diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/backing-dev.c | 3 | ||||
-rw-r--r-- | mm/hugetlb.c | 104 | ||||
-rw-r--r-- | mm/hwpoison-inject.c | 15 | ||||
-rw-r--r-- | mm/memcontrol.c | 407 | ||||
-rw-r--r-- | mm/memory-failure.c | 120 | ||||
-rw-r--r-- | mm/memory.c | 25 | ||||
-rw-r--r-- | mm/oom_kill.c | 2 | ||||
-rw-r--r-- | mm/page-writeback.c | 185 | ||||
-rw-r--r-- | mm/rmap.c | 59 | ||||
-rw-r--r-- | mm/vmalloc.c | 4 | ||||
-rw-r--r-- | mm/vmscan.c | 15 |
11 files changed, 630 insertions, 309 deletions
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 08d357522e78..eaa4a5bbe063 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -81,7 +81,8 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) | |||
81 | nr_more_io++; | 81 | nr_more_io++; |
82 | spin_unlock(&inode_lock); | 82 | spin_unlock(&inode_lock); |
83 | 83 | ||
84 | get_dirty_limits(&background_thresh, &dirty_thresh, &bdi_thresh, bdi); | 84 | global_dirty_limits(&background_thresh, &dirty_thresh); |
85 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); | ||
85 | 86 | ||
86 | #define K(x) ((x) << (PAGE_SHIFT - 10)) | 87 | #define K(x) ((x) << (PAGE_SHIFT - 10)) |
87 | seq_printf(m, | 88 | seq_printf(m, |
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index b61d2db9f34e..cc5be788a39f 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -18,6 +18,9 @@ | |||
18 | #include <linux/bootmem.h> | 18 | #include <linux/bootmem.h> |
19 | #include <linux/sysfs.h> | 19 | #include <linux/sysfs.h> |
20 | #include <linux/slab.h> | 20 | #include <linux/slab.h> |
21 | #include <linux/rmap.h> | ||
22 | #include <linux/swap.h> | ||
23 | #include <linux/swapops.h> | ||
21 | 24 | ||
22 | #include <asm/page.h> | 25 | #include <asm/page.h> |
23 | #include <asm/pgtable.h> | 26 | #include <asm/pgtable.h> |
@@ -220,6 +223,12 @@ static pgoff_t vma_hugecache_offset(struct hstate *h, | |||
220 | (vma->vm_pgoff >> huge_page_order(h)); | 223 | (vma->vm_pgoff >> huge_page_order(h)); |
221 | } | 224 | } |
222 | 225 | ||
226 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | ||
227 | unsigned long address) | ||
228 | { | ||
229 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | ||
230 | } | ||
231 | |||
223 | /* | 232 | /* |
224 | * Return the size of the pages allocated when backing a VMA. In the majority | 233 | * Return the size of the pages allocated when backing a VMA. In the majority |
225 | * cases this will be same size as used by the page table entries. | 234 | * cases this will be same size as used by the page table entries. |
@@ -552,6 +561,7 @@ static void free_huge_page(struct page *page) | |||
552 | set_page_private(page, 0); | 561 | set_page_private(page, 0); |
553 | page->mapping = NULL; | 562 | page->mapping = NULL; |
554 | BUG_ON(page_count(page)); | 563 | BUG_ON(page_count(page)); |
564 | BUG_ON(page_mapcount(page)); | ||
555 | INIT_LIST_HEAD(&page->lru); | 565 | INIT_LIST_HEAD(&page->lru); |
556 | 566 | ||
557 | spin_lock(&hugetlb_lock); | 567 | spin_lock(&hugetlb_lock); |
@@ -605,6 +615,8 @@ int PageHuge(struct page *page) | |||
605 | return dtor == free_huge_page; | 615 | return dtor == free_huge_page; |
606 | } | 616 | } |
607 | 617 | ||
618 | EXPORT_SYMBOL_GPL(PageHuge); | ||
619 | |||
608 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | 620 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
609 | { | 621 | { |
610 | struct page *page; | 622 | struct page *page; |
@@ -2129,6 +2141,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | |||
2129 | entry = huge_ptep_get(src_pte); | 2141 | entry = huge_ptep_get(src_pte); |
2130 | ptepage = pte_page(entry); | 2142 | ptepage = pte_page(entry); |
2131 | get_page(ptepage); | 2143 | get_page(ptepage); |
2144 | page_dup_rmap(ptepage); | ||
2132 | set_huge_pte_at(dst, addr, dst_pte, entry); | 2145 | set_huge_pte_at(dst, addr, dst_pte, entry); |
2133 | } | 2146 | } |
2134 | spin_unlock(&src->page_table_lock); | 2147 | spin_unlock(&src->page_table_lock); |
@@ -2140,6 +2153,19 @@ nomem: | |||
2140 | return -ENOMEM; | 2153 | return -ENOMEM; |
2141 | } | 2154 | } |
2142 | 2155 | ||
2156 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | ||
2157 | { | ||
2158 | swp_entry_t swp; | ||
2159 | |||
2160 | if (huge_pte_none(pte) || pte_present(pte)) | ||
2161 | return 0; | ||
2162 | swp = pte_to_swp_entry(pte); | ||
2163 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { | ||
2164 | return 1; | ||
2165 | } else | ||
2166 | return 0; | ||
2167 | } | ||
2168 | |||
2143 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 2169 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
2144 | unsigned long end, struct page *ref_page) | 2170 | unsigned long end, struct page *ref_page) |
2145 | { | 2171 | { |
@@ -2198,6 +2224,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
2198 | if (huge_pte_none(pte)) | 2224 | if (huge_pte_none(pte)) |
2199 | continue; | 2225 | continue; |
2200 | 2226 | ||
2227 | /* | ||
2228 | * HWPoisoned hugepage is already unmapped and dropped reference | ||
2229 | */ | ||
2230 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) | ||
2231 | continue; | ||
2232 | |||
2201 | page = pte_page(pte); | 2233 | page = pte_page(pte); |
2202 | if (pte_dirty(pte)) | 2234 | if (pte_dirty(pte)) |
2203 | set_page_dirty(page); | 2235 | set_page_dirty(page); |
@@ -2207,6 +2239,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
2207 | flush_tlb_range(vma, start, end); | 2239 | flush_tlb_range(vma, start, end); |
2208 | mmu_notifier_invalidate_range_end(mm, start, end); | 2240 | mmu_notifier_invalidate_range_end(mm, start, end); |
2209 | list_for_each_entry_safe(page, tmp, &page_list, lru) { | 2241 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
2242 | page_remove_rmap(page); | ||
2210 | list_del(&page->lru); | 2243 | list_del(&page->lru); |
2211 | put_page(page); | 2244 | put_page(page); |
2212 | } | 2245 | } |
@@ -2272,6 +2305,9 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2272 | return 1; | 2305 | return 1; |
2273 | } | 2306 | } |
2274 | 2307 | ||
2308 | /* | ||
2309 | * Hugetlb_cow() should be called with page lock of the original hugepage held. | ||
2310 | */ | ||
2275 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 2311 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
2276 | unsigned long address, pte_t *ptep, pte_t pte, | 2312 | unsigned long address, pte_t *ptep, pte_t pte, |
2277 | struct page *pagecache_page) | 2313 | struct page *pagecache_page) |
@@ -2286,8 +2322,13 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2286 | retry_avoidcopy: | 2322 | retry_avoidcopy: |
2287 | /* If no-one else is actually using this page, avoid the copy | 2323 | /* If no-one else is actually using this page, avoid the copy |
2288 | * and just make the page writable */ | 2324 | * and just make the page writable */ |
2289 | avoidcopy = (page_count(old_page) == 1); | 2325 | avoidcopy = (page_mapcount(old_page) == 1); |
2290 | if (avoidcopy) { | 2326 | if (avoidcopy) { |
2327 | if (!trylock_page(old_page)) { | ||
2328 | if (PageAnon(old_page)) | ||
2329 | page_move_anon_rmap(old_page, vma, address); | ||
2330 | } else | ||
2331 | unlock_page(old_page); | ||
2291 | set_huge_ptep_writable(vma, address, ptep); | 2332 | set_huge_ptep_writable(vma, address, ptep); |
2292 | return 0; | 2333 | return 0; |
2293 | } | 2334 | } |
@@ -2338,6 +2379,13 @@ retry_avoidcopy: | |||
2338 | return -PTR_ERR(new_page); | 2379 | return -PTR_ERR(new_page); |
2339 | } | 2380 | } |
2340 | 2381 | ||
2382 | /* | ||
2383 | * When the original hugepage is shared one, it does not have | ||
2384 | * anon_vma prepared. | ||
2385 | */ | ||
2386 | if (unlikely(anon_vma_prepare(vma))) | ||
2387 | return VM_FAULT_OOM; | ||
2388 | |||
2341 | copy_huge_page(new_page, old_page, address, vma); | 2389 | copy_huge_page(new_page, old_page, address, vma); |
2342 | __SetPageUptodate(new_page); | 2390 | __SetPageUptodate(new_page); |
2343 | 2391 | ||
@@ -2355,6 +2403,8 @@ retry_avoidcopy: | |||
2355 | huge_ptep_clear_flush(vma, address, ptep); | 2403 | huge_ptep_clear_flush(vma, address, ptep); |
2356 | set_huge_pte_at(mm, address, ptep, | 2404 | set_huge_pte_at(mm, address, ptep, |
2357 | make_huge_pte(vma, new_page, 1)); | 2405 | make_huge_pte(vma, new_page, 1)); |
2406 | page_remove_rmap(old_page); | ||
2407 | hugepage_add_anon_rmap(new_page, vma, address); | ||
2358 | /* Make the old page be freed below */ | 2408 | /* Make the old page be freed below */ |
2359 | new_page = old_page; | 2409 | new_page = old_page; |
2360 | mmu_notifier_invalidate_range_end(mm, | 2410 | mmu_notifier_invalidate_range_end(mm, |
@@ -2458,10 +2508,29 @@ retry: | |||
2458 | spin_lock(&inode->i_lock); | 2508 | spin_lock(&inode->i_lock); |
2459 | inode->i_blocks += blocks_per_huge_page(h); | 2509 | inode->i_blocks += blocks_per_huge_page(h); |
2460 | spin_unlock(&inode->i_lock); | 2510 | spin_unlock(&inode->i_lock); |
2511 | page_dup_rmap(page); | ||
2461 | } else { | 2512 | } else { |
2462 | lock_page(page); | 2513 | lock_page(page); |
2463 | page->mapping = HUGETLB_POISON; | 2514 | if (unlikely(anon_vma_prepare(vma))) { |
2515 | ret = VM_FAULT_OOM; | ||
2516 | goto backout_unlocked; | ||
2517 | } | ||
2518 | hugepage_add_new_anon_rmap(page, vma, address); | ||
2464 | } | 2519 | } |
2520 | } else { | ||
2521 | page_dup_rmap(page); | ||
2522 | } | ||
2523 | |||
2524 | /* | ||
2525 | * Since memory error handler replaces pte into hwpoison swap entry | ||
2526 | * at the time of error handling, a process which reserved but not have | ||
2527 | * the mapping to the error hugepage does not have hwpoison swap entry. | ||
2528 | * So we need to block accesses from such a process by checking | ||
2529 | * PG_hwpoison bit here. | ||
2530 | */ | ||
2531 | if (unlikely(PageHWPoison(page))) { | ||
2532 | ret = VM_FAULT_HWPOISON; | ||
2533 | goto backout_unlocked; | ||
2465 | } | 2534 | } |
2466 | 2535 | ||
2467 | /* | 2536 | /* |
@@ -2513,10 +2582,18 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2513 | pte_t *ptep; | 2582 | pte_t *ptep; |
2514 | pte_t entry; | 2583 | pte_t entry; |
2515 | int ret; | 2584 | int ret; |
2585 | struct page *page = NULL; | ||
2516 | struct page *pagecache_page = NULL; | 2586 | struct page *pagecache_page = NULL; |
2517 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 2587 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
2518 | struct hstate *h = hstate_vma(vma); | 2588 | struct hstate *h = hstate_vma(vma); |
2519 | 2589 | ||
2590 | ptep = huge_pte_offset(mm, address); | ||
2591 | if (ptep) { | ||
2592 | entry = huge_ptep_get(ptep); | ||
2593 | if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | ||
2594 | return VM_FAULT_HWPOISON; | ||
2595 | } | ||
2596 | |||
2520 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 2597 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
2521 | if (!ptep) | 2598 | if (!ptep) |
2522 | return VM_FAULT_OOM; | 2599 | return VM_FAULT_OOM; |
@@ -2554,6 +2631,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2554 | vma, address); | 2631 | vma, address); |
2555 | } | 2632 | } |
2556 | 2633 | ||
