aboutsummaryrefslogtreecommitdiffstats
path: root/net/ipv4/fib_trie.c
diff options
context:
space:
mode:
Diffstat (limited to 'net/ipv4/fib_trie.c')
-rw-r--r--net/ipv4/fib_trie.c1628
1 files changed, 772 insertions, 856 deletions
diff --git a/net/ipv4/fib_trie.c b/net/ipv4/fib_trie.c
index a701405fab0b..b2dea4e5da77 100644
--- a/net/ipv4/fib_trie.c
+++ b/net/ipv4/fib_trie.c
@@ -43,7 +43,7 @@
43 * 2 of the License, or (at your option) any later version. 43 * 2 of the License, or (at your option) any later version.
44 */ 44 */
45 45
46#define VERSION "0.325" 46#define VERSION "0.402"
47 47
48#include <linux/config.h> 48#include <linux/config.h>
49#include <asm/uaccess.h> 49#include <asm/uaccess.h>
@@ -62,6 +62,7 @@
62#include <linux/netdevice.h> 62#include <linux/netdevice.h>
63#include <linux/if_arp.h> 63#include <linux/if_arp.h>
64#include <linux/proc_fs.h> 64#include <linux/proc_fs.h>
65#include <linux/rcupdate.h>
65#include <linux/skbuff.h> 66#include <linux/skbuff.h>
66#include <linux/netlink.h> 67#include <linux/netlink.h>
67#include <linux/init.h> 68#include <linux/init.h>
@@ -77,56 +78,55 @@
77#undef CONFIG_IP_FIB_TRIE_STATS 78#undef CONFIG_IP_FIB_TRIE_STATS
78#define MAX_CHILDS 16384 79#define MAX_CHILDS 16384
79 80
80#define EXTRACT(p, n, str) ((str)<<(p)>>(32-(n)))
81#define KEYLENGTH (8*sizeof(t_key)) 81#define KEYLENGTH (8*sizeof(t_key))
82#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l)) 82#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset)) 83#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84 84
85static DEFINE_RWLOCK(fib_lock);
86
87typedef unsigned int t_key; 85typedef unsigned int t_key;
88 86
89#define T_TNODE 0 87#define T_TNODE 0
90#define T_LEAF 1 88#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL 89#define NODE_TYPE_MASK 0x1UL
92#define NODE_PARENT(_node) \ 90#define NODE_PARENT(node) \
93 ((struct tnode *)((_node)->_parent & ~NODE_TYPE_MASK)) 91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
94#define NODE_SET_PARENT(_node, _ptr) \ 92
95 ((_node)->_parent = (((unsigned long)(_ptr)) | \ 93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96 ((_node)->_parent & NODE_TYPE_MASK))) 94
97#define NODE_INIT_PARENT(_node, _type) \ 95#define NODE_SET_PARENT(node, ptr) \
98 ((_node)->_parent = (_type)) 96 rcu_assign_pointer((node)->parent, \
99#define NODE_TYPE(_node) \ 97 ((unsigned long)(ptr)) | NODE_TYPE(node))
100 ((_node)->_parent & NODE_TYPE_MASK) 98
101 99#define IS_TNODE(n) (!(n->parent & T_LEAF))
102#define IS_TNODE(n) (!(n->_parent & T_LEAF)) 100#define IS_LEAF(n) (n->parent & T_LEAF)
103#define IS_LEAF(n) (n->_parent & T_LEAF)
104 101
105struct node { 102struct node {
106 t_key key; 103 t_key key;
107 unsigned long _parent; 104 unsigned long parent;
108}; 105};
109 106
110struct leaf { 107struct leaf {
111 t_key key; 108 t_key key;
112 unsigned long _parent; 109 unsigned long parent;
113 struct hlist_head list; 110 struct hlist_head list;
111 struct rcu_head rcu;
114}; 112};
115 113
116struct leaf_info { 114struct leaf_info {
117 struct hlist_node hlist; 115 struct hlist_node hlist;
116 struct rcu_head rcu;
118 int plen; 117 int plen;
119 struct list_head falh; 118 struct list_head falh;
120}; 119};
121 120
122struct tnode { 121struct tnode {
123 t_key key; 122 t_key key;
124 unsigned long _parent; 123 unsigned long parent;
125 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */ 124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */ 125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
127 unsigned short full_children; /* KEYLENGTH bits needed */ 126 unsigned short full_children; /* KEYLENGTH bits needed */
128 unsigned short empty_children; /* KEYLENGTH bits needed */ 127 unsigned short empty_children; /* KEYLENGTH bits needed */
129 struct node *child[0]; 128 struct rcu_head rcu;
129 struct node *child[0];
130}; 130};
131 131
132#ifdef CONFIG_IP_FIB_TRIE_STATS 132#ifdef CONFIG_IP_FIB_TRIE_STATS
@@ -150,77 +150,45 @@ struct trie_stat {
150}; 150};
151 151
152struct trie { 152struct trie {
153 struct node *trie; 153 struct node *trie;
154#ifdef CONFIG_IP_FIB_TRIE_STATS 154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats; 155 struct trie_use_stats stats;
156#endif 156#endif
157 int size; 157 int size;
158 unsigned int revision; 158 unsigned int revision;
159}; 159};
160 160
161static int trie_debug = 0;
162
163static int tnode_full(struct tnode *tn, struct node *n);
164static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); 161static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
165static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); 162static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
166static int tnode_child_length(struct tnode *tn);
167static struct node *resize(struct trie *t, struct tnode *tn); 163static struct node *resize(struct trie *t, struct tnode *tn);
168static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err); 164static struct tnode *inflate(struct trie *t, struct tnode *tn);
169static struct tnode *halve(struct trie *t, struct tnode *tn, int *err); 165static struct tnode *halve(struct trie *t, struct tnode *tn);
170static void tnode_free(struct tnode *tn); 166static void tnode_free(struct tnode *tn);
171static void trie_dump_seq(struct seq_file *seq, struct trie *t); 167static void trie_dump_seq(struct seq_file *seq, struct trie *t);
172extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio);
173extern int fib_detect_death(struct fib_info *fi, int order,
174 struct fib_info **last_resort, int *last_idx, int *dflt);
175
176extern void rtmsg_fib(int event, u32 key, struct fib_alias *fa, int z, int tb_id,
177 struct nlmsghdr *n, struct netlink_skb_parms *req);
178 168
179static kmem_cache_t *fn_alias_kmem; 169static kmem_cache_t *fn_alias_kmem __read_mostly;
180static struct trie *trie_local = NULL, *trie_main = NULL; 170static struct trie *trie_local = NULL, *trie_main = NULL;
181 171
182static void trie_bug(char *err) 172
183{ 173/* rcu_read_lock needs to be hold by caller from readside */
184 printk("Trie Bug: %s\n", err);
185 BUG();
186}
187 174
188static inline struct node *tnode_get_child(struct tnode *tn, int i) 175static inline struct node *tnode_get_child(struct tnode *tn, int i)
189{ 176{
190 if (i >= 1<<tn->bits) 177 BUG_ON(i >= 1 << tn->bits);
191 trie_bug("tnode_get_child");
192 178
193 return tn->child[i]; 179 return rcu_dereference(tn->child[i]);
194} 180}
195 181
196static inline int tnode_child_length(struct tnode *tn) 182static inline int tnode_child_length(const struct tnode *tn)
197{ 183{
198 return 1<<tn->bits; 184 return 1 << tn->bits;
199} 185}
200 186
201/*
202 _________________________________________________________________
203 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
204 ----------------------------------------------------------------
205 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
206
207 _________________________________________________________________
208 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
209 -----------------------------------------------------------------
210 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
211
212 tp->pos = 7
213 tp->bits = 3
214 n->pos = 15
215 n->bits=4
216 KEYLENGTH=32
217*/
218
219static inline t_key tkey_extract_bits(t_key a, int offset, int bits) 187static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
220{ 188{
221 if (offset < KEYLENGTH) 189 if (offset < KEYLENGTH)
222 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 190 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
223 else 191 else
224 return 0; 192 return 0;
225} 193}
226 194
@@ -233,8 +201,8 @@ static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
233{ 201{
234 if (bits == 0 || offset >= KEYLENGTH) 202 if (bits == 0 || offset >= KEYLENGTH)
235 return 1; 203 return 1;
236 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 204 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
237 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 205 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
238} 206}
239 207
240static inline int tkey_mismatch(t_key a, int offset, t_key b) 208static inline int tkey_mismatch(t_key a, int offset, t_key b)
@@ -249,14 +217,6 @@ static inline int tkey_mismatch(t_key a, int offset, t_key b)
249 return i; 217 return i;
250} 218}
251 219
252/* Candiate for fib_semantics */
253
254static void fn_free_alias(struct fib_alias *fa)
255{
256 fib_release_info(fa->fa_info);
257 kmem_cache_free(fn_alias_kmem, fa);
258}
259
260/* 220/*
261 To understand this stuff, an understanding of keys and all their bits is 221 To understand this stuff, an understanding of keys and all their bits is
262 necessary. Every node in the trie has a key associated with it, but not 222 necessary. Every node in the trie has a key associated with it, but not
@@ -295,7 +255,7 @@ static void fn_free_alias(struct fib_alias *fa)
295 tp->pos = 7 255 tp->pos = 7
296 tp->bits = 3 256 tp->bits = 3
297 n->pos = 15 257 n->pos = 15
298 n->bits=4 258 n->bits = 4
299 259
300 First, let's just ignore the bits that come before the parent tp, that is 260 First, let's just ignore the bits that come before the parent tp, that is
301 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 261 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
@@ -320,60 +280,65 @@ static void fn_free_alias(struct fib_alias *fa)
320 280
321*/ 281*/
322 282
323static void check_tnode(struct tnode *tn) 283static inline void check_tnode(const struct tnode *tn)
324{ 284{
325 if (tn && tn->pos+tn->bits > 32) { 285 WARN_ON(tn && tn->pos+tn->bits > 32);
326 printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn, tn->pos, tn->bits);
327 }
328} 286}
329 287
330static int halve_threshold = 25; 288static int halve_threshold = 25;
331static int inflate_threshold = 50; 289static int inflate_threshold = 50;
332 290
333static struct leaf *leaf_new(void) 291
292static void __alias_free_mem(struct rcu_head *head)
334{ 293{
335 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL); 294 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
336 if (l) { 295 kmem_cache_free(fn_alias_kmem, fa);
337 NODE_INIT_PARENT(l, T_LEAF);
338 INIT_HLIST_HEAD(&l->list);
339 }
340 return l;
341} 296}
342 297
343static struct leaf_info *leaf_info_new(int plen) 298static inline void alias_free_mem_rcu(struct fib_alias *fa)
344{ 299{
345 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 300 call_rcu(&fa->rcu, __alias_free_mem);
346 if (li) { 301}
347 li->plen = plen; 302
348 INIT_LIST_HEAD(&li->falh); 303static void __leaf_free_rcu(struct rcu_head *head)
349 } 304{
350 return li; 305 kfree(container_of(head, struct leaf, rcu));
306}
307
308static inline void free_leaf(struct leaf *leaf)
309{
310 call_rcu(&leaf->rcu, __leaf_free_rcu);
351} 311}
352 312
353static inline void free_leaf(struct leaf *l) 313static void __leaf_info_free_rcu(struct rcu_head *head)
354{ 314{
355 kfree(l); 315 kfree(container_of(head, struct leaf_info, rcu));
356} 316}
357 317
358static inline void free_leaf_info(struct leaf_info *li) 318static inline void free_leaf_info(struct leaf_info *leaf)
359{ 319{
360 kfree(li); 320 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361} 321}
362 322
