diff options
Diffstat (limited to 'mm')
| -rw-r--r-- | mm/backing-dev.c | 15 | ||||
| -rw-r--r-- | mm/memcontrol.c | 2 | ||||
| -rw-r--r-- | mm/mlock.c | 41 | ||||
| -rw-r--r-- | mm/msync.c | 2 | ||||
| -rw-r--r-- | mm/page-writeback.c | 44 | ||||
| -rw-r--r-- | mm/page_alloc.c | 2 | ||||
| -rw-r--r-- | mm/percpu-km.c | 104 | ||||
| -rw-r--r-- | mm/percpu-vm.c | 451 | ||||
| -rw-r--r-- | mm/percpu.c | 585 | ||||
| -rw-r--r-- | mm/shmem.c | 29 | ||||
| -rw-r--r-- | mm/slab.c | 198 | ||||
| -rw-r--r-- | mm/slob.c | 8 | ||||
| -rw-r--r-- | mm/slub.c | 46 | ||||
| -rw-r--r-- | mm/swapfile.c | 14 |
14 files changed, 885 insertions, 656 deletions
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 707d0dc6da0f..660a87a22511 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
| @@ -48,7 +48,6 @@ static struct timer_list sync_supers_timer; | |||
| 48 | 48 | ||
| 49 | static int bdi_sync_supers(void *); | 49 | static int bdi_sync_supers(void *); |
| 50 | static void sync_supers_timer_fn(unsigned long); | 50 | static void sync_supers_timer_fn(unsigned long); |
| 51 | static void arm_supers_timer(void); | ||
| 52 | 51 | ||
| 53 | static void bdi_add_default_flusher_task(struct backing_dev_info *bdi); | 52 | static void bdi_add_default_flusher_task(struct backing_dev_info *bdi); |
| 54 | 53 | ||
| @@ -252,7 +251,7 @@ static int __init default_bdi_init(void) | |||
| 252 | 251 | ||
| 253 | init_timer(&sync_supers_timer); | 252 | init_timer(&sync_supers_timer); |
| 254 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); | 253 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); |
| 255 | arm_supers_timer(); | 254 | bdi_arm_supers_timer(); |
| 256 | 255 | ||
| 257 | err = bdi_init(&default_backing_dev_info); | 256 | err = bdi_init(&default_backing_dev_info); |
| 258 | if (!err) | 257 | if (!err) |
| @@ -374,10 +373,13 @@ static int bdi_sync_supers(void *unused) | |||
| 374 | return 0; | 373 | return 0; |
| 375 | } | 374 | } |
| 376 | 375 | ||
| 377 | static void arm_supers_timer(void) | 376 | void bdi_arm_supers_timer(void) |
| 378 | { | 377 | { |
| 379 | unsigned long next; | 378 | unsigned long next; |
| 380 | 379 | ||
| 380 | if (!dirty_writeback_interval) | ||
| 381 | return; | ||
| 382 | |||
| 381 | next = msecs_to_jiffies(dirty_writeback_interval * 10) + jiffies; | 383 | next = msecs_to_jiffies(dirty_writeback_interval * 10) + jiffies; |
| 382 | mod_timer(&sync_supers_timer, round_jiffies_up(next)); | 384 | mod_timer(&sync_supers_timer, round_jiffies_up(next)); |
| 383 | } | 385 | } |
| @@ -385,7 +387,7 @@ static void arm_supers_timer(void) | |||
| 385 | static void sync_supers_timer_fn(unsigned long unused) | 387 | static void sync_supers_timer_fn(unsigned long unused) |
| 386 | { | 388 | { |
| 387 | wake_up_process(sync_supers_tsk); | 389 | wake_up_process(sync_supers_tsk); |
| 388 | arm_supers_timer(); | 390 | bdi_arm_supers_timer(); |
| 389 | } | 391 | } |
| 390 | 392 | ||
| 391 | static int bdi_forker_task(void *ptr) | 393 | static int bdi_forker_task(void *ptr) |
| @@ -428,7 +430,10 @@ static int bdi_forker_task(void *ptr) | |||
| 428 | 430 | ||
| 429 | spin_unlock_bh(&bdi_lock); | 431 | spin_unlock_bh(&bdi_lock); |
| 430 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); | 432 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); |
| 431 | schedule_timeout(wait); | 433 | if (wait) |
| 434 | schedule_timeout(wait); | ||
| 435 | else | ||
| 436 | schedule(); | ||
| 432 | try_to_freeze(); | 437 | try_to_freeze(); |
| 433 | continue; | 438 | continue; |
| 434 | } | 439 | } |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 8a79a6f0f029..c8569bc298ff 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
| @@ -1438,7 +1438,7 @@ static void drain_local_stock(struct work_struct *dummy) | |||
| 1438 | 1438 | ||
| 1439 | /* | 1439 | /* |
| 1440 | * Cache charges(val) which is from res_counter, to local per_cpu area. | 1440 | * Cache charges(val) which is from res_counter, to local per_cpu area. |
| 1441 | * This will be consumed by consumt_stock() function, later. | 1441 | * This will be consumed by consume_stock() function, later. |
| 1442 | */ | 1442 | */ |
| 1443 | static void refill_stock(struct mem_cgroup *mem, int val) | 1443 | static void refill_stock(struct mem_cgroup *mem, int val) |
| 1444 | { | 1444 | { |
diff --git a/mm/mlock.c b/mm/mlock.c index 8f4e2dfceec1..3f82720e0515 100644 --- a/mm/mlock.c +++ b/mm/mlock.c | |||
| @@ -607,44 +607,3 @@ void user_shm_unlock(size_t size, struct user_struct *user) | |||
| 607 | spin_unlock(&shmlock_user_lock); | 607 | spin_unlock(&shmlock_user_lock); |
| 608 | free_uid(user); | 608 | free_uid(user); |
| 609 | } | 609 | } |
| 610 | |||
| 611 | int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim, | ||
| 612 | size_t size) | ||
| 613 | { | ||
| 614 | unsigned long lim, vm, pgsz; | ||
| 615 | int error = -ENOMEM; | ||
| 616 | |||
| 617 | pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; | ||
| 618 | |||
| 619 | down_write(&mm->mmap_sem); | ||
| 620 | |||
| 621 | lim = ACCESS_ONCE(rlim[RLIMIT_AS].rlim_cur) >> PAGE_SHIFT; | ||
| 622 | vm = mm->total_vm + pgsz; | ||
| 623 | if (lim < vm) | ||
| 624 | goto out; | ||
| 625 | |||
| 626 | lim = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur) >> PAGE_SHIFT; | ||
| 627 | vm = mm->locked_vm + pgsz; | ||
| 628 | if (lim < vm) | ||
| 629 | goto out; | ||
| 630 | |||
| 631 | mm->total_vm += pgsz; | ||
| 632 | mm->locked_vm += pgsz; | ||
| 633 | |||
| 634 | error = 0; | ||
| 635 | out: | ||
| 636 | up_write(&mm->mmap_sem); | ||
| 637 | return error; | ||
| 638 | } | ||
| 639 | |||
| 640 | void refund_locked_memory(struct mm_struct *mm, size_t size) | ||
| 641 | { | ||
| 642 | unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT; | ||
| 643 | |||
| 644 | down_write(&mm->mmap_sem); | ||
| 645 | |||
| 646 | mm->total_vm -= pgsz; | ||
| 647 | mm->locked_vm -= pgsz; | ||
| 648 | |||
| 649 | up_write(&mm->mmap_sem); | ||
| 650 | } | ||
diff --git a/mm/msync.c b/mm/msync.c index 4083209b7f02..632df4527c01 100644 --- a/mm/msync.c +++ b/mm/msync.c | |||
| @@ -82,7 +82,7 @@ SYSCALL_DEFINE3(msync, unsigned long, start, size_t, len, int, flags) | |||
| 82 | (vma->vm_flags & VM_SHARED)) { | 82 | (vma->vm_flags & VM_SHARED)) { |
| 83 | get_file(file); | 83 | get_file(file); |
| 84 | up_read(&mm->mmap_sem); | 84 | up_read(&mm->mmap_sem); |
| 85 | error = vfs_fsync(file, file->f_path.dentry, 0); | 85 | error = vfs_fsync(file, 0); |
| 86 | fput(file); | 86 | fput(file); |
| 87 | if (error || start >= end) | 87 | if (error || start >= end) |
| 88 | goto out; | 88 | goto out; |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 0b19943ecf8b..b289310e2c89 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
| @@ -597,7 +597,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
| 597 | (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) | 597 | (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) |
| 598 | + global_page_state(NR_UNSTABLE_NFS)) | 598 | + global_page_state(NR_UNSTABLE_NFS)) |
| 599 | > background_thresh))) | 599 | > background_thresh))) |
| 600 | bdi_start_writeback(bdi, NULL, 0); | 600 | bdi_start_writeback(bdi, NULL, 0, 0); |
| 601 | } | 601 | } |
| 602 | 602 | ||
| 603 | void set_page_dirty_balance(struct page *page, int page_mkwrite) | 603 | void set_page_dirty_balance(struct page *page, int page_mkwrite) |
| @@ -683,10 +683,6 @@ void throttle_vm_writeout(gfp_t gfp_mask) | |||
| 683 | } | 683 | } |
| 684 | } | 684 | } |
| 685 | 685 | ||
| 686 | static void laptop_timer_fn(unsigned long unused); | ||
| 687 | |||
| 688 | static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); | ||
| 689 | |||
| 690 | /* | 686 | /* |
| 691 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs | 687 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs |
| 692 | */ | 688 | */ |
| @@ -694,24 +690,24 @@ int dirty_writeback_centisecs_handler(ctl_table *table, int write, | |||
| 694 | void __user *buffer, size_t *length, loff_t *ppos) | 690 | void __user *buffer, size_t *length, loff_t *ppos) |
| 695 | { | 691 | { |
| 696 | proc_dointvec(table, write, buffer, length, ppos); | 692 | proc_dointvec(table, write, buffer, length, ppos); |
| 693 | bdi_arm_supers_timer(); | ||
| 697 | return 0; | 694 | return 0; |
| 698 | } | 695 | } |
| 699 | 696 | ||
| 700 | static void do_laptop_sync(struct work_struct *work) | 697 | #ifdef CONFIG_BLOCK |
| 698 | void laptop_mode_timer_fn(unsigned long data) | ||
| 701 | { | 699 | { |
| 702 | wakeup_flusher_threads(0); | 700 | struct request_queue *q = (struct request_queue *)data; |
| 703 | kfree(work); | 701 | int nr_pages = global_page_state(NR_FILE_DIRTY) + |
| 704 | } | 702 | global_page_state(NR_UNSTABLE_NFS); |
| 705 | 703 | ||
| 706 | static void laptop_timer_fn(unsigned long unused) | 704 | /* |
| 707 | { | 705 | * We want to write everything out, not just down to the dirty |
| 708 | struct work_struct *work; | 706 | * threshold |
| 707 | */ | ||
| 709 | 708 | ||
| 710 | work = kmalloc(sizeof(*work), GFP_ATOMIC); | 709 | if (bdi_has_dirty_io(&q->backing_dev_info)) |
| 711 | if (work) { | 710 | bdi_start_writeback(&q->backing_dev_info, NULL, nr_pages, 0); |
| 712 | INIT_WORK(work, do_laptop_sync); | ||
| 713 | schedule_work(work); | ||
| 714 | } | ||
| 715 | } | 711 | } |
| 716 | 712 | ||
| 717 | /* | 713 | /* |
| @@ -719,9 +715,9 @@ static void laptop_timer_fn(unsigned long unused) | |||
| 719 | * of all dirty data a few seconds from now. If the flush is already scheduled | 715 | * of all dirty data a few seconds from now. If the flush is already scheduled |
| 720 | * then push it back - the user is still using the disk. | 716 | * then push it back - the user is still using the disk. |
| 721 | */ | 717 | */ |
| 722 | void laptop_io_completion(void) | 718 | void laptop_io_completion(struct backing_dev_info *info) |
| 723 | { | 719 | { |
| 724 | mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); | 720 | mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); |
| 725 | } | 721 | } |
| 726 | 722 | ||
| 727 | /* | 723 | /* |
| @@ -731,8 +727,16 @@ void laptop_io_completion(void) | |||
| 731 | */ | 727 | */ |
| 732 | void laptop_sync_completion(void) | 728 | void laptop_sync_completion(void) |
| 733 | { | 729 | { |
| 734 | del_timer(&laptop_mode_wb_timer); | 730 | struct backing_dev_info *bdi; |
| 731 | |||
| 732 | rcu_read_lock(); | ||
| 733 | |||
| 734 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) | ||
| 735 | del_timer(&bdi->laptop_mode_wb_timer); | ||
| 736 | |||
| 737 | rcu_read_unlock(); | ||
| 735 | } | 738 | } |
| 739 | #endif | ||
| 736 | 740 | ||
| 737 | /* | 741 | /* |
| 738 | * If ratelimit_pages is too high then we can get into dirty-data overload | 742 | * If ratelimit_pages is too high then we can get into dirty-data overload |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index d03c946d5566..a6326c71b663 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
| @@ -2579,7 +2579,7 @@ static int default_zonelist_order(void) | |||
| 2579 | struct zone *z; | 2579 | struct zone *z; |
| 2580 | int average_size; | 2580 | int average_size; |
| 2581 | /* | 2581 | /* |
| 2582 | * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. | 2582 | * ZONE_DMA and ZONE_DMA32 can be very small area in the system. |
| 2583 | * If they are really small and used heavily, the system can fall | 2583 | * If they are really small and used heavily, the system can fall |
| 2584 | * into OOM very easily. | 2584 | * into OOM very easily. |
| 2585 | * This function detect ZONE_DMA/DMA32 size and confgigures zone order. | 2585 | * This function detect ZONE_DMA/DMA32 size and confgigures zone order. |