2634 | if (!pagecache_page) { | ||
2635 | page = pte_page(entry); | ||
2636 | lock_page(page); | ||
2637 | } | ||
2638 | |||
2557 | spin_lock(&mm->page_table_lock); | 2639 | spin_lock(&mm->page_table_lock); |
2558 | /* Check for a racing update before calling hugetlb_cow */ | 2640 | /* Check for a racing update before calling hugetlb_cow */ |
2559 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 2641 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
@@ -2579,6 +2661,8 @@ out_page_table_lock: | |||
2579 | if (pagecache_page) { | 2661 | if (pagecache_page) { |
2580 | unlock_page(pagecache_page); | 2662 | unlock_page(pagecache_page); |
2581 | put_page(pagecache_page); | 2663 | put_page(pagecache_page); |
2664 | } else { | ||
2665 | unlock_page(page); | ||
2582 | } | 2666 | } |
2583 | 2667 | ||
2584 | out_mutex: | 2668 | out_mutex: |
@@ -2791,3 +2875,19 @@ void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |||
2791 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 2875 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
2792 | hugetlb_acct_memory(h, -(chg - freed)); | 2876 | hugetlb_acct_memory(h, -(chg - freed)); |
2793 | } | 2877 | } |
2878 | |||
2879 | /* | ||
2880 | * This function is called from memory failure code. | ||
2881 | * Assume the caller holds page lock of the head page. | ||
2882 | */ | ||
2883 | void __isolate_hwpoisoned_huge_page(struct page *hpage) | ||
2884 | { | ||
2885 | struct hstate *h = page_hstate(hpage); | ||
2886 | int nid = page_to_nid(hpage); | ||
2887 | |||
2888 | spin_lock(&hugetlb_lock); | ||
2889 | list_del(&hpage->lru); | ||
2890 | h->free_huge_pages--; | ||
2891 | h->free_huge_pages_node[nid]--; | ||
2892 | spin_unlock(&hugetlb_lock); | ||
2893 | } | ||
diff --git a/mm/hwpoison-inject.c b/mm/hwpoison-inject.c index 10ea71905c1f..0948f1072d6b 100644 --- a/mm/hwpoison-inject.c +++ b/mm/hwpoison-inject.c | |||
@@ -5,6 +5,7 @@ | |||
5 | #include <linux/mm.h> | 5 | #include <linux/mm.h> |
6 | #include <linux/swap.h> | 6 | #include <linux/swap.h> |
7 | #include <linux/pagemap.h> | 7 | #include <linux/pagemap.h> |
8 | #include <linux/hugetlb.h> | ||
8 | #include "internal.h" | 9 | #include "internal.h" |
9 | 10 | ||
10 | static struct dentry *hwpoison_dir; | 11 | static struct dentry *hwpoison_dir; |
@@ -13,6 +14,7 @@ static int hwpoison_inject(void *data, u64 val) | |||
13 | { | 14 | { |
14 | unsigned long pfn = val; | 15 | unsigned long pfn = val; |
15 | struct page *p; | 16 | struct page *p; |
17 | struct page *hpage; | ||
16 | int err; | 18 | int err; |
17 | 19 | ||
18 | if (!capable(CAP_SYS_ADMIN)) | 20 | if (!capable(CAP_SYS_ADMIN)) |
@@ -24,18 +26,19 @@ static int hwpoison_inject(void *data, u64 val) | |||
24 | return -ENXIO; | 26 | return -ENXIO; |
25 | 27 | ||
26 | p = pfn_to_page(pfn); | 28 | p = pfn_to_page(pfn); |
29 | hpage = compound_head(p); | ||
27 | /* | 30 | /* |
28 | * This implies unable to support free buddy pages. | 31 | * This implies unable to support free buddy pages. |
29 | */ | 32 | */ |
30 | if (!get_page_unless_zero(p)) | 33 | if (!get_page_unless_zero(hpage)) |
31 | return 0; | 34 | return 0; |
32 | 35 | ||
33 | if (!PageLRU(p)) | 36 | if (!PageLRU(p) && !PageHuge(p)) |
34 | shake_page(p, 0); | 37 | shake_page(p, 0); |
35 | /* | 38 | /* |
36 | * This implies unable to support non-LRU pages. | 39 | * This implies unable to support non-LRU pages. |
37 | */ | 40 | */ |
38 | if (!PageLRU(p)) | 41 | if (!PageLRU(p) && !PageHuge(p)) |
39 | return 0; | 42 | return 0; |
40 | 43 | ||
41 | /* | 44 | /* |
@@ -44,9 +47,9 @@ static int hwpoison_inject(void *data, u64 val) | |||
44 | * We temporarily take page lock for try_get_mem_cgroup_from_page(). | 47 | * We temporarily take page lock for try_get_mem_cgroup_from_page(). |
45 | * __memory_failure() will redo the check reliably inside page lock. | 48 | * __memory_failure() will redo the check reliably inside page lock. |
46 | */ | 49 | */ |
47 | lock_page(p); | 50 | lock_page(hpage); |
48 | err = hwpoison_filter(p); | 51 | err = hwpoison_filter(hpage); |
49 | unlock_page(p); | 52 | unlock_page(hpage); |
50 | if (err) | 53 | if (err) |
51 | return 0; | 54 | return 0; |
52 | 55 | ||
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 0576e9e64586..3eed583895a6 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -47,6 +47,7 @@ | |||
47 | #include <linux/mm_inline.h> | 47 | #include <linux/mm_inline.h> |
48 | #include <linux/page_cgroup.h> | 48 | #include <linux/page_cgroup.h> |
49 | #include <linux/cpu.h> | 49 | #include <linux/cpu.h> |
50 | #include <linux/oom.h> | ||
50 | #include "internal.h" | 51 | #include "internal.h" |
51 | 52 | ||
52 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
@@ -268,6 +269,7 @@ enum move_type { | |||
268 | 269 | ||
269 | /* "mc" and its members are protected by cgroup_mutex */ | 270 | /* "mc" and its members are protected by cgroup_mutex */ |
270 | static struct move_charge_struct { | 271 | static struct move_charge_struct { |
272 | spinlock_t lock; /* for from, to, moving_task */ | ||
271 | struct mem_cgroup *from; | 273 | struct mem_cgroup *from; |
272 | struct mem_cgroup *to; | 274 | struct mem_cgroup *to; |
273 | unsigned long precharge; | 275 | unsigned long precharge; |
@@ -276,6 +278,7 @@ static struct move_charge_struct { | |||
276 | struct task_struct *moving_task; /* a task moving charges */ | 278 | struct task_struct *moving_task; /* a task moving charges */ |
277 | wait_queue_head_t waitq; /* a waitq for other context */ | 279 | wait_queue_head_t waitq; /* a waitq for other context */ |
278 | } mc = { | 280 | } mc = { |
281 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | ||
279 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 282 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
280 | }; | 283 | }; |
281 | 284 | ||
@@ -836,12 +839,13 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
836 | { | 839 | { |
837 | int ret; | 840 | int ret; |
838 | struct mem_cgroup *curr = NULL; | 841 | struct mem_cgroup *curr = NULL; |
842 | struct task_struct *p; | ||
839 | 843 | ||
840 | task_lock(task); | 844 | p = find_lock_task_mm(task); |
841 | rcu_read_lock(); | 845 | if (!p) |
842 | curr = try_get_mem_cgroup_from_mm(task->mm); | 846 | return 0; |
843 | rcu_read_unlock(); | 847 | curr = try_get_mem_cgroup_from_mm(p->mm); |
844 | task_unlock(task); | 848 | task_unlock(p); |
845 | if (!curr) | 849 | if (!curr) |
846 | return 0; | 850 | return 0; |
847 | /* | 851 | /* |
@@ -915,7 +919,7 @@ unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | |||
915 | struct zone *zone, | 919 | struct zone *zone, |
916 | enum lru_list lru) | 920 | enum lru_list lru) |
917 | { | 921 | { |
918 | int nid = zone->zone_pgdat->node_id; | 922 | int nid = zone_to_nid(zone); |
919 | int zid = zone_idx(zone); | 923 | int zid = zone_idx(zone); |
920 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 924 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
921 | 925 | ||
@@ -925,7 +929,7 @@ unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | |||
925 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, | 929 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
926 | struct zone *zone) | 930 | struct zone *zone) |
927 | { | 931 | { |
928 | int nid = zone->zone_pgdat->node_id; | 932 | int nid = zone_to_nid(zone); |
929 | int zid = zone_idx(zone); | 933 | int zid = zone_idx(zone); |
930 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 934 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
931 | 935 | ||
@@ -970,7 +974,7 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
970 | LIST_HEAD(pc_list); | 974 | LIST_HEAD(pc_list); |
971 | struct list_head *src; | 975 | struct list_head *src; |
972 | struct page_cgroup *pc, *tmp; | 976 | struct page_cgroup *pc, *tmp; |
973 | int nid = z->zone_pgdat->node_id; | 977 | int nid = zone_to_nid(z); |
974 | int zid = zone_idx(z); | 978 | int zid = zone_idx(z); |
975 | struct mem_cgroup_per_zone *mz; | 979 | struct mem_cgroup_per_zone *mz; |
976 | int lru = LRU_FILE * file + active; | 980 | int lru = LRU_FILE * file + active; |
@@ -1047,6 +1051,47 @@ static unsigned int get_swappiness(struct mem_cgroup *memcg) | |||
1047 | return swappiness; | 1051 | return swappiness; |
1048 | } | 1052 | } |
1049 | 1053 | ||
1054 | /* A routine for testing mem is not under move_account */ | ||
1055 | |||
1056 | static bool mem_cgroup_under_move(struct mem_cgroup *mem) | ||
1057 | { | ||
1058 | struct mem_cgroup *from; | ||
1059 | struct mem_cgroup *to; | ||
1060 | bool ret = false; | ||
1061 | /* | ||
1062 | * Unlike task_move routines, we access mc.to, mc.from not under | ||
1063 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | ||
1064 | */ | ||
1065 | spin_lock(&mc.lock); | ||
1066 | from = mc.from; | ||
1067 | to = mc.to; | ||
1068 | if (!from) | ||
1069 | goto unlock; | ||
1070 | if (from == mem || to == mem | ||
1071 | || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) | ||
1072 | || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) | ||
1073 | ret = true; | ||
1074 | unlock: | ||
1075 | spin_unlock(&mc.lock); | ||
1076 | return ret; | ||
1077 | } | ||
1078 | |||
1079 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) | ||
1080 | { | ||
1081 | if (mc.moving_task && current != mc.moving_task) { | ||
1082 | if (mem_cgroup_under_move(mem)) { | ||
1083 | DEFINE_WAIT(wait); | ||
1084 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | ||
1085 | /* moving charge context might have finished. */ | ||
1086 | if (mc.moving_task) | ||
1087 | schedule(); | ||
1088 | finish_wait(&mc.waitq, &wait); | ||
1089 | return true; | ||
1090 | } | ||
1091 | } | ||
1092 | return false; | ||
1093 | } | ||
1094 | |||
1050 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) | 1095 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) |
1051 | { | 1096 | { |
1052 | int *val = data; | 1097 | int *val = data; |
@@ -1255,8 +1300,7 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | |||
1255 | /* we use swappiness of local cgroup */ | 1300 | /* we use swappiness of local cgroup */ |
1256 | if (check_soft) | 1301 | if (check_soft) |
1257 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, | 1302 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, |
1258 | noswap, get_swappiness(victim), zone, | 1303 | noswap, get_swappiness(victim), zone); |
1259 | zone->zone_pgdat->node_id); | ||
1260 | else | 1304 | else |
1261 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, | 1305 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, |
1262 | noswap, get_swappiness(victim)); | 1306 | noswap, get_swappiness(victim)); |
@@ -1363,7 +1407,7 @@ static void memcg_wakeup_oom(struct mem_cgroup *mem) | |||
1363 | 1407 | ||
1364 | static void memcg_oom_recover(struct mem_cgroup *mem) | 1408 | static void memcg_oom_recover(struct mem_cgroup *mem) |
1365 | { | 1409 | { |
1366 | if (atomic_read(&mem->oom_lock)) | 1410 | if (mem && atomic_read(&mem->oom_lock)) |
1367 | memcg_wakeup_oom(mem); | 1411 | memcg_wakeup_oom(mem); |
1368 | } | 1412 | } |
1369 | 1413 | ||
