diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 5 | ||||
-rw-r--r-- | mm/Makefile | 2 | ||||
-rw-r--r-- | mm/allocpercpu.c | 24 | ||||
-rw-r--r-- | mm/bootmem.c | 935 | ||||
-rw-r--r-- | mm/filemap.c | 389 | ||||
-rw-r--r-- | mm/hugetlb.c | 1630 | ||||
-rw-r--r-- | mm/internal.h | 61 | ||||
-rw-r--r-- | mm/memcontrol.c | 364 | ||||
-rw-r--r-- | mm/memory.c | 246 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 80 | ||||
-rw-r--r-- | mm/mempolicy.c | 9 | ||||
-rw-r--r-- | mm/migrate.c | 49 | ||||
-rw-r--r-- | mm/mm_init.c | 152 | ||||
-rw-r--r-- | mm/mmap.c | 12 | ||||
-rw-r--r-- | mm/mprotect.c | 6 | ||||
-rw-r--r-- | mm/nommu.c | 4 | ||||
-rw-r--r-- | mm/page-writeback.c | 12 | ||||
-rw-r--r-- | mm/page_alloc.c | 152 | ||||
-rw-r--r-- | mm/pdflush.c | 4 | ||||
-rw-r--r-- | mm/readahead.c | 6 | ||||
-rw-r--r-- | mm/rmap.c | 16 | ||||
-rw-r--r-- | mm/shmem.c | 99 | ||||
-rw-r--r-- | mm/slab.c | 11 | ||||
-rw-r--r-- | mm/slob.c | 19 | ||||
-rw-r--r-- | mm/slub.c | 78 | ||||
-rw-r--r-- | mm/sparse.c | 117 | ||||
-rw-r--r-- | mm/swap.c | 8 | ||||
-rw-r--r-- | mm/swap_state.c | 30 | ||||
-rw-r--r-- | mm/swapfile.c | 59 | ||||
-rw-r--r-- | mm/truncate.c | 6 | ||||
-rw-r--r-- | mm/util.c | 11 | ||||
-rw-r--r-- | mm/vmalloc.c | 26 | ||||
-rw-r--r-- | mm/vmscan.c | 85 | ||||
-rw-r--r-- | mm/vmstat.c | 3 |
34 files changed, 3191 insertions, 1519 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index c4de85285bb4..efee5d379df4 100644 --- a/mm/Kconfig +++ b/mm/Kconfig | |||
@@ -77,6 +77,9 @@ config FLAT_NODE_MEM_MAP | |||
77 | def_bool y | 77 | def_bool y |
78 | depends on !SPARSEMEM | 78 | depends on !SPARSEMEM |
79 | 79 | ||
80 | config HAVE_GET_USER_PAGES_FAST | ||
81 | bool | ||
82 | |||
80 | # | 83 | # |
81 | # Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's | 84 | # Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's |
82 | # to represent different areas of memory. This variable allows | 85 | # to represent different areas of memory. This variable allows |
@@ -174,7 +177,7 @@ config SPLIT_PTLOCK_CPUS | |||
174 | config MIGRATION | 177 | config MIGRATION |
175 | bool "Page migration" | 178 | bool "Page migration" |
176 | def_bool y | 179 | def_bool y |
177 | depends on NUMA | 180 | depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE |
178 | help | 181 | help |
179 | Allows the migration of the physical location of pages of processes | 182 | Allows the migration of the physical location of pages of processes |
180 | while the virtual addresses are not changed. This is useful for | 183 | while the virtual addresses are not changed. This is useful for |
diff --git a/mm/Makefile b/mm/Makefile index 18c143b3c46c..06ca2381fef1 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -11,7 +11,7 @@ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \ | |||
11 | maccess.o page_alloc.o page-writeback.o pdflush.o \ | 11 | maccess.o page_alloc.o page-writeback.o pdflush.o \ |
12 | readahead.o swap.o truncate.o vmscan.o \ | 12 | readahead.o swap.o truncate.o vmscan.o \ |
13 | prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \ | 13 | prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \ |
14 | page_isolation.o $(mmu-y) | 14 | page_isolation.o mm_init.o $(mmu-y) |
15 | 15 | ||
16 | obj-$(CONFIG_PROC_PAGE_MONITOR) += pagewalk.o | 16 | obj-$(CONFIG_PROC_PAGE_MONITOR) += pagewalk.o |
17 | obj-$(CONFIG_BOUNCE) += bounce.o | 17 | obj-$(CONFIG_BOUNCE) += bounce.o |
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index 05f2b4009ccc..4297bc41bfd2 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c | |||
@@ -18,27 +18,28 @@ | |||
18 | * Depopulating per-cpu data for a cpu going offline would be a typical | 18 | * Depopulating per-cpu data for a cpu going offline would be a typical |
19 | * use case. You need to register a cpu hotplug handler for that purpose. | 19 | * use case. You need to register a cpu hotplug handler for that purpose. |
20 | */ | 20 | */ |
21 | void percpu_depopulate(void *__pdata, int cpu) | 21 | static void percpu_depopulate(void *__pdata, int cpu) |
22 | { | 22 | { |
23 | struct percpu_data *pdata = __percpu_disguise(__pdata); | 23 | struct percpu_data *pdata = __percpu_disguise(__pdata); |
24 | 24 | ||
25 | kfree(pdata->ptrs[cpu]); | 25 | kfree(pdata->ptrs[cpu]); |
26 | pdata->ptrs[cpu] = NULL; | 26 | pdata->ptrs[cpu] = NULL; |
27 | } | 27 | } |
28 | EXPORT_SYMBOL_GPL(percpu_depopulate); | ||
29 | 28 | ||
30 | /** | 29 | /** |
31 | * percpu_depopulate_mask - depopulate per-cpu data for some cpu's | 30 | * percpu_depopulate_mask - depopulate per-cpu data for some cpu's |
32 | * @__pdata: per-cpu data to depopulate | 31 | * @__pdata: per-cpu data to depopulate |
33 | * @mask: depopulate per-cpu data for cpu's selected through mask bits | 32 | * @mask: depopulate per-cpu data for cpu's selected through mask bits |
34 | */ | 33 | */ |
35 | void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask) | 34 | static void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask) |
36 | { | 35 | { |
37 | int cpu; | 36 | int cpu; |
38 | for_each_cpu_mask(cpu, *mask) | 37 | for_each_cpu_mask_nr(cpu, *mask) |
39 | percpu_depopulate(__pdata, cpu); | 38 | percpu_depopulate(__pdata, cpu); |
40 | } | 39 | } |
41 | EXPORT_SYMBOL_GPL(__percpu_depopulate_mask); | 40 | |
41 | #define percpu_depopulate_mask(__pdata, mask) \ | ||
42 | __percpu_depopulate_mask((__pdata), &(mask)) | ||
42 | 43 | ||
43 | /** | 44 | /** |
44 | * percpu_populate - populate per-cpu data for given cpu | 45 | * percpu_populate - populate per-cpu data for given cpu |
@@ -51,7 +52,7 @@ EXPORT_SYMBOL_GPL(__percpu_depopulate_mask); | |||
51 | * use case. You need to register a cpu hotplug handler for that purpose. | 52 | * use case. You need to register a cpu hotplug handler for that purpose. |
52 | * Per-cpu object is populated with zeroed buffer. | 53 | * Per-cpu object is populated with zeroed buffer. |
53 | */ | 54 | */ |
54 | void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu) | 55 | static void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu) |
55 | { | 56 | { |
56 | struct percpu_data *pdata = __percpu_disguise(__pdata); | 57 | struct percpu_data *pdata = __percpu_disguise(__pdata); |
57 | int node = cpu_to_node(cpu); | 58 | int node = cpu_to_node(cpu); |
@@ -68,7 +69,6 @@ void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu) | |||
68 | pdata->ptrs[cpu] = kzalloc(size, gfp); | 69 | pdata->ptrs[cpu] = kzalloc(size, gfp); |
69 | return pdata->ptrs[cpu]; | 70 | return pdata->ptrs[cpu]; |
70 | } | 71 | } |
71 | EXPORT_SYMBOL_GPL(percpu_populate); | ||
72 | 72 | ||
73 | /** | 73 | /** |
74 | * percpu_populate_mask - populate per-cpu data for more cpu's | 74 | * percpu_populate_mask - populate per-cpu data for more cpu's |
@@ -79,14 +79,14 @@ EXPORT_SYMBOL_GPL(percpu_populate); | |||
79 | * | 79 | * |
80 | * Per-cpu objects are populated with zeroed buffers. | 80 | * Per-cpu objects are populated with zeroed buffers. |
81 | */ | 81 | */ |
82 | int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, | 82 | static int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, |
83 | cpumask_t *mask) | 83 | cpumask_t *mask) |
84 | { | 84 | { |
85 | cpumask_t populated; | 85 | cpumask_t populated; |
86 | int cpu; | 86 | int cpu; |
87 | 87 | ||
88 | cpus_clear(populated); | 88 | cpus_clear(populated); |
89 | for_each_cpu_mask(cpu, *mask) | 89 | for_each_cpu_mask_nr(cpu, *mask) |
90 | if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) { | 90 | if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) { |
91 | __percpu_depopulate_mask(__pdata, &populated); | 91 | __percpu_depopulate_mask(__pdata, &populated); |
92 | return -ENOMEM; | 92 | return -ENOMEM; |
@@ -94,7 +94,9 @@ int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, | |||
94 | cpu_set(cpu, populated); | 94 | cpu_set(cpu, populated); |
95 | return 0; | 95 | return 0; |
96 | } | 96 | } |
97 | EXPORT_SYMBOL_GPL(__percpu_populate_mask); | 97 | |
98 | #define percpu_populate_mask(__pdata, size, gfp, mask) \ | ||
99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) | ||
98 | 100 | ||
99 | /** | 101 | /** |
100 | * percpu_alloc_mask - initial setup of per-cpu data | 102 | * percpu_alloc_mask - initial setup of per-cpu data |
diff --git a/mm/bootmem.c b/mm/bootmem.c index 8d9f60e06f62..4af15d0340ad 100644 --- a/mm/bootmem.c +++ b/mm/bootmem.c | |||
@@ -1,12 +1,12 @@ | |||
1 | /* | 1 | /* |
2 | * linux/mm/bootmem.c | 2 | * bootmem - A boot-time physical memory allocator and configurator |
3 | * | 3 | * |
4 | * Copyright (C) 1999 Ingo Molnar | 4 | * Copyright (C) 1999 Ingo Molnar |
5 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 5 | * 1999 Kanoj Sarcar, SGI |
6 | * 2008 Johannes Weiner | ||
6 | * | 7 | * |
7 | * simple boot-time physical memory area allocator and | 8 | * Access to this subsystem has to be serialized externally (which is true |
8 | * free memory collector. It's used to deal with reserved | 9 | * for the boot process anyway). |
9 | * system memory and memory holes as well. | ||
10 | */ | 10 | */ |
11 | #include <linux/init.h> | 11 | #include <linux/init.h> |
12 | #include <linux/pfn.h> | 12 | #include <linux/pfn.h> |
@@ -19,15 +19,10 @@ | |||
19 | 19 | ||
20 | #include "internal.h" | 20 | #include "internal.h" |
21 | 21 | ||
22 | /* | ||
23 | * Access to this subsystem has to be serialized externally. (this is | ||
24 | * true for the boot process anyway) | ||
25 | */ | ||
26 | unsigned long max_low_pfn; | 22 | unsigned long max_low_pfn; |
27 | unsigned long min_low_pfn; | 23 | unsigned long min_low_pfn; |
28 | unsigned long max_pfn; | 24 | unsigned long max_pfn; |
29 | 25 | ||
30 | static LIST_HEAD(bdata_list); | ||
31 | #ifdef CONFIG_CRASH_DUMP | 26 | #ifdef CONFIG_CRASH_DUMP |
32 | /* | 27 | /* |
33 | * If we have booted due to a crash, max_pfn will be a very low value. We need | 28 | * If we have booted due to a crash, max_pfn will be a very low value. We need |
@@ -36,63 +31,72 @@ static LIST_HEAD(bdata_list); | |||
36 | unsigned long saved_max_pfn; | 31 | unsigned long saved_max_pfn; |
37 | #endif | 32 | #endif |
38 | 33 | ||
39 | /* return the number of _pages_ that will be allocated for the boot bitmap */ | 34 | bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata; |
40 | unsigned long __init bootmem_bootmap_pages(unsigned long pages) | 35 | |
36 | static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list); | ||
37 | |||
38 | static int bootmem_debug; | ||
39 | |||
40 | static int __init bootmem_debug_setup(char *buf) | ||
41 | { | 41 | { |
42 | unsigned long mapsize; | 42 | bootmem_debug = 1; |
43 | return 0; | ||
44 | } | ||
45 | early_param("bootmem_debug", bootmem_debug_setup); | ||
43 | 46 | ||
44 | mapsize = (pages+7)/8; | 47 | #define bdebug(fmt, args...) ({ \ |
45 | mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; | 48 | if (unlikely(bootmem_debug)) \ |
46 | mapsize >>= PAGE_SHIFT; | 49 | printk(KERN_INFO \ |
50 | "bootmem::%s " fmt, \ | ||
51 | __FUNCTION__, ## args); \ | ||
52 | }) | ||
47 | 53 | ||
48 | return mapsize; | 54 | static unsigned long __init bootmap_bytes(unsigned long pages) |
55 | { | ||
56 | unsigned long bytes = (pages + 7) / 8; | ||
57 | |||
58 | return ALIGN(bytes, sizeof(long)); | ||
49 | } | 59 | } |
50 | 60 | ||
51 | /* | 61 | /** |
52 | * link bdata in order | 62 | * bootmem_bootmap_pages - calculate bitmap size in pages |
63 | * @pages: number of pages the bitmap has to represent | ||
53 | */ | 64 | */ |
54 | static void __init link_bootmem(bootmem_data_t *bdata) | 65 | unsigned long __init bootmem_bootmap_pages(unsigned long pages) |
55 | { | 66 | { |
56 | bootmem_data_t *ent; | 67 | unsigned long bytes = bootmap_bytes(pages); |
57 | 68 | ||
58 | if (list_empty(&bdata_list)) { | 69 | return PAGE_ALIGN(bytes) >> PAGE_SHIFT; |
59 | list_add(&bdata->list, &bdata_list); | ||
60 | return; | ||
61 | } | ||
62 | /* insert in order */ | ||
63 | list_for_each_entry(ent, &bdata_list, list) { | ||
64 | if (bdata->node_boot_start < ent->node_boot_start) { | ||
65 | list_add_tail(&bdata->list, &ent->list); | ||
66 | return; | ||
67 | } | ||
68 | } | ||
69 | list_add_tail(&bdata->list, &bdata_list); | ||
70 | } | 70 | } |
71 | 71 | ||
72 | /* | 72 | /* |
73 | * Given an initialised bdata, it returns the size of the boot bitmap | 73 | * link bdata in order |
74 | */ | 74 | */ |
75 | static unsigned long __init get_mapsize(bootmem_data_t *bdata) | 75 | static void __init link_bootmem(bootmem_data_t *bdata) |
76 | { | 76 | { |
77 | unsigned long mapsize; | 77 | struct list_head *iter; |
78 | unsigned long start = PFN_DOWN(bdata->node_boot_start); | ||
79 | unsigned long end = bdata->node_low_pfn; | ||
80 | 78 | ||
81 | mapsize = ((end - start) + 7) / 8; | 79 | list_for_each(iter, &bdata_list) { |
82 | return ALIGN(mapsize, sizeof(long)); | 80 | bootmem_data_t *ent; |
81 | |||
82 | ent = list_entry(iter, bootmem_data_t, list); | ||
83 | if (bdata->node_min_pfn < ent->node_min_pfn) | ||
84 | break; | ||
85 | } | ||
86 | list_add_tail(&bdata->list, iter); | ||
83 | } | 87 | } |
84 | 88 | ||
85 | /* | 89 | /* |
86 | * Called once to set up the allocator itself. | 90 | * Called once to set up the allocator itself. |
87 | */ | 91 | */ |
88 | static unsigned long __init init_bootmem_core(pg_data_t *pgdat, | 92 | static unsigned long __init init_bootmem_core(bootmem_data_t *bdata, |
89 | unsigned long mapstart, unsigned long start, unsigned long end) | 93 | unsigned long mapstart, unsigned long start, unsigned long end) |
90 | { | 94 | { |
91 | bootmem_data_t *bdata = pgdat->bdata; | ||
92 | unsigned long mapsize; | 95 | unsigned long mapsize; |
93 | 96 | ||
97 | mminit_validate_memmodel_limits(&start, &end); | ||
94 | bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); | 98 | bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); |
95 | bdata->node_boot_start = PFN_PHYS(start); | 99 | bdata->node_min_pfn = start; |
96 | bdata->node_low_pfn = end; | 100 | bdata->node_low_pfn = end; |
97 | link_bootmem(bdata); | 101 | link_bootmem(bdata); |
98 | 102 | ||
@@ -100,429 +104,461 @@ static unsigned long __init init_bootmem_core(pg_data_t *pgdat, | |||
100 | * Initially all pages are reserved - setup_arch() has to | 104 | * Initially all pages are reserved - setup_arch() has to |
101 | * register free RAM areas explicitly. | 105 | * register free RAM areas explicitly. |
102 | */ | 106 | */ |
103 | mapsize = get_mapsize(bdata); | 107 | mapsize = bootmap_bytes(end - start); |
104 | memset(bdata->node_bootmem_map, 0xff, mapsize); | 108 | memset(bdata->node_bootmem_map, 0xff, mapsize); |
105 | 109 | ||
110 | bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n", | ||
111 | bdata - bootmem_node_data, start, mapstart, end, mapsize); | ||
112 | |||
106 | return mapsize; | 113 | return mapsize; |
107 | } | 114 | } |
108 | 115 | ||
109 | /* | 116 | /** |
110 | * Marks a particular physical memory range as unallocatable. Usable RAM | 117 | * init_bootmem_node - register a node as boot memory |
111 | * might be used for boot-time allocations - or it might get added | 118 | * @pgdat: node to register |
112 | * to the free page pool later on. | 119 | * @freepfn: pfn where the bitmap for this node is to be placed |
120 | * @startpfn: first pfn on the node | ||
121 | * @endpfn: first pfn after the node | ||
122 | * | ||
123 | * Returns the number of bytes needed to hold the bitmap for this node. | ||
113 | */ | 124 | */ |
114 | static int __init can_reserve_bootmem_core(bootmem_data_t *bdata, | 125 | unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, |
115 | unsigned long addr, unsigned long size, int flags) | 126 | unsigned long startpfn, unsigned long endpfn) |
116 | { | 127 | { |
117 | unsigned long sidx, eidx; | 128 | return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn); |
118 | unsigned long i; | 129 | } |
119 | 130 | ||
120 | BUG_ON(!size); | 131 | /** |
132 | * init_bootmem - register boot memory | ||
133 | * @start: pfn where the bitmap is to be placed | ||
134 | * @pages: number of available physical pages | ||
135 | * | ||
136 | * Returns the number of bytes needed to hold the bitmap. | ||
137 | */ | ||
138 | unsigned long __init init_bootmem(unsigned long start, unsigned long pages) | ||
139 | { | ||
140 | max_low_pfn = pages; | ||
141 | min_low_pfn = start; | ||
142 | return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages); | ||
143 | } | ||
121 | 144 | ||
122 | /* out of range, don't hold other */ | 145 | static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata) |
123 | if (addr + size < bdata->node_boot_start || | 146 | { |
124 | PFN_DOWN(addr) > bdata->node_low_pfn) | 147 | int aligned; |
148 | struct page *page; | ||
149 | unsigned long start, end, pages, count = 0; | ||
150 | |||
151 | if (!bdata->node_bootmem_map) | ||
125 | return 0; | 152 | return 0; |
126 | 153 | ||
154 | start = bdata->node_min_pfn; | ||
155 | end = bdata->node_low_pfn; | ||
156 | |||
127 | /* | 157 | /* |
128 | * Round up to index to the range. | 158 | * If the start is aligned to the machines wordsize, we might |
159 | * be able to free pages in bulks of that order. | ||
129 | */ | 160 | */ |
130 | if (addr > bdata->node_boot_start) | 161 | aligned = !(start & (BITS_PER_LONG - 1)); |
131 | sidx= PFN_DOWN(addr - bdata->node_boot_start); | ||
132 | else | ||
133 | sidx = 0; | ||
134 | 162 | ||
135 | eidx = PFN_UP(addr + size - bdata->node_boot_start); | 163 | bdebug("nid=%td start=%lx end=%lx aligned=%d\n", |
136 | if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) | 164 | bdata - bootmem_node_data, start, end, aligned); |
137 | eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); | ||
138 | 165 | ||
139 | for (i = sidx; i < eidx; i++) { | 166 | while (start < end) { |
140 | if (test_bit(i, bdata->node_bootmem_map)) { | 167 | unsigned long *map, idx, vec; |
141 | if (flags & BOOTMEM_EXCLUSIVE) | ||
142 | return -EBUSY; | ||
143 | } | ||
144 | } | ||
145 | 168 | ||
146 | return 0; | 169 | map = bdata->node_bootmem_map; |
170 | idx = start - bdata->node_min_pfn; | ||
171 | vec = ~map[idx / BITS_PER_LONG]; | ||
147 | 172 | ||
148 | } | 173 | if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) { |
174 | int order = ilog2(BITS_PER_LONG); | ||
149 | 175 | ||
150 | static void __init reserve_bootmem_core(bootmem_data_t *bdata, | 176 | __free_pages_bootmem(pfn_to_page(start), order); |
151 | unsigned long addr, unsigned long size, int flags) | 177 | count += BITS_PER_LONG; |
152 | { | 178 | } else { |
153 | unsigned long sidx, eidx; | 179 | unsigned long off = 0; |
154 | unsigned long i; | ||
155 | |||
156 | BUG_ON(!size); | ||
157 | 180 | ||
158 | /* out of range */ | 181 | while (vec && off < BITS_PER_LONG) { |
159 | if (addr + size < bdata->node_boot_start || | 182 | if (vec & 1) { |
160 | PFN_DOWN(addr) > bdata->node_low_pfn) | 183 | page = pfn_to_page(start + off); |
161 | return; | 184 | __free_pages_bootmem(page, 0); |
185 | count++; | ||
186 | } | ||
187 | vec >>= 1; | ||
188 | off++; | ||
189 | } | ||
190 | } | ||
191 | start += BITS_PER_LONG; | ||
192 | } | ||
162 | 193 | ||
163 | /* | 194 | page = virt_to_page(bdata->node_bootmem_map); |
164 | * Round up to index to the range. | 195 | pages = bdata->node_low_pfn - bdata->node_min_pfn; |
165 | */ | 196 | pages = bootmem_bootmap_pages(pages); |
166 | if (addr > bdata->node_boot_start) | 197 | count += pages; |
167 | sidx= PFN_DOWN(addr - bdata->node_boot_start); | 198 | while (pages--) |
168 | else | 199 | __free_pages_bootmem(page++, 0); |
169 | sidx = 0; | ||
170 | 200 | ||
171 | eidx = PFN_UP(addr + size - bdata->node_boot_start); | 201 | bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count); |
172 | if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) | ||
173 | eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); | ||
174 | 202 | ||
175 | for (i = sidx; i < eidx; i++) { | 203 | return count; |
176 | if (test_and_set_bit(i, bdata->node_bootmem_map)) { | ||
177 | #ifdef CONFIG_DEBUG_BOOTMEM | ||
178 | printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); | ||
179 | #endif | ||
180 | } | ||
181 | } | ||
182 | } | 204 | } |
183 | 205 | ||
184 | static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, | 206 | /** |
185 | unsigned long size) | 207 | * free_all_bootmem_node - release a node's free pages to the buddy allocator |
208 | * @pgdat: node to be released | ||
209 | * | ||
210 | * Returns the number of pages actually released. | ||
211 | */ | ||
212 | unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) | ||
186 | { | 213 | { |
187 | unsigned long sidx, eidx; | 214 | register_page_bootmem_info_node(pgdat); |
188 | unsigned long i; | 215 | return free_all_bootmem_core(pgdat->bdata); |
189 | 216 | } | |
190 | BUG_ON(!size); | ||
191 | 217 | ||
192 | /* out range */ | 218 | /** |
193 | if (addr + size < bdata->node_boot_start || | 219 | * free_all_bootmem - release free pages to the buddy allocator |
194 | PFN_DOWN(addr) > bdata->node_low_pfn) | 220 | * |
195 | return; | 221 | * Returns the number of pages actually released. |
196 | /* | 222 | */ |
197 | * round down end of usable mem, partially free pages are | 223 | unsigned long __init free_all_bootmem(void) |
198 | * considered reserved. | 224 | { |
199 | */ | 225 | return free_all_bootmem_core(NODE_DATA(0)->bdata); |
226 | } | ||
200 | 227 | ||
201 | if (addr >= bdata->node_boot_start && addr < bdata->last_success) | 228 | static void __init __free(bootmem_data_t *bdata, |
202 | bdata->last_success = addr; | 229 | unsigned long sidx, unsigned long eidx) |
230 | { | ||
231 | unsigned long idx; | ||
203 | 232 | ||
204 | /* | 233 | bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data, |
205 | * Round up to index to the range. | 234 | sidx + bdata->node_min_pfn, |
206 | */ | 235 | eidx + bdata->node_min_pfn); |
207 | if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start)) | ||
208 | sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start); | ||
209 | else | ||
210 | sidx = 0; | ||
211 | 236 | ||
212 | eidx = PFN_DOWN(addr + size - bdata->node_boot_start); | 237 | if (bdata->hint_idx > sidx) |
213 | if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) | 238 | bdata->hint_idx = sidx; |
214 | eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); | ||
215 | 239 | ||
216 | for (i = sidx; i < eidx; i++) { | 240 | for (idx = sidx; idx < eidx; idx++) |
217 | if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) | 241 | if (!test_and_clear_bit(idx, bdata->node_bootmem_map)) |
218 | BUG(); | 242 | BUG(); |
219 | } | ||
220 | } | 243 | } |
221 | 244 | ||
222 | /* | 245 | static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx, |
223 | * We 'merge' subsequent allocations to save space. We might 'lose' | 246 | unsigned long eidx, int flags) |
224 | * some fraction of a page if allocations cannot be satisfied due to | ||
225 | * size constraints on boxes where there is physical RAM space | ||
226 | * fragmentation - in these cases (mostly large memory boxes) this | ||
227 | * is not a problem. | ||
228 | * | ||
229 | * On low memory boxes we get it right in 100% of the cases. | ||
230 | * | ||
231 | * alignment has to be a power of 2 value. | ||
232 | * | ||
233 | * NOTE: This function is _not_ reentrant. | ||
234 | */ | ||
235 | void * __init | ||
236 | __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, | ||
237 | unsigned long align, unsigned long goal, unsigned long limit) | ||
238 | { | 247 | { |
239 | unsigned long areasize, preferred; | 248 | unsigned long idx; |
240 | unsigned long i, start = 0, incr, eidx, end_pfn; | 249 | int exclusive = flags & BOOTMEM_EXCLUSIVE; |
241 | void *ret; | 250 | |
242 | unsigned long node_boot_start; | 251 | bdebug("nid=%td start=%lx end=%lx flags=%x\n", |
243 | void *node_bootmem_map; | 252 | bdata - bootmem_node_data, |
244 | 253 | sidx + bdata->node_min_pfn, | |
245 | if (!size) { | 254 | eidx + bdata->node_min_pfn, |
246 | printk("__alloc_bootmem_core(): zero-sized request\n"); | 255 | flags); |
247 | BUG(); | 256 | |
248 | } | 257 | for (idx = sidx; idx < eidx; idx++) |
249 | BUG_ON(align & (align-1)); | 258 | if (test_and_set_bit(idx, bdata->node_bootmem_map)) { |
250 | 259 | if (exclusive) { | |
251 | /* on nodes without memory - bootmem_map is NULL */ | 260 | __free(bdata, sidx, idx); |
252 | if (!bdata->node_bootmem_map) | 261 | return -EBUSY; |
253 | return NULL; | 262 | } |
263 | bdebug("silent double reserve of PFN %lx\n", | ||
264 | idx + bdata->node_min_pfn); | ||
265 | } | ||
266 | return 0; | ||
267 | } | ||
254 | 268 | ||
255 | /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */ | 269 | static int __init mark_bootmem_node(bootmem_data_t *bdata, |
256 | node_boot_start = bdata->node_boot_start; | 270 | unsigned long start, unsigned long end, |
257 | node_bootmem_map = bdata->node_bootmem_map; | 271 | int reserve, int flags) |
258 | if (align) { | 272 | { |
259 | node_boot_start = ALIGN(bdata->node_boot_start, align); | 273 | unsigned long sidx, eidx; |
260 | if (node_boot_start > bdata->node_boot_start) | ||
261 | node_bootmem_map = (unsigned long *)bdata->node_bootmem_map + | ||
262 | PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG; | ||
263 | } | ||
264 | 274 | ||
265 | if (limit && node_boot_start >= limit) | 275 | bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n", |
266 | return NULL; | 276 | bdata - bootmem_node_data, start, end, reserve, flags); |
267 | 277 | ||
268 | end_pfn = bdata->node_low_pfn; | 278 | BUG_ON(start < bdata->node_min_pfn); |
269 | limit = PFN_DOWN(limit); | 279 | BUG_ON(end > bdata->node_low_pfn); |
270 | if (limit && end_pfn > limit) | ||
271 | end_pfn = limit; | ||
272 | 280 | ||
273 | eidx = end_pfn - PFN_DOWN(node_boot_start); | 281 | sidx = start - bdata->node_min_pfn; |
282 | eidx = end - bdata->node_min_pfn; | ||
274 | 283 | ||
275 | /* | 284 | if (reserve) |
276 | * We try to allocate bootmem pages above 'goal' | 285 | return __reserve(bdata, sidx, eidx, flags); |
277 | * first, then we try to allocate lower pages. | 286 | else |
278 | */ | 287 | __free(bdata, sidx, eidx); |
279 | preferred = 0; | 288 | return 0; |
280 | if (goal && PFN_DOWN(goal) < end_pfn) { | 289 | } |
281 | if (goal > node_boot_start) | ||
282 | preferred = goal - node_boot_start; | ||
283 | |||
284 | if (bdata->last_success > node_boot_start && | ||
285 | bdata->last_success - node_boot_start >= preferred) | ||
286 | if (!limit || (limit && limit > bdata->last_success)) | ||
287 | preferred = bdata->last_success - node_boot_start; | ||
288 | } | ||
289 | 290 | ||
290 | preferred = PFN_DOWN(ALIGN(preferred, align)); | 291 | static int __init mark_bootmem(unsigned long start, unsigned long end, |
291 | areasize = (size + PAGE_SIZE-1) / PAGE_SIZE; | 292 | int reserve, int flags) |
292 | incr = align >> PAGE_SHIFT ? : 1; | 293 | { |
294 | unsigned long pos; | ||
295 | bootmem_data_t *bdata; | ||
293 | 296 | ||
294 | restart_scan: | 297 | pos = start; |
295 | for (i = preferred; i < eidx;) { | 298 | list_for_each_entry(bdata, &bdata_list, list) { |
296 | unsigned long j; | 299 | int err; |
300 | unsigned long max; | ||
297 | 301 | ||
298 | i = find_next_zero_bit(node_bootmem_map, eidx, i); | 302 | if (pos < bdata->node_min_pfn || |
299 | i = ALIGN(i, incr); | 303 | pos >= bdata->node_low_pfn) { |
300 | if (i >= eidx) | 304 | BUG_ON(pos != start); |
301 | break; | ||
302 | if (test_bit(i, node_bootmem_map)) { | ||
303 | i += incr; | ||
304 | continue; | 305 | continue; |
305 | } | 306 | } |
306 | for (j = i + 1; j < i + areasize; ++j) { | ||
307 | if (j >= eidx) | ||
308 | goto fail_block; | ||
309 | if (test_bit(j, node_bootmem_map)) | ||
310 | goto fail_block; | ||
311 | } | ||
312 | start = i; | ||
313 | goto found; | ||
314 | fail_block: | ||
315 | i = ALIGN(j, incr); | ||
316 | if (i == j) | ||
317 | i += incr; | ||
318 | } | ||
319 | 307 | ||
320 | if (preferred > 0) { | 308 | max = min(bdata->node_low_pfn, end); |
321 | preferred = 0; | ||
322 | goto restart_scan; | ||
323 | } | ||
324 | return NULL; | ||
325 | 309 | ||
326 | found: | 310 | err = mark_bootmem_node(bdata, pos, max, reserve, flags); |
327 | bdata->last_success = PFN_PHYS(start) + node_boot_start; | 311 | if (reserve && err) { |
328 | BUG_ON(start >= eidx); | 312 | mark_bootmem(start, pos, 0, 0); |
329 | 313 | return err; | |
330 | /* | ||
331 | * Is the next page of the previous allocation-end the start | ||
332 | * of this allocation's buffer? If yes then we can 'merge' | ||
333 | * the previous partial page with this allocation. | ||
334 | */ | ||
335 | if (align < PAGE_SIZE && | ||
336 | bdata->last_offset && bdata->last_pos+1 == start) { | ||
337 | unsigned long offset, remaining_size; | ||
338 | offset = ALIGN(bdata->last_offset, align); | ||
339 | BUG_ON(offset > PAGE_SIZE); | ||
340 | remaining_size = PAGE_SIZE - offset; | ||
341 | if (size < remaining_size) { | ||
342 | areasize = 0; | ||
343 | /* last_pos unchanged */ | ||
344 | bdata->last_offset = offset + size; | ||
345 | ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + | ||
346 | offset + node_boot_start); | ||
347 | } else { | ||
348 | remaining_size = size - remaining_size; | ||
349 | areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE; | ||
350 | ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + | ||
351 | offset + node_boot_start); | ||
352 | bdata->last_pos = start + areasize - 1; | ||
353 | bdata->last_offset = remaining_size; | ||
354 | } | 314 | } |
355 | bdata->last_offset &= ~PAGE_MASK; | ||
356 | } else { | ||
357 | bdata->last_pos = start + areasize - 1; | ||
358 | bdata->last_offset = size & ~PAGE_MASK; | ||
359 | ret = phys_to_virt(start * PAGE_SIZE + node_boot_start); | ||
360 | } | ||
361 | 315 | ||
362 | /* | 316 | if (max == end) |
363 | * Reserve the area now: | 317 | return 0; |
364 | */ | 318 | pos = bdata->node_low_pfn; |
365 | for (i = start; i < start + areasize; i++) | 319 | } |
366 | if (unlikely(test_and_set_bit(i, node_bootmem_map))) | 320 | BUG(); |
367 | BUG(); | ||
368 | memset(ret, 0, size); | ||
369 | return ret; | ||
370 | } | 321 | } |
371 | 322 | ||
372 | static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat) | 323 | /** |
324 | * free_bootmem_node - mark a page range as usable | ||
325 | * @pgdat: node the range resides on | ||
326 | * @physaddr: starting address of the range | ||
327 | * @size: size of the range in bytes | ||
328 | * | ||
329 | * Partial pages will be considered reserved and left as they are. | ||
330 | * | ||
331 | * The range must reside completely on the specified node. | ||
332 | */ | ||
333 | void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | ||
334 | unsigned long size) | ||
373 | { | 335 | { |
374 | struct page *page; | 336 | unsigned long start, end; |
375 | unsigned long pfn; | ||
376 | bootmem_data_t *bdata = pgdat->bdata; | ||
377 | unsigned long i, count, total = 0; | ||
378 | unsigned long idx; | ||
379 | unsigned long *map; | ||
380 | int gofast = 0; | ||
381 | |||
382 | BUG_ON(!bdata->node_bootmem_map); | ||
383 | |||
384 | count = 0; | ||
385 | /* first extant page of the node */ | ||
386 | pfn = PFN_DOWN(bdata->node_boot_start); | ||
387 | idx = bdata->node_low_pfn - pfn; | ||
388 | map = bdata->node_bootmem_map; | ||
389 | /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */ | ||
390 | if (bdata->node_boot_start == 0 || | ||
391 | ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG)) | ||
392 | gofast = 1; | ||
393 | for (i = 0; i < idx; ) { | ||
394 | unsigned long v = ~map[i / BITS_PER_LONG]; | ||
395 | |||
396 | if (gofast && v == ~0UL) { | ||
397 | int order; | ||
398 | |||
399 | page = pfn_to_page(pfn); | ||
400 | count += BITS_PER_LONG; | ||
401 | order = ffs(BITS_PER_LONG) - 1; | ||
402 | __free_pages_bootmem(page, order); | ||
403 | i += BITS_PER_LONG; | ||
404 | page += BITS_PER_LONG; | ||
405 | } else if (v) { | ||
406 | unsigned long m; | ||
407 | |||
408 | page = pfn_to_page(pfn); | ||
409 | for (m = 1; m && i < idx; m<<=1, page++, i++) { | ||
410 | if (v & m) { | ||
411 | count++; | ||
412 | __free_pages_bootmem(page, 0); | ||
413 | } | ||
414 | } | ||
415 | } else { | ||
416 | i += BITS_PER_LONG; | ||
417 | } | ||
418 | pfn += BITS_PER_LONG; | ||
419 | } | ||
420 | total += count; | ||
421 | 337 | ||
422 | /* | 338 | start = PFN_UP(physaddr); |
423 | * Now free the allocator bitmap itself, it's not | 339 | end = PFN_DOWN(physaddr + size); |
424 | * needed anymore: | ||
425 | */ | ||
426 | page = virt_to_page(bdata->node_bootmem_map); | ||
427 | count = 0; | ||
428 | idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT; | ||
429 | for (i = 0; i < idx; i++, page++) { | ||
430 | __free_pages_bootmem(page, 0); | ||
431 | count++; | ||
432 | } | ||
433 | total += count; | ||
434 | bdata->node_bootmem_map = NULL; | ||
435 | 340 | ||
436 | return total; | 341 | mark_bootmem_node(pgdat->bdata, start, end, 0, 0); |
437 | } | 342 | } |
438 | 343 | ||
439 | unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, | 344 | /** |
