2561 | { | ||
2562 | int flag = 0; | ||
2563 | u32 nwin = ntohs(skb->h.th->window); | ||
2564 | |||
2565 | if (likely(!skb->h.th->syn)) | ||
2566 | nwin <<= tp->rx_opt.snd_wscale; | ||
2567 | |||
2568 | if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { | ||
2569 | flag |= FLAG_WIN_UPDATE; | ||
2570 | tcp_update_wl(tp, ack, ack_seq); | ||
2571 | |||
2572 | if (tp->snd_wnd != nwin) { | ||
2573 | tp->snd_wnd = nwin; | ||
2574 | |||
2575 | /* Note, it is the only place, where | ||
2576 | * fast path is recovered for sending TCP. | ||
2577 | */ | ||
2578 | tcp_fast_path_check(sk, tp); | ||
2579 | |||
2580 | if (nwin > tp->max_window) { | ||
2581 | tp->max_window = nwin; | ||
2582 | tcp_sync_mss(sk, tp->pmtu_cookie); | ||
2583 | } | ||
2584 | } | ||
2585 | } | ||
2586 | |||
2587 | tp->snd_una = ack; | ||
2588 | |||
2589 | return flag; | ||
2590 | } | ||
2591 | |||
2592 | static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) | ||
2593 | { | ||
2594 | struct tcp_sock *tp = tcp_sk(sk); | ||
2595 | |||
2596 | tcp_sync_left_out(tp); | ||
2597 | |||
2598 | if (tp->snd_una == prior_snd_una || | ||
2599 | !before(tp->snd_una, tp->frto_highmark)) { | ||
2600 | /* RTO was caused by loss, start retransmitting in | ||
2601 | * go-back-N slow start | ||
2602 | */ | ||
2603 | tcp_enter_frto_loss(sk); | ||
2604 | return; | ||
2605 | } | ||
2606 | |||
2607 | if (tp->frto_counter == 1) { | ||
2608 | /* First ACK after RTO advances the window: allow two new | ||
2609 | * segments out. | ||
2610 | */ | ||
2611 | tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; | ||
2612 | } else { | ||
2613 | /* Also the second ACK after RTO advances the window. | ||
2614 | * The RTO was likely spurious. Reduce cwnd and continue | ||
2615 | * in congestion avoidance | ||
2616 | */ | ||
2617 | tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); | ||
2618 | tcp_moderate_cwnd(tp); | ||
2619 | } | ||
2620 | |||
2621 | /* F-RTO affects on two new ACKs following RTO. | ||
2622 | * At latest on third ACK the TCP behavor is back to normal. | ||
2623 | */ | ||
2624 | tp->frto_counter = (tp->frto_counter + 1) % 3; | ||
2625 | } | ||
2626 | |||
2627 | /* | ||
2628 | * TCP Westwood+ | ||
2629 | */ | ||
2630 | |||
2631 | /* | ||
2632 | * @init_westwood | ||
2633 | * This function initializes fields used in TCP Westwood+. We can't | ||
2634 | * get no information about RTTmin at this time so we simply set it to | ||
2635 | * TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative | ||
2636 | * since in this way we're sure it will be updated in a consistent | ||
2637 | * way as soon as possible. It will reasonably happen within the first | ||
2638 | * RTT period of the connection lifetime. | ||
2639 | */ | ||
2640 | |||
2641 | static void init_westwood(struct sock *sk) | ||
2642 | { | ||
2643 | struct tcp_sock *tp = tcp_sk(sk); | ||
2644 | |||
2645 | tp->westwood.bw_ns_est = 0; | ||
2646 | tp->westwood.bw_est = 0; | ||
2647 | tp->westwood.accounted = 0; | ||
2648 | tp->westwood.cumul_ack = 0; | ||
2649 | tp->westwood.rtt_win_sx = tcp_time_stamp; | ||
2650 | tp->westwood.rtt = TCP_WESTWOOD_INIT_RTT; | ||
2651 | tp->westwood.rtt_min = TCP_WESTWOOD_INIT_RTT; | ||
2652 | tp->westwood.snd_una = tp->snd_una; | ||
2653 | } | ||
2654 | |||
2655 | /* | ||
2656 | * @westwood_do_filter | ||
2657 | * Low-pass filter. Implemented using constant coeffients. | ||
2658 | */ | ||
2659 | |||
2660 | static inline __u32 westwood_do_filter(__u32 a, __u32 b) | ||
2661 | { | ||
2662 | return (((7 * a) + b) >> 3); | ||
2663 | } | ||
2664 | |||
2665 | static void westwood_filter(struct sock *sk, __u32 delta) | ||
2666 | { | ||
2667 | struct tcp_sock *tp = tcp_sk(sk); | ||
2668 | |||
2669 | tp->westwood.bw_ns_est = | ||
2670 | westwood_do_filter(tp->westwood.bw_ns_est, | ||
2671 | tp->westwood.bk / delta); | ||
2672 | tp->westwood.bw_est = | ||
2673 | westwood_do_filter(tp->westwood.bw_est, | ||
2674 | tp->westwood.bw_ns_est); | ||
2675 | } | ||
2676 | |||
2677 | /* | ||
2678 | * @westwood_update_rttmin | ||
2679 | * It is used to update RTTmin. In this case we MUST NOT use | ||
2680 | * WESTWOOD_RTT_MIN minimum bound since we could be on a LAN! | ||
2681 | */ | ||
2682 | |||
2683 | static inline __u32 westwood_update_rttmin(const struct sock *sk) | ||
2684 | { | ||
2685 | const struct tcp_sock *tp = tcp_sk(sk); | ||
2686 | __u32 rttmin = tp->westwood.rtt_min; | ||
2687 | |||
2688 | if (tp->westwood.rtt != 0 && | ||
2689 | (tp->westwood.rtt < tp->westwood.rtt_min || !rttmin)) | ||
2690 | rttmin = tp->westwood.rtt; | ||
2691 | |||
2692 | return rttmin; | ||
2693 | } | ||
2694 | |||
2695 | /* | ||
2696 | * @westwood_acked | ||
2697 | * Evaluate increases for dk. | ||
2698 | */ | ||
2699 | |||
2700 | static inline __u32 westwood_acked(const struct sock *sk) | ||
2701 | { | ||
2702 | const struct tcp_sock *tp = tcp_sk(sk); | ||
2703 | |||
2704 | return tp->snd_una - tp->westwood.snd_una; | ||
2705 | } | ||
2706 | |||
2707 | /* | ||
2708 | * @westwood_new_window | ||
2709 | * It evaluates if we are receiving data inside the same RTT window as | ||
2710 | * when we started. | ||
2711 | * Return value: | ||
2712 | * It returns 0 if we are still evaluating samples in the same RTT | ||
2713 | * window, 1 if the sample has to be considered in the next window. | ||
2714 | */ | ||
2715 | |||
2716 | static int westwood_new_window(const struct sock *sk) | ||
2717 | { | ||
2718 | const struct tcp_sock *tp = tcp_sk(sk); | ||
2719 | __u32 left_bound; | ||
2720 | __u32 rtt; | ||
2721 | int ret = 0; | ||
2722 | |||
2723 | left_bound = tp->westwood.rtt_win_sx; | ||
2724 | rtt = max(tp->westwood.rtt, (u32) TCP_WESTWOOD_RTT_MIN); | ||
2725 | |||
2726 | /* | ||
2727 | * A RTT-window has passed. Be careful since if RTT is less than | ||
2728 | * 50ms we don't filter but we continue 'building the sample'. | ||
2729 | * This minimum limit was choosen since an estimation on small | ||
2730 | * time intervals is better to avoid... | ||
2731 | * Obvioulsy on a LAN we reasonably will always have | ||
2732 | * right_bound = left_bound + WESTWOOD_RTT_MIN | ||
2733 | */ | ||
2734 | |||
2735 | if ((left_bound + rtt) < tcp_time_stamp) | ||
2736 | ret = 1; | ||
2737 | |||
2738 | return ret; | ||
2739 | } | ||
2740 | |||
2741 | /* | ||
2742 | * @westwood_update_window | ||
2743 | * It updates RTT evaluation window if it is the right moment to do | ||
2744 | * it. If so it calls filter for evaluating bandwidth. | ||
2745 | */ | ||
2746 | |||
2747 | static void __westwood_update_window(struct sock *sk, __u32 now) | ||
2748 | { | ||
2749 | struct tcp_sock *tp = tcp_sk(sk); | ||
2750 | __u32 delta = now - tp->westwood.rtt_win_sx; | ||
2751 | |||
2752 | if (delta) { | ||
2753 | if (tp->westwood.rtt) | ||
2754 | westwood_filter(sk, delta); | ||
2755 | |||
2756 | tp->westwood.bk = 0; | ||
2757 | tp->westwood.rtt_win_sx = tcp_time_stamp; | ||
2758 | } | ||
2759 | } | ||
2760 | |||
2761 | |||
2762 | static void westwood_update_window(struct sock *sk, __u32 now) | ||
2763 | { | ||
2764 | if (westwood_new_window(sk)) | ||
2765 | __westwood_update_window(sk, now); | ||
2766 | } | ||
2767 | |||
2768 | /* | ||
2769 | * @__tcp_westwood_fast_bw | ||
2770 | * It is called when we are in fast path. In particular it is called when | ||
2771 | * header prediction is successfull. In such case infact update is | ||
2772 | * straight forward and doesn't need any particular care. | ||
2773 | */ | ||
2774 | |||
2775 | static void __tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb) | ||
2776 | { | ||
2777 | struct tcp_sock *tp = tcp_sk(sk); | ||
2778 | |||
2779 | westwood_update_window(sk, tcp_time_stamp); | ||
2780 | |||
2781 | tp->westwood.bk += westwood_acked(sk); | ||
2782 | tp->westwood.snd_una = tp->snd_una; | ||
2783 | tp->westwood.rtt_min = westwood_update_rttmin(sk); | ||
2784 | } | ||
2785 | |||
2786 | static inline void tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb) | ||
2787 | { | ||
2788 | if (tcp_is_westwood(tcp_sk(sk))) | ||
2789 | __tcp_westwood_fast_bw(sk, skb); | ||
2790 | } | ||
2791 | |||
2792 | |||
2793 | /* | ||
2794 | * @westwood_dupack_update | ||
2795 | * It updates accounted and cumul_ack when receiving a dupack. | ||
2796 | */ | ||
2797 | |||
2798 | static void westwood_dupack_update(struct sock *sk) | ||
2799 | { | ||
2800 | struct tcp_sock *tp = tcp_sk(sk); | ||
2801 | |||
2802 | tp->westwood.accounted += tp->mss_cache_std; | ||
2803 | tp->westwood.cumul_ack = tp->mss_cache_std; | ||
2804 | } | ||
2805 | |||
2806 | static inline int westwood_may_change_cumul(struct tcp_sock *tp) | ||
2807 | { | ||
2808 | return (tp->westwood.cumul_ack > tp->mss_cache_std); | ||
2809 | } | ||
2810 | |||
2811 | static inline void westwood_partial_update(struct tcp_sock *tp) | ||
2812 | { | ||
2813 | tp->westwood.accounted -= tp->westwood.cumul_ack; | ||
2814 | tp->westwood.cumul_ack = tp->mss_cache_std; | ||
2815 | } | ||
2816 | |||
2817 | static inline void westwood_complete_update(struct tcp_sock *tp) | ||
2818 | { | ||
2819 | tp->westwood.cumul_ack -= tp->westwood.accounted; | ||
2820 | tp->westwood.accounted = 0; | ||
2821 | } | ||
2822 | |||
2823 | /* | ||
2824 | * @westwood_acked_count | ||
2825 | * This function evaluates cumul_ack for evaluating dk in case of | ||
2826 | * delayed or partial acks. | ||
2827 | */ | ||
2828 | |||
2829 | static inline __u32 westwood_acked_count(struct sock *sk) | ||
2830 | { | ||
2831 | struct tcp_sock *tp = tcp_sk(sk); | ||
2832 | |||
2833 | tp->westwood.cumul_ack = westwood_acked(sk); | ||
2834 | |||
2835 | /* If cumul_ack is 0 this is a dupack since it's not moving | ||
2836 | * tp->snd_una. | ||
2837 | */ | ||
2838 | if (!(tp->westwood.cumul_ack)) | ||
2839 | westwood_dupack_update(sk); | ||
2840 | |||
2841 | if (westwood_may_change_cumul(tp)) { | ||
2842 | /* Partial or delayed ack */ | ||
2843 | if (tp->westwood.accounted >= tp->westwood.cumul_ack) | ||
2844 | westwood_partial_update(tp); | ||
2845 | else | ||
2846 | westwood_complete_update(tp); | ||
2847 | } | ||
2848 | |||
2849 | tp->westwood.snd_una = tp->snd_una; | ||
2850 | |||
2851 | return tp->westwood.cumul_ack; | ||
2852 | } | ||
2853 | |||
2854 | |||
2855 | /* | ||
2856 | * @__tcp_westwood_slow_bw | ||
2857 | * It is called when something is going wrong..even if there could | ||
2858 | * be no problems! Infact a simple delayed packet may trigger a | ||
2859 | * dupack. But we need to be careful in such case. | ||
2860 | */ | ||
2861 | |||
2862 | static void __tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb) | ||
2863 | { | ||
2864 | struct tcp_sock *tp = tcp_sk(sk); | ||
2865 | |||
2866 | westwood_update_window(sk, tcp_time_stamp); | ||
2867 | |||
2868 | tp->westwood.bk += westwood_acked_count(sk); | ||
2869 | tp->westwood.rtt_min = westwood_update_rttmin(sk); | ||
2870 | } | ||
2871 | |||
2872 | static inline void tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb) | ||
2873 | { | ||
2874 | if (tcp_is_westwood(tcp_sk(sk))) | ||
2875 | __tcp_westwood_slow_bw(sk, skb); | ||
2876 | } | ||
2877 | |||