diff --git a/mm/percpu-km.c b/mm/percpu-km.c new file mode 100644 index 000000000000..df680855540a --- /dev/null +++ b/mm/percpu-km.c | |||
| @@ -0,0 +1,104 @@ | |||
| 1 | /* | ||
| 2 | * mm/percpu-km.c - kernel memory based chunk allocation | ||
| 3 | * | ||
| 4 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
| 5 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
| 6 | * | ||
| 7 | * This file is released under the GPLv2. | ||
| 8 | * | ||
| 9 | * Chunks are allocated as a contiguous kernel memory using gfp | ||
| 10 | * allocation. This is to be used on nommu architectures. | ||
| 11 | * | ||
| 12 | * To use percpu-km, | ||
| 13 | * | ||
| 14 | * - define CONFIG_NEED_PER_CPU_KM from the arch Kconfig. | ||
| 15 | * | ||
| 16 | * - CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK must not be defined. It's | ||
| 17 | * not compatible with PER_CPU_KM. EMBED_FIRST_CHUNK should work | ||
| 18 | * fine. | ||
| 19 | * | ||
| 20 | * - NUMA is not supported. When setting up the first chunk, | ||
| 21 | * @cpu_distance_fn should be NULL or report all CPUs to be nearer | ||
| 22 | * than or at LOCAL_DISTANCE. | ||
| 23 | * | ||
| 24 | * - It's best if the chunk size is power of two multiple of | ||
| 25 | * PAGE_SIZE. Because each chunk is allocated as a contiguous | ||
| 26 | * kernel memory block using alloc_pages(), memory will be wasted if | ||
| 27 | * chunk size is not aligned. percpu-km code will whine about it. | ||
| 28 | */ | ||
| 29 | |||
| 30 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | ||
| 31 | #error "contiguous percpu allocation is incompatible with paged first chunk" | ||
| 32 | #endif | ||
| 33 | |||
| 34 | #include <linux/log2.h> | ||
| 35 | |||
| 36 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 37 | { | ||
| 38 | /* noop */ | ||
| 39 | return 0; | ||
| 40 | } | ||
| 41 | |||
| 42 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 43 | { | ||
| 44 | /* nada */ | ||
| 45 | } | ||
| 46 | |||
| 47 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
| 48 | { | ||
| 49 | const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT; | ||
| 50 | struct pcpu_chunk *chunk; | ||
| 51 | struct page *pages; | ||
| 52 | int i; | ||
| 53 | |||
| 54 | chunk = pcpu_alloc_chunk(); | ||
| 55 | if (!chunk) | ||
| 56 | return NULL; | ||
| 57 | |||
| 58 | pages = alloc_pages(GFP_KERNEL, order_base_2(nr_pages)); | ||
| 59 | if (!pages) { | ||
| 60 | pcpu_free_chunk(chunk); | ||
| 61 | return NULL; | ||
| 62 | } | ||
| 63 | |||
| 64 | for (i = 0; i < nr_pages; i++) | ||
| 65 | pcpu_set_page_chunk(nth_page(pages, i), chunk); | ||
| 66 | |||
| 67 | chunk->data = pages; | ||
| 68 | chunk->base_addr = page_address(pages) - pcpu_group_offsets[0]; | ||
| 69 | return chunk; | ||
| 70 | } | ||
| 71 | |||
| 72 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | ||
| 73 | { | ||
| 74 | const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT; | ||
| 75 | |||
| 76 | if (chunk && chunk->data) | ||
| 77 | __free_pages(chunk->data, order_base_2(nr_pages)); | ||
| 78 | pcpu_free_chunk(chunk); | ||
| 79 | } | ||
| 80 | |||
| 81 | static struct page *pcpu_addr_to_page(void *addr) | ||
| 82 | { | ||
| 83 | return virt_to_page(addr); | ||
| 84 | } | ||
| 85 | |||
| 86 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | ||
| 87 | { | ||
| 88 | size_t nr_pages, alloc_pages; | ||
| 89 | |||
| 90 | /* all units must be in a single group */ | ||
| 91 | if (ai->nr_groups != 1) { | ||
| 92 | printk(KERN_CRIT "percpu: can't handle more than one groups\n"); | ||
| 93 | return -EINVAL; | ||
| 94 | } | ||
| 95 | |||
| 96 | nr_pages = (ai->groups[0].nr_units * ai->unit_size) >> PAGE_SHIFT; | ||
| 97 | alloc_pages = roundup_pow_of_two(nr_pages); | ||
| 98 | |||
| 99 | if (alloc_pages > nr_pages) | ||
| 100 | printk(KERN_WARNING "percpu: wasting %zu pages per chunk\n", | ||
| 101 | alloc_pages - nr_pages); | ||
| 102 | |||
| 103 | return 0; | ||
| 104 | } | ||
diff --git a/mm/percpu-vm.c b/mm/percpu-vm.c new file mode 100644 index 000000000000..7d9c1d0ebd3f --- /dev/null +++ b/mm/percpu-vm.c | |||
| @@ -0,0 +1,451 @@ | |||
| 1 | /* | ||
| 2 | * mm/percpu-vm.c - vmalloc area based chunk allocation | ||
| 3 | * | ||
| 4 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
| 5 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
| 6 | * | ||
| 7 | * This file is released under the GPLv2. | ||
| 8 | * | ||
| 9 | * Chunks are mapped into vmalloc areas and populated page by page. | ||
| 10 | * This is the default chunk allocator. | ||
| 11 | */ | ||
| 12 | |||
| 13 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
| 14 | unsigned int cpu, int page_idx) | ||
| 15 | { | ||
| 16 | /* must not be used on pre-mapped chunk */ | ||
| 17 | WARN_ON(chunk->immutable); | ||
| 18 | |||
| 19 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
| 20 | } | ||
| 21 | |||
| 22 | /** | ||
| 23 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
| 24 | * @chunk: chunk of interest | ||
| 25 | * @bitmapp: output parameter for bitmap | ||
| 26 | * @may_alloc: may allocate the array | ||
| 27 | * | ||
| 28 | * Returns pointer to array of pointers to struct page and bitmap, | ||
| 29 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
| 30 | * array is cleared to zero and *@bitmapp is copied from | ||
| 31 | * @chunk->populated. Note that there is only one array and bitmap | ||
| 32 | * and access exclusion is the caller's responsibility. | ||
| 33 | * | ||
| 34 | * CONTEXT: | ||
| 35 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
| 36 | * Otherwise, don't care. | ||
| 37 | * | ||
| 38 | * RETURNS: | ||
| 39 | * Pointer to temp pages array on success, NULL on failure. | ||
| 40 | */ | ||
| 41 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
| 42 | unsigned long **bitmapp, | ||
| 43 | bool may_alloc) | ||
| 44 | { | ||
| 45 | static struct page **pages; | ||
| 46 | static unsigned long *bitmap; | ||
| 47 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
| 48 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
| 49 | sizeof(unsigned long); | ||
| 50 | |||
| 51 | if (!pages || !bitmap) { | ||
| 52 | if (may_alloc && !pages) | ||
| 53 | pages = pcpu_mem_alloc(pages_size); | ||
| 54 | if (may_alloc && !bitmap) | ||
| 55 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
| 56 | if (!pages || !bitmap) | ||
| 57 | return NULL; | ||
| 58 | } | ||
| 59 | |||
| 60 | memset(pages, 0, pages_size); | ||
| 61 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
| 62 | |||
| 63 | *bitmapp = bitmap; | ||
| 64 | return pages; | ||
| 65 | } | ||
| 66 | |||
| 67 | /** | ||
| 68 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
| 69 | * @chunk: chunk pages were allocated for | ||
| 70 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
| 71 | * @populated: populated bitmap | ||
| 72 | * @page_start: page index of the first page to be freed | ||
| 73 | * @page_end: page index of the last page to be freed + 1 | ||
| 74 | * | ||
| 75 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
| 76 | * The pages were allocated for @chunk. | ||
| 77 | */ | ||
| 78 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
| 79 | struct page **pages, unsigned long *populated, | ||
| 80 | int page_start, int page_end) | ||
| 81 | { | ||
| 82 | unsigned int cpu; | ||
| 83 | int i; | ||
| 84 | |||
| 85 | for_each_possible_cpu(cpu) { | ||
| 86 | for (i = page_start; i < page_end; i++) { | ||
| 87 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | ||
| 88 | |||
| 89 | if (page) | ||
| 90 | __free_page(page); | ||
| 91 | } | ||
| 92 | } | ||
| 93 | } | ||
| 94 | |||
| 95 | /** | ||
| 96 | * pcpu_alloc_pages - allocates pages for @chunk | ||
| 97 | * @chunk: target chunk | ||
| 98 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
| 99 | * @populated: populated bitmap | ||
| 100 | * @page_start: page index of the first page to be allocated | ||
| 101 | * @page_end: page index of the last page to be allocated + 1 | ||
| 102 | * | ||
| 103 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
| 104 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
| 105 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
| 106 | */ | ||
| 107 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
| 108 | struct page **pages, unsigned long *populated, | ||
| 109 | int page_start, int page_end) | ||
| 110 | { | ||
| 111 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 112 | unsigned int cpu; | ||
| 113 | int i; | ||
| 114 | |||
| 115 | for_each_possible_cpu(cpu) { | ||
| 116 | for (i = page_start; i < page_end; i++) { | ||
| 117 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | ||
| 118 | |||
| 119 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
| 120 | if (!*pagep) { | ||
| 121 | pcpu_free_pages(chunk, pages, populated, | ||
| 122 | page_start, page_end); | ||
| 123 | return -ENOMEM; | ||
| 124 | } | ||
| 125 | } | ||
| 126 | } | ||
| 127 | return 0; | ||
| 128 | } | ||
| 129 | |||
| 130 | /** | ||
| 131 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
| 132 | * @chunk: chunk the regions to be flushed belongs to | ||
| 133 | * @page_start: page index of the first page to be flushed | ||
| 134 | * @page_end: page index of the last page to be flushed + 1 | ||
| 135 | * | ||
| 136 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
| 137 | * unmapped. Flush cache. As each flushing trial can be very | ||
| 138 | * expensive, issue flush on the whole region at once rather than | ||
| 139 | * doing it for each cpu. This could be an overkill but is more | ||
| 140 | * scalable. | ||
| 141 | */ | ||
| 142 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
| 143 | int page_start, int page_end) | ||
| 144 | { | ||
| 145 | flush_cache_vunmap( | ||
| 146 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 147 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 148 | } | ||
| 149 | |||
| 150 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | ||
| 151 | { | ||
| 152 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | ||
| 153 | } | ||
| 154 | |||
| 155 | /** | ||
| 156 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | ||
| 157 | * @chunk: chunk of interest | ||
| 158 | * @pages: pages array which can be used to pass information to free | ||
| 159 | * @populated: populated bitmap | ||
| 160 | * @page_start: page index of the first page to unmap | ||
| 161 | * @page_end: page index of the last page to unmap + 1 | ||
| 162 | * | ||
| 163 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
| 164 | * Corresponding elements in @pages were cleared by the caller and can | ||
| 165 | * be used to carry information to pcpu_free_pages() which will be | ||
| 166 | * called after all unmaps are finished. The caller should call | ||
| 167 | * proper pre/post flush functions. | ||
| 168 | */ | ||
| 169 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | ||
| 170 | struct page **pages, unsigned long *populated, | ||
| 171 | int page_start, int page_end) | ||
| 172 | { | ||
| 173 | unsigned int cpu; | ||
| 174 | int i; | ||
| 175 | |||
| 176 | for_each_possible_cpu(cpu) { | ||
| 177 | for (i = page_start; i < page_end; i++) { | ||
| 178 | struct page *page; | ||
| 179 | |||
| 180 | page = pcpu_chunk_page(chunk, cpu, i); | ||
| 181 | WARN_ON(!page); | ||
| 182 | pages[pcpu_page_idx(cpu, i)] = page; | ||
| 183 | } | ||
| 184 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 185 | page_end - page_start); | ||
| 186 | } | ||
| 187 | |||
| 188 | for (i = page_start; i < page_end; i++) | ||
| 189 | __clear_bit(i, populated); | ||
| 190 | } | ||
| 191 | |||
| 192 | /** | ||
| 193 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | ||