440 | unsigned long startpfn, unsigned long endpfn) | 345 | * free_bootmem - mark a page range as usable |
441 | { | 346 | * @addr: starting address of the range |
442 | return init_bootmem_core(pgdat, freepfn, startpfn, endpfn); | 347 | * @size: size of the range in bytes |
443 | } | 348 | * |
444 | 349 | * Partial pages will be considered reserved and left as they are. | |
445 | int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | 350 | * |
446 | unsigned long size, int flags) | 351 | * The range must be contiguous but may span node boundaries. |
352 | */ | ||
353 | void __init free_bootmem(unsigned long addr, unsigned long size) | ||
447 | { | 354 | { |
448 | int ret; | 355 | unsigned long start, end; |
449 | 356 | ||
450 | ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); | 357 | start = PFN_UP(addr); |
451 | if (ret < 0) | 358 | end = PFN_DOWN(addr + size); |
452 | return -ENOMEM; | ||
453 | reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); | ||
454 | 359 | ||
455 | return 0; | 360 | mark_bootmem(start, end, 0, 0); |
456 | } | 361 | } |
457 | 362 | ||
458 | void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | 363 | /** |
459 | unsigned long size) | 364 | * reserve_bootmem_node - mark a page range as reserved |
365 | * @pgdat: node the range resides on | ||
366 | * @physaddr: starting address of the range | ||
367 | * @size: size of the range in bytes | ||
368 | * @flags: reservation flags (see linux/bootmem.h) | ||
369 | * | ||
370 | * Partial pages will be reserved. | ||
371 | * | ||
372 | * The range must reside completely on the specified node. | ||
373 | */ | ||
374 | int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | ||
375 | unsigned long size, int flags) | ||
460 | { | 376 | { |
461 | free_bootmem_core(pgdat->bdata, physaddr, size); | 377 | unsigned long start, end; |
462 | } | ||
463 | 378 | ||
464 | unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) | 379 | start = PFN_DOWN(physaddr); |
465 | { | 380 | end = PFN_UP(physaddr + size); |
466 | register_page_bootmem_info_node(pgdat); | ||
467 | return free_all_bootmem_core(pgdat); | ||
468 | } | ||
469 | 381 | ||
470 | unsigned long __init init_bootmem(unsigned long start, unsigned long pages) | 382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); |
471 | { | ||
472 | max_low_pfn = pages; | ||
473 | min_low_pfn = start; | ||
474 | return init_bootmem_core(NODE_DATA(0), start, 0, pages); | ||
475 | } | 383 | } |
476 | 384 | ||
477 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | 385 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE |
386 | /** | ||
387 | * reserve_bootmem - mark a page range as usable | ||
388 | * @addr: starting address of the range | ||
389 | * @size: size of the range in bytes | ||
390 | * @flags: reservation flags (see linux/bootmem.h) | ||
391 | * | ||
392 | * Partial pages will be reserved. | ||
393 | * | ||
394 | * The range must be contiguous but may span node boundaries. | ||
395 | */ | ||
478 | int __init reserve_bootmem(unsigned long addr, unsigned long size, | 396 | int __init reserve_bootmem(unsigned long addr, unsigned long size, |
479 | int flags) | 397 | int flags) |
480 | { | 398 | { |
481 | bootmem_data_t *bdata; | 399 | unsigned long start, end; |
482 | int ret; | ||
483 | 400 | ||
484 | list_for_each_entry(bdata, &bdata_list, list) { | 401 | start = PFN_DOWN(addr); |
485 | ret = can_reserve_bootmem_core(bdata, addr, size, flags); | 402 | end = PFN_UP(addr + size); |
486 | if (ret < 0) | ||
487 | return ret; | ||
488 | } | ||
489 | list_for_each_entry(bdata, &bdata_list, list) | ||
490 | reserve_bootmem_core(bdata, addr, size, flags); | ||
491 | 403 | ||
492 | return 0; | 404 | return mark_bootmem(start, end, 1, flags); |
493 | } | 405 | } |
494 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | 406 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ |
495 | 407 | ||
496 | void __init free_bootmem(unsigned long addr, unsigned long size) | 408 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, |
409 | unsigned long size, unsigned long align, | ||
410 | unsigned long goal, unsigned long limit) | ||
497 | { | 411 | { |
498 | bootmem_data_t *bdata; | 412 | unsigned long fallback = 0; |
499 | list_for_each_entry(bdata, &bdata_list, list) | 413 | unsigned long min, max, start, sidx, midx, step; |
500 | free_bootmem_core(bdata, addr, size); | ||
501 | } | ||
502 | 414 | ||
503 | unsigned long __init free_all_bootmem(void) | 415 | BUG_ON(!size); |
504 | { | 416 | BUG_ON(align & (align - 1)); |
505 | return free_all_bootmem_core(NODE_DATA(0)); | 417 | BUG_ON(limit && goal + size > limit); |
418 | |||
419 | if (!bdata->node_bootmem_map) | ||
420 | return NULL; | ||
421 | |||
422 | bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n", | ||
423 | bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT, | ||
424 | align, goal, limit); | ||
425 | |||
426 | min = bdata->node_min_pfn; | ||
427 | max = bdata->node_low_pfn; | ||
428 | |||
429 | goal >>= PAGE_SHIFT; | ||
430 | limit >>= PAGE_SHIFT; | ||
431 | |||
432 | if (limit && max > limit) | ||
433 | max = limit; | ||
434 | if (max <= min) | ||
435 | return NULL; | ||
436 | |||
437 | step = max(align >> PAGE_SHIFT, 1UL); | ||
438 | |||
439 | if (goal && min < goal && goal < max) | ||
440 | start = ALIGN(goal, step); | ||
441 | else | ||
442 | start = ALIGN(min, step); | ||
443 | |||
444 | sidx = start - bdata->node_min_pfn;; | ||
445 | midx = max - bdata->node_min_pfn; | ||
446 | |||
447 | if (bdata->hint_idx > sidx) { | ||
448 | /* | ||
449 | * Handle the valid case of sidx being zero and still | ||
450 | * catch the fallback below. | ||
451 | */ | ||
452 | fallback = sidx + 1; | ||
453 | sidx = ALIGN(bdata->hint_idx, step); | ||
454 | } | ||
455 | |||
456 | while (1) { | ||
457 | int merge; | ||
458 | void *region; | ||
459 | unsigned long eidx, i, start_off, end_off; | ||
460 | find_block: | ||
461 | sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx); | ||
462 | sidx = ALIGN(sidx, step); | ||
463 | eidx = sidx + PFN_UP(size); | ||
464 | |||
465 | if (sidx >= midx || eidx > midx) | ||
466 | break; | ||
467 | |||
468 | for (i = sidx; i < eidx; i++) | ||
469 | if (test_bit(i, bdata->node_bootmem_map)) { | ||
470 | sidx = ALIGN(i, step); | ||
471 | if (sidx == i) | ||
472 | sidx += step; | ||
473 | goto find_block; | ||
474 | } | ||
475 | |||
476 | if (bdata->last_end_off && | ||
477 | PFN_DOWN(bdata->last_end_off) + 1 == sidx) | ||
478 | start_off = ALIGN(bdata->last_end_off, align); | ||
479 | else | ||
480 | start_off = PFN_PHYS(sidx); | ||
481 | |||
482 | merge = PFN_DOWN(start_off) < sidx; | ||
483 | end_off = start_off + size; | ||
484 | |||
485 | bdata->last_end_off = end_off; | ||
486 | bdata->hint_idx = PFN_UP(end_off); | ||
487 | |||
488 | /* | ||
489 | * Reserve the area now: | ||
490 | */ | ||
491 | if (__reserve(bdata, PFN_DOWN(start_off) + merge, | ||
492 | PFN_UP(end_off), BOOTMEM_EXCLUSIVE)) | ||
493 | BUG(); | ||
494 | |||
495 | region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) + | ||
496 | start_off); | ||
497 | memset(region, 0, size); | ||
498 | return region; | ||
499 | } | ||
500 | |||
501 | if (fallback) { | ||
502 | sidx = ALIGN(fallback - 1, step); | ||
503 | fallback = 0; | ||
504 | goto find_block; | ||
505 | } | ||
506 | |||
507 | return NULL; | ||
506 | } | 508 | } |
507 | 509 | ||
508 | void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, | 510 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, |
509 | unsigned long goal) | 511 | unsigned long align, |
512 | unsigned long goal, | ||
513 | unsigned long limit) | ||
510 | { | 514 | { |
511 | bootmem_data_t *bdata; | 515 | bootmem_data_t *bdata; |
512 | void *ptr; | ||
513 | 516 | ||
517 | restart: | ||
514 | list_for_each_entry(bdata, &bdata_list, list) { | 518 | list_for_each_entry(bdata, &bdata_list, list) { |
515 | ptr = __alloc_bootmem_core(bdata, size, align, goal, 0); | 519 | void *region; |
516 | if (ptr) | 520 | |
517 | return ptr; | 521 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) |
522 | continue; | ||
523 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) | ||
524 | break; | ||
525 | |||
526 | region = alloc_bootmem_core(bdata, size, align, goal, limit); | ||
527 | if (region) | ||
528 | return region; | ||
529 | } | ||
530 | |||
531 | if (goal) { | ||
532 | goal = 0; | ||
533 | goto restart; | ||
518 | } | 534 | } |
535 | |||
519 | return NULL; | 536 | return NULL; |
520 | } | 537 | } |
521 | 538 | ||
522 | void * __init __alloc_bootmem(unsigned long size, unsigned long align, | 539 | /** |
523 | unsigned long goal) | 540 | * __alloc_bootmem_nopanic - allocate boot memory without panicking |
541 | * @size: size of the request in bytes | ||
542 | * @align: alignment of the region | ||
543 | * @goal: preferred starting address of the region | ||
544 | * | ||
545 | * The goal is dropped if it can not be satisfied and the allocation will | ||
546 | * fall back to memory below @goal. | ||
547 | * | ||
548 | * Allocation may happen on any node in the system. | ||
549 | * | ||
550 | * Returns NULL on failure. | ||
551 | */ | ||
552 | void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, | ||
553 | unsigned long goal) | ||
524 | { | 554 | { |
525 | void *mem = __alloc_bootmem_nopanic(size,align,goal); | 555 | return ___alloc_bootmem_nopanic(size, align, goal, 0); |
556 | } | ||
557 | |||
558 | static void * __init ___alloc_bootmem(unsigned long size, unsigned long align, | ||
559 | unsigned long goal, unsigned long limit) | ||
560 | { | ||
561 | void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit); | ||
526 | 562 | ||
527 | if (mem) | 563 | if (mem) |
528 | return mem; | 564 | return mem; |
@@ -534,78 +570,135 @@ void * __init __alloc_bootmem(unsigned long size, unsigned long align, | |||
534 | return NULL; | 570 | return NULL; |
535 | } | 571 | } |
536 | 572 | ||
573 | /** | ||
574 | * __alloc_bootmem - allocate boot memory | ||
575 | * @size: size of the request in bytes | ||
576 | * @align: alignment of the region | ||
577 | * @goal: preferred starting address of the region | ||
578 | * | ||
579 | * The goal is dropped if it can not be satisfied and the allocation will | ||
580 | * fall back to memory below @goal. | ||
581 | * | ||
582 | * Allocation may happen on any node in the system. | ||
583 | * | ||
584 | * The function panics if the request can not be satisfied. | ||
585 | */ | ||
586 | void * __init __alloc_bootmem(unsigned long size, unsigned long align, | ||
587 | unsigned long goal) | ||
588 | { | ||
589 | return ___alloc_bootmem(size, align, goal, 0); | ||
590 | } | ||
537 | 591 | ||
538 | void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, | 592 | static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata, |
539 | unsigned long align, unsigned long goal) | 593 | unsigned long size, unsigned long align, |
594 | unsigned long goal, unsigned long limit) | ||
540 | { | 595 | { |
541 | void *ptr; | 596 | void *ptr; |
542 | 597 | ||
543 | ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); | 598 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); |
544 | if (ptr) | 599 | if (ptr) |
545 | return ptr; | 600 | return ptr; |
546 | 601 | ||
547 | return __alloc_bootmem(size, align, goal); | 602 | return ___alloc_bootmem(size, align, goal, limit); |
603 | } | ||
604 | |||
605 | /** | ||
606 | * __alloc_bootmem_node - allocate boot memory from a specific node | ||
607 | * @pgdat: node to allocate from | ||
608 | * @size: size of the request in bytes | ||
609 | * @align: alignment of the region | ||
610 | * @goal: preferred starting address of the region | ||
611 | * | ||
612 | * The goal is dropped if it can not be satisfied and the allocation will | ||
613 | * fall back to memory below @goal. | ||
614 | * | ||
615 | * Allocation may fall back to any node in the system if the specified node | ||
616 | * can not hold the requested memory. | ||
617 | * | ||
618 | * The function panics if the request can not be satisfied. | ||
619 | */ | ||
620 | void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, | ||
621 | unsigned long align, unsigned long goal) | ||
622 | { | ||
623 | return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0); | ||
548 | } | 624 | } |
549 | 625 | ||
550 | #ifdef CONFIG_SPARSEMEM | 626 | #ifdef CONFIG_SPARSEMEM |
627 | /** | ||
628 | * alloc_bootmem_section - allocate boot memory from a specific section | ||
629 | * @size: size of the request in bytes | ||
630 | * @section_nr: sparse map section to allocate from | ||
631 | * | ||
632 | * Return NULL on failure. | ||
633 | */ | ||
551 | void * __init alloc_bootmem_section(unsigned long size, | 634 | void * __init alloc_bootmem_section(unsigned long size, |
552 | unsigned long section_nr) | 635 | unsigned long section_nr) |
553 | { | 636 | { |
554 | void *ptr; | 637 | bootmem_data_t *bdata; |
555 | unsigned long limit, goal, start_nr, end_nr, pfn; | 638 | unsigned long pfn, goal, limit; |
556 | struct pglist_data *pgdat; | ||
557 | 639 | ||
558 | pfn = section_nr_to_pfn(section_nr); | 640 | pfn = section_nr_to_pfn(section_nr); |
559 | goal = PFN_PHYS(pfn); | 641 | goal = pfn << PAGE_SHIFT; |
560 | limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1; | 642 | limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT; |
561 | pgdat = NODE_DATA(early_pfn_to_nid(pfn)); | 643 | bdata = &bootmem_node_data[early_pfn_to_nid(pfn)]; |
562 | ptr = __alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal, | ||
563 | limit); | ||
564 | 644 | ||
565 | if (!ptr) | 645 | return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit); |
566 | return NULL; | 646 | } |
647 | #endif | ||
567 | 648 | ||
568 | start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr))); | 649 | void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, |
569 | end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size)); | 650 | unsigned long align, unsigned long goal) |
570 | if (start_nr != section_nr || end_nr != section_nr) { | 651 | { |
571 | printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n", | 652 | void *ptr; |
572 | section_nr); | ||
573 | free_bootmem_core(pgdat->bdata, __pa(ptr), size); | ||
574 | ptr = NULL; | ||
575 | } | ||
576 | 653 | ||
577 | return ptr; | 654 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); |
655 | if (ptr) | ||
656 | return ptr; | ||
657 | |||
658 | return __alloc_bootmem_nopanic(size, align, goal); | ||
578 | } | 659 | } |
579 | #endif | ||
580 | 660 | ||
581 | #ifndef ARCH_LOW_ADDRESS_LIMIT | 661 | #ifndef ARCH_LOW_ADDRESS_LIMIT |
582 | #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL | 662 | #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL |
583 | #endif | 663 | #endif |
584 | 664 | ||
665 | /** | ||
666 | * __alloc_bootmem_low - allocate low boot memory | ||
667 | * @size: size of the request in bytes | ||
668 | * @align: alignment of the region | ||
669 | * @goal: preferred starting address of the region | ||
670 | * | ||
671 | * The goal is dropped if it can not be satisfied and the allocation will | ||
672 | * fall back to memory below @goal. | ||
673 | * | ||
674 | * Allocation may happen on any node in the system. | ||
675 | * | ||
676 | * The function panics if the request can not be satisfied. | ||
677 | */ | ||
585 | void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, | 678 | void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, |
586 | unsigned long goal) | 679 | unsigned long goal) |
587 | { | 680 | { |
588 | bootmem_data_t *bdata; | 681 | return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT); |
589 | void *ptr; | ||
590 | |||
591 | list_for_each_entry(bdata, &bdata_list, list) { | ||
592 | ptr = __alloc_bootmem_core(bdata, size, align, goal, | ||
593 | ARCH_LOW_ADDRESS_LIMIT); | ||
594 | if (ptr) | ||
595 | return ptr; | ||
596 | } | ||
597 | |||
598 | /* | ||
599 | * Whoops, we cannot satisfy the allocation request. | ||
600 | */ | ||
601 | printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size); | ||
602 | panic("Out of low memory"); | ||
603 | return NULL; | ||
604 | } | 682 | } |
605 | 683 | ||
684 | /** | ||
685 | * __alloc_bootmem_low_node - allocate low boot memory from a specific node | ||
686 | * @pgdat: node to allocate from | ||
687 | * @size: size of the request in bytes | ||
688 | * @align: alignment of the region | ||
689 | * @goal: preferred starting address of the region | ||
690 | * | ||
691 | * The goal is dropped if it can not be satisfied and the allocation will | ||
692 | * fall back to memory below @goal. | ||
693 | * | ||
694 | * Allocation may fall back to any node in the system if the specified node | ||
695 | * can not hold the requested memory. | ||
696 | * | ||
697 | * The function panics if the request can not be satisfied. | ||
698 | */ | ||
606 | void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, | 699 | void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, |
607 | unsigned long align, unsigned long goal) | 700 | unsigned long align, unsigned long goal) |
608 | { | 701 | { |
609 | return __alloc_bootmem_core(pgdat->bdata, size, align, goal, | 702 | return ___alloc_bootmem_node(pgdat->bdata, size, align, |
610 | ARCH_LOW_ADDRESS_LIMIT); | 703 | goal, ARCH_LOW_ADDRESS_LIMIT); |
611 | } | 704 | } |
diff --git a/mm/filemap.c b/mm/filemap.c index 65d9d9e2b755..2ed8b0389c51 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -42,9 +42,6 @@ | |||
42 | 42 | ||
43 | #include <asm/mman.h> | 43 | #include <asm/mman.h> |
44 | 44 | ||
45 | static ssize_t | ||
46 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | ||
47 | loff_t offset, unsigned long nr_segs); | ||
48 | 45 | ||
49 | /* | 46 | /* |
50 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | 47 | * Shared mappings implemented 30.11.1994. It's not fully working yet, |
@@ -112,13 +109,13 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | |||
112 | /* | 109 | /* |
113 | * Remove a page from the page cache and free it. Caller has to make | 110 | * Remove a page from the page cache and free it. Caller has to make |
114 | * sure the page is locked and that nobody else uses it - or that usage | 111 | * sure the page is locked and that nobody else uses it - or that usage |
115 | * is safe. The caller must hold a write_lock on the mapping's tree_lock. | 112 | * is safe. The caller must hold the mapping's tree_lock. |
116 | */ | 113 | */ |
117 | void __remove_from_page_cache(struct page *page) | 114 | void __remove_from_page_cache(struct page *page) |
118 | { | 115 | { |
119 | struct address_space *mapping = page->mapping; | 116 | struct address_space *mapping = page->mapping; |
120 | 117 | ||
121 | mem_cgroup_uncharge_page(page); | 118 | mem_cgroup_uncharge_cache_page(page); |
122 | radix_tree_delete(&mapping->page_tree, page->index); | 119 | radix_tree_delete(&mapping->page_tree, page->index); |
123 | page->mapping = NULL; | 120 | page->mapping = NULL; |
124 | mapping->nrpages--; | 121 | mapping->nrpages--; |
@@ -144,9 +141,9 @@ void remove_from_page_cache(struct page *page) | |||
144 | 141 | ||
145 | BUG_ON(!PageLocked(page)); | 142 | BUG_ON(!PageLocked(page)); |
146 | 143 | ||
147 | write_lock_irq(&mapping->tree_lock); | 144 | spin_lock_irq(&mapping->tree_lock); |
148 | __remove_from_page_cache(page); | 145 | __remove_from_page_cache(page); |
149 | write_unlock_irq(&mapping->tree_lock); | 146 | spin_unlock_irq(&mapping->tree_lock); |
150 | } | 147 | } |
151 | 148 | ||
152 | static int sync_page(void *word) | 149 | static int sync_page(void *word) |
@@ -445,48 +442,52 @@ int filemap_write_and_wait_range(struct address_space *mapping, | |||
445 | } | 442 | } |
446 | 443 | ||
447 | /** | 444 | /** |
448 | * add_to_page_cache - add newly allocated pagecache pages | 445 | * add_to_page_cache_locked - add a locked page to the pagecache |
449 | * @page: page to add | 446 | * @page: page to add |
450 | * @mapping: the page's address_space | 447 | * @mapping: the page's address_space |
451 | * @offset: page index | 448 | * @offset: page index |
452 | * @gfp_mask: page allocation mode | 449 | * @gfp_mask: page allocation mode |
453 | * | 450 | * |
454 | * This function is used to add newly allocated pagecache pages; | 451 | * This function is used to add a page to the pagecache. It must be locked. |
455 | * the page is new, so we can just run SetPageLocked() against it. | ||
456 | * The other page state flags were set by rmqueue(). | ||
457 | * | ||
458 | * This function does not add the page to the LRU. The caller must do that. | 452 | * This function does not add the page to the LRU. The caller must do that. |
459 | */ | 453 | */ |
460 | int add_to_page_cache(struct page *page, struct address_space *mapping, | 454 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, |
461 | pgoff_t offset, gfp_t gfp_mask) | 455 | pgoff_t offset, gfp_t gfp_mask) |
462 | { | 456 | { |
463 | int error = mem_cgroup_cache_charge(page, current->mm, | 457 | int error; |
458 | |||
459 | VM_BUG_ON(!PageLocked(page)); | ||
460 | |||
461 | error = mem_cgroup_cache_charge(page, current->mm, | ||
464 | gfp_mask & ~__GFP_HIGHMEM); | 462 | gfp_mask & ~__GFP_HIGHMEM); |
465 | if (error) | 463 | if (error) |
466 | goto out; | 464 | goto out; |
467 | 465 | ||
468 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); | 466 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
469 | if (error == 0) { | 467 | if (error == 0) { |
470 | write_lock_irq(&mapping->tree_lock); | 468 | page_cache_get(page); |
469 | page->mapping = mapping; | ||
470 | page->index = offset; | ||
471 | |||
472 | spin_lock_irq(&mapping->tree_lock); | ||
471 | error = radix_tree_insert(&mapping->page_tree, offset, page); | 473 | error = radix_tree_insert(&mapping->page_tree, offset, page); |
472 | if (!error) { | 474 | if (likely(!error)) { |
473 | page_cache_get(page); | ||
474 | SetPageLocked(page); | ||
475 | page->mapping = mapping; | ||
476 | page->index = offset; | ||
477 | mapping->nrpages++; | 475 | mapping->nrpages++; |
478 | __inc_zone_page_state(page, NR_FILE_PAGES); | 476 | __inc_zone_page_state(page, NR_FILE_PAGES); |
479 | } else | 477 | } else { |
480 | mem_cgroup_uncharge_page(page); | 478 | page->mapping = NULL; |
479 | mem_cgroup_uncharge_cache_page(page); | ||
480 | page_cache_release(page); | ||
481 | } | ||
481 | 482 | ||
482 | write_unlock_irq(&mapping->tree_lock); | 483 | spin_unlock_irq(&mapping->tree_lock); |
483 | radix_tree_preload_end(); | 484 | radix_tree_preload_end(); |
484 | } else | 485 | } else |
485 | mem_cgroup_uncharge_page(page); | 486 | mem_cgroup_uncharge_cache_page(page); |
486 | out: | 487 | out: |
487 | return error; | 488 | return error; |
488 | } | 489 | } |
489 | EXPORT_SYMBOL(add_to_page_cache); | 490 | EXPORT_SYMBOL(add_to_page_cache_locked); |
490 | 491 | ||
491 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | 492 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, |
492 | pgoff_t offset, gfp_t gfp_mask) | 493 | pgoff_t offset, gfp_t gfp_mask) |
@@ -636,15 +637,35 @@ void __lock_page_nosync(struct page *page) | |||
636 | * Is there a pagecache struct page at the given (mapping, offset) tuple? | 637 | * Is there a pagecache struct page at the given (mapping, offset) tuple? |
637 | * If yes, increment its refcount and return it; if no, return NULL. | 638 | * If yes, increment its refcount and return it; if no, return NULL. |
638 | */ | 639 | */ |
639 | struct page * find_get_page(struct address_space *mapping, pgoff_t offset) | 640 | struct page *find_get_page(struct address_space *mapping, pgoff_t offset) |
640 | { | 641 | { |
642 | void **pagep; | ||
641 | struct page *page; | 643 | struct page *page; |
642 | 644 | ||
643 | read_lock_irq(&mapping->tree_lock); | 645 | rcu_read_lock(); |
644 | page = radix_tree_lookup(&mapping->page_tree, offset); | 646 | repeat: |
645 | if (page) | 647 | page = NULL; |
646 | page_cache_get(page); | 648 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); |
647 | read_unlock_irq(&mapping->tree_lock); | 649 | if (pagep) { |
650 | page = radix_tree_deref_slot(pagep); | ||
651 | if (unlikely(!page || page == RADIX_TREE_RETRY)) | ||
652 | goto repeat; | ||
653 | |||
654 | if (!page_cache_get_speculative(page)) | ||
655 | goto repeat; | ||
656 | |||
657 | /* | ||
658 | * Has the page moved? | ||
659 | * This is part of the lockless pagecache protocol. See | ||
660 | * include/linux/pagemap.h for details. | ||
661 | */ | ||
662 | if (unlikely(page != *pagep)) { | ||
663 | page_cache_release(page); | ||
664 | goto repeat; | ||
665 | } | ||
666 | } | ||
667 | rcu_read_unlock(); | ||
668 | |||
648 | return page; | 669 | return page; |
649 | } | 670 | } |
650 | EXPORT_SYMBOL(find_get_page); | 671 | EXPORT_SYMBOL(find_get_page); |
@@ -659,32 +680,22 @@ EXPORT_SYMBOL(find_get_page); | |||
659 | * | 680 | * |
660 | * Returns zero if the page was not present. find_lock_page() may sleep. | 681 | * Returns zero if the page was not present. find_lock_page() may sleep. |
661 | */ | 682 | */ |
662 | struct page *find_lock_page(struct address_space *mapping, | 683 | struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) |
663 | pgoff_t offset) | ||
664 | { | 684 | { |
665 | struct page *page; | 685 | struct page *page; |
666 | 686 | ||
667 | repeat: | 687 | repeat: |
668 | read_lock_irq(&mapping->tree_lock); | 688 | page = find_get_page(mapping, offset); |
669 | page = radix_tree_lookup(&mapping->page_tree, offset); | ||
670 | if (page) { | 689 | if (page) { |
671 | page_cache_get(page); | 690 | lock_page(page); |
672 | if (TestSetPageLocked(page)) { | 691 | /* Has the page been truncated? */ |
673 | read_unlock_irq(&mapping->tree_lock); | 692 | if (unlikely(page->mapping != mapping)) { |
674 | __lock_page(page); | 693 | unlock_page(page); |
675 | 694 | page_cache_release(page); | |
676 | /* Has the page been truncated while we slept? */ | 695 | goto repeat; |
677 | if (unlikely(page->mapping != mapping)) { | ||
678 | unlock_page(page); | ||
679 | page_cache_release(page); | ||
680 | goto repeat; | ||
681 | } | ||
682 | VM_BUG_ON(page->index != offset); | ||
683 | goto out; | ||
684 | } | 696 | } |
697 | VM_BUG_ON(page->index != offset); | ||
685 | } | 698 | } |
686 | read_unlock_irq(&mapping->tree_lock); | ||
687 | out: | ||
688 | return page; | 699 | return page; |
689 | } | 700 | } |
690 | EXPORT_SYMBOL(find_lock_page); | 701 | EXPORT_SYMBOL(find_lock_page); |
@@ -750,13 +761,39 @@ unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |||
750 | { | 761 | { |
751 | unsigned int i; | 762 | unsigned int i; |
752 | unsigned int ret; | 763 | unsigned int ret; |
764 | unsigned int nr_found; | ||
765 | |||
766 | rcu_read_lock(); | ||
767 | restart: | ||
768 | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | ||
769 | (void ***)pages, start, nr_pages); | ||
770 | ret = 0; | ||
771 | for (i = 0; i < nr_found; i++) { | ||
772 | struct page *page; | ||
773 | repeat: | ||
774 | page = radix_tree_deref_slot((void **)pages[i]); | ||
775 | if (unlikely(!page)) | ||
776 | continue; | ||
777 | /* | ||
778 | * this can only trigger if nr_found == 1, making livelock | ||
779 | * a non issue. | ||
780 | */ | ||
781 | if (unlikely(page == RADIX_TREE_RETRY)) | ||
782 | goto restart; | ||
783 | |||
784 | if (!page_cache_get_speculative(page)) | ||
785 | goto repeat; | ||
786 | |||
787 | /* Has the page moved? */ | ||
788 | if (unlikely(page != *((void **)pages[i]))) { | ||
789 | page_cache_release(page); | ||
790 | goto repeat; | ||
791 | } | ||
753 | 792 | ||
754 | read_lock_irq(&mapping->tree_lock); | 793 | pages[ret] = page; |
755 | ret = radix_tree_gang_lookup(&mapping->page_tree, | 794 | ret++; |
756 | (void **)pages, start, nr_pages); | 795 | } |
757 | for (i = 0; i < ret; i++) | 796 | rcu_read_unlock(); |
758 | page_cache_get(pages[i]); | ||
759 | read_unlock_irq(&mapping->tree_lock); | ||
760 | return ret; | 797 | return ret; |
761 | } | 798 | } |
762 | 799 | ||
@@ -777,19 +814,44 @@ unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |||
777 | { | 814 | { |
778 | unsigned int i; | 815 | unsigned int i; |
779 | unsigned int ret; | 816 | unsigned int ret; |
817 | unsigned int nr_found; | ||
818 | |||
819 | rcu_read_lock(); | ||
820 | restart: | ||
821 | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | ||
822 | (void ***)pages, index, nr_pages); | ||
823 | ret = 0; | ||
824 | for (i = 0; i < nr_found; i++) { | ||
825 | struct page *page; | ||
826 | repeat: | ||
827 | page = radix_tree_deref_slot((void **)pages[i]); | ||
828 | if (unlikely(!page)) | ||
829 | continue; | ||
830 | /* | ||
831 | * this can only trigger if nr_found == 1, making livelock | ||
832 | * a non issue. | ||
833 | */ | ||
834 | if (unlikely(page == RADIX_TREE_RETRY)) | ||
835 | goto restart; | ||
780 | 836 | ||
781 | read_lock_irq(&mapping->tree_lock); | 837 | if (page->mapping == NULL || page->index != index) |
782 | ret = radix_tree_gang_lookup(&mapping->page_tree, | ||
783 | (void **)pages, index, nr_pages); | ||
784 | for (i = 0; i < ret; i++) { | ||
785 | if (pages[i]->mapping == NULL || pages[i]->index != index) | ||
786 | break; | 838 | break; |
787 | 839 | ||
788 | page_cache_get(pages[i]); | 840 | if (!page_cache_get_speculative(page)) |
841 | goto repeat; | ||
842 | |||
843 | /* Has the page moved? */ | ||
844 | if (unlikely(page != *((void **)pages[i]))) { | ||
845 | page_cache_release(page); | ||
846 | goto repeat; | ||
847 | } | ||
848 | |||
849 | pages[ret] = page; | ||
850 | ret++; | ||
789 | index++; | 851 | index++; |
790 | } | 852 | } |
791 | read_unlock_irq(&mapping->tree_lock); | 853 | rcu_read_unlock(); |
792 | return i; | 854 | return ret; |
793 | } | 855 | } |
794 | EXPORT_SYMBOL(find_get_pages_contig); | 856 | EXPORT_SYMBOL(find_get_pages_contig); |
795 | 857 | ||
@@ -809,15 +871,43 @@ unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |||
809 | { | 871 | { |
810 | unsigned int i; | 872 | unsigned int i; |
811 | unsigned int ret; | 873 | unsigned int ret; |
874 | unsigned int nr_found; | ||
875 | |||
876 | rcu_read_lock(); | ||
877 | restart: | ||
878 | nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, | ||
879 | (void ***)pages, *index, nr_pages, tag); | ||
880 | ret = 0; | ||
881 | for (i = 0; i < nr_found; i++) { | ||
882 | struct page *page; | ||
883 | repeat: | ||
884 | page = radix_tree_deref_slot((void **)pages[i]); | ||
885 | if (unlikely(!page)) | ||
886 | continue; | ||
887 | /* | ||
888 | * this can only trigger if nr_found == 1, making livelock | ||
889 | * a non issue. | ||
890 | */ | ||
891 | if (unlikely(page == RADIX_TREE_RETRY)) | ||
892 | goto restart; | ||
893 | |||
894 | if (!page_cache_get_speculative(page)) | ||
895 | goto repeat; | ||
896 | |||
897 | /* Has the page moved? */ | ||
898 | if (unlikely(page != *((void **)pages[i]))) { | ||
899 | page_cache_release(page); | ||
900 | goto repeat; | ||
901 | } | ||
902 | |||
903 | pages[ret] = page; | ||
904 | ret++; | ||
905 | } | ||
906 | rcu_read_unlock(); | ||
812 | 907 | ||
813 | read_lock_irq(&mapping->tree_lock); | ||
814 | ret = radix_tree_gang_lookup_tag(&mapping->page_tree, | ||
815 | (void **)pages, *index, nr_pages, tag); | ||
816 | for (i = 0; i < ret; i++) | ||
817 | page_cache_get(pages[i]); | ||
818 | if (ret) | 908 | if (ret) |
819 | *index = pages[ret - 1]->index + 1; | 909 | *index = pages[ret - 1]->index + 1; |
820 | read_unlock_irq(&mapping->tree_lock); | 910 | |
821 | return ret; | 911 | return ret; |
822 | } | 912 | } |
823 | EXPORT_SYMBOL(find_get_pages_tag); | 913 | EXPORT_SYMBOL(find_get_pages_tag); |
@@ -1200,42 +1290,41 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, | |||
1200 | 1290 | ||
1201 | mapping = filp->f_mapping; | 1291 | mapping = filp->f_mapping; |
1202 | inode = mapping->host; | 1292 | inode = mapping->host; |
1203 | retval = 0; | ||
1204 | if (!count) | 1293 | if (!count) |
1205 | goto out; /* skip atime */ | 1294 | goto out; /* skip atime */ |
1206 | size = i_size_read(inode); | 1295 | size = i_size_read(inode); |
1207 | if (pos < size) { | 1296 | if (pos < size) { |
1208 | retval = generic_file_direct_IO(READ, iocb, | 1297 | retval = filemap_write_and_wait(mapping); |
1209 | iov, pos, nr_segs); | 1298 | if (!retval) { |
1299 | retval = mapping->a_ops->direct_IO(READ, iocb, | ||
1300 | iov, pos, nr_segs); | ||
1301 | } | ||
1210 | if (retval > 0) | 1302 | if (retval > 0) |
1211 | *ppos = pos + retval; | 1303 | *ppos = pos + retval; |
1212 | } | 1304 | if (retval) { |
1213 | if (likely(retval != 0)) { | 1305 | file_accessed(filp); |
1214 | file_accessed(filp); | 1306 | goto out; |
1215 | goto out; | 1307 | } |
1216 | } | 1308 | } |
1217 | } | 1309 | } |
1218 | 1310 | ||
1219 | retval = 0; | 1311 | for (seg = 0; seg < nr_segs; seg++) { |
1220 | if (count) { | 1312 | read_descriptor_t desc; |
1221 | for (seg = 0; seg < nr_segs; seg++) { | ||
1222 | read_descriptor_t desc; | ||
1223 | 1313 | ||
1224 | desc.written = 0; | 1314 | desc.written = 0; |
1225 | desc.arg.buf = iov[seg].iov_base; | 1315 | desc.arg.buf = iov[seg].iov_base; |