2878 | /* This routine deals with incoming acks, but not outgoing ones. */ | ||
2879 | static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) | ||
2880 | { | ||
2881 | struct tcp_sock *tp = tcp_sk(sk); | ||
2882 | u32 prior_snd_una = tp->snd_una; | ||
2883 | u32 ack_seq = TCP_SKB_CB(skb)->seq; | ||
2884 | u32 ack = TCP_SKB_CB(skb)->ack_seq; | ||
2885 | u32 prior_in_flight; | ||
2886 | s32 seq_rtt; | ||
2887 | int prior_packets; | ||
2888 | |||
2889 | /* If the ack is newer than sent or older than previous acks | ||
2890 | * then we can probably ignore it. | ||
2891 | */ | ||
2892 | if (after(ack, tp->snd_nxt)) | ||
2893 | goto uninteresting_ack; | ||
2894 | |||
2895 | if (before(ack, prior_snd_una)) | ||
2896 | goto old_ack; | ||
2897 | |||
2898 | if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { | ||
2899 | /* Window is constant, pure forward advance. | ||
2900 | * No more checks are required. | ||
2901 | * Note, we use the fact that SND.UNA>=SND.WL2. | ||
2902 | */ | ||
2903 | tcp_update_wl(tp, ack, ack_seq); | ||
2904 | tp->snd_una = ack; | ||
2905 | tcp_westwood_fast_bw(sk, skb); | ||
2906 | flag |= FLAG_WIN_UPDATE; | ||
2907 | |||
2908 | NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); | ||
2909 | } else { | ||
2910 | if (ack_seq != TCP_SKB_CB(skb)->end_seq) | ||
2911 | flag |= FLAG_DATA; | ||
2912 | else | ||
2913 | NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); | ||
2914 | |||
2915 | flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); | ||
2916 | |||
2917 | if (TCP_SKB_CB(skb)->sacked) | ||
2918 | flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); | ||
2919 | |||
2920 | if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) | ||
2921 | flag |= FLAG_ECE; | ||
2922 | |||
2923 | tcp_westwood_slow_bw(sk,skb); | ||
2924 | } | ||
2925 | |||
2926 | /* We passed data and got it acked, remove any soft error | ||
2927 | * log. Something worked... | ||
2928 | */ | ||
2929 | sk->sk_err_soft = 0; | ||
2930 | tp->rcv_tstamp = tcp_time_stamp; | ||
2931 | prior_packets = tp->packets_out; | ||
2932 | if (!prior_packets) | ||
2933 | goto no_queue; | ||
2934 | |||
2935 | prior_in_flight = tcp_packets_in_flight(tp); | ||
2936 | |||
2937 | /* See if we can take anything off of the retransmit queue. */ | ||
2938 | flag |= tcp_clean_rtx_queue(sk, &seq_rtt); | ||
2939 | |||
2940 | if (tp->frto_counter) | ||
2941 | tcp_process_frto(sk, prior_snd_una); | ||
2942 | |||
2943 | if (tcp_ack_is_dubious(tp, flag)) { | ||
2944 | /* Advanve CWND, if state allows this. */ | ||
2945 | if ((flag & FLAG_DATA_ACKED) && | ||
2946 | (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd) && | ||
2947 | tcp_may_raise_cwnd(tp, flag)) | ||
2948 | tcp_cong_avoid(tp, ack, seq_rtt); | ||
2949 | tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); | ||
2950 | } else { | ||
2951 | if ((flag & FLAG_DATA_ACKED) && | ||
2952 | (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd)) | ||
2953 | tcp_cong_avoid(tp, ack, seq_rtt); | ||
2954 | } | ||
2955 | |||
2956 | if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) | ||
2957 | dst_confirm(sk->sk_dst_cache); | ||
2958 | |||
2959 | return 1; | ||
2960 | |||
2961 | no_queue: | ||
2962 | tp->probes_out = 0; | ||
2963 | |||
2964 | /* If this ack opens up a zero window, clear backoff. It was | ||
2965 | * being used to time the probes, and is probably far higher than | ||
2966 | * it needs to be for normal retransmission. | ||
2967 | */ | ||
2968 | if (sk->sk_send_head) | ||
2969 | tcp_ack_probe(sk); | ||
2970 | return 1; | ||
2971 | |||
2972 | old_ack: | ||
2973 | if (TCP_SKB_CB(skb)->sacked) | ||
2974 | tcp_sacktag_write_queue(sk, skb, prior_snd_una); | ||
2975 | |||
2976 | uninteresting_ack: | ||
2977 | SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); | ||
2978 | return 0; | ||
2979 | } | ||
2980 | |||
2981 | |||
2982 | /* Look for tcp options. Normally only called on SYN and SYNACK packets. | ||
2983 | * But, this can also be called on packets in the established flow when | ||
2984 | * the fast version below fails. | ||
2985 | */ | ||
2986 | void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) | ||
2987 | { | ||
2988 | unsigned char *ptr; | ||
2989 | struct tcphdr *th = skb->h.th; | ||
2990 | int length=(th->doff*4)-sizeof(struct tcphdr); | ||
2991 | |||
2992 | ptr = (unsigned char *)(th + 1); | ||
2993 | opt_rx->saw_tstamp = 0; | ||
2994 | |||
2995 | while(length>0) { | ||
2996 | int opcode=*ptr++; | ||
2997 | int opsize; | ||
2998 | |||
2999 | switch (opcode) { | ||
3000 | case TCPOPT_EOL: | ||
3001 | return; | ||
3002 | case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ | ||
3003 | length--; | ||
3004 | continue; | ||
3005 | default: | ||
3006 | opsize=*ptr++; | ||
3007 | if (opsize < 2) /* "silly options" */ | ||
3008 | return; | ||
3009 | if (opsize > length) | ||
3010 | return; /* don't parse partial options */ | ||
3011 | switch(opcode) { | ||
3012 | case TCPOPT_MSS: | ||
3013 | if(opsize==TCPOLEN_MSS && th->syn && !estab) { | ||
3014 | u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); | ||
3015 | if (in_mss) { | ||
3016 | if (opt_rx->user_mss && opt_rx->user_mss < in_mss) | ||
3017 | in_mss = opt_rx->user_mss; | ||
3018 | opt_rx->mss_clamp = in_mss; | ||
3019 | } | ||
3020 | } | ||
3021 | break; | ||
3022 | case TCPOPT_WINDOW: | ||
3023 | if(opsize==TCPOLEN_WINDOW && th->syn && !estab) | ||
3024 | if (sysctl_tcp_window_scaling) { | ||
3025 | __u8 snd_wscale = *(__u8 *) ptr; | ||
3026 | opt_rx->wscale_ok = 1; | ||
3027 | if (snd_wscale > 14) { | ||
3028 | if(net_ratelimit()) | ||
3029 | printk(KERN_INFO "tcp_parse_options: Illegal window " | ||
3030 | "scaling value %d >14 received.\n", | ||
3031 | snd_wscale); | ||
3032 | snd_wscale = 14; | ||
3033 | } | ||
3034 | opt_rx->snd_wscale = snd_wscale; | ||
3035 | } | ||
3036 | break; | ||
3037 | case TCPOPT_TIMESTAMP: | ||
3038 | if(opsize==TCPOLEN_TIMESTAMP) { | ||
3039 | if ((estab && opt_rx->tstamp_ok) || | ||
3040 | (!estab && sysctl_tcp_timestamps)) { | ||
3041 | opt_rx->saw_tstamp = 1; | ||
3042 | opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); | ||
3043 | opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); | ||
3044 | } | ||
3045 | } | ||
3046 | break; | ||
3047 | case TCPOPT_SACK_PERM: | ||
3048 | if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { | ||
3049 | if (sysctl_tcp_sack) { | ||
3050 | opt_rx->sack_ok = 1; | ||
3051 | tcp_sack_reset(opt_rx); | ||
3052 | } | ||
3053 | } | ||
3054 | break; | ||
3055 | |||
3056 | case TCPOPT_SACK: | ||
3057 | if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && | ||
3058 | !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && | ||
3059 | opt_rx->sack_ok) { | ||
3060 | TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; | ||
3061 | } | ||
3062 | }; | ||
3063 | ptr+=opsize-2; | ||
3064 | length-=opsize; | ||
3065 | }; | ||
3066 | } | ||
3067 | } | ||
3068 | |||
3069 | /* Fast parse options. This hopes to only see timestamps. | ||
3070 | * If it is wrong it falls back on tcp_parse_options(). | ||
3071 | */ | ||
3072 | static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, | ||
3073 | struct tcp_sock *tp) | ||
3074 | { | ||
3075 | if (th->doff == sizeof(struct tcphdr)>>2) { | ||
3076 | tp->rx_opt.saw_tstamp = 0; | ||
3077 | return 0; | ||
3078 | } else if (tp->rx_opt.tstamp_ok && | ||
3079 | th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { | ||
3080 | __u32 *ptr = (__u32 *)(th + 1); | ||
3081 | if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | ||
3082 | | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { | ||
3083 | tp->rx_opt.saw_tstamp = 1; | ||
3084 | ++ptr; | ||
3085 | tp->rx_opt.rcv_tsval = ntohl(*ptr); | ||
3086 | ++ptr; | ||
3087 | tp->rx_opt.rcv_tsecr = ntohl(*ptr); | ||
3088 | return 1; | ||
3089 | } | ||
3090 | } | ||
3091 | tcp_parse_options(skb, &tp->rx_opt, 1); | ||
3092 | return 1; | ||
3093 | } | ||
3094 | |||
3095 | static inline void tcp_store_ts_recent(struct tcp_sock *tp) | ||
3096 | { | ||
3097 | tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; | ||
3098 | tp->rx_opt.ts_recent_stamp = xtime.tv_sec; | ||
3099 | } | ||
3100 | |||
3101 | static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) | ||
3102 | { | ||
3103 | if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { | ||
3104 | /* PAWS bug workaround wrt. ACK frames, the PAWS discard | ||
3105 | * extra check below makes sure this can only happen | ||
3106 | * for pure ACK frames. -DaveM | ||
3107 | * | ||
3108 | * Not only, also it occurs for expired timestamps. | ||
3109 | */ | ||
3110 | |||
3111 | if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || | ||
3112 | xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) | ||
3113 | tcp_store_ts_recent(tp); | ||
3114 | } | ||
3115 | } | ||
3116 | |||
3117 | /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM | ||
3118 | * | ||
3119 | * It is not fatal. If this ACK does _not_ change critical state (seqs, window) | ||
3120 | * it can pass through stack. So, the following predicate verifies that | ||
3121 | * this segment is not used for anything but congestion avoidance or | ||
3122 | * fast retransmit. Moreover, we even are able to eliminate most of such | ||
3123 | * second order effects, if we apply some small "replay" window (~RTO) | ||
3124 | * to timestamp space. | ||
3125 | * | ||
3126 | * All these measures still do not guarantee that we reject wrapped ACKs | ||
3127 | * on networks with high bandwidth, when sequence space is recycled fastly, | ||
3128 | * but it guarantees that such events will be very rare and do not affect | ||
3129 | * connection seriously. This doesn't look nice, but alas, PAWS is really | ||
3130 | * buggy extension. | ||
3131 | * | ||
3132 | * [ Later note. Even worse! It is buggy for segments _with_ data. RFC | ||
3133 | * states that events when retransmit arrives after original data are rare. | ||
3134 | * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is | ||
3135 | * the biggest problem on large power networks even with minor reordering. | ||
3136 | * OK, let's give it small replay window. If peer clock is even 1hz, it is safe | ||
3137 | * up to bandwidth of 18Gigabit/sec. 8) ] | ||
3138 | */ | ||
3139 | |||
3140 | static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb) | ||
3141 | { | ||
3142 | struct tcphdr *th = skb->h.th; | ||
3143 | u32 seq = TCP_SKB_CB(skb)->seq; | ||
3144 | u32 ack = TCP_SKB_CB(skb)->ack_seq; | ||
3145 | |||
3146 | return (/* 1. Pure ACK with correct sequence number. */ | ||
3147 | (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && | ||
3148 | |||
3149 | /* 2. ... and duplicate ACK. */ | ||
3150 | ack == tp->snd_una && | ||
3151 | |||
3152 | /* 3. ... and does not update window. */ | ||
3153 | !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && | ||
3154 | |||
3155 | /* 4. ... and sits in replay window. */ | ||
3156 | (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ); | ||
3157 | } | ||
3158 | |||
3159 | static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb) | ||