363static struct tnode *tnode_alloc(unsigned int size) 323static struct tnode *tnode_alloc(unsigned int size)
364{ 324{
365 if (size <= PAGE_SIZE) { 325 struct page *pages;
366 return kmalloc(size, GFP_KERNEL); 326
367 } else { 327 if (size <= PAGE_SIZE)
368 return (struct tnode *) 328 return kcalloc(size, 1, GFP_KERNEL);
369 __get_free_pages(GFP_KERNEL, get_order(size)); 329
370 } 330 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
331 if (!pages)
332 return NULL;
333
334 return page_address(pages);
371} 335}
372 336
373static void __tnode_free(struct tnode *tn) 337static void __tnode_free_rcu(struct rcu_head *head)
374{ 338{
339 struct tnode *tn = container_of(head, struct tnode, rcu);
375 unsigned int size = sizeof(struct tnode) + 340 unsigned int size = sizeof(struct tnode) +
376 (1<<tn->bits) * sizeof(struct node *); 341 (1 << tn->bits) * sizeof(struct node *);
377 342
378 if (size <= PAGE_SIZE) 343 if (size <= PAGE_SIZE)
379 kfree(tn); 344 kfree(tn);
@@ -381,15 +346,40 @@ static void __tnode_free(struct tnode *tn)
381 free_pages((unsigned long)tn, get_order(size)); 346 free_pages((unsigned long)tn, get_order(size));
382} 347}
383 348
349static inline void tnode_free(struct tnode *tn)
350{
351 call_rcu(&tn->rcu, __tnode_free_rcu);
352}
353
354static struct leaf *leaf_new(void)
355{
356 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
357 if (l) {
358 l->parent = T_LEAF;
359 INIT_HLIST_HEAD(&l->list);
360 }
361 return l;
362}
363
364static struct leaf_info *leaf_info_new(int plen)
365{
366 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
367 if (li) {
368 li->plen = plen;
369 INIT_LIST_HEAD(&li->falh);
370 }
371 return li;
372}
373
384static struct tnode* tnode_new(t_key key, int pos, int bits) 374static struct tnode* tnode_new(t_key key, int pos, int bits)
385{ 375{
386 int nchildren = 1<<bits; 376 int nchildren = 1<<bits;
387 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); 377 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
388 struct tnode *tn = tnode_alloc(sz); 378 struct tnode *tn = tnode_alloc(sz);
389 379
390 if (tn) { 380 if (tn) {
391 memset(tn, 0, sz); 381 memset(tn, 0, sz);
392 NODE_INIT_PARENT(tn, T_TNODE); 382 tn->parent = T_TNODE;
393 tn->pos = pos; 383 tn->pos = pos;
394 tn->bits = bits; 384 tn->bits = bits;
395 tn->key = key; 385 tn->key = key;
@@ -397,38 +387,17 @@ static struct tnode* tnode_new(t_key key, int pos, int bits)
397 tn->empty_children = 1<<bits; 387 tn->empty_children = 1<<bits;
398 } 388 }
399 389
400 if (trie_debug > 0) 390 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
401 printk("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode), 391 (unsigned int) (sizeof(struct node) * 1<<bits));
402 (unsigned int) (sizeof(struct node) * 1<<bits));
403 return tn; 392 return tn;
404} 393}
405 394
406static void tnode_free(struct tnode *tn)
407{
408 if (!tn) {
409 trie_bug("tnode_free\n");
410 }
411 if (IS_LEAF(tn)) {
412 free_leaf((struct leaf *)tn);
413 if (trie_debug > 0 )
414 printk("FL %p \n", tn);
415 }
416 else if (IS_TNODE(tn)) {
417 __tnode_free(tn);
418 if (trie_debug > 0 )
419 printk("FT %p \n", tn);
420 }
421 else {
422 trie_bug("tnode_free\n");
423 }
424}
425
426/* 395/*
427 * Check whether a tnode 'n' is "full", i.e. it is an internal node 396 * Check whether a tnode 'n' is "full", i.e. it is an internal node
428 * and no bits are skipped. See discussion in dyntree paper p. 6 397 * and no bits are skipped. See discussion in dyntree paper p. 6
429 */ 398 */
430 399
431static inline int tnode_full(struct tnode *tn, struct node *n) 400static inline int tnode_full(const struct tnode *tn, const struct node *n)
432{ 401{
433 if (n == NULL || IS_LEAF(n)) 402 if (n == NULL || IS_LEAF(n))
434 return 0; 403 return 0;
@@ -448,15 +417,11 @@ static inline void put_child(struct trie *t, struct tnode *tn, int i, struct nod
448 417
449static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) 418static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
450{ 419{
451 struct node *chi; 420 struct node *chi = tn->child[i];
452 int isfull; 421 int isfull;
453 422
454 if (i >= 1<<tn->bits) { 423 BUG_ON(i >= 1<<tn->bits);
455 printk("bits=%d, i=%d\n", tn->bits, i); 424
456 trie_bug("tnode_put_child_reorg bits");
457 }
458 write_lock_bh(&fib_lock);
459 chi = tn->child[i];
460 425
461 /* update emptyChildren */ 426 /* update emptyChildren */
462 if (n == NULL && chi != NULL) 427 if (n == NULL && chi != NULL)
@@ -465,33 +430,32 @@ static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int w
465 tn->empty_children--; 430 tn->empty_children--;
466 431
467 /* update fullChildren */ 432 /* update fullChildren */
468 if (wasfull == -1) 433 if (wasfull == -1)
469 wasfull = tnode_full(tn, chi); 434 wasfull = tnode_full(tn, chi);
470 435
471 isfull = tnode_full(tn, n); 436 isfull = tnode_full(tn, n);
472 if (wasfull && !isfull) 437 if (wasfull && !isfull)
473 tn->full_children--; 438 tn->full_children--;
474
475 else if (!wasfull && isfull) 439 else if (!wasfull && isfull)
476 tn->full_children++; 440 tn->full_children++;
441
477 if (n) 442 if (n)
478 NODE_SET_PARENT(n, tn); 443 NODE_SET_PARENT(n, tn);
479 444
480 tn->child[i] = n; 445 rcu_assign_pointer(tn->child[i], n);
481 write_unlock_bh(&fib_lock);
482} 446}
483 447
484static struct node *resize(struct trie *t, struct tnode *tn) 448static struct node *resize(struct trie *t, struct tnode *tn)
485{ 449{
486 int i; 450 int i;
487 int err = 0; 451 int err = 0;
452 struct tnode *old_tn;
488 453
489 if (!tn) 454 if (!tn)
490 return NULL; 455 return NULL;
491 456
492 if (trie_debug) 457 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
493 printk("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 458 tn, inflate_threshold, halve_threshold);
494 tn, inflate_threshold, halve_threshold);
495 459
496 /* No children */ 460 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) { 461 if (tn->empty_children == tnode_child_length(tn)) {
@@ -501,20 +465,16 @@ static struct node *resize(struct trie *t, struct tnode *tn)
501 /* One child */ 465 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1) 466 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) { 467 for (i = 0; i < tnode_child_length(tn); i++) {
468 struct node *n;
504 469
505 write_lock_bh(&fib_lock); 470 n = tn->child[i];
506 if (tn->child[i] != NULL) { 471 if (!n)
507 472 continue;
508 /* compress one level */
509 struct node *n = tn->child[i];
510 if (n)
511 NODE_INIT_PARENT(n, NODE_TYPE(n));
512 473
513 write_unlock_bh(&fib_lock); 474 /* compress one level */
514 tnode_free(tn); 475 NODE_SET_PARENT(n, NULL);
515 return n; 476 tnode_free(tn);
516 } 477 return n;
517 write_unlock_bh(&fib_lock);
518 } 478 }
519 /* 479 /*
520 * Double as long as the resulting node has a number of 480 * Double as long as the resulting node has a number of
@@ -566,16 +526,16 @@ static struct node *resize(struct trie *t, struct tnode *tn)
566 * 526 *
567 * expand not_to_be_doubled and to_be_doubled, and shorten: 527 * expand not_to_be_doubled and to_be_doubled, and shorten:
568 * 100 * (tnode_child_length(tn) - tn->empty_children + 528 * 100 * (tnode_child_length(tn) - tn->empty_children +
569 * tn->full_children ) >= inflate_threshold * new_child_length 529 * tn->full_children) >= inflate_threshold * new_child_length
570 * 530 *
571 * expand new_child_length: 531 * expand new_child_length:
572 * 100 * (tnode_child_length(tn) - tn->empty_children + 532 * 100 * (tnode_child_length(tn) - tn->empty_children +
573 * tn->full_children ) >= 533 * tn->full_children) >=
574 * inflate_threshold * tnode_child_length(tn) * 2 534 * inflate_threshold * tnode_child_length(tn) * 2
575 * 535 *
576 * shorten again: 536 * shorten again:
577 * 50 * (tn->full_children + tnode_child_length(tn) - 537 * 50 * (tn->full_children + tnode_child_length(tn) -
578 * tn->empty_children ) >= inflate_threshold * 538 * tn->empty_children) >= inflate_threshold *
579 * tnode_child_length(tn) 539 * tnode_child_length(tn)
580 * 540 *
581 */ 541 */
@@ -587,9 +547,10 @@ static struct node *resize(struct trie *t, struct tnode *tn)
587 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= 547 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
588 inflate_threshold * tnode_child_length(tn))) { 548 inflate_threshold * tnode_child_length(tn))) {
589 549
590 tn = inflate(t, tn, &err); 550 old_tn = tn;
591 551 tn = inflate(t, tn);
592 if (err) { 552 if (IS_ERR(tn)) {
553 tn = old_tn;
593#ifdef CONFIG_IP_FIB_TRIE_STATS 554#ifdef CONFIG_IP_FIB_TRIE_STATS
594 t->stats.resize_node_skipped++; 555 t->stats.resize_node_skipped++;
595#endif 556#endif
@@ -609,9 +570,10 @@ static struct node *resize(struct trie *t, struct tnode *tn)
609 100 * (tnode_child_length(tn) - tn->empty_children) < 570 100 * (tnode_child_length(tn) - tn->empty_children) <
610 halve_threshold * tnode_child_length(tn)) { 571 halve_threshold * tnode_child_length(tn)) {
611 572
612 tn = halve(t, tn, &err); 573 old_tn = tn;
613 574 tn = halve(t, tn);
614 if (err) { 575 if (IS_ERR(tn)) {
576 tn = old_tn;
615#ifdef CONFIG_IP_FIB_TRIE_STATS 577#ifdef CONFIG_IP_FIB_TRIE_STATS
616 t->stats.resize_node_skipped++; 578 t->stats.resize_node_skipped++;
617#endif 579#endif
@@ -621,44 +583,37 @@ static struct node *resize(struct trie *t, struct tnode *tn)
621 583
622 584
623 /* Only one child remains */ 585 /* Only one child remains */
624
625 if (tn->empty_children == tnode_child_length(tn) - 1) 586 if (tn->empty_children == tnode_child_length(tn) - 1)
626 for (i = 0; i < tnode_child_length(tn); i++) { 587 for (i = 0; i < tnode_child_length(tn); i++) {
627 588 struct node *n;
628 write_lock_bh(&fib_lock); 589
629 if (tn->child[i] != NULL) { 590 n = tn->child[i];
630 /* compress one level */ 591 if (!n)
631 struct node *n = tn->child[i]; 592 continue;
632 593
633 if (n) 594 /* compress one level */
634 NODE_INIT_PARENT(n, NODE_TYPE(n)); 595
635 596 NODE_SET_PARENT(n, NULL);
636 write_unlock_bh(&fib_lock); 597 tnode_free(tn);
637 tnode_free(tn); 598 return n;
638 return n;
639 }
640 write_unlock_bh(&fib_lock);
641 } 599 }
642 600
643 return (struct node *) tn; 601 return (struct node *) tn;
644} 602}
645 603
646static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err) 604static struct tnode *inflate(struct trie *t, struct tnode *tn)
647{ 605{
648 struct tnode *inode; 606 struct tnode *inode;
649 struct tnode *oldtnode = tn; 607 struct tnode *oldtnode = tn;
650 int olen = tnode_child_length(tn); 608 int olen = tnode_child_length(tn);
651 int i; 609 int i;
652 610
653 if (trie_debug) 611 pr_debug("In inflate\n");
654 printk("In inflate\n");
655 612
656 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 613 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
657 614
658 if (!tn) { 615 if (!tn)
659 *err = -ENOMEM; 616 return ERR_PTR(-ENOMEM);
660 return oldtnode;
661 }
662 617
663 /* 618 /*
664 * Preallocate and store tnodes before the actual work so we 619 * Preallocate and store tnodes before the actual work so we
@@ -666,8 +621,8 @@ static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err)
666 * fails. In case of failure we return the oldnode and inflate 621 * fails. In case of failure we return the oldnode and inflate
667 * of tnode is ignored. 622 * of tnode is ignored.