| 194 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 195 | * @page_start: page index of the first page to be flushed | ||
| 196 | * @page_end: page index of the last page to be flushed + 1 | ||
| 197 | * | ||
| 198 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
| 199 | * TLB for the regions. This can be skipped if the area is to be | ||
| 200 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
| 201 | * | ||
| 202 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 203 | * for the whole region. | ||
| 204 | */ | ||
| 205 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
| 206 | int page_start, int page_end) | ||
| 207 | { | ||
| 208 | flush_tlb_kernel_range( | ||
| 209 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 210 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 211 | } | ||
| 212 | |||
| 213 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
| 214 | int nr_pages) | ||
| 215 | { | ||
| 216 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
| 217 | PAGE_KERNEL, pages); | ||
| 218 | } | ||
| 219 | |||
| 220 | /** | ||
| 221 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
| 222 | * @chunk: chunk of interest | ||
| 223 | * @pages: pages array containing pages to be mapped | ||
| 224 | * @populated: populated bitmap | ||
| 225 | * @page_start: page index of the first page to map | ||
| 226 | * @page_end: page index of the last page to map + 1 | ||
| 227 | * | ||
| 228 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
| 229 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
| 230 | * mappings are complete. | ||
| 231 | * | ||
| 232 | * This function is responsible for setting corresponding bits in | ||
| 233 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
| 234 | * lookup (addr -> chunk). | ||
| 235 | */ | ||
| 236 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | ||
| 237 | struct page **pages, unsigned long *populated, | ||
| 238 | int page_start, int page_end) | ||
| 239 | { | ||
| 240 | unsigned int cpu, tcpu; | ||
| 241 | int i, err; | ||
| 242 | |||
| 243 | for_each_possible_cpu(cpu) { | ||
| 244 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 245 | &pages[pcpu_page_idx(cpu, page_start)], | ||
| 246 | page_end - page_start); | ||
| 247 | if (err < 0) | ||
| 248 | goto err; | ||
| 249 | } | ||
| 250 | |||
| 251 | /* mapping successful, link chunk and mark populated */ | ||
| 252 | for (i = page_start; i < page_end; i++) { | ||
| 253 | for_each_possible_cpu(cpu) | ||
| 254 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
| 255 | chunk); | ||
| 256 | __set_bit(i, populated); | ||
| 257 | } | ||
| 258 | |||
| 259 | return 0; | ||
| 260 | |||
| 261 | err: | ||
| 262 | for_each_possible_cpu(tcpu) { | ||
| 263 | if (tcpu == cpu) | ||
| 264 | break; | ||
| 265 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
| 266 | page_end - page_start); | ||
| 267 | } | ||
| 268 | return err; | ||
| 269 | } | ||
| 270 | |||
| 271 | /** | ||
| 272 | * pcpu_post_map_flush - flush cache after mapping | ||
| 273 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 274 | * @page_start: page index of the first page to be flushed | ||
| 275 | * @page_end: page index of the last page to be flushed + 1 | ||
| 276 | * | ||
| 277 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
| 278 | * cache. | ||
| 279 | * | ||
| 280 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 281 | * for the whole region. | ||
| 282 | */ | ||
| 283 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
| 284 | int page_start, int page_end) | ||
| 285 | { | ||
| 286 | flush_cache_vmap( | ||
| 287 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 288 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 289 | } | ||
| 290 | |||
| 291 | /** | ||
| 292 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 293 | * @chunk: chunk of interest | ||
| 294 | * @off: offset to the area to populate | ||
| 295 | * @size: size of the area to populate in bytes | ||
| 296 | * | ||
| 297 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 298 | * @chunk. The area is cleared on return. | ||
| 299 | * | ||
| 300 | * CONTEXT: | ||
| 301 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
| 302 | */ | ||
| 303 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 304 | { | ||
| 305 | int page_start = PFN_DOWN(off); | ||
| 306 | int page_end = PFN_UP(off + size); | ||
| 307 | int free_end = page_start, unmap_end = page_start; | ||
| 308 | struct page **pages; | ||
| 309 | unsigned long *populated; | ||
| 310 | unsigned int cpu; | ||
| 311 | int rs, re, rc; | ||
| 312 | |||
| 313 | /* quick path, check whether all pages are already there */ | ||
| 314 | rs = page_start; | ||
| 315 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
| 316 | if (rs == page_start && re == page_end) | ||
| 317 | goto clear; | ||
| 318 | |||
| 319 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
| 320 | WARN_ON(chunk->immutable); | ||
| 321 | |||
| 322 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
| 323 | if (!pages) | ||
| 324 | return -ENOMEM; | ||
| 325 | |||
| 326 | /* alloc and map */ | ||
| 327 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 328 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
| 329 | if (rc) | ||
| 330 | goto err_free; | ||
| 331 | free_end = re; | ||
| 332 | } | ||
| 333 | |||
| 334 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 335 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
| 336 | if (rc) | ||
| 337 | goto err_unmap; | ||
| 338 | unmap_end = re; | ||
| 339 | } | ||
| 340 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
| 341 | |||
| 342 | /* commit new bitmap */ | ||
| 343 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 344 | clear: | ||
| 345 | for_each_possible_cpu(cpu) | ||
| 346 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
| 347 | return 0; | ||
| 348 | |||
| 349 | err_unmap: | ||
| 350 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
| 351 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
| 352 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 353 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
| 354 | err_free: | ||
| 355 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
| 356 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 357 | return rc; | ||
| 358 | } | ||
| 359 | |||
| 360 | /** | ||
| 361 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 362 | * @chunk: chunk to depopulate | ||
| 363 | * @off: offset to the area to depopulate | ||
| 364 | * @size: size of the area to depopulate in bytes | ||
| 365 | * @flush: whether to flush cache and tlb or not | ||
| 366 | * | ||
| 367 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 368 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 369 | * and tlb after. | ||
| 370 | * | ||
| 371 | * CONTEXT: | ||
| 372 | * pcpu_alloc_mutex. | ||
| 373 | */ | ||
| 374 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 375 | { | ||
| 376 | int page_start = PFN_DOWN(off); | ||
| 377 | int page_end = PFN_UP(off + size); | ||
| 378 | struct page **pages; | ||
| 379 | unsigned long *populated; | ||
| 380 | int rs, re; | ||
| 381 | |||
| 382 | /* quick path, check whether it's empty already */ | ||
| 383 | rs = page_start; | ||
| 384 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
| 385 | if (rs == page_start && re == page_end) | ||
| 386 | return; | ||
| 387 | |||
| 388 | /* immutable chunks can't be depopulated */ | ||
| 389 | WARN_ON(chunk->immutable); | ||
| 390 | |||
| 391 | /* | ||
| 392 | * If control reaches here, there must have been at least one | ||
| 393 | * successful population attempt so the temp pages array must | ||
| 394 | * be available now. | ||
| 395 | */ | ||
| 396 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | ||
| 397 | BUG_ON(!pages); | ||
| 398 | |||
| 399 | /* unmap and free */ | ||
| 400 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
| 401 | |||
| 402 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 403 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 404 | |||
| 405 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
| 406 | |||
| 407 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 408 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 409 | |||
| 410 | /* commit new bitmap */ | ||
| 411 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 412 | } | ||
| 413 | |||
| 414 | static struct pcpu_chunk *pcpu_create_chunk(void) | ||
| 415 | { | ||
| 416 | struct pcpu_chunk *chunk; | ||
| 417 | struct vm_struct **vms; | ||
| 418 | |||
| 419 | chunk = pcpu_alloc_chunk(); | ||
| 420 | if (!chunk) | ||
| 421 | return NULL; | ||
| 422 | |||
| 423 | vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
| 424 | pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL); | ||
| 425 | if (!vms) { | ||
| 426 | pcpu_free_chunk(chunk); | ||
| 427 | return NULL; | ||
| 428 | } | ||
| 429 | |||
| 430 | chunk->data = vms; | ||
| 431 | chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0]; | ||
| 432 | return chunk; | ||
| 433 | } | ||
| 434 | |||
| 435 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk) | ||
| 436 | { | ||
| 437 | if (chunk && chunk->data) | ||
| 438 | pcpu_free_vm_areas(chunk->data, pcpu_nr_groups); | ||
| 439 | pcpu_free_chunk(chunk); | ||
| 440 | } | ||
| 441 | |||
| 442 | static struct page *pcpu_addr_to_page(void *addr) | ||
| 443 | { | ||
| 444 | return vmalloc_to_page(addr); | ||
| 445 | } | ||
| 446 | |||
| 447 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai) | ||
| 448 | { | ||
| 449 | /* no extra restriction */ | ||
| 450 | return 0; | ||
| 451 | } | ||
diff --git a/mm/percpu.c b/mm/percpu.c index 6e09741ddc62..39f7dfd59585 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
| @@ -1,5 +1,5 @@ | |||
| 1 | /* | 1 | /* |
| 2 | * linux/mm/percpu.c - percpu memory allocator | 2 | * mm/percpu.c - percpu memory allocator |
| 3 | * | 3 | * |
| 4 | * Copyright (C) 2009 SUSE Linux Products GmbH | 4 | * Copyright (C) 2009 SUSE Linux Products GmbH |
| 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | 5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> |
| @@ -7,14 +7,13 @@ | |||
| 7 | * This file is released under the GPLv2. | 7 | * This file is released under the GPLv2. |
| 8 | * | 8 | * |
| 9 | * This is percpu allocator which can handle both static and dynamic | 9 | * This is percpu allocator which can handle both static and dynamic |
| 10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | 10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
| 11 | * chunk is consisted of boot-time determined number of units and the | 11 | * consisted of boot-time determined number of units and the first |
| 12 | * first chunk is used for static percpu variables in the kernel image | 12 | * chunk is used for static percpu variables in the kernel image |
| 13 | * (special boot time alloc/init handling necessary as these areas | 13 | * (special boot time alloc/init handling necessary as these areas |
| 14 | * need to be brought up before allocation services are running). | 14 | * need to be brought up before allocation services are running). |
| 15 | * Unit grows as necessary and all units grow or shrink in unison. | 15 | * Unit grows as necessary and all units grow or shrink in unison. |
| 16 | * When a chunk is filled up, another chunk is allocated. ie. in | 16 | * When a chunk is filled up, another chunk is allocated. |
| 17 | * vmalloc area | ||
| 18 | * | 17 | * |
| 19 | * c0 c1 c2 | 18 | * c0 c1 c2 |
| 20 | * ------------------- ------------------- ------------ | 19 | * ------------------- ------------------- ------------ |
| @@ -99,7 +98,7 @@ struct pcpu_chunk { | |||
| 99 | int map_used; /* # of map entries used */ | 98 | int map_used; /* # of map entries used */ |