1226 | desc.count = iov[seg].iov_len; | 1316 | desc.count = iov[seg].iov_len; |
1227 | if (desc.count == 0) | 1317 | if (desc.count == 0) |
1228 | continue; | 1318 | continue; |
1229 | desc.error = 0; | 1319 | desc.error = 0; |
1230 | do_generic_file_read(filp,ppos,&desc,file_read_actor); | 1320 | do_generic_file_read(filp, ppos, &desc, file_read_actor); |
1231 | retval += desc.written; | 1321 | retval += desc.written; |
1232 | if (desc.error) { | 1322 | if (desc.error) { |
1233 | retval = retval ?: desc.error; | 1323 | retval = retval ?: desc.error; |
1234 | break; | 1324 | break; |
1235 | } | ||
1236 | if (desc.count > 0) | ||
1237 | break; | ||
1238 | } | 1325 | } |
1326 | if (desc.count > 0) | ||
1327 | break; | ||
1239 | } | 1328 | } |
1240 | out: | 1329 | out: |
1241 | return retval; | 1330 | return retval; |
@@ -2004,11 +2093,55 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | |||
2004 | struct address_space *mapping = file->f_mapping; | 2093 | struct address_space *mapping = file->f_mapping; |
2005 | struct inode *inode = mapping->host; | 2094 | struct inode *inode = mapping->host; |
2006 | ssize_t written; | 2095 | ssize_t written; |
2096 | size_t write_len; | ||
2097 | pgoff_t end; | ||
2007 | 2098 | ||
2008 | if (count != ocount) | 2099 | if (count != ocount) |
2009 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); | 2100 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); |
2010 | 2101 | ||
2011 | written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); | 2102 | /* |
2103 | * Unmap all mmappings of the file up-front. | ||
2104 | * | ||
2105 | * This will cause any pte dirty bits to be propagated into the | ||
2106 | * pageframes for the subsequent filemap_write_and_wait(). | ||
2107 | */ | ||
2108 | write_len = iov_length(iov, *nr_segs); | ||
2109 | end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; | ||
2110 | if (mapping_mapped(mapping)) | ||
2111 | unmap_mapping_range(mapping, pos, write_len, 0); | ||
2112 | |||
2113 | written = filemap_write_and_wait(mapping); | ||
2114 | if (written) | ||
2115 | goto out; | ||
2116 | |||
2117 | /* | ||
2118 | * After a write we want buffered reads to be sure to go to disk to get | ||
2119 | * the new data. We invalidate clean cached page from the region we're | ||
2120 | * about to write. We do this *before* the write so that we can return | ||
2121 | * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). | ||
2122 | */ | ||
2123 | if (mapping->nrpages) { | ||
2124 | written = invalidate_inode_pages2_range(mapping, | ||
2125 | pos >> PAGE_CACHE_SHIFT, end); | ||
2126 | if (written) | ||
2127 | goto out; | ||
2128 | } | ||
2129 | |||
2130 | written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); | ||
2131 | |||
2132 | /* | ||
2133 | * Finally, try again to invalidate clean pages which might have been | ||
2134 | * cached by non-direct readahead, or faulted in by get_user_pages() | ||
2135 | * if the source of the write was an mmap'ed region of the file | ||
2136 | * we're writing. Either one is a pretty crazy thing to do, | ||
2137 | * so we don't support it 100%. If this invalidation | ||
2138 | * fails, tough, the write still worked... | ||
2139 | */ | ||
2140 | if (mapping->nrpages) { | ||
2141 | invalidate_inode_pages2_range(mapping, | ||
2142 | pos >> PAGE_CACHE_SHIFT, end); | ||
2143 | } | ||
2144 | |||
2012 | if (written > 0) { | 2145 | if (written > 0) { |
2013 | loff_t end = pos + written; | 2146 | loff_t end = pos + written; |
2014 | if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | 2147 | if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
@@ -2024,6 +2157,7 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | |||
2024 | * i_mutex is held, which protects generic_osync_inode() from | 2157 | * i_mutex is held, which protects generic_osync_inode() from |
2025 | * livelocking. AIO O_DIRECT ops attempt to sync metadata here. | 2158 | * livelocking. AIO O_DIRECT ops attempt to sync metadata here. |
2026 | */ | 2159 | */ |
2160 | out: | ||
2027 | if ((written >= 0 || written == -EIOCBQUEUED) && | 2161 | if ((written >= 0 || written == -EIOCBQUEUED) && |
2028 | ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 2162 | ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { |
2029 | int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); | 2163 | int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); |
@@ -2511,66 +2645,6 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, | |||
2511 | } | 2645 | } |
2512 | EXPORT_SYMBOL(generic_file_aio_write); | 2646 | EXPORT_SYMBOL(generic_file_aio_write); |
2513 | 2647 | ||
2514 | /* | ||
2515 | * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something | ||
2516 | * went wrong during pagecache shootdown. | ||
2517 | */ | ||
2518 | static ssize_t | ||
2519 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | ||
2520 | loff_t offset, unsigned long nr_segs) | ||
2521 | { | ||
2522 | struct file *file = iocb->ki_filp; | ||
2523 | struct address_space *mapping = file->f_mapping; | ||
2524 | ssize_t retval; | ||
2525 | size_t write_len; | ||
2526 | pgoff_t end = 0; /* silence gcc */ | ||
2527 | |||
2528 | /* | ||
2529 | * If it's a write, unmap all mmappings of the file up-front. This | ||
2530 | * will cause any pte dirty bits to be propagated into the pageframes | ||
2531 | * for the subsequent filemap_write_and_wait(). | ||
2532 | */ | ||
2533 | if (rw == WRITE) { | ||
2534 | write_len = iov_length(iov, nr_segs); | ||
2535 | end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT; | ||
2536 | if (mapping_mapped(mapping)) | ||
2537 | unmap_mapping_range(mapping, offset, write_len, 0); | ||
2538 | } | ||
2539 | |||
2540 | retval = filemap_write_and_wait(mapping); | ||
2541 | if (retval) | ||
2542 | goto out; | ||
2543 | |||
2544 | /* | ||
2545 | * After a write we want buffered reads to be sure to go to disk to get | ||
2546 | * the new data. We invalidate clean cached page from the region we're | ||
2547 | * about to write. We do this *before* the write so that we can return | ||
2548 | * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). | ||
2549 | */ | ||
2550 | if (rw == WRITE && mapping->nrpages) { | ||
2551 | retval = invalidate_inode_pages2_range(mapping, | ||
2552 | offset >> PAGE_CACHE_SHIFT, end); | ||
2553 | if (retval) | ||
2554 | goto out; | ||
2555 | } | ||
2556 | |||
2557 | retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); | ||
2558 | |||
2559 | /* | ||
2560 | * Finally, try again to invalidate clean pages which might have been | ||
2561 | * cached by non-direct readahead, or faulted in by get_user_pages() | ||
2562 | * if the source of the write was an mmap'ed region of the file | ||
2563 | * we're writing. Either one is a pretty crazy thing to do, | ||
2564 | * so we don't support it 100%. If this invalidation | ||
2565 | * fails, tough, the write still worked... | ||
2566 | */ | ||
2567 | if (rw == WRITE && mapping->nrpages) { | ||
2568 | invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end); | ||
2569 | } | ||
2570 | out: | ||
2571 | return retval; | ||
2572 | } | ||
2573 | |||
2574 | /** | 2648 | /** |
2575 | * try_to_release_page() - release old fs-specific metadata on a page | 2649 | * try_to_release_page() - release old fs-specific metadata on a page |
2576 | * | 2650 | * |
@@ -2582,9 +2656,8 @@ out: | |||
2582 | * Otherwise return zero. | 2656 | * Otherwise return zero. |
2583 | * | 2657 | * |
2584 | * The @gfp_mask argument specifies whether I/O may be performed to release | 2658 | * The @gfp_mask argument specifies whether I/O may be performed to release |
2585 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). | 2659 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). |
2586 | * | 2660 | * |
2587 | * NOTE: @gfp_mask may go away, and this function may become non-blocking. | ||
2588 | */ | 2661 | */ |
2589 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | 2662 | int try_to_release_page(struct page *page, gfp_t gfp_mask) |
2590 | { | 2663 | { |
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ab171274ef21..3be79dc18c5c 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -14,6 +14,8 @@ | |||
14 | #include <linux/mempolicy.h> | 14 | #include <linux/mempolicy.h> |
15 | #include <linux/cpuset.h> | 15 | #include <linux/cpuset.h> |
16 | #include <linux/mutex.h> | 16 | #include <linux/mutex.h> |
17 | #include <linux/bootmem.h> | ||
18 | #include <linux/sysfs.h> | ||
17 | 19 | ||
18 | #include <asm/page.h> | 20 | #include <asm/page.h> |
19 | #include <asm/pgtable.h> | 21 | #include <asm/pgtable.h> |
@@ -22,30 +24,340 @@ | |||
22 | #include "internal.h" | 24 | #include "internal.h" |
23 | 25 | ||
24 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 26 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; |
25 | static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; | ||
26 | static unsigned long surplus_huge_pages; | ||
27 | static unsigned long nr_overcommit_huge_pages; | ||
28 | unsigned long max_huge_pages; | ||
29 | unsigned long sysctl_overcommit_huge_pages; | ||
30 | static struct list_head hugepage_freelists[MAX_NUMNODES]; | ||
31 | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | ||
32 | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | ||
33 | static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; | ||
34 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 27 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
35 | unsigned long hugepages_treat_as_movable; | 28 | unsigned long hugepages_treat_as_movable; |
36 | static int hugetlb_next_nid; | 29 | |
30 | static int max_hstate; | ||
31 | unsigned int default_hstate_idx; | ||
32 | struct hstate hstates[HUGE_MAX_HSTATE]; | ||
33 | |||
34 | __initdata LIST_HEAD(huge_boot_pages); | ||
35 | |||
36 | /* for command line parsing */ | ||
37 | static struct hstate * __initdata parsed_hstate; | ||
38 | static unsigned long __initdata default_hstate_max_huge_pages; | ||
39 | static unsigned long __initdata default_hstate_size; | ||
40 | |||
41 | #define for_each_hstate(h) \ | ||
42 | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | ||
37 | 43 | ||
38 | /* | 44 | /* |
39 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 45 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages |
40 | */ | 46 | */ |
41 | static DEFINE_SPINLOCK(hugetlb_lock); | 47 | static DEFINE_SPINLOCK(hugetlb_lock); |
42 | 48 | ||
43 | static void clear_huge_page(struct page *page, unsigned long addr) | 49 | /* |
50 | * Region tracking -- allows tracking of reservations and instantiated pages | ||
51 | * across the pages in a mapping. | ||
52 | * | ||
53 | * The region data structures are protected by a combination of the mmap_sem | ||
54 | * and the hugetlb_instantion_mutex. To access or modify a region the caller | ||
55 | * must either hold the mmap_sem for write, or the mmap_sem for read and | ||
56 | * the hugetlb_instantiation mutex: | ||
57 | * | ||
58 | * down_write(&mm->mmap_sem); | ||
59 | * or | ||
60 | * down_read(&mm->mmap_sem); | ||
61 | * mutex_lock(&hugetlb_instantiation_mutex); | ||
62 | */ | ||
63 | struct file_region { | ||
64 | struct list_head link; | ||
65 | long from; | ||
66 | long to; | ||
67 | }; | ||
68 | |||
69 | static long region_add(struct list_head *head, long f, long t) | ||
70 | { | ||
71 | struct file_region *rg, *nrg, *trg; | ||
72 | |||
73 | /* Locate the region we are either in or before. */ | ||
74 | list_for_each_entry(rg, head, link) | ||
75 | if (f <= rg->to) | ||
76 | break; | ||
77 | |||
78 | /* Round our left edge to the current segment if it encloses us. */ | ||
79 | if (f > rg->from) | ||
80 | f = rg->from; | ||
81 | |||
82 | /* Check for and consume any regions we now overlap with. */ | ||
83 | nrg = rg; | ||
84 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
85 | if (&rg->link == head) | ||
86 | break; | ||
87 | if (rg->from > t) | ||
88 | break; | ||
89 | |||
90 | /* If this area reaches higher then extend our area to | ||
91 | * include it completely. If this is not the first area | ||
92 | * which we intend to reuse, free it. */ | ||
93 | if (rg->to > t) | ||
94 | t = rg->to; | ||
95 | if (rg != nrg) { | ||
96 | list_del(&rg->link); | ||
97 | kfree(rg); | ||
98 | } | ||
99 | } | ||
100 | nrg->from = f; | ||
101 | nrg->to = t; | ||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | static long region_chg(struct list_head *head, long f, long t) | ||
106 | { | ||
107 | struct file_region *rg, *nrg; | ||
108 | long chg = 0; | ||
109 | |||
110 | /* Locate the region we are before or in. */ | ||
111 | list_for_each_entry(rg, head, link) | ||
112 | if (f <= rg->to) | ||
113 | break; | ||
114 | |||
115 | /* If we are below the current region then a new region is required. | ||
116 | * Subtle, allocate a new region at the position but make it zero | ||
117 | * size such that we can guarantee to record the reservation. */ | ||
118 | if (&rg->link == head || t < rg->from) { | ||
119 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
120 | if (!nrg) | ||
121 | return -ENOMEM; | ||
122 | nrg->from = f; | ||
123 | nrg->to = f; | ||
124 | INIT_LIST_HEAD(&nrg->link); | ||
125 | list_add(&nrg->link, rg->link.prev); | ||
126 | |||
127 | return t - f; | ||
128 | } | ||
129 | |||
130 | /* Round our left edge to the current segment if it encloses us. */ | ||
131 | if (f > rg->from) | ||
132 | f = rg->from; | ||
133 | chg = t - f; | ||
134 | |||
135 | /* Check for and consume any regions we now overlap with. */ | ||
136 | list_for_each_entry(rg, rg->link.prev, link) { | ||
137 | if (&rg->link == head) | ||
138 | break; | ||
139 | if (rg->from > t) | ||
140 | return chg; | ||
141 | |||
142 | /* We overlap with this area, if it extends futher than | ||
143 | * us then we must extend ourselves. Account for its | ||
144 | * existing reservation. */ | ||
145 | if (rg->to > t) { | ||
146 | chg += rg->to - t; | ||
147 | t = rg->to; | ||
148 | } | ||
149 | chg -= rg->to - rg->from; | ||
150 | } | ||
151 | return chg; | ||
152 | } | ||
153 | |||
154 | static long region_truncate(struct list_head *head, long end) | ||
155 | { | ||
156 | struct file_region *rg, *trg; | ||
157 | long chg = 0; | ||
158 | |||
159 | /* Locate the region we are either in or before. */ | ||
160 | list_for_each_entry(rg, head, link) | ||
161 | if (end <= rg->to) | ||
162 | break; | ||
163 | if (&rg->link == head) | ||
164 | return 0; | ||
165 | |||
166 | /* If we are in the middle of a region then adjust it. */ | ||
167 | if (end > rg->from) { | ||
168 | chg = rg->to - end; | ||
169 | rg->to = end; | ||
170 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
171 | } | ||
172 | |||
173 | /* Drop any remaining regions. */ | ||
174 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
175 | if (&rg->link == head) | ||
176 | break; | ||
177 | chg += rg->to - rg->from; | ||
178 | list_del(&rg->link); | ||
179 | kfree(rg); | ||
180 | } | ||
181 | return chg; | ||
182 | } | ||
183 | |||
184 | static long region_count(struct list_head *head, long f, long t) | ||
185 | { | ||
186 | struct file_region *rg; | ||
187 | long chg = 0; | ||
188 | |||
189 | /* Locate each segment we overlap with, and count that overlap. */ | ||
190 | list_for_each_entry(rg, head, link) { | ||
191 | int seg_from; | ||
192 | int seg_to; | ||
193 | |||
194 | if (rg->to <= f) | ||
195 | continue; | ||
196 | if (rg->from >= t) | ||
197 | break; | ||
198 | |||
199 | seg_from = max(rg->from, f); | ||
200 | seg_to = min(rg->to, t); | ||
201 | |||
202 | chg += seg_to - seg_from; | ||
203 | } | ||
204 | |||
205 | return chg; | ||
206 | } | ||
207 | |||
208 | /* | ||
209 | * Convert the address within this vma to the page offset within | ||
210 | * the mapping, in pagecache page units; huge pages here. | ||
211 | */ | ||
212 | static pgoff_t vma_hugecache_offset(struct hstate *h, | ||
213 | struct vm_area_struct *vma, unsigned long address) | ||
214 | { | ||
215 | return ((address - vma->vm_start) >> huge_page_shift(h)) + | ||
216 | (vma->vm_pgoff >> huge_page_order(h)); | ||
217 | } | ||
218 | |||
219 | /* | ||
220 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | ||
221 | * bits of the reservation map pointer, which are always clear due to | ||
222 | * alignment. | ||
223 | */ | ||
224 | #define HPAGE_RESV_OWNER (1UL << 0) | ||
225 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | ||
226 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | ||
227 | |||
228 | /* | ||
229 | * These helpers are used to track how many pages are reserved for | ||
230 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | ||
231 | * is guaranteed to have their future faults succeed. | ||
232 | * | ||
233 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | ||
234 | * the reserve counters are updated with the hugetlb_lock held. It is safe | ||
235 | * to reset the VMA at fork() time as it is not in use yet and there is no | ||
236 | * chance of the global counters getting corrupted as a result of the values. | ||
237 | * | ||
238 | * The private mapping reservation is represented in a subtly different | ||
239 | * manner to a shared mapping. A shared mapping has a region map associated | ||
240 | * with the underlying file, this region map represents the backing file | ||
241 | * pages which have ever had a reservation assigned which this persists even | ||
242 | * after the page is instantiated. A private mapping has a region map | ||
243 | * associated with the original mmap which is attached to all VMAs which | ||
244 | * reference it, this region map represents those offsets which have consumed | ||
245 | * reservation ie. where pages have been instantiated. | ||
246 | */ | ||
247 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | ||
248 | { | ||
249 | return (unsigned long)vma->vm_private_data; | ||
250 | } | ||
251 | |||
252 | static void set_vma_private_data(struct vm_area_struct *vma, | ||
253 | unsigned long value) | ||
254 | { | ||
255 | vma->vm_private_data = (void *)value; | ||
256 | } | ||
257 | |||
258 | struct resv_map { | ||
259 | struct kref refs; | ||
260 | struct list_head regions; | ||
261 | }; | ||
262 | |||
263 | struct resv_map *resv_map_alloc(void) | ||
264 | { | ||
265 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | ||
266 | if (!resv_map) | ||
267 | return NULL; | ||
268 | |||
269 | kref_init(&resv_map->refs); | ||
270 | INIT_LIST_HEAD(&resv_map->regions); | ||
271 | |||
272 | return resv_map; | ||
273 | } | ||
274 | |||
275 | void resv_map_release(struct kref *ref) | ||
276 | { | ||
277 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | ||
278 | |||
279 | /* Clear out any active regions before we release the map. */ | ||
280 | region_truncate(&resv_map->regions, 0); | ||
281 | kfree(resv_map); | ||
282 | } | ||
283 | |||
284 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | ||
285 | { | ||
286 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
287 | if (!(vma->vm_flags & VM_SHARED)) | ||
288 | return (struct resv_map *)(get_vma_private_data(vma) & | ||
289 | ~HPAGE_RESV_MASK); | ||
290 | return 0; | ||
291 | } | ||
292 | |||
293 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | ||
294 | { | ||
295 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
296 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
297 | |||
298 | set_vma_private_data(vma, (get_vma_private_data(vma) & | ||
299 | HPAGE_RESV_MASK) | (unsigned long)map); | ||
300 | } | ||
301 | |||
302 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | ||
303 | { | ||
304 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
305 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
306 | |||
307 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | ||
308 | } | ||
309 | |||
310 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | ||
311 | { | ||
312 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
313 | |||
314 | return (get_vma_private_data(vma) & flag) != 0; | ||
315 | } | ||
316 | |||
317 | /* Decrement the reserved pages in the hugepage pool by one */ | ||
318 | static void decrement_hugepage_resv_vma(struct hstate *h, | ||
319 | struct vm_area_struct *vma) | ||
320 | { | ||
321 | if (vma->vm_flags & VM_NORESERVE) | ||
322 | return; | ||
323 | |||
324 | if (vma->vm_flags & VM_SHARED) { | ||
325 | /* Shared mappings always use reserves */ | ||
326 | h->resv_huge_pages--; | ||
327 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
328 | /* | ||
329 | * Only the process that called mmap() has reserves for | ||
330 | * private mappings. | ||
331 | */ | ||
332 | h->resv_huge_pages--; | ||
333 | } | ||
334 | } | ||
335 | |||
336 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | ||
337 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | ||
338 | { | ||
339 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
340 | if (!(vma->vm_flags & VM_SHARED)) | ||
341 | vma->vm_private_data = (void *)0; | ||
342 | } | ||
343 | |||
344 | /* Returns true if the VMA has associated reserve pages */ | ||
345 | static int vma_has_reserves(struct vm_area_struct *vma) | ||
346 | { | ||
347 | if (vma->vm_flags & VM_SHARED) | ||
348 | return 1; | ||
349 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | ||
350 | return 1; | ||
351 | return 0; | ||
352 | } | ||
353 | |||
354 | static void clear_huge_page(struct page *page, | ||
355 | unsigned long addr, unsigned long sz) | ||
44 | { | 356 | { |
45 | int i; | 357 | int i; |
46 | 358 | ||
47 | might_sleep(); | 359 | might_sleep(); |
48 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { | 360 | for (i = 0; i < sz/PAGE_SIZE; i++) { |
49 | cond_resched(); | 361 | cond_resched(); |
50 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 362 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
51 | } | 363 | } |
@@ -55,42 +367,44 @@ static void copy_huge_page(struct page *dst, struct page *src, | |||
55 | unsigned long addr, struct vm_area_struct *vma) | 367 | unsigned long addr, struct vm_area_struct *vma) |
56 | { | 368 | { |
57 | int i; | 369 | int i; |
370 | struct hstate *h = hstate_vma(vma); | ||
58 | 371 | ||
59 | might_sleep(); | 372 | might_sleep(); |
60 | for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { | 373 | for (i = 0; i < pages_per_huge_page(h); i++) { |
61 | cond_resched(); | 374 | cond_resched(); |
62 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 375 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
63 | } | 376 | } |
64 | } | 377 | } |
65 | 378 | ||
66 | static void enqueue_huge_page(struct page *page) | 379 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
67 | { | 380 | { |
68 | int nid = page_to_nid(page); | 381 | int nid = page_to_nid(page); |
69 | list_add(&page->lru, &hugepage_freelists[nid]); | 382 | list_add(&page->lru, &h->hugepage_freelists[nid]); |
70 | free_huge_pages++; | 383 | h->free_huge_pages++; |
71 | free_huge_pages_node[nid]++; | 384 | h->free_huge_pages_node[nid]++; |
72 | } | 385 | } |
73 | 386 | ||
74 | static struct page *dequeue_huge_page(void) | 387 | static struct page *dequeue_huge_page(struct hstate *h) |
75 | { | 388 | { |
76 | int nid; | 389 | int nid; |
77 | struct page *page = NULL; | 390 | struct page *page = NULL; |
78 | 391 | ||
79 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { | 392 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { |
80 | if (!list_empty(&hugepage_freelists[nid])) { | 393 | if (!list_empty(&h->hugepage_freelists[nid])) { |
81 | page = list_entry(hugepage_freelists[nid].next, | 394 | page = list_entry(h->hugepage_freelists[nid].next, |
82 | struct page, lru); | 395 | struct page, lru); |
83 | list_del(&page->lru); | 396 | list_del(&page->lru); |
84 | free_huge_pages--; | 397 | h->free_huge_pages--; |
85 | free_huge_pages_node[nid]--; | 398 | h->free_huge_pages_node[nid]--; |
86 | break; | 399 | break; |
87 | } | 400 | } |
88 | } | 401 | } |
89 | return page; | 402 | return page; |
90 | } | 403 | } |
91 | 404 | ||
92 | static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | 405 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
93 | unsigned long address) | 406 | struct vm_area_struct *vma, |
407 | unsigned long address, int avoid_reserve) | ||
94 | { | 408 | { |
95 | int nid; | 409 | int nid; |
96 | struct page *page = NULL; | 410 | struct page *page = NULL; |
@@ -101,18 +415,33 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
101 | struct zone *zone; | 415 | struct zone *zone; |
102 | struct zoneref *z; | 416 | struct zoneref *z; |
103 | 417 | ||
418 | /* | ||
419 | * A child process with MAP_PRIVATE mappings created by their parent | ||
420 | * have no page reserves. This check ensures that reservations are | ||
421 | * not "stolen". The child may still get SIGKILLed | ||
422 | */ | ||
423 | if (!vma_has_reserves(vma) && | ||
424 | h->free_huge_pages - h->resv_huge_pages == 0) | ||
425 | return NULL; | ||
426 | |||
427 | /* If reserves cannot be used, ensure enough pages are in the pool */ | ||
428 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | ||
429 | return NULL; | ||
430 | |||
104 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 431 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
105 | MAX_NR_ZONES - 1, nodemask) { | 432 | MAX_NR_ZONES - 1, nodemask) { |
106 | nid = zone_to_nid(zone); | 433 | nid = zone_to_nid(zone); |
107 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | 434 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && |
108 | !list_empty(&hugepage_freelists[nid])) { | 435 | !list_empty(&h->hugepage_freelists[nid])) { |
109 | page = list_entry(hugepage_freelists[nid].next, | 436 | page = list_entry(h->hugepage_freelists[nid].next, |
110 | struct page, lru); | 437 | struct page, lru); |
111 | list_del(&page->lru); | 438 | list_del(&page->lru); |
112 | free_huge_pages--; | 439 | h->free_huge_pages--; |
113 | free_huge_pages_node[nid]--; | 440 | h->free_huge_pages_node[nid]--; |
114 | if (vma && vma->vm_flags & VM_MAYSHARE) | 441 | |
115 | resv_huge_pages--; | 442 | if (!avoid_reserve) |
443 | decrement_hugepage_resv_vma(h, vma); | ||
444 | |||
116 | break; | 445 | break; |
117 | } | 446 | } |
118 | } | 447 | } |
@@ -120,12 +449,13 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
120 | return page; | 449 | return page; |
121 | } | 450 | } |
122 | 451 | ||
123 | static void update_and_free_page(struct page *page) | 452 | static void update_and_free_page(struct hstate *h, struct page *page) |
124 | { | 453 | { |
125 | int i; | 454 | int i; |
126 | nr_huge_pages--; | 455 | |
127 | nr_huge_pages_node[page_to_nid(page)]--; | 456 | h->nr_huge_pages--; |
128 | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | 457 | h->nr_huge_pages_node[page_to_nid(page)]--; |
458 | for (i = 0; i < pages_per_huge_page(h); i++) { | ||
129 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 459 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | |
130 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 460 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | |
131 | 1 << PG_private | 1<< PG_writeback); | 461 | 1 << PG_private | 1<< PG_writeback); |
@@ -133,11 +463,27 @@ static void update_and_free_page(struct page *page) | |||
133 | set_compound_page_dtor(page, NULL); | 463 | set_compound_page_dtor(page, NULL); |
134 | set_page_refcounted(page); | 464 | set_page_refcounted(page); |
135 | arch_release_hugepage(page); | 465 | arch_release_hugepage(page); |
136 | __free_pages(page, HUGETLB_PAGE_ORDER); | 466 | __free_pages(page, huge_page_order(h)); |
467 | } | ||
468 | |||
469 | struct hstate *size_to_hstate(unsigned long size) | ||
470 | { | ||
471 | struct hstate *h; | ||
472 | |||
473 | for_each_hstate(h) { | ||
474 | if (huge_page_size(h) == size) | ||
475 | return h; | ||
476 | } | ||
477 | return NULL; | ||
137 | } | 478 | } |
138 | 479 | ||
139 | static void free_huge_page(struct page *page) | 480 | static void free_huge_page(struct page *page) |
140 | { | 481 | { |
482 | /* | ||
483 | * Can't pass hstate in here because it is called from the | ||
484 | * compound page destructor. | ||
485 | */ | ||
486 | struct hstate *h = page_hstate(page); | ||
141 | int nid = page_to_nid(page); | 487 | int nid = page_to_nid(page); |
142 | struct address_space *mapping; | 488 | struct address_space *mapping; |
143 | 489 | ||
@@ -147,12 +493,12 @@ static void free_huge_page(struct page *page) | |||
147 | INIT_LIST_HEAD(&page->lru); | 493 | INIT_LIST_HEAD(&page->lru); |
148 | 494 | ||
149 | spin_lock(&hugetlb_lock); | 495 | spin_lock(&hugetlb_lock); |
150 | if (surplus_huge_pages_node[nid]) { | 496 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
151 | update_and_free_page(page); | 497 | update_and_free_page(h, page); |
152 | surplus_huge_pages--; | 498 | h->surplus_huge_pages--; |
153 | surplus_huge_pages_node[nid]--; | 499 | h->surplus_huge_pages_node[nid]--; |
154 | } else { | 500 | } else { |
155 | enqueue_huge_page(page); | 501 | enqueue_huge_page(h, page); |
156 | } | 502 | } |
157 | spin_unlock(&hugetlb_lock); | 503 | spin_unlock(&hugetlb_lock); |
158 | if (mapping) | 504 | if (mapping) |
@@ -164,7 +510,7 @@ static void free_huge_page(struct page *page) | |||
164 | * balanced by operating on them in a round-robin fashion. | 510 | * balanced by operating on them in a round-robin fashion. |
165 | * Returns 1 if an adjustment was made. | 511 | * Returns 1 if an adjustment was made. |
166 | */ | 512 | */ |
167 | static int adjust_pool_surplus(int delta) | 513 | static int adjust_pool_surplus(struct hstate *h, int delta) |
168 | { | 514 | { |
169 | static int prev_nid; | 515 | static int prev_nid; |
170 | int nid = prev_nid; | 516 | int nid = prev_nid; |
@@ -177,15 +523,15 @@ static int adjust_pool_surplus(int delta) | |||
177 | nid = first_node(node_online_map); | 523 | nid = first_node(node_online_map); |
178 | 524 | ||
179 | /* To shrink on this node, there must be a surplus page */ | 525 | /* To shrink on this node, there must be a surplus page */ |
180 | if (delta < 0 && !surplus_huge_pages_node[nid]) | 526 | if (delta < 0 && !h->surplus_huge_pages_node[nid]) |
181 | continue; | 527 | continue; |
182 | /* Surplus cannot exceed the total number of pages */ | 528 | /* Surplus cannot exceed the total number of pages */ |
183 | if (delta > 0 && surplus_huge_pages_node[nid] >= | 529 | if (delta > 0 && h->surplus_huge_pages_node[nid] >= |
184 | nr_huge_pages_node[nid]) | 530 | h->nr_huge_pages_node[nid]) |
185 | continue; | 531 | continue; |
186 | 532 | ||
187 | surplus_huge_pages += delta; | 533 | h->surplus_huge_pages += delta; |
188 | surplus_huge_pages_node[nid] += delta; | 534 | h->surplus_huge_pages_node[nid] += delta; |
189 | ret = 1; | 535 | ret = 1; |
190 | break; | 536 | break; |
191 | } while (nid != prev_nid); | 537 | } while (nid != prev_nid); |
@@ -194,59 +540,74 @@ static int adjust_pool_surplus(int delta) | |||
194 | return ret; | 540 | return ret; |
195 | } | 541 | } |
196 | 542 | ||
197 | static struct page *alloc_fresh_huge_page_node(int nid) | 543 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
544 | { | ||
545 | set_compound_page_dtor(page, free_huge_page); | ||
546 | spin_lock(&hugetlb_lock); | ||
547 | h->nr_huge_pages++; | ||
548 | h->nr_huge_pages_node[nid]++; | ||
549 | spin_unlock(&hugetlb_lock); | ||
550 | put_page(page); /* free it into the hugepage allocator */ | ||
551 | } | ||
552 | |||
553 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | ||
198 | { | 554 | { |
199 | struct page *page; | 555 | struct page *page; |
200 | 556 | ||
557 | if (h->order >= MAX_ORDER) | ||
558 | return NULL; | ||
559 | |||
201 | page = alloc_pages_node(nid, | 560 | page = alloc_pages_node(nid, |
202 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 561 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
203 | __GFP_REPEAT|__GFP_NOWARN, | 562 | __GFP_REPEAT|__GFP_NOWARN, |
204 | HUGETLB_PAGE_ORDER); | 563 | huge_page_order(h)); |
205 | if (page) { | 564 | if (page) { |
206 | if (arch_prepare_hugepage(page)) { | 565 | if (arch_prepare_hugepage(page)) { |
207 | __free_pages(page, HUGETLB_PAGE_ORDER); | 566 | __free_pages(page, HUGETLB_PAGE_ORDER); |
208 | return NULL; | 567 | return NULL; |
209 | } | 568 | } |
210 | set_compound_page_dtor(page, free_huge_page); | 569 | prep_new_huge_page(h, page, nid); |
211 | spin_lock(&hugetlb_lock); | ||
212 | nr_huge_pages++; | ||
213 | nr_huge_pages_node[nid]++; | ||
214 | spin_unlock(&hugetlb_lock); | ||
215 | put_page(page); /* free it into the hugepage allocator */ | ||
216 | } | 570 | } |
217 | 571 | ||
218 | return page; | 572 | return page; |
219 | } | 573 | } |
220 | 574 | ||
221 | static int alloc_fresh_huge_page(void) | 575 | /* |
576 | * Use a helper variable to find the next node and then | ||
577 | * copy it back to hugetlb_next_nid afterwards: | ||
578 | * otherwise there's a window in which a racer might | ||
579 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
580 | * But we don't need to use a spin_lock here: it really | ||
581 | * doesn't matter if occasionally a racer chooses the | ||
582 | * same nid as we do. Move nid forward in the mask even | ||