668 */ 623 */
669 624
670 for(i = 0; i < olen; i++) { 625 for (i = 0; i < olen; i++) {
671 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i); 626 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
672 627
673 if (inode && 628 if (inode &&
@@ -675,46 +630,30 @@ static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err)
675 inode->pos == oldtnode->pos + oldtnode->bits && 630 inode->pos == oldtnode->pos + oldtnode->bits &&
676 inode->bits > 1) { 631 inode->bits > 1) {
677 struct tnode *left, *right; 632 struct tnode *left, *right;
678
679 t_key m = TKEY_GET_MASK(inode->pos, 1); 633 t_key m = TKEY_GET_MASK(inode->pos, 1);
680 634
681 left = tnode_new(inode->key&(~m), inode->pos + 1, 635 left = tnode_new(inode->key&(~m), inode->pos + 1,
682 inode->bits - 1); 636 inode->bits - 1);
637 if (!left)
638 goto nomem;
683 639
684 if (!left) {
685 *err = -ENOMEM;
686 break;
687 }
688
689 right = tnode_new(inode->key|m, inode->pos + 1, 640 right = tnode_new(inode->key|m, inode->pos + 1,
690 inode->bits - 1); 641 inode->bits - 1);
691 642
692 if (!right) { 643 if (!right) {
693 *err = -ENOMEM; 644 tnode_free(left);
694 break; 645 goto nomem;
695 } 646 }
696 647
697 put_child(t, tn, 2*i, (struct node *) left); 648 put_child(t, tn, 2*i, (struct node *) left);
698 put_child(t, tn, 2*i+1, (struct node *) right); 649 put_child(t, tn, 2*i+1, (struct node *) right);
699 } 650 }
700 } 651 }
701 652
702 if (*err) { 653 for (i = 0; i < olen; i++) {
703 int size = tnode_child_length(tn);
704 int j;
705
706 for(j = 0; j < size; j++)
707 if (tn->child[j])
708 tnode_free((struct tnode *)tn->child[j]);
709
710 tnode_free(tn);
711
712 *err = -ENOMEM;
713 return oldtnode;
714 }
715
716 for(i = 0; i < olen; i++) {
717 struct node *node = tnode_get_child(oldtnode, i); 654 struct node *node = tnode_get_child(oldtnode, i);
655 struct tnode *left, *right;
656 int size, j;
718 657
719 /* An empty child */ 658 /* An empty child */
720 if (node == NULL) 659 if (node == NULL)
@@ -740,76 +679,82 @@ static struct tnode *inflate(struct trie *t, struct tnode *tn, int *err)
740 put_child(t, tn, 2*i+1, inode->child[1]); 679 put_child(t, tn, 2*i+1, inode->child[1]);
741 680
742 tnode_free(inode); 681 tnode_free(inode);
682 continue;
743 } 683 }
744 684
745 /* An internal node with more than two children */ 685 /* An internal node with more than two children */
746 else { 686
747 struct tnode *left, *right; 687 /* We will replace this node 'inode' with two new
748 int size, j; 688 * ones, 'left' and 'right', each with half of the
749 689 * original children. The two new nodes will have
750 /* We will replace this node 'inode' with two new 690 * a position one bit further down the key and this
751 * ones, 'left' and 'right', each with half of the 691 * means that the "significant" part of their keys
752 * original children. The two new nodes will have 692 * (see the discussion near the top of this file)
753 * a position one bit further down the key and this 693 * will differ by one bit, which will be "0" in
754 * means that the "significant" part of their keys 694 * left's key and "1" in right's key. Since we are
755 * (see the discussion near the top of this file) 695 * moving the key position by one step, the bit that
756 * will differ by one bit, which will be "0" in 696 * we are moving away from - the bit at position
757 * left's key and "1" in right's key. Since we are 697 * (inode->pos) - is the one that will differ between
758 * moving the key position by one step, the bit that 698 * left and right. So... we synthesize that bit in the
759 * we are moving away from - the bit at position 699 * two new keys.
760 * (inode->pos) - is the one that will differ between 700 * The mask 'm' below will be a single "one" bit at
761 * left and right. So... we synthesize that bit in the 701 * the position (inode->pos)
762 * two new keys. 702 */
763 * The mask 'm' below will be a single "one" bit at
764 * the position (inode->pos)
765 */
766
767 /* Use the old key, but set the new significant
768 * bit to zero.
769 */
770 703
771 left = (struct tnode *) tnode_get_child(tn, 2*i); 704 /* Use the old key, but set the new significant
772 put_child(t, tn, 2*i, NULL); 705 * bit to zero.
706 */
773 707
774 if (!left) 708 left = (struct tnode *) tnode_get_child(tn, 2*i);
775 BUG(); 709 put_child(t, tn, 2*i, NULL);
776 710
777 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 711 BUG_ON(!left);
778 put_child(t, tn, 2*i+1, NULL);
779 712
780 if (!right) 713 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
781 BUG(); 714 put_child(t, tn, 2*i+1, NULL);
782 715
783 size = tnode_child_length(left); 716 BUG_ON(!right);
784 for(j = 0; j < size; j++) {
785 put_child(t, left, j, inode->child[j]);
786 put_child(t, right, j, inode->child[j + size]);
787 }
788 put_child(t, tn, 2*i, resize(t, left));
789 put_child(t, tn, 2*i+1, resize(t, right));
790 717
791 tnode_free(inode); 718 size = tnode_child_length(left);
719 for (j = 0; j < size; j++) {
720 put_child(t, left, j, inode->child[j]);
721 put_child(t, right, j, inode->child[j + size]);
792 } 722 }
723 put_child(t, tn, 2*i, resize(t, left));
724 put_child(t, tn, 2*i+1, resize(t, right));
725
726 tnode_free(inode);
793 } 727 }
794 tnode_free(oldtnode); 728 tnode_free(oldtnode);
795 return tn; 729 return tn;
730nomem:
731 {
732 int size = tnode_child_length(tn);
733 int j;
734
735 for (j = 0; j < size; j++)
736 if (tn->child[j])
737 tnode_free((struct tnode *)tn->child[j]);
738
739 tnode_free(tn);
740
741 return ERR_PTR(-ENOMEM);
742 }
796} 743}
797 744
798static struct tnode *halve(struct trie *t, struct tnode *tn, int *err) 745static struct tnode *halve(struct trie *t, struct tnode *tn)
799{ 746{
800 struct tnode *oldtnode = tn; 747 struct tnode *oldtnode = tn;
801 struct node *left, *right; 748 struct node *left, *right;
802 int i; 749 int i;
803 int olen = tnode_child_length(tn); 750 int olen = tnode_child_length(tn);
804 751
805 if (trie_debug) printk("In halve\n"); 752 pr_debug("In halve\n");
806 753
807 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 754 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
808 755
809 if (!tn) { 756 if (!tn)
810 *err = -ENOMEM; 757 return ERR_PTR(-ENOMEM);
811 return oldtnode;
812 }
813 758
814 /* 759 /*
815 * Preallocate and store tnodes before the actual work so we 760 * Preallocate and store tnodes before the actual work so we
@@ -818,38 +763,27 @@ static struct tnode *halve(struct trie *t, struct tnode *tn, int *err)
818 * of tnode is ignored. 763 * of tnode is ignored.
819 */ 764 */
820 765
821 for(i = 0; i < olen; i += 2) { 766 for (i = 0; i < olen; i += 2) {
822 left = tnode_get_child(oldtnode, i); 767 left = tnode_get_child(oldtnode, i);
823 right = tnode_get_child(oldtnode, i+1); 768 right = tnode_get_child(oldtnode, i+1);
824 769
825 /* Two nonempty children */ 770 /* Two nonempty children */
826 if (left && right) { 771 if (left && right) {
827 struct tnode *newBinNode = 772 struct tnode *newn;
828 tnode_new(left->key, tn->pos + tn->bits, 1);
829 773
830 if (!newBinNode) { 774 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
831 *err = -ENOMEM;
832 break;
833 }
834 put_child(t, tn, i/2, (struct node *)newBinNode);
835 }
836 }
837 775
838 if (*err) { 776 if (!newn)
839 int size = tnode_child_length(tn); 777 goto nomem;
840 int j;
841 778
842 for(j = 0; j < size; j++) 779 put_child(t, tn, i/2, (struct node *)newn);
843 if (tn->child[j]) 780 }
844 tnode_free((struct tnode *)tn->child[j]);
845 781
846 tnode_free(tn);
847
848 *err = -ENOMEM;
849 return oldtnode;
850 } 782 }
851 783
852 for(i = 0; i < olen; i += 2) { 784 for (i = 0; i < olen; i += 2) {
785 struct tnode *newBinNode;
786
853 left = tnode_get_child(oldtnode, i); 787 left = tnode_get_child(oldtnode, i);
854 right = tnode_get_child(oldtnode, i+1); 788 right = tnode_get_child(oldtnode, i+1);
855 789
@@ -858,88 +792,99 @@ static struct tnode *halve(struct trie *t, struct tnode *tn, int *err)
858 if (right == NULL) /* Both are empty */ 792 if (right == NULL) /* Both are empty */
859 continue; 793 continue;
860 put_child(t, tn, i/2, right); 794 put_child(t, tn, i/2, right);
861 } else if (right == NULL) 795 continue;
796 }
797
798 if (right == NULL) {
862 put_child(t, tn, i/2, left); 799 put_child(t, tn, i/2, left);
800 continue;
801 }
863 802
864 /* Two nonempty children */ 803 /* Two nonempty children */
865 else { 804 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
866 struct tnode *newBinNode = 805 put_child(t, tn, i/2, NULL);
867 (struct tnode *) tnode_get_child(tn, i/2); 806 put_child(t, newBinNode, 0, left);
868 put_child(t, tn, i/2, NULL); 807 put_child(t, newBinNode, 1, right);
869 808 put_child(t, tn, i/2, resize(t, newBinNode));
870 if (!newBinNode)
871 BUG();
872
873 put_child(t, newBinNode, 0, left);
874 put_child(t, newBinNode, 1, right);
875 put_child(t, tn, i/2, resize(t, newBinNode));
876 }
877 } 809 }
878 tnode_free(oldtnode); 810 tnode_free(oldtnode);
879 return tn; 811 return tn;
812nomem:
813 {
814 int size = tnode_child_length(tn);
815 int j;
816
817 for (j = 0; j < size; j++)
818 if (tn->child[j])
819 tnode_free((struct tnode *)tn->child[j]);
820
821 tnode_free(tn);
822
823 return ERR_PTR(-ENOMEM);
824 }
880} 825}
881 826
882static void *trie_init(struct trie *t) 827static void trie_init(struct trie *t)
883{ 828{
884 if (t) { 829 if (!t)
885 t->size = 0; 830 return;
886 t->trie = NULL; 831
887 t->revision = 0; 832 t->size = 0;
833 rcu_assign_pointer(t->trie, NULL);
834 t->revision = 0;
888#ifdef CONFIG_IP_FIB_TRIE_STATS 835#ifdef CONFIG_IP_FIB_TRIE_STATS
889 memset(&t->stats, 0, sizeof(struct trie_use_stats)); 836 memset(&t->stats, 0, sizeof(struct trie_use_stats));
890#endif 837#endif
891 }
892 return t;
893} 838}
894 839
840/* readside most use rcu_read_lock currently dump routines
841 via get_fa_head and dump */
842
895static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen) 843static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
896{ 844{
897 struct hlist_node *node; 845 struct hlist_node *node;
898 struct leaf_info *li; 846 struct leaf_info *li;
899 847
900 hlist_for_each_entry(li, node, head, hlist) { 848 hlist_for_each_entry_rcu(li, node, head, hlist)
901 if (li->plen == plen) 849 if (li->plen == plen)
902 return li; 850 return li;
903 } 851
904 return NULL; 852 return NULL;
905} 853}
906 854
907static inline struct list_head * get_fa_head(struct leaf *l, int plen) 855static inline struct list_head * get_fa_head(struct leaf *l, int plen)
908{ 856{
909 struct list_head *fa_head = NULL;
910 struct leaf_info *li = find_leaf_info(&l->list, plen); 857 struct leaf_info *li = find_leaf_info(&l->list, plen);
911 858
912 if (li) 859 if (!li)
913 fa_head = &li->falh; 860 return NULL;
914 861
915 return fa_head; 862 return &li->falh;
916} 863}
917 864
918static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 865static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
919{ 866{
920 struct leaf_info *li = NULL, *last = NULL; 867 struct leaf_info *li = NULL, *last = NULL;
921 struct hlist_node *node, *tmp; 868 struct hlist_node *node;
922 869
923 write_lock_bh(&fib_lock); 870 if (hlist_empty(head)) {
924 871 hlist_add_head_rcu(&new->hlist, head);
925 if (hlist_empty(head)) 872 } else {
926 hlist_add_head(&new->hlist, head); 873 hlist_for_each_entry(li, node, head, hlist) {
927 else { 874 if (new->plen > li->plen)
928 hlist_for_each_entry_safe(li, node, tmp, head, hlist) { 875 break;
929 876
930 if (new->plen > li->plen) 877 last = li;
931 break; 878 }
932 879 if (last)
933 last = li; 880 hlist_add_after_rcu(&last->hlist, &new->hlist);