3160 | { | ||
3161 | return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && | ||
3162 | xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && | ||
3163 | !tcp_disordered_ack(tp, skb)); | ||
3164 | } | ||
3165 | |||
3166 | /* Check segment sequence number for validity. | ||
3167 | * | ||
3168 | * Segment controls are considered valid, if the segment | ||
3169 | * fits to the window after truncation to the window. Acceptability | ||
3170 | * of data (and SYN, FIN, of course) is checked separately. | ||
3171 | * See tcp_data_queue(), for example. | ||
3172 | * | ||
3173 | * Also, controls (RST is main one) are accepted using RCV.WUP instead | ||
3174 | * of RCV.NXT. Peer still did not advance his SND.UNA when we | ||
3175 | * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. | ||
3176 | * (borrowed from freebsd) | ||
3177 | */ | ||
3178 | |||
3179 | static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) | ||
3180 | { | ||
3181 | return !before(end_seq, tp->rcv_wup) && | ||
3182 | !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); | ||
3183 | } | ||
3184 | |||
3185 | /* When we get a reset we do this. */ | ||
3186 | static void tcp_reset(struct sock *sk) | ||
3187 | { | ||
3188 | /* We want the right error as BSD sees it (and indeed as we do). */ | ||
3189 | switch (sk->sk_state) { | ||
3190 | case TCP_SYN_SENT: | ||
3191 | sk->sk_err = ECONNREFUSED; | ||
3192 | break; | ||
3193 | case TCP_CLOSE_WAIT: | ||
3194 | sk->sk_err = EPIPE; | ||
3195 | break; | ||
3196 | case TCP_CLOSE: | ||
3197 | return; | ||
3198 | default: | ||
3199 | sk->sk_err = ECONNRESET; | ||
3200 | } | ||
3201 | |||
3202 | if (!sock_flag(sk, SOCK_DEAD)) | ||
3203 | sk->sk_error_report(sk); | ||
3204 | |||
3205 | tcp_done(sk); | ||
3206 | } | ||
3207 | |||
3208 | /* | ||
3209 | * Process the FIN bit. This now behaves as it is supposed to work | ||
3210 | * and the FIN takes effect when it is validly part of sequence | ||
3211 | * space. Not before when we get holes. | ||
3212 | * | ||
3213 | * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT | ||
3214 | * (and thence onto LAST-ACK and finally, CLOSE, we never enter | ||
3215 | * TIME-WAIT) | ||
3216 | * | ||
3217 | * If we are in FINWAIT-1, a received FIN indicates simultaneous | ||
3218 | * close and we go into CLOSING (and later onto TIME-WAIT) | ||
3219 | * | ||
3220 | * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. | ||
3221 | */ | ||
3222 | static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) | ||
3223 | { | ||
3224 | struct tcp_sock *tp = tcp_sk(sk); | ||
3225 | |||
3226 | tcp_schedule_ack(tp); | ||
3227 | |||
3228 | sk->sk_shutdown |= RCV_SHUTDOWN; | ||
3229 | sock_set_flag(sk, SOCK_DONE); | ||
3230 | |||
3231 | switch (sk->sk_state) { | ||
3232 | case TCP_SYN_RECV: | ||
3233 | case TCP_ESTABLISHED: | ||
3234 | /* Move to CLOSE_WAIT */ | ||
3235 | tcp_set_state(sk, TCP_CLOSE_WAIT); | ||
3236 | tp->ack.pingpong = 1; | ||
3237 | break; | ||
3238 | |||
3239 | case TCP_CLOSE_WAIT: | ||
3240 | case TCP_CLOSING: | ||
3241 | /* Received a retransmission of the FIN, do | ||
3242 | * nothing. | ||
3243 | */ | ||
3244 | break; | ||
3245 | case TCP_LAST_ACK: | ||
3246 | /* RFC793: Remain in the LAST-ACK state. */ | ||
3247 | break; | ||
3248 | |||
3249 | case TCP_FIN_WAIT1: | ||
3250 | /* This case occurs when a simultaneous close | ||
3251 | * happens, we must ack the received FIN and | ||
3252 | * enter the CLOSING state. | ||
3253 | */ | ||
3254 | tcp_send_ack(sk); | ||
3255 | tcp_set_state(sk, TCP_CLOSING); | ||
3256 | break; | ||
3257 | case TCP_FIN_WAIT2: | ||
3258 | /* Received a FIN -- send ACK and enter TIME_WAIT. */ | ||
3259 | tcp_send_ack(sk); | ||
3260 | tcp_time_wait(sk, TCP_TIME_WAIT, 0); | ||
3261 | break; | ||
3262 | default: | ||
3263 | /* Only TCP_LISTEN and TCP_CLOSE are left, in these | ||
3264 | * cases we should never reach this piece of code. | ||
3265 | */ | ||
3266 | printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", | ||
3267 | __FUNCTION__, sk->sk_state); | ||
3268 | break; | ||
3269 | }; | ||
3270 | |||
3271 | /* It _is_ possible, that we have something out-of-order _after_ FIN. | ||
3272 | * Probably, we should reset in this case. For now drop them. | ||
3273 | */ | ||
3274 | __skb_queue_purge(&tp->out_of_order_queue); | ||
3275 | if (tp->rx_opt.sack_ok) | ||
3276 | tcp_sack_reset(&tp->rx_opt); | ||
3277 | sk_stream_mem_reclaim(sk); | ||
3278 | |||
3279 | if (!sock_flag(sk, SOCK_DEAD)) { | ||
3280 | sk->sk_state_change(sk); | ||
3281 | |||
3282 | /* Do not send POLL_HUP for half duplex close. */ | ||
3283 | if (sk->sk_shutdown == SHUTDOWN_MASK || | ||
3284 | sk->sk_state == TCP_CLOSE) | ||
3285 | sk_wake_async(sk, 1, POLL_HUP); | ||
3286 | else | ||
3287 | sk_wake_async(sk, 1, POLL_IN); | ||
3288 | } | ||
3289 | } | ||
3290 | |||
3291 | static __inline__ int | ||
3292 | tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) | ||
3293 | { | ||
3294 | if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { | ||
3295 | if (before(seq, sp->start_seq)) | ||
3296 | sp->start_seq = seq; | ||
3297 | if (after(end_seq, sp->end_seq)) | ||
3298 | sp->end_seq = end_seq; | ||
3299 | return 1; | ||
3300 | } | ||
3301 | return 0; | ||
3302 | } | ||
3303 | |||
3304 | static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) | ||
3305 | { | ||
3306 | if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { | ||
3307 | if (before(seq, tp->rcv_nxt)) | ||
3308 | NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); | ||
3309 | else | ||
3310 | NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); | ||
3311 | |||
3312 | tp->rx_opt.dsack = 1; | ||
3313 | tp->duplicate_sack[0].start_seq = seq; | ||
3314 | tp->duplicate_sack[0].end_seq = end_seq; | ||
3315 | tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); | ||
3316 | } | ||
3317 | } | ||
3318 | |||
3319 | static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) | ||
3320 | { | ||
3321 | if (!tp->rx_opt.dsack) | ||
3322 | tcp_dsack_set(tp, seq, end_seq); | ||
3323 | else | ||
3324 | tcp_sack_extend(tp->duplicate_sack, seq, end_seq); | ||
3325 | } | ||
3326 | |||
3327 | static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) | ||
3328 | { | ||
3329 | struct tcp_sock *tp = tcp_sk(sk); | ||
3330 | |||
3331 | if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | ||
3332 | before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | ||
3333 | NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); | ||
3334 | tcp_enter_quickack_mode(tp); | ||
3335 | |||
3336 | if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { | ||
3337 | u32 end_seq = TCP_SKB_CB(skb)->end_seq; | ||
3338 | |||
3339 | if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) | ||
3340 | end_seq = tp->rcv_nxt; | ||
3341 | tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); | ||
3342 | } | ||
3343 | } | ||
3344 | |||
3345 | tcp_send_ack(sk); | ||
3346 | } | ||
3347 | |||
3348 | /* These routines update the SACK block as out-of-order packets arrive or | ||
3349 | * in-order packets close up the sequence space. | ||
3350 | */ | ||
3351 | static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) | ||
3352 | { | ||
3353 | int this_sack; | ||
3354 | struct tcp_sack_block *sp = &tp->selective_acks[0]; | ||
3355 | struct tcp_sack_block *swalk = sp+1; | ||
3356 | |||
3357 | /* See if the recent change to the first SACK eats into | ||
3358 | * or hits the sequence space of other SACK blocks, if so coalesce. | ||
3359 | */ | ||
3360 | for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { | ||
3361 | if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { | ||
3362 | int i; | ||
3363 | |||
3364 | /* Zap SWALK, by moving every further SACK up by one slot. | ||
3365 | * Decrease num_sacks. | ||
3366 | */ | ||
3367 | tp->rx_opt.num_sacks--; | ||
3368 | tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); | ||
3369 | for(i=this_sack; i < tp->rx_opt.num_sacks; i++) | ||
3370 | sp[i] = sp[i+1]; | ||
3371 | continue; | ||
3372 | } | ||
3373 | this_sack++, swalk++; | ||
3374 | } | ||
3375 | } | ||
3376 | |||
3377 | static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) | ||
3378 | { | ||
3379 | __u32 tmp; | ||
3380 | |||
3381 | tmp = sack1->start_seq; | ||
3382 | sack1->start_seq = sack2->start_seq; | ||
3383 | sack2->start_seq = tmp; | ||
3384 | |||
3385 | tmp = sack1->end_seq; | ||
3386 | sack1->end_seq = sack2->end_seq; | ||
3387 | sack2->end_seq = tmp; | ||
3388 | } | ||
3389 | |||
3390 | static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) | ||
3391 | { | ||
3392 | struct tcp_sock *tp = tcp_sk(sk); | ||
3393 | struct tcp_sack_block *sp = &tp->selective_acks[0]; | ||
3394 | int cur_sacks = tp->rx_opt.num_sacks; | ||
3395 | int this_sack; | ||
3396 | |||
3397 | if (!cur_sacks) | ||
3398 | goto new_sack; | ||
3399 | |||
3400 | for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { | ||
3401 | if (tcp_sack_extend(sp, seq, end_seq)) { | ||
3402 | /* Rotate this_sack to the first one. */ | ||
3403 | for (; this_sack>0; this_sack--, sp--) | ||
3404 | tcp_sack_swap(sp, sp-1); | ||
3405 | if (cur_sacks > 1) | ||
3406 | tcp_sack_maybe_coalesce(tp); | ||
3407 | return; | ||
3408 | } | ||
3409 | } | ||
3410 | |||
3411 | /* Could not find an adjacent existing SACK, build a new one, | ||
3412 | * put it at the front, and shift everyone else down. We | ||
3413 | * always know there is at least one SACK present already here. | ||
3414 | * | ||
3415 | * If the sack array is full, forget about the last one. | ||
3416 | */ | ||
3417 | if (this_sack >= 4) { | ||
3418 | this_sack--; | ||
3419 | tp->rx_opt.num_sacks--; | ||
3420 | sp--; | ||
3421 | } | ||
3422 | for(; this_sack > 0; this_sack--, sp--) | ||
3423 | *sp = *(sp-1); | ||
3424 | |||
3425 | new_sack: | ||
3426 | /* Build the new head SACK, and we're done. */ | ||
3427 | sp->start_seq = seq; | ||
3428 | sp->end_seq = end_seq; | ||
3429 | tp->rx_opt.num_sacks++; | ||
3430 | tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); | ||
3431 | } | ||
3432 | |||
3433 | /* RCV.NXT advances, some SACKs should be eaten. */ | ||
3434 | |||
3435 | static void tcp_sack_remove(struct tcp_sock *tp) | ||
3436 | { | ||
3437 | struct tcp_sack_block *sp = &tp->selective_acks[0]; | ||
3438 | int num_sacks = tp->rx_opt.num_sacks; | ||
3439 | int this_sack; | ||
3440 | |||
3441 | /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ | ||
3442 | if (skb_queue_len(&tp->out_of_order_queue) == 0) { | ||
3443 | tp->rx_opt.num_sacks = 0; | ||
3444 | tp->rx_opt.eff_sacks = tp->rx_opt.dsack; | ||
3445 | return; | ||
3446 | } | ||
3447 | |||
3448 | for(this_sack = 0; this_sack < num_sacks; ) { | ||
3449 | /* Check if the start of the sack is covered by RCV.NXT. */ | ||
3450 | if (!before(tp->rcv_nxt, sp->start_seq)) { | ||
3451 | int i; | ||
3452 | |||
3453 | /* RCV.NXT must cover all the block! */ | ||
3454 | BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); | ||
3455 | |||
3456 | /* Zap this SACK, by moving forward any other SACKS. */ | ||