583 | * if we just successfully allocated a hugepage so that | ||
584 | * the next caller gets hugepages on the next node. | ||
585 | */ | ||
586 | static int hstate_next_node(struct hstate *h) | ||
587 | { | ||
588 | int next_nid; | ||
589 | next_nid = next_node(h->hugetlb_next_nid, node_online_map); | ||
590 | if (next_nid == MAX_NUMNODES) | ||
591 | next_nid = first_node(node_online_map); | ||
592 | h->hugetlb_next_nid = next_nid; | ||
593 | return next_nid; | ||
594 | } | ||
595 | |||
596 | static int alloc_fresh_huge_page(struct hstate *h) | ||
222 | { | 597 | { |
223 | struct page *page; | 598 | struct page *page; |
224 | int start_nid; | 599 | int start_nid; |
225 | int next_nid; | 600 | int next_nid; |
226 | int ret = 0; | 601 | int ret = 0; |
227 | 602 | ||
228 | start_nid = hugetlb_next_nid; | 603 | start_nid = h->hugetlb_next_nid; |
229 | 604 | ||
230 | do { | 605 | do { |
231 | page = alloc_fresh_huge_page_node(hugetlb_next_nid); | 606 | page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); |
232 | if (page) | 607 | if (page) |
233 | ret = 1; | 608 | ret = 1; |
234 | /* | 609 | next_nid = hstate_next_node(h); |
235 | * Use a helper variable to find the next node and then | 610 | } while (!page && h->hugetlb_next_nid != start_nid); |
236 | * copy it back to hugetlb_next_nid afterwards: | ||
237 | * otherwise there's a window in which a racer might | ||
238 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
239 | * But we don't need to use a spin_lock here: it really | ||
240 | * doesn't matter if occasionally a racer chooses the | ||
241 | * same nid as we do. Move nid forward in the mask even | ||
242 | * if we just successfully allocated a hugepage so that | ||
243 | * the next caller gets hugepages on the next node. | ||
244 | */ | ||
245 | next_nid = next_node(hugetlb_next_nid, node_online_map); | ||
246 | if (next_nid == MAX_NUMNODES) | ||
247 | next_nid = first_node(node_online_map); | ||
248 | hugetlb_next_nid = next_nid; | ||
249 | } while (!page && hugetlb_next_nid != start_nid); | ||
250 | 611 | ||
251 | if (ret) | 612 | if (ret) |
252 | count_vm_event(HTLB_BUDDY_PGALLOC); | 613 | count_vm_event(HTLB_BUDDY_PGALLOC); |
@@ -256,12 +617,15 @@ static int alloc_fresh_huge_page(void) | |||
256 | return ret; | 617 | return ret; |
257 | } | 618 | } |
258 | 619 | ||
259 | static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | 620 | static struct page *alloc_buddy_huge_page(struct hstate *h, |
260 | unsigned long address) | 621 | struct vm_area_struct *vma, unsigned long address) |
261 | { | 622 | { |
262 | struct page *page; | 623 | struct page *page; |
263 | unsigned int nid; | 624 | unsigned int nid; |
264 | 625 | ||
626 | if (h->order >= MAX_ORDER) | ||
627 | return NULL; | ||
628 | |||
265 | /* | 629 | /* |
266 | * Assume we will successfully allocate the surplus page to | 630 | * Assume we will successfully allocate the surplus page to |
267 | * prevent racing processes from causing the surplus to exceed | 631 | * prevent racing processes from causing the surplus to exceed |
@@ -286,18 +650,18 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
286 | * per-node value is checked there. | 650 | * per-node value is checked there. |
287 | */ | 651 | */ |
288 | spin_lock(&hugetlb_lock); | 652 | spin_lock(&hugetlb_lock); |
289 | if (surplus_huge_pages >= nr_overcommit_huge_pages) { | 653 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
290 | spin_unlock(&hugetlb_lock); | 654 | spin_unlock(&hugetlb_lock); |
291 | return NULL; | 655 | return NULL; |
292 | } else { | 656 | } else { |
293 | nr_huge_pages++; | 657 | h->nr_huge_pages++; |
294 | surplus_huge_pages++; | 658 | h->surplus_huge_pages++; |
295 | } | 659 | } |
296 | spin_unlock(&hugetlb_lock); | 660 | spin_unlock(&hugetlb_lock); |
297 | 661 | ||
298 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 662 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| |
299 | __GFP_REPEAT|__GFP_NOWARN, | 663 | __GFP_REPEAT|__GFP_NOWARN, |
300 | HUGETLB_PAGE_ORDER); | 664 | huge_page_order(h)); |
301 | 665 | ||
302 | spin_lock(&hugetlb_lock); | 666 | spin_lock(&hugetlb_lock); |
303 | if (page) { | 667 | if (page) { |
@@ -312,12 +676,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
312 | /* | 676 | /* |
313 | * We incremented the global counters already | 677 | * We incremented the global counters already |
314 | */ | 678 | */ |
315 | nr_huge_pages_node[nid]++; | 679 | h->nr_huge_pages_node[nid]++; |
316 | surplus_huge_pages_node[nid]++; | 680 | h->surplus_huge_pages_node[nid]++; |
317 | __count_vm_event(HTLB_BUDDY_PGALLOC); | 681 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
318 | } else { | 682 | } else { |
319 | nr_huge_pages--; | 683 | h->nr_huge_pages--; |
320 | surplus_huge_pages--; | 684 | h->surplus_huge_pages--; |
321 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 685 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
322 | } | 686 | } |
323 | spin_unlock(&hugetlb_lock); | 687 | spin_unlock(&hugetlb_lock); |
@@ -329,16 +693,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
329 | * Increase the hugetlb pool such that it can accomodate a reservation | 693 | * Increase the hugetlb pool such that it can accomodate a reservation |
330 | * of size 'delta'. | 694 | * of size 'delta'. |
331 | */ | 695 | */ |
332 | static int gather_surplus_pages(int delta) | 696 | static int gather_surplus_pages(struct hstate *h, int delta) |
333 | { | 697 | { |
334 | struct list_head surplus_list; | 698 | struct list_head surplus_list; |
335 | struct page *page, *tmp; | 699 | struct page *page, *tmp; |
336 | int ret, i; | 700 | int ret, i; |
337 | int needed, allocated; | 701 | int needed, allocated; |
338 | 702 | ||
339 | needed = (resv_huge_pages + delta) - free_huge_pages; | 703 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
340 | if (needed <= 0) { | 704 | if (needed <= 0) { |
341 | resv_huge_pages += delta; | 705 | h->resv_huge_pages += delta; |
342 | return 0; | 706 | return 0; |
343 | } | 707 | } |
344 | 708 | ||
@@ -349,7 +713,7 @@ static int gather_surplus_pages(int delta) | |||
349 | retry: | 713 | retry: |
350 | spin_unlock(&hugetlb_lock); | 714 | spin_unlock(&hugetlb_lock); |
351 | for (i = 0; i < needed; i++) { | 715 | for (i = 0; i < needed; i++) { |
352 | page = alloc_buddy_huge_page(NULL, 0); | 716 | page = alloc_buddy_huge_page(h, NULL, 0); |
353 | if (!page) { | 717 | if (!page) { |
354 | /* | 718 | /* |
355 | * We were not able to allocate enough pages to | 719 | * We were not able to allocate enough pages to |
@@ -370,7 +734,8 @@ retry: | |||
370 | * because either resv_huge_pages or free_huge_pages may have changed. | 734 | * because either resv_huge_pages or free_huge_pages may have changed. |
371 | */ | 735 | */ |
372 | spin_lock(&hugetlb_lock); | 736 | spin_lock(&hugetlb_lock); |
373 | needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); | 737 | needed = (h->resv_huge_pages + delta) - |
738 | (h->free_huge_pages + allocated); | ||
374 | if (needed > 0) | 739 | if (needed > 0) |
375 | goto retry; | 740 | goto retry; |
376 | 741 | ||
@@ -383,7 +748,7 @@ retry: | |||
383 | * before they are reserved. | 748 | * before they are reserved. |
384 | */ | 749 | */ |
385 | needed += allocated; | 750 | needed += allocated; |
386 | resv_huge_pages += delta; | 751 | h->resv_huge_pages += delta; |
387 | ret = 0; | 752 | ret = 0; |
388 | free: | 753 | free: |
389 | /* Free the needed pages to the hugetlb pool */ | 754 | /* Free the needed pages to the hugetlb pool */ |
@@ -391,7 +756,7 @@ free: | |||
391 | if ((--needed) < 0) | 756 | if ((--needed) < 0) |
392 | break; | 757 | break; |
393 | list_del(&page->lru); | 758 | list_del(&page->lru); |
394 | enqueue_huge_page(page); | 759 | enqueue_huge_page(h, page); |
395 | } | 760 | } |
396 | 761 | ||
397 | /* Free unnecessary surplus pages to the buddy allocator */ | 762 | /* Free unnecessary surplus pages to the buddy allocator */ |
@@ -419,7 +784,8 @@ free: | |||
419 | * allocated to satisfy the reservation must be explicitly freed if they were | 784 | * allocated to satisfy the reservation must be explicitly freed if they were |
420 | * never used. | 785 | * never used. |
421 | */ | 786 | */ |
422 | static void return_unused_surplus_pages(unsigned long unused_resv_pages) | 787 | static void return_unused_surplus_pages(struct hstate *h, |
788 | unsigned long unused_resv_pages) | ||
423 | { | 789 | { |
424 | static int nid = -1; | 790 | static int nid = -1; |
425 | struct page *page; | 791 | struct page *page; |
@@ -434,157 +800,269 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages) | |||
434 | unsigned long remaining_iterations = num_online_nodes(); | 800 | unsigned long remaining_iterations = num_online_nodes(); |
435 | 801 | ||
436 | /* Uncommit the reservation */ | 802 | /* Uncommit the reservation */ |
437 | resv_huge_pages -= unused_resv_pages; | 803 | h->resv_huge_pages -= unused_resv_pages; |
804 | |||
805 | /* Cannot return gigantic pages currently */ | ||
806 | if (h->order >= MAX_ORDER) | ||
807 | return; | ||
438 | 808 | ||
439 | nr_pages = min(unused_resv_pages, surplus_huge_pages); | 809 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
440 | 810 | ||
441 | while (remaining_iterations-- && nr_pages) { | 811 | while (remaining_iterations-- && nr_pages) { |
442 | nid = next_node(nid, node_online_map); | 812 | nid = next_node(nid, node_online_map); |
443 | if (nid == MAX_NUMNODES) | 813 | if (nid == MAX_NUMNODES) |
444 | nid = first_node(node_online_map); | 814 | nid = first_node(node_online_map); |
445 | 815 | ||
446 | if (!surplus_huge_pages_node[nid]) | 816 | if (!h->surplus_huge_pages_node[nid]) |
447 | continue; | 817 | continue; |
448 | 818 | ||
449 | if (!list_empty(&hugepage_freelists[nid])) { | 819 | if (!list_empty(&h->hugepage_freelists[nid])) { |
450 | page = list_entry(hugepage_freelists[nid].next, | 820 | page = list_entry(h->hugepage_freelists[nid].next, |
451 | struct page, lru); | 821 | struct page, lru); |
452 | list_del(&page->lru); | 822 | list_del(&page->lru); |
453 | update_and_free_page(page); | 823 | update_and_free_page(h, page); |
454 | free_huge_pages--; | 824 | h->free_huge_pages--; |
455 | free_huge_pages_node[nid]--; | 825 | h->free_huge_pages_node[nid]--; |
456 | surplus_huge_pages--; | 826 | h->surplus_huge_pages--; |
457 | surplus_huge_pages_node[nid]--; | 827 | h->surplus_huge_pages_node[nid]--; |
458 | nr_pages--; | 828 | nr_pages--; |
459 | remaining_iterations = num_online_nodes(); | 829 | remaining_iterations = num_online_nodes(); |
460 | } | 830 | } |
461 | } | 831 | } |
462 | } | 832 | } |
463 | 833 | ||
834 | /* | ||
835 | * Determine if the huge page at addr within the vma has an associated | ||
836 | * reservation. Where it does not we will need to logically increase | ||
837 | * reservation and actually increase quota before an allocation can occur. | ||
838 | * Where any new reservation would be required the reservation change is | ||
839 | * prepared, but not committed. Once the page has been quota'd allocated | ||
840 | * an instantiated the change should be committed via vma_commit_reservation. | ||
841 | * No action is required on failure. | ||
842 | */ | ||
843 | static int vma_needs_reservation(struct hstate *h, | ||
844 | struct vm_area_struct *vma, unsigned long addr) | ||
845 | { | ||
846 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
847 | struct inode *inode = mapping->host; | ||
848 | |||
849 | if (vma->vm_flags & VM_SHARED) { | ||
850 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
851 | return region_chg(&inode->i_mapping->private_list, | ||
852 | idx, idx + 1); | ||
464 | 853 | ||
465 | static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, | 854 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
466 | unsigned long addr) | 855 | return 1; |
856 | |||
857 | } else { | ||
858 | int err; | ||
859 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
860 | struct resv_map *reservations = vma_resv_map(vma); | ||
861 | |||
862 | err = region_chg(&reservations->regions, idx, idx + 1); | ||
863 | if (err < 0) | ||
864 | return err; | ||
865 | return 0; | ||
866 | } | ||
867 | } | ||
868 | static void vma_commit_reservation(struct hstate *h, | ||
869 | struct vm_area_struct *vma, unsigned long addr) | ||
467 | { | 870 | { |
468 | struct page *page; | 871 | struct address_space *mapping = vma->vm_file->f_mapping; |
872 | struct inode *inode = mapping->host; | ||
469 | 873 | ||
470 | spin_lock(&hugetlb_lock); | 874 | if (vma->vm_flags & VM_SHARED) { |
471 | page = dequeue_huge_page_vma(vma, addr); | 875 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
472 | spin_unlock(&hugetlb_lock); | 876 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
473 | return page ? page : ERR_PTR(-VM_FAULT_OOM); | 877 | |
878 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
879 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
880 | struct resv_map *reservations = vma_resv_map(vma); | ||
881 | |||
882 | /* Mark this page used in the map. */ | ||
883 | region_add(&reservations->regions, idx, idx + 1); | ||
884 | } | ||
474 | } | 885 | } |
475 | 886 | ||
476 | static struct page *alloc_huge_page_private(struct vm_area_struct *vma, | 887 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
477 | unsigned long addr) | 888 | unsigned long addr, int avoid_reserve) |
478 | { | 889 | { |
479 | struct page *page = NULL; | 890 | struct hstate *h = hstate_vma(vma); |
891 | struct page *page; | ||
892 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
893 | struct inode *inode = mapping->host; | ||
894 | unsigned int chg; | ||
480 | 895 | ||
481 | if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) | 896 | /* |
482 | return ERR_PTR(-VM_FAULT_SIGBUS); | 897 | * Processes that did not create the mapping will have no reserves and |
898 | * will not have accounted against quota. Check that the quota can be | ||
899 | * made before satisfying the allocation | ||
900 | * MAP_NORESERVE mappings may also need pages and quota allocated | ||
901 | * if no reserve mapping overlaps. | ||
902 | */ | ||
903 | chg = vma_needs_reservation(h, vma, addr); | ||
904 | if (chg < 0) | ||
905 | return ERR_PTR(chg); | ||
906 | if (chg) | ||
907 | if (hugetlb_get_quota(inode->i_mapping, chg)) | ||
908 | return ERR_PTR(-ENOSPC); | ||
483 | 909 | ||
484 | spin_lock(&hugetlb_lock); | 910 | spin_lock(&hugetlb_lock); |
485 | if (free_huge_pages > resv_huge_pages) | 911 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
486 | page = dequeue_huge_page_vma(vma, addr); | ||
487 | spin_unlock(&hugetlb_lock); | 912 | spin_unlock(&hugetlb_lock); |
913 | |||
488 | if (!page) { | 914 | if (!page) { |
489 | page = alloc_buddy_huge_page(vma, addr); | 915 | page = alloc_buddy_huge_page(h, vma, addr); |
490 | if (!page) { | 916 | if (!page) { |
491 | hugetlb_put_quota(vma->vm_file->f_mapping, 1); | 917 | hugetlb_put_quota(inode->i_mapping, chg); |
492 | return ERR_PTR(-VM_FAULT_OOM); | 918 | return ERR_PTR(-VM_FAULT_OOM); |
493 | } | 919 | } |
494 | } | 920 | } |
921 | |||
922 | set_page_refcounted(page); | ||
923 | set_page_private(page, (unsigned long) mapping); | ||
924 | |||
925 | vma_commit_reservation(h, vma, addr); | ||
926 | |||
495 | return page; | 927 | return page; |
496 | } | 928 | } |
497 | 929 | ||
498 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 930 | __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) |
499 | unsigned long addr) | ||
500 | { | 931 | { |
501 | struct page *page; | 932 | struct huge_bootmem_page *m; |
502 | struct address_space *mapping = vma->vm_file->f_mapping; | 933 | int nr_nodes = nodes_weight(node_online_map); |
503 | 934 | ||
504 | if (vma->vm_flags & VM_MAYSHARE) | 935 | while (nr_nodes) { |
505 | page = alloc_huge_page_shared(vma, addr); | 936 | void *addr; |
506 | else | 937 | |
507 | page = alloc_huge_page_private(vma, addr); | 938 | addr = __alloc_bootmem_node_nopanic( |
939 | NODE_DATA(h->hugetlb_next_nid), | ||
940 | huge_page_size(h), huge_page_size(h), 0); | ||
508 | 941 | ||
509 | if (!IS_ERR(page)) { | 942 | if (addr) { |
510 | set_page_refcounted(page); | 943 | /* |
511 | set_page_private(page, (unsigned long) mapping); | 944 | * Use the beginning of the huge page to store the |
945 | * huge_bootmem_page struct (until gather_bootmem | ||
946 | * puts them into the mem_map). | ||
947 | */ | ||
948 | m = addr; | ||
949 | if (m) | ||
950 | goto found; | ||
951 | } | ||
952 | hstate_next_node(h); | ||
953 | nr_nodes--; | ||
512 | } | 954 | } |
513 | return page; | 955 | return 0; |
956 | |||
957 | found: | ||
958 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | ||
959 | /* Put them into a private list first because mem_map is not up yet */ | ||
960 | list_add(&m->list, &huge_boot_pages); | ||
961 | m->hstate = h; | ||
962 | return 1; | ||
514 | } | 963 | } |
515 | 964 | ||
516 | static int __init hugetlb_init(void) | 965 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
966 | static void __init gather_bootmem_prealloc(void) | ||
517 | { | 967 | { |
518 | unsigned long i; | 968 | struct huge_bootmem_page *m; |
519 | 969 | ||
520 | if (HPAGE_SHIFT == 0) | 970 | list_for_each_entry(m, &huge_boot_pages, list) { |
521 | return 0; | 971 | struct page *page = virt_to_page(m); |
522 | 972 | struct hstate *h = m->hstate; | |
523 | for (i = 0; i < MAX_NUMNODES; ++i) | 973 | __ClearPageReserved(page); |
524 | INIT_LIST_HEAD(&hugepage_freelists[i]); | 974 | WARN_ON(page_count(page) != 1); |
975 | prep_compound_page(page, h->order); | ||
976 | prep_new_huge_page(h, page, page_to_nid(page)); | ||
977 | } | ||
978 | } | ||
525 | 979 | ||
526 | hugetlb_next_nid = first_node(node_online_map); | 980 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
981 | { | ||
982 | unsigned long i; | ||
527 | 983 | ||
528 | for (i = 0; i < max_huge_pages; ++i) { | 984 | for (i = 0; i < h->max_huge_pages; ++i) { |
529 | if (!alloc_fresh_huge_page()) | 985 | if (h->order >= MAX_ORDER) { |
986 | if (!alloc_bootmem_huge_page(h)) | ||
987 | break; | ||
988 | } else if (!alloc_fresh_huge_page(h)) | ||
530 | break; | 989 | break; |
531 | } | 990 | } |
532 | max_huge_pages = free_huge_pages = nr_huge_pages = i; | 991 | h->max_huge_pages = i; |
533 | printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | ||
534 | return 0; | ||
535 | } | 992 | } |
536 | module_init(hugetlb_init); | ||
537 | 993 | ||
538 | static int __init hugetlb_setup(char *s) | 994 | static void __init hugetlb_init_hstates(void) |
539 | { | 995 | { |
540 | if (sscanf(s, "%lu", &max_huge_pages) <= 0) | 996 | struct hstate *h; |
541 | max_huge_pages = 0; | 997 | |
542 | return 1; | 998 | for_each_hstate(h) { |
999 | /* oversize hugepages were init'ed in early boot */ | ||
1000 | if (h->order < MAX_ORDER) | ||
1001 | hugetlb_hstate_alloc_pages(h); | ||
1002 | } | ||
543 | } | 1003 | } |
544 | __setup("hugepages=", hugetlb_setup); | ||
545 | 1004 | ||
546 | static unsigned int cpuset_mems_nr(unsigned int *array) | 1005 | static char * __init memfmt(char *buf, unsigned long n) |
547 | { | 1006 | { |
548 | int node; | 1007 | if (n >= (1UL << 30)) |
549 | unsigned int nr = 0; | 1008 | sprintf(buf, "%lu GB", n >> 30); |
550 | 1009 | else if (n >= (1UL << 20)) | |
551 | for_each_node_mask(node, cpuset_current_mems_allowed) | 1010 | sprintf(buf, "%lu MB", n >> 20); |
552 | nr += array[node]; | 1011 | else |
1012 | sprintf(buf, "%lu KB", n >> 10); | ||
1013 | return buf; | ||
1014 | } | ||
553 | 1015 | ||
554 | return nr; | 1016 | static void __init report_hugepages(void) |
1017 | { | ||
1018 | struct hstate *h; | ||
1019 | |||
1020 | for_each_hstate(h) { | ||
1021 | char buf[32]; | ||
1022 | printk(KERN_INFO "HugeTLB registered %s page size, " | ||
1023 | "pre-allocated %ld pages\n", | ||
1024 | memfmt(buf, huge_page_size(h)), | ||
1025 | h->free_huge_pages); | ||
1026 | } | ||
555 | } | 1027 | } |
556 | 1028 | ||
557 | #ifdef CONFIG_SYSCTL | ||
558 | #ifdef CONFIG_HIGHMEM | 1029 | #ifdef CONFIG_HIGHMEM |
559 | static void try_to_free_low(unsigned long count) | 1030 | static void try_to_free_low(struct hstate *h, unsigned long count) |
560 | { | 1031 | { |
561 | int i; | 1032 | int i; |
562 | 1033 | ||
1034 | if (h->order >= MAX_ORDER) | ||
1035 | return; | ||
1036 | |||
563 | for (i = 0; i < MAX_NUMNODES; ++i) { | 1037 | for (i = 0; i < MAX_NUMNODES; ++i) { |
564 | struct page *page, *next; | 1038 | struct page *page, *next; |
565 | list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | 1039 | struct list_head *freel = &h->hugepage_freelists[i]; |
566 | if (count >= nr_huge_pages) | 1040 | list_for_each_entry_safe(page, next, freel, lru) { |
1041 | if (count >= h->nr_huge_pages) | ||
567 | return; | 1042 | return; |
568 | if (PageHighMem(page)) | 1043 | if (PageHighMem(page)) |
569 | continue; | 1044 | continue; |
570 | list_del(&page->lru); | 1045 | list_del(&page->lru); |
571 | update_and_free_page(page); | 1046 | update_and_free_page(h, page); |
572 | free_huge_pages--; | 1047 | h->free_huge_pages--; |
573 | free_huge_pages_node[page_to_nid(page)]--; | 1048 | h->free_huge_pages_node[page_to_nid(page)]--; |
574 | } | 1049 | } |
575 | } | 1050 | } |
576 | } | 1051 | } |
577 | #else | 1052 | #else |
578 | static inline void try_to_free_low(unsigned long count) | 1053 | static inline void try_to_free_low(struct hstate *h, unsigned long count) |
579 | { | 1054 | { |
580 | } | 1055 | } |
581 | #endif | 1056 | #endif |
582 | 1057 | ||
583 | #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) | 1058 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
584 | static unsigned long set_max_huge_pages(unsigned long count) | 1059 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) |
585 | { | 1060 | { |
586 | unsigned long min_count, ret; | 1061 | unsigned long min_count, ret; |
587 | 1062 | ||
1063 | if (h->order >= MAX_ORDER) | ||
1064 | return h->max_huge_pages; | ||
1065 | |||
588 | /* | 1066 | /* |
589 | * Increase the pool size | 1067 | * Increase the pool size |
590 | * First take pages out of surplus state. Then make up the | 1068 | * First take pages out of surplus state. Then make up the |
@@ -597,20 +1075,19 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
597 | * within all the constraints specified by the sysctls. | 1075 | * within all the constraints specified by the sysctls. |
598 | */ | 1076 | */ |
599 | spin_lock(&hugetlb_lock); | 1077 | spin_lock(&hugetlb_lock); |
600 | while (surplus_huge_pages && count > persistent_huge_pages) { | 1078 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
601 | if (!adjust_pool_surplus(-1)) | 1079 | if (!adjust_pool_surplus(h, -1)) |
602 | break; | 1080 | break; |
603 | } | 1081 | } |
604 | 1082 | ||
605 | while (count > persistent_huge_pages) { | 1083 | while (count > persistent_huge_pages(h)) { |
606 | int ret; | ||
607 | /* | 1084 | /* |
608 | * If this allocation races such that we no longer need the | 1085 | * If this allocation races such that we no longer need the |
609 | * page, free_huge_page will handle it by freeing the page | 1086 | * page, free_huge_page will handle it by freeing the page |
610 | * and reducing the surplus. | 1087 | * and reducing the surplus. |
611 | */ | 1088 | */ |
612 | spin_unlock(&hugetlb_lock); | 1089 | spin_unlock(&hugetlb_lock); |
613 | ret = alloc_fresh_huge_page(); | 1090 | ret = alloc_fresh_huge_page(h); |
614 | spin_lock(&hugetlb_lock); | 1091 | spin_lock(&hugetlb_lock); |
615 | if (!ret) | 1092 | if (!ret) |
616 | goto out; | 1093 | goto out; |
@@ -632,31 +1109,300 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
632 | * and won't grow the pool anywhere else. Not until one of the | 1109 | * and won't grow the pool anywhere else. Not until one of the |
633 | * sysctls are changed, or the surplus pages go out of use. | 1110 | * sysctls are changed, or the surplus pages go out of use. |
634 | */ | 1111 | */ |
635 | min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; | 1112 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
636 | min_count = max(count, min_count); | 1113 | min_count = max(count, min_count); |
637 | try_to_free_low(min_count); | 1114 | try_to_free_low(h, min_count); |
638 | while (min_count < persistent_huge_pages) { | 1115 | while (min_count < persistent_huge_pages(h)) { |
639 | struct page *page = dequeue_huge_page(); | 1116 | struct page *page = dequeue_huge_page(h); |
640 | if (!page) | 1117 | if (!page) |
641 | break; | 1118 | break; |
642 | update_and_free_page(page); | 1119 | update_and_free_page(h, page); |
643 | } | 1120 | } |
644 | while (count < persistent_huge_pages) { | 1121 | while (count < persistent_huge_pages(h)) { |
645 | if (!adjust_pool_surplus(1)) | 1122 | if (!adjust_pool_surplus(h, 1)) |
646 | break; | 1123 | break; |
647 | } | 1124 | } |
648 | out: | 1125 | out: |
649 | ret = persistent_huge_pages; | 1126 | ret = persistent_huge_pages(h); |
650 | spin_unlock(&hugetlb_lock); | 1127 | spin_unlock(&hugetlb_lock); |
651 | return ret; | 1128 | return ret; |
652 | } | 1129 | } |
653 | 1130 | ||
1131 | #define HSTATE_ATTR_RO(_name) \ | ||
1132 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | ||
1133 | |||
1134 | #define HSTATE_ATTR(_name) \ | ||
1135 | static struct kobj_attribute _name##_attr = \ | ||
1136 | __ATTR(_name, 0644, _name##_show, _name##_store) | ||
1137 | |||
1138 | static struct kobject *hugepages_kobj; | ||
1139 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | ||
1140 | |||
1141 | static struct hstate *kobj_to_hstate(struct kobject *kobj) | ||
1142 | { | ||
1143 | int i; | ||
1144 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | ||
1145 | if (hstate_kobjs[i] == kobj) | ||
1146 | return &hstates[i]; | ||
1147 | BUG(); | ||
1148 | return NULL; | ||
1149 | } | ||
1150 | |||
1151 | static ssize_t nr_hugepages_show(struct kobject *kobj, | ||
1152 | struct kobj_attribute *attr, char *buf) | ||
1153 | { | ||
1154 | struct hstate *h = kobj_to_hstate(kobj); | ||
1155 | return sprintf(buf, "%lu\n", h->nr_huge_pages); | ||
1156 | } | ||
1157 | static ssize_t nr_hugepages_store(struct kobject *kobj, | ||
1158 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1159 | { | ||
1160 | int err; | ||
1161 | unsigned long input; | ||
1162 | struct hstate *h = kobj_to_hstate(kobj); | ||
1163 | |||
1164 | err = strict_strtoul(buf, 10, &input); | ||
1165 | if (err) | ||
1166 | return 0; | ||
1167 | |||
1168 | h->max_huge_pages = set_max_huge_pages(h, input); | ||
1169 | |||
1170 | return count; | ||
1171 | } | ||
1172 | HSTATE_ATTR(nr_hugepages); | ||
1173 | |||
1174 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | ||
1175 | struct kobj_attribute *attr, char *buf) | ||
1176 | { | ||
1177 | struct hstate *h = kobj_to_hstate(kobj); | ||
1178 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | ||
1179 | } | ||
1180 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | ||
1181 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1182 | { | ||
1183 | int err; | ||
1184 | unsigned long input; | ||
1185 | struct hstate *h = kobj_to_hstate(kobj); | ||
1186 | |||
1187 | err = strict_strtoul(buf, 10, &input); | ||
1188 | if (err) | ||
1189 | return 0; | ||
1190 | |||
1191 | spin_lock(&hugetlb_lock); | ||
1192 | h->nr_overcommit_huge_pages = input; | ||
1193 | spin_unlock(&hugetlb_lock); | ||
1194 | |||
1195 | return count; | ||
1196 | } | ||
1197 | HSTATE_ATTR(nr_overcommit_hugepages); | ||
1198 | |||
1199 | static ssize_t free_hugepages_show(struct kobject *kobj, | ||
1200 | struct kobj_attribute *attr, char *buf) | ||
1201 | { | ||
1202 | struct hstate *h = kobj_to_hstate(kobj); | ||
1203 | return sprintf(buf, "%lu\n", h->free_huge_pages); | ||
1204 | } | ||
1205 | HSTATE_ATTR_RO(free_hugepages); | ||
1206 | |||
1207 | static ssize_t resv_hugepages_show(struct kobject *kobj, | ||
1208 | struct kobj_attribute *attr, char *buf) | ||
1209 | { | ||
1210 | struct hstate *h = kobj_to_hstate(kobj); | ||
1211 | return sprintf(buf, "%lu\n", h->resv_huge_pages); | ||
1212 | } | ||
1213 | HSTATE_ATTR_RO(resv_hugepages); | ||
1214 | |||
1215 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | ||
1216 | struct kobj_attribute *attr, char *buf) | ||
1217 | { | ||
1218 | struct hstate *h = kobj_to_hstate(kobj); | ||
1219 | return sprintf(buf, "%lu\n", h->surplus_huge_pages); | ||
1220 | } | ||
1221 | HSTATE_ATTR_RO(surplus_hugepages); | ||
1222 | |||
1223 | static struct attribute *hstate_attrs[] = { | ||
1224 | &nr_hugepages_attr.attr, | ||
1225 | &nr_overcommit_hugepages_attr.attr, | ||
1226 | &free_hugepages_attr.attr, | ||
1227 | &resv_hugepages_attr.attr, | ||
1228 | &surplus_hugepages_attr.attr, | ||
1229 | NULL, | ||
1230 | }; | ||
1231 | |||
1232 | static struct attribute_group hstate_attr_group = { | ||
1233 | .attrs = hstate_attrs, | ||
1234 | }; | ||
1235 | |||
1236 | static int __init hugetlb_sysfs_add_hstate(struct hstate *h) | ||
1237 | { | ||
1238 | int retval; | ||
1239 | |||
1240 | hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, | ||
1241 | hugepages_kobj); | ||
1242 | if (!hstate_kobjs[h - hstates]) | ||
1243 | return -ENOMEM; | ||
1244 | |||
1245 | retval = sysfs_create_group(hstate_kobjs[h - hstates], | ||
1246 | &hstate_attr_group); | ||
1247 | if (retval) | ||
1248 | kobject_put(hstate_kobjs[h - hstates]); | ||
1249 | |||
1250 | return retval; | ||
1251 | } | ||
1252 | |||
1253 | static void __init hugetlb_sysfs_init(void) | ||
1254 | { | ||
1255 | struct hstate *h; | ||
1256 | int err; | ||
1257 | |||
1258 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | ||
1259 | if (!hugepages_kobj) | ||
1260 | return; | ||
1261 | |||
1262 | for_each_hstate(h) { | ||
1263 | err = hugetlb_sysfs_add_hstate(h); | ||
1264 | if (err) | ||
1265 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | ||
1266 | h->name); | ||
1267 | } | ||
1268 | } | ||
1269 | |||
1270 | static void __exit hugetlb_exit(void) | ||
1271 | { | ||
1272 | struct hstate *h; | ||
1273 | |||
1274 | for_each_hstate(h) { | ||
1275 | kobject_put(hstate_kobjs[h - hstates]); | ||
1276 | } | ||
1277 | |||
1278 | kobject_put(hugepages_kobj); | ||
1279 | } | ||
1280 | module_exit(hugetlb_exit); | ||
1281 | |||
1282 | static int __init hugetlb_init(void) | ||
1283 | { | ||
1284 | BUILD_BUG_ON(HPAGE_SHIFT == 0); | ||
1285 | |||
1286 | if (!size_to_hstate(default_hstate_size)) { | ||
1287 | default_hstate_size = HPAGE_SIZE; | ||
1288 | if (!size_to_hstate(default_hstate_size)) | ||
1289 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | ||
1290 | } | ||
1291 | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; | ||
1292 | if (default_hstate_max_huge_pages) | ||
1293 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | ||
1294 | |||
1295 | hugetlb_init_hstates(); | ||
1296 | |||
1297 | gather_bootmem_prealloc(); | ||
1298 | |||
1299 | report_hugepages(); | ||
1300 | |||
1301 | hugetlb_sysfs_init(); | ||
1302 | |||
1303 | return 0; | ||
1304 | } | ||
1305 | module_init(hugetlb_init); | ||
1306 | |||
1307 | /* Should be called on processing a hugepagesz=... option */ | ||
1308 | void __init hugetlb_add_hstate(unsigned order) | ||
1309 | { | ||
1310 | struct hstate *h; | ||
1311 | unsigned long i; | ||
1312 | |||
1313 | if (size_to_hstate(PAGE_SIZE << order)) { | ||
1314 | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | ||
1315 | return; | ||
1316 | } | ||
1317 | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | ||
1318 | BUG_ON(order == 0); | ||
1319 | h = &hstates[max_hstate++]; | ||
1320 | h->order = order; | ||
1321 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | ||
1322 | h->nr_huge_pages = 0; | ||
1323 | h->free_huge_pages = 0; | ||
1324 | for (i = 0; i < MAX_NUMNODES; ++i) | ||
1325 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | ||
1326 | h->hugetlb_next_nid = first_node(node_online_map); | ||
1327 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | ||
1328 | huge_page_size(h)/1024); | ||
1329 | |||
1330 | parsed_hstate = h; | ||
1331 | } | ||
1332 | |||
1333 | static int __init hugetlb_nrpages_setup(char *s) | ||
1334 | { | ||
1335 | unsigned long *mhp; | ||
1336 | static unsigned long *last_mhp; | ||
1337 | |||
1338 | /* | ||
1339 | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | ||
1340 | * so this hugepages= parameter goes to the "default hstate". | ||
1341 | */ | ||
1342 | if (!max_hstate) | ||
1343 | mhp = &default_hstate_max_huge_pages; | ||
1344 | else | ||
1345 | mhp = &parsed_hstate->max_huge_pages; | ||
1346 | |||
1347 | if (mhp == last_mhp) { | ||
1348 | printk(KERN_WARNING "hugepages= specified twice without " | ||
1349 | "interleaving hugepagesz=, ignoring\n"); | ||
1350 | return 1; | ||
1351 | } | ||
1352 | |||
1353 | if (sscanf(s, "%lu", mhp) <= 0) | ||
1354 | *mhp = 0; | ||
1355 | |||
1356 | /* | ||
1357 | * Global state is always initialized later in hugetlb_init. | ||
1358 | * But we need to allocate >= MAX_ORDER hstates here early to still | ||
1359 | * use the bootmem allocator. | ||
1360 | */ | ||
1361 | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | ||