934 } 881 else
935 if (last) 882 hlist_add_before_rcu(&new->hlist, &li->hlist);
936 hlist_add_after(&last->hlist, &new->hlist); 883 }
937 else
938 hlist_add_before(&new->hlist, &li->hlist);
939 }
940 write_unlock_bh(&fib_lock);
941} 884}
942 885
886/* rcu_read_lock needs to be hold by caller from readside */
887
943static struct leaf * 888static struct leaf *
944fib_find_node(struct trie *t, u32 key) 889fib_find_node(struct trie *t, u32 key)
945{ 890{
@@ -948,61 +893,43 @@ fib_find_node(struct trie *t, u32 key)
948 struct node *n; 893 struct node *n;
949 894
950 pos = 0; 895 pos = 0;
951 n = t->trie; 896 n = rcu_dereference(t->trie);
952 897
953 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 898 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
954 tn = (struct tnode *) n; 899 tn = (struct tnode *) n;
955 900
956 check_tnode(tn); 901 check_tnode(tn);
957 902
958 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 903 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
959 pos=tn->pos + tn->bits; 904 pos = tn->pos + tn->bits;
960 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); 905 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
961 } 906 } else
962 else
963 break; 907 break;
964 } 908 }
965 /* Case we have found a leaf. Compare prefixes */ 909 /* Case we have found a leaf. Compare prefixes */
966 910
967 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 911 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
968 struct leaf *l = (struct leaf *) n; 912 return (struct leaf *)n;
969 return l; 913
970 }
971 return NULL; 914 return NULL;
972} 915}
973 916
974static struct node *trie_rebalance(struct trie *t, struct tnode *tn) 917static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
975{ 918{
976 int i = 0;
977 int wasfull; 919 int wasfull;
978 t_key cindex, key; 920 t_key cindex, key;
979 struct tnode *tp = NULL; 921 struct tnode *tp = NULL;
980 922
981 if (!tn)
982 BUG();
983
984 key = tn->key; 923 key = tn->key;
985 i = 0;
986 924
987 while (tn != NULL && NODE_PARENT(tn) != NULL) { 925 while (tn != NULL && NODE_PARENT(tn) != NULL) {
988 926
989 if (i > 10) {
990 printk("Rebalance tn=%p \n", tn);
991 if (tn) printk("tn->parent=%p \n", NODE_PARENT(tn));
992
993 printk("Rebalance tp=%p \n", tp);
994 if (tp) printk("tp->parent=%p \n", NODE_PARENT(tp));
995 }
996
997 if (i > 12) BUG();
998 i++;
999
1000 tp = NODE_PARENT(tn); 927 tp = NODE_PARENT(tn);
1001 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 928 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1002 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 929 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1003 tn = (struct tnode *) resize (t, (struct tnode *)tn); 930 tn = (struct tnode *) resize (t, (struct tnode *)tn);
1004 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull); 931 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
1005 932
1006 if (!NODE_PARENT(tn)) 933 if (!NODE_PARENT(tn))
1007 break; 934 break;
1008 935
@@ -1015,6 +942,8 @@ static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
1015 return (struct node*) tn; 942 return (struct node*) tn;
1016} 943}
1017 944
945/* only used from updater-side */
946
1018static struct list_head * 947static struct list_head *
1019fib_insert_node(struct trie *t, int *err, u32 key, int plen) 948fib_insert_node(struct trie *t, int *err, u32 key, int plen)
1020{ 949{
@@ -1050,20 +979,16 @@ fib_insert_node(struct trie *t, int *err, u32 key, int plen)
1050 979
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 980 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n; 981 tn = (struct tnode *) n;
1053 982
1054 check_tnode(tn); 983 check_tnode(tn);
1055 984
1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 985 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1057 tp = tn; 986 tp = tn;
1058 pos=tn->pos + tn->bits; 987 pos = tn->pos + tn->bits;
1059 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); 988 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1060 989
1061 if (n && NODE_PARENT(n) != tn) { 990 BUG_ON(n && NODE_PARENT(n) != tn);
1062 printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); 991 } else
1063 BUG();
1064 }
1065 }
1066 else
1067 break; 992 break;
1068 } 993 }
1069 994
@@ -1073,17 +998,15 @@ fib_insert_node(struct trie *t, int *err, u32 key, int plen)
1073 * tp is n's (parent) ----> NULL or TNODE 998 * tp is n's (parent) ----> NULL or TNODE
1074 */ 999 */
1075 1000
1076 if (tp && IS_LEAF(tp)) 1001 BUG_ON(tp && IS_LEAF(tp));
1077 BUG();
1078
1079 1002
1080 /* Case 1: n is a leaf. Compare prefixes */ 1003 /* Case 1: n is a leaf. Compare prefixes */
1081 1004
1082 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1005 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1083 struct leaf *l = ( struct leaf *) n; 1006 struct leaf *l = (struct leaf *) n;
1084 1007
1085 li = leaf_info_new(plen); 1008 li = leaf_info_new(plen);
1086 1009
1087 if (!li) { 1010 if (!li) {
1088 *err = -ENOMEM; 1011 *err = -ENOMEM;
1089 goto err; 1012 goto err;
@@ -1113,35 +1036,29 @@ fib_insert_node(struct trie *t, int *err, u32 key, int plen)
1113 fa_head = &li->falh; 1036 fa_head = &li->falh;
1114 insert_leaf_info(&l->list, li); 1037 insert_leaf_info(&l->list, li);
1115 1038
1116 /* Case 2: n is NULL, and will just insert a new leaf */
1117 if (t->trie && n == NULL) { 1039 if (t->trie && n == NULL) {
1040 /* Case 2: n is NULL, and will just insert a new leaf */
1118 1041
1119 NODE_SET_PARENT(l, tp); 1042 NODE_SET_PARENT(l, tp);
1120
1121 if (!tp)
1122 BUG();
1123 1043
1124 else { 1044 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1125 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1045 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1126 put_child(t, (struct tnode *)tp, cindex, (struct node *)l); 1046 } else {
1127 } 1047 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1128 }
1129 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1130 else {
1131 /* 1048 /*
1132 * Add a new tnode here 1049 * Add a new tnode here
1133 * first tnode need some special handling 1050 * first tnode need some special handling
1134 */ 1051 */
1135 1052
1136 if (tp) 1053 if (tp)
1137 pos=tp->pos+tp->bits; 1054 pos = tp->pos+tp->bits;
1138 else 1055 else
1139 pos=0; 1056 pos = 0;
1057
1140 if (n) { 1058 if (n) {
1141 newpos = tkey_mismatch(key, pos, n->key); 1059 newpos = tkey_mismatch(key, pos, n->key);
1142 tn = tnode_new(n->key, newpos, 1); 1060 tn = tnode_new(n->key, newpos, 1);
1143 } 1061 } else {
1144 else {
1145 newpos = 0; 1062 newpos = 0;
1146 tn = tnode_new(key, newpos, 1); /* First tnode */ 1063 tn = tnode_new(key, newpos, 1); /* First tnode */
1147 } 1064 }
@@ -1151,32 +1068,33 @@ fib_insert_node(struct trie *t, int *err, u32 key, int plen)
1151 tnode_free((struct tnode *) l); 1068 tnode_free((struct tnode *) l);
1152 *err = -ENOMEM; 1069 *err = -ENOMEM;
1153 goto err; 1070 goto err;
1154 } 1071 }
1155 1072
1156 NODE_SET_PARENT(tn, tp); 1073 NODE_SET_PARENT(tn, tp);
1157 1074
1158 missbit=tkey_extract_bits(key, newpos, 1); 1075 missbit = tkey_extract_bits(key, newpos, 1);
1159 put_child(t, tn, missbit, (struct node *)l); 1076 put_child(t, tn, missbit, (struct node *)l);
1160 put_child(t, tn, 1-missbit, n); 1077 put_child(t, tn, 1-missbit, n);
1161 1078
1162 if (tp) { 1079 if (tp) {
1163 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1164 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn); 1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1165 } 1082 } else {
1166 else { 1083 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1167 t->trie = (struct node*) tn; /* First tnode */
1168 tp = tn; 1084 tp = tn;
1169 } 1085 }
1170 } 1086 }
1171 if (tp && tp->pos+tp->bits > 32) { 1087
1088 if (tp && tp->pos + tp->bits > 32)
1172 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1089 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1173 tp, tp->pos, tp->bits, key, plen); 1090 tp, tp->pos, tp->bits, key, plen);
1174 } 1091
1175 /* Rebalance the trie */ 1092 /* Rebalance the trie */
1176 t->trie = trie_rebalance(t, tp); 1093
1094 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1177done: 1095done:
1178 t->revision++; 1096 t->revision++;
1179err:; 1097err:
1180 return fa_head; 1098 return fa_head;
1181} 1099}
1182 1100
@@ -1204,17 +1122,18 @@ fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1204 1122
1205 key = ntohl(key); 1123 key = ntohl(key);
1206 1124
1207 if (trie_debug) 1125 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
1208 printk("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
1209 1126
1210 mask = ntohl( inet_make_mask(plen) ); 1127 mask = ntohl(inet_make_mask(plen));
1211 1128
1212 if (key & ~mask) 1129 if (key & ~mask)
1213 return -EINVAL; 1130 return -EINVAL;
1214 1131
1215 key = key & mask; 1132 key = key & mask;
1216 1133
1217 if ((fi = fib_create_info(r, rta, nlhdr, &err)) == NULL) 1134 fi = fib_create_info(r, rta, nlhdr, &err);
1135
1136 if (!fi)
1218 goto err; 1137 goto err;
1219 1138
1220 l = fib_find_node(t, key); 1139 l = fib_find_node(t, key);
@@ -1236,8 +1155,7 @@ fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1236 * and we need to allocate a new one of those as well. 1155 * and we need to allocate a new one of those as well.
1237 */ 1156 */
1238 1157
1239 if (fa && 1158 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1240 fa->fa_info->fib_priority == fi->fib_priority) {
1241 struct fib_alias *fa_orig; 1159 struct fib_alias *fa_orig;
1242 1160
1243 err = -EEXIST; 1161 err = -EEXIST;
@@ -1248,22 +1166,27 @@ fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1248 struct fib_info *fi_drop; 1166 struct fib_info *fi_drop;
1249 u8 state; 1167 u8 state;
1250 1168
1251 write_lock_bh(&fib_lock); 1169 err = -ENOBUFS;
1170 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1171 if (new_fa == NULL)
1172 goto out;
1252 1173
1253 fi_drop = fa->fa_info; 1174 fi_drop = fa->fa_info;
1254 fa->fa_info = fi; 1175 new_fa->fa_tos = fa->fa_tos;
1255 fa->fa_type = type; 1176 new_fa->fa_info = fi;
1256 fa->fa_scope = r->rtm_scope; 1177 new_fa->fa_type = type;
1178 new_fa->fa_scope = r->rtm_scope;
1257 state = fa->fa_state; 1179 state = fa->fa_state;
1258 fa->fa_state &= ~FA_S_ACCESSED; 1180 new_fa->fa_state &= ~FA_S_ACCESSED;
1259 1181
1260 write_unlock_bh(&fib_lock); 1182 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1183 alias_free_mem_rcu(fa);
1261 1184
1262 fib_release_info(fi_drop); 1185 fib_release_info(fi_drop);
1263 if (state & FA_S_ACCESSED) 1186 if (state & FA_S_ACCESSED)
1264 rt_cache_flush(-1); 1187 rt_cache_flush(-1);
1265 1188
1266 goto succeeded; 1189 goto succeeded;
1267 } 1190 }
1268 /* Error if we find a perfect match which 1191 /* Error if we find a perfect match which
1269 * uses the same scope, type, and nexthop 1192 * uses the same scope, type, and nexthop
@@ -1285,7 +1208,7 @@ fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1285 fa = fa_orig; 1208 fa = fa_orig;
1286 } 1209 }
1287 err = -ENOENT; 1210 err = -ENOENT;
1288 if (!(nlhdr->nlmsg_flags&NLM_F_CREATE)) 1211 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
1289 goto out; 1212 goto out;
1290 1213
1291 err = -ENOBUFS; 1214 err = -ENOBUFS;
@@ -1298,9 +1221,6 @@ fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1298 new_fa->fa_type = type; 1221 new_fa->fa_type = type;
1299 new_fa->fa_scope = r->rtm_scope; 1222 new_fa->fa_scope = r->rtm_scope;
1300 new_fa->fa_state = 0; 1223 new_fa->fa_state = 0;
1301#if 0
1302 new_fa->dst = NULL;
1303#endif
1304 /* 1224 /*
1305 * Insert new entry to the list. 1225 * Insert new entry to the list.