3457 | for (i=this_sack+1; i < num_sacks; i++) | ||
3458 | tp->selective_acks[i-1] = tp->selective_acks[i]; | ||
3459 | num_sacks--; | ||
3460 | continue; | ||
3461 | } | ||
3462 | this_sack++; | ||
3463 | sp++; | ||
3464 | } | ||
3465 | if (num_sacks != tp->rx_opt.num_sacks) { | ||
3466 | tp->rx_opt.num_sacks = num_sacks; | ||
3467 | tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); | ||
3468 | } | ||
3469 | } | ||
3470 | |||
3471 | /* This one checks to see if we can put data from the | ||
3472 | * out_of_order queue into the receive_queue. | ||
3473 | */ | ||
3474 | static void tcp_ofo_queue(struct sock *sk) | ||
3475 | { | ||
3476 | struct tcp_sock *tp = tcp_sk(sk); | ||
3477 | __u32 dsack_high = tp->rcv_nxt; | ||
3478 | struct sk_buff *skb; | ||
3479 | |||
3480 | while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { | ||
3481 | if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) | ||
3482 | break; | ||
3483 | |||
3484 | if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { | ||
3485 | __u32 dsack = dsack_high; | ||
3486 | if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) | ||
3487 | dsack_high = TCP_SKB_CB(skb)->end_seq; | ||
3488 | tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); | ||
3489 | } | ||
3490 | |||
3491 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { | ||
3492 | SOCK_DEBUG(sk, "ofo packet was already received \n"); | ||
3493 | __skb_unlink(skb, skb->list); | ||
3494 | __kfree_skb(skb); | ||
3495 | continue; | ||
3496 | } | ||
3497 | SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", | ||
3498 | tp->rcv_nxt, TCP_SKB_CB(skb)->seq, | ||
3499 | TCP_SKB_CB(skb)->end_seq); | ||
3500 | |||
3501 | __skb_unlink(skb, skb->list); | ||
3502 | __skb_queue_tail(&sk->sk_receive_queue, skb); | ||
3503 | tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | ||
3504 | if(skb->h.th->fin) | ||
3505 | tcp_fin(skb, sk, skb->h.th); | ||
3506 | } | ||
3507 | } | ||
3508 | |||
3509 | static int tcp_prune_queue(struct sock *sk); | ||
3510 | |||
3511 | static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) | ||
3512 | { | ||
3513 | struct tcphdr *th = skb->h.th; | ||
3514 | struct tcp_sock *tp = tcp_sk(sk); | ||
3515 | int eaten = -1; | ||
3516 | |||
3517 | if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) | ||
3518 | goto drop; | ||
3519 | |||
3520 | th = skb->h.th; | ||
3521 | __skb_pull(skb, th->doff*4); | ||
3522 | |||
3523 | TCP_ECN_accept_cwr(tp, skb); | ||
3524 | |||
3525 | if (tp->rx_opt.dsack) { | ||
3526 | tp->rx_opt.dsack = 0; | ||
3527 | tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, | ||
3528 | 4 - tp->rx_opt.tstamp_ok); | ||
3529 | } | ||
3530 | |||
3531 | /* Queue data for delivery to the user. | ||
3532 | * Packets in sequence go to the receive queue. | ||
3533 | * Out of sequence packets to the out_of_order_queue. | ||
3534 | */ | ||
3535 | if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { | ||
3536 | if (tcp_receive_window(tp) == 0) | ||
3537 | goto out_of_window; | ||
3538 | |||
3539 | /* Ok. In sequence. In window. */ | ||
3540 | if (tp->ucopy.task == current && | ||
3541 | tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && | ||
3542 | sock_owned_by_user(sk) && !tp->urg_data) { | ||
3543 | int chunk = min_t(unsigned int, skb->len, | ||
3544 | tp->ucopy.len); | ||
3545 | |||
3546 | __set_current_state(TASK_RUNNING); | ||
3547 | |||
3548 | local_bh_enable(); | ||
3549 | if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { | ||
3550 | tp->ucopy.len -= chunk; | ||
3551 | tp->copied_seq += chunk; | ||
3552 | eaten = (chunk == skb->len && !th->fin); | ||
3553 | tcp_rcv_space_adjust(sk); | ||
3554 | } | ||
3555 | local_bh_disable(); | ||
3556 | } | ||
3557 | |||
3558 | if (eaten <= 0) { | ||
3559 | queue_and_out: | ||
3560 | if (eaten < 0 && | ||
3561 | (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || | ||
3562 | !sk_stream_rmem_schedule(sk, skb))) { | ||
3563 | if (tcp_prune_queue(sk) < 0 || | ||
3564 | !sk_stream_rmem_schedule(sk, skb)) | ||
3565 | goto drop; | ||
3566 | } | ||
3567 | sk_stream_set_owner_r(skb, sk); | ||
3568 | __skb_queue_tail(&sk->sk_receive_queue, skb); | ||
3569 | } | ||
3570 | tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | ||
3571 | if(skb->len) | ||
3572 | tcp_event_data_recv(sk, tp, skb); | ||
3573 | if(th->fin) | ||
3574 | tcp_fin(skb, sk, th); | ||
3575 | |||
3576 | if (skb_queue_len(&tp->out_of_order_queue)) { | ||
3577 | tcp_ofo_queue(sk); | ||
3578 | |||
3579 | /* RFC2581. 4.2. SHOULD send immediate ACK, when | ||
3580 | * gap in queue is filled. | ||
3581 | */ | ||
3582 | if (!skb_queue_len(&tp->out_of_order_queue)) | ||
3583 | tp->ack.pingpong = 0; | ||
3584 | } | ||
3585 | |||
3586 | if (tp->rx_opt.num_sacks) | ||
3587 | tcp_sack_remove(tp); | ||
3588 | |||
3589 | tcp_fast_path_check(sk, tp); | ||
3590 | |||
3591 | if (eaten > 0) | ||
3592 | __kfree_skb(skb); | ||
3593 | else if (!sock_flag(sk, SOCK_DEAD)) | ||
3594 | sk->sk_data_ready(sk, 0); | ||
3595 | return; | ||
3596 | } | ||
3597 | |||
3598 | if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { | ||
3599 | /* A retransmit, 2nd most common case. Force an immediate ack. */ | ||
3600 | NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); | ||
3601 | tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); | ||
3602 | |||
3603 | out_of_window: | ||
3604 | tcp_enter_quickack_mode(tp); | ||
3605 | tcp_schedule_ack(tp); | ||
3606 | drop: | ||
3607 | __kfree_skb(skb); | ||
3608 | return; | ||
3609 | } | ||
3610 | |||
3611 | /* Out of window. F.e. zero window probe. */ | ||
3612 | if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) | ||
3613 | goto out_of_window; | ||
3614 | |||
3615 | tcp_enter_quickack_mode(tp); | ||
3616 | |||
3617 | if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | ||
3618 | /* Partial packet, seq < rcv_next < end_seq */ | ||
3619 | SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", | ||
3620 | tp->rcv_nxt, TCP_SKB_CB(skb)->seq, | ||
3621 | TCP_SKB_CB(skb)->end_seq); | ||
3622 | |||
3623 | tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); | ||
3624 | |||
3625 | /* If window is closed, drop tail of packet. But after | ||
3626 | * remembering D-SACK for its head made in previous line. | ||
3627 | */ | ||
3628 | if (!tcp_receive_window(tp)) | ||
3629 | goto out_of_window; | ||
3630 | goto queue_and_out; | ||
3631 | } | ||
3632 | |||
3633 | TCP_ECN_check_ce(tp, skb); | ||
3634 | |||
3635 | if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || | ||
3636 | !sk_stream_rmem_schedule(sk, skb)) { | ||
3637 | if (tcp_prune_queue(sk) < 0 || | ||
3638 | !sk_stream_rmem_schedule(sk, skb)) | ||
3639 | goto drop; | ||
3640 | } | ||
3641 | |||
3642 | /* Disable header prediction. */ | ||
3643 | tp->pred_flags = 0; | ||
3644 | tcp_schedule_ack(tp); | ||
3645 | |||
3646 | SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", | ||
3647 | tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); | ||
3648 | |||
3649 | sk_stream_set_owner_r(skb, sk); | ||
3650 | |||
3651 | if (!skb_peek(&tp->out_of_order_queue)) { | ||
3652 | /* Initial out of order segment, build 1 SACK. */ | ||
3653 | if (tp->rx_opt.sack_ok) { | ||
3654 | tp->rx_opt.num_sacks = 1; | ||
3655 | tp->rx_opt.dsack = 0; | ||
3656 | tp->rx_opt.eff_sacks = 1; | ||
3657 | tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; | ||
3658 | tp->selective_acks[0].end_seq = | ||
3659 | TCP_SKB_CB(skb)->end_seq; | ||
3660 | } | ||
3661 | __skb_queue_head(&tp->out_of_order_queue,skb); | ||
3662 | } else { | ||
3663 | struct sk_buff *skb1 = tp->out_of_order_queue.prev; | ||
3664 | u32 seq = TCP_SKB_CB(skb)->seq; | ||
3665 | u32 end_seq = TCP_SKB_CB(skb)->end_seq; | ||
3666 | |||
3667 | if (seq == TCP_SKB_CB(skb1)->end_seq) { | ||
3668 | __skb_append(skb1, skb); | ||
3669 | |||
3670 | if (!tp->rx_opt.num_sacks || | ||
3671 | tp->selective_acks[0].end_seq != seq) | ||
3672 | goto add_sack; | ||
3673 | |||
3674 | /* Common case: data arrive in order after hole. */ | ||
3675 | tp->selective_acks[0].end_seq = end_seq; | ||
3676 | return; | ||
3677 | } | ||
3678 | |||
3679 | /* Find place to insert this segment. */ | ||
3680 | do { | ||
3681 | if (!after(TCP_SKB_CB(skb1)->seq, seq)) | ||
3682 | break; | ||
3683 | } while ((skb1 = skb1->prev) != | ||
3684 | (struct sk_buff*)&tp->out_of_order_queue); | ||
3685 | |||
3686 | /* Do skb overlap to previous one? */ | ||
3687 | if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && | ||
3688 | before(seq, TCP_SKB_CB(skb1)->end_seq)) { | ||
3689 | if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { | ||
3690 | /* All the bits are present. Drop. */ | ||
3691 | __kfree_skb(skb); | ||
3692 | tcp_dsack_set(tp, seq, end_seq); | ||
3693 | goto add_sack; | ||
3694 | } | ||
3695 | if (after(seq, TCP_SKB_CB(skb1)->seq)) { | ||
3696 | /* Partial overlap. */ | ||
3697 | tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); | ||
3698 | } else { | ||
3699 | skb1 = skb1->prev; | ||
3700 | } | ||
3701 | } | ||
3702 | __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); | ||
3703 | |||
3704 | /* And clean segments covered by new one as whole. */ | ||
3705 | while ((skb1 = skb->next) != | ||
3706 | (struct sk_buff*)&tp->out_of_order_queue && | ||
3707 | after(end_seq, TCP_SKB_CB(skb1)->seq)) { | ||
3708 | if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { | ||
3709 | tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); | ||
3710 | break; | ||
3711 | } | ||
3712 | __skb_unlink(skb1, skb1->list); | ||
3713 | tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); | ||
3714 | __kfree_skb(skb1); | ||
3715 | } | ||
3716 | |||
3717 | add_sack: | ||
3718 | if (tp->rx_opt.sack_ok) | ||
3719 | tcp_sack_new_ofo_skb(sk, seq, end_seq); | ||
3720 | } | ||
3721 | } | ||
3722 | |||
3723 | /* Collapse contiguous sequence of skbs head..tail with | ||
3724 | * sequence numbers start..end. | ||
3725 | * Segments with FIN/SYN are not collapsed (only because this | ||
3726 | * simplifies code) | ||
3727 | */ | ||
3728 | static void | ||
3729 | tcp_collapse(struct sock *sk, struct sk_buff *head, | ||
3730 | struct sk_buff *tail, u32 start, u32 end) | ||
3731 | { | ||
3732 | struct sk_buff *skb; | ||
3733 | |||
3734 | /* First, check that queue is collapsable and find | ||
3735 | * the point where collapsing can be useful. */ | ||
3736 | for (skb = head; skb != tail; ) { | ||
3737 | /* No new bits? It is possible on ofo queue. */ | ||
3738 | if (!before(start, TCP_SKB_CB(skb)->end_seq)) { | ||
3739 | struct sk_buff *next = skb->next; | ||
3740 | __skb_unlink(skb, skb->list); | ||
3741 | __kfree_skb(skb); | ||
3742 | NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); | ||
3743 | skb = next; | ||
3744 | continue; | ||
3745 | } | ||
3746 | |||
3747 | /* The first skb to collapse is: | ||
3748 | * - not SYN/FIN and | ||
3749 | * - bloated or contains data before "start" or | ||
3750 | * overlaps to the next one. | ||
3751 | */ | ||
3752 | if (!skb->h.th->syn && !skb->h.th->fin && | ||
3753 | (tcp_win_from_space(skb->truesize) > skb->len || | ||