@@ -1575,16 +1619,83 @@ static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb, | |||
1575 | return NOTIFY_OK; | 1619 | return NOTIFY_OK; |
1576 | } | 1620 | } |
1577 | 1621 | ||
1622 | |||
1623 | /* See __mem_cgroup_try_charge() for details */ | ||
1624 | enum { | ||
1625 | CHARGE_OK, /* success */ | ||
1626 | CHARGE_RETRY, /* need to retry but retry is not bad */ | ||
1627 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | ||
1628 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | ||
1629 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | ||
1630 | }; | ||
1631 | |||
1632 | static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, | ||
1633 | int csize, bool oom_check) | ||
1634 | { | ||
1635 | struct mem_cgroup *mem_over_limit; | ||
1636 | struct res_counter *fail_res; | ||
1637 | unsigned long flags = 0; | ||
1638 | int ret; | ||
1639 | |||
1640 | ret = res_counter_charge(&mem->res, csize, &fail_res); | ||
1641 | |||
1642 | if (likely(!ret)) { | ||
1643 | if (!do_swap_account) | ||
1644 | return CHARGE_OK; | ||
1645 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | ||
1646 | if (likely(!ret)) | ||
1647 | return CHARGE_OK; | ||
1648 | |||
1649 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); | ||
1650 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | ||
1651 | } else | ||
1652 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | ||
1653 | |||
1654 | if (csize > PAGE_SIZE) /* change csize and retry */ | ||
1655 | return CHARGE_RETRY; | ||
1656 | |||
1657 | if (!(gfp_mask & __GFP_WAIT)) | ||
1658 | return CHARGE_WOULDBLOCK; | ||
1659 | |||
1660 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | ||
1661 | gfp_mask, flags); | ||
1662 | /* | ||
1663 | * try_to_free_mem_cgroup_pages() might not give us a full | ||
1664 | * picture of reclaim. Some pages are reclaimed and might be | ||
1665 | * moved to swap cache or just unmapped from the cgroup. | ||
1666 | * Check the limit again to see if the reclaim reduced the | ||
1667 | * current usage of the cgroup before giving up | ||
1668 | */ | ||
1669 | if (ret || mem_cgroup_check_under_limit(mem_over_limit)) | ||
1670 | return CHARGE_RETRY; | ||
1671 | |||
1672 | /* | ||
1673 | * At task move, charge accounts can be doubly counted. So, it's | ||
1674 | * better to wait until the end of task_move if something is going on. | ||
1675 | */ | ||
1676 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | ||
1677 | return CHARGE_RETRY; | ||
1678 | |||
1679 | /* If we don't need to call oom-killer at el, return immediately */ | ||
1680 | if (!oom_check) | ||
1681 | return CHARGE_NOMEM; | ||
1682 | /* check OOM */ | ||
1683 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) | ||
1684 | return CHARGE_OOM_DIE; | ||
1685 | |||
1686 | return CHARGE_RETRY; | ||
1687 | } | ||
1688 | |||
1578 | /* | 1689 | /* |
1579 | * Unlike exported interface, "oom" parameter is added. if oom==true, | 1690 | * Unlike exported interface, "oom" parameter is added. if oom==true, |
1580 | * oom-killer can be invoked. | 1691 | * oom-killer can be invoked. |
1581 | */ | 1692 | */ |
1582 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | 1693 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
1583 | gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) | 1694 | gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) |
1584 | { | 1695 | { |
1585 | struct mem_cgroup *mem, *mem_over_limit; | 1696 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
1586 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 1697 | struct mem_cgroup *mem = NULL; |
1587 | struct res_counter *fail_res; | 1698 | int ret; |
1588 | int csize = CHARGE_SIZE; | 1699 | int csize = CHARGE_SIZE; |
1589 | 1700 | ||
1590 | /* | 1701 | /* |
@@ -1602,126 +1713,108 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, | |||
1602 | * thread group leader migrates. It's possible that mm is not | 1713 | * thread group leader migrates. It's possible that mm is not |
1603 | * set, if so charge the init_mm (happens for pagecache usage). | 1714 | * set, if so charge the init_mm (happens for pagecache usage). |
1604 | */ | 1715 | */ |
1605 | mem = *memcg; | 1716 | if (!*memcg && !mm) |
1606 | if (likely(!mem)) { | 1717 | goto bypass; |
1607 | mem = try_get_mem_cgroup_from_mm(mm); | 1718 | again: |
1608 | *memcg = mem; | 1719 | if (*memcg) { /* css should be a valid one */ |
1609 | } else { | 1720 | mem = *memcg; |
1610 | css_get(&mem->css); | 1721 | VM_BUG_ON(css_is_removed(&mem->css)); |
1611 | } | 1722 | if (mem_cgroup_is_root(mem)) |
1612 | if (unlikely(!mem)) | 1723 | goto done; |
1613 | return 0; | ||
1614 | |||
1615 | VM_BUG_ON(css_is_removed(&mem->css)); | ||
1616 | if (mem_cgroup_is_root(mem)) | ||
1617 | goto done; | ||
1618 | |||
1619 | while (1) { | ||
1620 | int ret = 0; | ||
1621 | unsigned long flags = 0; | ||
1622 | |||
1623 | if (consume_stock(mem)) | 1724 | if (consume_stock(mem)) |
1624 | goto done; | 1725 | goto done; |
1726 | css_get(&mem->css); | ||
1727 | } else { | ||
1728 | struct task_struct *p; | ||
1625 | 1729 | ||
1626 | ret = res_counter_charge(&mem->res, csize, &fail_res); | 1730 | rcu_read_lock(); |
1627 | if (likely(!ret)) { | 1731 | p = rcu_dereference(mm->owner); |
1628 | if (!do_swap_account) | 1732 | VM_BUG_ON(!p); |
1629 | break; | ||
1630 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | ||
1631 | if (likely(!ret)) | ||
1632 | break; | ||
1633 | /* mem+swap counter fails */ | ||
1634 | res_counter_uncharge(&mem->res, csize); | ||
1635 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | ||
1636 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
1637 | memsw); | ||
1638 | } else | ||
1639 | /* mem counter fails */ | ||
1640 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
1641 | res); | ||
1642 | |||
1643 | /* reduce request size and retry */ | ||
1644 | if (csize > PAGE_SIZE) { | ||
1645 | csize = PAGE_SIZE; | ||
1646 | continue; | ||
1647 | } | ||
1648 | if (!(gfp_mask & __GFP_WAIT)) | ||
1649 | goto nomem; | ||
1650 | |||
1651 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | ||
1652 | gfp_mask, flags); | ||
1653 | if (ret) | ||
1654 | continue; | ||
1655 | |||
1656 | /* | 1733 | /* |
1657 | * try_to_free_mem_cgroup_pages() might not give us a full | 1734 | * because we don't have task_lock(), "p" can exit while |
1658 | * picture of reclaim. Some pages are reclaimed and might be | 1735 | * we're here. In that case, "mem" can point to root |
1659 | * moved to swap cache or just unmapped from the cgroup. | 1736 | * cgroup but never be NULL. (and task_struct itself is freed |
1660 | * Check the limit again to see if the reclaim reduced the | 1737 | * by RCU, cgroup itself is RCU safe.) Then, we have small |
1661 | * current usage of the cgroup before giving up | 1738 | * risk here to get wrong cgroup. But such kind of mis-account |
1662 | * | 1739 | * by race always happens because we don't have cgroup_mutex(). |
1740 | * It's overkill and we allow that small race, here. | ||
1663 | */ | 1741 | */ |
1664 | if (mem_cgroup_check_under_limit(mem_over_limit)) | 1742 | mem = mem_cgroup_from_task(p); |
1665 | continue; | 1743 | VM_BUG_ON(!mem); |
1666 | 1744 | if (mem_cgroup_is_root(mem)) { | |
1667 | /* try to avoid oom while someone is moving charge */ | 1745 | rcu_read_unlock(); |
1668 | if (mc.moving_task && current != mc.moving_task) { | 1746 | goto done; |
1669 | struct mem_cgroup *from, *to; | 1747 | } |
1670 | bool do_continue = false; | 1748 | if (consume_stock(mem)) { |
1671 | /* | 1749 | /* |
1672 | * There is a small race that "from" or "to" can be | 1750 | * It seems dagerous to access memcg without css_get(). |
1673 | * freed by rmdir, so we use css_tryget(). | 1751 | * But considering how consume_stok works, it's not |
1752 | * necessary. If consume_stock success, some charges | ||
1753 | * from this memcg are cached on this cpu. So, we | ||
1754 | * don't need to call css_get()/css_tryget() before | ||
1755 | * calling consume_stock(). | ||
1674 | */ | 1756 | */ |
1675 | from = mc.from; | 1757 | rcu_read_unlock(); |
1676 | to = mc.to; | 1758 | goto done; |
1677 | if (from && css_tryget(&from->css)) { | 1759 | } |
1678 | if (mem_over_limit->use_hierarchy) | 1760 | /* after here, we may be blocked. we need to get refcnt */ |
1679 | do_continue = css_is_ancestor( | 1761 | if (!css_tryget(&mem->css)) { |
1680 | &from->css, | 1762 | rcu_read_unlock(); |
1681 | &mem_over_limit->css); | 1763 | goto again; |
1682 | else | 1764 | } |
1683 | do_continue = (from == mem_over_limit); | 1765 | rcu_read_unlock(); |
1684 | css_put(&from->css); | 1766 | } |
1685 | } | 1767 | |
1686 | if (!do_continue && to && css_tryget(&to->css)) { | 1768 | do { |
1687 | if (mem_over_limit->use_hierarchy) | 1769 | bool oom_check; |
1688 | do_continue = css_is_ancestor( | 1770 | |
1689 | &to->css, | 1771 | /* If killed, bypass charge */ |
1690 | &mem_over_limit->css); | 1772 | if (fatal_signal_pending(current)) { |
1691 | else | 1773 | css_put(&mem->css); |
1692 | do_continue = (to == mem_over_limit); | 1774 | goto bypass; |
1693 | css_put(&to->css); | ||
1694 | } | ||
1695 | if (do_continue) { | ||
1696 | DEFINE_WAIT(wait); | ||
1697 | prepare_to_wait(&mc.waitq, &wait, | ||
1698 | TASK_INTERRUPTIBLE); | ||
1699 | /* moving charge context might have finished. */ | ||
1700 | if (mc.moving_task) | ||
1701 | schedule(); | ||
1702 | finish_wait(&mc.waitq, &wait); | ||
1703 | continue; | ||
1704 | } | ||
1705 | } | 1775 | } |
1706 | 1776 | ||
1707 | if (!nr_retries--) { | 1777 | oom_check = false; |
1708 | if (!oom) | 1778 | if (oom && !nr_oom_retries) { |
1779 | oom_check = true; | ||
1780 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
1781 | } | ||
1782 | |||
1783 | ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); | ||
1784 | |||
1785 | switch (ret) { | ||
1786 | case CHARGE_OK: | ||
1787 | break; | ||
1788 | case CHARGE_RETRY: /* not in OOM situation but retry */ | ||
1789 | csize = PAGE_SIZE; | ||
1790 | css_put(&mem->css); | ||
1791 | mem = NULL; | ||
1792 | goto again; | ||
1793 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ | ||
1794 | css_put(&mem->css); | ||
1795 | goto nomem; | ||
1796 | case CHARGE_NOMEM: /* OOM routine works */ | ||
1797 | if (!oom) { | ||
1798 | css_put(&mem->css); | ||
1709 | goto nomem; | 1799 | goto nomem; |
1710 | if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) { | ||
1711 | nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
1712 | continue; | ||
1713 | } | 1800 | } |
1714 | /* When we reach here, current task is dying .*/ | 1801 | /* If oom, we never return -ENOMEM */ |
1802 | nr_oom_retries--; | ||
1803 | break; | ||
1804 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | ||
1715 | css_put(&mem->css); | 1805 | css_put(&mem->css); |
1716 | goto bypass; | 1806 | goto bypass; |
1717 | } | 1807 | } |
1718 | } | 1808 | } while (ret != CHARGE_OK); |
1809 | |||
1719 | if (csize > PAGE_SIZE) | 1810 | if (csize > PAGE_SIZE) |
1720 | refill_stock(mem, csize - PAGE_SIZE); | 1811 | refill_stock(mem, csize - PAGE_SIZE); |
1812 | css_put(&mem->css); | ||