1306 */ 1226 */
@@ -1312,12 +1232,8 @@ fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1312 goto out_free_new_fa; 1232 goto out_free_new_fa;
1313 } 1233 }
1314 1234
1315 write_lock_bh(&fib_lock); 1235 list_add_tail_rcu(&new_fa->fa_list,
1316 1236 (fa ? &fa->fa_list : fa_head));
1317 list_add_tail(&new_fa->fa_list,
1318 (fa ? &fa->fa_list : fa_head));
1319
1320 write_unlock_bh(&fib_lock);
1321 1237
1322 rt_cache_flush(-1); 1238 rt_cache_flush(-1);
1323 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req); 1239 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
@@ -1328,38 +1244,40 @@ out_free_new_fa:
1328 kmem_cache_free(fn_alias_kmem, new_fa); 1244 kmem_cache_free(fn_alias_kmem, new_fa);
1329out: 1245out:
1330 fib_release_info(fi); 1246 fib_release_info(fi);
1331err:; 1247err:
1332 return err; 1248 return err;
1333} 1249}
1334 1250
1335static inline int check_leaf(struct trie *t, struct leaf *l, t_key key, int *plen, const struct flowi *flp, 1251
1336 struct fib_result *res, int *err) 1252/* should be clalled with rcu_read_lock */
1253static inline int check_leaf(struct trie *t, struct leaf *l,
1254 t_key key, int *plen, const struct flowi *flp,
1255 struct fib_result *res)
1337{ 1256{
1338 int i; 1257 int err, i;
1339 t_key mask; 1258 t_key mask;
1340 struct leaf_info *li; 1259 struct leaf_info *li;
1341 struct hlist_head *hhead = &l->list; 1260 struct hlist_head *hhead = &l->list;
1342 struct hlist_node *node; 1261 struct hlist_node *node;
1343 1262
1344 hlist_for_each_entry(li, node, hhead, hlist) { 1263 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1345
1346 i = li->plen; 1264 i = li->plen;
1347 mask = ntohl(inet_make_mask(i)); 1265 mask = ntohl(inet_make_mask(i));
1348 if (l->key != (key & mask)) 1266 if (l->key != (key & mask))
1349 continue; 1267 continue;
1350 1268
1351 if (((*err) = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) == 0) { 1269 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
1352 *plen = i; 1270 *plen = i;
1353#ifdef CONFIG_IP_FIB_TRIE_STATS 1271#ifdef CONFIG_IP_FIB_TRIE_STATS
1354 t->stats.semantic_match_passed++; 1272 t->stats.semantic_match_passed++;
1355#endif 1273#endif
1356 return 1; 1274 return err;
1357 } 1275 }
1358#ifdef CONFIG_IP_FIB_TRIE_STATS 1276#ifdef CONFIG_IP_FIB_TRIE_STATS
1359 t->stats.semantic_match_miss++; 1277 t->stats.semantic_match_miss++;
1360#endif 1278#endif
1361 } 1279 }
1362 return 0; 1280 return 1;
1363} 1281}
1364 1282
1365static int 1283static int
@@ -1370,13 +1288,17 @@ fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result
1370 struct node *n; 1288 struct node *n;
1371 struct tnode *pn; 1289 struct tnode *pn;
1372 int pos, bits; 1290 int pos, bits;
1373 t_key key=ntohl(flp->fl4_dst); 1291 t_key key = ntohl(flp->fl4_dst);
1374 int chopped_off; 1292 int chopped_off;
1375 t_key cindex = 0; 1293 t_key cindex = 0;
1376 int current_prefix_length = KEYLENGTH; 1294 int current_prefix_length = KEYLENGTH;
1377 n = t->trie; 1295 struct tnode *cn;
1296 t_key node_prefix, key_prefix, pref_mismatch;
1297 int mp;
1298
1299 rcu_read_lock();
1378 1300
1379 read_lock(&fib_lock); 1301 n = rcu_dereference(t->trie);
1380 if (!n) 1302 if (!n)
1381 goto failed; 1303 goto failed;
1382 1304
@@ -1386,15 +1308,14 @@ fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result
1386 1308
1387 /* Just a leaf? */ 1309 /* Just a leaf? */
1388 if (IS_LEAF(n)) { 1310 if (IS_LEAF(n)) {
1389 if (check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret)) 1311 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1390 goto found; 1312 goto found;
1391 goto failed; 1313 goto failed;
1392 } 1314 }
1393 pn = (struct tnode *) n; 1315 pn = (struct tnode *) n;
1394 chopped_off = 0; 1316 chopped_off = 0;
1395 1317
1396 while (pn) { 1318 while (pn) {
1397
1398 pos = pn->pos; 1319 pos = pn->pos;
1399 bits = pn->bits; 1320 bits = pn->bits;
1400 1321
@@ -1410,130 +1331,129 @@ fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result
1410 goto backtrace; 1331 goto backtrace;
1411 } 1332 }
1412 1333
1413 if (IS_TNODE(n)) { 1334 if (IS_LEAF(n)) {
1335 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1336 goto found;
1337 else
1338 goto backtrace;
1339 }
1340
1414#define HL_OPTIMIZE 1341#define HL_OPTIMIZE
1415#ifdef HL_OPTIMIZE 1342#ifdef HL_OPTIMIZE
1416 struct tnode *cn = (struct tnode *)n; 1343 cn = (struct tnode *)n;
1417 t_key node_prefix, key_prefix, pref_mismatch;
1418 int mp;
1419 1344
1420 /* 1345 /*
1421 * It's a tnode, and we can do some extra checks here if we 1346 * It's a tnode, and we can do some extra checks here if we
1422 * like, to avoid descending into a dead-end branch. 1347 * like, to avoid descending into a dead-end branch.
1423 * This tnode is in the parent's child array at index 1348 * This tnode is in the parent's child array at index
1424 * key[p_pos..p_pos+p_bits] but potentially with some bits 1349 * key[p_pos..p_pos+p_bits] but potentially with some bits
1425 * chopped off, so in reality the index may be just a 1350 * chopped off, so in reality the index may be just a
1426 * subprefix, padded with zero at the end. 1351 * subprefix, padded with zero at the end.
1427 * We can also take a look at any skipped bits in this 1352 * We can also take a look at any skipped bits in this
1428 * tnode - everything up to p_pos is supposed to be ok, 1353 * tnode - everything up to p_pos is supposed to be ok,
1429 * and the non-chopped bits of the index (se previous 1354 * and the non-chopped bits of the index (se previous
1430 * paragraph) are also guaranteed ok, but the rest is 1355 * paragraph) are also guaranteed ok, but the rest is
1431 * considered unknown. 1356 * considered unknown.
1432 * 1357 *
1433 * The skipped bits are key[pos+bits..cn->pos]. 1358 * The skipped bits are key[pos+bits..cn->pos].
1434 */ 1359 */
1435
1436 /* If current_prefix_length < pos+bits, we are already doing
1437 * actual prefix matching, which means everything from
1438 * pos+(bits-chopped_off) onward must be zero along some
1439 * branch of this subtree - otherwise there is *no* valid
1440 * prefix present. Here we can only check the skipped
1441 * bits. Remember, since we have already indexed into the
1442 * parent's child array, we know that the bits we chopped of
1443 * *are* zero.
1444 */
1445 1360
1446 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */ 1361 /* If current_prefix_length < pos+bits, we are already doing
1447 1362 * actual prefix matching, which means everything from
1448 if (current_prefix_length < pos+bits) { 1363 * pos+(bits-chopped_off) onward must be zero along some
1449 if (tkey_extract_bits(cn->key, current_prefix_length, 1364 * branch of this subtree - otherwise there is *no* valid
1450 cn->pos - current_prefix_length) != 0 || 1365 * prefix present. Here we can only check the skipped
1451 !(cn->child[0])) 1366 * bits. Remember, since we have already indexed into the
1452 goto backtrace; 1367 * parent's child array, we know that the bits we chopped of
1453 } 1368 * *are* zero.
1369 */
1454 1370
1455 /* 1371 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1456 * If chopped_off=0, the index is fully validated and we
1457 * only need to look at the skipped bits for this, the new,
1458 * tnode. What we actually want to do is to find out if
1459 * these skipped bits match our key perfectly, or if we will
1460 * have to count on finding a matching prefix further down,
1461 * because if we do, we would like to have some way of
1462 * verifying the existence of such a prefix at this point.
1463 */
1464 1372
1465 /* The only thing we can do at this point is to verify that 1373 if (current_prefix_length < pos+bits) {
1466 * any such matching prefix can indeed be a prefix to our 1374 if (tkey_extract_bits(cn->key, current_prefix_length,
1467 * key, and if the bits in the node we are inspecting that 1375 cn->pos - current_prefix_length) != 0 ||
1468 * do not match our key are not ZERO, this cannot be true. 1376 !(cn->child[0]))
1469 * Thus, find out where there is a mismatch (before cn->pos) 1377 goto backtrace;
1470 * and verify that all the mismatching bits are zero in the 1378 }
1471 * new tnode's key.
1472 */
1473 1379
1474 /* Note: We aren't very concerned about the piece of the key 1380 /*
1475 * that precede pn->pos+pn->bits, since these have already been 1381 * If chopped_off=0, the index is fully validated and we
1476 * checked. The bits after cn->pos aren't checked since these are 1382 * only need to look at the skipped bits for this, the new,
1477 * by definition "unknown" at this point. Thus, what we want to 1383 * tnode. What we actually want to do is to find out if
1478 * see is if we are about to enter the "prefix matching" state, 1384 * these skipped bits match our key perfectly, or if we will
1479 * and in that case verify that the skipped bits that will prevail 1385 * have to count on finding a matching prefix further down,
1480 * throughout this subtree are zero, as they have to be if we are 1386 * because if we do, we would like to have some way of
1481 * to find a matching prefix. 1387 * verifying the existence of such a prefix at this point.
1482 */ 1388 */
1483 1389
1484 node_prefix = MASK_PFX(cn->key, cn->pos); 1390 /* The only thing we can do at this point is to verify that
1485 key_prefix = MASK_PFX(key, cn->pos); 1391 * any such matching prefix can indeed be a prefix to our
1486 pref_mismatch = key_prefix^node_prefix; 1392 * key, and if the bits in the node we are inspecting that
1487 mp = 0; 1393 * do not match our key are not ZERO, this cannot be true.
1394 * Thus, find out where there is a mismatch (before cn->pos)
1395 * and verify that all the mismatching bits are zero in the
1396 * new tnode's key.
1397 */
1488 1398
1489 /* In short: If skipped bits in this node do not match the search 1399 /* Note: We aren't very concerned about the piece of the key
1490 * key, enter the "prefix matching" state.directly. 1400 * that precede pn->pos+pn->bits, since these have already been
1491 */ 1401 * checked. The bits after cn->pos aren't checked since these are
1492 if (pref_mismatch) { 1402 * by definition "unknown" at this point. Thus, what we want to
1493 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { 1403 * see is if we are about to enter the "prefix matching" state,
1494 mp++; 1404 * and in that case verify that the skipped bits that will prevail
1495 pref_mismatch = pref_mismatch <<1; 1405 * throughout this subtree are zero, as they have to be if we are
1496 } 1406 * to find a matching prefix.
1497 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); 1407 */
1498 1408
1499 if (key_prefix != 0) 1409 node_prefix = MASK_PFX(cn->key, cn->pos);
1500 goto backtrace; 1410 key_prefix = MASK_PFX(key, cn->pos);
1501 1411 pref_mismatch = key_prefix^node_prefix;
1502 if (current_prefix_length >= cn->pos) 1412 mp = 0;
1503 current_prefix_length=mp; 1413
1504 } 1414 /* In short: If skipped bits in this node do not match the search
1505#endif 1415 * key, enter the "prefix matching" state.directly.
1506 pn = (struct tnode *)n; /* Descend */ 1416 */
1507 chopped_off = 0; 1417 if (pref_mismatch) {
1508 continue; 1418 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1419 mp++;
1420 pref_mismatch = pref_mismatch <<1;
1421 }
1422 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1423
1424 if (key_prefix != 0)
1425 goto backtrace;
1426
1427 if (current_prefix_length >= cn->pos)
1428 current_prefix_length = mp;
1509 } 1429 }
1510 if (IS_LEAF(n)) { 1430#endif
1511 if (check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret)) 1431 pn = (struct tnode *)n; /* Descend */
1512 goto found; 1432 chopped_off = 0;
1513 } 1433 continue;
1434
1514backtrace: 1435backtrace:
1515 chopped_off++; 1436 chopped_off++;
1516 1437
1517 /* As zero don't change the child key (cindex) */ 1438 /* As zero don't change the child key (cindex) */
1518 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) { 1439 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1519 chopped_off++; 1440 chopped_off++;
1520 }
1521 1441
1522 /* Decrease current_... with bits chopped off */ 1442 /* Decrease current_... with bits chopped off */
1523 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1443 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1524 current_prefix_length = pn->pos + pn->bits - chopped_off; 1444 current_prefix_length = pn->pos + pn->bits - chopped_off;
1525 1445
1526 /* 1446 /*
1527 * Either we do the actual chop off according or if we have 1447 * Either we do the actual chop off according or if we have
1528 * chopped off all bits in this tnode walk up to our parent. 1448 * chopped off all bits in this tnode walk up to our parent.
1529 */ 1449 */
1530 1450
1531 if (chopped_off <= pn->bits) 1451 if (chopped_off <= pn->bits) {
1532 cindex &= ~(1 << (chopped_off-1)); 1452 cindex &= ~(1 << (chopped_off-1));
1533 else { 1453 } else {
1534 if (NODE_PARENT(pn) == NULL) 1454 if (NODE_PARENT(pn) == NULL)
1535 goto failed; 1455 goto failed;
1536 1456
1537 /* Get Child's index */ 1457 /* Get Child's index */
1538 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits); 1458 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1539 pn = NODE_PARENT(pn); 1459 pn = NODE_PARENT(pn);
@@ -1548,10 +1468,11 @@ backtrace:
1548failed: 1468failed:
1549 ret = 1; 1469 ret = 1;
1550found: 1470found:
1551 read_unlock(&fib_lock); 1471 rcu_read_unlock();
1552 return ret; 1472 return ret;
1553} 1473}
1554 1474
1475/* only called from updater side */
1555static int trie_leaf_remove(struct trie *t, t_key key) 1476static int trie_leaf_remove(struct trie *t, t_key key)
1556{ 1477{
1557 t_key cindex; 1478 t_key cindex;
@@ -1559,24 +1480,20 @@ static int trie_leaf_remove(struct trie *t, t_key key)
1559 struct node *n = t->trie; 1480 struct node *n = t->trie;
1560 struct leaf *l; 1481 struct leaf *l;
1561 1482
1562 if (trie_debug) 1483 pr_debug("entering trie_leaf_remove(%p)\n", n);
1563 printk("entering trie_leaf_remove(%p)\n", n);
1564 1484
1565 /* Note that in the case skipped bits, those bits are *not* checked! 1485 /* Note that in the case skipped bits, those bits are *not* checked!