3754 | before(TCP_SKB_CB(skb)->seq, start) || | ||
3755 | (skb->next != tail && | ||
3756 | TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) | ||
3757 | break; | ||
3758 | |||
3759 | /* Decided to skip this, advance start seq. */ | ||
3760 | start = TCP_SKB_CB(skb)->end_seq; | ||
3761 | skb = skb->next; | ||
3762 | } | ||
3763 | if (skb == tail || skb->h.th->syn || skb->h.th->fin) | ||
3764 | return; | ||
3765 | |||
3766 | while (before(start, end)) { | ||
3767 | struct sk_buff *nskb; | ||
3768 | int header = skb_headroom(skb); | ||
3769 | int copy = SKB_MAX_ORDER(header, 0); | ||
3770 | |||
3771 | /* Too big header? This can happen with IPv6. */ | ||
3772 | if (copy < 0) | ||
3773 | return; | ||
3774 | if (end-start < copy) | ||
3775 | copy = end-start; | ||
3776 | nskb = alloc_skb(copy+header, GFP_ATOMIC); | ||
3777 | if (!nskb) | ||
3778 | return; | ||
3779 | skb_reserve(nskb, header); | ||
3780 | memcpy(nskb->head, skb->head, header); | ||
3781 | nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); | ||
3782 | nskb->h.raw = nskb->head + (skb->h.raw-skb->head); | ||
3783 | nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); | ||
3784 | memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); | ||
3785 | TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; | ||
3786 | __skb_insert(nskb, skb->prev, skb, skb->list); | ||
3787 | sk_stream_set_owner_r(nskb, sk); | ||
3788 | |||
3789 | /* Copy data, releasing collapsed skbs. */ | ||
3790 | while (copy > 0) { | ||
3791 | int offset = start - TCP_SKB_CB(skb)->seq; | ||
3792 | int size = TCP_SKB_CB(skb)->end_seq - start; | ||
3793 | |||
3794 | if (offset < 0) BUG(); | ||
3795 | if (size > 0) { | ||
3796 | size = min(copy, size); | ||
3797 | if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) | ||
3798 | BUG(); | ||
3799 | TCP_SKB_CB(nskb)->end_seq += size; | ||
3800 | copy -= size; | ||
3801 | start += size; | ||
3802 | } | ||
3803 | if (!before(start, TCP_SKB_CB(skb)->end_seq)) { | ||
3804 | struct sk_buff *next = skb->next; | ||
3805 | __skb_unlink(skb, skb->list); | ||
3806 | __kfree_skb(skb); | ||
3807 | NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); | ||
3808 | skb = next; | ||
3809 | if (skb == tail || skb->h.th->syn || skb->h.th->fin) | ||
3810 | return; | ||
3811 | } | ||
3812 | } | ||
3813 | } | ||
3814 | } | ||
3815 | |||
3816 | /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs | ||
3817 | * and tcp_collapse() them until all the queue is collapsed. | ||
3818 | */ | ||
3819 | static void tcp_collapse_ofo_queue(struct sock *sk) | ||
3820 | { | ||
3821 | struct tcp_sock *tp = tcp_sk(sk); | ||
3822 | struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); | ||
3823 | struct sk_buff *head; | ||
3824 | u32 start, end; | ||
3825 | |||
3826 | if (skb == NULL) | ||
3827 | return; | ||
3828 | |||
3829 | start = TCP_SKB_CB(skb)->seq; | ||
3830 | end = TCP_SKB_CB(skb)->end_seq; | ||
3831 | head = skb; | ||
3832 | |||
3833 | for (;;) { | ||
3834 | skb = skb->next; | ||
3835 | |||
3836 | /* Segment is terminated when we see gap or when | ||
3837 | * we are at the end of all the queue. */ | ||
3838 | if (skb == (struct sk_buff *)&tp->out_of_order_queue || | ||
3839 | after(TCP_SKB_CB(skb)->seq, end) || | ||
3840 | before(TCP_SKB_CB(skb)->end_seq, start)) { | ||
3841 | tcp_collapse(sk, head, skb, start, end); | ||
3842 | head = skb; | ||
3843 | if (skb == (struct sk_buff *)&tp->out_of_order_queue) | ||
3844 | break; | ||
3845 | /* Start new segment */ | ||
3846 | start = TCP_SKB_CB(skb)->seq; | ||
3847 | end = TCP_SKB_CB(skb)->end_seq; | ||
3848 | } else { | ||
3849 | if (before(TCP_SKB_CB(skb)->seq, start)) | ||
3850 | start = TCP_SKB_CB(skb)->seq; | ||
3851 | if (after(TCP_SKB_CB(skb)->end_seq, end)) | ||
3852 | end = TCP_SKB_CB(skb)->end_seq; | ||
3853 | } | ||
3854 | } | ||
3855 | } | ||
3856 | |||
3857 | /* Reduce allocated memory if we can, trying to get | ||
3858 | * the socket within its memory limits again. | ||
3859 | * | ||
3860 | * Return less than zero if we should start dropping frames | ||
3861 | * until the socket owning process reads some of the data | ||
3862 | * to stabilize the situation. | ||
3863 | */ | ||
3864 | static int tcp_prune_queue(struct sock *sk) | ||
3865 | { | ||
3866 | struct tcp_sock *tp = tcp_sk(sk); | ||
3867 | |||
3868 | SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); | ||
3869 | |||
3870 | NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); | ||
3871 | |||
3872 | if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) | ||
3873 | tcp_clamp_window(sk, tp); | ||
3874 | else if (tcp_memory_pressure) | ||
3875 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); | ||
3876 | |||
3877 | tcp_collapse_ofo_queue(sk); | ||
3878 | tcp_collapse(sk, sk->sk_receive_queue.next, | ||
3879 | (struct sk_buff*)&sk->sk_receive_queue, | ||
3880 | tp->copied_seq, tp->rcv_nxt); | ||
3881 | sk_stream_mem_reclaim(sk); | ||
3882 | |||
3883 | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) | ||
3884 | return 0; | ||
3885 | |||
3886 | /* Collapsing did not help, destructive actions follow. | ||
3887 | * This must not ever occur. */ | ||
3888 | |||
3889 | /* First, purge the out_of_order queue. */ | ||
3890 | if (skb_queue_len(&tp->out_of_order_queue)) { | ||
3891 | NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED, | ||
3892 | skb_queue_len(&tp->out_of_order_queue)); | ||
3893 | __skb_queue_purge(&tp->out_of_order_queue); | ||
3894 | |||
3895 | /* Reset SACK state. A conforming SACK implementation will | ||
3896 | * do the same at a timeout based retransmit. When a connection | ||
3897 | * is in a sad state like this, we care only about integrity | ||
3898 | * of the connection not performance. | ||
3899 | */ | ||
3900 | if (tp->rx_opt.sack_ok) | ||
3901 | tcp_sack_reset(&tp->rx_opt); | ||
3902 | sk_stream_mem_reclaim(sk); | ||
3903 | } | ||
3904 | |||
3905 | if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) | ||
3906 | return 0; | ||
3907 | |||
3908 | /* If we are really being abused, tell the caller to silently | ||
3909 | * drop receive data on the floor. It will get retransmitted | ||
3910 | * and hopefully then we'll have sufficient space. | ||
3911 | */ | ||
3912 | NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); | ||
3913 | |||
3914 | /* Massive buffer overcommit. */ | ||
3915 | tp->pred_flags = 0; | ||
3916 | return -1; | ||
3917 | } | ||
3918 | |||
3919 | |||
3920 | /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. | ||
3921 | * As additional protections, we do not touch cwnd in retransmission phases, | ||
3922 | * and if application hit its sndbuf limit recently. | ||
3923 | */ | ||
3924 | void tcp_cwnd_application_limited(struct sock *sk) | ||
3925 | { | ||
3926 | struct tcp_sock *tp = tcp_sk(sk); | ||
3927 | |||
3928 | if (tp->ca_state == TCP_CA_Open && | ||
3929 | sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { | ||
3930 | /* Limited by application or receiver window. */ | ||
3931 | u32 win_used = max(tp->snd_cwnd_used, 2U); | ||
3932 | if (win_used < tp->snd_cwnd) { | ||
3933 | tp->snd_ssthresh = tcp_current_ssthresh(tp); | ||
3934 | tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; | ||
3935 | } | ||
3936 | tp->snd_cwnd_used = 0; | ||
3937 | } | ||
3938 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
3939 | } | ||
3940 | |||
3941 | |||
3942 | /* When incoming ACK allowed to free some skb from write_queue, | ||
3943 | * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket | ||
3944 | * on the exit from tcp input handler. | ||
3945 | * | ||
3946 | * PROBLEM: sndbuf expansion does not work well with largesend. | ||
3947 | */ | ||
3948 | static void tcp_new_space(struct sock *sk) | ||
3949 | { | ||
3950 | struct tcp_sock *tp = tcp_sk(sk); | ||
3951 | |||
3952 | if (tp->packets_out < tp->snd_cwnd && | ||
3953 | !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) && | ||
3954 | !tcp_memory_pressure && | ||
3955 | atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { | ||
3956 | int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) + | ||
3957 | MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), | ||
3958 | demanded = max_t(unsigned int, tp->snd_cwnd, | ||
3959 | tp->reordering + 1); | ||
3960 | sndmem *= 2*demanded; | ||
3961 | if (sndmem > sk->sk_sndbuf) | ||
3962 | sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); | ||
3963 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
3964 | } | ||
3965 | |||
3966 | sk->sk_write_space(sk); | ||
3967 | } | ||
3968 | |||
3969 | static inline void tcp_check_space(struct sock *sk) | ||
3970 | { | ||
3971 | if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { | ||
3972 | sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); | ||
3973 | if (sk->sk_socket && | ||
3974 | test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) | ||
3975 | tcp_new_space(sk); | ||
3976 | } | ||
3977 | } | ||
3978 | |||
3979 | static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb) | ||
3980 | { | ||
3981 | struct tcp_sock *tp = tcp_sk(sk); | ||
3982 | |||
3983 | if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) || | ||
3984 | tcp_packets_in_flight(tp) >= tp->snd_cwnd || | ||
3985 | tcp_write_xmit(sk, tp->nonagle)) | ||
3986 | tcp_check_probe_timer(sk, tp); | ||
3987 | } | ||
3988 | |||
3989 | static __inline__ void tcp_data_snd_check(struct sock *sk) | ||
3990 | { | ||
3991 | struct sk_buff *skb = sk->sk_send_head; | ||
3992 | |||
3993 | if (skb != NULL) | ||
3994 | __tcp_data_snd_check(sk, skb); | ||
3995 | tcp_check_space(sk); | ||
3996 | } | ||
3997 | |||
3998 | /* | ||
3999 | * Check if sending an ack is needed. | ||
4000 | */ | ||
4001 | static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) | ||
4002 | { | ||
4003 | struct tcp_sock *tp = tcp_sk(sk); | ||
4004 | |||
4005 | /* More than one full frame received... */ | ||
4006 | if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss | ||
4007 | /* ... and right edge of window advances far enough. | ||
4008 | * (tcp_recvmsg() will send ACK otherwise). Or... | ||
4009 | */ | ||
4010 | && __tcp_select_window(sk) >= tp->rcv_wnd) || | ||
4011 | /* We ACK each frame or... */ | ||
4012 | tcp_in_quickack_mode(tp) || | ||
4013 | /* We have out of order data. */ | ||
4014 | (ofo_possible && | ||
4015 | skb_peek(&tp->out_of_order_queue))) { | ||
4016 | /* Then ack it now */ | ||
4017 | tcp_send_ack(sk); | ||
4018 | } else { | ||
4019 | /* Else, send delayed ack. */ | ||
4020 | tcp_send_delayed_ack(sk); | ||
4021 | } | ||
4022 | } | ||
4023 | |||
4024 | static __inline__ void tcp_ack_snd_check(struct sock *sk) | ||
4025 | { | ||
4026 | struct tcp_sock *tp = tcp_sk(sk); | ||
4027 | if (!tcp_ack_scheduled(tp)) { | ||
4028 | /* We sent a data segment already. */ | ||
4029 | return; | ||
4030 | } | ||
4031 | __tcp_ack_snd_check(sk, 1); | ||
4032 | } | ||
4033 | |||
4034 | /* | ||
4035 | * This routine is only called when we have urgent data | ||
4036 | * signalled. Its the 'slow' part of tcp_urg. It could be | ||