| 100 | int map_alloc; /* # of map entries allocated */ | 99 | int map_alloc; /* # of map entries allocated */ |
| 101 | int *map; /* allocation map */ | 100 | int *map; /* allocation map */ |
| 102 | struct vm_struct **vms; /* mapped vmalloc regions */ | 101 | void *data; /* chunk data */ |
| 103 | bool immutable; /* no [de]population allowed */ | 102 | bool immutable; /* no [de]population allowed */ |
| 104 | unsigned long populated[]; /* populated bitmap */ | 103 | unsigned long populated[]; /* populated bitmap */ |
| 105 | }; | 104 | }; |
| @@ -177,6 +176,21 @@ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | |||
| 177 | static void pcpu_reclaim(struct work_struct *work); | 176 | static void pcpu_reclaim(struct work_struct *work); |
| 178 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | 177 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); |
| 179 | 178 | ||
| 179 | static bool pcpu_addr_in_first_chunk(void *addr) | ||
| 180 | { | ||
| 181 | void *first_start = pcpu_first_chunk->base_addr; | ||
| 182 | |||
| 183 | return addr >= first_start && addr < first_start + pcpu_unit_size; | ||
| 184 | } | ||
| 185 | |||
| 186 | static bool pcpu_addr_in_reserved_chunk(void *addr) | ||
| 187 | { | ||
| 188 | void *first_start = pcpu_first_chunk->base_addr; | ||
| 189 | |||
| 190 | return addr >= first_start && | ||
| 191 | addr < first_start + pcpu_reserved_chunk_limit; | ||
| 192 | } | ||
| 193 | |||
| 180 | static int __pcpu_size_to_slot(int size) | 194 | static int __pcpu_size_to_slot(int size) |
| 181 | { | 195 | { |
| 182 | int highbit = fls(size); /* size is in bytes */ | 196 | int highbit = fls(size); /* size is in bytes */ |
| @@ -198,27 +212,6 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | |||
| 198 | return pcpu_size_to_slot(chunk->free_size); | 212 | return pcpu_size_to_slot(chunk->free_size); |
| 199 | } | 213 | } |
| 200 | 214 | ||
| 201 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
| 202 | { | ||
| 203 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
| 204 | } | ||
| 205 | |||
| 206 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
| 207 | unsigned int cpu, int page_idx) | ||
| 208 | { | ||
| 209 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
| 210 | (page_idx << PAGE_SHIFT); | ||
| 211 | } | ||
| 212 | |||
| 213 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, | ||
| 214 | unsigned int cpu, int page_idx) | ||
| 215 | { | ||
| 216 | /* must not be used on pre-mapped chunk */ | ||
| 217 | WARN_ON(chunk->immutable); | ||
| 218 | |||
| 219 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
| 220 | } | ||
| 221 | |||
| 222 | /* set the pointer to a chunk in a page struct */ | 215 | /* set the pointer to a chunk in a page struct */ |
| 223 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | 216 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) |
| 224 | { | 217 | { |
| @@ -231,13 +224,27 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |||
| 231 | return (struct pcpu_chunk *)page->index; | 224 | return (struct pcpu_chunk *)page->index; |
| 232 | } | 225 | } |
| 233 | 226 | ||
| 234 | static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 227 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) |
| 228 | { | ||
| 229 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | ||
| 230 | } | ||
| 231 | |||
| 232 | static unsigned long __maybe_unused pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
| 233 | unsigned int cpu, int page_idx) | ||
| 234 | { | ||
| 235 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | ||
| 236 | (page_idx << PAGE_SHIFT); | ||
| 237 | } | ||
| 238 | |||
| 239 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, | ||
| 240 | int *rs, int *re, int end) | ||
| 235 | { | 241 | { |
| 236 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | 242 | *rs = find_next_zero_bit(chunk->populated, end, *rs); |
| 237 | *re = find_next_bit(chunk->populated, end, *rs + 1); | 243 | *re = find_next_bit(chunk->populated, end, *rs + 1); |
| 238 | } | 244 | } |
| 239 | 245 | ||
| 240 | static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | 246 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
| 247 | int *rs, int *re, int end) | ||
| 241 | { | 248 | { |
| 242 | *rs = find_next_bit(chunk->populated, end, *rs); | 249 | *rs = find_next_bit(chunk->populated, end, *rs); |
| 243 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | 250 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); |
| @@ -326,36 +333,6 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |||
| 326 | } | 333 | } |
| 327 | 334 | ||
| 328 | /** | 335 | /** |
| 329 | * pcpu_chunk_addr_search - determine chunk containing specified address | ||
| 330 | * @addr: address for which the chunk needs to be determined. | ||
| 331 | * | ||
| 332 | * RETURNS: | ||
| 333 | * The address of the found chunk. | ||
| 334 | */ | ||
| 335 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
| 336 | { | ||
| 337 | void *first_start = pcpu_first_chunk->base_addr; | ||
| 338 | |||
| 339 | /* is it in the first chunk? */ | ||
| 340 | if (addr >= first_start && addr < first_start + pcpu_unit_size) { | ||
| 341 | /* is it in the reserved area? */ | ||
| 342 | if (addr < first_start + pcpu_reserved_chunk_limit) | ||
| 343 | return pcpu_reserved_chunk; | ||
| 344 | return pcpu_first_chunk; | ||
| 345 | } | ||
| 346 | |||
| 347 | /* | ||
| 348 | * The address is relative to unit0 which might be unused and | ||
| 349 | * thus unmapped. Offset the address to the unit space of the | ||
| 350 | * current processor before looking it up in the vmalloc | ||
| 351 | * space. Note that any possible cpu id can be used here, so | ||
| 352 | * there's no need to worry about preemption or cpu hotplug. | ||
| 353 | */ | ||
| 354 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | ||
| 355 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); | ||
| 356 | } | ||
| 357 | |||
| 358 | /** | ||
| 359 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended | 336 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
| 360 | * @chunk: chunk of interest | 337 | * @chunk: chunk of interest |
| 361 | * | 338 | * |
| @@ -623,434 +600,92 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |||
| 623 | pcpu_chunk_relocate(chunk, oslot); | 600 | pcpu_chunk_relocate(chunk, oslot); |
| 624 | } | 601 | } |
| 625 | 602 | ||
| 626 | /** | 603 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
| 627 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap | ||
| 628 | * @chunk: chunk of interest | ||
| 629 | * @bitmapp: output parameter for bitmap | ||
| 630 | * @may_alloc: may allocate the array | ||
| 631 | * | ||
| 632 | * Returns pointer to array of pointers to struct page and bitmap, | ||
| 633 | * both of which can be indexed with pcpu_page_idx(). The returned | ||
| 634 | * array is cleared to zero and *@bitmapp is copied from | ||
| 635 | * @chunk->populated. Note that there is only one array and bitmap | ||
| 636 | * and access exclusion is the caller's responsibility. | ||
| 637 | * | ||
| 638 | * CONTEXT: | ||
| 639 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
| 640 | * Otherwise, don't care. | ||
| 641 | * | ||
| 642 | * RETURNS: | ||
| 643 | * Pointer to temp pages array on success, NULL on failure. | ||
| 644 | */ | ||
| 645 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, | ||
| 646 | unsigned long **bitmapp, | ||
| 647 | bool may_alloc) | ||
| 648 | { | ||
| 649 | static struct page **pages; | ||
| 650 | static unsigned long *bitmap; | ||
| 651 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
| 652 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
| 653 | sizeof(unsigned long); | ||
| 654 | |||
| 655 | if (!pages || !bitmap) { | ||
| 656 | if (may_alloc && !pages) | ||
| 657 | pages = pcpu_mem_alloc(pages_size); | ||
| 658 | if (may_alloc && !bitmap) | ||
| 659 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
| 660 | if (!pages || !bitmap) | ||
| 661 | return NULL; | ||
| 662 | } | ||
| 663 | |||
| 664 | memset(pages, 0, pages_size); | ||
| 665 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); | ||
| 666 | |||
| 667 | *bitmapp = bitmap; | ||
| 668 | return pages; | ||
| 669 | } | ||
| 670 | |||
| 671 | /** | ||
| 672 | * pcpu_free_pages - free pages which were allocated for @chunk | ||
| 673 | * @chunk: chunk pages were allocated for | ||
| 674 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() | ||
| 675 | * @populated: populated bitmap | ||
| 676 | * @page_start: page index of the first page to be freed | ||
| 677 | * @page_end: page index of the last page to be freed + 1 | ||
| 678 | * | ||
| 679 | * Free pages [@page_start and @page_end) in @pages for all units. | ||
| 680 | * The pages were allocated for @chunk. | ||
| 681 | */ | ||
| 682 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
| 683 | struct page **pages, unsigned long *populated, | ||
| 684 | int page_start, int page_end) | ||
| 685 | { | 604 | { |
| 686 | unsigned int cpu; | 605 | struct pcpu_chunk *chunk; |
| 687 | int i; | ||
| 688 | 606 | ||
| 689 | for_each_possible_cpu(cpu) { | 607 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); |
| 690 | for (i = page_start; i < page_end; i++) { | 608 | if (!chunk) |
| 691 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | 609 | return NULL; |
| 692 | 610 | ||
| 693 | if (page) | 611 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); |
| 694 | __free_page(page); | 612 | if (!chunk->map) { |
| 695 | } | 613 | kfree(chunk); |
| 614 | return NULL; | ||
| 696 | } | 615 | } |
| 697 | } | ||
| 698 | 616 | ||
| 699 | /** | 617 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; |
| 700 | * pcpu_alloc_pages - allocates pages for @chunk | 618 | chunk->map[chunk->map_used++] = pcpu_unit_size; |
| 701 | * @chunk: target chunk | ||
| 702 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() | ||
| 703 | * @populated: populated bitmap | ||
| 704 | * @page_start: page index of the first page to be allocated | ||
| 705 | * @page_end: page index of the last page to be allocated + 1 | ||
| 706 | * | ||
| 707 | * Allocate pages [@page_start,@page_end) into @pages for all units. | ||
| 708 | * The allocation is for @chunk. Percpu core doesn't care about the | ||
| 709 | * content of @pages and will pass it verbatim to pcpu_map_pages(). | ||
| 710 | */ | ||
| 711 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, | ||
| 712 | struct page **pages, unsigned long *populated, | ||
| 713 | int page_start, int page_end) | ||
| 714 | { | ||
| 715 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 716 | unsigned int cpu; | ||
| 717 | int i; | ||
| 718 | 619 | ||
| 719 | for_each_possible_cpu(cpu) { | 620 | INIT_LIST_HEAD(&chunk->list); |
| 720 | for (i = page_start; i < page_end; i++) { | 621 | chunk->free_size = pcpu_unit_size; |
| 721 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; | 622 | chunk->contig_hint = pcpu_unit_size; |
| 722 | |||
| 723 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
| 724 | if (!*pagep) { | ||
| 725 | pcpu_free_pages(chunk, pages, populated, | ||
| 726 | page_start, page_end); | ||
| 727 | return -ENOMEM; | ||
| 728 | } | ||
| 729 | } | ||
| 730 | } | ||
| 731 | return 0; | ||
| 732 | } | ||
| 733 | 623 | ||
| 734 | /** | 624 | return chunk; |
| 735 | * pcpu_pre_unmap_flush - flush cache prior to unmapping | ||
| 736 | * @chunk: chunk the regions to be flushed belongs to | ||
| 737 | * @page_start: page index of the first page to be flushed | ||
| 738 | * @page_end: page index of the last page to be flushed + 1 | ||
| 739 | * | ||
| 740 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