1362 | hugetlb_hstate_alloc_pages(parsed_hstate); | ||
1363 | |||
1364 | last_mhp = mhp; | ||
1365 | |||
1366 | return 1; | ||
1367 | } | ||
1368 | __setup("hugepages=", hugetlb_nrpages_setup); | ||
1369 | |||
1370 | static int __init hugetlb_default_setup(char *s) | ||
1371 | { | ||
1372 | default_hstate_size = memparse(s, &s); | ||
1373 | return 1; | ||
1374 | } | ||
1375 | __setup("default_hugepagesz=", hugetlb_default_setup); | ||
1376 | |||
1377 | static unsigned int cpuset_mems_nr(unsigned int *array) | ||
1378 | { | ||
1379 | int node; | ||
1380 | unsigned int nr = 0; | ||
1381 | |||
1382 | for_each_node_mask(node, cpuset_current_mems_allowed) | ||
1383 | nr += array[node]; | ||
1384 | |||
1385 | return nr; | ||
1386 | } | ||
1387 | |||
1388 | #ifdef CONFIG_SYSCTL | ||
654 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 1389 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
655 | struct file *file, void __user *buffer, | 1390 | struct file *file, void __user *buffer, |
656 | size_t *length, loff_t *ppos) | 1391 | size_t *length, loff_t *ppos) |
657 | { | 1392 | { |
1393 | struct hstate *h = &default_hstate; | ||
1394 | unsigned long tmp; | ||
1395 | |||
1396 | if (!write) | ||
1397 | tmp = h->max_huge_pages; | ||
1398 | |||
1399 | table->data = &tmp; | ||
1400 | table->maxlen = sizeof(unsigned long); | ||
658 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1401 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
659 | max_huge_pages = set_max_huge_pages(max_huge_pages); | 1402 | |
1403 | if (write) | ||
1404 | h->max_huge_pages = set_max_huge_pages(h, tmp); | ||
1405 | |||
660 | return 0; | 1406 | return 0; |
661 | } | 1407 | } |
662 | 1408 | ||
@@ -676,10 +1422,22 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
676 | struct file *file, void __user *buffer, | 1422 | struct file *file, void __user *buffer, |
677 | size_t *length, loff_t *ppos) | 1423 | size_t *length, loff_t *ppos) |
678 | { | 1424 | { |
1425 | struct hstate *h = &default_hstate; | ||
1426 | unsigned long tmp; | ||
1427 | |||
1428 | if (!write) | ||
1429 | tmp = h->nr_overcommit_huge_pages; | ||
1430 | |||
1431 | table->data = &tmp; | ||
1432 | table->maxlen = sizeof(unsigned long); | ||
679 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1433 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
680 | spin_lock(&hugetlb_lock); | 1434 | |
681 | nr_overcommit_huge_pages = sysctl_overcommit_huge_pages; | 1435 | if (write) { |
682 | spin_unlock(&hugetlb_lock); | 1436 | spin_lock(&hugetlb_lock); |
1437 | h->nr_overcommit_huge_pages = tmp; | ||
1438 | spin_unlock(&hugetlb_lock); | ||
1439 | } | ||
1440 | |||
683 | return 0; | 1441 | return 0; |
684 | } | 1442 | } |
685 | 1443 | ||
@@ -687,34 +1445,118 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
687 | 1445 | ||
688 | int hugetlb_report_meminfo(char *buf) | 1446 | int hugetlb_report_meminfo(char *buf) |
689 | { | 1447 | { |
1448 | struct hstate *h = &default_hstate; | ||
690 | return sprintf(buf, | 1449 | return sprintf(buf, |
691 | "HugePages_Total: %5lu\n" | 1450 | "HugePages_Total: %5lu\n" |
692 | "HugePages_Free: %5lu\n" | 1451 | "HugePages_Free: %5lu\n" |
693 | "HugePages_Rsvd: %5lu\n" | 1452 | "HugePages_Rsvd: %5lu\n" |
694 | "HugePages_Surp: %5lu\n" | 1453 | "HugePages_Surp: %5lu\n" |
695 | "Hugepagesize: %5lu kB\n", | 1454 | "Hugepagesize: %5lu kB\n", |
696 | nr_huge_pages, | 1455 | h->nr_huge_pages, |
697 | free_huge_pages, | 1456 | h->free_huge_pages, |
698 | resv_huge_pages, | 1457 | h->resv_huge_pages, |
699 | surplus_huge_pages, | 1458 | h->surplus_huge_pages, |
700 | HPAGE_SIZE/1024); | 1459 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); |
701 | } | 1460 | } |
702 | 1461 | ||
703 | int hugetlb_report_node_meminfo(int nid, char *buf) | 1462 | int hugetlb_report_node_meminfo(int nid, char *buf) |
704 | { | 1463 | { |
1464 | struct hstate *h = &default_hstate; | ||
705 | return sprintf(buf, | 1465 | return sprintf(buf, |
706 | "Node %d HugePages_Total: %5u\n" | 1466 | "Node %d HugePages_Total: %5u\n" |
707 | "Node %d HugePages_Free: %5u\n" | 1467 | "Node %d HugePages_Free: %5u\n" |
708 | "Node %d HugePages_Surp: %5u\n", | 1468 | "Node %d HugePages_Surp: %5u\n", |
709 | nid, nr_huge_pages_node[nid], | 1469 | nid, h->nr_huge_pages_node[nid], |
710 | nid, free_huge_pages_node[nid], | 1470 | nid, h->free_huge_pages_node[nid], |
711 | nid, surplus_huge_pages_node[nid]); | 1471 | nid, h->surplus_huge_pages_node[nid]); |
712 | } | 1472 | } |
713 | 1473 | ||
714 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 1474 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
715 | unsigned long hugetlb_total_pages(void) | 1475 | unsigned long hugetlb_total_pages(void) |
716 | { | 1476 | { |
717 | return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | 1477 | struct hstate *h = &default_hstate; |
1478 | return h->nr_huge_pages * pages_per_huge_page(h); | ||
1479 | } | ||
1480 | |||
1481 | static int hugetlb_acct_memory(struct hstate *h, long delta) | ||
1482 | { | ||
1483 | int ret = -ENOMEM; | ||
1484 | |||
1485 | spin_lock(&hugetlb_lock); | ||
1486 | /* | ||
1487 | * When cpuset is configured, it breaks the strict hugetlb page | ||
1488 | * reservation as the accounting is done on a global variable. Such | ||
1489 | * reservation is completely rubbish in the presence of cpuset because | ||
1490 | * the reservation is not checked against page availability for the | ||
1491 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1492 | * with lack of free htlb page in cpuset that the task is in. | ||
1493 | * Attempt to enforce strict accounting with cpuset is almost | ||
1494 | * impossible (or too ugly) because cpuset is too fluid that | ||
1495 | * task or memory node can be dynamically moved between cpusets. | ||
1496 | * | ||
1497 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1498 | * undesirable. However, in order to preserve some of the semantics, | ||
1499 | * we fall back to check against current free page availability as | ||
1500 | * a best attempt and hopefully to minimize the impact of changing | ||
1501 | * semantics that cpuset has. | ||
1502 | */ | ||
1503 | if (delta > 0) { | ||
1504 | if (gather_surplus_pages(h, delta) < 0) | ||
1505 | goto out; | ||
1506 | |||
1507 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | ||
1508 | return_unused_surplus_pages(h, delta); | ||
1509 | goto out; | ||
1510 | } | ||
1511 | } | ||
1512 | |||
1513 | ret = 0; | ||
1514 | if (delta < 0) | ||
1515 | return_unused_surplus_pages(h, (unsigned long) -delta); | ||
1516 | |||
1517 | out: | ||
1518 | spin_unlock(&hugetlb_lock); | ||
1519 | return ret; | ||
1520 | } | ||
1521 | |||
1522 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | ||
1523 | { | ||
1524 | struct resv_map *reservations = vma_resv_map(vma); | ||
1525 | |||
1526 | /* | ||
1527 | * This new VMA should share its siblings reservation map if present. | ||
1528 | * The VMA will only ever have a valid reservation map pointer where | ||
1529 | * it is being copied for another still existing VMA. As that VMA | ||
1530 | * has a reference to the reservation map it cannot dissappear until | ||
1531 | * after this open call completes. It is therefore safe to take a | ||
1532 | * new reference here without additional locking. | ||
1533 | */ | ||
1534 | if (reservations) | ||
1535 | kref_get(&reservations->refs); | ||
1536 | } | ||
1537 | |||
1538 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | ||
1539 | { | ||
1540 | struct hstate *h = hstate_vma(vma); | ||
1541 | struct resv_map *reservations = vma_resv_map(vma); | ||
1542 | unsigned long reserve; | ||
1543 | unsigned long start; | ||
1544 | unsigned long end; | ||
1545 | |||
1546 | if (reservations) { | ||
1547 | start = vma_hugecache_offset(h, vma, vma->vm_start); | ||
1548 | end = vma_hugecache_offset(h, vma, vma->vm_end); | ||
1549 | |||
1550 | reserve = (end - start) - | ||
1551 | region_count(&reservations->regions, start, end); | ||
1552 | |||
1553 | kref_put(&reservations->refs, resv_map_release); | ||
1554 | |||
1555 | if (reserve) { | ||
1556 | hugetlb_acct_memory(h, -reserve); | ||
1557 | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); | ||
1558 | } | ||
1559 | } | ||
718 | } | 1560 | } |
719 | 1561 | ||
720 | /* | 1562 | /* |
@@ -731,6 +1573,8 @@ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
731 | 1573 | ||
732 | struct vm_operations_struct hugetlb_vm_ops = { | 1574 | struct vm_operations_struct hugetlb_vm_ops = { |
733 | .fault = hugetlb_vm_op_fault, | 1575 | .fault = hugetlb_vm_op_fault, |
1576 | .open = hugetlb_vm_op_open, | ||
1577 | .close = hugetlb_vm_op_close, | ||
734 | }; | 1578 | }; |
735 | 1579 | ||
736 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 1580 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
@@ -769,14 +1613,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | |||
769 | struct page *ptepage; | 1613 | struct page *ptepage; |
770 | unsigned long addr; | 1614 | unsigned long addr; |
771 | int cow; | 1615 | int cow; |
1616 | struct hstate *h = hstate_vma(vma); | ||
1617 | unsigned long sz = huge_page_size(h); | ||
772 | 1618 | ||
773 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 1619 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
774 | 1620 | ||
775 | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | 1621 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
776 | src_pte = huge_pte_offset(src, addr); | 1622 | src_pte = huge_pte_offset(src, addr); |
777 | if (!src_pte) | 1623 | if (!src_pte) |
778 | continue; | 1624 | continue; |
779 | dst_pte = huge_pte_alloc(dst, addr); | 1625 | dst_pte = huge_pte_alloc(dst, addr, sz); |
780 | if (!dst_pte) | 1626 | if (!dst_pte) |
781 | goto nomem; | 1627 | goto nomem; |
782 | 1628 | ||
@@ -804,7 +1650,7 @@ nomem: | |||
804 | } | 1650 | } |
805 | 1651 | ||
806 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1652 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
807 | unsigned long end) | 1653 | unsigned long end, struct page *ref_page) |
808 | { | 1654 | { |
809 | struct mm_struct *mm = vma->vm_mm; | 1655 | struct mm_struct *mm = vma->vm_mm; |
810 | unsigned long address; | 1656 | unsigned long address; |
@@ -812,6 +1658,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
812 | pte_t pte; | 1658 | pte_t pte; |
813 | struct page *page; | 1659 | struct page *page; |
814 | struct page *tmp; | 1660 | struct page *tmp; |
1661 | struct hstate *h = hstate_vma(vma); | ||
1662 | unsigned long sz = huge_page_size(h); | ||
1663 | |||
815 | /* | 1664 | /* |
816 | * A page gathering list, protected by per file i_mmap_lock. The | 1665 | * A page gathering list, protected by per file i_mmap_lock. The |
817 | * lock is used to avoid list corruption from multiple unmapping | 1666 | * lock is used to avoid list corruption from multiple unmapping |
@@ -820,11 +1669,11 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
820 | LIST_HEAD(page_list); | 1669 | LIST_HEAD(page_list); |
821 | 1670 | ||
822 | WARN_ON(!is_vm_hugetlb_page(vma)); | 1671 | WARN_ON(!is_vm_hugetlb_page(vma)); |
823 | BUG_ON(start & ~HPAGE_MASK); | 1672 | BUG_ON(start & ~huge_page_mask(h)); |
824 | BUG_ON(end & ~HPAGE_MASK); | 1673 | BUG_ON(end & ~huge_page_mask(h)); |
825 | 1674 | ||
826 | spin_lock(&mm->page_table_lock); | 1675 | spin_lock(&mm->page_table_lock); |
827 | for (address = start; address < end; address += HPAGE_SIZE) { | 1676 | for (address = start; address < end; address += sz) { |
828 | ptep = huge_pte_offset(mm, address); | 1677 | ptep = huge_pte_offset(mm, address); |
829 | if (!ptep) | 1678 | if (!ptep) |
830 | continue; | 1679 | continue; |
@@ -832,6 +1681,27 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
832 | if (huge_pmd_unshare(mm, &address, ptep)) | 1681 | if (huge_pmd_unshare(mm, &address, ptep)) |
833 | continue; | 1682 | continue; |
834 | 1683 | ||
1684 | /* | ||
1685 | * If a reference page is supplied, it is because a specific | ||
1686 | * page is being unmapped, not a range. Ensure the page we | ||
1687 | * are about to unmap is the actual page of interest. | ||
1688 | */ | ||
1689 | if (ref_page) { | ||
1690 | pte = huge_ptep_get(ptep); | ||
1691 | if (huge_pte_none(pte)) | ||
1692 | continue; | ||
1693 | page = pte_page(pte); | ||
1694 | if (page != ref_page) | ||
1695 | continue; | ||
1696 | |||
1697 | /* | ||
1698 | * Mark the VMA as having unmapped its page so that | ||
1699 | * future faults in this VMA will fail rather than | ||
1700 | * looking like data was lost | ||
1701 | */ | ||
1702 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | ||
1703 | } | ||
1704 | |||
835 | pte = huge_ptep_get_and_clear(mm, address, ptep); | 1705 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
836 | if (huge_pte_none(pte)) | 1706 | if (huge_pte_none(pte)) |
837 | continue; | 1707 | continue; |
@@ -850,31 +1720,71 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
850 | } | 1720 | } |
851 | 1721 | ||
852 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1722 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
853 | unsigned long end) | 1723 | unsigned long end, struct page *ref_page) |
1724 | { | ||
1725 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1726 | __unmap_hugepage_range(vma, start, end, ref_page); | ||
1727 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1728 | } | ||
1729 | |||
1730 | /* | ||
1731 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | ||
1732 | * mappping it owns the reserve page for. The intention is to unmap the page | ||
1733 | * from other VMAs and let the children be SIGKILLed if they are faulting the | ||
1734 | * same region. | ||
1735 | */ | ||
1736 | int unmap_ref_private(struct mm_struct *mm, | ||
1737 | struct vm_area_struct *vma, | ||
1738 | struct page *page, | ||
1739 | unsigned long address) | ||
854 | { | 1740 | { |
1741 | struct vm_area_struct *iter_vma; | ||
1742 | struct address_space *mapping; | ||
1743 | struct prio_tree_iter iter; | ||
1744 | pgoff_t pgoff; | ||
1745 | |||
855 | /* | 1746 | /* |
856 | * It is undesirable to test vma->vm_file as it should be non-null | 1747 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation |
857 | * for valid hugetlb area. However, vm_file will be NULL in the error | 1748 | * from page cache lookup which is in HPAGE_SIZE units. |
858 | * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, | ||
859 | * do_mmap_pgoff() nullifies vma->vm_file before calling this function | ||
860 | * to clean up. Since no pte has actually been setup, it is safe to | ||
861 | * do nothing in this case. | ||
862 | */ | 1749 | */ |
863 | if (vma->vm_file) { | 1750 | address = address & huge_page_mask(hstate_vma(vma)); |
864 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 1751 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) |
865 | __unmap_hugepage_range(vma, start, end); | 1752 | + (vma->vm_pgoff >> PAGE_SHIFT); |
866 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 1753 | mapping = (struct address_space *)page_private(page); |
1754 | |||
1755 | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | ||
1756 | /* Do not unmap the current VMA */ | ||
1757 | if (iter_vma == vma) | ||
1758 | continue; | ||
1759 | |||
1760 | /* | ||
1761 | * Unmap the page from other VMAs without their own reserves. | ||
1762 | * They get marked to be SIGKILLed if they fault in these | ||
1763 | * areas. This is because a future no-page fault on this VMA | ||
1764 | * could insert a zeroed page instead of the data existing | ||
1765 | * from the time of fork. This would look like data corruption | ||
1766 | */ | ||
1767 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | ||
1768 | unmap_hugepage_range(iter_vma, | ||
1769 | address, address + HPAGE_SIZE, | ||
1770 | page); | ||
867 | } | 1771 | } |
1772 | |||
1773 | return 1; | ||
868 | } | 1774 | } |
869 | 1775 | ||
870 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 1776 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
871 | unsigned long address, pte_t *ptep, pte_t pte) | 1777 | unsigned long address, pte_t *ptep, pte_t pte, |
1778 | struct page *pagecache_page) | ||
872 | { | 1779 | { |
1780 | struct hstate *h = hstate_vma(vma); | ||
873 | struct page *old_page, *new_page; | 1781 | struct page *old_page, *new_page; |
874 | int avoidcopy; | 1782 | int avoidcopy; |
1783 | int outside_reserve = 0; | ||
875 | 1784 | ||
876 | old_page = pte_page(pte); | 1785 | old_page = pte_page(pte); |
877 | 1786 | ||
1787 | retry_avoidcopy: | ||
878 | /* If no-one else is actually using this page, avoid the copy | 1788 | /* If no-one else is actually using this page, avoid the copy |
879 | * and just make the page writable */ | 1789 | * and just make the page writable */ |
880 | avoidcopy = (page_count(old_page) == 1); | 1790 | avoidcopy = (page_count(old_page) == 1); |
@@ -883,11 +1793,43 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
883 | return 0; | 1793 | return 0; |
884 | } | 1794 | } |
885 | 1795 | ||
1796 | /* | ||
1797 | * If the process that created a MAP_PRIVATE mapping is about to | ||
1798 | * perform a COW due to a shared page count, attempt to satisfy | ||
1799 | * the allocation without using the existing reserves. The pagecache | ||
1800 | * page is used to determine if the reserve at this address was | ||
1801 | * consumed or not. If reserves were used, a partial faulted mapping | ||
1802 | * at the time of fork() could consume its reserves on COW instead | ||
1803 | * of the full address range. | ||
1804 | */ | ||
1805 | if (!(vma->vm_flags & VM_SHARED) && | ||
1806 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | ||
1807 | old_page != pagecache_page) | ||
1808 | outside_reserve = 1; | ||
1809 | |||
886 | page_cache_get(old_page); | 1810 | page_cache_get(old_page); |
887 | new_page = alloc_huge_page(vma, address); | 1811 | new_page = alloc_huge_page(vma, address, outside_reserve); |
888 | 1812 | ||
889 | if (IS_ERR(new_page)) { | 1813 | if (IS_ERR(new_page)) { |
890 | page_cache_release(old_page); | 1814 | page_cache_release(old_page); |
1815 | |||
1816 | /* | ||
1817 | * If a process owning a MAP_PRIVATE mapping fails to COW, | ||
1818 | * it is due to references held by a child and an insufficient | ||
1819 | * huge page pool. To guarantee the original mappers | ||
1820 | * reliability, unmap the page from child processes. The child | ||
1821 | * may get SIGKILLed if it later faults. | ||
1822 | */ | ||
1823 | if (outside_reserve) { | ||
1824 | BUG_ON(huge_pte_none(pte)); | ||
1825 | if (unmap_ref_private(mm, vma, old_page, address)) { | ||
1826 | BUG_ON(page_count(old_page) != 1); | ||
1827 | BUG_ON(huge_pte_none(pte)); | ||
1828 | goto retry_avoidcopy; | ||
1829 | } | ||
1830 | WARN_ON_ONCE(1); | ||
1831 | } | ||
1832 | |||
891 | return -PTR_ERR(new_page); | 1833 | return -PTR_ERR(new_page); |
892 | } | 1834 | } |
893 | 1835 | ||
@@ -896,7 +1838,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
896 | __SetPageUptodate(new_page); | 1838 | __SetPageUptodate(new_page); |
897 | spin_lock(&mm->page_table_lock); | 1839 | spin_lock(&mm->page_table_lock); |
898 | 1840 | ||
899 | ptep = huge_pte_offset(mm, address & HPAGE_MASK); | 1841 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
900 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 1842 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
901 | /* Break COW */ | 1843 | /* Break COW */ |
902 | huge_ptep_clear_flush(vma, address, ptep); | 1844 | huge_ptep_clear_flush(vma, address, ptep); |
@@ -910,19 +1852,44 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
910 | return 0; | 1852 | return 0; |
911 | } | 1853 | } |
912 | 1854 | ||
1855 | /* Return the pagecache page at a given address within a VMA */ | ||
1856 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | ||
1857 | struct vm_area_struct *vma, unsigned long address) | ||
1858 | { | ||
1859 | struct address_space *mapping; | ||
1860 | pgoff_t idx; | ||
1861 | |||
1862 | mapping = vma->vm_file->f_mapping; | ||
1863 | idx = vma_hugecache_offset(h, vma, address); | ||
1864 | |||
1865 | return find_lock_page(mapping, idx); | ||
1866 | } | ||
1867 | |||
913 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 1868 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
914 | unsigned long address, pte_t *ptep, int write_access) | 1869 | unsigned long address, pte_t *ptep, int write_access) |
915 | { | 1870 | { |
1871 | struct hstate *h = hstate_vma(vma); | ||
916 | int ret = VM_FAULT_SIGBUS; | 1872 | int ret = VM_FAULT_SIGBUS; |
917 | unsigned long idx; | 1873 | pgoff_t idx; |
918 | unsigned long size; | 1874 | unsigned long size; |
919 | struct page *page; | 1875 | struct page *page; |
920 | struct address_space *mapping; | 1876 | struct address_space *mapping; |
921 | pte_t new_pte; | 1877 | pte_t new_pte; |
922 | 1878 | ||
1879 | /* | ||
1880 | * Currently, we are forced to kill the process in the event the | ||
1881 | * original mapper has unmapped pages from the child due to a failed | ||
1882 | * COW. Warn that such a situation has occured as it may not be obvious | ||
1883 | */ | ||
1884 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | ||
1885 | printk(KERN_WARNING | ||
1886 | "PID %d killed due to inadequate hugepage pool\n", | ||
1887 | current->pid); | ||
1888 | return ret; | ||
1889 | } | ||
1890 | |||
923 | mapping = vma->vm_file->f_mapping; | 1891 | mapping = vma->vm_file->f_mapping; |
924 | idx = ((address - vma->vm_start) >> HPAGE_SHIFT) | 1892 | idx = vma_hugecache_offset(h, vma, address); |
925 | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | ||
926 | 1893 | ||
927 | /* | 1894 | /* |
928 | * Use page lock to guard against racing truncation | 1895 | * Use page lock to guard against racing truncation |
@@ -931,15 +1898,15 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
931 | retry: | 1898 | retry: |
932 | page = find_lock_page(mapping, idx); | 1899 | page = find_lock_page(mapping, idx); |
933 | if (!page) { | 1900 | if (!page) { |
934 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1901 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
935 | if (idx >= size) | 1902 | if (idx >= size) |
936 | goto out; | 1903 | goto out; |
937 | page = alloc_huge_page(vma, address); | 1904 | page = alloc_huge_page(vma, address, 0); |
938 | if (IS_ERR(page)) { | 1905 | if (IS_ERR(page)) { |
939 | ret = -PTR_ERR(page); | 1906 | ret = -PTR_ERR(page); |
940 | goto out; | 1907 | goto out; |
941 | } | 1908 | } |
942 | clear_huge_page(page, address); | 1909 | clear_huge_page(page, address, huge_page_size(h)); |
943 | __SetPageUptodate(page); | 1910 | __SetPageUptodate(page); |
944 | 1911 | ||
945 | if (vma->vm_flags & VM_SHARED) { | 1912 | if (vma->vm_flags & VM_SHARED) { |
@@ -955,14 +1922,14 @@ retry: | |||
955 | } | 1922 | } |
956 | 1923 | ||
957 | spin_lock(&inode->i_lock); | 1924 | spin_lock(&inode->i_lock); |
958 | inode->i_blocks += BLOCKS_PER_HUGEPAGE; | 1925 | inode->i_blocks += blocks_per_huge_page(h); |
959 | spin_unlock(&inode->i_lock); | 1926 | spin_unlock(&inode->i_lock); |
960 | } else | 1927 | } else |
961 | lock_page(page); | 1928 | lock_page(page); |
962 | } | 1929 | } |
963 | 1930 | ||
964 | spin_lock(&mm->page_table_lock); | 1931 | spin_lock(&mm->page_table_lock); |
965 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1932 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
966 | if (idx >= size) | 1933 | if (idx >= size) |
967 | goto backout; | 1934 | goto backout; |
968 | 1935 | ||
@@ -976,7 +1943,7 @@ retry: | |||
976 | 1943 | ||
977 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | 1944 | if (write_access && !(vma->vm_flags & VM_SHARED)) { |
978 | /* Optimization, do the COW without a second fault */ | 1945 | /* Optimization, do the COW without a second fault */ |
979 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte); | 1946 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
980 | } | 1947 | } |
981 | 1948 | ||
982 | spin_unlock(&mm->page_table_lock); | 1949 | spin_unlock(&mm->page_table_lock); |
@@ -998,8 +1965,9 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
998 | pte_t entry; | 1965 | pte_t entry; |
999 | int ret; | 1966 | int ret; |
1000 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 1967 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
1968 | struct hstate *h = hstate_vma(vma); | ||
1001 | 1969 | ||
1002 | ptep = huge_pte_alloc(mm, address); | 1970 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
1003 | if (!ptep) | 1971 | if (!ptep) |
1004 | return VM_FAULT_OOM; | 1972 | return VM_FAULT_OOM; |
1005 | 1973 | ||
@@ -1021,14 +1989,30 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1021 | spin_lock(&mm->page_table_lock); | 1989 | spin_lock(&mm->page_table_lock); |
1022 | /* Check for a racing update before calling hugetlb_cow */ | 1990 | /* Check for a racing update before calling hugetlb_cow */ |
1023 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) | 1991 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) |
1024 | if (write_access && !pte_write(entry)) | 1992 | if (write_access && !pte_write(entry)) { |
1025 | ret = hugetlb_cow(mm, vma, address, ptep, entry); | 1993 | struct page *page; |
1994 | page = hugetlbfs_pagecache_page(h, vma, address); | ||
1995 | ret = hugetlb_cow(mm, vma, address, ptep, entry, page); | ||
1996 | if (page) { | ||
1997 | unlock_page(page); | ||
1998 | put_page(page); | ||
1999 | } | ||
2000 | } | ||
1026 | spin_unlock(&mm->page_table_lock); | 2001 | spin_unlock(&mm->page_table_lock); |
1027 | mutex_unlock(&hugetlb_instantiation_mutex); | 2002 | mutex_unlock(&hugetlb_instantiation_mutex); |
1028 | 2003 | ||
1029 | return ret; | 2004 | return ret; |
1030 | } | 2005 | } |
1031 | 2006 | ||
2007 | /* Can be overriden by architectures */ | ||
2008 | __attribute__((weak)) struct page * | ||
2009 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | ||
2010 | pud_t *pud, int write) | ||
2011 | { | ||
2012 | BUG(); | ||
2013 | return NULL; | ||
2014 | } | ||
2015 | |||
1032 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2016 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1033 | struct page **pages, struct vm_area_struct **vmas, | 2017 | struct page **pages, struct vm_area_struct **vmas, |
1034 | unsigned long *position, int *length, int i, | 2018 | unsigned long *position, int *length, int i, |
@@ -1037,6 +2021,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1037 | unsigned long pfn_offset; | 2021 | unsigned long pfn_offset; |
1038 | unsigned long vaddr = *position; | 2022 | unsigned long vaddr = *position; |
1039 | int remainder = *length; | 2023 | int remainder = *length; |
2024 | struct hstate *h = hstate_vma(vma); | ||
1040 | 2025 | ||
1041 | spin_lock(&mm->page_table_lock); | 2026 | spin_lock(&mm->page_table_lock); |
1042 | while (vaddr < vma->vm_end && remainder) { | 2027 | while (vaddr < vma->vm_end && remainder) { |
@@ -1048,7 +2033,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1048 | * each hugepage. We have to make * sure we get the | 2033 | * each hugepage. We have to make * sure we get the |
1049 | * first, for the page indexing below to work. | 2034 | * first, for the page indexing below to work. |
1050 | */ | 2035 | */ |
1051 | pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | 2036 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
1052 | 2037 | ||
1053 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || | 2038 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || |
1054 | (write && !pte_write(huge_ptep_get(pte)))) { | 2039 | (write && !pte_write(huge_ptep_get(pte)))) { |
@@ -1066,7 +2051,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1066 | break; | 2051 | break; |
1067 | } | 2052 | } |
1068 | 2053 | ||
1069 | pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; | 2054 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
1070 | page = pte_page(huge_ptep_get(pte)); | 2055 | page = pte_page(huge_ptep_get(pte)); |
1071 | same_page: | 2056 | same_page: |
1072 | if (pages) { | 2057 | if (pages) { |
@@ -1082,7 +2067,7 @@ same_page: | |||
1082 | --remainder; | 2067 | --remainder; |
1083 | ++i; | 2068 | ++i; |
1084 | if (vaddr < vma->vm_end && remainder && | 2069 | if (vaddr < vma->vm_end && remainder && |
1085 | pfn_offset < HPAGE_SIZE/PAGE_SIZE) { | 2070 | pfn_offset < pages_per_huge_page(h)) { |
1086 | /* | 2071 | /* |
1087 | * We use pfn_offset to avoid touching the pageframes | 2072 | * We use pfn_offset to avoid touching the pageframes |
1088 | * of this compound page. | 2073 | * of this compound page. |
@@ -1104,13 +2089,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1104 | unsigned long start = address; | 2089 | unsigned long start = address; |
1105 | pte_t *ptep; | 2090 | pte_t *ptep; |
1106 | pte_t pte; | 2091 | pte_t pte; |
2092 | struct hstate *h = hstate_vma(vma); | ||
1107 | 2093 | ||
1108 | BUG_ON(address >= end); | 2094 | BUG_ON(address >= end); |
1109 | flush_cache_range(vma, address, end); | 2095 | flush_cache_range(vma, address, end); |
1110 | 2096 | ||
1111 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 2097 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
1112 | spin_lock(&mm->page_table_lock); | 2098 | spin_lock(&mm->page_table_lock); |
1113 | for (; address < end; address += HPAGE_SIZE) { | 2099 | for (; address < end; address += huge_page_size(h)) { |
1114 | ptep = huge_pte_offset(mm, address); | 2100 | ptep = huge_pte_offset(mm, address); |
1115 | if (!ptep) | 2101 | if (!ptep) |
1116 | continue; | 2102 | continue; |
@@ -1128,195 +2114,59 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1128 | flush_tlb_range(vma, start, end); | 2114 | flush_tlb_range(vma, start, end); |
1129 | } | 2115 | } |
1130 | 2116 | ||
1131 | struct file_region { | 2117 | int hugetlb_reserve_pages(struct inode *inode, |
1132 | struct list_head link; | 2118 | long from, long to, |
1133 | long from; | 2119 | struct vm_area_struct *vma) |
1134 | long to; | ||
1135 | }; | ||
1136 | |||
1137 | static long region_add(struct list_head *head, long f, long t) | ||
1138 | { | ||
1139 | struct file_region *rg, *nrg, *trg; | ||
1140 | |||
1141 | /* Locate the region we are either in or before. */ | ||
1142 | list_for_each_entry(rg, head, link) | ||
1143 | if (f <= rg->to) | ||
1144 | break; | ||
1145 | |||
1146 | /* Round our left edge to the current segment if it encloses us. */ | ||
1147 | if (f > rg->from) | ||
1148 | f = rg->from; | ||
1149 | |||
1150 | /* Check for and consume any regions we now overlap with. */ | ||
1151 | nrg = rg; | ||
1152 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1153 | if (&rg->link == head) | ||
1154 | break; | ||
1155 | if (rg->from > t) | ||
1156 | break; | ||
1157 | |||
1158 | /* If this area reaches higher then extend our area to | ||
1159 | * include it completely. If this is not the first area | ||
1160 | * which we intend to reuse, free it. */ | ||
1161 | if (rg->to > t) | ||
1162 | t = rg->to; | ||
1163 | if (rg != nrg) { | ||
1164 | list_del(&rg->link); | ||
1165 | kfree(rg); | ||
1166 | } | ||
1167 | } | ||
1168 | nrg->from = f; | ||
1169 | nrg->to = t; | ||
1170 | return 0; | ||
1171 | } | ||
1172 | |||
1173 | static long region_chg(struct list_head *head, long f, long t) | ||
1174 | { | 2120 | { |
1175 | struct file_region *rg, *nrg; | 2121 | long ret, chg; |
1176 | long chg = 0; | 2122 | struct hstate *h = hstate_inode(inode); |
1177 | |||
1178 | /* Locate the region we are before or in. */ | ||
1179 | list_for_each_entry(rg, head, link) | ||
1180 | if (f <= rg->to) | ||
1181 | break; | ||
1182 | |||
1183 | /* If we are below the current region then a new region is required. | ||
1184 | * Subtle, allocate a new region at the position but make it zero | ||
1185 | * size such that we can guarantee to record the reservation. */ | ||
1186 | if (&rg->link == head || t < rg->from) { | ||
1187 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
1188 | if (!nrg) | ||
1189 | return -ENOMEM; | ||
1190 | nrg->from = f; | ||
1191 | nrg->to = f; | ||
1192 | INIT_LIST_HEAD(&nrg->link); | ||
1193 | list_add(&nrg->link, rg->link.prev); | ||
1194 | |||
1195 | return t - f; | ||
1196 | } | ||
1197 | |||
1198 | /* Round our left edge to the current segment if it encloses us. */ | ||
1199 | if (f > rg->from) | ||
1200 | f = rg->from; | ||
1201 | chg = t - f; | ||
1202 | |||
1203 | /* Check for and consume any regions we now overlap with. */ | ||
1204 | list_for_each_entry(rg, rg->link.prev, link) { | ||
1205 | if (&rg->link == head) | ||
1206 | break; | ||
1207 | if (rg->from > t) | ||
1208 | return chg; | ||
1209 | |||
1210 | /* We overlap with this area, if it extends futher than | ||
1211 | * us then we must extend ourselves. Account for its | ||
1212 | * existing reservation. */ | ||
1213 | if (rg->to > t) { | ||
1214 | chg += rg->to - t; | ||
1215 | t = rg->to; | ||
1216 | } | ||
1217 | chg -= rg->to - rg->from; | ||
1218 | } | ||
1219 | return chg; | ||
1220 | } | ||
1221 | |||
1222 | static long region_truncate(struct list_head *head, long end) | ||
1223 | { | ||