1566 * When we finish this, we will have NULL or a T_LEAF, and the 1486 * When we finish this, we will have NULL or a T_LEAF, and the
1567 * T_LEAF may or may not match our key. 1487 * T_LEAF may or may not match our key.
1568 */ 1488 */
1569 1489
1570 while (n != NULL && IS_TNODE(n)) { 1490 while (n != NULL && IS_TNODE(n)) {
1571 struct tnode *tn = (struct tnode *) n; 1491 struct tnode *tn = (struct tnode *) n;
1572 check_tnode(tn); 1492 check_tnode(tn);
1573 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits)); 1493 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1574 1494
1575 if (n && NODE_PARENT(n) != tn) { 1495 BUG_ON(n && NODE_PARENT(n) != tn);
1576 printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); 1496 }
1577 BUG();
1578 }
1579 }
1580 l = (struct leaf *) n; 1497 l = (struct leaf *) n;
1581 1498
1582 if (!n || !tkey_equals(l->key, key)) 1499 if (!n || !tkey_equals(l->key, key))
@@ -1590,23 +1507,24 @@ static int trie_leaf_remove(struct trie *t, t_key key)
1590 t->revision++; 1507 t->revision++;
1591 t->size--; 1508 t->size--;
1592 1509
1510 preempt_disable();
1593 tp = NODE_PARENT(n); 1511 tp = NODE_PARENT(n);
1594 tnode_free((struct tnode *) n); 1512 tnode_free((struct tnode *) n);
1595 1513
1596 if (tp) { 1514 if (tp) {
1597 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1515 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1598 put_child(t, (struct tnode *)tp, cindex, NULL); 1516 put_child(t, (struct tnode *)tp, cindex, NULL);
1599 t->trie = trie_rebalance(t, tp); 1517 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1600 } 1518 } else
1601 else 1519 rcu_assign_pointer(t->trie, NULL);
1602 t->trie = NULL; 1520 preempt_enable();
1603 1521
1604 return 1; 1522 return 1;
1605} 1523}
1606 1524
1607static int 1525static int
1608fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, 1526fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1609 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) 1527 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1610{ 1528{
1611 struct trie *t = (struct trie *) tb->tb_data; 1529 struct trie *t = (struct trie *) tb->tb_data;
1612 u32 key, mask; 1530 u32 key, mask;
@@ -1615,6 +1533,8 @@ fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1615 struct fib_alias *fa, *fa_to_delete; 1533 struct fib_alias *fa, *fa_to_delete;
1616 struct list_head *fa_head; 1534 struct list_head *fa_head;
1617 struct leaf *l; 1535 struct leaf *l;
1536 struct leaf_info *li;
1537
1618 1538
1619 if (plen > 32) 1539 if (plen > 32)
1620 return -EINVAL; 1540 return -EINVAL;
@@ -1624,7 +1544,7 @@ fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1624 memcpy(&key, rta->rta_dst, 4); 1544 memcpy(&key, rta->rta_dst, 4);
1625 1545
1626 key = ntohl(key); 1546 key = ntohl(key);
1627 mask = ntohl( inet_make_mask(plen) ); 1547 mask = ntohl(inet_make_mask(plen));
1628 1548
1629 if (key & ~mask) 1549 if (key & ~mask)
1630 return -EINVAL; 1550 return -EINVAL;
@@ -1641,11 +1561,11 @@ fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1641 if (!fa) 1561 if (!fa)
1642 return -ESRCH; 1562 return -ESRCH;
1643 1563
1644 if (trie_debug) 1564 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1645 printk("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1646 1565
1647 fa_to_delete = NULL; 1566 fa_to_delete = NULL;
1648 fa_head = fa->fa_list.prev; 1567 fa_head = fa->fa_list.prev;
1568
1649 list_for_each_entry(fa, fa_head, fa_list) { 1569 list_for_each_entry(fa, fa_head, fa_list) {
1650 struct fib_info *fi = fa->fa_info; 1570 struct fib_info *fi = fa->fa_info;
1651 1571
@@ -1664,39 +1584,31 @@ fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1664 } 1584 }
1665 } 1585 }
1666 1586
1667 if (fa_to_delete) { 1587 if (!fa_to_delete)
1668 int kill_li = 0; 1588 return -ESRCH;
1669 struct leaf_info *li;
1670
1671 fa = fa_to_delete;
1672 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1673 1589
1674 l = fib_find_node(t, key); 1590 fa = fa_to_delete;
1675 li = find_leaf_info(&l->list, plen); 1591 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1676 1592
1677 write_lock_bh(&fib_lock); 1593 l = fib_find_node(t, key);
1594 li = find_leaf_info(&l->list, plen);
1678 1595
1679 list_del(&fa->fa_list); 1596 list_del_rcu(&fa->fa_list);
1680 1597
1681 if (list_empty(fa_head)) { 1598 if (list_empty(fa_head)) {
1682 hlist_del(&li->hlist); 1599 hlist_del_rcu(&li->hlist);
1683 kill_li = 1; 1600 free_leaf_info(li);
1684 } 1601 }
1685 write_unlock_bh(&fib_lock);
1686
1687 if (kill_li)
1688 free_leaf_info(li);
1689 1602
1690 if (hlist_empty(&l->list)) 1603 if (hlist_empty(&l->list))
1691 trie_leaf_remove(t, key); 1604 trie_leaf_remove(t, key);
1692 1605
1693 if (fa->fa_state & FA_S_ACCESSED) 1606 if (fa->fa_state & FA_S_ACCESSED)
1694 rt_cache_flush(-1); 1607 rt_cache_flush(-1);
1695 1608
1696 fn_free_alias(fa); 1609 fib_release_info(fa->fa_info);
1697 return 0; 1610 alias_free_mem_rcu(fa);
1698 } 1611 return 0;
1699 return -ESRCH;
1700} 1612}
1701 1613
1702static int trie_flush_list(struct trie *t, struct list_head *head) 1614static int trie_flush_list(struct trie *t, struct list_head *head)
@@ -1706,14 +1618,11 @@ static int trie_flush_list(struct trie *t, struct list_head *head)
1706 1618
1707 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1619 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1708 struct fib_info *fi = fa->fa_info; 1620 struct fib_info *fi = fa->fa_info;
1709
1710 if (fi && (fi->fib_flags&RTNH_F_DEAD)) {
1711
1712 write_lock_bh(&fib_lock);
1713 list_del(&fa->fa_list);
1714 write_unlock_bh(&fib_lock);
1715 1621
1716 fn_free_alias(fa); 1622 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1623 list_del_rcu(&fa->fa_list);
1624 fib_release_info(fa->fa_info);
1625 alias_free_mem_rcu(fa);
1717 found++; 1626 found++;
1718 } 1627 }
1719 } 1628 }
@@ -1728,37 +1637,34 @@ static int trie_flush_leaf(struct trie *t, struct leaf *l)
1728 struct leaf_info *li = NULL; 1637 struct leaf_info *li = NULL;
1729 1638
1730 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1639 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1731
1732 found += trie_flush_list(t, &li->falh); 1640 found += trie_flush_list(t, &li->falh);
1733 1641
1734 if (list_empty(&li->falh)) { 1642 if (list_empty(&li->falh)) {
1735 1643 hlist_del_rcu(&li->hlist);
1736 write_lock_bh(&fib_lock);
1737 hlist_del(&li->hlist);
1738 write_unlock_bh(&fib_lock);
1739
1740 free_leaf_info(li); 1644 free_leaf_info(li);
1741 } 1645 }
1742 } 1646 }
1743 return found; 1647 return found;
1744} 1648}
1745 1649
1650/* rcu_read_lock needs to be hold by caller from readside */
1651
1746static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf) 1652static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1747{ 1653{
1748 struct node *c = (struct node *) thisleaf; 1654 struct node *c = (struct node *) thisleaf;
1749 struct tnode *p; 1655 struct tnode *p;
1750 int idx; 1656 int idx;
1657 struct node *trie = rcu_dereference(t->trie);
1751 1658
1752 if (c == NULL) { 1659 if (c == NULL) {
1753 if (t->trie == NULL) 1660 if (trie == NULL)
1754 return NULL; 1661 return NULL;
1755 1662
1756 if (IS_LEAF(t->trie)) /* trie w. just a leaf */ 1663 if (IS_LEAF(trie)) /* trie w. just a leaf */
1757 return (struct leaf *) t->trie; 1664 return (struct leaf *) trie;
1758 1665
1759 p = (struct tnode*) t->trie; /* Start */ 1666 p = (struct tnode*) trie; /* Start */
1760 } 1667 } else
1761 else
1762 p = (struct tnode *) NODE_PARENT(c); 1668 p = (struct tnode *) NODE_PARENT(c);
1763 1669
1764 while (p) { 1670 while (p) {
@@ -1771,29 +1677,31 @@ static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1771 pos = 0; 1677 pos = 0;
1772 1678
1773 last = 1 << p->bits; 1679 last = 1 << p->bits;
1774 for(idx = pos; idx < last ; idx++) { 1680 for (idx = pos; idx < last ; idx++) {
1775 if (p->child[idx]) { 1681 c = rcu_dereference(p->child[idx]);
1776 1682
1777 /* Decend if tnode */ 1683 if (!c)
1778 1684 continue;
1779 while (IS_TNODE(p->child[idx])) { 1685
1780 p = (struct tnode*) p->child[idx]; 1686 /* Decend if tnode */
1781 idx = 0; 1687 while (IS_TNODE(c)) {
1782 1688 p = (struct tnode *) c;
1783 /* Rightmost non-NULL branch */ 1689 idx = 0;
1784 if (p && IS_TNODE(p)) 1690
1785 while (p->child[idx] == NULL && idx < (1 << p->bits)) idx++; 1691 /* Rightmost non-NULL branch */
1786 1692 if (p && IS_TNODE(p))
1787 /* Done with this tnode? */ 1693 while (!(c = rcu_dereference(p->child[idx]))
1788 if (idx >= (1 << p->bits) || p->child[idx] == NULL ) 1694 && idx < (1<<p->bits)) idx++;
1789 goto up; 1695
1790 } 1696 /* Done with this tnode? */
1791 return (struct leaf*) p->child[idx]; 1697 if (idx >= (1 << p->bits) || !c)
1698 goto up;
1792 } 1699 }
1700 return (struct leaf *) c;
1793 } 1701 }
1794up: 1702up:
1795 /* No more children go up one step */ 1703 /* No more children go up one step */
1796 c = (struct node*) p; 1704 c = (struct node *) p;
1797 p = (struct tnode *) NODE_PARENT(p); 1705 p = (struct tnode *) NODE_PARENT(p);
1798 } 1706 }
1799 return NULL; /* Ready. Root of trie */ 1707 return NULL; /* Ready. Root of trie */
@@ -1807,23 +1715,24 @@ static int fn_trie_flush(struct fib_table *tb)
1807 1715
1808 t->revision++; 1716 t->revision++;
1809 1717
1810 for (h=0; (l = nextleaf(t, l)) != NULL; h++) { 1718 rcu_read_lock();
1719 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1811 found += trie_flush_leaf(t, l); 1720 found += trie_flush_leaf(t, l);
1812 1721
1813 if (ll && hlist_empty(&ll->list)) 1722 if (ll && hlist_empty(&ll->list))
1814 trie_leaf_remove(t, ll->key); 1723 trie_leaf_remove(t, ll->key);
1815 ll = l; 1724 ll = l;
1816 } 1725 }
1726 rcu_read_unlock();
1817 1727
1818 if (ll && hlist_empty(&ll->list)) 1728 if (ll && hlist_empty(&ll->list))
1819 trie_leaf_remove(t, ll->key); 1729 trie_leaf_remove(t, ll->key);
1820 1730
1821 if (trie_debug) 1731 pr_debug("trie_flush found=%d\n", found);
1822 printk("trie_flush found=%d\n", found);
1823 return found; 1732 return found;
1824} 1733}
1825 1734
1826static int trie_last_dflt=-1; 1735static int trie_last_dflt = -1;
1827 1736
1828static void 1737static void
1829fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) 1738fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
@@ -1840,7 +1749,7 @@ fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib
1840 last_resort = NULL; 1749 last_resort = NULL;
1841 order = -1; 1750 order = -1;
1842 1751
1843 read_lock(&fib_lock); 1752 rcu_read_lock();
1844 1753
1845 l = fib_find_node(t, 0); 1754 l = fib_find_node(t, 0);
1846 if (!l) 1755 if (!l)
@@ -1853,20 +1762,20 @@ fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib
1853 if (list_empty(fa_head)) 1762 if (list_empty(fa_head))
1854 goto out; 1763 goto out;
1855 1764