4037 | * moved inline now as tcp_urg is only called from one | ||
4038 | * place. We handle URGent data wrong. We have to - as | ||
4039 | * BSD still doesn't use the correction from RFC961. | ||
4040 | * For 1003.1g we should support a new option TCP_STDURG to permit | ||
4041 | * either form (or just set the sysctl tcp_stdurg). | ||
4042 | */ | ||
4043 | |||
4044 | static void tcp_check_urg(struct sock * sk, struct tcphdr * th) | ||
4045 | { | ||
4046 | struct tcp_sock *tp = tcp_sk(sk); | ||
4047 | u32 ptr = ntohs(th->urg_ptr); | ||
4048 | |||
4049 | if (ptr && !sysctl_tcp_stdurg) | ||
4050 | ptr--; | ||
4051 | ptr += ntohl(th->seq); | ||
4052 | |||
4053 | /* Ignore urgent data that we've already seen and read. */ | ||
4054 | if (after(tp->copied_seq, ptr)) | ||
4055 | return; | ||
4056 | |||
4057 | /* Do not replay urg ptr. | ||
4058 | * | ||
4059 | * NOTE: interesting situation not covered by specs. | ||
4060 | * Misbehaving sender may send urg ptr, pointing to segment, | ||
4061 | * which we already have in ofo queue. We are not able to fetch | ||
4062 | * such data and will stay in TCP_URG_NOTYET until will be eaten | ||
4063 | * by recvmsg(). Seems, we are not obliged to handle such wicked | ||
4064 | * situations. But it is worth to think about possibility of some | ||
4065 | * DoSes using some hypothetical application level deadlock. | ||
4066 | */ | ||
4067 | if (before(ptr, tp->rcv_nxt)) | ||
4068 | return; | ||
4069 | |||
4070 | /* Do we already have a newer (or duplicate) urgent pointer? */ | ||
4071 | if (tp->urg_data && !after(ptr, tp->urg_seq)) | ||
4072 | return; | ||
4073 | |||
4074 | /* Tell the world about our new urgent pointer. */ | ||
4075 | sk_send_sigurg(sk); | ||
4076 | |||
4077 | /* We may be adding urgent data when the last byte read was | ||
4078 | * urgent. To do this requires some care. We cannot just ignore | ||
4079 | * tp->copied_seq since we would read the last urgent byte again | ||
4080 | * as data, nor can we alter copied_seq until this data arrives | ||
4081 | * or we break the sematics of SIOCATMARK (and thus sockatmark()) | ||
4082 | * | ||
4083 | * NOTE. Double Dutch. Rendering to plain English: author of comment | ||
4084 | * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); | ||
4085 | * and expect that both A and B disappear from stream. This is _wrong_. | ||
4086 | * Though this happens in BSD with high probability, this is occasional. | ||
4087 | * Any application relying on this is buggy. Note also, that fix "works" | ||
4088 | * only in this artificial test. Insert some normal data between A and B and we will | ||
4089 | * decline of BSD again. Verdict: it is better to remove to trap | ||
4090 | * buggy users. | ||
4091 | */ | ||
4092 | if (tp->urg_seq == tp->copied_seq && tp->urg_data && | ||
4093 | !sock_flag(sk, SOCK_URGINLINE) && | ||
4094 | tp->copied_seq != tp->rcv_nxt) { | ||
4095 | struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); | ||
4096 | tp->copied_seq++; | ||
4097 | if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { | ||
4098 | __skb_unlink(skb, skb->list); | ||
4099 | __kfree_skb(skb); | ||
4100 | } | ||
4101 | } | ||
4102 | |||
4103 | tp->urg_data = TCP_URG_NOTYET; | ||
4104 | tp->urg_seq = ptr; | ||
4105 | |||
4106 | /* Disable header prediction. */ | ||
4107 | tp->pred_flags = 0; | ||
4108 | } | ||
4109 | |||
4110 | /* This is the 'fast' part of urgent handling. */ | ||
4111 | static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) | ||
4112 | { | ||
4113 | struct tcp_sock *tp = tcp_sk(sk); | ||
4114 | |||
4115 | /* Check if we get a new urgent pointer - normally not. */ | ||
4116 | if (th->urg) | ||
4117 | tcp_check_urg(sk,th); | ||
4118 | |||
4119 | /* Do we wait for any urgent data? - normally not... */ | ||
4120 | if (tp->urg_data == TCP_URG_NOTYET) { | ||
4121 | u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - | ||
4122 | th->syn; | ||
4123 | |||
4124 | /* Is the urgent pointer pointing into this packet? */ | ||
4125 | if (ptr < skb->len) { | ||
4126 | u8 tmp; | ||
4127 | if (skb_copy_bits(skb, ptr, &tmp, 1)) | ||
4128 | BUG(); | ||
4129 | tp->urg_data = TCP_URG_VALID | tmp; | ||
4130 | if (!sock_flag(sk, SOCK_DEAD)) | ||
4131 | sk->sk_data_ready(sk, 0); | ||
4132 | } | ||
4133 | } | ||
4134 | } | ||
4135 | |||
4136 | static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) | ||
4137 | { | ||
4138 | struct tcp_sock *tp = tcp_sk(sk); | ||
4139 | int chunk = skb->len - hlen; | ||
4140 | int err; | ||
4141 | |||
4142 | local_bh_enable(); | ||
4143 | if (skb->ip_summed==CHECKSUM_UNNECESSARY) | ||
4144 | err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); | ||
4145 | else | ||
4146 | err = skb_copy_and_csum_datagram_iovec(skb, hlen, | ||
4147 | tp->ucopy.iov); | ||
4148 | |||
4149 | if (!err) { | ||
4150 | tp->ucopy.len -= chunk; | ||
4151 | tp->copied_seq += chunk; | ||
4152 | tcp_rcv_space_adjust(sk); | ||
4153 | } | ||
4154 | |||
4155 | local_bh_disable(); | ||
4156 | return err; | ||
4157 | } | ||
4158 | |||
4159 | static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) | ||
4160 | { | ||
4161 | int result; | ||
4162 | |||
4163 | if (sock_owned_by_user(sk)) { | ||
4164 | local_bh_enable(); | ||
4165 | result = __tcp_checksum_complete(skb); | ||
4166 | local_bh_disable(); | ||
4167 | } else { | ||
4168 | result = __tcp_checksum_complete(skb); | ||
4169 | } | ||
4170 | return result; | ||
4171 | } | ||
4172 | |||
4173 | static __inline__ int | ||
4174 | tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) | ||
4175 | { | ||
4176 | return skb->ip_summed != CHECKSUM_UNNECESSARY && | ||
4177 | __tcp_checksum_complete_user(sk, skb); | ||
4178 | } | ||
4179 | |||
4180 | /* | ||
4181 | * TCP receive function for the ESTABLISHED state. | ||
4182 | * | ||
4183 | * It is split into a fast path and a slow path. The fast path is | ||
4184 | * disabled when: | ||
4185 | * - A zero window was announced from us - zero window probing | ||
4186 | * is only handled properly in the slow path. | ||
4187 | * - Out of order segments arrived. | ||
4188 | * - Urgent data is expected. | ||
4189 | * - There is no buffer space left | ||
4190 | * - Unexpected TCP flags/window values/header lengths are received | ||
4191 | * (detected by checking the TCP header against pred_flags) | ||
4192 | * - Data is sent in both directions. Fast path only supports pure senders | ||
4193 | * or pure receivers (this means either the sequence number or the ack | ||
4194 | * value must stay constant) | ||
4195 | * - Unexpected TCP option. | ||
4196 | * | ||
4197 | * When these conditions are not satisfied it drops into a standard | ||
4198 | * receive procedure patterned after RFC793 to handle all cases. | ||
4199 | * The first three cases are guaranteed by proper pred_flags setting, | ||
4200 | * the rest is checked inline. Fast processing is turned on in | ||
4201 | * tcp_data_queue when everything is OK. | ||
4202 | */ | ||
4203 | int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, | ||
4204 | struct tcphdr *th, unsigned len) | ||
4205 | { | ||
4206 | struct tcp_sock *tp = tcp_sk(sk); | ||
4207 | |||
4208 | /* | ||
4209 | * Header prediction. | ||
4210 | * The code loosely follows the one in the famous | ||
4211 | * "30 instruction TCP receive" Van Jacobson mail. | ||
4212 | * | ||
4213 | * Van's trick is to deposit buffers into socket queue | ||
4214 | * on a device interrupt, to call tcp_recv function | ||
4215 | * on the receive process context and checksum and copy | ||
4216 | * the buffer to user space. smart... | ||
4217 | * | ||
4218 | * Our current scheme is not silly either but we take the | ||
4219 | * extra cost of the net_bh soft interrupt processing... | ||
4220 | * We do checksum and copy also but from device to kernel. | ||
4221 | */ | ||
4222 | |||
4223 | tp->rx_opt.saw_tstamp = 0; | ||
4224 | |||
4225 | /* pred_flags is 0xS?10 << 16 + snd_wnd | ||
4226 | * if header_predition is to be made | ||
4227 | * 'S' will always be tp->tcp_header_len >> 2 | ||
4228 | * '?' will be 0 for the fast path, otherwise pred_flags is 0 to | ||
4229 | * turn it off (when there are holes in the receive | ||
4230 | * space for instance) | ||
4231 | * PSH flag is ignored. | ||
4232 | */ | ||
4233 | |||
4234 | if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && | ||
4235 | TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { | ||
4236 | int tcp_header_len = tp->tcp_header_len; | ||
4237 | |||
4238 | /* Timestamp header prediction: tcp_header_len | ||
4239 | * is automatically equal to th->doff*4 due to pred_flags | ||
4240 | * match. | ||
4241 | */ | ||
4242 | |||
4243 | /* Check timestamp */ | ||
4244 | if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { | ||
4245 | __u32 *ptr = (__u32 *)(th + 1); | ||
4246 | |||
4247 | /* No? Slow path! */ | ||
4248 | if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | ||
4249 | | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) | ||
4250 | goto slow_path; | ||
4251 | |||
4252 | tp->rx_opt.saw_tstamp = 1; | ||
4253 | ++ptr; | ||
4254 | tp->rx_opt.rcv_tsval = ntohl(*ptr); | ||
4255 | ++ptr; | ||
4256 | tp->rx_opt.rcv_tsecr = ntohl(*ptr); | ||
4257 | |||
4258 | /* If PAWS failed, check it more carefully in slow path */ | ||
4259 | if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) | ||
4260 | goto slow_path; | ||
4261 | |||
4262 | /* DO NOT update ts_recent here, if checksum fails | ||
4263 | * and timestamp was corrupted part, it will result | ||
4264 | * in a hung connection since we will drop all | ||
4265 | * future packets due to the PAWS test. | ||
4266 | */ | ||
4267 | } | ||
4268 | |||
4269 | if (len <= tcp_header_len) { | ||
4270 | /* Bulk data transfer: sender */ | ||
4271 | if (len == tcp_header_len) { | ||
4272 | /* Predicted packet is in window by definition. | ||
4273 | * seq == rcv_nxt and rcv_wup <= rcv_nxt. | ||
4274 | * Hence, check seq<=rcv_wup reduces to: | ||
4275 | */ | ||
4276 | if (tcp_header_len == | ||
4277 | (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && | ||
4278 | tp->rcv_nxt == tp->rcv_wup) | ||
4279 | tcp_store_ts_recent(tp); | ||
4280 | |||
4281 | tcp_rcv_rtt_measure_ts(tp, skb); | ||
4282 | |||
4283 | /* We know that such packets are checksummed | ||
4284 | * on entry. | ||
4285 | */ | ||
4286 | tcp_ack(sk, skb, 0); | ||
4287 | __kfree_skb(skb); | ||
4288 | tcp_data_snd_check(sk); | ||
4289 | return 0; | ||
4290 | } else { /* Header too small */ | ||
4291 | TCP_INC_STATS_BH(TCP_MIB_INERRS); | ||
4292 | goto discard; | ||
4293 | } | ||
4294 | } else { | ||
4295 | int eaten = 0; | ||
4296 | |||
4297 | if (tp->ucopy.task == current && | ||
4298 | tp->copied_seq == tp->rcv_nxt && | ||
4299 | len - tcp_header_len <= tp->ucopy.len && | ||
4300 | sock_owned_by_user(sk)) { | ||
4301 | __set_current_state(TASK_RUNNING); | ||
4302 | |||
4303 | if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { | ||
4304 | /* Predicted packet is in window by definition. | ||
4305 | * seq == rcv_nxt and rcv_wup <= rcv_nxt. | ||
4306 | * Hence, check seq<=rcv_wup reduces to: | ||
4307 | */ | ||