1224 | struct file_region *rg, *trg; | ||
1225 | long chg = 0; | ||
1226 | 2123 | ||
1227 | /* Locate the region we are either in or before. */ | 2124 | if (vma && vma->vm_flags & VM_NORESERVE) |
1228 | list_for_each_entry(rg, head, link) | ||
1229 | if (end <= rg->to) | ||
1230 | break; | ||
1231 | if (&rg->link == head) | ||
1232 | return 0; | 2125 | return 0; |
1233 | 2126 | ||
1234 | /* If we are in the middle of a region then adjust it. */ | ||
1235 | if (end > rg->from) { | ||
1236 | chg = rg->to - end; | ||
1237 | rg->to = end; | ||
1238 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
1239 | } | ||
1240 | |||
1241 | /* Drop any remaining regions. */ | ||
1242 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1243 | if (&rg->link == head) | ||
1244 | break; | ||
1245 | chg += rg->to - rg->from; | ||
1246 | list_del(&rg->link); | ||
1247 | kfree(rg); | ||
1248 | } | ||
1249 | return chg; | ||
1250 | } | ||
1251 | |||
1252 | static int hugetlb_acct_memory(long delta) | ||
1253 | { | ||
1254 | int ret = -ENOMEM; | ||
1255 | |||
1256 | spin_lock(&hugetlb_lock); | ||
1257 | /* | 2127 | /* |
1258 | * When cpuset is configured, it breaks the strict hugetlb page | 2128 | * Shared mappings base their reservation on the number of pages that |
1259 | * reservation as the accounting is done on a global variable. Such | 2129 | * are already allocated on behalf of the file. Private mappings need |
1260 | * reservation is completely rubbish in the presence of cpuset because | 2130 | * to reserve the full area even if read-only as mprotect() may be |
1261 | * the reservation is not checked against page availability for the | 2131 | * called to make the mapping read-write. Assume !vma is a shm mapping |
1262 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1263 | * with lack of free htlb page in cpuset that the task is in. | ||
1264 | * Attempt to enforce strict accounting with cpuset is almost | ||
1265 | * impossible (or too ugly) because cpuset is too fluid that | ||
1266 | * task or memory node can be dynamically moved between cpusets. | ||
1267 | * | ||
1268 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1269 | * undesirable. However, in order to preserve some of the semantics, | ||
1270 | * we fall back to check against current free page availability as | ||
1271 | * a best attempt and hopefully to minimize the impact of changing | ||
1272 | * semantics that cpuset has. | ||
1273 | */ | 2132 | */ |
1274 | if (delta > 0) { | 2133 | if (!vma || vma->vm_flags & VM_SHARED) |
1275 | if (gather_surplus_pages(delta) < 0) | 2134 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
1276 | goto out; | 2135 | else { |
1277 | 2136 | struct resv_map *resv_map = resv_map_alloc(); | |
1278 | if (delta > cpuset_mems_nr(free_huge_pages_node)) { | 2137 | if (!resv_map) |
1279 | return_unused_surplus_pages(delta); | 2138 | return -ENOMEM; |
1280 | goto out; | ||
1281 | } | ||
1282 | } | ||
1283 | |||
1284 | ret = 0; | ||
1285 | if (delta < 0) | ||
1286 | return_unused_surplus_pages((unsigned long) -delta); | ||
1287 | 2139 | ||
1288 | out: | 2140 | chg = to - from; |
1289 | spin_unlock(&hugetlb_lock); | ||
1290 | return ret; | ||
1291 | } | ||
1292 | 2141 | ||
1293 | int hugetlb_reserve_pages(struct inode *inode, long from, long to) | 2142 | set_vma_resv_map(vma, resv_map); |
1294 | { | 2143 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); |
1295 | long ret, chg; | 2144 | } |
1296 | 2145 | ||
1297 | chg = region_chg(&inode->i_mapping->private_list, from, to); | ||
1298 | if (chg < 0) | 2146 | if (chg < 0) |
1299 | return chg; | 2147 | return chg; |
1300 | 2148 | ||
1301 | if (hugetlb_get_quota(inode->i_mapping, chg)) | 2149 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
1302 | return -ENOSPC; | 2150 | return -ENOSPC; |
1303 | ret = hugetlb_acct_memory(chg); | 2151 | ret = hugetlb_acct_memory(h, chg); |
1304 | if (ret < 0) { | 2152 | if (ret < 0) { |
1305 | hugetlb_put_quota(inode->i_mapping, chg); | 2153 | hugetlb_put_quota(inode->i_mapping, chg); |
1306 | return ret; | 2154 | return ret; |
1307 | } | 2155 | } |
1308 | region_add(&inode->i_mapping->private_list, from, to); | 2156 | if (!vma || vma->vm_flags & VM_SHARED) |
2157 | region_add(&inode->i_mapping->private_list, from, to); | ||
1309 | return 0; | 2158 | return 0; |
1310 | } | 2159 | } |
1311 | 2160 | ||
1312 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 2161 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) |
1313 | { | 2162 | { |
2163 | struct hstate *h = hstate_inode(inode); | ||
1314 | long chg = region_truncate(&inode->i_mapping->private_list, offset); | 2164 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
1315 | 2165 | ||
1316 | spin_lock(&inode->i_lock); | 2166 | spin_lock(&inode->i_lock); |
1317 | inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; | 2167 | inode->i_blocks -= blocks_per_huge_page(h); |
1318 | spin_unlock(&inode->i_lock); | 2168 | spin_unlock(&inode->i_lock); |
1319 | 2169 | ||
1320 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 2170 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
1321 | hugetlb_acct_memory(-(chg - freed)); | 2171 | hugetlb_acct_memory(h, -(chg - freed)); |
1322 | } | 2172 | } |
diff --git a/mm/internal.h b/mm/internal.h index 0034e947e4bc..1f43f7416972 100644 --- a/mm/internal.h +++ b/mm/internal.h | |||
@@ -13,6 +13,11 @@ | |||
13 | 13 | ||
14 | #include <linux/mm.h> | 14 | #include <linux/mm.h> |
15 | 15 | ||
16 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, | ||
17 | unsigned long floor, unsigned long ceiling); | ||
18 | |||
19 | extern void prep_compound_page(struct page *page, unsigned long order); | ||
20 | |||
16 | static inline void set_page_count(struct page *page, int v) | 21 | static inline void set_page_count(struct page *page, int v) |
17 | { | 22 | { |
18 | atomic_set(&page->_count, v); | 23 | atomic_set(&page->_count, v); |
@@ -59,4 +64,60 @@ static inline unsigned long page_order(struct page *page) | |||
59 | #define __paginginit __init | 64 | #define __paginginit __init |
60 | #endif | 65 | #endif |
61 | 66 | ||
67 | /* Memory initialisation debug and verification */ | ||
68 | enum mminit_level { | ||
69 | MMINIT_WARNING, | ||
70 | MMINIT_VERIFY, | ||
71 | MMINIT_TRACE | ||
72 | }; | ||
73 | |||
74 | #ifdef CONFIG_DEBUG_MEMORY_INIT | ||
75 | |||
76 | extern int mminit_loglevel; | ||
77 | |||
78 | #define mminit_dprintk(level, prefix, fmt, arg...) \ | ||
79 | do { \ | ||
80 | if (level < mminit_loglevel) { \ | ||
81 | printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \ | ||
82 | printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \ | ||
83 | } \ | ||
84 | } while (0) | ||
85 | |||
86 | extern void mminit_verify_pageflags_layout(void); | ||
87 | extern void mminit_verify_page_links(struct page *page, | ||
88 | enum zone_type zone, unsigned long nid, unsigned long pfn); | ||
89 | extern void mminit_verify_zonelist(void); | ||
90 | |||
91 | #else | ||
92 | |||
93 | static inline void mminit_dprintk(enum mminit_level level, | ||
94 | const char *prefix, const char *fmt, ...) | ||
95 | { | ||
96 | } | ||
97 | |||
98 | static inline void mminit_verify_pageflags_layout(void) | ||
99 | { | ||
100 | } | ||
101 | |||
102 | static inline void mminit_verify_page_links(struct page *page, | ||
103 | enum zone_type zone, unsigned long nid, unsigned long pfn) | ||
104 | { | ||
105 | } | ||
106 | |||
107 | static inline void mminit_verify_zonelist(void) | ||
108 | { | ||
109 | } | ||
110 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ | ||
111 | |||
112 | /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ | ||
113 | #if defined(CONFIG_SPARSEMEM) | ||
114 | extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, | ||
115 | unsigned long *end_pfn); | ||
116 | #else | ||
117 | static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, | ||
118 | unsigned long *end_pfn) | ||
119 | { | ||
120 | } | ||
121 | #endif /* CONFIG_SPARSEMEM */ | ||
122 | |||
62 | #endif | 123 | #endif |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index e46451e1d9b7..fba566c51322 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -35,9 +35,9 @@ | |||
35 | 35 | ||
36 | #include <asm/uaccess.h> | 36 | #include <asm/uaccess.h> |
37 | 37 | ||
38 | struct cgroup_subsys mem_cgroup_subsys; | 38 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
39 | static const int MEM_CGROUP_RECLAIM_RETRIES = 5; | 39 | static struct kmem_cache *page_cgroup_cache __read_mostly; |
40 | static struct kmem_cache *page_cgroup_cache; | 40 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
41 | 41 | ||
42 | /* | 42 | /* |
43 | * Statistics for memory cgroup. | 43 | * Statistics for memory cgroup. |
@@ -166,7 +166,6 @@ struct page_cgroup { | |||
166 | struct list_head lru; /* per cgroup LRU list */ | 166 | struct list_head lru; /* per cgroup LRU list */ |
167 | struct page *page; | 167 | struct page *page; |
168 | struct mem_cgroup *mem_cgroup; | 168 | struct mem_cgroup *mem_cgroup; |
169 | int ref_cnt; /* cached, mapped, migrating */ | ||
170 | int flags; | 169 | int flags; |
171 | }; | 170 | }; |
172 | #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ | 171 | #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ |
@@ -185,6 +184,7 @@ static enum zone_type page_cgroup_zid(struct page_cgroup *pc) | |||
185 | enum charge_type { | 184 | enum charge_type { |
186 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 185 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
187 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 186 | MEM_CGROUP_CHARGE_TYPE_MAPPED, |
187 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ | ||
188 | }; | 188 | }; |
189 | 189 | ||
190 | /* | 190 | /* |
@@ -296,7 +296,7 @@ static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, | |||
296 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | 296 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; |
297 | 297 | ||
298 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); | 298 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); |
299 | list_del_init(&pc->lru); | 299 | list_del(&pc->lru); |
300 | } | 300 | } |
301 | 301 | ||
302 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, | 302 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, |
@@ -354,6 +354,9 @@ void mem_cgroup_move_lists(struct page *page, bool active) | |||
354 | struct mem_cgroup_per_zone *mz; | 354 | struct mem_cgroup_per_zone *mz; |
355 | unsigned long flags; | 355 | unsigned long flags; |
356 | 356 | ||
357 | if (mem_cgroup_subsys.disabled) | ||
358 | return; | ||
359 | |||
357 | /* | 360 | /* |
358 | * We cannot lock_page_cgroup while holding zone's lru_lock, | 361 | * We cannot lock_page_cgroup while holding zone's lru_lock, |
359 | * because other holders of lock_page_cgroup can be interrupted | 362 | * because other holders of lock_page_cgroup can be interrupted |
@@ -524,7 +527,8 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
524 | * < 0 if the cgroup is over its limit | 527 | * < 0 if the cgroup is over its limit |
525 | */ | 528 | */ |
526 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 529 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
527 | gfp_t gfp_mask, enum charge_type ctype) | 530 | gfp_t gfp_mask, enum charge_type ctype, |
531 | struct mem_cgroup *memcg) | ||
528 | { | 532 | { |
529 | struct mem_cgroup *mem; | 533 | struct mem_cgroup *mem; |
530 | struct page_cgroup *pc; | 534 | struct page_cgroup *pc; |
@@ -532,35 +536,8 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
532 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 536 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
533 | struct mem_cgroup_per_zone *mz; | 537 | struct mem_cgroup_per_zone *mz; |
534 | 538 | ||
535 | if (mem_cgroup_subsys.disabled) | 539 | pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask); |
536 | return 0; | 540 | if (unlikely(pc == NULL)) |
537 | |||
538 | /* | ||
539 | * Should page_cgroup's go to their own slab? | ||
540 | * One could optimize the performance of the charging routine | ||
541 | * by saving a bit in the page_flags and using it as a lock | ||
542 | * to see if the cgroup page already has a page_cgroup associated | ||
543 | * with it | ||
544 | */ | ||
545 | retry: | ||
546 | lock_page_cgroup(page); | ||
547 | pc = page_get_page_cgroup(page); | ||
548 | /* | ||
549 | * The page_cgroup exists and | ||
550 | * the page has already been accounted. | ||
551 | */ | ||
552 | if (pc) { | ||
553 | VM_BUG_ON(pc->page != page); | ||
554 | VM_BUG_ON(pc->ref_cnt <= 0); | ||
555 | |||
556 | pc->ref_cnt++; | ||
557 | unlock_page_cgroup(page); | ||
558 | goto done; | ||
559 | } | ||
560 | unlock_page_cgroup(page); | ||
561 | |||
562 | pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask); | ||
563 | if (pc == NULL) | ||
564 | goto err; | 541 | goto err; |
565 | 542 | ||
566 | /* | 543 | /* |
@@ -569,16 +546,18 @@ retry: | |||
569 | * thread group leader migrates. It's possible that mm is not | 546 | * thread group leader migrates. It's possible that mm is not |
570 | * set, if so charge the init_mm (happens for pagecache usage). | 547 | * set, if so charge the init_mm (happens for pagecache usage). |
571 | */ | 548 | */ |
572 | if (!mm) | 549 | if (likely(!memcg)) { |
573 | mm = &init_mm; | 550 | rcu_read_lock(); |
574 | 551 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
575 | rcu_read_lock(); | 552 | /* |
576 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 553 | * For every charge from the cgroup, increment reference count |
577 | /* | 554 | */ |
578 | * For every charge from the cgroup, increment reference count | 555 | css_get(&mem->css); |
579 | */ | 556 | rcu_read_unlock(); |
580 | css_get(&mem->css); | 557 | } else { |
581 | rcu_read_unlock(); | 558 | mem = memcg; |
559 | css_get(&memcg->css); | ||
560 | } | ||
582 | 561 | ||
583 | while (res_counter_charge(&mem->res, PAGE_SIZE)) { | 562 | while (res_counter_charge(&mem->res, PAGE_SIZE)) { |
584 | if (!(gfp_mask & __GFP_WAIT)) | 563 | if (!(gfp_mask & __GFP_WAIT)) |
@@ -603,25 +582,24 @@ retry: | |||
603 | } | 582 | } |
604 | } | 583 | } |
605 | 584 | ||
606 | pc->ref_cnt = 1; | ||
607 | pc->mem_cgroup = mem; | 585 | pc->mem_cgroup = mem; |
608 | pc->page = page; | 586 | pc->page = page; |
609 | pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | 587 | /* |
588 | * If a page is accounted as a page cache, insert to inactive list. | ||
589 | * If anon, insert to active list. | ||
590 | */ | ||
610 | if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) | 591 | if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) |
611 | pc->flags = PAGE_CGROUP_FLAG_CACHE; | 592 | pc->flags = PAGE_CGROUP_FLAG_CACHE; |
593 | else | ||
594 | pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | ||
612 | 595 | ||
613 | lock_page_cgroup(page); | 596 | lock_page_cgroup(page); |
614 | if (page_get_page_cgroup(page)) { | 597 | if (unlikely(page_get_page_cgroup(page))) { |
615 | unlock_page_cgroup(page); | 598 | unlock_page_cgroup(page); |
616 | /* | ||
617 | * Another charge has been added to this page already. | ||
618 | * We take lock_page_cgroup(page) again and read | ||
619 | * page->cgroup, increment refcnt.... just retry is OK. | ||
620 | */ | ||
621 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 599 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
622 | css_put(&mem->css); | 600 | css_put(&mem->css); |
623 | kmem_cache_free(page_cgroup_cache, pc); | 601 | kmem_cache_free(page_cgroup_cache, pc); |
624 | goto retry; | 602 | goto done; |
625 | } | 603 | } |
626 | page_assign_page_cgroup(page, pc); | 604 | page_assign_page_cgroup(page, pc); |
627 | 605 | ||
@@ -642,24 +620,65 @@ err: | |||
642 | 620 | ||
643 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | 621 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) |
644 | { | 622 | { |
623 | if (mem_cgroup_subsys.disabled) | ||
624 | return 0; | ||
625 | |||
626 | /* | ||
627 | * If already mapped, we don't have to account. | ||
628 | * If page cache, page->mapping has address_space. | ||
629 | * But page->mapping may have out-of-use anon_vma pointer, | ||
630 | * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | ||
631 | * is NULL. | ||
632 | */ | ||
633 | if (page_mapped(page) || (page->mapping && !PageAnon(page))) | ||
634 | return 0; | ||
635 | if (unlikely(!mm)) | ||
636 | mm = &init_mm; | ||
645 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 637 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
646 | MEM_CGROUP_CHARGE_TYPE_MAPPED); | 638 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); |
647 | } | 639 | } |
648 | 640 | ||
649 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 641 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
650 | gfp_t gfp_mask) | 642 | gfp_t gfp_mask) |
651 | { | 643 | { |
652 | if (!mm) | 644 | if (mem_cgroup_subsys.disabled) |
645 | return 0; | ||
646 | |||
647 | /* | ||
648 | * Corner case handling. This is called from add_to_page_cache() | ||
649 | * in usual. But some FS (shmem) precharges this page before calling it | ||
650 | * and call add_to_page_cache() with GFP_NOWAIT. | ||
651 | * | ||
652 | * For GFP_NOWAIT case, the page may be pre-charged before calling | ||
653 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | ||
654 | * charge twice. (It works but has to pay a bit larger cost.) | ||
655 | */ | ||
656 | if (!(gfp_mask & __GFP_WAIT)) { | ||
657 | struct page_cgroup *pc; | ||
658 | |||
659 | lock_page_cgroup(page); | ||
660 | pc = page_get_page_cgroup(page); | ||
661 | if (pc) { | ||
662 | VM_BUG_ON(pc->page != page); | ||
663 | VM_BUG_ON(!pc->mem_cgroup); | ||
664 | unlock_page_cgroup(page); | ||
665 | return 0; | ||
666 | } | ||
667 | unlock_page_cgroup(page); | ||
668 | } | ||
669 | |||
670 | if (unlikely(!mm)) | ||
653 | mm = &init_mm; | 671 | mm = &init_mm; |
672 | |||
654 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 673 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
655 | MEM_CGROUP_CHARGE_TYPE_CACHE); | 674 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
656 | } | 675 | } |
657 | 676 | ||
658 | /* | 677 | /* |
659 | * Uncharging is always a welcome operation, we never complain, simply | 678 | * uncharge if !page_mapped(page) |
660 | * uncharge. | ||
661 | */ | 679 | */ |
662 | void mem_cgroup_uncharge_page(struct page *page) | 680 | static void |
681 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | ||
663 | { | 682 | { |
664 | struct page_cgroup *pc; | 683 | struct page_cgroup *pc; |
665 | struct mem_cgroup *mem; | 684 | struct mem_cgroup *mem; |
@@ -674,98 +693,151 @@ void mem_cgroup_uncharge_page(struct page *page) | |||
674 | */ | 693 | */ |
675 | lock_page_cgroup(page); | 694 | lock_page_cgroup(page); |
676 | pc = page_get_page_cgroup(page); | 695 | pc = page_get_page_cgroup(page); |
677 | if (!pc) | 696 | if (unlikely(!pc)) |
678 | goto unlock; | 697 | goto unlock; |
679 | 698 | ||
680 | VM_BUG_ON(pc->page != page); | 699 | VM_BUG_ON(pc->page != page); |
681 | VM_BUG_ON(pc->ref_cnt <= 0); | ||
682 | 700 | ||
683 | if (--(pc->ref_cnt) == 0) { | 701 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) |
684 | mz = page_cgroup_zoneinfo(pc); | 702 | && ((pc->flags & PAGE_CGROUP_FLAG_CACHE) |
685 | spin_lock_irqsave(&mz->lru_lock, flags); | 703 | || page_mapped(page))) |
686 | __mem_cgroup_remove_list(mz, pc); | 704 | goto unlock; |
687 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
688 | 705 | ||
689 | page_assign_page_cgroup(page, NULL); | 706 | mz = page_cgroup_zoneinfo(pc); |
690 | unlock_page_cgroup(page); | 707 | spin_lock_irqsave(&mz->lru_lock, flags); |
708 | __mem_cgroup_remove_list(mz, pc); | ||
709 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
691 | 710 | ||
692 | mem = pc->mem_cgroup; | 711 | page_assign_page_cgroup(page, NULL); |
693 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 712 | unlock_page_cgroup(page); |
694 | css_put(&mem->css); | ||
695 | 713 | ||
696 | kmem_cache_free(page_cgroup_cache, pc); | 714 | mem = pc->mem_cgroup; |
697 | return; | 715 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
698 | } | 716 | css_put(&mem->css); |
699 | 717 | ||
718 | kmem_cache_free(page_cgroup_cache, pc); | ||
719 | return; | ||
700 | unlock: | 720 | unlock: |
701 | unlock_page_cgroup(page); | 721 | unlock_page_cgroup(page); |
702 | } | 722 | } |
703 | 723 | ||
724 | void mem_cgroup_uncharge_page(struct page *page) | ||
725 | { | ||
726 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); | ||
727 | } | ||
728 | |||
729 | void mem_cgroup_uncharge_cache_page(struct page *page) | ||
730 | { | ||
731 | VM_BUG_ON(page_mapped(page)); | ||
732 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); | ||
733 | } | ||
734 | |||
704 | /* | 735 | /* |
705 | * Returns non-zero if a page (under migration) has valid page_cgroup member. | 736 | * Before starting migration, account against new page. |
706 | * Refcnt of page_cgroup is incremented. | ||
707 | */ | 737 | */ |
708 | int mem_cgroup_prepare_migration(struct page *page) | 738 | int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) |
709 | { | 739 | { |
710 | struct page_cgroup *pc; | 740 | struct page_cgroup *pc; |
741 | struct mem_cgroup *mem = NULL; | ||
742 | enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
743 | int ret = 0; | ||
711 | 744 | ||
712 | if (mem_cgroup_subsys.disabled) | 745 | if (mem_cgroup_subsys.disabled) |
713 | return 0; | 746 | return 0; |
714 | 747 | ||
715 | lock_page_cgroup(page); | 748 | lock_page_cgroup(page); |
716 | pc = page_get_page_cgroup(page); | 749 | pc = page_get_page_cgroup(page); |
717 | if (pc) | 750 | if (pc) { |
718 | pc->ref_cnt++; | 751 | mem = pc->mem_cgroup; |
752 | css_get(&mem->css); | ||
753 | if (pc->flags & PAGE_CGROUP_FLAG_CACHE) | ||
754 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
755 | } | ||
719 | unlock_page_cgroup(page); | 756 | unlock_page_cgroup(page); |
720 | return pc != NULL; | 757 | if (mem) { |
758 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, | ||
759 | ctype, mem); | ||
760 | css_put(&mem->css); | ||
761 | } | ||
762 | return ret; | ||
721 | } | 763 | } |
722 | 764 | ||
723 | void mem_cgroup_end_migration(struct page *page) | 765 | /* remove redundant charge if migration failed*/ |
766 | void mem_cgroup_end_migration(struct page *newpage) | ||
724 | { | 767 | { |
725 | mem_cgroup_uncharge_page(page); | 768 | /* |
769 | * At success, page->mapping is not NULL. | ||
770 | * special rollback care is necessary when | ||
771 | * 1. at migration failure. (newpage->mapping is cleared in this case) | ||
772 | * 2. the newpage was moved but not remapped again because the task | ||
773 | * exits and the newpage is obsolete. In this case, the new page | ||
774 | * may be a swapcache. So, we just call mem_cgroup_uncharge_page() | ||
775 | * always for avoiding mess. The page_cgroup will be removed if | ||
776 | * unnecessary. File cache pages is still on radix-tree. Don't | ||
777 | * care it. | ||
778 | */ | ||
779 | if (!newpage->mapping) | ||
780 | __mem_cgroup_uncharge_common(newpage, | ||
781 | MEM_CGROUP_CHARGE_TYPE_FORCE); | ||
782 | else if (PageAnon(newpage)) | ||
783 | mem_cgroup_uncharge_page(newpage); | ||
726 | } | 784 | } |
727 | 785 | ||
728 | /* | 786 | /* |
729 | * We know both *page* and *newpage* are now not-on-LRU and PG_locked. | 787 | * A call to try to shrink memory usage under specified resource controller. |
730 | * And no race with uncharge() routines because page_cgroup for *page* | 788 | * This is typically used for page reclaiming for shmem for reducing side |
731 | * has extra one reference by mem_cgroup_prepare_migration. | 789 | * effect of page allocation from shmem, which is used by some mem_cgroup. |
732 | */ | 790 | */ |
733 | void mem_cgroup_page_migration(struct page *page, struct page *newpage) | 791 | int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) |
734 | { | 792 | { |
735 | struct page_cgroup *pc; | 793 | struct mem_cgroup *mem; |
736 | struct mem_cgroup_per_zone *mz; | 794 | int progress = 0; |
737 | unsigned long flags; | 795 | int retry = MEM_CGROUP_RECLAIM_RETRIES; |
738 | 796 | ||
739 | lock_page_cgroup(page); | 797 | if (mem_cgroup_subsys.disabled) |
740 | pc = page_get_page_cgroup(page); | 798 | return 0; |
741 | if (!pc) { | ||
742 | unlock_page_cgroup(page); | ||
743 | return; | ||
744 | } | ||
745 | 799 | ||
746 | mz = page_cgroup_zoneinfo(pc); | 800 | rcu_read_lock(); |
747 | spin_lock_irqsave(&mz->lru_lock, flags); | 801 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
748 | __mem_cgroup_remove_list(mz, pc); | 802 | css_get(&mem->css); |
749 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 803 | rcu_read_unlock(); |
750 | 804 | ||
751 | page_assign_page_cgroup(page, NULL); | 805 | do { |
752 | unlock_page_cgroup(page); | 806 | progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); |
807 | } while (!progress && --retry); | ||
753 | 808 | ||
754 | pc->page = newpage; | 809 | css_put(&mem->css); |
755 | lock_page_cgroup(newpage); | 810 | if (!retry) |
756 | page_assign_page_cgroup(newpage, pc); | 811 | return -ENOMEM; |
812 | return 0; | ||
813 | } | ||
757 | 814 | ||
758 | mz = page_cgroup_zoneinfo(pc); | 815 | int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) |
759 | spin_lock_irqsave(&mz->lru_lock, flags); | 816 | { |
760 | __mem_cgroup_add_list(mz, pc); | 817 | |
761 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 818 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; |
819 | int progress; | ||
820 | int ret = 0; | ||
762 | 821 | ||
763 | unlock_page_cgroup(newpage); | 822 | while (res_counter_set_limit(&memcg->res, val)) { |
823 | if (signal_pending(current)) { | ||
824 | ret = -EINTR; | ||
825 | break; | ||
826 | } | ||
827 | if (!retry_count) { | ||
828 | ret = -EBUSY; | ||
829 | break; | ||
830 | } | ||
831 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL); | ||
832 | if (!progress) | ||
833 | retry_count--; | ||
834 | } | ||
835 | return ret; | ||
764 | } | 836 | } |
765 | 837 | ||
838 | |||
766 | /* | 839 | /* |
767 | * This routine traverse page_cgroup in given list and drop them all. | 840 | * This routine traverse page_cgroup in given list and drop them all. |
768 | * This routine ignores page_cgroup->ref_cnt. | ||
769 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 841 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
770 | */ | 842 | */ |
771 | #define FORCE_UNCHARGE_BATCH (128) | 843 | #define FORCE_UNCHARGE_BATCH (128) |
@@ -790,12 +862,20 @@ static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | |||
790 | page = pc->page; | 862 | page = pc->page; |
791 | get_page(page); | 863 | get_page(page); |
792 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 864 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
793 | mem_cgroup_uncharge_page(page); | 865 | /* |
794 | put_page(page); | 866 | * Check if this page is on LRU. !LRU page can be found |
795 | if (--count <= 0) { | 867 | * if it's under page migration. |
796 | count = FORCE_UNCHARGE_BATCH; | 868 | */ |
869 | if (PageLRU(page)) { | ||
870 | __mem_cgroup_uncharge_common(page, | ||
871 | MEM_CGROUP_CHARGE_TYPE_FORCE); | ||
872 | put_page(page); | ||
873 | if (--count <= 0) { | ||
874 | count = FORCE_UNCHARGE_BATCH; | ||
875 | cond_resched(); | ||
876 | } | ||
877 | } else | ||
797 | cond_resched(); | 878 | cond_resched(); |
798 | } | ||
799 | spin_lock_irqsave(&mz->lru_lock, flags); | 879 | spin_lock_irqsave(&mz->lru_lock, flags); |
800 | } | 880 | } |
801 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 881 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
@@ -810,9 +890,6 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem) | |||
810 | int ret = -EBUSY; | 890 | int ret = -EBUSY; |
811 | int node, zid; | 891 | int node, zid; |
812 | 892 | ||
813 | if (mem_cgroup_subsys.disabled) | ||
814 | return 0; | ||
815 | |||
816 | css_get(&mem->css); | 893 | css_get(&mem->css); |
817 | /* | 894 | /* |
818 | * page reclaim code (kswapd etc..) will move pages between | 895 | * page reclaim code (kswapd etc..) will move pages between |
@@ -838,32 +915,34 @@ out: | |||
838 | return ret; | 915 | return ret; |
839 | } | 916 | } |
840 | 917 | ||
841 | static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp) | ||
842 | { | ||
843 | *tmp = memparse(buf, &buf); | ||
844 | if (*buf != '\0') | ||
845 | return -EINVAL; | ||
846 | |||
847 | /* | ||
848 | * Round up the value to the closest page size | ||
849 | */ | ||
850 | *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT; | ||
851 | return 0; | ||
852 | } | ||
853 | |||
854 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 918 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
855 | { | 919 | { |
856 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, | 920 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, |
857 | cft->private); | 921 | cft->private); |
858 | } | 922 | } |
859 | 923 | /* | |
860 | static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 924 | * The user of this function is... |
861 | struct file *file, const char __user *userbuf, | 925 | * RES_LIMIT. |
862 | size_t nbytes, loff_t *ppos) | 926 | */ |
927 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | ||
928 | const char *buffer) | ||
863 | { | 929 | { |
864 | return res_counter_write(&mem_cgroup_from_cont(cont)->res, | 930 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
865 | cft->private, userbuf, nbytes, ppos, | 931 | unsigned long long val; |
866 | mem_cgroup_write_strategy); | 932 | int ret; |
933 | |||
934 | switch (cft->private) { | ||
935 | case RES_LIMIT: | ||
936 | /* This function does all necessary parse...reuse it */ | ||
937 | ret = res_counter_memparse_write_strategy(buffer, &val); | ||
938 | if (!ret) | ||
939 | ret = mem_cgroup_resize_limit(memcg, val); | ||
940 | break; | ||
941 | default: | ||
942 | ret = -EINVAL; /* should be BUG() ? */ | ||
943 | break; | ||
944 | } | ||
945 | return ret; | ||
867 | } | 946 | } |
868 | 947 | ||
869 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 948 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
@@ -940,7 +1019,7 @@ static struct cftype mem_cgroup_files[] = { | |||
940 | { | 1019 | { |
941 | .name = "limit_in_bytes", | 1020 | .name = "limit_in_bytes", |
942 | .private = RES_LIMIT, | 1021 | .private = RES_LIMIT, |
943 | .write = mem_cgroup_write, | 1022 | .write_string = mem_cgroup_write, |
944 | .read_u64 = mem_cgroup_read, | 1023 | .read_u64 = mem_cgroup_read, |
945 | }, | 1024 | }, |
946 | { | 1025 | { |
@@ -1070,8 +1149,6 @@ static void mem_cgroup_destroy(struct cgroup_subsys *ss, | |||
1070 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 1149 | static int mem_cgroup_populate(struct cgroup_subsys *ss, |
1071 | struct cgroup *cont) | 1150 | struct cgroup *cont) |
1072 | { | 1151 | { |
1073 | if (mem_cgroup_subsys.disabled) | ||
1074 | return 0; | ||
1075 | return cgroup_add_files(cont, ss, mem_cgroup_files, | 1152 | return cgroup_add_files(cont, ss, mem_cgroup_files, |
1076 | ARRAY_SIZE(mem_cgroup_files)); | 1153 | ARRAY_SIZE(mem_cgroup_files)); |
1077 | } | 1154 | } |
@@ -1084,9 +1161,6 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |||
1084 | struct mm_struct *mm; | 1161 | struct mm_struct *mm; |
1085 | struct mem_cgroup *mem, *old_mem; | 1162 | struct mem_cgroup *mem, *old_mem; |
1086 | 1163 | ||
1087 | if (mem_cgroup_subsys.disabled) | ||
1088 | return; | ||
1089 | |||
1090 | mm = get_task_mm(p); | 1164 | mm = get_task_mm(p); |
1091 | if (mm == NULL) | 1165 | if (mm == NULL) |
1092 | return; | 1166 | return; |
diff --git a/mm/memory.c b/mm/memory.c index 2302d228fe04..a8ca04faaea6 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -61,6 +61,8 @@ | |||
61 | #include <linux/swapops.h> | 61 | #include <linux/swapops.h> |
62 | #include <linux/elf.h> | 62 | #include <linux/elf.h> |
63 | 63 | ||
64 | #include "internal.h" | ||
65 | |||
64 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 66 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
65 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 67 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
66 | unsigned long max_mapnr; | 68 | unsigned long max_mapnr; |
@@ -211,7 +213,7 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | |||
211 | * | 213 | * |
212 | * Must be called with pagetable lock held. | 214 | * Must be called with pagetable lock held. |
213 | */ | 215 | */ |
214 | void free_pgd_range(struct mmu_gather **tlb, | 216 | void free_pgd_range(struct mmu_gather *tlb, |
215 | unsigned long addr, unsigned long end, | 217 | unsigned long addr, unsigned long end, |
216 | unsigned long floor, unsigned long ceiling) | 218 | unsigned long floor, unsigned long ceiling) |
217 | { | 219 | { |
@@ -262,16 +264,16 @@ void free_pgd_range(struct mmu_gather **tlb, | |||
262 | return; | 264 | return; |
263 | 265 | ||
264 | start = addr; | 266 | start = addr; |
265 | pgd = pgd_offset((*tlb)->mm, addr); | 267 | pgd = pgd_offset(tlb->mm, addr); |