| 741 | * unmapped. Flush cache. As each flushing trial can be very | ||
| 742 | * expensive, issue flush on the whole region at once rather than | ||
| 743 | * doing it for each cpu. This could be an overkill but is more | ||
| 744 | * scalable. | ||
| 745 | */ | ||
| 746 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
| 747 | int page_start, int page_end) | ||
| 748 | { | ||
| 749 | flush_cache_vunmap( | ||
| 750 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 751 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 752 | } | 625 | } |
| 753 | 626 | ||
| 754 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | 627 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) |
| 755 | { | 628 | { |
| 756 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | 629 | if (!chunk) |
| 630 | return; | ||
| 631 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
| 632 | kfree(chunk); | ||
| 757 | } | 633 | } |
| 758 | 634 | ||
| 759 | /** | 635 | /* |
| 760 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | 636 | * Chunk management implementation. |
| 761 | * @chunk: chunk of interest | 637 | * |
| 762 | * @pages: pages array which can be used to pass information to free | 638 | * To allow different implementations, chunk alloc/free and |
| 763 | * @populated: populated bitmap | 639 | * [de]population are implemented in a separate file which is pulled |
| 764 | * @page_start: page index of the first page to unmap | 640 | * into this file and compiled together. The following functions |
| 765 | * @page_end: page index of the last page to unmap + 1 | 641 | * should be implemented. |
| 766 | * | 642 | * |
| 767 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 643 | * pcpu_populate_chunk - populate the specified range of a chunk |
| 768 | * Corresponding elements in @pages were cleared by the caller and can | 644 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk |
| 769 | * be used to carry information to pcpu_free_pages() which will be | 645 | * pcpu_create_chunk - create a new chunk |
| 770 | * called after all unmaps are finished. The caller should call | 646 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop |
| 771 | * proper pre/post flush functions. | 647 | * pcpu_addr_to_page - translate address to physical address |
| 648 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | ||
| 772 | */ | 649 | */ |
| 773 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | 650 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
| 774 | struct page **pages, unsigned long *populated, | 651 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); |
| 775 | int page_start, int page_end) | 652 | static struct pcpu_chunk *pcpu_create_chunk(void); |
| 776 | { | 653 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
| 777 | unsigned int cpu; | 654 | static struct page *pcpu_addr_to_page(void *addr); |
| 778 | int i; | 655 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); |
| 779 | 656 | ||
| 780 | for_each_possible_cpu(cpu) { | 657 | #ifdef CONFIG_NEED_PER_CPU_KM |
| 781 | for (i = page_start; i < page_end; i++) { | 658 | #include "percpu-km.c" |
| 782 | struct page *page; | 659 | #else |
| 783 | 660 | #include "percpu-vm.c" | |
| 784 | page = pcpu_chunk_page(chunk, cpu, i); | 661 | #endif |
| 785 | WARN_ON(!page); | ||
| 786 | pages[pcpu_page_idx(cpu, i)] = page; | ||
| 787 | } | ||
| 788 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 789 | page_end - page_start); | ||
| 790 | } | ||
| 791 | |||
| 792 | for (i = page_start; i < page_end; i++) | ||
| 793 | __clear_bit(i, populated); | ||
| 794 | } | ||
| 795 | 662 | ||
| 796 | /** | 663 | /** |
| 797 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | 664 | * pcpu_chunk_addr_search - determine chunk containing specified address |
| 798 | * @chunk: pcpu_chunk the regions to be flushed belong to | 665 | * @addr: address for which the chunk needs to be determined. |
| 799 | * @page_start: page index of the first page to be flushed | ||
| 800 | * @page_end: page index of the last page to be flushed + 1 | ||
| 801 | * | ||
| 802 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
| 803 | * TLB for the regions. This can be skipped if the area is to be | ||
| 804 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
| 805 | * | 666 | * |
| 806 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | 667 | * RETURNS: |
| 807 | * for the whole region. | 668 | * The address of the found chunk. |
| 808 | */ | ||
| 809 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
| 810 | int page_start, int page_end) | ||
| 811 | { | ||
| 812 | flush_tlb_kernel_range( | ||
| 813 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 814 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 815 | } | ||
| 816 | |||
| 817 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
| 818 | int nr_pages) | ||
| 819 | { | ||
| 820 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
| 821 | PAGE_KERNEL, pages); | ||
| 822 | } | ||
| 823 | |||
| 824 | /** | ||
| 825 | * pcpu_map_pages - map pages into a pcpu_chunk | ||
| 826 | * @chunk: chunk of interest | ||
| 827 | * @pages: pages array containing pages to be mapped | ||
| 828 | * @populated: populated bitmap | ||
| 829 | * @page_start: page index of the first page to map | ||
| 830 | * @page_end: page index of the last page to map + 1 | ||
| 831 | * | ||
| 832 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The | ||
| 833 | * caller is responsible for calling pcpu_post_map_flush() after all | ||
| 834 | * mappings are complete. | ||
| 835 | * | ||
| 836 | * This function is responsible for setting corresponding bits in | ||
| 837 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
| 838 | * lookup (addr -> chunk). | ||
| 839 | */ | 669 | */ |
| 840 | static int pcpu_map_pages(struct pcpu_chunk *chunk, | 670 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) |
| 841 | struct page **pages, unsigned long *populated, | ||
| 842 | int page_start, int page_end) | ||
| 843 | { | 671 | { |
| 844 | unsigned int cpu, tcpu; | 672 | /* is it in the first chunk? */ |
| 845 | int i, err; | 673 | if (pcpu_addr_in_first_chunk(addr)) { |
| 846 | 674 | /* is it in the reserved area? */ | |
| 847 | for_each_possible_cpu(cpu) { | 675 | if (pcpu_addr_in_reserved_chunk(addr)) |
| 848 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), | 676 | return pcpu_reserved_chunk; |
| 849 | &pages[pcpu_page_idx(cpu, page_start)], | 677 | return pcpu_first_chunk; |
| 850 | page_end - page_start); | ||
| 851 | if (err < 0) | ||
| 852 | goto err; | ||
| 853 | } | ||
| 854 | |||
| 855 | /* mapping successful, link chunk and mark populated */ | ||
| 856 | for (i = page_start; i < page_end; i++) { | ||
| 857 | for_each_possible_cpu(cpu) | ||
| 858 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
| 859 | chunk); | ||
| 860 | __set_bit(i, populated); | ||
| 861 | } | ||
| 862 | |||
| 863 | return 0; | ||
| 864 | |||
| 865 | err: | ||
| 866 | for_each_possible_cpu(tcpu) { | ||
| 867 | if (tcpu == cpu) | ||
| 868 | break; | ||
| 869 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
| 870 | page_end - page_start); | ||
| 871 | } | 678 | } |
| 872 | return err; | ||
| 873 | } | ||
| 874 | |||
| 875 | /** | ||
| 876 | * pcpu_post_map_flush - flush cache after mapping | ||
| 877 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 878 | * @page_start: page index of the first page to be flushed | ||
| 879 | * @page_end: page index of the last page to be flushed + 1 | ||
| 880 | * | ||
| 881 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
| 882 | * cache. | ||
| 883 | * | ||
| 884 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 885 | * for the whole region. | ||
| 886 | */ | ||
| 887 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
| 888 | int page_start, int page_end) | ||
| 889 | { | ||
| 890 | flush_cache_vmap( | ||
| 891 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 892 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 893 | } | ||
| 894 | |||
| 895 | /** | ||
| 896 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 897 | * @chunk: chunk to depopulate | ||
| 898 | * @off: offset to the area to depopulate | ||
| 899 | * @size: size of the area to depopulate in bytes | ||
| 900 | * @flush: whether to flush cache and tlb or not | ||
| 901 | * | ||
| 902 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 903 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 904 | * and tlb after. | ||
| 905 | * | ||
| 906 | * CONTEXT: | ||
| 907 | * pcpu_alloc_mutex. | ||
| 908 | */ | ||
| 909 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 910 | { | ||
| 911 | int page_start = PFN_DOWN(off); | ||
| 912 | int page_end = PFN_UP(off + size); | ||
| 913 | struct page **pages; | ||
| 914 | unsigned long *populated; | ||
| 915 | int rs, re; | ||
| 916 | |||
| 917 | /* quick path, check whether it's empty already */ | ||
| 918 | rs = page_start; | ||
| 919 | pcpu_next_unpop(chunk, &rs, &re, page_end); | ||
| 920 | if (rs == page_start && re == page_end) | ||
| 921 | return; | ||
| 922 | |||
| 923 | /* immutable chunks can't be depopulated */ | ||
| 924 | WARN_ON(chunk->immutable); | ||
| 925 | 679 | ||
| 926 | /* | 680 | /* |
| 927 | * If control reaches here, there must have been at least one | 681 | * The address is relative to unit0 which might be unused and |
| 928 | * successful population attempt so the temp pages array must | 682 | * thus unmapped. Offset the address to the unit space of the |
| 929 | * be available now. | 683 | * current processor before looking it up in the vmalloc |
| 684 | * space. Note that any possible cpu id can be used here, so | ||
| 685 | * there's no need to worry about preemption or cpu hotplug. | ||
| 930 | */ | 686 | */ |
| 931 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | 687 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; |
| 932 | BUG_ON(!pages); | 688 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
| 933 | |||
| 934 | /* unmap and free */ | ||
| 935 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
| 936 | |||
| 937 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 938 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 939 | |||
| 940 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
| 941 | |||
| 942 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 943 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 944 | |||
| 945 | /* commit new bitmap */ | ||
| 946 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 947 | } | ||
| 948 | |||
| 949 | /** | ||
| 950 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
| 951 | * @chunk: chunk of interest | ||
| 952 | * @off: offset to the area to populate | ||
| 953 | * @size: size of the area to populate in bytes | ||
| 954 | * | ||
| 955 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
| 956 | * @chunk. The area is cleared on return. | ||
| 957 | * | ||
| 958 | * CONTEXT: | ||
| 959 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
| 960 | */ | ||
| 961 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 962 | { | ||
| 963 | int page_start = PFN_DOWN(off); | ||
| 964 | int page_end = PFN_UP(off + size); | ||
| 965 | int free_end = page_start, unmap_end = page_start; | ||
| 966 | struct page **pages; | ||
| 967 | unsigned long *populated; | ||
| 968 | unsigned int cpu; | ||
| 969 | int rs, re, rc; | ||
| 970 | |||
| 971 | /* quick path, check whether all pages are already there */ | ||
| 972 | rs = page_start; | ||
| 973 | pcpu_next_pop(chunk, &rs, &re, page_end); | ||
| 974 | if (rs == page_start && re == page_end) | ||
| 975 | goto clear; | ||
| 976 | |||
| 977 | /* need to allocate and map pages, this chunk can't be immutable */ | ||