1721 | done: | 1813 | done: |
1814 | *memcg = mem; | ||
1722 | return 0; | 1815 | return 0; |
1723 | nomem: | 1816 | nomem: |
1724 | css_put(&mem->css); | 1817 | *memcg = NULL; |
1725 | return -ENOMEM; | 1818 | return -ENOMEM; |
1726 | bypass: | 1819 | bypass: |
1727 | *memcg = NULL; | 1820 | *memcg = NULL; |
@@ -1740,11 +1833,7 @@ static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, | |||
1740 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); | 1833 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); |
1741 | if (do_swap_account) | 1834 | if (do_swap_account) |
1742 | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); | 1835 | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); |
1743 | VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags)); | ||
1744 | WARN_ON_ONCE(count > INT_MAX); | ||
1745 | __css_put(&mem->css, (int)count); | ||
1746 | } | 1836 | } |
1747 | /* we don't need css_put for root */ | ||
1748 | } | 1837 | } |
1749 | 1838 | ||
1750 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) | 1839 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) |
@@ -1972,10 +2061,9 @@ out: | |||
1972 | * < 0 if the cgroup is over its limit | 2061 | * < 0 if the cgroup is over its limit |
1973 | */ | 2062 | */ |
1974 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 2063 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
1975 | gfp_t gfp_mask, enum charge_type ctype, | 2064 | gfp_t gfp_mask, enum charge_type ctype) |
1976 | struct mem_cgroup *memcg) | ||
1977 | { | 2065 | { |
1978 | struct mem_cgroup *mem; | 2066 | struct mem_cgroup *mem = NULL; |
1979 | struct page_cgroup *pc; | 2067 | struct page_cgroup *pc; |
1980 | int ret; | 2068 | int ret; |
1981 | 2069 | ||
@@ -1985,7 +2073,6 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
1985 | return 0; | 2073 | return 0; |
1986 | prefetchw(pc); | 2074 | prefetchw(pc); |
1987 | 2075 | ||
1988 | mem = memcg; | ||
1989 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); | 2076 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); |
1990 | if (ret || !mem) | 2077 | if (ret || !mem) |
1991 | return ret; | 2078 | return ret; |
@@ -2013,7 +2100,7 @@ int mem_cgroup_newpage_charge(struct page *page, | |||
2013 | if (unlikely(!mm)) | 2100 | if (unlikely(!mm)) |
2014 | mm = &init_mm; | 2101 | mm = &init_mm; |
2015 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 2102 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
2016 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); | 2103 | MEM_CGROUP_CHARGE_TYPE_MAPPED); |
2017 | } | 2104 | } |
2018 | 2105 | ||
2019 | static void | 2106 | static void |
@@ -2023,7 +2110,6 @@ __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | |||
2023 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 2110 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
2024 | gfp_t gfp_mask) | 2111 | gfp_t gfp_mask) |
2025 | { | 2112 | { |
2026 | struct mem_cgroup *mem = NULL; | ||
2027 | int ret; | 2113 | int ret; |
2028 | 2114 | ||
2029 | if (mem_cgroup_disabled()) | 2115 | if (mem_cgroup_disabled()) |
@@ -2044,7 +2130,6 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
2044 | if (!(gfp_mask & __GFP_WAIT)) { | 2130 | if (!(gfp_mask & __GFP_WAIT)) { |
2045 | struct page_cgroup *pc; | 2131 | struct page_cgroup *pc; |
2046 | 2132 | ||
2047 | |||
2048 | pc = lookup_page_cgroup(page); | 2133 | pc = lookup_page_cgroup(page); |
2049 | if (!pc) | 2134 | if (!pc) |
2050 | return 0; | 2135 | return 0; |
@@ -2056,22 +2141,24 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
2056 | unlock_page_cgroup(pc); | 2141 | unlock_page_cgroup(pc); |
2057 | } | 2142 | } |
2058 | 2143 | ||
2059 | if (unlikely(!mm && !mem)) | 2144 | if (unlikely(!mm)) |
2060 | mm = &init_mm; | 2145 | mm = &init_mm; |
2061 | 2146 | ||
2062 | if (page_is_file_cache(page)) | 2147 | if (page_is_file_cache(page)) |
2063 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 2148 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
2064 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 2149 | MEM_CGROUP_CHARGE_TYPE_CACHE); |
2065 | 2150 | ||
2066 | /* shmem */ | 2151 | /* shmem */ |
2067 | if (PageSwapCache(page)) { | 2152 | if (PageSwapCache(page)) { |
2153 | struct mem_cgroup *mem = NULL; | ||
2154 | |||
2068 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | 2155 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); |
2069 | if (!ret) | 2156 | if (!ret) |
2070 | __mem_cgroup_commit_charge_swapin(page, mem, | 2157 | __mem_cgroup_commit_charge_swapin(page, mem, |
2071 | MEM_CGROUP_CHARGE_TYPE_SHMEM); | 2158 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
2072 | } else | 2159 | } else |
2073 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | 2160 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, |
2074 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); | 2161 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
2075 | 2162 | ||
2076 | return ret; | 2163 | return ret; |
2077 | } | 2164 | } |
@@ -2107,7 +2194,6 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | |||
2107 | goto charge_cur_mm; | 2194 | goto charge_cur_mm; |
2108 | *ptr = mem; | 2195 | *ptr = mem; |
2109 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); | 2196 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); |
2110 | /* drop extra refcnt from tryget */ | ||
2111 | css_put(&mem->css); | 2197 | css_put(&mem->css); |
2112 | return ret; | 2198 | return ret; |
2113 | charge_cur_mm: | 2199 | charge_cur_mm: |
@@ -2238,7 +2324,6 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
2238 | { | 2324 | { |
2239 | struct page_cgroup *pc; | 2325 | struct page_cgroup *pc; |
2240 | struct mem_cgroup *mem = NULL; | 2326 | struct mem_cgroup *mem = NULL; |
2241 | struct mem_cgroup_per_zone *mz; | ||
2242 | 2327 | ||
2243 | if (mem_cgroup_disabled()) | 2328 | if (mem_cgroup_disabled()) |
2244 | return NULL; | 2329 | return NULL; |
@@ -2278,10 +2363,6 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
2278 | break; | 2363 | break; |
2279 | } | 2364 | } |
2280 | 2365 | ||
2281 | if (!mem_cgroup_is_root(mem)) | ||
2282 | __do_uncharge(mem, ctype); | ||
2283 | if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | ||
2284 | mem_cgroup_swap_statistics(mem, true); | ||
2285 | mem_cgroup_charge_statistics(mem, pc, false); | 2366 | mem_cgroup_charge_statistics(mem, pc, false); |
2286 | 2367 | ||
2287 | ClearPageCgroupUsed(pc); | 2368 | ClearPageCgroupUsed(pc); |
@@ -2292,13 +2373,18 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
2292 | * special functions. | 2373 | * special functions. |
2293 | */ | 2374 | */ |
2294 | 2375 | ||
2295 | mz = page_cgroup_zoneinfo(pc); | ||
2296 | unlock_page_cgroup(pc); | 2376 | unlock_page_cgroup(pc); |
2297 | 2377 | /* | |
2378 | * even after unlock, we have mem->res.usage here and this memcg | ||
2379 | * will never be freed. | ||
2380 | */ | ||
2298 | memcg_check_events(mem, page); | 2381 | memcg_check_events(mem, page); |
2299 | /* at swapout, this memcg will be accessed to record to swap */ | 2382 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
2300 | if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 2383 | mem_cgroup_swap_statistics(mem, true); |
2301 | css_put(&mem->css); | 2384 | mem_cgroup_get(mem); |
2385 | } | ||
2386 | if (!mem_cgroup_is_root(mem)) | ||
2387 | __do_uncharge(mem, ctype); | ||
2302 | 2388 | ||
2303 | return mem; | 2389 | return mem; |
2304 | 2390 | ||
@@ -2385,13 +2471,12 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |||
2385 | 2471 | ||
2386 | memcg = __mem_cgroup_uncharge_common(page, ctype); | 2472 | memcg = __mem_cgroup_uncharge_common(page, ctype); |
2387 | 2473 | ||
2388 | /* record memcg information */ | 2474 | /* |
2389 | if (do_swap_account && swapout && memcg) { | 2475 | * record memcg information, if swapout && memcg != NULL, |
2476 | * mem_cgroup_get() was called in uncharge(). | ||
2477 | */ | ||
2478 | if (do_swap_account && swapout && memcg) | ||
2390 | swap_cgroup_record(ent, css_id(&memcg->css)); | 2479 | swap_cgroup_record(ent, css_id(&memcg->css)); |
2391 | mem_cgroup_get(memcg); | ||
2392 | } | ||
2393 | if (swapout && memcg) | ||
2394 | css_put(&memcg->css); | ||
2395 | } | 2480 | } |
2396 | #endif | 2481 | #endif |
2397 | 2482 | ||
@@ -2469,7 +2554,6 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry, | |||
2469 | */ | 2554 | */ |
2470 | if (!mem_cgroup_is_root(to)) | 2555 | if (!mem_cgroup_is_root(to)) |
2471 | res_counter_uncharge(&to->res, PAGE_SIZE); | 2556 | res_counter_uncharge(&to->res, PAGE_SIZE); |
2472 | css_put(&to->css); | ||
2473 | } | 2557 | } |
2474 | return 0; | 2558 | return 0; |
2475 | } | 2559 | } |
@@ -2604,11 +2688,8 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem, | |||
2604 | ClearPageCgroupMigration(pc); | 2688 | ClearPageCgroupMigration(pc); |
2605 | unlock_page_cgroup(pc); | 2689 | unlock_page_cgroup(pc); |
2606 | 2690 | ||
2607 | if (unused != oldpage) | ||
2608 | pc = lookup_page_cgroup(unused); | ||
2609 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); | 2691 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); |
2610 | 2692 | ||
2611 | pc = lookup_page_cgroup(used); | ||
2612 | /* | 2693 | /* |
2613 | * If a page is a file cache, radix-tree replacement is very atomic | 2694 | * If a page is a file cache, radix-tree replacement is very atomic |
2614 | * and we can skip this check. When it was an Anon page, its mapcount | 2695 | * and we can skip this check. When it was an Anon page, its mapcount |
@@ -2784,8 +2865,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | |||
2784 | } | 2865 | } |
2785 | 2866 | ||
2786 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 2867 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
2787 | gfp_t gfp_mask, int nid, | 2868 | gfp_t gfp_mask) |
2788 | int zid) | ||
2789 | { | 2869 | { |
2790 | unsigned long nr_reclaimed = 0; | 2870 | unsigned long nr_reclaimed = 0; |
2791 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 2871 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; |
@@ -2797,7 +2877,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | |||
2797 | if (order > 0) | 2877 | if (order > 0) |
2798 | return 0; | 2878 | return 0; |
2799 | 2879 | ||
2800 | mctz = soft_limit_tree_node_zone(nid, zid); | 2880 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
2801 | /* | 2881 | /* |
2802 | * This loop can run a while, specially if mem_cgroup's continuously | 2882 | * This loop can run a while, specially if mem_cgroup's continuously |
2803 | * keep exceeding their soft limit and putting the system under | 2883 | * keep exceeding their soft limit and putting the system under |
@@ -3752,8 +3832,6 @@ static int mem_cgroup_oom_control_read(struct cgroup *cgrp, | |||
3752 | return 0; | 3832 | return 0; |
3753 | } | 3833 | } |
3754 | 3834 | ||
3755 | /* | ||
3756 | */ | ||
3757 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, | 3835 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
3758 | struct cftype *cft, u64 val) | 3836 | struct cftype *cft, u64 val) |