1856 list_for_each_entry(fa, fa_head, fa_list) { 1765 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1857 struct fib_info *next_fi = fa->fa_info; 1766 struct fib_info *next_fi = fa->fa_info;
1858 1767
1859 if (fa->fa_scope != res->scope || 1768 if (fa->fa_scope != res->scope ||
1860 fa->fa_type != RTN_UNICAST) 1769 fa->fa_type != RTN_UNICAST)
1861 continue; 1770 continue;
1862 1771
1863 if (next_fi->fib_priority > res->fi->fib_priority) 1772 if (next_fi->fib_priority > res->fi->fib_priority)
1864 break; 1773 break;
1865 if (!next_fi->fib_nh[0].nh_gw || 1774 if (!next_fi->fib_nh[0].nh_gw ||
1866 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) 1775 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1867 continue; 1776 continue;
1868 fa->fa_state |= FA_S_ACCESSED; 1777 fa->fa_state |= FA_S_ACCESSED;
1869 1778
1870 if (fi == NULL) { 1779 if (fi == NULL) {
1871 if (next_fi != res->fi) 1780 if (next_fi != res->fi)
1872 break; 1781 break;
@@ -1904,7 +1813,7 @@ fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib
1904 } 1813 }
1905 trie_last_dflt = last_idx; 1814 trie_last_dflt = last_idx;
1906 out:; 1815 out:;
1907 read_unlock(&fib_lock); 1816 rcu_read_unlock();
1908} 1817}
1909 1818
1910static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, 1819static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
@@ -1913,12 +1822,14 @@ static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fi
1913 int i, s_i; 1822 int i, s_i;
1914 struct fib_alias *fa; 1823 struct fib_alias *fa;
1915 1824
1916 u32 xkey=htonl(key); 1825 u32 xkey = htonl(key);
1917 1826
1918 s_i=cb->args[3]; 1827 s_i = cb->args[3];
1919 i = 0; 1828 i = 0;
1920 1829
1921 list_for_each_entry(fa, fah, fa_list) { 1830 /* rcu_read_lock is hold by caller */
1831
1832 list_for_each_entry_rcu(fa, fah, fa_list) {
1922 if (i < s_i) { 1833 if (i < s_i) {
1923 i++; 1834 i++;
1924 continue; 1835 continue;
@@ -1946,10 +1857,10 @@ static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fi
1946 fa->fa_info, 0) < 0) { 1857 fa->fa_info, 0) < 0) {
1947 cb->args[3] = i; 1858 cb->args[3] = i;
1948 return -1; 1859 return -1;
1949 } 1860 }
1950 i++; 1861 i++;
1951 } 1862 }
1952 cb->args[3]=i; 1863 cb->args[3] = i;
1953 return skb->len; 1864 return skb->len;
1954} 1865}
1955 1866
@@ -1959,10 +1870,10 @@ static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, str
1959 int h, s_h; 1870 int h, s_h;
1960 struct list_head *fa_head; 1871 struct list_head *fa_head;
1961 struct leaf *l = NULL; 1872 struct leaf *l = NULL;
1962 s_h=cb->args[2];
1963 1873
1964 for (h=0; (l = nextleaf(t, l)) != NULL; h++) { 1874 s_h = cb->args[2];
1965 1875
1876 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1966 if (h < s_h) 1877 if (h < s_h)
1967 continue; 1878 continue;
1968 if (h > s_h) 1879 if (h > s_h)
@@ -1970,7 +1881,7 @@ static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, str
1970 sizeof(cb->args) - 3*sizeof(cb->args[0])); 1881 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1971 1882
1972 fa_head = get_fa_head(l, plen); 1883 fa_head = get_fa_head(l, plen);
1973 1884
1974 if (!fa_head) 1885 if (!fa_head)
1975 continue; 1886 continue;
1976 1887
@@ -1978,11 +1889,11 @@ static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, str
1978 continue; 1889 continue;
1979 1890
1980 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) { 1891 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1981 cb->args[2]=h; 1892 cb->args[2] = h;
1982 return -1; 1893 return -1;
1983 } 1894 }
1984 } 1895 }
1985 cb->args[2]=h; 1896 cb->args[2] = h;
1986 return skb->len; 1897 return skb->len;
1987} 1898}
1988 1899
@@ -1993,25 +1904,24 @@ static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlin
1993 1904
1994 s_m = cb->args[1]; 1905 s_m = cb->args[1];
1995 1906
1996 read_lock(&fib_lock); 1907 rcu_read_lock();
1997 for (m=0; m<=32; m++) { 1908 for (m = 0; m <= 32; m++) {
1998
1999 if (m < s_m) 1909 if (m < s_m)
2000 continue; 1910 continue;
2001 if (m > s_m) 1911 if (m > s_m)
2002 memset(&cb->args[2], 0, 1912 memset(&cb->args[2], 0,
2003 sizeof(cb->args) - 2*sizeof(cb->args[0])); 1913 sizeof(cb->args) - 2*sizeof(cb->args[0]));
2004 1914
2005 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) { 1915 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
2006 cb->args[1] = m; 1916 cb->args[1] = m;
2007 goto out; 1917 goto out;
2008 } 1918 }
2009 } 1919 }
2010 read_unlock(&fib_lock); 1920 rcu_read_unlock();
2011 cb->args[1] = m; 1921 cb->args[1] = m;
2012 return skb->len; 1922 return skb->len;
2013 out: 1923out:
2014 read_unlock(&fib_lock); 1924 rcu_read_unlock();
2015 return -1; 1925 return -1;
2016} 1926}
2017 1927
@@ -2051,9 +1961,9 @@ struct fib_table * __init fib_hash_init(int id)
2051 trie_init(t); 1961 trie_init(t);
2052 1962
2053 if (id == RT_TABLE_LOCAL) 1963 if (id == RT_TABLE_LOCAL)
2054 trie_local = t; 1964 trie_local = t;
2055 else if (id == RT_TABLE_MAIN) 1965 else if (id == RT_TABLE_MAIN)
2056 trie_main = t; 1966 trie_main = t;
2057 1967
2058 if (id == RT_TABLE_LOCAL) 1968 if (id == RT_TABLE_LOCAL)
2059 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION); 1969 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);
@@ -2065,7 +1975,8 @@ struct fib_table * __init fib_hash_init(int id)
2065 1975
2066static void putspace_seq(struct seq_file *seq, int n) 1976static void putspace_seq(struct seq_file *seq, int n)
2067{ 1977{
2068 while (n--) seq_printf(seq, " "); 1978 while (n--)
1979 seq_printf(seq, " ");
2069} 1980}
2070 1981
2071static void printbin_seq(struct seq_file *seq, unsigned int v, int bits) 1982static void printbin_seq(struct seq_file *seq, unsigned int v, int bits)
@@ -2086,29 +1997,22 @@ static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
2086 seq_printf(seq, "%d/", cindex); 1997 seq_printf(seq, "%d/", cindex);
2087 printbin_seq(seq, cindex, bits); 1998 printbin_seq(seq, cindex, bits);
2088 seq_printf(seq, ": "); 1999 seq_printf(seq, ": ");
2089 } 2000 } else
2090 else
2091 seq_printf(seq, "<root>: "); 2001 seq_printf(seq, "<root>: ");
2092 seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n); 2002 seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n);
2093 2003
2094 if (IS_LEAF(n))
2095 seq_printf(seq, "key=%d.%d.%d.%d\n",
2096 n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
2097 else {
2098 int plen = ((struct tnode *)n)->pos;
2099 t_key prf=MASK_PFX(n->key, plen);
2100 seq_printf(seq, "key=%d.%d.%d.%d/%d\n",
2101 prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
2102 }
2103 if (IS_LEAF(n)) { 2004 if (IS_LEAF(n)) {
2104 struct leaf *l=(struct leaf *)n; 2005 struct leaf *l = (struct leaf *)n;
2105 struct fib_alias *fa; 2006 struct fib_alias *fa;
2106 int i; 2007 int i;
2107 for (i=32; i>=0; i--) 2008
2108 if (find_leaf_info(&l->list, i)) { 2009 seq_printf(seq, "key=%d.%d.%d.%d\n",
2109 2010 n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
2011
2012 for (i = 32; i >= 0; i--)
2013 if (find_leaf_info(&l->list, i)) {
2110 struct list_head *fa_head = get_fa_head(l, i); 2014 struct list_head *fa_head = get_fa_head(l, i);
2111 2015
2112 if (!fa_head) 2016 if (!fa_head)
2113 continue; 2017 continue;
2114 2018
@@ -2118,17 +2022,16 @@ static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
2118 putspace_seq(seq, indent+2); 2022 putspace_seq(seq, indent+2);
2119 seq_printf(seq, "{/%d...dumping}\n", i); 2023 seq_printf(seq, "{/%d...dumping}\n", i);
2120 2024
2121 2025 list_for_each_entry_rcu(fa, fa_head, fa_list) {
2122 list_for_each_entry(fa, fa_head, fa_list) {
2123 putspace_seq(seq, indent+2); 2026 putspace_seq(seq, indent+2);
2124 if (fa->fa_info->fib_nh == NULL) {
2125 seq_printf(seq, "Error _fib_nh=NULL\n");
2126 continue;
2127 }
2128 if (fa->fa_info == NULL) { 2027 if (fa->fa_info == NULL) {
2129 seq_printf(seq, "Error fa_info=NULL\n"); 2028 seq_printf(seq, "Error fa_info=NULL\n");
2130 continue; 2029 continue;
2131 } 2030 }
2031 if (fa->fa_info->fib_nh == NULL) {
2032 seq_printf(seq, "Error _fib_nh=NULL\n");
2033 continue;
2034 }
2132 2035
2133 seq_printf(seq, "{type=%d scope=%d TOS=%d}\n", 2036 seq_printf(seq, "{type=%d scope=%d TOS=%d}\n",
2134 fa->fa_type, 2037 fa->fa_type,
@@ -2136,11 +2039,16 @@ static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
2136 fa->fa_tos); 2039 fa->fa_tos);
2137 } 2040 }
2138 } 2041 }
2139 } 2042 } else {
2140 else if (IS_TNODE(n)) {
2141 struct tnode *tn = (struct tnode *)n; 2043 struct tnode *tn = (struct tnode *)n;
2044 int plen = ((struct tnode *)n)->pos;
2045 t_key prf = MASK_PFX(n->key, plen);
2046
2047 seq_printf(seq, "key=%d.%d.%d.%d/%d\n",
2048 prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
2049
2142 putspace_seq(seq, indent); seq_printf(seq, "| "); 2050 putspace_seq(seq, indent); seq_printf(seq, "| ");
2143 seq_printf(seq, "{key prefix=%08x/", tn->key&TKEY_GET_MASK(0, tn->pos)); 2051 seq_printf(seq, "{key prefix=%08x/", tn->key & TKEY_GET_MASK(0, tn->pos));
2144 printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos); 2052 printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos);
2145 seq_printf(seq, "}\n"); 2053 seq_printf(seq, "}\n");
2146 putspace_seq(seq, indent); seq_printf(seq, "| "); 2054 putspace_seq(seq, indent); seq_printf(seq, "| ");
@@ -2154,194 +2062,196 @@ static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
2154 2062
2155static void trie_dump_seq(struct seq_file *seq, struct trie *t) 2063static void trie_dump_seq(struct seq_file *seq, struct trie *t)
2156{ 2064{
2157 struct node *n = t->trie; 2065 struct node *n;
2158 int cindex=0; 2066 int cindex = 0;
2159 int indent=1; 2067 int indent = 1;
2160 int pend=0; 2068 int pend = 0;
2161 int depth = 0; 2069 int depth = 0;
2070 struct tnode *tn;
2162 2071
2163 read_lock(&fib_lock); 2072 rcu_read_lock();
2164 2073 n = rcu_dereference(t->trie);
2165 seq_printf(seq, "------ trie_dump of t=%p ------\n", t); 2074 seq_printf(seq, "------ trie_dump of t=%p ------\n", t);
2166 if (n) {
2167 printnode_seq(seq, indent, n, pend, cindex, 0);
2168 if (IS_TNODE(n)) {
2169 struct tnode *tn = (struct tnode *)n;
2170 pend = tn->pos+tn->bits;
2171 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2172 indent += 3;
2173 depth++;
2174
2175 while (tn && cindex < (1 << tn->bits)) {
2176 if (tn->child[cindex]) {
2177
2178 /* Got a child */
2179
2180 printnode_seq(seq, indent, tn->child[cindex], pend, cindex, tn->bits);
2181 if (IS_LEAF(tn->child[cindex])) {
2182 cindex++;
2183
2184 }
2185 else {
2186 /*
2187 * New tnode. Decend one level
2188 */
2189
2190 depth++;
2191 n = tn->child[cindex];
2192 tn = (struct tnode *)n;
2193 pend = tn->pos+tn->bits;
2194 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2195 indent+=3;
2196 cindex=0;
2197 }
2198 }
2199 else
2200 cindex++;
2201 2075