| 978 | WARN_ON(chunk->immutable); | ||
| 979 | |||
| 980 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); | ||
| 981 | if (!pages) | ||
| 982 | return -ENOMEM; | ||
| 983 | |||
| 984 | /* alloc and map */ | ||
| 985 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 986 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); | ||
| 987 | if (rc) | ||
| 988 | goto err_free; | ||
| 989 | free_end = re; | ||
| 990 | } | ||
| 991 | |||
| 992 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 993 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); | ||
| 994 | if (rc) | ||
| 995 | goto err_unmap; | ||
| 996 | unmap_end = re; | ||
| 997 | } | ||
| 998 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
| 999 | |||
| 1000 | /* commit new bitmap */ | ||
| 1001 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 1002 | clear: | ||
| 1003 | for_each_possible_cpu(cpu) | ||
| 1004 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | ||
| 1005 | return 0; | ||
| 1006 | |||
| 1007 | err_unmap: | ||
| 1008 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); | ||
| 1009 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) | ||
| 1010 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 1011 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
| 1012 | err_free: | ||
| 1013 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
| 1014 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 1015 | return rc; | ||
| 1016 | } | ||
| 1017 | |||
| 1018 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
| 1019 | { | ||
| 1020 | if (!chunk) | ||
| 1021 | return; | ||
| 1022 | if (chunk->vms) | ||
| 1023 | pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); | ||
| 1024 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
| 1025 | kfree(chunk); | ||
| 1026 | } | ||
| 1027 | |||
| 1028 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
| 1029 | { | ||
| 1030 | struct pcpu_chunk *chunk; | ||
| 1031 | |||
| 1032 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
| 1033 | if (!chunk) | ||
| 1034 | return NULL; | ||
| 1035 | |||
| 1036 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
| 1037 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
| 1038 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
| 1039 | |||
| 1040 | chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, | ||
| 1041 | pcpu_nr_groups, pcpu_atom_size, | ||
| 1042 | GFP_KERNEL); | ||
| 1043 | if (!chunk->vms) { | ||
| 1044 | free_pcpu_chunk(chunk); | ||
| 1045 | return NULL; | ||
| 1046 | } | ||
| 1047 | |||
| 1048 | INIT_LIST_HEAD(&chunk->list); | ||
| 1049 | chunk->free_size = pcpu_unit_size; | ||
| 1050 | chunk->contig_hint = pcpu_unit_size; | ||
| 1051 | chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; | ||
| 1052 | |||
| 1053 | return chunk; | ||
| 1054 | } | 689 | } |
| 1055 | 690 | ||
| 1056 | /** | 691 | /** |
| @@ -1142,7 +777,7 @@ restart: | |||
| 1142 | /* hmmm... no space left, create a new chunk */ | 777 | /* hmmm... no space left, create a new chunk */ |
| 1143 | spin_unlock_irqrestore(&pcpu_lock, flags); | 778 | spin_unlock_irqrestore(&pcpu_lock, flags); |
| 1144 | 779 | ||
| 1145 | chunk = alloc_pcpu_chunk(); | 780 | chunk = pcpu_create_chunk(); |
| 1146 | if (!chunk) { | 781 | if (!chunk) { |
| 1147 | err = "failed to allocate new chunk"; | 782 | err = "failed to allocate new chunk"; |
| 1148 | goto fail_unlock_mutex; | 783 | goto fail_unlock_mutex; |
| @@ -1254,7 +889,7 @@ static void pcpu_reclaim(struct work_struct *work) | |||
| 1254 | 889 | ||
| 1255 | list_for_each_entry_safe(chunk, next, &todo, list) { | 890 | list_for_each_entry_safe(chunk, next, &todo, list) { |
| 1256 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); | 891 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); |
| 1257 | free_pcpu_chunk(chunk); | 892 | pcpu_destroy_chunk(chunk); |
| 1258 | } | 893 | } |
| 1259 | 894 | ||
| 1260 | mutex_unlock(&pcpu_alloc_mutex); | 895 | mutex_unlock(&pcpu_alloc_mutex); |
| @@ -1343,11 +978,14 @@ bool is_kernel_percpu_address(unsigned long addr) | |||
| 1343 | */ | 978 | */ |
| 1344 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | 979 | phys_addr_t per_cpu_ptr_to_phys(void *addr) |
| 1345 | { | 980 | { |
| 1346 | if ((unsigned long)addr < VMALLOC_START || | 981 | if (pcpu_addr_in_first_chunk(addr)) { |
| 1347 | (unsigned long)addr >= VMALLOC_END) | 982 | if ((unsigned long)addr < VMALLOC_START || |
| 1348 | return __pa(addr); | 983 | (unsigned long)addr >= VMALLOC_END) |
| 1349 | else | 984 | return __pa(addr); |
| 1350 | return page_to_phys(vmalloc_to_page(addr)); | 985 | else |
| 986 | return page_to_phys(vmalloc_to_page(addr)); | ||
| 987 | } else | ||
| 988 | return page_to_phys(pcpu_addr_to_page(addr)); | ||
| 1351 | } | 989 | } |
| 1352 | 990 | ||
| 1353 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | 991 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, |
| @@ -1719,6 +1357,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | |||
| 1719 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 1357 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
| 1720 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | 1358 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); |
| 1721 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 1359 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
| 1360 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | ||
| 1722 | 1361 | ||
| 1723 | /* process group information and build config tables accordingly */ | 1362 | /* process group information and build config tables accordingly */ |
| 1724 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); | 1363 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); |
diff --git a/mm/shmem.c b/mm/shmem.c index eef4ebea5158..0cd7f66f1c66 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
| @@ -1545,8 +1545,8 @@ static int shmem_mmap(struct file *file, struct vm_area_struct *vma) | |||
| 1545 | return 0; | 1545 | return 0; |
| 1546 | } | 1546 | } |
| 1547 | 1547 | ||
| 1548 | static struct inode *shmem_get_inode(struct super_block *sb, int mode, | 1548 | static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, |
| 1549 | dev_t dev, unsigned long flags) | 1549 | int mode, dev_t dev, unsigned long flags) |
| 1550 | { | 1550 | { |
| 1551 | struct inode *inode; | 1551 | struct inode *inode; |
| 1552 | struct shmem_inode_info *info; | 1552 | struct shmem_inode_info *info; |
| @@ -1557,9 +1557,7 @@ static struct inode *shmem_get_inode(struct super_block *sb, int mode, | |||
| 1557 | 1557 | ||
| 1558 | inode = new_inode(sb); | 1558 | inode = new_inode(sb); |
| 1559 | if (inode) { | 1559 | if (inode) { |
| 1560 | inode->i_mode = mode; | 1560 | inode_init_owner(inode, dir, mode); |
| 1561 | inode->i_uid = current_fsuid(); | ||
| 1562 | inode->i_gid = current_fsgid(); | ||
| 1563 | inode->i_blocks = 0; | 1561 | inode->i_blocks = 0; |
| 1564 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; | 1562 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; |
| 1565 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 1563 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
| @@ -1814,7 +1812,7 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) | |||
| 1814 | struct inode *inode; | 1812 | struct inode *inode; |
| 1815 | int error = -ENOSPC; | 1813 | int error = -ENOSPC; |
| 1816 | 1814 | ||
| 1817 | inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE); | 1815 | inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); |
| 1818 | if (inode) { | 1816 | if (inode) { |
| 1819 | error = security_inode_init_security(inode, dir, NULL, NULL, | 1817 | error = security_inode_init_security(inode, dir, NULL, NULL, |
| 1820 | NULL); | 1818 | NULL); |
| @@ -1833,11 +1831,6 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) | |||
| 1833 | #else | 1831 | #else |
| 1834 | error = 0; | 1832 | error = 0; |
| 1835 | #endif | 1833 | #endif |
| 1836 | if (dir->i_mode & S_ISGID) { | ||
| 1837 | inode->i_gid = dir->i_gid; | ||
| 1838 | if (S_ISDIR(mode)) | ||
| 1839 | inode->i_mode |= S_ISGID; | ||
| 1840 | } | ||
| 1841 | dir->i_size += BOGO_DIRENT_SIZE; | 1834 | dir->i_size += BOGO_DIRENT_SIZE; |
| 1842 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 1835 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
| 1843 | d_instantiate(dentry, inode); | 1836 | d_instantiate(dentry, inode); |
| @@ -1957,7 +1950,7 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s | |||
| 1957 | if (len > PAGE_CACHE_SIZE) | 1950 | if (len > PAGE_CACHE_SIZE) |
| 1958 | return -ENAMETOOLONG; | 1951 | return -ENAMETOOLONG; |
| 1959 | 1952 | ||
| 1960 | inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); | 1953 | inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); |
| 1961 | if (!inode) | 1954 | if (!inode) |
| 1962 | return -ENOSPC; | 1955 | return -ENOSPC; |
| 1963 | 1956 | ||
| @@ -1992,8 +1985,6 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s | |||
| 1992 | unlock_page(page); | 1985 | unlock_page(page); |
| 1993 | page_cache_release(page); | 1986 | page_cache_release(page); |
| 1994 | } | 1987 | } |
| 1995 | if (dir->i_mode & S_ISGID) | ||
| 1996 | inode->i_gid = dir->i_gid; | ||
| 1997 | dir->i_size += BOGO_DIRENT_SIZE; | 1988 | dir->i_size += BOGO_DIRENT_SIZE; |
| 1998 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 1989 | dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
| 1999 | d_instantiate(dentry, inode); | 1990 | d_instantiate(dentry, inode); |
| @@ -2071,14 +2062,14 @@ static int shmem_xattr_security_set(struct dentry *dentry, const char *name, | |||
| 2071 | size, flags); | 2062 | size, flags); |
| 2072 | } | 2063 | } |
| 2073 | 2064 | ||
| 2074 | static struct xattr_handler shmem_xattr_security_handler = { | 2065 | static const struct xattr_handler shmem_xattr_security_handler = { |
| 2075 | .prefix = XATTR_SECURITY_PREFIX, | 2066 | .prefix = XATTR_SECURITY_PREFIX, |
| 2076 | .list = shmem_xattr_security_list, | 2067 | .list = shmem_xattr_security_list, |
| 2077 | .get = shmem_xattr_security_get, | 2068 | .get = shmem_xattr_security_get, |
| 2078 | .set = shmem_xattr_security_set, | 2069 | .set = shmem_xattr_security_set, |
| 2079 | }; | 2070 | }; |
| 2080 | 2071 | ||
| 2081 | static struct xattr_handler *shmem_xattr_handlers[] = { | 2072 | static const struct xattr_handler *shmem_xattr_handlers[] = { |
| 2082 | &generic_acl_access_handler, | 2073 | &generic_acl_access_handler, |
| 2083 | &generic_acl_default_handler, | 2074 | &generic_acl_default_handler, |
| 2084 | &shmem_xattr_security_handler, | 2075 | &shmem_xattr_security_handler, |
| @@ -2366,7 +2357,7 @@ int shmem_fill_super(struct super_block *sb, void *data, int silent) | |||
| 2366 | sb->s_flags |= MS_POSIXACL; | 2357 | sb->s_flags |= MS_POSIXACL; |
| 2367 | #endif | 2358 | #endif |
| 2368 | 2359 | ||
| 2369 | inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); | 2360 | inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); |
| 2370 | if (!inode) | 2361 | if (!inode) |
| 2371 | goto failed; | 2362 | goto failed; |
| 2372 | inode->i_uid = sbinfo->uid; | 2363 | inode->i_uid = sbinfo->uid; |
| @@ -2611,7 +2602,7 @@ int shmem_lock(struct file *file, int lock, struct user_struct *user) | |||
| 2611 | 2602 | ||
| 2612 | #define shmem_vm_ops generic_file_vm_ops | 2603 | #define shmem_vm_ops generic_file_vm_ops |
| 2613 | #define shmem_file_operations ramfs_file_operations | 2604 | #define shmem_file_operations ramfs_file_operations |
| 2614 | #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev) | 2605 | #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) |
| 2615 | #define shmem_acct_size(flags, size) 0 | 2606 | #define shmem_acct_size(flags, size) 0 |