3759 | { | 3837 | { |
@@ -4173,9 +4251,6 @@ static int mem_cgroup_do_precharge(unsigned long count) | |||
4173 | goto one_by_one; | 4251 | goto one_by_one; |
4174 | } | 4252 | } |
4175 | mc.precharge += count; | 4253 | mc.precharge += count; |
4176 | VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags)); | ||
4177 | WARN_ON_ONCE(count > INT_MAX); | ||
4178 | __css_get(&mem->css, (int)count); | ||
4179 | return ret; | 4254 | return ret; |
4180 | } | 4255 | } |
4181 | one_by_one: | 4256 | one_by_one: |
@@ -4393,11 +4468,13 @@ static int mem_cgroup_precharge_mc(struct mm_struct *mm) | |||
4393 | 4468 | ||
4394 | static void mem_cgroup_clear_mc(void) | 4469 | static void mem_cgroup_clear_mc(void) |
4395 | { | 4470 | { |
4471 | struct mem_cgroup *from = mc.from; | ||
4472 | struct mem_cgroup *to = mc.to; | ||
4473 | |||
4396 | /* we must uncharge all the leftover precharges from mc.to */ | 4474 | /* we must uncharge all the leftover precharges from mc.to */ |
4397 | if (mc.precharge) { | 4475 | if (mc.precharge) { |
4398 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | 4476 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); |
4399 | mc.precharge = 0; | 4477 | mc.precharge = 0; |
4400 | memcg_oom_recover(mc.to); | ||
4401 | } | 4478 | } |
4402 | /* | 4479 | /* |
4403 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 4480 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so |
@@ -4406,11 +4483,9 @@ static void mem_cgroup_clear_mc(void) | |||
4406 | if (mc.moved_charge) { | 4483 | if (mc.moved_charge) { |
4407 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | 4484 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); |
4408 | mc.moved_charge = 0; | 4485 | mc.moved_charge = 0; |
4409 | memcg_oom_recover(mc.from); | ||
4410 | } | 4486 | } |
4411 | /* we must fixup refcnts and charges */ | 4487 | /* we must fixup refcnts and charges */ |
4412 | if (mc.moved_swap) { | 4488 | if (mc.moved_swap) { |
4413 | WARN_ON_ONCE(mc.moved_swap > INT_MAX); | ||
4414 | /* uncharge swap account from the old cgroup */ | 4489 | /* uncharge swap account from the old cgroup */ |
4415 | if (!mem_cgroup_is_root(mc.from)) | 4490 | if (!mem_cgroup_is_root(mc.from)) |
4416 | res_counter_uncharge(&mc.from->memsw, | 4491 | res_counter_uncharge(&mc.from->memsw, |
@@ -4424,16 +4499,18 @@ static void mem_cgroup_clear_mc(void) | |||
4424 | */ | 4499 | */ |
4425 | res_counter_uncharge(&mc.to->res, | 4500 | res_counter_uncharge(&mc.to->res, |
4426 | PAGE_SIZE * mc.moved_swap); | 4501 | PAGE_SIZE * mc.moved_swap); |
4427 | VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags)); | ||
4428 | __css_put(&mc.to->css, mc.moved_swap); | ||
4429 | } | 4502 | } |
4430 | /* we've already done mem_cgroup_get(mc.to) */ | 4503 | /* we've already done mem_cgroup_get(mc.to) */ |
4431 | 4504 | ||
4432 | mc.moved_swap = 0; | 4505 | mc.moved_swap = 0; |
4433 | } | 4506 | } |
4507 | spin_lock(&mc.lock); | ||
4434 | mc.from = NULL; | 4508 | mc.from = NULL; |
4435 | mc.to = NULL; | 4509 | mc.to = NULL; |
4436 | mc.moving_task = NULL; | 4510 | mc.moving_task = NULL; |
4511 | spin_unlock(&mc.lock); | ||
4512 | memcg_oom_recover(from); | ||
4513 | memcg_oom_recover(to); | ||
4437 | wake_up_all(&mc.waitq); | 4514 | wake_up_all(&mc.waitq); |
4438 | } | 4515 | } |
4439 | 4516 | ||
@@ -4462,12 +4539,14 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | |||
4462 | VM_BUG_ON(mc.moved_charge); | 4539 | VM_BUG_ON(mc.moved_charge); |
4463 | VM_BUG_ON(mc.moved_swap); | 4540 | VM_BUG_ON(mc.moved_swap); |
4464 | VM_BUG_ON(mc.moving_task); | 4541 | VM_BUG_ON(mc.moving_task); |
4542 | spin_lock(&mc.lock); | ||
4465 | mc.from = from; | 4543 | mc.from = from; |
4466 | mc.to = mem; | 4544 | mc.to = mem; |
4467 | mc.precharge = 0; | 4545 | mc.precharge = 0; |
4468 | mc.moved_charge = 0; | 4546 | mc.moved_charge = 0; |
4469 | mc.moved_swap = 0; | 4547 | mc.moved_swap = 0; |
4470 | mc.moving_task = current; | 4548 | mc.moving_task = current; |
4549 | spin_unlock(&mc.lock); | ||
4471 | 4550 | ||
4472 | ret = mem_cgroup_precharge_mc(mm); | 4551 | ret = mem_cgroup_precharge_mc(mm); |
4473 | if (ret) | 4552 | if (ret) |
diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 6b44e52cacaa..9c26eeca1342 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c | |||
@@ -46,6 +46,7 @@ | |||
46 | #include <linux/suspend.h> | 46 | #include <linux/suspend.h> |
47 | #include <linux/slab.h> | 47 | #include <linux/slab.h> |
48 | #include <linux/swapops.h> | 48 | #include <linux/swapops.h> |
49 | #include <linux/hugetlb.h> | ||
49 | #include "internal.h" | 50 | #include "internal.h" |
50 | 51 | ||
51 | int sysctl_memory_failure_early_kill __read_mostly = 0; | 52 | int sysctl_memory_failure_early_kill __read_mostly = 0; |
@@ -690,17 +691,29 @@ static int me_swapcache_clean(struct page *p, unsigned long pfn) | |||
690 | /* | 691 | /* |
691 | * Huge pages. Needs work. | 692 | * Huge pages. Needs work. |
692 | * Issues: | 693 | * Issues: |
693 | * No rmap support so we cannot find the original mapper. In theory could walk | 694 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) |
694 | * all MMs and look for the mappings, but that would be non atomic and racy. | 695 | * To narrow down kill region to one page, we need to break up pmd. |
695 | * Need rmap for hugepages for this. Alternatively we could employ a heuristic, | 696 | * - To support soft-offlining for hugepage, we need to support hugepage |
696 | * like just walking the current process and hoping it has it mapped (that | 697 | * migration. |
697 | * should be usually true for the common "shared database cache" case) | ||
698 | * Should handle free huge pages and dequeue them too, but this needs to | ||
699 | * handle huge page accounting correctly. | ||
700 | */ | 698 | */ |
701 | static int me_huge_page(struct page *p, unsigned long pfn) | 699 | static int me_huge_page(struct page *p, unsigned long pfn) |
702 | { | 700 | { |
703 | return FAILED; | 701 | struct page *hpage = compound_head(p); |
702 | /* | ||
703 | * We can safely recover from error on free or reserved (i.e. | ||
704 | * not in-use) hugepage by dequeuing it from freelist. | ||
705 | * To check whether a hugepage is in-use or not, we can't use | ||
706 | * page->lru because it can be used in other hugepage operations, | ||
707 | * such as __unmap_hugepage_range() and gather_surplus_pages(). | ||
708 | * So instead we use page_mapping() and PageAnon(). | ||
709 | * We assume that this function is called with page lock held, | ||
710 | * so there is no race between isolation and mapping/unmapping. | ||
711 | */ | ||
712 | if (!(page_mapping(hpage) || PageAnon(hpage))) { | ||
713 | __isolate_hwpoisoned_huge_page(hpage); | ||
714 | return RECOVERED; | ||
715 | } | ||
716 | return DELAYED; | ||
704 | } | 717 | } |
705 | 718 | ||
706 | /* | 719 | /* |
@@ -838,6 +851,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
838 | int ret; | 851 | int ret; |
839 | int i; | 852 | int i; |
840 | int kill = 1; | 853 | int kill = 1; |
854 | struct page *hpage = compound_head(p); | ||
841 | 855 | ||
842 | if (PageReserved(p) || PageSlab(p)) | 856 | if (PageReserved(p) || PageSlab(p)) |
843 | return SWAP_SUCCESS; | 857 | return SWAP_SUCCESS; |
@@ -846,10 +860,10 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
846 | * This check implies we don't kill processes if their pages | 860 | * This check implies we don't kill processes if their pages |
847 | * are in the swap cache early. Those are always late kills. | 861 | * are in the swap cache early. Those are always late kills. |
848 | */ | 862 | */ |
849 | if (!page_mapped(p)) | 863 | if (!page_mapped(hpage)) |
850 | return SWAP_SUCCESS; | 864 | return SWAP_SUCCESS; |
851 | 865 | ||
852 | if (PageCompound(p) || PageKsm(p)) | 866 | if (PageKsm(p)) |
853 | return SWAP_FAIL; | 867 | return SWAP_FAIL; |
854 | 868 | ||
855 | if (PageSwapCache(p)) { | 869 | if (PageSwapCache(p)) { |
@@ -864,10 +878,11 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
864 | * XXX: the dirty test could be racy: set_page_dirty() may not always | 878 | * XXX: the dirty test could be racy: set_page_dirty() may not always |
865 | * be called inside page lock (it's recommended but not enforced). | 879 | * be called inside page lock (it's recommended but not enforced). |
866 | */ | 880 | */ |
867 | mapping = page_mapping(p); | 881 | mapping = page_mapping(hpage); |
868 | if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { | 882 | if (!PageDirty(hpage) && mapping && |
869 | if (page_mkclean(p)) { | 883 | mapping_cap_writeback_dirty(mapping)) { |
870 | SetPageDirty(p); | 884 | if (page_mkclean(hpage)) { |
885 | SetPageDirty(hpage); | ||
871 | } else { | 886 | } else { |
872 | kill = 0; | 887 | kill = 0; |
873 | ttu |= TTU_IGNORE_HWPOISON; | 888 | ttu |= TTU_IGNORE_HWPOISON; |
@@ -886,14 +901,14 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
886 | * there's nothing that can be done. | 901 | * there's nothing that can be done. |
887 | */ | 902 | */ |
888 | if (kill) | 903 | if (kill) |
889 | collect_procs(p, &tokill); | 904 | collect_procs(hpage, &tokill); |
890 | 905 | ||
891 | /* | 906 | /* |
892 | * try_to_unmap can fail temporarily due to races. | 907 | * try_to_unmap can fail temporarily due to races. |
893 | * Try a few times (RED-PEN better strategy?) | 908 | * Try a few times (RED-PEN better strategy?) |
894 | */ | 909 | */ |
895 | for (i = 0; i < N_UNMAP_TRIES; i++) { | 910 | for (i = 0; i < N_UNMAP_TRIES; i++) { |
896 | ret = try_to_unmap(p, ttu); | 911 | ret = try_to_unmap(hpage, ttu); |
897 | if (ret == SWAP_SUCCESS) | 912 | if (ret == SWAP_SUCCESS) |
898 | break; | 913 | break; |
899 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); | 914 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); |
@@ -901,7 +916,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
901 | 916 | ||
902 | if (ret != SWAP_SUCCESS) | 917 | if (ret != SWAP_SUCCESS) |
903 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | 918 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", |
904 | pfn, page_mapcount(p)); | 919 | pfn, page_mapcount(hpage)); |
905 | 920 | ||
906 | /* | 921 | /* |
907 | * Now that the dirty bit has been propagated to the | 922 | * Now that the dirty bit has been propagated to the |
@@ -912,17 +927,35 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
912 | * use a more force-full uncatchable kill to prevent | 927 | * use a more force-full uncatchable kill to prevent |
913 | * any accesses to the poisoned memory. | 928 | * any accesses to the poisoned memory. |
914 | */ | 929 | */ |
915 | kill_procs_ao(&tokill, !!PageDirty(p), trapno, | 930 | kill_procs_ao(&tokill, !!PageDirty(hpage), trapno, |
916 | ret != SWAP_SUCCESS, pfn); | 931 | ret != SWAP_SUCCESS, pfn); |
917 | 932 | ||
918 | return ret; | 933 | return ret; |
919 | } | 934 | } |
920 | 935 | ||
936 | static void set_page_hwpoison_huge_page(struct page *hpage) | ||
937 | { | ||
938 | int i; | ||
939 | int nr_pages = 1 << compound_order(hpage); | ||
940 | for (i = 0; i < nr_pages; i++) | ||