266 | do { | 268 | do { |
267 | next = pgd_addr_end(addr, end); | 269 | next = pgd_addr_end(addr, end); |
268 | if (pgd_none_or_clear_bad(pgd)) | 270 | if (pgd_none_or_clear_bad(pgd)) |
269 | continue; | 271 | continue; |
270 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 272 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
271 | } while (pgd++, addr = next, addr != end); | 273 | } while (pgd++, addr = next, addr != end); |
272 | } | 274 | } |
273 | 275 | ||
274 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | 276 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
275 | unsigned long floor, unsigned long ceiling) | 277 | unsigned long floor, unsigned long ceiling) |
276 | { | 278 | { |
277 | while (vma) { | 279 | while (vma) { |
@@ -372,7 +374,8 @@ static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) | |||
372 | * | 374 | * |
373 | * The calling function must still handle the error. | 375 | * The calling function must still handle the error. |
374 | */ | 376 | */ |
375 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | 377 | static void print_bad_pte(struct vm_area_struct *vma, pte_t pte, |
378 | unsigned long vaddr) | ||
376 | { | 379 | { |
377 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | 380 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " |
378 | "vm_flags = %lx, vaddr = %lx\n", | 381 | "vm_flags = %lx, vaddr = %lx\n", |
@@ -899,9 +902,23 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp, | |||
899 | } | 902 | } |
900 | 903 | ||
901 | if (unlikely(is_vm_hugetlb_page(vma))) { | 904 | if (unlikely(is_vm_hugetlb_page(vma))) { |
902 | unmap_hugepage_range(vma, start, end); | 905 | /* |
903 | zap_work -= (end - start) / | 906 | * It is undesirable to test vma->vm_file as it |
904 | (HPAGE_SIZE / PAGE_SIZE); | 907 | * should be non-null for valid hugetlb area. |
908 | * However, vm_file will be NULL in the error | ||
909 | * cleanup path of do_mmap_pgoff. When | ||
910 | * hugetlbfs ->mmap method fails, | ||
911 | * do_mmap_pgoff() nullifies vma->vm_file | ||
912 | * before calling this function to clean up. | ||
913 | * Since no pte has actually been setup, it is | ||
914 | * safe to do nothing in this case. | ||
915 | */ | ||
916 | if (vma->vm_file) { | ||
917 | unmap_hugepage_range(vma, start, end, NULL); | ||
918 | zap_work -= (end - start) / | ||
919 | pages_per_huge_page(hstate_vma(vma)); | ||
920 | } | ||
921 | |||
905 | start = end; | 922 | start = end; |
906 | } else | 923 | } else |
907 | start = unmap_page_range(*tlbp, vma, | 924 | start = unmap_page_range(*tlbp, vma, |
@@ -982,19 +999,24 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |||
982 | goto no_page_table; | 999 | goto no_page_table; |
983 | 1000 | ||
984 | pud = pud_offset(pgd, address); | 1001 | pud = pud_offset(pgd, address); |
985 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 1002 | if (pud_none(*pud)) |
986 | goto no_page_table; | 1003 | goto no_page_table; |
987 | 1004 | if (pud_huge(*pud)) { | |
1005 | BUG_ON(flags & FOLL_GET); | ||
1006 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | ||
1007 | goto out; | ||
1008 | } | ||
1009 | if (unlikely(pud_bad(*pud))) | ||
1010 | goto no_page_table; | ||
1011 | |||
988 | pmd = pmd_offset(pud, address); | 1012 | pmd = pmd_offset(pud, address); |
989 | if (pmd_none(*pmd)) | 1013 | if (pmd_none(*pmd)) |
990 | goto no_page_table; | 1014 | goto no_page_table; |
991 | |||
992 | if (pmd_huge(*pmd)) { | 1015 | if (pmd_huge(*pmd)) { |
993 | BUG_ON(flags & FOLL_GET); | 1016 | BUG_ON(flags & FOLL_GET); |
994 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 1017 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
995 | goto out; | 1018 | goto out; |
996 | } | 1019 | } |
997 | |||
998 | if (unlikely(pmd_bad(*pmd))) | 1020 | if (unlikely(pmd_bad(*pmd))) |
999 | goto no_page_table; | 1021 | goto no_page_table; |
1000 | 1022 | ||
@@ -1058,11 +1080,9 @@ static inline int use_zero_page(struct vm_area_struct *vma) | |||
1058 | if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) | 1080 | if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) |
1059 | return 0; | 1081 | return 0; |
1060 | /* | 1082 | /* |
1061 | * And if we have a fault or a nopfn routine, it's not an | 1083 | * And if we have a fault routine, it's not an anonymous region. |
1062 | * anonymous region. | ||
1063 | */ | 1084 | */ |
1064 | return !vma->vm_ops || | 1085 | return !vma->vm_ops || !vma->vm_ops->fault; |
1065 | (!vma->vm_ops->fault && !vma->vm_ops->nopfn); | ||
1066 | } | 1086 | } |
1067 | 1087 | ||
1068 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 1088 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
@@ -1338,6 +1358,11 @@ out: | |||
1338 | * | 1358 | * |
1339 | * This function should only be called from a vm_ops->fault handler, and | 1359 | * This function should only be called from a vm_ops->fault handler, and |
1340 | * in that case the handler should return NULL. | 1360 | * in that case the handler should return NULL. |
1361 | * | ||
1362 | * vma cannot be a COW mapping. | ||
1363 | * | ||
1364 | * As this is called only for pages that do not currently exist, we | ||
1365 | * do not need to flush old virtual caches or the TLB. | ||
1341 | */ | 1366 | */ |
1342 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 1367 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1343 | unsigned long pfn) | 1368 | unsigned long pfn) |
@@ -1548,6 +1573,8 @@ static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |||
1548 | unsigned long next; | 1573 | unsigned long next; |
1549 | int err; | 1574 | int err; |
1550 | 1575 | ||
1576 | BUG_ON(pud_huge(*pud)); | ||
1577 | |||
1551 | pmd = pmd_alloc(mm, pud, addr); | 1578 | pmd = pmd_alloc(mm, pud, addr); |
1552 | if (!pmd) | 1579 | if (!pmd) |
1553 | return -ENOMEM; | 1580 | return -ENOMEM; |
@@ -2501,59 +2528,6 @@ static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2501 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 2528 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
2502 | } | 2529 | } |
2503 | 2530 | ||
2504 | |||
2505 | /* | ||
2506 | * do_no_pfn() tries to create a new page mapping for a page without | ||
2507 | * a struct_page backing it | ||
2508 | * | ||
2509 | * As this is called only for pages that do not currently exist, we | ||
2510 | * do not need to flush old virtual caches or the TLB. | ||
2511 | * | ||
2512 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | ||
2513 | * but allow concurrent faults), and pte mapped but not yet locked. | ||
2514 | * We return with mmap_sem still held, but pte unmapped and unlocked. | ||
2515 | * | ||
2516 | * It is expected that the ->nopfn handler always returns the same pfn | ||
2517 | * for a given virtual mapping. | ||
2518 | * | ||
2519 | * Mark this `noinline' to prevent it from bloating the main pagefault code. | ||
2520 | */ | ||
2521 | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, | ||
2522 | unsigned long address, pte_t *page_table, pmd_t *pmd, | ||
2523 | int write_access) | ||
2524 | { | ||
2525 | spinlock_t *ptl; | ||
2526 | pte_t entry; | ||
2527 | unsigned long pfn; | ||
2528 | |||
2529 | pte_unmap(page_table); | ||
2530 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | ||
2531 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | ||
2532 | |||
2533 | pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); | ||
2534 | |||
2535 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | ||
2536 | |||
2537 | if (unlikely(pfn == NOPFN_OOM)) | ||
2538 | return VM_FAULT_OOM; | ||
2539 | else if (unlikely(pfn == NOPFN_SIGBUS)) | ||
2540 | return VM_FAULT_SIGBUS; | ||
2541 | else if (unlikely(pfn == NOPFN_REFAULT)) | ||
2542 | return 0; | ||
2543 | |||
2544 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | ||
2545 | |||
2546 | /* Only go through if we didn't race with anybody else... */ | ||
2547 | if (pte_none(*page_table)) { | ||
2548 | entry = pfn_pte(pfn, vma->vm_page_prot); | ||
2549 | if (write_access) | ||
2550 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | ||
2551 | set_pte_at(mm, address, page_table, entry); | ||
2552 | } | ||
2553 | pte_unmap_unlock(page_table, ptl); | ||
2554 | return 0; | ||
2555 | } | ||
2556 | |||
2557 | /* | 2531 | /* |
2558 | * Fault of a previously existing named mapping. Repopulate the pte | 2532 | * Fault of a previously existing named mapping. Repopulate the pte |
2559 | * from the encoded file_pte if possible. This enables swappable | 2533 | * from the encoded file_pte if possible. This enables swappable |
@@ -2614,9 +2588,6 @@ static inline int handle_pte_fault(struct mm_struct *mm, | |||
2614 | if (likely(vma->vm_ops->fault)) | 2588 | if (likely(vma->vm_ops->fault)) |
2615 | return do_linear_fault(mm, vma, address, | 2589 | return do_linear_fault(mm, vma, address, |
2616 | pte, pmd, write_access, entry); | 2590 | pte, pmd, write_access, entry); |
2617 | if (unlikely(vma->vm_ops->nopfn)) | ||
2618 | return do_no_pfn(mm, vma, address, pte, | ||
2619 | pmd, write_access); | ||
2620 | } | 2591 | } |
2621 | return do_anonymous_page(mm, vma, address, | 2592 | return do_anonymous_page(mm, vma, address, |
2622 | pte, pmd, write_access); | 2593 | pte, pmd, write_access); |
@@ -2804,6 +2775,86 @@ int in_gate_area_no_task(unsigned long addr) | |||
2804 | 2775 | ||
2805 | #endif /* __HAVE_ARCH_GATE_AREA */ | 2776 | #endif /* __HAVE_ARCH_GATE_AREA */ |
2806 | 2777 | ||
2778 | #ifdef CONFIG_HAVE_IOREMAP_PROT | ||
2779 | static resource_size_t follow_phys(struct vm_area_struct *vma, | ||
2780 | unsigned long address, unsigned int flags, | ||
2781 | unsigned long *prot) | ||
2782 | { | ||
2783 | pgd_t *pgd; | ||
2784 | pud_t *pud; | ||
2785 | pmd_t *pmd; | ||
2786 | pte_t *ptep, pte; | ||
2787 | spinlock_t *ptl; | ||
2788 | resource_size_t phys_addr = 0; | ||
2789 | struct mm_struct *mm = vma->vm_mm; | ||
2790 | |||
2791 | VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP))); | ||
2792 | |||
2793 | pgd = pgd_offset(mm, address); | ||
2794 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | ||
2795 | goto no_page_table; | ||
2796 | |||
2797 | pud = pud_offset(pgd, address); | ||
2798 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | ||
2799 | goto no_page_table; | ||
2800 | |||
2801 | pmd = pmd_offset(pud, address); | ||
2802 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | ||
2803 | goto no_page_table; | ||
2804 | |||
2805 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | ||
2806 | if (pmd_huge(*pmd)) | ||
2807 | goto no_page_table; | ||
2808 | |||
2809 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | ||
2810 | if (!ptep) | ||
2811 | goto out; | ||
2812 | |||
2813 | pte = *ptep; | ||
2814 | if (!pte_present(pte)) | ||
2815 | goto unlock; | ||
2816 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | ||
2817 | goto unlock; | ||
2818 | phys_addr = pte_pfn(pte); | ||
2819 | phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ | ||
2820 | |||
2821 | *prot = pgprot_val(pte_pgprot(pte)); | ||
2822 | |||
2823 | unlock: | ||
2824 | pte_unmap_unlock(ptep, ptl); | ||
2825 | out: | ||
2826 | return phys_addr; | ||
2827 | no_page_table: | ||
2828 | return 0; | ||
2829 | } | ||
2830 | |||
2831 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | ||
2832 | void *buf, int len, int write) | ||
2833 | { | ||
2834 | resource_size_t phys_addr; | ||
2835 | unsigned long prot = 0; | ||
2836 | void *maddr; | ||
2837 | int offset = addr & (PAGE_SIZE-1); | ||
2838 | |||
2839 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | ||
2840 | return -EINVAL; | ||
2841 | |||
2842 | phys_addr = follow_phys(vma, addr, write, &prot); | ||
2843 | |||
2844 | if (!phys_addr) | ||
2845 | return -EINVAL; | ||
2846 | |||
2847 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | ||
2848 | if (write) | ||
2849 | memcpy_toio(maddr + offset, buf, len); | ||
2850 | else | ||
2851 | memcpy_fromio(buf, maddr + offset, len); | ||
2852 | iounmap(maddr); | ||
2853 | |||
2854 | return len; | ||
2855 | } | ||
2856 | #endif | ||
2857 | |||
2807 | /* | 2858 | /* |
2808 | * Access another process' address space. | 2859 | * Access another process' address space. |
2809 | * Source/target buffer must be kernel space, | 2860 | * Source/target buffer must be kernel space, |
@@ -2813,7 +2864,6 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in | |||
2813 | { | 2864 | { |
2814 | struct mm_struct *mm; | 2865 | struct mm_struct *mm; |
2815 | struct vm_area_struct *vma; | 2866 | struct vm_area_struct *vma; |
2816 | struct page *page; | ||
2817 | void *old_buf = buf; | 2867 | void *old_buf = buf; |
2818 | 2868 | ||
2819 | mm = get_task_mm(tsk); | 2869 | mm = get_task_mm(tsk); |
@@ -2825,28 +2875,44 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in | |||
2825 | while (len) { | 2875 | while (len) { |
2826 | int bytes, ret, offset; | 2876 | int bytes, ret, offset; |
2827 | void *maddr; | 2877 | void *maddr; |
2878 | struct page *page = NULL; | ||
2828 | 2879 | ||
2829 | ret = get_user_pages(tsk, mm, addr, 1, | 2880 | ret = get_user_pages(tsk, mm, addr, 1, |
2830 | write, 1, &page, &vma); | 2881 | write, 1, &page, &vma); |
2831 | if (ret <= 0) | 2882 | if (ret <= 0) { |
2832 | break; | 2883 | /* |
2833 | 2884 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
2834 | bytes = len; | 2885 | * we can access using slightly different code. |
2835 | offset = addr & (PAGE_SIZE-1); | 2886 | */ |
2836 | if (bytes > PAGE_SIZE-offset) | 2887 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
2837 | bytes = PAGE_SIZE-offset; | 2888 | vma = find_vma(mm, addr); |
2838 | 2889 | if (!vma) | |
2839 | maddr = kmap(page); | 2890 | break; |
2840 | if (write) { | 2891 | if (vma->vm_ops && vma->vm_ops->access) |
2841 | copy_to_user_page(vma, page, addr, | 2892 | ret = vma->vm_ops->access(vma, addr, buf, |
2842 | maddr + offset, buf, bytes); | 2893 | len, write); |
2843 | set_page_dirty_lock(page); | 2894 | if (ret <= 0) |
2895 | #endif | ||
2896 | break; | ||
2897 | bytes = ret; | ||
2844 | } else { | 2898 | } else { |
2845 | copy_from_user_page(vma, page, addr, | 2899 | bytes = len; |
2846 | buf, maddr + offset, bytes); | 2900 | offset = addr & (PAGE_SIZE-1); |
2901 | if (bytes > PAGE_SIZE-offset) | ||
2902 | bytes = PAGE_SIZE-offset; | ||
2903 | |||
2904 | maddr = kmap(page); | ||
2905 | if (write) { | ||
2906 | copy_to_user_page(vma, page, addr, | ||
2907 | maddr + offset, buf, bytes); | ||
2908 | set_page_dirty_lock(page); | ||
2909 | } else { | ||
2910 | copy_from_user_page(vma, page, addr, | ||
2911 | buf, maddr + offset, bytes); | ||
2912 | } | ||
2913 | kunmap(page); | ||
2914 | page_cache_release(page); | ||
2847 | } | 2915 | } |
2848 | kunmap(page); | ||
2849 | page_cache_release(page); | ||
2850 | len -= bytes; | 2916 | len -= bytes; |
2851 | buf += bytes; | 2917 | buf += bytes; |
2852 | addr += bytes; | 2918 | addr += bytes; |
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index 833f854eabe5..89fee2dcb039 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c | |||
@@ -62,9 +62,9 @@ static void release_memory_resource(struct resource *res) | |||
62 | 62 | ||
63 | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE | 63 | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE |
64 | #ifndef CONFIG_SPARSEMEM_VMEMMAP | 64 | #ifndef CONFIG_SPARSEMEM_VMEMMAP |
65 | static void get_page_bootmem(unsigned long info, struct page *page, int magic) | 65 | static void get_page_bootmem(unsigned long info, struct page *page, int type) |
66 | { | 66 | { |
67 | atomic_set(&page->_mapcount, magic); | 67 | atomic_set(&page->_mapcount, type); |
68 | SetPagePrivate(page); | 68 | SetPagePrivate(page); |
69 | set_page_private(page, info); | 69 | set_page_private(page, info); |
70 | atomic_inc(&page->_count); | 70 | atomic_inc(&page->_count); |
@@ -72,10 +72,10 @@ static void get_page_bootmem(unsigned long info, struct page *page, int magic) | |||
72 | 72 | ||
73 | void put_page_bootmem(struct page *page) | 73 | void put_page_bootmem(struct page *page) |
74 | { | 74 | { |
75 | int magic; | 75 | int type; |
76 | 76 | ||
77 | magic = atomic_read(&page->_mapcount); | 77 | type = atomic_read(&page->_mapcount); |
78 | BUG_ON(magic >= -1); | 78 | BUG_ON(type >= -1); |
79 | 79 | ||
80 | if (atomic_dec_return(&page->_count) == 1) { | 80 | if (atomic_dec_return(&page->_count) == 1) { |
81 | ClearPagePrivate(page); | 81 | ClearPagePrivate(page); |
@@ -86,7 +86,7 @@ void put_page_bootmem(struct page *page) | |||
86 | 86 | ||
87 | } | 87 | } |
88 | 88 | ||
89 | void register_page_bootmem_info_section(unsigned long start_pfn) | 89 | static void register_page_bootmem_info_section(unsigned long start_pfn) |
90 | { | 90 | { |
91 | unsigned long *usemap, mapsize, section_nr, i; | 91 | unsigned long *usemap, mapsize, section_nr, i; |
92 | struct mem_section *ms; | 92 | struct mem_section *ms; |
@@ -119,7 +119,7 @@ void register_page_bootmem_info_section(unsigned long start_pfn) | |||
119 | mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; | 119 | mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; |
120 | 120 | ||
121 | for (i = 0; i < mapsize; i++, page++) | 121 | for (i = 0; i < mapsize; i++, page++) |
122 | get_page_bootmem(section_nr, page, MIX_INFO); | 122 | get_page_bootmem(section_nr, page, MIX_SECTION_INFO); |
123 | 123 | ||
124 | } | 124 | } |
125 | 125 | ||
@@ -429,7 +429,9 @@ int online_pages(unsigned long pfn, unsigned long nr_pages) | |||
429 | 429 | ||
430 | if (need_zonelists_rebuild) | 430 | if (need_zonelists_rebuild) |
431 | build_all_zonelists(); | 431 | build_all_zonelists(); |
432 | vm_total_pages = nr_free_pagecache_pages(); | 432 | else |
433 | vm_total_pages = nr_free_pagecache_pages(); | ||
434 | |||
433 | writeback_set_ratelimit(); | 435 | writeback_set_ratelimit(); |
434 | 436 | ||
435 | if (onlined_pages) | 437 | if (onlined_pages) |
@@ -455,7 +457,7 @@ static pg_data_t *hotadd_new_pgdat(int nid, u64 start) | |||
455 | /* we can use NODE_DATA(nid) from here */ | 457 | /* we can use NODE_DATA(nid) from here */ |
456 | 458 | ||
457 | /* init node's zones as empty zones, we don't have any present pages.*/ | 459 | /* init node's zones as empty zones, we don't have any present pages.*/ |
458 | free_area_init_node(nid, pgdat, zones_size, start_pfn, zholes_size); | 460 | free_area_init_node(nid, zones_size, start_pfn, zholes_size); |
459 | 461 | ||
460 | return pgdat; | 462 | return pgdat; |
461 | } | 463 | } |
@@ -521,6 +523,66 @@ EXPORT_SYMBOL_GPL(add_memory); | |||
521 | 523 | ||
522 | #ifdef CONFIG_MEMORY_HOTREMOVE | 524 | #ifdef CONFIG_MEMORY_HOTREMOVE |
523 | /* | 525 | /* |
526 | * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy | ||
527 | * set and the size of the free page is given by page_order(). Using this, | ||
528 | * the function determines if the pageblock contains only free pages. | ||
529 | * Due to buddy contraints, a free page at least the size of a pageblock will | ||
530 | * be located at the start of the pageblock | ||
531 | */ | ||
532 | static inline int pageblock_free(struct page *page) | ||
533 | { | ||
534 | return PageBuddy(page) && page_order(page) >= pageblock_order; | ||
535 | } | ||
536 | |||
537 | /* Return the start of the next active pageblock after a given page */ | ||
538 | static struct page *next_active_pageblock(struct page *page) | ||
539 | { | ||
540 | int pageblocks_stride; | ||
541 | |||
542 | /* Ensure the starting page is pageblock-aligned */ | ||
543 | BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); | ||
544 | |||
545 | /* Move forward by at least 1 * pageblock_nr_pages */ | ||
546 | pageblocks_stride = 1; | ||
547 | |||
548 | /* If the entire pageblock is free, move to the end of free page */ | ||
549 | if (pageblock_free(page)) | ||
550 | pageblocks_stride += page_order(page) - pageblock_order; | ||
551 | |||
552 | return page + (pageblocks_stride * pageblock_nr_pages); | ||
553 | } | ||
554 | |||
555 | /* Checks if this range of memory is likely to be hot-removable. */ | ||
556 | int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) | ||
557 | { | ||
558 | int type; | ||
559 | struct page *page = pfn_to_page(start_pfn); | ||
560 | struct page *end_page = page + nr_pages; | ||
561 | |||
562 | /* Check the starting page of each pageblock within the range */ | ||
563 | for (; page < end_page; page = next_active_pageblock(page)) { | ||
564 | type = get_pageblock_migratetype(page); | ||
565 | |||
566 | /* | ||
567 | * A pageblock containing MOVABLE or free pages is considered | ||
568 | * removable | ||
569 | */ | ||
570 | if (type != MIGRATE_MOVABLE && !pageblock_free(page)) | ||
571 | return 0; | ||
572 | |||
573 | /* | ||
574 | * A pageblock starting with a PageReserved page is not | ||
575 | * considered removable. | ||
576 | */ | ||
577 | if (PageReserved(page)) | ||
578 | return 0; | ||
579 | } | ||
580 | |||
581 | /* All pageblocks in the memory block are likely to be hot-removable */ | ||
582 | return 1; | ||
583 | } | ||
584 | |||
585 | /* | ||
524 | * Confirm all pages in a range [start, end) is belongs to the same zone. | 586 | * Confirm all pages in a range [start, end) is belongs to the same zone. |
525 | */ | 587 | */ |
526 | static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) | 588 | static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) |
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index c94e58b192c3..e550bec20582 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -1481,7 +1481,7 @@ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, | |||
1481 | 1481 | ||
1482 | if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { | 1482 | if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { |
1483 | zl = node_zonelist(interleave_nid(*mpol, vma, addr, | 1483 | zl = node_zonelist(interleave_nid(*mpol, vma, addr, |
1484 | HPAGE_SHIFT), gfp_flags); | 1484 | huge_page_shift(hstate_vma(vma))), gfp_flags); |
1485 | } else { | 1485 | } else { |
1486 | zl = policy_zonelist(gfp_flags, *mpol); | 1486 | zl = policy_zonelist(gfp_flags, *mpol); |
1487 | if ((*mpol)->mode == MPOL_BIND) | 1487 | if ((*mpol)->mode == MPOL_BIND) |
@@ -2220,9 +2220,12 @@ static void check_huge_range(struct vm_area_struct *vma, | |||
2220 | { | 2220 | { |
2221 | unsigned long addr; | 2221 | unsigned long addr; |
2222 | struct page *page; | 2222 | struct page *page; |
2223 | struct hstate *h = hstate_vma(vma); | ||
2224 | unsigned long sz = huge_page_size(h); | ||
2223 | 2225 | ||
2224 | for (addr = start; addr < end; addr += HPAGE_SIZE) { | 2226 | for (addr = start; addr < end; addr += sz) { |
2225 | pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK); | 2227 | pte_t *ptep = huge_pte_offset(vma->vm_mm, |
2228 | addr & huge_page_mask(h)); | ||
2226 | pte_t pte; | 2229 | pte_t pte; |
2227 | 2230 | ||
2228 | if (!ptep) | 2231 | if (!ptep) |
diff --git a/mm/migrate.c b/mm/migrate.c index 55bd355d170d..153572fb60b8 100644 --- a/mm/migrate.c +++ b/mm/migrate.c | |||
@@ -30,6 +30,7 @@ | |||
30 | #include <linux/vmalloc.h> | 30 | #include <linux/vmalloc.h> |
31 | #include <linux/security.h> | 31 | #include <linux/security.h> |
32 | #include <linux/memcontrol.h> | 32 | #include <linux/memcontrol.h> |
33 | #include <linux/syscalls.h> | ||
33 | 34 | ||
34 | #include "internal.h" | 35 | #include "internal.h" |
35 | 36 | ||
@@ -284,7 +285,15 @@ void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | |||
284 | 285 | ||
285 | page = migration_entry_to_page(entry); | 286 | page = migration_entry_to_page(entry); |
286 | 287 | ||
287 | get_page(page); | 288 | /* |
289 | * Once radix-tree replacement of page migration started, page_count | ||
290 | * *must* be zero. And, we don't want to call wait_on_page_locked() | ||
291 | * against a page without get_page(). | ||
292 | * So, we use get_page_unless_zero(), here. Even failed, page fault | ||
293 | * will occur again. | ||
294 | */ | ||
295 | if (!get_page_unless_zero(page)) | ||
296 | goto out; | ||
288 | pte_unmap_unlock(ptep, ptl); | 297 | pte_unmap_unlock(ptep, ptl); |
289 | wait_on_page_locked(page); | 298 | wait_on_page_locked(page); |
290 | put_page(page); | 299 | put_page(page); |
@@ -304,6 +313,7 @@ out: | |||
304 | static int migrate_page_move_mapping(struct address_space *mapping, | 313 | static int migrate_page_move_mapping(struct address_space *mapping, |
305 | struct page *newpage, struct page *page) | 314 | struct page *newpage, struct page *page) |
306 | { | 315 | { |
316 | int expected_count; | ||
307 | void **pslot; | 317 | void **pslot; |
308 | 318 | ||
309 | if (!mapping) { | 319 | if (!mapping) { |
@@ -313,14 +323,20 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
313 | return 0; | 323 | return 0; |
314 | } | 324 | } |
315 | 325 | ||
316 | write_lock_irq(&mapping->tree_lock); | 326 | spin_lock_irq(&mapping->tree_lock); |
317 | 327 | ||
318 | pslot = radix_tree_lookup_slot(&mapping->page_tree, | 328 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
319 | page_index(page)); | 329 | page_index(page)); |
320 | 330 | ||
321 | if (page_count(page) != 2 + !!PagePrivate(page) || | 331 | expected_count = 2 + !!PagePrivate(page); |
332 | if (page_count(page) != expected_count || | ||
322 | (struct page *)radix_tree_deref_slot(pslot) != page) { | 333 | (struct page *)radix_tree_deref_slot(pslot) != page) { |
323 | write_unlock_irq(&mapping->tree_lock); | 334 | spin_unlock_irq(&mapping->tree_lock); |
335 | return -EAGAIN; | ||
336 | } | ||
337 | |||
338 | if (!page_freeze_refs(page, expected_count)) { | ||
339 | spin_unlock_irq(&mapping->tree_lock); | ||
324 | return -EAGAIN; | 340 | return -EAGAIN; |
325 | } | 341 | } |
326 | 342 | ||
@@ -337,6 +353,7 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
337 | 353 | ||
338 | radix_tree_replace_slot(pslot, newpage); | 354 | radix_tree_replace_slot(pslot, newpage); |
339 | 355 | ||
356 | page_unfreeze_refs(page, expected_count); | ||
340 | /* | 357 | /* |
341 | * Drop cache reference from old page. | 358 | * Drop cache reference from old page. |
342 | * We know this isn't the last reference. | 359 | * We know this isn't the last reference. |
@@ -356,7 +373,9 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
356 | __dec_zone_page_state(page, NR_FILE_PAGES); | 373 | __dec_zone_page_state(page, NR_FILE_PAGES); |
357 | __inc_zone_page_state(newpage, NR_FILE_PAGES); | 374 | __inc_zone_page_state(newpage, NR_FILE_PAGES); |
358 | 375 | ||
359 | write_unlock_irq(&mapping->tree_lock); | 376 | spin_unlock_irq(&mapping->tree_lock); |
377 | if (!PageSwapCache(newpage)) | ||
378 | mem_cgroup_uncharge_cache_page(page); | ||
360 | 379 | ||
361 | return 0; | 380 | return 0; |
362 | } | 381 | } |
@@ -610,7 +629,6 @@ static int move_to_new_page(struct page *newpage, struct page *page) | |||
610 | rc = fallback_migrate_page(mapping, newpage, page); | 629 | rc = fallback_migrate_page(mapping, newpage, page); |
611 | 630 | ||
612 | if (!rc) { | 631 | if (!rc) { |
613 | mem_cgroup_page_migration(page, newpage); | ||
614 | remove_migration_ptes(page, newpage); | 632 | remove_migration_ptes(page, newpage); |
615 | } else | 633 | } else |
616 | newpage->mapping = NULL; | 634 | newpage->mapping = NULL; |
@@ -640,6 +658,14 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
640 | /* page was freed from under us. So we are done. */ | 658 | /* page was freed from under us. So we are done. */ |
641 | goto move_newpage; | 659 | goto move_newpage; |
642 | 660 | ||
661 | charge = mem_cgroup_prepare_migration(page, newpage); | ||
662 | if (charge == -ENOMEM) { | ||
663 | rc = -ENOMEM; | ||
664 | goto move_newpage; | ||
665 | } | ||
666 | /* prepare cgroup just returns 0 or -ENOMEM */ | ||
667 | BUG_ON(charge); | ||
668 | |||
643 | rc = -EAGAIN; | 669 | rc = -EAGAIN; |
644 | if (TestSetPageLocked(page)) { | 670 | if (TestSetPageLocked(page)) { |
645 | if (!force) | 671 | if (!force) |
@@ -691,19 +717,14 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
691 | goto rcu_unlock; | 717 | goto rcu_unlock; |
692 | } | 718 | } |
693 | 719 | ||
694 | charge = mem_cgroup_prepare_migration(page); | ||
695 | /* Establish migration ptes or remove ptes */ | 720 | /* Establish migration ptes or remove ptes */ |
696 | try_to_unmap(page, 1); | 721 | try_to_unmap(page, 1); |
697 | 722 | ||
698 | if (!page_mapped(page)) | 723 | if (!page_mapped(page)) |
699 | rc = move_to_new_page(newpage, page); | 724 | rc = move_to_new_page(newpage, page); |
700 | 725 | ||
701 | if (rc) { | 726 | if (rc) |
702 | remove_migration_ptes(page, page); | 727 | remove_migration_ptes(page, page); |
703 | if (charge) | ||
704 | mem_cgroup_end_migration(page); | ||
705 | } else if (charge) | ||
706 | mem_cgroup_end_migration(newpage); | ||
707 | rcu_unlock: | 728 | rcu_unlock: |
708 | if (rcu_locked) | 729 | if (rcu_locked) |
709 | rcu_read_unlock(); | 730 | rcu_read_unlock(); |
@@ -724,6 +745,8 @@ unlock: | |||
724 | } | 745 | } |
725 | 746 | ||
726 | move_newpage: | 747 | move_newpage: |
748 | if (!charge) | ||
749 | mem_cgroup_end_migration(newpage); | ||
727 | /* | 750 | /* |
728 | * Move the new page to the LRU. If migration was not successful | 751 | * Move the new page to the LRU. If migration was not successful |
729 | * then this will free the page. | 752 | * then this will free the page. |
@@ -1070,7 +1093,6 @@ out2: | |||
1070 | mmput(mm); | 1093 | mmput(mm); |
1071 | return err; | 1094 | return err; |
1072 | } | 1095 | } |
1073 | #endif | ||
1074 | 1096 | ||
1075 | /* | 1097 | /* |
1076 | * Call migration functions in the vma_ops that may prepare | 1098 | * Call migration functions in the vma_ops that may prepare |
@@ -1092,3 +1114,4 @@ int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | |||
1092 | } | 1114 | } |
1093 | return err; | 1115 | return err; |
1094 | } | 1116 | } |
1117 | #endif | ||
diff --git a/mm/mm_init.c b/mm/mm_init.c new file mode 100644 index 000000000000..c6af41ea9994 --- /dev/null +++ b/mm/mm_init.c | |||
@@ -0,0 +1,152 @@ | |||
1 | /* | ||
2 | * mm_init.c - Memory initialisation verification and debugging | ||
3 | * | ||
4 | * Copyright 2008 IBM Corporation, 2008 | ||
5 | * Author Mel Gorman <mel@csn.ul.ie> | ||
6 | * | ||
7 | */ | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/init.h> | ||
10 | #include <linux/kobject.h> | ||
11 | #include <linux/module.h> | ||
12 | #include "internal.h" | ||
13 | |||
14 | #ifdef CONFIG_DEBUG_MEMORY_INIT | ||
15 | int __meminitdata mminit_loglevel; | ||
16 | |||
17 | /* The zonelists are simply reported, validation is manual. */ | ||
18 | void mminit_verify_zonelist(void) | ||
19 | { | ||
20 | int nid; | ||
21 | |||
22 | if (mminit_loglevel < MMINIT_VERIFY) | ||
23 | return; | ||
24 | |||
25 | for_each_online_node(nid) { | ||
26 | pg_data_t *pgdat = NODE_DATA(nid); | ||
27 | struct zone *zone; | ||
28 | struct zoneref *z; | ||
29 | struct zonelist *zonelist; | ||
30 | int i, listid, zoneid; | ||
31 | |||
32 | BUG_ON(MAX_ZONELISTS > 2); | ||
33 | for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { | ||
34 | |||
35 | /* Identify the zone and nodelist */ | ||
36 | zoneid = i % MAX_NR_ZONES; | ||
37 | listid = i / MAX_NR_ZONES; | ||
38 | zonelist = &pgdat->node_zonelists[listid]; | ||
39 | zone = &pgdat->node_zones[zoneid]; | ||
40 | if (!populated_zone(zone)) | ||
41 | continue; | ||
42 | |||
43 | /* Print information about the zonelist */ | ||
44 | printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", | ||
45 | listid > 0 ? "thisnode" : "general", nid, | ||
46 | zone->name); | ||
47 | |||
48 | /* Iterate the zonelist */ | ||
49 | for_each_zone_zonelist(zone, z, zonelist, zoneid) { | ||
50 | #ifdef CONFIG_NUMA | ||
51 | printk(KERN_CONT "%d:%s ", | ||
52 | zone->node, zone->name); | ||
53 | #else | ||
54 | printk(KERN_CONT "0:%s ", zone->name); | ||
55 | #endif /* CONFIG_NUMA */ | ||
56 | } | ||
57 | printk(KERN_CONT "\n"); | ||
58 | } | ||
59 | } | ||
60 | } | ||
61 | |||
62 | void __init mminit_verify_pageflags_layout(void) | ||
63 | { | ||
64 | int shift, width; | ||
65 | unsigned long or_mask, add_mask; | ||
66 | |||
67 | shift = 8 * sizeof(unsigned long); | ||
68 | width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH; | ||
69 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", | ||
70 | "Section %d Node %d Zone %d Flags %d\n", | ||
71 | SECTIONS_WIDTH, | ||
72 | NODES_WIDTH, | ||
73 | ZONES_WIDTH, | ||
74 | NR_PAGEFLAGS); | ||
75 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", | ||
76 | "Section %d Node %d Zone %d\n", | ||
77 | #ifdef SECTIONS_SHIFT | ||
78 | SECTIONS_SHIFT, | ||
79 | #else | ||
80 | 0, | ||
81 | #endif | ||
82 | NODES_SHIFT, | ||
83 | ZONES_SHIFT); | ||
84 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_offsets", | ||
85 | "Section %lu Node %lu Zone %lu\n", | ||
86 | (unsigned long)SECTIONS_PGSHIFT, | ||
87 | (unsigned long)NODES_PGSHIFT, | ||
88 | (unsigned long)ZONES_PGSHIFT); | ||
89 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_zoneid", | ||
90 | "Zone ID: %lu -> %lu\n", | ||
91 | (unsigned long)ZONEID_PGOFF, | ||
92 | (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT)); | ||