| 2616 | #define shmem_unacct_size(flags, size) do {} while (0) | 2607 | #define shmem_unacct_size(flags, size) do {} while (0) |
| 2617 | #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE | 2608 | #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE |
| @@ -2655,7 +2646,7 @@ struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags | |||
| 2655 | path.mnt = mntget(shm_mnt); | 2646 | path.mnt = mntget(shm_mnt); |
| 2656 | 2647 | ||
| 2657 | error = -ENOSPC; | 2648 | error = -ENOSPC; |
| 2658 | inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags); | 2649 | inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); |
| 2659 | if (!inode) | 2650 | if (!inode) |
| 2660 | goto put_dentry; | 2651 | goto put_dentry; |
| 2661 | 2652 | ||
| @@ -115,6 +115,7 @@ | |||
| 115 | #include <linux/reciprocal_div.h> | 115 | #include <linux/reciprocal_div.h> |
| 116 | #include <linux/debugobjects.h> | 116 | #include <linux/debugobjects.h> |
| 117 | #include <linux/kmemcheck.h> | 117 | #include <linux/kmemcheck.h> |
| 118 | #include <linux/memory.h> | ||
| 118 | 119 | ||
| 119 | #include <asm/cacheflush.h> | 120 | #include <asm/cacheflush.h> |
| 120 | #include <asm/tlbflush.h> | 121 | #include <asm/tlbflush.h> |
| @@ -144,30 +145,6 @@ | |||
| 144 | #define BYTES_PER_WORD sizeof(void *) | 145 | #define BYTES_PER_WORD sizeof(void *) |
| 145 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) | 146 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
| 146 | 147 | ||
| 147 | #ifndef ARCH_KMALLOC_MINALIGN | ||
| 148 | /* | ||
| 149 | * Enforce a minimum alignment for the kmalloc caches. | ||
| 150 | * Usually, the kmalloc caches are cache_line_size() aligned, except when | ||
| 151 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | ||
| 152 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | ||
| 153 | * alignment larger than the alignment of a 64-bit integer. | ||
| 154 | * ARCH_KMALLOC_MINALIGN allows that. | ||
| 155 | * Note that increasing this value may disable some debug features. | ||
| 156 | */ | ||
| 157 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | ||
| 158 | #endif | ||
| 159 | |||
| 160 | #ifndef ARCH_SLAB_MINALIGN | ||
| 161 | /* | ||
| 162 | * Enforce a minimum alignment for all caches. | ||
| 163 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | ||
| 164 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | ||
| 165 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | ||
| 166 | * some debug features. | ||
| 167 | */ | ||
| 168 | #define ARCH_SLAB_MINALIGN 0 | ||
| 169 | #endif | ||
| 170 | |||
| 171 | #ifndef ARCH_KMALLOC_FLAGS | 148 | #ifndef ARCH_KMALLOC_FLAGS |
| 172 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | 149 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN |
| 173 | #endif | 150 | #endif |
| @@ -1102,6 +1079,52 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
| 1102 | } | 1079 | } |
| 1103 | #endif | 1080 | #endif |
| 1104 | 1081 | ||
| 1082 | /* | ||
| 1083 | * Allocates and initializes nodelists for a node on each slab cache, used for | ||
| 1084 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | ||
| 1085 | * will be allocated off-node since memory is not yet online for the new node. | ||
| 1086 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | ||
| 1087 | * already in use. | ||
| 1088 | * | ||
| 1089 | * Must hold cache_chain_mutex. | ||
| 1090 | */ | ||
| 1091 | static int init_cache_nodelists_node(int node) | ||
| 1092 | { | ||
| 1093 | struct kmem_cache *cachep; | ||
| 1094 | struct kmem_list3 *l3; | ||
| 1095 | const int memsize = sizeof(struct kmem_list3); | ||
| 1096 | |||
| 1097 | list_for_each_entry(cachep, &cache_chain, next) { | ||
| 1098 | /* | ||
| 1099 | * Set up the size64 kmemlist for cpu before we can | ||
| 1100 | * begin anything. Make sure some other cpu on this | ||
| 1101 | * node has not already allocated this | ||
| 1102 | */ | ||
| 1103 | if (!cachep->nodelists[node]) { | ||
| 1104 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | ||
| 1105 | if (!l3) | ||
| 1106 | return -ENOMEM; | ||
| 1107 | kmem_list3_init(l3); | ||
| 1108 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
| 1109 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | ||
| 1110 | |||
| 1111 | /* | ||
| 1112 | * The l3s don't come and go as CPUs come and | ||
| 1113 | * go. cache_chain_mutex is sufficient | ||
| 1114 | * protection here. | ||
| 1115 | */ | ||
| 1116 | cachep->nodelists[node] = l3; | ||
| 1117 | } | ||
| 1118 | |||
| 1119 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | ||
| 1120 | cachep->nodelists[node]->free_limit = | ||
| 1121 | (1 + nr_cpus_node(node)) * | ||
| 1122 | cachep->batchcount + cachep->num; | ||
| 1123 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | ||
| 1124 | } | ||
| 1125 | return 0; | ||
| 1126 | } | ||
| 1127 | |||
| 1105 | static void __cpuinit cpuup_canceled(long cpu) | 1128 | static void __cpuinit cpuup_canceled(long cpu) |
| 1106 | { | 1129 | { |
| 1107 | struct kmem_cache *cachep; | 1130 | struct kmem_cache *cachep; |
| @@ -1172,7 +1195,7 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
| 1172 | struct kmem_cache *cachep; | 1195 | struct kmem_cache *cachep; |
| 1173 | struct kmem_list3 *l3 = NULL; | 1196 | struct kmem_list3 *l3 = NULL; |
| 1174 | int node = cpu_to_node(cpu); | 1197 | int node = cpu_to_node(cpu); |
| 1175 | const int memsize = sizeof(struct kmem_list3); | 1198 | int err; |
| 1176 | 1199 | ||
| 1177 | /* | 1200 | /* |
| 1178 | * We need to do this right in the beginning since | 1201 | * We need to do this right in the beginning since |
| @@ -1180,35 +1203,9 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
| 1180 | * kmalloc_node allows us to add the slab to the right | 1203 | * kmalloc_node allows us to add the slab to the right |
| 1181 | * kmem_list3 and not this cpu's kmem_list3 | 1204 | * kmem_list3 and not this cpu's kmem_list3 |
| 1182 | */ | 1205 | */ |
| 1183 | 1206 | err = init_cache_nodelists_node(node); | |
| 1184 | list_for_each_entry(cachep, &cache_chain, next) { | 1207 | if (err < 0) |
| 1185 | /* | 1208 | goto bad; |
| 1186 | * Set up the size64 kmemlist for cpu before we can | ||
| 1187 | * begin anything. Make sure some other cpu on this | ||
| 1188 | * node has not already allocated this | ||
| 1189 | */ | ||
| 1190 | if (!cachep->nodelists[node]) { | ||
| 1191 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | ||
| 1192 | if (!l3) | ||
| 1193 | goto bad; | ||
| 1194 | kmem_list3_init(l3); | ||
| 1195 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
| 1196 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | ||
| 1197 | |||
| 1198 | /* | ||
| 1199 | * The l3s don't come and go as CPUs come and | ||
| 1200 | * go. cache_chain_mutex is sufficient | ||
| 1201 | * protection here. | ||
| 1202 | */ | ||
| 1203 | cachep->nodelists[node] = l3; | ||
| 1204 | } | ||
| 1205 | |||
| 1206 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | ||
| 1207 | cachep->nodelists[node]->free_limit = | ||
| 1208 | (1 + nr_cpus_node(node)) * | ||
| 1209 | cachep->batchcount + cachep->num; | ||
| 1210 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | ||
| 1211 | } | ||
| 1212 | 1209 | ||
| 1213 | /* | 1210 | /* |
| 1214 | * Now we can go ahead with allocating the shared arrays and | 1211 | * Now we can go ahead with allocating the shared arrays and |
| @@ -1331,11 +1328,75 @@ static struct notifier_block __cpuinitdata cpucache_notifier = { | |||
| 1331 | &cpuup_callback, NULL, 0 | 1328 | &cpuup_callback, NULL, 0 |
| 1332 | }; | 1329 | }; |
| 1333 | 1330 | ||
| 1331 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) | ||
| 1332 | /* | ||
| 1333 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | ||
| 1334 | * Returns -EBUSY if all objects cannot be drained so that the node is not | ||
| 1335 | * removed. | ||
| 1336 | * | ||
| 1337 | * Must hold cache_chain_mutex. | ||
| 1338 | */ | ||
| 1339 | static int __meminit drain_cache_nodelists_node(int node) | ||
| 1340 | { | ||
| 1341 | struct kmem_cache *cachep; | ||
| 1342 | int ret = 0; | ||
| 1343 | |||
| 1344 | list_for_each_entry(cachep, &cache_chain, next) { | ||
| 1345 | struct kmem_list3 *l3; | ||
| 1346 | |||
| 1347 | l3 = cachep->nodelists[node]; | ||
| 1348 | if (!l3) | ||
| 1349 | continue; | ||
| 1350 | |||
| 1351 | drain_freelist(cachep, l3, l3->free_objects); | ||
| 1352 | |||
| 1353 | if (!list_empty(&l3->slabs_full) || | ||
| 1354 | !list_empty(&l3->slabs_partial)) { | ||
| 1355 | ret = -EBUSY; | ||
| 1356 | break; | ||
| 1357 | } | ||
| 1358 | } | ||
| 1359 | return ret; | ||
| 1360 | } | ||
| 1361 | |||
| 1362 | static int __meminit slab_memory_callback(struct notifier_block *self, | ||
| 1363 | unsigned long action, void *arg) | ||
| 1364 | { | ||
| 1365 | struct memory_notify *mnb = arg; | ||
| 1366 | int ret = 0; | ||
| 1367 | int nid; | ||
| 1368 | |||
| 1369 | nid = mnb->status_change_nid; | ||
| 1370 | if (nid < 0) | ||
| 1371 | goto out; | ||
| 1372 | |||
| 1373 | switch (action) { | ||
| 1374 | case MEM_GOING_ONLINE: | ||
| 1375 | mutex_lock(&cache_chain_mutex); | ||
| 1376 | ret = init_cache_nodelists_node(nid); | ||
| 1377 | mutex_unlock(&cache_chain_mutex); | ||
| 1378 | break; | ||
| 1379 | case MEM_GOING_OFFLINE: | ||
| 1380 | mutex_lock(&cache_chain_mutex); | ||
| 1381 | ret = drain_cache_nodelists_node(nid); | ||
| 1382 | mutex_unlock(&cache_chain_mutex); | ||
| 1383 | break; | ||
| 1384 | case MEM_ONLINE: | ||
| 1385 | case MEM_OFFLINE: | ||
| 1386 | case MEM_CANCEL_ONLINE: | ||
| 1387 | case MEM_CANCEL_OFFLINE: | ||
| 1388 | break; | ||
| 1389 | } | ||
| 1390 | out: | ||
| 1391 | return ret ? notifier_from_errno(ret) : NOTIFY_OK; | ||
| 1392 | } | ||
| 1393 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | ||
| 1394 | |||
| 1334 | /* | 1395 | /* |
| 1335 | * swap the static kmem_list3 with kmalloced memory | 1396 | * swap the static kmem_list3 with kmalloced memory |
| 1336 | */ | 1397 | */ |
| 1337 | static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, | 1398 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
| 1338 | int nodeid) | 1399 | int nodeid) |
| 1339 | { | 1400 | { |
| 1340 | struct kmem_list3 *ptr; | 1401 | struct kmem_list3 *ptr; |
| 1341 | 1402 | ||
| @@ -1580,6 +1641,14 @@ void __init kmem_cache_init_late(void) | |||
| 1580 | */ | 1641 | */ |
| 1581 | register_cpu_notifier(&cpucache_notifier); | 1642 | register_cpu_notifier(&cpucache_notifier); |
| 1582 | 1643 | ||
| 1644 | #ifdef CONFIG_NUMA | ||
| 1645 | /* | ||
| 1646 | * Register a memory hotplug callback that initializes and frees | ||
| 1647 | * nodelists. | ||
| 1648 | */ | ||
| 1649 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | ||
| 1650 | #endif | ||
| 1651 | |||
| 1583 | /* | 1652 | /* |
| 1584 | * The reap timers are started later, with a module init call: That part | 1653 | * The reap timers are started later, with a module init call: That part |
| 1585 | * of the kernel is not yet operational. | 1654 | * of the kernel is not yet operational. |
| @@ -2220,8 +2289,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
| 2220 | if (ralign < align) { | 2289 | if (ralign < align) { |
| 2221 | ralign = align; | 2290 | ralign = align; |
| 2222 | } | 2291 | } |
| 2223 | /* disable debug if necessary */ | 2292 | /* disable debug if not aligning with REDZONE_ALIGN */ |
| 2224 | if (ralign > __alignof__(unsigned long long)) | 2293 | if (ralign & (__alignof__(unsigned long long) - 1)) |
| 2225 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 2294 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
| 2226 | /* | 2295 | /* |
| 2227 | * 4) Store it. | 2296 | * 4) Store it. |