941 | SetPageHWPoison(hpage + i); | ||
942 | } | ||
943 | |||
944 | static void clear_page_hwpoison_huge_page(struct page *hpage) | ||
945 | { | ||
946 | int i; | ||
947 | int nr_pages = 1 << compound_order(hpage); | ||
948 | for (i = 0; i < nr_pages; i++) | ||
949 | ClearPageHWPoison(hpage + i); | ||
950 | } | ||
951 | |||
921 | int __memory_failure(unsigned long pfn, int trapno, int flags) | 952 | int __memory_failure(unsigned long pfn, int trapno, int flags) |
922 | { | 953 | { |
923 | struct page_state *ps; | 954 | struct page_state *ps; |
924 | struct page *p; | 955 | struct page *p; |
956 | struct page *hpage; | ||
925 | int res; | 957 | int res; |
958 | unsigned int nr_pages; | ||
926 | 959 | ||
927 | if (!sysctl_memory_failure_recovery) | 960 | if (!sysctl_memory_failure_recovery) |
928 | panic("Memory failure from trap %d on page %lx", trapno, pfn); | 961 | panic("Memory failure from trap %d on page %lx", trapno, pfn); |
@@ -935,12 +968,14 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
935 | } | 968 | } |
936 | 969 | ||
937 | p = pfn_to_page(pfn); | 970 | p = pfn_to_page(pfn); |
971 | hpage = compound_head(p); | ||
938 | if (TestSetPageHWPoison(p)) { | 972 | if (TestSetPageHWPoison(p)) { |
939 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); | 973 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); |
940 | return 0; | 974 | return 0; |
941 | } | 975 | } |
942 | 976 | ||
943 | atomic_long_add(1, &mce_bad_pages); | 977 | nr_pages = 1 << compound_order(hpage); |
978 | atomic_long_add(nr_pages, &mce_bad_pages); | ||
944 | 979 | ||
945 | /* | 980 | /* |
946 | * We need/can do nothing about count=0 pages. | 981 | * We need/can do nothing about count=0 pages. |
@@ -954,7 +989,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
954 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. | 989 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. |
955 | */ | 990 | */ |
956 | if (!(flags & MF_COUNT_INCREASED) && | 991 | if (!(flags & MF_COUNT_INCREASED) && |
957 | !get_page_unless_zero(compound_head(p))) { | 992 | !get_page_unless_zero(hpage)) { |
958 | if (is_free_buddy_page(p)) { | 993 | if (is_free_buddy_page(p)) { |
959 | action_result(pfn, "free buddy", DELAYED); | 994 | action_result(pfn, "free buddy", DELAYED); |
960 | return 0; | 995 | return 0; |
@@ -972,9 +1007,9 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
972 | * The check (unnecessarily) ignores LRU pages being isolated and | 1007 | * The check (unnecessarily) ignores LRU pages being isolated and |
973 | * walked by the page reclaim code, however that's not a big loss. | 1008 | * walked by the page reclaim code, however that's not a big loss. |
974 | */ | 1009 | */ |
975 | if (!PageLRU(p)) | 1010 | if (!PageLRU(p) && !PageHuge(p)) |
976 | shake_page(p, 0); | 1011 | shake_page(p, 0); |
977 | if (!PageLRU(p)) { | 1012 | if (!PageLRU(p) && !PageHuge(p)) { |
978 | /* | 1013 | /* |
979 | * shake_page could have turned it free. | 1014 | * shake_page could have turned it free. |
980 | */ | 1015 | */ |
@@ -992,7 +1027,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
992 | * It's very difficult to mess with pages currently under IO | 1027 | * It's very difficult to mess with pages currently under IO |
993 | * and in many cases impossible, so we just avoid it here. | 1028 | * and in many cases impossible, so we just avoid it here. |
994 | */ | 1029 | */ |
995 | lock_page_nosync(p); | 1030 | lock_page_nosync(hpage); |
996 | 1031 | ||
997 | /* | 1032 | /* |
998 | * unpoison always clear PG_hwpoison inside page lock | 1033 | * unpoison always clear PG_hwpoison inside page lock |
@@ -1004,11 +1039,31 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
1004 | } | 1039 | } |
1005 | if (hwpoison_filter(p)) { | 1040 | if (hwpoison_filter(p)) { |
1006 | if (TestClearPageHWPoison(p)) | 1041 | if (TestClearPageHWPoison(p)) |
1007 | atomic_long_dec(&mce_bad_pages); | 1042 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1008 | unlock_page(p); | 1043 | unlock_page(hpage); |
1009 | put_page(p); | 1044 | put_page(hpage); |
1045 | return 0; | ||
1046 | } | ||
1047 | |||
1048 | /* | ||
1049 | * For error on the tail page, we should set PG_hwpoison | ||
1050 | * on the head page to show that the hugepage is hwpoisoned | ||
1051 | */ | ||
1052 | if (PageTail(p) && TestSetPageHWPoison(hpage)) { | ||
1053 | action_result(pfn, "hugepage already hardware poisoned", | ||
1054 | IGNORED); | ||
1055 | unlock_page(hpage); | ||
1056 | put_page(hpage); | ||
1010 | return 0; | 1057 | return 0; |
1011 | } | 1058 | } |
1059 | /* | ||
1060 | * Set PG_hwpoison on all pages in an error hugepage, | ||
1061 | * because containment is done in hugepage unit for now. | ||
1062 | * Since we have done TestSetPageHWPoison() for the head page with | ||
1063 | * page lock held, we can safely set PG_hwpoison bits on tail pages. | ||
1064 | */ | ||
1065 | if (PageHuge(p)) | ||
1066 | set_page_hwpoison_huge_page(hpage); | ||
1012 | 1067 | ||
1013 | wait_on_page_writeback(p); | 1068 | wait_on_page_writeback(p); |
1014 | 1069 | ||
@@ -1039,7 +1094,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
1039 | } | 1094 | } |
1040 | } | 1095 | } |
1041 | out: | 1096 | out: |
1042 | unlock_page(p); | 1097 | unlock_page(hpage); |
1043 | return res; | 1098 | return res; |
1044 | } | 1099 | } |
1045 | EXPORT_SYMBOL_GPL(__memory_failure); | 1100 | EXPORT_SYMBOL_GPL(__memory_failure); |
@@ -1083,6 +1138,7 @@ int unpoison_memory(unsigned long pfn) | |||
1083 | struct page *page; | 1138 | struct page *page; |
1084 | struct page *p; | 1139 | struct page *p; |
1085 | int freeit = 0; | 1140 | int freeit = 0; |
1141 | unsigned int nr_pages; | ||
1086 | 1142 | ||
1087 | if (!pfn_valid(pfn)) | 1143 | if (!pfn_valid(pfn)) |
1088 | return -ENXIO; | 1144 | return -ENXIO; |
@@ -1095,9 +1151,11 @@ int unpoison_memory(unsigned long pfn) | |||
1095 | return 0; | 1151 | return 0; |
1096 | } | 1152 | } |
1097 | 1153 | ||
1154 | nr_pages = 1 << compound_order(page); | ||
1155 | |||
1098 | if (!get_page_unless_zero(page)) { | 1156 | if (!get_page_unless_zero(page)) { |
1099 | if (TestClearPageHWPoison(p)) | 1157 | if (TestClearPageHWPoison(p)) |
1100 | atomic_long_dec(&mce_bad_pages); | 1158 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1101 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); | 1159 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); |
1102 | return 0; | 1160 | return 0; |
1103 | } | 1161 | } |
@@ -1109,11 +1167,13 @@ int unpoison_memory(unsigned long pfn) | |||
1109 | * the PG_hwpoison page will be caught and isolated on the entrance to | 1167 | * the PG_hwpoison page will be caught and isolated on the entrance to |
1110 | * the free buddy page pool. | 1168 | * the free buddy page pool. |
1111 | */ | 1169 | */ |
1112 | if (TestClearPageHWPoison(p)) { | 1170 | if (TestClearPageHWPoison(page)) { |
1113 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); | 1171 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); |
1114 | atomic_long_dec(&mce_bad_pages); | 1172 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1115 | freeit = 1; | 1173 | freeit = 1; |
1116 | } | 1174 | } |
1175 | if (PageHuge(p)) | ||
1176 | clear_page_hwpoison_huge_page(page); | ||
1117 | unlock_page(page); | 1177 | unlock_page(page); |
1118 | 1178 | ||
1119 | put_page(page); | 1179 | put_page(page); |
diff --git a/mm/memory.c b/mm/memory.c index 858829d06a92..9b3b73f4ae9c 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -2760,6 +2760,26 @@ out_release: | |||
2760 | } | 2760 | } |
2761 | 2761 | ||
2762 | /* | 2762 | /* |
2763 | * This is like a special single-page "expand_downwards()", | ||
2764 | * except we must first make sure that 'address-PAGE_SIZE' | ||
2765 | * doesn't hit another vma. | ||
2766 | * | ||
2767 | * The "find_vma()" will do the right thing even if we wrap | ||
2768 | */ | ||
2769 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | ||
2770 | { | ||
2771 | address &= PAGE_MASK; | ||
2772 | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | ||
2773 | address -= PAGE_SIZE; | ||
2774 | if (find_vma(vma->vm_mm, address) != vma) | ||
2775 | return -ENOMEM; | ||
2776 | |||
2777 | expand_stack(vma, address); | ||
2778 | } | ||
2779 | return 0; | ||
2780 | } | ||
2781 | |||
2782 | /* | ||
2763 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2783 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2764 | * but allow concurrent faults), and pte mapped but not yet locked. | 2784 | * but allow concurrent faults), and pte mapped but not yet locked. |
2765 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2785 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
@@ -2772,6 +2792,11 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2772 | spinlock_t *ptl; | 2792 | spinlock_t *ptl; |
2773 | pte_t entry; | 2793 | pte_t entry; |
2774 | 2794 | ||
2795 | if (check_stack_guard_page(vma, address) < 0) { | ||
2796 | pte_unmap(page_table); | ||
2797 | return VM_FAULT_SIGBUS; | ||
2798 | } | ||
2799 | |||
2775 | if (!(flags & FAULT_FLAG_WRITE)) { | 2800 | if (!(flags & FAULT_FLAG_WRITE)) { |
2776 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), | 2801 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), |
2777 | vma->vm_page_prot)); | 2802 | vma->vm_page_prot)); |
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index d3def05a33d9..5014e50644d1 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
@@ -106,7 +106,7 @@ static void boost_dying_task_prio(struct task_struct *p, | |||
106 | * pointer. Return p, or any of its subthreads with a valid ->mm, with | 106 | * pointer. Return p, or any of its subthreads with a valid ->mm, with |
107 | * task_lock() held. | 107 | * task_lock() held. |
108 | */ | 108 | */ |
109 | static struct task_struct *find_lock_task_mm(struct task_struct *p) | 109 | struct task_struct *find_lock_task_mm(struct task_struct *p) |
110 | { | 110 | { |
111 | struct task_struct *t = p; | 111 | struct task_struct *t = p; |
112 | 112 | ||
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 0c6258bd1ba3..20890d80c7ef 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -253,32 +253,6 @@ static void bdi_writeout_fraction(struct backing_dev_info *bdi, | |||
253 | } | 253 | } |
254 | } | 254 | } |
255 | 255 | ||
256 | /* | ||
257 | * Clip the earned share of dirty pages to that which is actually available. | ||
258 | * This avoids exceeding the total dirty_limit when the floating averages | ||
259 | * fluctuate too quickly. | ||
260 | */ | ||
261 | static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, | ||
262 | unsigned long dirty, unsigned long *pbdi_dirty) | ||
263 | { | ||
264 | unsigned long avail_dirty; | ||
265 | |||
266 | avail_dirty = global_page_state(NR_FILE_DIRTY) + | ||
267 | global_page_state(NR_WRITEBACK) + | ||
268 | global_page_state(NR_UNSTABLE_NFS) + | ||
269 | global_page_state(NR_WRITEBACK_TEMP); | ||
270 | |||
271 | if (avail_dirty < dirty) | ||
272 | avail_dirty = dirty - avail_dirty; | ||
273 | else | ||
274 | avail_dirty = 0; | ||
275 | |||