2076 if (!n) {
2077 seq_printf(seq, "------ trie is empty\n");
2078
2079 rcu_read_unlock();
2080 return;
2081 }
2082
2083 printnode_seq(seq, indent, n, pend, cindex, 0);
2084
2085 if (!IS_TNODE(n)) {
2086 rcu_read_unlock();
2087 return;
2088 }
2089
2090 tn = (struct tnode *)n;
2091 pend = tn->pos+tn->bits;
2092 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2093 indent += 3;
2094 depth++;
2095
2096 while (tn && cindex < (1 << tn->bits)) {
2097 struct node *child = rcu_dereference(tn->child[cindex]);
2098 if (!child)
2099 cindex++;
2100 else {
2101 /* Got a child */
2102 printnode_seq(seq, indent, child, pend,
2103 cindex, tn->bits);
2104
2105 if (IS_LEAF(child))
2106 cindex++;
2107
2108 else {
2202 /* 2109 /*
2203 * Test if we are done 2110 * New tnode. Decend one level
2204 */ 2111 */
2205
2206 while (cindex >= (1 << tn->bits)) {
2207 2112
2208 /* 2113 depth++;
2209 * Move upwards and test for root 2114 n = child;
2210 * pop off all traversed nodes 2115 tn = (struct tnode *)n;
2211 */ 2116 pend = tn->pos+tn->bits;
2212 2117 putspace_seq(seq, indent);
2213 if (NODE_PARENT(tn) == NULL) { 2118 seq_printf(seq, "\\--\n");
2214 tn = NULL; 2119 indent += 3;
2215 n = NULL; 2120 cindex = 0;
2216 break;
2217 }
2218 else {
2219 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2220 tn = NODE_PARENT(tn);
2221 cindex++;
2222 n = (struct node *)tn;
2223 pend = tn->pos+tn->bits;
2224 indent-=3;
2225 depth--;
2226 }
2227 }
2228 } 2121 }
2229 } 2122 }
2230 else n = NULL;
2231 }
2232 else seq_printf(seq, "------ trie is empty\n");
2233 2123
2234 read_unlock(&fib_lock); 2124 /*
2125 * Test if we are done
2126 */
2127
2128 while (cindex >= (1 << tn->bits)) {
2129 /*
2130 * Move upwards and test for root
2131 * pop off all traversed nodes
2132 */
2133
2134 if (NODE_PARENT(tn) == NULL) {
2135 tn = NULL;
2136 break;
2137 }
2138
2139 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2140 cindex++;
2141 tn = NODE_PARENT(tn);
2142 pend = tn->pos + tn->bits;
2143 indent -= 3;
2144 depth--;
2145 }
2146 }
2147 rcu_read_unlock();
2235} 2148}
2236 2149
2237static struct trie_stat *trie_stat_new(void) 2150static struct trie_stat *trie_stat_new(void)
2238{ 2151{
2239 struct trie_stat *s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL); 2152 struct trie_stat *s;
2240 int i; 2153 int i;
2241 2154
2242 if (s) { 2155 s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL);
2243 s->totdepth = 0; 2156 if (!s)
2244 s->maxdepth = 0; 2157 return NULL;
2245 s->tnodes = 0; 2158
2246 s->leaves = 0; 2159 s->totdepth = 0;
2247 s->nullpointers = 0; 2160 s->maxdepth = 0;
2248 2161 s->tnodes = 0;
2249 for(i=0; i< MAX_CHILDS; i++) 2162 s->leaves = 0;
2250 s->nodesizes[i] = 0; 2163 s->nullpointers = 0;
2251 } 2164
2165 for (i = 0; i < MAX_CHILDS; i++)
2166 s->nodesizes[i] = 0;
2167
2252 return s; 2168 return s;
2253} 2169}
2254 2170
2255static struct trie_stat *trie_collect_stats(struct trie *t) 2171static struct trie_stat *trie_collect_stats(struct trie *t)
2256{ 2172{
2257 struct node *n = t->trie; 2173 struct node *n;
2258 struct trie_stat *s = trie_stat_new(); 2174 struct trie_stat *s = trie_stat_new();
2259 int cindex = 0; 2175 int cindex = 0;
2260 int indent = 1;
2261 int pend = 0; 2176 int pend = 0;
2262 int depth = 0; 2177 int depth = 0;
2263 2178
2264 read_lock(&fib_lock); 2179 if (!s)
2180 return NULL;
2265 2181
2266 if (s) { 2182 rcu_read_lock();
2267 if (n) { 2183 n = rcu_dereference(t->trie);
2268 if (IS_TNODE(n)) {
2269 struct tnode *tn = (struct tnode *)n;
2270 pend = tn->pos+tn->bits;
2271 indent += 3;
2272 s->nodesizes[tn->bits]++;
2273 depth++;
2274 2184
2275 while (tn && cindex < (1 << tn->bits)) { 2185 if (!n)
2276 if (tn->child[cindex]) { 2186 return s;
2277 /* Got a child */ 2187
2278 2188 if (IS_TNODE(n)) {
2279 if (IS_LEAF(tn->child[cindex])) { 2189 struct tnode *tn = (struct tnode *)n;
2280 cindex++; 2190 pend = tn->pos+tn->bits;
2281 2191 s->nodesizes[tn->bits]++;
2282 /* stats */ 2192 depth++;
2283 if (depth > s->maxdepth) 2193
2284 s->maxdepth = depth; 2194 while (tn && cindex < (1 << tn->bits)) {
2285 s->totdepth += depth; 2195 struct node *ch = rcu_dereference(tn->child[cindex]);
2286 s->leaves++; 2196 if (ch) {
2287 }
2288
2289 else {
2290 /*
2291 * New tnode. Decend one level
2292 */
2293
2294 s->tnodes++;
2295 s->nodesizes[tn->bits]++;
2296 depth++;
2297
2298 n = tn->child[cindex];
2299 tn = (struct tnode *)n;
2300 pend = tn->pos+tn->bits;
2301
2302 indent += 3;
2303 cindex = 0;
2304 }
2305 }
2306 else {
2307 cindex++;
2308 s->nullpointers++;
2309 }
2310 2197
2198 /* Got a child */
2199
2200 if (IS_LEAF(tn->child[cindex])) {
2201 cindex++;
2202
2203 /* stats */
2204 if (depth > s->maxdepth)
2205 s->maxdepth = depth;
2206 s->totdepth += depth;
2207 s->leaves++;
2208 } else {
2311 /* 2209 /*
2312 * Test if we are done 2210 * New tnode. Decend one level
2313 */ 2211 */
2314 2212
2315 while (cindex >= (1 << tn->bits)) { 2213 s->tnodes++;
2316 2214 s->nodesizes[tn->bits]++;
2317 /* 2215 depth++;
2318 * Move upwards and test for root 2216
2319 * pop off all traversed nodes 2217 n = ch;
2320 */ 2218 tn = (struct tnode *)n;
2321 2219 pend = tn->pos+tn->bits;
2322 2220
2323 if (NODE_PARENT(tn) == NULL) { 2221 cindex = 0;
2324 tn = NULL;
2325 n = NULL;
2326 break;
2327 }
2328 else {
2329 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2330 tn = NODE_PARENT(tn);
2331 cindex++;
2332 n = (struct node *)tn;
2333 pend = tn->pos+tn->bits;
2334 indent -= 3;
2335 depth--;
2336 }
2337 }
2338 } 2222 }
2223 } else {
2224 cindex++;
2225 s->nullpointers++;
2339 } 2226 }
2340 else n = NULL; 2227
2228 /*
2229 * Test if we are done
2230 */
2231
2232 while (cindex >= (1 << tn->bits)) {
2233 /*
2234 * Move upwards and test for root
2235 * pop off all traversed nodes
2236 */
2237
2238 if (NODE_PARENT(tn) == NULL) {
2239 tn = NULL;
2240 n = NULL;
2241 break;
2242 }
2243
2244 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2245 tn = NODE_PARENT(tn);
2246 cindex++;
2247 n = (struct node *)tn;
2248 pend = tn->pos+tn->bits;
2249 depth--;
2250 }
2341 } 2251 }
2342 } 2252 }
2343 2253
2344 read_unlock(&fib_lock); 2254 rcu_read_unlock();
2345 return s; 2255 return s;
2346} 2256}
2347 2257
@@ -2359,17 +2269,22 @@ static struct fib_alias *fib_triestat_get_next(struct seq_file *seq)
2359 2269
2360static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos) 2270static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos)
2361{ 2271{
2362 void *v = NULL; 2272 if (!ip_fib_main_table)
2273 return NULL;
2363 2274
2364 if (ip_fib_main_table) 2275 if (*pos)
2365 v = *pos ? fib_triestat_get_next(seq) : SEQ_START_TOKEN; 2276 return fib_triestat_get_next(seq);
2366 return v; 2277 else
2278 return SEQ_START_TOKEN;
2367} 2279}
2368 2280
2369static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2281static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2370{ 2282{
2371 ++*pos; 2283 ++*pos;
2372 return v == SEQ_START_TOKEN ? fib_triestat_get_first(seq) : fib_triestat_get_next(seq); 2284 if (v == SEQ_START_TOKEN)
2285 return fib_triestat_get_first(seq);
2286 else
2287 return fib_triestat_get_next(seq);
2373} 2288}
2374 2289
2375static void fib_triestat_seq_stop(struct seq_file *seq, void *v) 2290static void fib_triestat_seq_stop(struct seq_file *seq, void *v)
@@ -2388,22 +2303,22 @@ static void collect_and_show(struct trie *t, struct seq_file *seq)
2388{ 2303{
2389 int bytes = 0; /* How many bytes are used, a ref is 4 bytes */ 2304 int bytes = 0; /* How many bytes are used, a ref is 4 bytes */
2390 int i, max, pointers; 2305 int i, max, pointers;
2391 struct trie_stat *stat; 2306 struct trie_stat *stat;
2392 int avdepth; 2307 int avdepth;
2393 2308
2394 stat = trie_collect_stats(t); 2309 stat = trie_collect_stats(t);
2395 2310
2396 bytes=0; 2311 bytes = 0;
2397 seq_printf(seq, "trie=%p\n", t); 2312 seq_printf(seq, "trie=%p\n", t);
2398 2313
2399 if (stat) { 2314 if (stat) {
2400 if (stat->leaves) 2315 if (stat->leaves)
2401 avdepth=stat->totdepth*100 / stat->leaves; 2316 avdepth = stat->totdepth*100 / stat->leaves;
2402 else 2317 else
2403 avdepth=0; 2318 avdepth = 0;
2404 seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100 ); 2319 seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100);
2405 seq_printf(seq, "Max depth: %4d\n", stat->maxdepth); 2320 seq_printf(seq, "Max depth: %4d\n", stat->maxdepth);
2406 2321
2407 seq_printf(seq, "Leaves: %d\n", stat->leaves); 2322 seq_printf(seq, "Leaves: %d\n", stat->leaves);
2408 bytes += sizeof(struct leaf) * stat->leaves; 2323 bytes += sizeof(struct leaf) * stat->leaves;
2409 seq_printf(seq, "Internal nodes: %d\n", stat->tnodes); 2324 seq_printf(seq, "Internal nodes: %d\n", stat->tnodes);
@@ -2455,11 +2370,9 @@ static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2455 2370
2456 if (trie_main) 2371 if (trie_main)
2457 collect_and_show(trie_main, seq); 2372 collect_and_show(trie_main, seq);
2458 } 2373 } else {
2459 else { 2374 snprintf(bf, sizeof(bf), "*\t%08X\t%08X", 200, 400);
2460 snprintf(bf, sizeof(bf), 2375
2461 "*\t%08X\t%08X", 200, 400);
2462
2463 seq_printf(seq, "%-127s\n", bf); 2376 seq_printf(seq, "%-127s\n", bf);
2464 } 2377 }
2465 return 0; 2378 return 0;
@@ -2520,22 +2433,27 @@ static struct fib_alias *fib_trie_get_next(struct seq_file *seq)
2520 2433
2521static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2434static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2522{ 2435{
2523 void *v = NULL; 2436 if (!ip_fib_main_table)
2437 return NULL;
2524 2438
2525 if (ip_fib_main_table) 2439 if (*pos)
2526 v = *pos ? fib_trie_get_next(seq) : SEQ_START_TOKEN; 2440 return fib_trie_get_next(seq);
2527 return v; 2441 else
2442 return SEQ_START_TOKEN;
2528} 2443}
2529 2444
2530static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2445static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2531{ 2446{
2532 ++*pos; 2447 ++*pos;
2533 return v == SEQ_START_TOKEN ? fib_trie_get_first(seq) : fib_trie_get_next(seq); 2448 if (v == SEQ_START_TOKEN)
2449 return fib_trie_get_first(seq);
2450 else
2451 return fib_trie_get_next(seq);
2452
2534} 2453}
2535 2454
2536static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2455static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2537{ 2456{
2538
2539} 2457}
2540 2458
2541/* 2459/*
@@ -2555,9 +2473,7 @@ static int fib_trie_seq_show(struct seq_file *seq, void *v)
2555 2473
2556 if (trie_main) 2474 if (trie_main)
2557 trie_dump_seq(seq, trie_main); 2475 trie_dump_seq(seq, trie_main);
2558 } 2476 } else {
2559
2560 else {
2561 snprintf(bf, sizeof(bf), 2477 snprintf(bf, sizeof(bf),
2562 "*\t%08X\t%08X", 200, 400); 2478 "*\t%08X\t%08X", 200, 400);
2563 seq_printf(seq, "%-127s\n", bf); 2479 seq_printf(seq, "%-127s\n", bf);