| @@ -2247,8 +2316,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
| 2247 | */ | 2316 | */ |
| 2248 | if (flags & SLAB_RED_ZONE) { | 2317 | if (flags & SLAB_RED_ZONE) { |
| 2249 | /* add space for red zone words */ | 2318 | /* add space for red zone words */ |
| 2250 | cachep->obj_offset += sizeof(unsigned long long); | 2319 | cachep->obj_offset += align; |
| 2251 | size += 2 * sizeof(unsigned long long); | 2320 | size += align + sizeof(unsigned long long); |
| 2252 | } | 2321 | } |
| 2253 | if (flags & SLAB_STORE_USER) { | 2322 | if (flags & SLAB_STORE_USER) { |
| 2254 | /* user store requires one word storage behind the end of | 2323 | /* user store requires one word storage behind the end of |
| @@ -4216,10 +4285,11 @@ static int s_show(struct seq_file *m, void *p) | |||
| 4216 | unsigned long node_frees = cachep->node_frees; | 4285 | unsigned long node_frees = cachep->node_frees; |
| 4217 | unsigned long overflows = cachep->node_overflow; | 4286 | unsigned long overflows = cachep->node_overflow; |
| 4218 | 4287 | ||
| 4219 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ | 4288 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
| 4220 | %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, | 4289 | "%4lu %4lu %4lu %4lu %4lu", |
| 4221 | reaped, errors, max_freeable, node_allocs, | 4290 | allocs, high, grown, |
| 4222 | node_frees, overflows); | 4291 | reaped, errors, max_freeable, node_allocs, |
| 4292 | node_frees, overflows); | ||
| 4223 | } | 4293 | } |
| 4224 | /* cpu stats */ | 4294 | /* cpu stats */ |
| 4225 | { | 4295 | { |
| @@ -467,14 +467,6 @@ out: | |||
| 467 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | 467 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. |
| 468 | */ | 468 | */ |
| 469 | 469 | ||
| 470 | #ifndef ARCH_KMALLOC_MINALIGN | ||
| 471 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long) | ||
| 472 | #endif | ||
| 473 | |||
| 474 | #ifndef ARCH_SLAB_MINALIGN | ||
| 475 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long) | ||
| 476 | #endif | ||
| 477 | |||
| 478 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) | 470 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
| 479 | { | 471 | { |
| 480 | unsigned int *m; | 472 | unsigned int *m; |
| @@ -157,14 +157,6 @@ | |||
| 157 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | 157 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ |
| 158 | SLAB_CACHE_DMA | SLAB_NOTRACK) | 158 | SLAB_CACHE_DMA | SLAB_NOTRACK) |
| 159 | 159 | ||
| 160 | #ifndef ARCH_KMALLOC_MINALIGN | ||
| 161 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | ||
| 162 | #endif | ||
| 163 | |||
| 164 | #ifndef ARCH_SLAB_MINALIGN | ||
| 165 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) | ||
| 166 | #endif | ||
| 167 | |||
| 168 | #define OO_SHIFT 16 | 160 | #define OO_SHIFT 16 |
| 169 | #define OO_MASK ((1 << OO_SHIFT) - 1) | 161 | #define OO_MASK ((1 << OO_SHIFT) - 1) |
| 170 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ | 162 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ |
| @@ -1084,7 +1076,7 @@ static inline struct page *alloc_slab_page(gfp_t flags, int node, | |||
| 1084 | if (node == -1) | 1076 | if (node == -1) |
| 1085 | return alloc_pages(flags, order); | 1077 | return alloc_pages(flags, order); |
| 1086 | else | 1078 | else |
| 1087 | return alloc_pages_node(node, flags, order); | 1079 | return alloc_pages_exact_node(node, flags, order); |
| 1088 | } | 1080 | } |
| 1089 | 1081 | ||
| 1090 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 1082 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
| @@ -2429,9 +2421,11 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page, | |||
| 2429 | #ifdef CONFIG_SLUB_DEBUG | 2421 | #ifdef CONFIG_SLUB_DEBUG |
| 2430 | void *addr = page_address(page); | 2422 | void *addr = page_address(page); |
| 2431 | void *p; | 2423 | void *p; |
| 2432 | DECLARE_BITMAP(map, page->objects); | 2424 | long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long), |
| 2425 | GFP_ATOMIC); | ||
| 2433 | 2426 | ||
| 2434 | bitmap_zero(map, page->objects); | 2427 | if (!map) |
| 2428 | return; | ||
| 2435 | slab_err(s, page, "%s", text); | 2429 | slab_err(s, page, "%s", text); |
| 2436 | slab_lock(page); | 2430 | slab_lock(page); |
| 2437 | for_each_free_object(p, s, page->freelist) | 2431 | for_each_free_object(p, s, page->freelist) |
| @@ -2446,6 +2440,7 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page, | |||
| 2446 | } | 2440 | } |
| 2447 | } | 2441 | } |
| 2448 | slab_unlock(page); | 2442 | slab_unlock(page); |
| 2443 | kfree(map); | ||
| 2449 | #endif | 2444 | #endif |
| 2450 | } | 2445 | } |
| 2451 | 2446 | ||
| @@ -3338,8 +3333,15 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |||
| 3338 | struct kmem_cache *s; | 3333 | struct kmem_cache *s; |
| 3339 | void *ret; | 3334 | void *ret; |
| 3340 | 3335 | ||
| 3341 | if (unlikely(size > SLUB_MAX_SIZE)) | 3336 | if (unlikely(size > SLUB_MAX_SIZE)) { |
| 3342 | return kmalloc_large_node(size, gfpflags, node); | 3337 | ret = kmalloc_large_node(size, gfpflags, node); |
| 3338 | |||
| 3339 | trace_kmalloc_node(caller, ret, | ||
| 3340 | size, PAGE_SIZE << get_order(size), | ||
| 3341 | gfpflags, node); | ||
| 3342 | |||
| 3343 | return ret; | ||
| 3344 | } | ||
| 3343 | 3345 | ||
| 3344 | s = get_slab(size, gfpflags); | 3346 | s = get_slab(size, gfpflags); |
| 3345 | 3347 | ||
| @@ -3651,10 +3653,10 @@ static int add_location(struct loc_track *t, struct kmem_cache *s, | |||
| 3651 | } | 3653 | } |
| 3652 | 3654 | ||
| 3653 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 3655 | static void process_slab(struct loc_track *t, struct kmem_cache *s, |
| 3654 | struct page *page, enum track_item alloc) | 3656 | struct page *page, enum track_item alloc, |
| 3657 | long *map) | ||
| 3655 | { | 3658 | { |
| 3656 | void *addr = page_address(page); | 3659 | void *addr = page_address(page); |
| 3657 | DECLARE_BITMAP(map, page->objects); | ||
| 3658 | void *p; | 3660 | void *p; |
| 3659 | 3661 | ||
| 3660 | bitmap_zero(map, page->objects); | 3662 | bitmap_zero(map, page->objects); |
| @@ -3673,11 +3675,14 @@ static int list_locations(struct kmem_cache *s, char *buf, | |||
| 3673 | unsigned long i; | 3675 | unsigned long i; |
| 3674 | struct loc_track t = { 0, 0, NULL }; | 3676 | struct loc_track t = { 0, 0, NULL }; |
| 3675 | int node; | 3677 | int node; |
| 3678 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | ||
| 3679 | sizeof(unsigned long), GFP_KERNEL); | ||
| 3676 | 3680 | ||
| 3677 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 3681 | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
| 3678 | GFP_TEMPORARY)) | 3682 | GFP_TEMPORARY)) { |
| 3683 | kfree(map); | ||
| 3679 | return sprintf(buf, "Out of memory\n"); | 3684 | return sprintf(buf, "Out of memory\n"); |
| 3680 | 3685 | } | |
| 3681 | /* Push back cpu slabs */ | 3686 | /* Push back cpu slabs */ |
| 3682 | flush_all(s); | 3687 | flush_all(s); |
| 3683 | 3688 | ||
| @@ -3691,9 +3696,9 @@ static int list_locations(struct kmem_cache *s, char *buf, | |||
| 3691 | 3696 | ||
| 3692 | spin_lock_irqsave(&n->list_lock, flags); | 3697 | spin_lock_irqsave(&n->list_lock, flags); |
| 3693 | list_for_each_entry(page, &n->partial, lru) | 3698 | list_for_each_entry(page, &n->partial, lru) |
| 3694 | process_slab(&t, s, page, alloc); | 3699 | process_slab(&t, s, page, alloc, map); |
| 3695 | list_for_each_entry(page, &n->full, lru) | 3700 | list_for_each_entry(page, &n->full, lru) |
| 3696 | process_slab(&t, s, page, alloc); | 3701 | process_slab(&t, s, page, alloc, map); |
| 3697 | spin_unlock_irqrestore(&n->list_lock, flags); | 3702 | spin_unlock_irqrestore(&n->list_lock, flags); |
| 3698 | } | 3703 | } |
| 3699 | 3704 | ||
| @@ -3744,6 +3749,7 @@ static int list_locations(struct kmem_cache *s, char *buf, | |||
| 3744 | } | 3749 | } |
| 3745 | 3750 | ||
| 3746 | free_loc_track(&t); | 3751 | free_loc_track(&t); |
| 3752 | kfree(map); | ||
| 3747 | if (!t.count) | 3753 | if (!t.count) |
| 3748 | len += sprintf(buf, "No data\n"); | 3754 | len += sprintf(buf, "No data\n"); |
| 3749 | return len; | 3755 | return len; |
diff --git a/mm/swapfile.c b/mm/swapfile.c index 6cd0a8f90dc7..03aa2d55f1a2 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
| @@ -139,7 +139,8 @@ static int discard_swap(struct swap_info_struct *si) | |||
| 139 | nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 139 | nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); |
| 140 | if (nr_blocks) { | 140 | if (nr_blocks) { |
| 141 | err = blkdev_issue_discard(si->bdev, start_block, | 141 | err = blkdev_issue_discard(si->bdev, start_block, |
| 142 | nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER); | 142 | nr_blocks, GFP_KERNEL, |
| 143 | BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); | ||
| 143 | if (err) | 144 | if (err) |
| 144 | return err; | 145 | return err; |
| 145 | cond_resched(); | 146 | cond_resched(); |
| @@ -150,7 +151,8 @@ static int discard_swap(struct swap_info_struct *si) | |||
| 150 | nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 151 | nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); |
| 151 | 152 | ||
| 152 | err = blkdev_issue_discard(si->bdev, start_block, | 153 | err = blkdev_issue_discard(si->bdev, start_block, |
| 153 | nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER); | 154 | nr_blocks, GFP_KERNEL, |
| 155 | BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); | ||
| 154 | if (err) | 156 | if (err) |
| 155 | break; | 157 | break; |
| 156 | 158 | ||
| @@ -189,7 +191,8 @@ static void discard_swap_cluster(struct swap_info_struct *si, | |||
| 189 | start_block <<= PAGE_SHIFT - 9; | 191 | start_block <<= PAGE_SHIFT - 9; |
| 190 | nr_blocks <<= PAGE_SHIFT - 9; | 192 | nr_blocks <<= PAGE_SHIFT - 9; |
| 191 | if (blkdev_issue_discard(si->bdev, start_block, | 193 | if (blkdev_issue_discard(si->bdev, start_block, |
| 192 | nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER)) | 194 | nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT | |
| 195 | BLKDEV_IFL_BARRIER)) | ||
| 193 | break; | 196 | break; |
| 194 | } | 197 | } |
| 195 | 198 | ||
| @@ -574,6 +577,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p, | |||
| 574 | 577 | ||
| 575 | /* free if no reference */ | 578 | /* free if no reference */ |
| 576 | if (!usage) { | 579 | if (!usage) { |
| 580 | struct gendisk *disk = p->bdev->bd_disk; | ||
| 577 | if (offset < p->lowest_bit) | 581 | if (offset < p->lowest_bit) |
| 578 | p->lowest_bit = offset; | 582 | p->lowest_bit = offset; |
| 579 | if (offset > p->highest_bit) | 583 | if (offset > p->highest_bit) |
| @@ -583,6 +587,9 @@ static unsigned char swap_entry_free(struct swap_info_struct *p, | |||
| 583 | swap_list.next = p->type; | 587 | swap_list.next = p->type; |
| 584 | nr_swap_pages++; | 588 | nr_swap_pages++; |
| 585 | p->inuse_pages--; | 589 | p->inuse_pages--; |
| 590 | if ((p->flags & SWP_BLKDEV) && | ||
| 591 | disk->fops->swap_slot_free_notify) | ||
| 592 | disk->fops->swap_slot_free_notify(p->bdev, offset); | ||
| 586 | } | 593 | } |
| 587 | 594 | ||
| 588 | return usage; | 595 | return usage; |
| @@ -1884,6 +1891,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | |||
| 1884 | if (error < 0) | 1891 | if (error < 0) |
| 1885 | goto bad_swap; | 1892 | goto bad_swap; |
| 1886 | p->bdev = bdev; | 1893 | p->bdev = bdev; |
| 1894 | p->flags |= SWP_BLKDEV; | ||
| 1887 | } else if (S_ISREG(inode->i_mode)) { | 1895 | } else if (S_ISREG(inode->i_mode)) { |
| 1888 | p->bdev = inode->i_sb->s_bdev; | 1896 | p->bdev = inode->i_sb->s_bdev; |
| 1889 | mutex_lock(&inode->i_mutex); | 1897 | mutex_lock(&inode->i_mutex); |