276 | avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + | ||
277 | bdi_stat(bdi, BDI_WRITEBACK); | ||
278 | |||
279 | *pbdi_dirty = min(*pbdi_dirty, avail_dirty); | ||
280 | } | ||
281 | |||
282 | static inline void task_dirties_fraction(struct task_struct *tsk, | 256 | static inline void task_dirties_fraction(struct task_struct *tsk, |
283 | long *numerator, long *denominator) | 257 | long *numerator, long *denominator) |
284 | { | 258 | { |
@@ -287,16 +261,24 @@ static inline void task_dirties_fraction(struct task_struct *tsk, | |||
287 | } | 261 | } |
288 | 262 | ||
289 | /* | 263 | /* |
290 | * scale the dirty limit | 264 | * task_dirty_limit - scale down dirty throttling threshold for one task |
291 | * | 265 | * |
292 | * task specific dirty limit: | 266 | * task specific dirty limit: |
293 | * | 267 | * |
294 | * dirty -= (dirty/8) * p_{t} | 268 | * dirty -= (dirty/8) * p_{t} |
269 | * | ||
270 | * To protect light/slow dirtying tasks from heavier/fast ones, we start | ||
271 | * throttling individual tasks before reaching the bdi dirty limit. | ||
272 | * Relatively low thresholds will be allocated to heavy dirtiers. So when | ||
273 | * dirty pages grow large, heavy dirtiers will be throttled first, which will | ||
274 | * effectively curb the growth of dirty pages. Light dirtiers with high enough | ||
275 | * dirty threshold may never get throttled. | ||
295 | */ | 276 | */ |
296 | static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) | 277 | static unsigned long task_dirty_limit(struct task_struct *tsk, |
278 | unsigned long bdi_dirty) | ||
297 | { | 279 | { |
298 | long numerator, denominator; | 280 | long numerator, denominator; |
299 | unsigned long dirty = *pdirty; | 281 | unsigned long dirty = bdi_dirty; |
300 | u64 inv = dirty >> 3; | 282 | u64 inv = dirty >> 3; |
301 | 283 | ||
302 | task_dirties_fraction(tsk, &numerator, &denominator); | 284 | task_dirties_fraction(tsk, &numerator, &denominator); |
@@ -304,10 +286,8 @@ static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) | |||
304 | do_div(inv, denominator); | 286 | do_div(inv, denominator); |
305 | 287 | ||
306 | dirty -= inv; | 288 | dirty -= inv; |
307 | if (dirty < *pdirty/2) | ||
308 | dirty = *pdirty/2; | ||
309 | 289 | ||
310 | *pdirty = dirty; | 290 | return max(dirty, bdi_dirty/2); |
311 | } | 291 | } |
312 | 292 | ||
313 | /* | 293 | /* |
@@ -417,9 +397,16 @@ unsigned long determine_dirtyable_memory(void) | |||
417 | return x + 1; /* Ensure that we never return 0 */ | 397 | return x + 1; /* Ensure that we never return 0 */ |
418 | } | 398 | } |
419 | 399 | ||
420 | void | 400 | /** |
421 | get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, | 401 | * global_dirty_limits - background-writeback and dirty-throttling thresholds |
422 | unsigned long *pbdi_dirty, struct backing_dev_info *bdi) | 402 | * |
403 | * Calculate the dirty thresholds based on sysctl parameters | ||
404 | * - vm.dirty_background_ratio or vm.dirty_background_bytes | ||
405 | * - vm.dirty_ratio or vm.dirty_bytes | ||
406 | * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and | ||
407 | * runtime tasks. | ||
408 | */ | ||
409 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) | ||
423 | { | 410 | { |
424 | unsigned long background; | 411 | unsigned long background; |
425 | unsigned long dirty; | 412 | unsigned long dirty; |
@@ -451,27 +438,37 @@ get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, | |||
451 | } | 438 | } |
452 | *pbackground = background; | 439 | *pbackground = background; |
453 | *pdirty = dirty; | 440 | *pdirty = dirty; |
441 | } | ||
442 | |||
443 | /** | ||
444 | * bdi_dirty_limit - @bdi's share of dirty throttling threshold | ||
445 | * | ||
446 | * Allocate high/low dirty limits to fast/slow devices, in order to prevent | ||
447 | * - starving fast devices | ||
448 | * - piling up dirty pages (that will take long time to sync) on slow devices | ||
449 | * | ||
450 | * The bdi's share of dirty limit will be adapting to its throughput and | ||
451 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. | ||
452 | */ | ||
453 | unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) | ||
454 | { | ||
455 | u64 bdi_dirty; | ||
456 | long numerator, denominator; | ||
457 | |||
458 | /* | ||
459 | * Calculate this BDI's share of the dirty ratio. | ||
460 | */ | ||
461 | bdi_writeout_fraction(bdi, &numerator, &denominator); | ||
454 | 462 | ||
455 | if (bdi) { | 463 | bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; |
456 | u64 bdi_dirty; | 464 | bdi_dirty *= numerator; |
457 | long numerator, denominator; | 465 | do_div(bdi_dirty, denominator); |
458 | 466 | ||
459 | /* | 467 | bdi_dirty += (dirty * bdi->min_ratio) / 100; |
460 | * Calculate this BDI's share of the dirty ratio. | 468 | if (bdi_dirty > (dirty * bdi->max_ratio) / 100) |
461 | */ | 469 | bdi_dirty = dirty * bdi->max_ratio / 100; |
462 | bdi_writeout_fraction(bdi, &numerator, &denominator); | 470 | |
463 | 471 | return bdi_dirty; | |
464 | bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; | ||
465 | bdi_dirty *= numerator; | ||
466 | do_div(bdi_dirty, denominator); | ||
467 | bdi_dirty += (dirty * bdi->min_ratio) / 100; | ||
468 | if (bdi_dirty > (dirty * bdi->max_ratio) / 100) | ||
469 | bdi_dirty = dirty * bdi->max_ratio / 100; | ||
470 | |||
471 | *pbdi_dirty = bdi_dirty; | ||
472 | clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); | ||
473 | task_dirty_limit(current, pbdi_dirty); | ||
474 | } | ||
475 | } | 472 | } |
476 | 473 | ||
477 | /* | 474 | /* |
@@ -491,7 +488,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
491 | unsigned long bdi_thresh; | 488 | unsigned long bdi_thresh; |
492 | unsigned long pages_written = 0; | 489 | unsigned long pages_written = 0; |
493 | unsigned long pause = 1; | 490 | unsigned long pause = 1; |
494 | 491 | bool dirty_exceeded = false; | |
495 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 492 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
496 | 493 | ||
497 | for (;;) { | 494 | for (;;) { |
@@ -502,18 +499,11 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
502 | .range_cyclic = 1, | 499 | .range_cyclic = 1, |
503 | }; | 500 | }; |
504 | 501 | ||
505 | get_dirty_limits(&background_thresh, &dirty_thresh, | ||
506 | &bdi_thresh, bdi); | ||
507 | |||
508 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + | 502 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + |
509 | global_page_state(NR_UNSTABLE_NFS); | 503 | global_page_state(NR_UNSTABLE_NFS); |
510 | nr_writeback = global_page_state(NR_WRITEBACK); | 504 | nr_writeback = global_page_state(NR_WRITEBACK); |
511 | 505 | ||
512 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 506 | global_dirty_limits(&background_thresh, &dirty_thresh); |
513 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | ||
514 | |||
515 | if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | ||
516 | break; | ||
517 | 507 | ||
518 | /* | 508 | /* |
519 | * Throttle it only when the background writeback cannot | 509 | * Throttle it only when the background writeback cannot |
@@ -524,26 +514,8 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
524 | (background_thresh + dirty_thresh) / 2) | 514 | (background_thresh + dirty_thresh) / 2) |
525 | break; | 515 | break; |
526 | 516 | ||
527 | if (!bdi->dirty_exceeded) | 517 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); |
528 | bdi->dirty_exceeded = 1; | 518 | bdi_thresh = task_dirty_limit(current, bdi_thresh); |
529 | |||
530 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | ||
531 | * Unstable writes are a feature of certain networked | ||
532 | * filesystems (i.e. NFS) in which data may have been | ||
533 | * written to the server's write cache, but has not yet | ||
534 | * been flushed to permanent storage. | ||
535 | * Only move pages to writeback if this bdi is over its | ||
536 | * threshold otherwise wait until the disk writes catch | ||
537 | * up. | ||
538 | */ | ||
539 | trace_wbc_balance_dirty_start(&wbc, bdi); | ||
540 | if (bdi_nr_reclaimable > bdi_thresh) { | ||
541 | writeback_inodes_wb(&bdi->wb, &wbc); | ||
542 | pages_written += write_chunk - wbc.nr_to_write; | ||
543 | get_dirty_limits(&background_thresh, &dirty_thresh, | ||
544 | &bdi_thresh, bdi); | ||
545 | trace_wbc_balance_dirty_written(&wbc, bdi); | ||
546 | } | ||
547 | 519 | ||
548 | /* | 520 | /* |
549 | * In order to avoid the stacked BDI deadlock we need | 521 | * In order to avoid the stacked BDI deadlock we need |
@@ -558,16 +530,44 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
558 | if (bdi_thresh < 2*bdi_stat_error(bdi)) { | 530 | if (bdi_thresh < 2*bdi_stat_error(bdi)) { |
559 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); | 531 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); |
560 | bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); | 532 | bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); |
561 | } else if (bdi_nr_reclaimable) { | 533 | } else { |
562 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 534 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); |
563 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | 535 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); |
564 | } | 536 | } |
565 | 537 | ||
566 | if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | 538 | /* |
539 | * The bdi thresh is somehow "soft" limit derived from the | ||
540 | * global "hard" limit. The former helps to prevent heavy IO | ||
541 | * bdi or process from holding back light ones; The latter is | ||
542 | * the last resort safeguard. | ||
543 | */ | ||
544 | dirty_exceeded = | ||
545 | (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh) | ||
546 | || (nr_reclaimable + nr_writeback >= dirty_thresh); | ||
547 | |||
548 | if (!dirty_exceeded) | ||
567 | break; | 549 | break; |
568 | if (pages_written >= write_chunk) | ||
569 | break; /* We've done our duty */ | ||
570 | 550 | ||
551 | if (!bdi->dirty_exceeded) | ||
552 | bdi->dirty_exceeded = 1; | ||
553 | |||
554 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | ||
555 | * Unstable writes are a feature of certain networked | ||
556 | * filesystems (i.e. NFS) in which data may have been | ||
557 | * written to the server's write cache, but has not yet | ||
558 | * been flushed to permanent storage. | ||
559 | * Only move pages to writeback if this bdi is over its | ||
560 | * threshold otherwise wait until the disk writes catch | ||
561 | * up. | ||
562 | */ | ||
563 | trace_wbc_balance_dirty_start(&wbc, bdi); | ||
564 | if (bdi_nr_reclaimable > bdi_thresh) { | ||
565 | writeback_inodes_wb(&bdi->wb, &wbc); | ||
566 | pages_written += write_chunk - wbc.nr_to_write; | ||
567 | trace_wbc_balance_dirty_written(&wbc, bdi); | ||
568 | if (pages_written >= write_chunk) | ||
569 | break; /* We've done our duty */ | ||
570 | } | ||
571 | trace_wbc_balance_dirty_wait(&wbc, bdi); | 571 | trace_wbc_balance_dirty_wait(&wbc, bdi); |
572 | __set_current_state(TASK_INTERRUPTIBLE); | 572 | __set_current_state(TASK_INTERRUPTIBLE); |