4308 | if (tcp_header_len == | ||
4309 | (sizeof(struct tcphdr) + | ||
4310 | TCPOLEN_TSTAMP_ALIGNED) && | ||
4311 | tp->rcv_nxt == tp->rcv_wup) | ||
4312 | tcp_store_ts_recent(tp); | ||
4313 | |||
4314 | tcp_rcv_rtt_measure_ts(tp, skb); | ||
4315 | |||
4316 | __skb_pull(skb, tcp_header_len); | ||
4317 | tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | ||
4318 | NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); | ||
4319 | eaten = 1; | ||
4320 | } | ||
4321 | } | ||
4322 | if (!eaten) { | ||
4323 | if (tcp_checksum_complete_user(sk, skb)) | ||
4324 | goto csum_error; | ||
4325 | |||
4326 | /* Predicted packet is in window by definition. | ||
4327 | * seq == rcv_nxt and rcv_wup <= rcv_nxt. | ||
4328 | * Hence, check seq<=rcv_wup reduces to: | ||
4329 | */ | ||
4330 | if (tcp_header_len == | ||
4331 | (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && | ||
4332 | tp->rcv_nxt == tp->rcv_wup) | ||
4333 | tcp_store_ts_recent(tp); | ||
4334 | |||
4335 | tcp_rcv_rtt_measure_ts(tp, skb); | ||
4336 | |||
4337 | if ((int)skb->truesize > sk->sk_forward_alloc) | ||
4338 | goto step5; | ||
4339 | |||
4340 | NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); | ||
4341 | |||
4342 | /* Bulk data transfer: receiver */ | ||
4343 | __skb_pull(skb,tcp_header_len); | ||
4344 | __skb_queue_tail(&sk->sk_receive_queue, skb); | ||
4345 | sk_stream_set_owner_r(skb, sk); | ||
4346 | tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | ||
4347 | } | ||
4348 | |||
4349 | tcp_event_data_recv(sk, tp, skb); | ||
4350 | |||
4351 | if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { | ||
4352 | /* Well, only one small jumplet in fast path... */ | ||
4353 | tcp_ack(sk, skb, FLAG_DATA); | ||
4354 | tcp_data_snd_check(sk); | ||
4355 | if (!tcp_ack_scheduled(tp)) | ||
4356 | goto no_ack; | ||
4357 | } | ||
4358 | |||
4359 | if (eaten) { | ||
4360 | if (tcp_in_quickack_mode(tp)) { | ||
4361 | tcp_send_ack(sk); | ||
4362 | } else { | ||
4363 | tcp_send_delayed_ack(sk); | ||
4364 | } | ||
4365 | } else { | ||
4366 | __tcp_ack_snd_check(sk, 0); | ||
4367 | } | ||
4368 | |||
4369 | no_ack: | ||
4370 | if (eaten) | ||
4371 | __kfree_skb(skb); | ||
4372 | else | ||
4373 | sk->sk_data_ready(sk, 0); | ||
4374 | return 0; | ||
4375 | } | ||
4376 | } | ||
4377 | |||
4378 | slow_path: | ||
4379 | if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) | ||
4380 | goto csum_error; | ||
4381 | |||
4382 | /* | ||
4383 | * RFC1323: H1. Apply PAWS check first. | ||
4384 | */ | ||
4385 | if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && | ||
4386 | tcp_paws_discard(tp, skb)) { | ||
4387 | if (!th->rst) { | ||
4388 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | ||
4389 | tcp_send_dupack(sk, skb); | ||
4390 | goto discard; | ||
4391 | } | ||
4392 | /* Resets are accepted even if PAWS failed. | ||
4393 | |||
4394 | ts_recent update must be made after we are sure | ||
4395 | that the packet is in window. | ||
4396 | */ | ||
4397 | } | ||
4398 | |||
4399 | /* | ||
4400 | * Standard slow path. | ||
4401 | */ | ||
4402 | |||
4403 | if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { | ||
4404 | /* RFC793, page 37: "In all states except SYN-SENT, all reset | ||
4405 | * (RST) segments are validated by checking their SEQ-fields." | ||
4406 | * And page 69: "If an incoming segment is not acceptable, | ||
4407 | * an acknowledgment should be sent in reply (unless the RST bit | ||
4408 | * is set, if so drop the segment and return)". | ||
4409 | */ | ||
4410 | if (!th->rst) | ||
4411 | tcp_send_dupack(sk, skb); | ||
4412 | goto discard; | ||
4413 | } | ||
4414 | |||
4415 | if(th->rst) { | ||
4416 | tcp_reset(sk); | ||
4417 | goto discard; | ||
4418 | } | ||
4419 | |||
4420 | tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); | ||
4421 | |||
4422 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | ||
4423 | TCP_INC_STATS_BH(TCP_MIB_INERRS); | ||
4424 | NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); | ||
4425 | tcp_reset(sk); | ||
4426 | return 1; | ||
4427 | } | ||
4428 | |||
4429 | step5: | ||
4430 | if(th->ack) | ||
4431 | tcp_ack(sk, skb, FLAG_SLOWPATH); | ||
4432 | |||
4433 | tcp_rcv_rtt_measure_ts(tp, skb); | ||
4434 | |||
4435 | /* Process urgent data. */ | ||
4436 | tcp_urg(sk, skb, th); | ||
4437 | |||
4438 | /* step 7: process the segment text */ | ||
4439 | tcp_data_queue(sk, skb); | ||
4440 | |||
4441 | tcp_data_snd_check(sk); | ||
4442 | tcp_ack_snd_check(sk); | ||
4443 | return 0; | ||
4444 | |||
4445 | csum_error: | ||
4446 | TCP_INC_STATS_BH(TCP_MIB_INERRS); | ||
4447 | |||
4448 | discard: | ||
4449 | __kfree_skb(skb); | ||
4450 | return 0; | ||
4451 | } | ||
4452 | |||
4453 | static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, | ||
4454 | struct tcphdr *th, unsigned len) | ||
4455 | { | ||
4456 | struct tcp_sock *tp = tcp_sk(sk); | ||
4457 | int saved_clamp = tp->rx_opt.mss_clamp; | ||
4458 | |||
4459 | tcp_parse_options(skb, &tp->rx_opt, 0); | ||
4460 | |||
4461 | if (th->ack) { | ||
4462 | /* rfc793: | ||
4463 | * "If the state is SYN-SENT then | ||
4464 | * first check the ACK bit | ||
4465 | * If the ACK bit is set | ||
4466 | * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send | ||
4467 | * a reset (unless the RST bit is set, if so drop | ||
4468 | * the segment and return)" | ||
4469 | * | ||
4470 | * We do not send data with SYN, so that RFC-correct | ||
4471 | * test reduces to: | ||
4472 | */ | ||
4473 | if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) | ||
4474 | goto reset_and_undo; | ||
4475 | |||
4476 | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | ||
4477 | !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, | ||
4478 | tcp_time_stamp)) { | ||
4479 | NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); | ||
4480 | goto reset_and_undo; | ||
4481 | } | ||
4482 | |||
4483 | /* Now ACK is acceptable. | ||
4484 | * | ||
4485 | * "If the RST bit is set | ||
4486 | * If the ACK was acceptable then signal the user "error: | ||
4487 | * connection reset", drop the segment, enter CLOSED state, | ||
4488 | * delete TCB, and return." | ||
4489 | */ | ||
4490 | |||
4491 | if (th->rst) { | ||
4492 | tcp_reset(sk); | ||
4493 | goto discard; | ||
4494 | } | ||
4495 | |||
4496 | /* rfc793: | ||
4497 | * "fifth, if neither of the SYN or RST bits is set then | ||
4498 | * drop the segment and return." | ||
4499 | * | ||
4500 | * See note below! | ||
4501 | * --ANK(990513) | ||
4502 | */ | ||
4503 | if (!th->syn) | ||
4504 | goto discard_and_undo; | ||
4505 | |||
4506 | /* rfc793: | ||
4507 | * "If the SYN bit is on ... | ||
4508 | * are acceptable then ... | ||
4509 | * (our SYN has been ACKed), change the connection | ||
4510 | * state to ESTABLISHED..." | ||
4511 | */ | ||
4512 | |||
4513 | TCP_ECN_rcv_synack(tp, th); | ||
4514 | if (tp->ecn_flags&TCP_ECN_OK) | ||
4515 | sock_set_flag(sk, SOCK_NO_LARGESEND); | ||
4516 | |||
4517 | tp->snd_wl1 = TCP_SKB_CB(skb)->seq; | ||
4518 | tcp_ack(sk, skb, FLAG_SLOWPATH); | ||
4519 | |||
4520 | /* Ok.. it's good. Set up sequence numbers and | ||
4521 | * move to established. | ||
4522 | */ | ||
4523 | tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; | ||
4524 | tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; | ||
4525 | |||
4526 | /* RFC1323: The window in SYN & SYN/ACK segments is | ||
4527 | * never scaled. | ||
4528 | */ | ||
4529 | tp->snd_wnd = ntohs(th->window); | ||
4530 | tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); | ||
4531 | |||
4532 | if (!tp->rx_opt.wscale_ok) { | ||
4533 | tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; | ||
4534 | tp->window_clamp = min(tp->window_clamp, 65535U); | ||
4535 | } | ||
4536 | |||
4537 | if (tp->rx_opt.saw_tstamp) { | ||
4538 | tp->rx_opt.tstamp_ok = 1; | ||
4539 | tp->tcp_header_len = | ||
4540 | sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | ||
4541 | tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; | ||
4542 | tcp_store_ts_recent(tp); | ||
4543 | } else { | ||
4544 | tp->tcp_header_len = sizeof(struct tcphdr); | ||
4545 | } | ||
4546 | |||
4547 | if (tp->rx_opt.sack_ok && sysctl_tcp_fack) | ||
4548 | tp->rx_opt.sack_ok |= 2; | ||
4549 | |||
4550 | tcp_sync_mss(sk, tp->pmtu_cookie); | ||
4551 | tcp_initialize_rcv_mss(sk); | ||
4552 | |||
4553 | /* Remember, tcp_poll() does not lock socket! | ||
4554 | * Change state from SYN-SENT only after copied_seq | ||
4555 | * is initialized. */ | ||
4556 | tp->copied_seq = tp->rcv_nxt; | ||
4557 | mb(); | ||
4558 | tcp_set_state(sk, TCP_ESTABLISHED); | ||
4559 | |||
4560 | /* Make sure socket is routed, for correct metrics. */ | ||
4561 | tp->af_specific->rebuild_header(sk); | ||
4562 | |||
4563 | tcp_init_metrics(sk); | ||
4564 | |||
4565 | /* Prevent spurious tcp_cwnd_restart() on first data | ||
4566 | * packet. | ||
4567 | */ | ||
4568 | tp->lsndtime = tcp_time_stamp; | ||
4569 | |||
4570 | tcp_init_buffer_space(sk); | ||
4571 | |||
4572 | if (sock_flag(sk, SOCK_KEEPOPEN)) | ||
4573 | tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); | ||
4574 | |||
4575 | if (!tp->rx_opt.snd_wscale) | ||
4576 | __tcp_fast_path_on(tp, tp->snd_wnd); | ||
4577 | else | ||
4578 | tp->pred_flags = 0; | ||
4579 | |||
4580 | if (!sock_flag(sk, SOCK_DEAD)) { | ||
4581 | sk->sk_state_change(sk); | ||
4582 | sk_wake_async(sk, 0, POLL_OUT); | ||
4583 | } | ||
4584 | |||
4585 | if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) { | ||
4586 | /* Save one ACK. Data will be ready after | ||
4587 | * several ticks, if write_pending is set. | ||
4588 | * | ||
4589 | * It may be deleted, but with this feature tcpdumps | ||
4590 | * look so _wonderfully_ clever, that I was not able | ||
4591 | * to stand against the temptation 8) --ANK | ||
4592 | */ | ||
4593 | tcp_schedule_ack(tp); | ||
4594 | tp->ack.lrcvtime = tcp_time_stamp; | ||
4595 | tp->ack.ato = TCP_ATO_MIN; | ||
4596 | tcp_incr_quickack(tp); | ||
4597 | tcp_enter_quickack_mode(tp); | ||
4598 | tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); | ||
4599 | |||
4600 | discard: | ||
4601 | __kfree_skb(skb); | ||
4602 | return 0; | ||
4603 | } else { | ||
4604 | tcp_send_ack(sk); | ||
4605 | } | ||
4606 | return -1; | ||
4607 | } | ||
4608 | |||
4609 | /* No ACK in the segment */ | ||
4610 | |||
4611 | if (th->rst) { | ||
4612 | /* rfc793: | ||
4613 | * "If the RST bit is set | ||
4614 | * | ||
4615 | * Otherwise (no ACK) drop the segment and return." | ||
4616 | */ | ||
4617 | |||
4618 | goto discard_and_undo; | ||
4619 | } | ||
4620 | |||
4621 | /* PAWS check. */ | ||
4622 | if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) | ||
4623 | goto discard_and_undo; | ||
4624 | |||
4625 | if (th->syn) { | ||
4626 | /* We see SYN without ACK. It is attempt of | ||
4627 | * simultaneous connect with crossed SYNs. | ||
4628 | * Particularly, it can be connect to self. | ||
4629 | */ | ||
4630 | tcp_set_state(sk, TCP_SYN_RECV); | ||
4631 | |||
4632 | if (tp->rx_opt.saw_tstamp) { | ||
4633 | tp->rx_opt.tstamp_ok = 1; | ||
4634 | tcp_store_ts_recent(tp); | ||
4635 | tp->tcp_header_len = | ||
4636 | sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | ||
4637 | } else { | ||
4638 | tp->tcp_header_len = sizeof(struct tcphdr); | ||
4639 | } | ||
4640 | |||
4641 | tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; | ||
4642 | tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; | ||
4643 | |||
4644 | /* RFC1323: The window in SYN & SYN/ACK segments is | ||
4645 | * never scaled. | ||
4646 | */ | ||
4647 | tp->snd_wnd = ntohs(th->window); | ||
4648 | tp->snd_wl1 = TCP_SKB_CB(skb)->seq; | ||
4649 | tp->max_window = tp->snd_wnd; | ||
4650 | |||
4651 | TCP_ECN_rcv_syn(tp, th); | ||
4652 | if (tp->ecn_flags&TCP_ECN_OK) | ||
4653 | sock_set_flag(sk, SOCK_NO_LARGESEND); | ||
4654 | |||
4655 | tcp_sync_mss(sk, tp->pmtu_cookie); | ||
4656 | tcp_initialize_rcv_mss(sk); | ||
4657 | |||
4658 | |||
4659 | tcp_send_synack(sk); | ||
4660 | #if 0 | ||
4661 | /* Note, we could accept data and URG from this segment. | ||
4662 | * There are no obstacles to make this. | ||
4663 | * | ||
4664 | * However, if we ignore data in ACKless segments sometimes, | ||
4665 | * we have no reasons to accept it sometimes. | ||
4666 | * Also, seems the code doing it in step6 of tcp_rcv_state_process | ||
4667 | * is not flawless. So, discard packet for sanity. | ||
4668 | * Uncomment this return to process the data. | ||
4669 | */ | ||
4670 | return -1; | ||
4671 | #else | ||
4672 | goto discard; | ||
4673 | #endif | ||
4674 | } | ||
4675 | /* "fifth, if neither of the SYN or RST bits is set then | ||
4676 | * drop the segment and return." | ||
4677 | */ | ||
4678 | |||
4679 | discard_and_undo: | ||
4680 | tcp_clear_options(&tp->rx_opt); | ||
4681 | tp->rx_opt.mss_clamp = saved_clamp; | ||
4682 | goto discard; | ||
4683 | |||
4684 | reset_and_undo: | ||
4685 | tcp_clear_options(&tp->rx_opt); | ||
4686 | tp->rx_opt.mss_clamp = saved_clamp; | ||
4687 | return 1; | ||
4688 | } | ||
4689 | |||
4690 | |||
4691 | /* | ||
4692 | * This function implements the receiving procedure of RFC 793 for | ||
4693 | * all states except ESTABLISHED and TIME_WAIT. | ||
4694 | * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be | ||
4695 | * address independent. | ||
4696 | */ | ||
4697 | |||
4698 | int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, | ||
4699 | struct tcphdr *th, unsigned len) | ||
4700 | { | ||
4701 | struct tcp_sock *tp = tcp_sk(sk); | ||
4702 | int queued = 0; | ||
4703 | |||
4704 | tp->rx_opt.saw_tstamp = 0; | ||
4705 | |||
4706 | switch (sk->sk_state) { | ||
4707 | case TCP_CLOSE: | ||
4708 | goto discard; | ||
4709 | |||
4710 | case TCP_LISTEN: | ||
4711 | if(th->ack) | ||
4712 | return 1; | ||
4713 | |||
4714 | if(th->rst) | ||
4715 | goto discard; | ||
4716 | |||
4717 | if(th->syn) { | ||
4718 | if(tp->af_specific->conn_request(sk, skb) < 0) | ||
4719 | return 1; | ||
4720 | |||
4721 | init_westwood(sk); | ||
4722 | init_bictcp(tp); | ||
4723 | |||
4724 | /* Now we have several options: In theory there is | ||
4725 | * nothing else in the frame. KA9Q has an option to | ||
4726 | * send data with the syn, BSD accepts data with the | ||
4727 | * syn up to the [to be] advertised window and | ||
4728 | * Solaris 2.1 gives you a protocol error. For now | ||
4729 | * we just ignore it, that fits the spec precisely | ||
4730 | * and avoids incompatibilities. It would be nice in | ||
4731 | * future to drop through and process the data. | ||
4732 | * | ||
4733 | * Now that TTCP is starting to be used we ought to | ||
4734 | * queue this data. | ||
4735 | * But, this leaves one open to an easy denial of | ||
4736 | * service attack, and SYN cookies can't defend | ||
4737 | * against this problem. So, we drop the data | ||
4738 | * in the interest of security over speed. | ||
4739 | */ | ||
4740 | goto discard; | ||
4741 | } | ||
4742 | goto discard; | ||
4743 | |||
4744 | case TCP_SYN_SENT: | ||
4745 | init_westwood(sk); | ||
4746 | init_bictcp(tp); | ||
4747 | |||
4748 | queued = tcp_rcv_synsent_state_process(sk, skb, th, len); | ||
4749 | if (queued >= 0) | ||
4750 | return queued; | ||
4751 | |||
4752 | /* Do step6 onward by hand. */ | ||
4753 | tcp_urg(sk, skb, th); | ||
4754 | __kfree_skb(skb); | ||
4755 | tcp_data_snd_check(sk); | ||
4756 | return 0; | ||
4757 | } | ||
4758 | |||
4759 | if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && | ||
4760 | tcp_paws_discard(tp, skb)) { | ||
4761 | if (!th->rst) { | ||
4762 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | ||
4763 | tcp_send_dupack(sk, skb); | ||
4764 | goto discard; | ||
4765 | } | ||
4766 | /* Reset is accepted even if it did not pass PAWS. */ | ||
4767 | } | ||
4768 | |||
4769 | /* step 1: check sequence number */ | ||
4770 | if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { | ||
4771 | if (!th->rst) | ||
4772 | tcp_send_dupack(sk, skb); | ||
4773 | goto discard; | ||
4774 | } | ||
4775 | |||
4776 | /* step 2: check RST bit */ | ||
4777 | if(th->rst) { | ||
4778 | tcp_reset(sk); | ||
4779 | goto discard; | ||
4780 | } | ||
4781 | |||
4782 | tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); | ||
4783 | |||
4784 | /* step 3: check security and precedence [ignored] */ | ||
4785 | |||
4786 | /* step 4: | ||
4787 | * | ||
4788 | * Check for a SYN in window. | ||
4789 | */ | ||
4790 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | ||
4791 | NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); | ||
4792 | tcp_reset(sk); | ||
4793 | return 1; | ||
4794 | } | ||
4795 | |||
4796 | /* step 5: check the ACK field */ | ||
4797 | if (th->ack) { | ||
4798 | int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); | ||
4799 | |||
4800 | switch(sk->sk_state) { | ||
4801 | case TCP_SYN_RECV: | ||
4802 | if (acceptable) { | ||
4803 | tp->copied_seq = tp->rcv_nxt; | ||
4804 | mb(); | ||
4805 | tcp_set_state(sk, TCP_ESTABLISHED); | ||
4806 | sk->sk_state_change(sk); | ||
4807 | |||
4808 | /* Note, that this wakeup is only for marginal | ||
4809 | * crossed SYN case. Passively open sockets | ||
4810 | * are not waked up, because sk->sk_sleep == | ||
4811 | * NULL and sk->sk_socket == NULL. | ||
4812 | */ | ||
4813 | if (sk->sk_socket) { | ||
4814 | sk_wake_async(sk,0,POLL_OUT); | ||
4815 | } | ||
4816 | |||
4817 | tp->snd_una = TCP_SKB_CB(skb)->ack_seq; | ||
4818 | tp->snd_wnd = ntohs(th->window) << | ||
4819 | tp->rx_opt.snd_wscale; | ||
4820 | tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, | ||
4821 | TCP_SKB_CB(skb)->seq); | ||
4822 | |||
4823 | /* tcp_ack considers this ACK as duplicate | ||
4824 | * and does not calculate rtt. | ||
4825 | * Fix it at least with timestamps. | ||
4826 | */ | ||
4827 | if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | ||
4828 | !tp->srtt) | ||
4829 | tcp_ack_saw_tstamp(tp, 0); | ||
4830 | |||
4831 | if (tp->rx_opt.tstamp_ok) | ||
4832 | tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; | ||
4833 | |||
4834 | /* Make sure socket is routed, for | ||
4835 | * correct metrics. | ||
4836 | */ | ||
4837 | tp->af_specific->rebuild_header(sk); | ||
4838 | |||
4839 | tcp_init_metrics(sk); | ||
4840 | |||
4841 | /* Prevent spurious tcp_cwnd_restart() on | ||
4842 | * first data packet. | ||
4843 | */ | ||
4844 | tp->lsndtime = tcp_time_stamp; | ||
4845 | |||
4846 | tcp_initialize_rcv_mss(sk); | ||
4847 | tcp_init_buffer_space(sk); | ||
4848 | tcp_fast_path_on(tp); | ||
4849 | } else { | ||
4850 | return 1; | ||
4851 | } | ||
4852 | break; | ||
4853 | |||
4854 | case TCP_FIN_WAIT1: | ||
4855 | if (tp->snd_una == tp->write_seq) { | ||
4856 | tcp_set_state(sk, TCP_FIN_WAIT2); | ||
4857 | sk->sk_shutdown |= SEND_SHUTDOWN; | ||
4858 | dst_confirm(sk->sk_dst_cache); | ||
4859 | |||
4860 | if (!sock_flag(sk, SOCK_DEAD)) | ||
4861 | /* Wake up lingering close() */ | ||
4862 | sk->sk_state_change(sk); | ||
4863 | else { | ||
4864 | int tmo; | ||
4865 | |||
4866 | if (tp->linger2 < 0 || | ||
4867 | (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | ||
4868 | after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { | ||
4869 | tcp_done(sk); | ||
4870 | NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); | ||
4871 | return 1; | ||
4872 | } | ||
4873 | |||
4874 | tmo = tcp_fin_time(tp); | ||
4875 | if (tmo > TCP_TIMEWAIT_LEN) { | ||
4876 | tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); | ||
4877 | } else if (th->fin || sock_owned_by_user(sk)) { | ||
4878 | /* Bad case. We could lose such FIN otherwise. | ||
4879 | * It is not a big problem, but it looks confusing | ||
4880 | * and not so rare event. We still can lose it now, | ||
4881 | * if it spins in bh_lock_sock(), but it is really | ||
4882 | * marginal case. | ||
4883 | */ | ||
4884 | tcp_reset_keepalive_timer(sk, tmo); | ||
4885 | } else { | ||
4886 | tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); | ||
4887 | goto discard; | ||
4888 | } | ||
4889 | } | ||
4890 | } | ||
4891 | break; | ||
4892 | |||
4893 | case TCP_CLOSING: | ||
4894 | if (tp->snd_una == tp->write_seq) { | ||
4895 | tcp_time_wait(sk, TCP_TIME_WAIT, 0); | ||
4896 | goto discard; | ||
4897 | } | ||
4898 | break; | ||
4899 | |||
4900 | case TCP_LAST_ACK: | ||
4901 | if (tp->snd_una == tp->write_seq) { | ||
4902 | tcp_update_metrics(sk); | ||
4903 | tcp_done(sk); | ||
4904 | goto discard; | ||
4905 | } | ||
4906 | break; | ||
4907 | } | ||
4908 | } else | ||
4909 | goto discard; | ||
4910 | |||
4911 | /* step 6: check the URG bit */ | ||
4912 | tcp_urg(sk, skb, th); | ||
4913 | |||
4914 | /* step 7: process the segment text */ | ||
4915 | switch (sk->sk_state) { | ||
4916 | case TCP_CLOSE_WAIT: | ||
4917 | case TCP_CLOSING: | ||
4918 | case TCP_LAST_ACK: | ||
4919 | if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) | ||
4920 | break; | ||
4921 | case TCP_FIN_WAIT1: | ||
4922 | case TCP_FIN_WAIT2: | ||
4923 | /* RFC 793 says to queue data in these states, | ||
4924 | * RFC 1122 says we MUST send a reset. | ||
4925 | * BSD 4.4 also does reset. | ||
4926 | */ | ||
4927 | if (sk->sk_shutdown & RCV_SHUTDOWN) { | ||
4928 | if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | ||
4929 | after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { | ||
4930 | NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); | ||
4931 | tcp_reset(sk); | ||
4932 | return 1; | ||
4933 | } | ||
4934 | } | ||
4935 | /* Fall through */ | ||
4936 | case TCP_ESTABLISHED: | ||
4937 | tcp_data_queue(sk, skb); | ||
4938 | queued = 1; | ||
4939 | break; | ||
4940 | } | ||
4941 | |||
4942 | /* tcp_data could move socket to TIME-WAIT */ | ||
4943 | if (sk->sk_state != TCP_CLOSE) { | ||
4944 | tcp_data_snd_check(sk); | ||
4945 | tcp_ack_snd_check(sk); | ||
4946 | } | ||
4947 | |||
4948 | if (!queued) { | ||
4949 | discard: | ||
4950 | __kfree_skb(skb); | ||
4951 | } | ||
4952 | return 0; | ||
4953 | } | ||
4954 | |||
4955 | EXPORT_SYMBOL(sysctl_tcp_ecn); | ||
4956 | EXPORT_SYMBOL(sysctl_tcp_reordering); | ||
4957 | EXPORT_SYMBOL(tcp_parse_options); | ||
4958 | EXPORT_SYMBOL(tcp_rcv_established); | ||
4959 | EXPORT_SYMBOL(tcp_rcv_state_process); | ||