573 | io_schedule_timeout(pause); | 573 | io_schedule_timeout(pause); |
@@ -581,8 +581,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
581 | pause = HZ / 10; | 581 | pause = HZ / 10; |
582 | } | 582 | } |
583 | 583 | ||
584 | if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && | 584 | if (!dirty_exceeded && bdi->dirty_exceeded) |
585 | bdi->dirty_exceeded) | ||
586 | bdi->dirty_exceeded = 0; | 585 | bdi->dirty_exceeded = 0; |
587 | 586 | ||
588 | if (writeback_in_progress(bdi)) | 587 | if (writeback_in_progress(bdi)) |
@@ -597,9 +596,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
597 | * background_thresh, to keep the amount of dirty memory low. | 596 | * background_thresh, to keep the amount of dirty memory low. |
598 | */ | 597 | */ |
599 | if ((laptop_mode && pages_written) || | 598 | if ((laptop_mode && pages_written) || |
600 | (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) | 599 | (!laptop_mode && (nr_reclaimable > background_thresh))) |
601 | + global_page_state(NR_UNSTABLE_NFS)) | ||
602 | > background_thresh))) | ||
603 | bdi_start_background_writeback(bdi); | 600 | bdi_start_background_writeback(bdi); |
604 | } | 601 | } |
605 | 602 | ||
@@ -663,7 +660,7 @@ void throttle_vm_writeout(gfp_t gfp_mask) | |||
663 | unsigned long dirty_thresh; | 660 | unsigned long dirty_thresh; |
664 | 661 | ||
665 | for ( ; ; ) { | 662 | for ( ; ; ) { |
666 | get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); | 663 | global_dirty_limits(&background_thresh, &dirty_thresh); |
667 | 664 | ||
668 | /* | 665 | /* |
669 | * Boost the allowable dirty threshold a bit for page | 666 | * Boost the allowable dirty threshold a bit for page |
@@ -825,10 +822,10 @@ void __init page_writeback_init(void) | |||
825 | /* | 822 | /* |
826 | * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. | 823 | * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. |
827 | */ | 824 | */ |
828 | #define WRITEBACK_TAG_BATCH 4096 | ||
829 | void tag_pages_for_writeback(struct address_space *mapping, | 825 | void tag_pages_for_writeback(struct address_space *mapping, |
830 | pgoff_t start, pgoff_t end) | 826 | pgoff_t start, pgoff_t end) |
831 | { | 827 | { |
828 | #define WRITEBACK_TAG_BATCH 4096 | ||
832 | unsigned long tagged; | 829 | unsigned long tagged; |
833 | 830 | ||
834 | do { | 831 | do { |
@@ -56,6 +56,7 @@ | |||
56 | #include <linux/memcontrol.h> | 56 | #include <linux/memcontrol.h> |
57 | #include <linux/mmu_notifier.h> | 57 | #include <linux/mmu_notifier.h> |
58 | #include <linux/migrate.h> | 58 | #include <linux/migrate.h> |
59 | #include <linux/hugetlb.h> | ||
59 | 60 | ||
60 | #include <asm/tlbflush.h> | 61 | #include <asm/tlbflush.h> |
61 | 62 | ||
@@ -350,6 +351,8 @@ vma_address(struct page *page, struct vm_area_struct *vma) | |||
350 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 351 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
351 | unsigned long address; | 352 | unsigned long address; |
352 | 353 | ||
354 | if (unlikely(is_vm_hugetlb_page(vma))) | ||
355 | pgoff = page->index << huge_page_order(page_hstate(page)); | ||
353 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 356 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
354 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | 357 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { |
355 | /* page should be within @vma mapping range */ | 358 | /* page should be within @vma mapping range */ |
@@ -394,6 +397,12 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm, | |||
394 | pte_t *pte; | 397 | pte_t *pte; |
395 | spinlock_t *ptl; | 398 | spinlock_t *ptl; |
396 | 399 | ||
400 | if (unlikely(PageHuge(page))) { | ||
401 | pte = huge_pte_offset(mm, address); | ||
402 | ptl = &mm->page_table_lock; | ||
403 | goto check; | ||
404 | } | ||
405 | |||
397 | pgd = pgd_offset(mm, address); | 406 | pgd = pgd_offset(mm, address); |
398 | if (!pgd_present(*pgd)) | 407 | if (!pgd_present(*pgd)) |
399 | return NULL; | 408 | return NULL; |
@@ -414,6 +423,7 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm, | |||
414 | } | 423 | } |
415 | 424 | ||
416 | ptl = pte_lockptr(mm, pmd); | 425 | ptl = pte_lockptr(mm, pmd); |
426 | check: | ||
417 | spin_lock(ptl); | 427 | spin_lock(ptl); |
418 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | 428 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { |
419 | *ptlp = ptl; | 429 | *ptlp = ptl; |
@@ -916,6 +926,12 @@ void page_remove_rmap(struct page *page) | |||
916 | page_clear_dirty(page); | 926 | page_clear_dirty(page); |
917 | set_page_dirty(page); | 927 | set_page_dirty(page); |
918 | } | 928 | } |
929 | /* | ||
930 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED | ||
931 | * and not charged by memcg for now. | ||
932 | */ | ||
933 | if (unlikely(PageHuge(page))) | ||
934 | return; | ||
919 | if (PageAnon(page)) { | 935 | if (PageAnon(page)) { |
920 | mem_cgroup_uncharge_page(page); | 936 | mem_cgroup_uncharge_page(page); |
921 | __dec_zone_page_state(page, NR_ANON_PAGES); | 937 | __dec_zone_page_state(page, NR_ANON_PAGES); |
@@ -1524,3 +1540,46 @@ int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | |||
1524 | return rmap_walk_file(page, rmap_one, arg); | 1540 | return rmap_walk_file(page, rmap_one, arg); |
1525 | } | 1541 | } |
1526 | #endif /* CONFIG_MIGRATION */ | 1542 | #endif /* CONFIG_MIGRATION */ |
1543 | |||
1544 | #ifdef CONFIG_HUGETLB_PAGE | ||
1545 | /* | ||
1546 | * The following three functions are for anonymous (private mapped) hugepages. | ||
1547 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | ||
1548 | * and no lru code, because we handle hugepages differently from common pages. | ||
1549 | */ | ||
1550 | static void __hugepage_set_anon_rmap(struct page *page, | ||
1551 | struct vm_area_struct *vma, unsigned long address, int exclusive) | ||
1552 | { | ||
1553 | struct anon_vma *anon_vma = vma->anon_vma; | ||
1554 | BUG_ON(!anon_vma); | ||
1555 | if (!exclusive) { | ||
1556 | struct anon_vma_chain *avc; | ||
1557 | avc = list_entry(vma->anon_vma_chain.prev, | ||
1558 | struct anon_vma_chain, same_vma); | ||
1559 | anon_vma = avc->anon_vma; | ||
1560 | } | ||
1561 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | ||
1562 | page->mapping = (struct address_space *) anon_vma; | ||
1563 | page->index = linear_page_index(vma, address); | ||
1564 | } | ||
1565 | |||
1566 | void hugepage_add_anon_rmap(struct page *page, | ||
1567 | struct vm_area_struct *vma, unsigned long address) | ||
1568 | { | ||
1569 | struct anon_vma *anon_vma = vma->anon_vma; | ||
1570 | int first; | ||
1571 | BUG_ON(!anon_vma); | ||
1572 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | ||
1573 | first = atomic_inc_and_test(&page->_mapcount); | ||
1574 | if (first) | ||
1575 | __hugepage_set_anon_rmap(page, vma, address, 0); | ||
1576 | } | ||
1577 | |||
1578 | void hugepage_add_new_anon_rmap(struct page *page, | ||
1579 | struct vm_area_struct *vma, unsigned long address) | ||
1580 | { | ||
1581 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | ||
1582 | atomic_set(&page->_mapcount, 0); | ||
1583 | __hugepage_set_anon_rmap(page, vma, address, 1); | ||
1584 | } | ||
1585 | #endif /* CONFIG_HUGETLB_PAGE */ | ||
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 918c51335d64..6b8889da69a6 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -31,6 +31,7 @@ | |||
31 | #include <asm/tlbflush.h> | 31 | #include <asm/tlbflush.h> |
32 | #include <asm/shmparam.h> | 32 | #include <asm/shmparam.h> |
33 | 33 | ||
34 | bool vmap_lazy_unmap __read_mostly = true; | ||
34 | 35 | ||
35 | /*** Page table manipulation functions ***/ | 36 | /*** Page table manipulation functions ***/ |
36 | 37 | ||
@@ -502,6 +503,9 @@ static unsigned long lazy_max_pages(void) | |||
502 | { | 503 | { |
503 | unsigned int log; | 504 | unsigned int log; |
504 | 505 | ||
506 | if (!vmap_lazy_unmap) | ||
507 | return 0; | ||
508 | |||
505 | log = fls(num_online_cpus()); | 509 | log = fls(num_online_cpus()); |
506 | 510 | ||
507 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | 511 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); |
diff --git a/mm/vmscan.c b/mm/vmscan.c index ec5ddccbf82e..c391c320dbaf 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -1969,9 +1969,10 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |||
1969 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | 1969 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, |
1970 | gfp_t gfp_mask, bool noswap, | 1970 | gfp_t gfp_mask, bool noswap, |
1971 | unsigned int swappiness, | 1971 | unsigned int swappiness, |
1972 | struct zone *zone, int nid) | 1972 | struct zone *zone) |
1973 | { | 1973 | { |
1974 | struct scan_control sc = { | 1974 | struct scan_control sc = { |
1975 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | ||
1975 | .may_writepage = !laptop_mode, | 1976 | .may_writepage = !laptop_mode, |
1976 | .may_unmap = 1, | 1977 | .may_unmap = 1, |
1977 | .may_swap = !noswap, | 1978 | .may_swap = !noswap, |
@@ -1979,13 +1980,8 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | |||
1979 | .order = 0, | 1980 | .order = 0, |
1980 | .mem_cgroup = mem, | 1981 | .mem_cgroup = mem, |
1981 | }; | 1982 | }; |
1982 | nodemask_t nm = nodemask_of_node(nid); | ||
1983 | |||
1984 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 1983 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
1985 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 1984 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
1986 | sc.nodemask = &nm; | ||
1987 | sc.nr_reclaimed = 0; | ||
1988 | sc.nr_scanned = 0; | ||
1989 | 1985 | ||
1990 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, | 1986 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, |
1991 | sc.may_writepage, | 1987 | sc.may_writepage, |
@@ -2172,7 +2168,6 @@ loop_again: | |||
2172 | for (i = 0; i <= end_zone; i++) { | 2168 | for (i = 0; i <= end_zone; i++) { |
2173 | struct zone *zone = pgdat->node_zones + i; | 2169 | struct zone *zone = pgdat->node_zones + i; |
2174 | int nr_slab; | 2170 | int nr_slab; |
2175 | int nid, zid; | ||
2176 | 2171 | ||
2177 | if (!populated_zone(zone)) | 2172 | if (!populated_zone(zone)) |
2178 | continue; | 2173 | continue; |
@@ -2182,14 +2177,12 @@ loop_again: | |||
2182 | 2177 | ||
2183 | sc.nr_scanned = 0; | 2178 | sc.nr_scanned = 0; |
2184 | 2179 | ||
2185 | nid = pgdat->node_id; | ||
2186 | zid = zone_idx(zone); | ||
2187 | /* | 2180 | /* |
2188 | * Call soft limit reclaim before calling shrink_zone. | 2181 | * Call soft limit reclaim before calling shrink_zone. |
2189 | * For now we ignore the return value | 2182 | * For now we ignore the return value |
2190 | */ | 2183 | */ |
2191 | mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask, | 2184 | mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); |
2192 | nid, zid); | 2185 | |
2193 | /* | 2186 | /* |
2194 | * We put equal pressure on every zone, unless one | 2187 | * We put equal pressure on every zone, unless one |
2195 | * zone has way too many pages free already. | 2188 | * zone has way too many pages free already. |