93 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", | ||
94 | "location: %d -> %d unused %d -> %d flags %d -> %d\n", | ||
95 | shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); | ||
96 | #ifdef NODE_NOT_IN_PAGE_FLAGS | ||
97 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", | ||
98 | "Node not in page flags"); | ||
99 | #endif | ||
100 | |||
101 | if (SECTIONS_WIDTH) { | ||
102 | shift -= SECTIONS_WIDTH; | ||
103 | BUG_ON(shift != SECTIONS_PGSHIFT); | ||
104 | } | ||
105 | if (NODES_WIDTH) { | ||
106 | shift -= NODES_WIDTH; | ||
107 | BUG_ON(shift != NODES_PGSHIFT); | ||
108 | } | ||
109 | if (ZONES_WIDTH) { | ||
110 | shift -= ZONES_WIDTH; | ||
111 | BUG_ON(shift != ZONES_PGSHIFT); | ||
112 | } | ||
113 | |||
114 | /* Check for bitmask overlaps */ | ||
115 | or_mask = (ZONES_MASK << ZONES_PGSHIFT) | | ||
116 | (NODES_MASK << NODES_PGSHIFT) | | ||
117 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | ||
118 | add_mask = (ZONES_MASK << ZONES_PGSHIFT) + | ||
119 | (NODES_MASK << NODES_PGSHIFT) + | ||
120 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | ||
121 | BUG_ON(or_mask != add_mask); | ||
122 | } | ||
123 | |||
124 | void __meminit mminit_verify_page_links(struct page *page, enum zone_type zone, | ||
125 | unsigned long nid, unsigned long pfn) | ||
126 | { | ||
127 | BUG_ON(page_to_nid(page) != nid); | ||
128 | BUG_ON(page_zonenum(page) != zone); | ||
129 | BUG_ON(page_to_pfn(page) != pfn); | ||
130 | } | ||
131 | |||
132 | static __init int set_mminit_loglevel(char *str) | ||
133 | { | ||
134 | get_option(&str, &mminit_loglevel); | ||
135 | return 0; | ||
136 | } | ||
137 | early_param("mminit_loglevel", set_mminit_loglevel); | ||
138 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ | ||
139 | |||
140 | struct kobject *mm_kobj; | ||
141 | EXPORT_SYMBOL_GPL(mm_kobj); | ||
142 | |||
143 | static int __init mm_sysfs_init(void) | ||
144 | { | ||
145 | mm_kobj = kobject_create_and_add("mm", kernel_kobj); | ||
146 | if (!mm_kobj) | ||
147 | return -ENOMEM; | ||
148 | |||
149 | return 0; | ||
150 | } | ||
151 | |||
152 | __initcall(mm_sysfs_init); | ||
@@ -32,6 +32,8 @@ | |||
32 | #include <asm/tlb.h> | 32 | #include <asm/tlb.h> |
33 | #include <asm/mmu_context.h> | 33 | #include <asm/mmu_context.h> |
34 | 34 | ||
35 | #include "internal.h" | ||
36 | |||
35 | #ifndef arch_mmap_check | 37 | #ifndef arch_mmap_check |
36 | #define arch_mmap_check(addr, len, flags) (0) | 38 | #define arch_mmap_check(addr, len, flags) (0) |
37 | #endif | 39 | #endif |
@@ -1108,6 +1110,9 @@ munmap_back: | |||
1108 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) | 1110 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) |
1109 | return -ENOMEM; | 1111 | return -ENOMEM; |
1110 | 1112 | ||
1113 | if (flags & MAP_NORESERVE) | ||
1114 | vm_flags |= VM_NORESERVE; | ||
1115 | |||
1111 | if (accountable && (!(flags & MAP_NORESERVE) || | 1116 | if (accountable && (!(flags & MAP_NORESERVE) || |
1112 | sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { | 1117 | sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { |
1113 | if (vm_flags & VM_SHARED) { | 1118 | if (vm_flags & VM_SHARED) { |
@@ -1763,7 +1768,7 @@ static void unmap_region(struct mm_struct *mm, | |||
1763 | update_hiwater_rss(mm); | 1768 | update_hiwater_rss(mm); |
1764 | unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); | 1769 | unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); |
1765 | vm_unacct_memory(nr_accounted); | 1770 | vm_unacct_memory(nr_accounted); |
1766 | free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, | 1771 | free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, |
1767 | next? next->vm_start: 0); | 1772 | next? next->vm_start: 0); |
1768 | tlb_finish_mmu(tlb, start, end); | 1773 | tlb_finish_mmu(tlb, start, end); |
1769 | } | 1774 | } |
@@ -1807,7 +1812,8 @@ int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, | |||
1807 | struct mempolicy *pol; | 1812 | struct mempolicy *pol; |
1808 | struct vm_area_struct *new; | 1813 | struct vm_area_struct *new; |
1809 | 1814 | ||
1810 | if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) | 1815 | if (is_vm_hugetlb_page(vma) && (addr & |
1816 | ~(huge_page_mask(hstate_vma(vma))))) | ||
1811 | return -EINVAL; | 1817 | return -EINVAL; |
1812 | 1818 | ||
1813 | if (mm->map_count >= sysctl_max_map_count) | 1819 | if (mm->map_count >= sysctl_max_map_count) |
@@ -2063,7 +2069,7 @@ void exit_mmap(struct mm_struct *mm) | |||
2063 | /* Use -1 here to ensure all VMAs in the mm are unmapped */ | 2069 | /* Use -1 here to ensure all VMAs in the mm are unmapped */ |
2064 | end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); | 2070 | end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); |
2065 | vm_unacct_memory(nr_accounted); | 2071 | vm_unacct_memory(nr_accounted); |
2066 | free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); | 2072 | free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); |
2067 | tlb_finish_mmu(tlb, 0, end); | 2073 | tlb_finish_mmu(tlb, 0, end); |
2068 | 2074 | ||
2069 | /* | 2075 | /* |
diff --git a/mm/mprotect.c b/mm/mprotect.c index 360d9cc8b38c..abd645a3b0a0 100644 --- a/mm/mprotect.c +++ b/mm/mprotect.c | |||
@@ -153,12 +153,10 @@ mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, | |||
153 | * If we make a private mapping writable we increase our commit; | 153 | * If we make a private mapping writable we increase our commit; |
154 | * but (without finer accounting) cannot reduce our commit if we | 154 | * but (without finer accounting) cannot reduce our commit if we |
155 | * make it unwritable again. | 155 | * make it unwritable again. |
156 | * | ||
157 | * FIXME? We haven't defined a VM_NORESERVE flag, so mprotecting | ||
158 | * a MAP_NORESERVE private mapping to writable will now reserve. | ||
159 | */ | 156 | */ |
160 | if (newflags & VM_WRITE) { | 157 | if (newflags & VM_WRITE) { |
161 | if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_SHARED))) { | 158 | if (!(oldflags & (VM_ACCOUNT|VM_WRITE| |
159 | VM_SHARED|VM_NORESERVE))) { | ||
162 | charged = nrpages; | 160 | charged = nrpages; |
163 | if (security_vm_enough_memory(charged)) | 161 | if (security_vm_enough_memory(charged)) |
164 | return -ENOMEM; | 162 | return -ENOMEM; |
diff --git a/mm/nommu.c b/mm/nommu.c index 4462b6a3fcb9..5edccd9c9218 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -22,7 +22,7 @@ | |||
22 | #include <linux/pagemap.h> | 22 | #include <linux/pagemap.h> |
23 | #include <linux/slab.h> | 23 | #include <linux/slab.h> |
24 | #include <linux/vmalloc.h> | 24 | #include <linux/vmalloc.h> |
25 | #include <linux/ptrace.h> | 25 | #include <linux/tracehook.h> |
26 | #include <linux/blkdev.h> | 26 | #include <linux/blkdev.h> |
27 | #include <linux/backing-dev.h> | 27 | #include <linux/backing-dev.h> |
28 | #include <linux/mount.h> | 28 | #include <linux/mount.h> |
@@ -745,7 +745,7 @@ static unsigned long determine_vm_flags(struct file *file, | |||
745 | * it's being traced - otherwise breakpoints set in it may interfere | 745 | * it's being traced - otherwise breakpoints set in it may interfere |
746 | * with another untraced process | 746 | * with another untraced process |
747 | */ | 747 | */ |
748 | if ((flags & MAP_PRIVATE) && (current->ptrace & PT_PTRACED)) | 748 | if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) |
749 | vm_flags &= ~VM_MAYSHARE; | 749 | vm_flags &= ~VM_MAYSHARE; |
750 | 750 | ||
751 | return vm_flags; | 751 | return vm_flags; |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 94c6d8988ab3..24de8b65fdbd 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -1088,7 +1088,7 @@ int __set_page_dirty_nobuffers(struct page *page) | |||
1088 | if (!mapping) | 1088 | if (!mapping) |
1089 | return 1; | 1089 | return 1; |
1090 | 1090 | ||
1091 | write_lock_irq(&mapping->tree_lock); | 1091 | spin_lock_irq(&mapping->tree_lock); |
1092 | mapping2 = page_mapping(page); | 1092 | mapping2 = page_mapping(page); |
1093 | if (mapping2) { /* Race with truncate? */ | 1093 | if (mapping2) { /* Race with truncate? */ |
1094 | BUG_ON(mapping2 != mapping); | 1094 | BUG_ON(mapping2 != mapping); |
@@ -1102,7 +1102,7 @@ int __set_page_dirty_nobuffers(struct page *page) | |||
1102 | radix_tree_tag_set(&mapping->page_tree, | 1102 | radix_tree_tag_set(&mapping->page_tree, |
1103 | page_index(page), PAGECACHE_TAG_DIRTY); | 1103 | page_index(page), PAGECACHE_TAG_DIRTY); |
1104 | } | 1104 | } |
1105 | write_unlock_irq(&mapping->tree_lock); | 1105 | spin_unlock_irq(&mapping->tree_lock); |
1106 | if (mapping->host) { | 1106 | if (mapping->host) { |
1107 | /* !PageAnon && !swapper_space */ | 1107 | /* !PageAnon && !swapper_space */ |
1108 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 1108 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
@@ -1258,7 +1258,7 @@ int test_clear_page_writeback(struct page *page) | |||
1258 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1258 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
1259 | unsigned long flags; | 1259 | unsigned long flags; |
1260 | 1260 | ||
1261 | write_lock_irqsave(&mapping->tree_lock, flags); | 1261 | spin_lock_irqsave(&mapping->tree_lock, flags); |
1262 | ret = TestClearPageWriteback(page); | 1262 | ret = TestClearPageWriteback(page); |
1263 | if (ret) { | 1263 | if (ret) { |
1264 | radix_tree_tag_clear(&mapping->page_tree, | 1264 | radix_tree_tag_clear(&mapping->page_tree, |
@@ -1269,7 +1269,7 @@ int test_clear_page_writeback(struct page *page) | |||
1269 | __bdi_writeout_inc(bdi); | 1269 | __bdi_writeout_inc(bdi); |
1270 | } | 1270 | } |
1271 | } | 1271 | } |
1272 | write_unlock_irqrestore(&mapping->tree_lock, flags); | 1272 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
1273 | } else { | 1273 | } else { |
1274 | ret = TestClearPageWriteback(page); | 1274 | ret = TestClearPageWriteback(page); |
1275 | } | 1275 | } |
@@ -1287,7 +1287,7 @@ int test_set_page_writeback(struct page *page) | |||
1287 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1287 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
1288 | unsigned long flags; | 1288 | unsigned long flags; |
1289 | 1289 | ||
1290 | write_lock_irqsave(&mapping->tree_lock, flags); | 1290 | spin_lock_irqsave(&mapping->tree_lock, flags); |
1291 | ret = TestSetPageWriteback(page); | 1291 | ret = TestSetPageWriteback(page); |
1292 | if (!ret) { | 1292 | if (!ret) { |
1293 | radix_tree_tag_set(&mapping->page_tree, | 1293 | radix_tree_tag_set(&mapping->page_tree, |
@@ -1300,7 +1300,7 @@ int test_set_page_writeback(struct page *page) | |||
1300 | radix_tree_tag_clear(&mapping->page_tree, | 1300 | radix_tree_tag_clear(&mapping->page_tree, |
1301 | page_index(page), | 1301 | page_index(page), |
1302 | PAGECACHE_TAG_DIRTY); | 1302 | PAGECACHE_TAG_DIRTY); |
1303 | write_unlock_irqrestore(&mapping->tree_lock, flags); | 1303 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
1304 | } else { | 1304 | } else { |
1305 | ret = TestSetPageWriteback(page); | 1305 | ret = TestSetPageWriteback(page); |
1306 | } | 1306 | } |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 79ac4afc908c..6da667274df5 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -153,9 +153,9 @@ static unsigned long __meminitdata dma_reserve; | |||
153 | static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; | 153 | static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; |
154 | static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; | 154 | static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; |
155 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ | 155 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ |
156 | unsigned long __initdata required_kernelcore; | 156 | static unsigned long __initdata required_kernelcore; |
157 | static unsigned long __initdata required_movablecore; | 157 | static unsigned long __initdata required_movablecore; |
158 | unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | 158 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; |
159 | 159 | ||
160 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | 160 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ |
161 | int movable_zone; | 161 | int movable_zone; |
@@ -264,7 +264,7 @@ static void free_compound_page(struct page *page) | |||
264 | __free_pages_ok(page, compound_order(page)); | 264 | __free_pages_ok(page, compound_order(page)); |
265 | } | 265 | } |
266 | 266 | ||
267 | static void prep_compound_page(struct page *page, unsigned long order) | 267 | void prep_compound_page(struct page *page, unsigned long order) |
268 | { | 268 | { |
269 | int i; | 269 | int i; |
270 | int nr_pages = 1 << order; | 270 | int nr_pages = 1 << order; |
@@ -432,8 +432,9 @@ static inline void __free_one_page(struct page *page, | |||
432 | 432 | ||
433 | buddy = __page_find_buddy(page, page_idx, order); | 433 | buddy = __page_find_buddy(page, page_idx, order); |
434 | if (!page_is_buddy(page, buddy, order)) | 434 | if (!page_is_buddy(page, buddy, order)) |
435 | break; /* Move the buddy up one level. */ | 435 | break; |
436 | 436 | ||
437 | /* Our buddy is free, merge with it and move up one order. */ | ||
437 | list_del(&buddy->lru); | 438 | list_del(&buddy->lru); |
438 | zone->free_area[order].nr_free--; | 439 | zone->free_area[order].nr_free--; |
439 | rmv_page_order(buddy); | 440 | rmv_page_order(buddy); |
@@ -532,7 +533,7 @@ static void __free_pages_ok(struct page *page, unsigned int order) | |||
532 | /* | 533 | /* |
533 | * permit the bootmem allocator to evade page validation on high-order frees | 534 | * permit the bootmem allocator to evade page validation on high-order frees |
534 | */ | 535 | */ |
535 | void __free_pages_bootmem(struct page *page, unsigned int order) | 536 | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) |
536 | { | 537 | { |
537 | if (order == 0) { | 538 | if (order == 0) { |
538 | __ClearPageReserved(page); | 539 | __ClearPageReserved(page); |
@@ -673,9 +674,9 @@ static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { | |||
673 | * Note that start_page and end_pages are not aligned on a pageblock | 674 | * Note that start_page and end_pages are not aligned on a pageblock |
674 | * boundary. If alignment is required, use move_freepages_block() | 675 | * boundary. If alignment is required, use move_freepages_block() |
675 | */ | 676 | */ |
676 | int move_freepages(struct zone *zone, | 677 | static int move_freepages(struct zone *zone, |
677 | struct page *start_page, struct page *end_page, | 678 | struct page *start_page, struct page *end_page, |
678 | int migratetype) | 679 | int migratetype) |
679 | { | 680 | { |
680 | struct page *page; | 681 | struct page *page; |
681 | unsigned long order; | 682 | unsigned long order; |
@@ -714,7 +715,8 @@ int move_freepages(struct zone *zone, | |||
714 | return pages_moved; | 715 | return pages_moved; |
715 | } | 716 | } |
716 | 717 | ||
717 | int move_freepages_block(struct zone *zone, struct page *page, int migratetype) | 718 | static int move_freepages_block(struct zone *zone, struct page *page, |
719 | int migratetype) | ||
718 | { | 720 | { |
719 | unsigned long start_pfn, end_pfn; | 721 | unsigned long start_pfn, end_pfn; |
720 | struct page *start_page, *end_page; | 722 | struct page *start_page, *end_page; |
@@ -1429,7 +1431,7 @@ try_next_zone: | |||
1429 | /* | 1431 | /* |
1430 | * This is the 'heart' of the zoned buddy allocator. | 1432 | * This is the 'heart' of the zoned buddy allocator. |
1431 | */ | 1433 | */ |
1432 | static struct page * | 1434 | struct page * |
1433 | __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, | 1435 | __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, |
1434 | struct zonelist *zonelist, nodemask_t *nodemask) | 1436 | struct zonelist *zonelist, nodemask_t *nodemask) |
1435 | { | 1437 | { |
@@ -1632,22 +1634,7 @@ nopage: | |||
1632 | got_pg: | 1634 | got_pg: |
1633 | return page; | 1635 | return page; |
1634 | } | 1636 | } |
1635 | 1637 | EXPORT_SYMBOL(__alloc_pages_internal); | |
1636 | struct page * | ||
1637 | __alloc_pages(gfp_t gfp_mask, unsigned int order, | ||
1638 | struct zonelist *zonelist) | ||
1639 | { | ||
1640 | return __alloc_pages_internal(gfp_mask, order, zonelist, NULL); | ||
1641 | } | ||
1642 | |||
1643 | struct page * | ||
1644 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | ||
1645 | struct zonelist *zonelist, nodemask_t *nodemask) | ||
1646 | { | ||
1647 | return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask); | ||
1648 | } | ||
1649 | |||
1650 | EXPORT_SYMBOL(__alloc_pages); | ||
1651 | 1638 | ||
1652 | /* | 1639 | /* |
1653 | * Common helper functions. | 1640 | * Common helper functions. |
@@ -1711,6 +1698,59 @@ void free_pages(unsigned long addr, unsigned int order) | |||
1711 | 1698 | ||
1712 | EXPORT_SYMBOL(free_pages); | 1699 | EXPORT_SYMBOL(free_pages); |
1713 | 1700 | ||
1701 | /** | ||
1702 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | ||
1703 | * @size: the number of bytes to allocate | ||
1704 | * @gfp_mask: GFP flags for the allocation | ||
1705 | * | ||
1706 | * This function is similar to alloc_pages(), except that it allocates the | ||
1707 | * minimum number of pages to satisfy the request. alloc_pages() can only | ||
1708 | * allocate memory in power-of-two pages. | ||
1709 | * | ||
1710 | * This function is also limited by MAX_ORDER. | ||
1711 | * | ||
1712 | * Memory allocated by this function must be released by free_pages_exact(). | ||
1713 | */ | ||
1714 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | ||
1715 | { | ||
1716 | unsigned int order = get_order(size); | ||
1717 | unsigned long addr; | ||
1718 | |||
1719 | addr = __get_free_pages(gfp_mask, order); | ||
1720 | if (addr) { | ||
1721 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | ||
1722 | unsigned long used = addr + PAGE_ALIGN(size); | ||
1723 | |||
1724 | split_page(virt_to_page(addr), order); | ||
1725 | while (used < alloc_end) { | ||
1726 | free_page(used); | ||
1727 | used += PAGE_SIZE; | ||
1728 | } | ||
1729 | } | ||
1730 | |||
1731 | return (void *)addr; | ||
1732 | } | ||
1733 | EXPORT_SYMBOL(alloc_pages_exact); | ||
1734 | |||
1735 | /** | ||
1736 | * free_pages_exact - release memory allocated via alloc_pages_exact() | ||
1737 | * @virt: the value returned by alloc_pages_exact. | ||
1738 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | ||
1739 | * | ||
1740 | * Release the memory allocated by a previous call to alloc_pages_exact. | ||
1741 | */ | ||
1742 | void free_pages_exact(void *virt, size_t size) | ||
1743 | { | ||
1744 | unsigned long addr = (unsigned long)virt; | ||
1745 | unsigned long end = addr + PAGE_ALIGN(size); | ||
1746 | |||
1747 | while (addr < end) { | ||
1748 | free_page(addr); | ||
1749 | addr += PAGE_SIZE; | ||
1750 | } | ||
1751 | } | ||
1752 | EXPORT_SYMBOL(free_pages_exact); | ||
1753 | |||
1714 | static unsigned int nr_free_zone_pages(int offset) | 1754 | static unsigned int nr_free_zone_pages(int offset) |
1715 | { | 1755 | { |
1716 | struct zoneref *z; | 1756 | struct zoneref *z; |
@@ -2352,6 +2392,7 @@ void build_all_zonelists(void) | |||
2352 | 2392 | ||
2353 | if (system_state == SYSTEM_BOOTING) { | 2393 | if (system_state == SYSTEM_BOOTING) { |
2354 | __build_all_zonelists(NULL); | 2394 | __build_all_zonelists(NULL); |
2395 | mminit_verify_zonelist(); | ||
2355 | cpuset_init_current_mems_allowed(); | 2396 | cpuset_init_current_mems_allowed(); |
2356 | } else { | 2397 | } else { |
2357 | /* we have to stop all cpus to guarantee there is no user | 2398 | /* we have to stop all cpus to guarantee there is no user |
@@ -2534,6 +2575,7 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | |||
2534 | } | 2575 | } |
2535 | page = pfn_to_page(pfn); | 2576 | page = pfn_to_page(pfn); |
2536 | set_page_links(page, zone, nid, pfn); | 2577 | set_page_links(page, zone, nid, pfn); |
2578 | mminit_verify_page_links(page, zone, nid, pfn); | ||
2537 | init_page_count(page); | 2579 | init_page_count(page); |
2538 | reset_page_mapcount(page); | 2580 | reset_page_mapcount(page); |
2539 | SetPageReserved(page); | 2581 | SetPageReserved(page); |
@@ -2611,7 +2653,7 @@ static int zone_batchsize(struct zone *zone) | |||
2611 | return batch; | 2653 | return batch; |
2612 | } | 2654 | } |
2613 | 2655 | ||
2614 | inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 2656 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
2615 | { | 2657 | { |
2616 | struct per_cpu_pages *pcp; | 2658 | struct per_cpu_pages *pcp; |
2617 | 2659 | ||
@@ -2836,6 +2878,12 @@ __meminit int init_currently_empty_zone(struct zone *zone, | |||
2836 | 2878 | ||
2837 | zone->zone_start_pfn = zone_start_pfn; | 2879 | zone->zone_start_pfn = zone_start_pfn; |
2838 | 2880 | ||
2881 | mminit_dprintk(MMINIT_TRACE, "memmap_init", | ||
2882 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | ||
2883 | pgdat->node_id, | ||
2884 | (unsigned long)zone_idx(zone), | ||
2885 | zone_start_pfn, (zone_start_pfn + size)); | ||
2886 | |||
2839 | zone_init_free_lists(zone); | 2887 | zone_init_free_lists(zone); |
2840 | 2888 | ||
2841 | return 0; | 2889 | return 0; |
@@ -2975,7 +3023,8 @@ void __init sparse_memory_present_with_active_regions(int nid) | |||
2975 | void __init push_node_boundaries(unsigned int nid, | 3023 | void __init push_node_boundaries(unsigned int nid, |
2976 | unsigned long start_pfn, unsigned long end_pfn) | 3024 | unsigned long start_pfn, unsigned long end_pfn) |
2977 | { | 3025 | { |
2978 | printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", | 3026 | mminit_dprintk(MMINIT_TRACE, "zoneboundary", |
3027 | "Entering push_node_boundaries(%u, %lu, %lu)\n", | ||
2979 | nid, start_pfn, end_pfn); | 3028 | nid, start_pfn, end_pfn); |
2980 | 3029 | ||
2981 | /* Initialise the boundary for this node if necessary */ | 3030 | /* Initialise the boundary for this node if necessary */ |
@@ -2993,7 +3042,8 @@ void __init push_node_boundaries(unsigned int nid, | |||
2993 | static void __meminit account_node_boundary(unsigned int nid, | 3042 | static void __meminit account_node_boundary(unsigned int nid, |
2994 | unsigned long *start_pfn, unsigned long *end_pfn) | 3043 | unsigned long *start_pfn, unsigned long *end_pfn) |
2995 | { | 3044 | { |
2996 | printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", | 3045 | mminit_dprintk(MMINIT_TRACE, "zoneboundary", |
3046 | "Entering account_node_boundary(%u, %lu, %lu)\n", | ||
2997 | nid, *start_pfn, *end_pfn); | 3047 | nid, *start_pfn, *end_pfn); |
2998 | 3048 | ||
2999 | /* Return if boundary information has not been provided */ | 3049 | /* Return if boundary information has not been provided */ |
@@ -3050,7 +3100,7 @@ void __meminit get_pfn_range_for_nid(unsigned int nid, | |||
3050 | * assumption is made that zones within a node are ordered in monotonic | 3100 | * assumption is made that zones within a node are ordered in monotonic |
3051 | * increasing memory addresses so that the "highest" populated zone is used | 3101 | * increasing memory addresses so that the "highest" populated zone is used |
3052 | */ | 3102 | */ |
3053 | void __init find_usable_zone_for_movable(void) | 3103 | static void __init find_usable_zone_for_movable(void) |
3054 | { | 3104 | { |
3055 | int zone_index; | 3105 | int zone_index; |
3056 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 3106 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { |
@@ -3076,7 +3126,7 @@ void __init find_usable_zone_for_movable(void) | |||
3076 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 3126 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that |
3077 | * zones within a node are in order of monotonic increases memory addresses | 3127 | * zones within a node are in order of monotonic increases memory addresses |
3078 | */ | 3128 | */ |
3079 | void __meminit adjust_zone_range_for_zone_movable(int nid, | 3129 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
3080 | unsigned long zone_type, | 3130 | unsigned long zone_type, |
3081 | unsigned long node_start_pfn, | 3131 | unsigned long node_start_pfn, |
3082 | unsigned long node_end_pfn, | 3132 | unsigned long node_end_pfn, |
@@ -3137,7 +3187,7 @@ static unsigned long __meminit zone_spanned_pages_in_node(int nid, | |||
3137 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 3187 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, |
3138 | * then all holes in the requested range will be accounted for. | 3188 | * then all holes in the requested range will be accounted for. |
3139 | */ | 3189 | */ |
3140 | unsigned long __meminit __absent_pages_in_range(int nid, | 3190 | static unsigned long __meminit __absent_pages_in_range(int nid, |
3141 | unsigned long range_start_pfn, | 3191 | unsigned long range_start_pfn, |
3142 | unsigned long range_end_pfn) | 3192 | unsigned long range_end_pfn) |
3143 | { | 3193 | { |
@@ -3368,8 +3418,8 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3368 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; | 3418 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; |
3369 | if (realsize >= memmap_pages) { | 3419 | if (realsize >= memmap_pages) { |
3370 | realsize -= memmap_pages; | 3420 | realsize -= memmap_pages; |
3371 | printk(KERN_DEBUG | 3421 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3372 | " %s zone: %lu pages used for memmap\n", | 3422 | "%s zone: %lu pages used for memmap\n", |
3373 | zone_names[j], memmap_pages); | 3423 | zone_names[j], memmap_pages); |
3374 | } else | 3424 | } else |
3375 | printk(KERN_WARNING | 3425 | printk(KERN_WARNING |
@@ -3379,7 +3429,8 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3379 | /* Account for reserved pages */ | 3429 | /* Account for reserved pages */ |
3380 | if (j == 0 && realsize > dma_reserve) { | 3430 | if (j == 0 && realsize > dma_reserve) { |
3381 | realsize -= dma_reserve; | 3431 | realsize -= dma_reserve; |
3382 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", | 3432 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3433 | "%s zone: %lu pages reserved\n", | ||
3383 | zone_names[0], dma_reserve); | 3434 | zone_names[0], dma_reserve); |
3384 | } | 3435 | } |
3385 | 3436 | ||
@@ -3464,10 +3515,11 @@ static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) | |||
3464 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 3515 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
3465 | } | 3516 | } |
3466 | 3517 | ||
3467 | void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat, | 3518 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
3468 | unsigned long *zones_size, unsigned long node_start_pfn, | 3519 | unsigned long node_start_pfn, unsigned long *zholes_size) |
3469 | unsigned long *zholes_size) | ||
3470 | { | 3520 | { |
3521 | pg_data_t *pgdat = NODE_DATA(nid); | ||
3522 | |||
3471 | pgdat->node_id = nid; | 3523 | pgdat->node_id = nid; |
3472 | pgdat->node_start_pfn = node_start_pfn; | 3524 | pgdat->node_start_pfn = node_start_pfn; |
3473 | calculate_node_totalpages(pgdat, zones_size, zholes_size); | 3525 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
@@ -3520,10 +3572,13 @@ void __init add_active_range(unsigned int nid, unsigned long start_pfn, | |||
3520 | { | 3572 | { |
3521 | int i; | 3573 | int i; |
3522 | 3574 | ||
3523 | printk(KERN_DEBUG "Entering add_active_range(%d, %#lx, %#lx) " | 3575 | mminit_dprintk(MMINIT_TRACE, "memory_register", |
3524 | "%d entries of %d used\n", | 3576 | "Entering add_active_range(%d, %#lx, %#lx) " |
3525 | nid, start_pfn, end_pfn, | 3577 | "%d entries of %d used\n", |
3526 | nr_nodemap_entries, MAX_ACTIVE_REGIONS); | 3578 | nid, start_pfn, end_pfn, |
3579 | nr_nodemap_entries, MAX_ACTIVE_REGIONS); | ||
3580 | |||
3581 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); | ||
3527 | 3582 | ||
3528 | /* Merge with existing active regions if possible */ | 3583 | /* Merge with existing active regions if possible */ |
3529 | for (i = 0; i < nr_nodemap_entries; i++) { | 3584 | for (i = 0; i < nr_nodemap_entries; i++) { |
@@ -3669,7 +3724,7 @@ static void __init sort_node_map(void) | |||
3669 | } | 3724 | } |
3670 | 3725 | ||
3671 | /* Find the lowest pfn for a node */ | 3726 | /* Find the lowest pfn for a node */ |
3672 | unsigned long __init find_min_pfn_for_node(int nid) | 3727 | static unsigned long __init find_min_pfn_for_node(int nid) |
3673 | { | 3728 | { |
3674 | int i; | 3729 | int i; |
3675 | unsigned long min_pfn = ULONG_MAX; | 3730 | unsigned long min_pfn = ULONG_MAX; |
@@ -3741,7 +3796,7 @@ static unsigned long __init early_calculate_totalpages(void) | |||
3741 | * memory. When they don't, some nodes will have more kernelcore than | 3796 | * memory. When they don't, some nodes will have more kernelcore than |
3742 | * others | 3797 | * others |
3743 | */ | 3798 | */ |
3744 | void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) | 3799 | static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) |
3745 | { | 3800 | { |
3746 | int i, nid; | 3801 | int i, nid; |
3747 | unsigned long usable_startpfn; | 3802 | unsigned long usable_startpfn; |
@@ -3957,10 +4012,11 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |||
3957 | early_node_map[i].end_pfn); | 4012 | early_node_map[i].end_pfn); |
3958 | 4013 | ||
3959 | /* Initialise every node */ | 4014 | /* Initialise every node */ |
4015 | mminit_verify_pageflags_layout(); | ||
3960 | setup_nr_node_ids(); | 4016 | setup_nr_node_ids(); |
3961 | for_each_online_node(nid) { | 4017 | for_each_online_node(nid) { |
3962 | pg_data_t *pgdat = NODE_DATA(nid); | 4018 | pg_data_t *pgdat = NODE_DATA(nid); |
3963 | free_area_init_node(nid, pgdat, NULL, | 4019 | free_area_init_node(nid, NULL, |
3964 | find_min_pfn_for_node(nid), NULL); | 4020 | find_min_pfn_for_node(nid), NULL); |
3965 | 4021 | ||
3966 | /* Any memory on that node */ | 4022 | /* Any memory on that node */ |
@@ -4025,15 +4081,13 @@ void __init set_dma_reserve(unsigned long new_dma_reserve) | |||
4025 | } | 4081 | } |
4026 | 4082 | ||
4027 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 4083 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
4028 | static bootmem_data_t contig_bootmem_data; | 4084 | struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] }; |
4029 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | ||
4030 | |||
4031 | EXPORT_SYMBOL(contig_page_data); | 4085 | EXPORT_SYMBOL(contig_page_data); |
4032 | #endif | 4086 | #endif |
4033 | 4087 | ||
4034 | void __init free_area_init(unsigned long *zones_size) | 4088 | void __init free_area_init(unsigned long *zones_size) |
4035 | { | 4089 | { |
4036 | free_area_init_node(0, NODE_DATA(0), zones_size, | 4090 | free_area_init_node(0, zones_size, |
4037 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 4091 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
4038 | } | 4092 | } |
4039 | 4093 | ||
diff --git a/mm/pdflush.c b/mm/pdflush.c index 9d834aa4b979..0cbe0c60c6bf 100644 --- a/mm/pdflush.c +++ b/mm/pdflush.c | |||
@@ -130,7 +130,7 @@ static int __pdflush(struct pdflush_work *my_work) | |||
130 | * Thread creation: For how long have there been zero | 130 | * Thread creation: For how long have there been zero |
131 | * available threads? | 131 | * available threads? |
132 | */ | 132 | */ |
133 | if (jiffies - last_empty_jifs > 1 * HZ) { | 133 | if (time_after(jiffies, last_empty_jifs + 1 * HZ)) { |
134 | /* unlocked list_empty() test is OK here */ | 134 | /* unlocked list_empty() test is OK here */ |
135 | if (list_empty(&pdflush_list)) { | 135 | if (list_empty(&pdflush_list)) { |
136 | /* unlocked test is OK here */ | 136 | /* unlocked test is OK here */ |
@@ -151,7 +151,7 @@ static int __pdflush(struct pdflush_work *my_work) | |||
151 | if (nr_pdflush_threads <= MIN_PDFLUSH_THREADS) | 151 | if (nr_pdflush_threads <= MIN_PDFLUSH_THREADS) |
152 | continue; | 152 | continue; |
153 | pdf = list_entry(pdflush_list.prev, struct pdflush_work, list); | 153 | pdf = list_entry(pdflush_list.prev, struct pdflush_work, list); |
154 | if (jiffies - pdf->when_i_went_to_sleep > 1 * HZ) { | 154 | if (time_after(jiffies, pdf->when_i_went_to_sleep + 1 * HZ)) { |
155 | /* Limit exit rate */ | 155 | /* Limit exit rate */ |
156 | pdf->when_i_went_to_sleep = jiffies; | 156 | pdf->when_i_went_to_sleep = jiffies; |
157 | break; /* exeunt */ | 157 | break; /* exeunt */ |
diff --git a/mm/readahead.c b/mm/readahead.c index d8723a5f6496..77e8ddf945e9 100644 --- a/mm/readahead.c +++ b/mm/readahead.c | |||
@@ -382,9 +382,9 @@ ondemand_readahead(struct address_space *mapping, | |||
382 | if (hit_readahead_marker) { | 382 | if (hit_readahead_marker) { |
383 | pgoff_t start; | 383 | pgoff_t start; |
384 | 384 | ||
385 | read_lock_irq(&mapping->tree_lock); | 385 | rcu_read_lock(); |
386 | start = radix_tree_next_hole(&mapping->page_tree, offset, max+1); | 386 | start = radix_tree_next_hole(&mapping->page_tree, offset,max+1); |
387 | read_unlock_irq(&mapping->tree_lock); | 387 | rcu_read_unlock(); |
388 | 388 | ||
389 | if (!start || start - offset > max) | 389 | if (!start || start - offset > max) |
390 | return 0; | 390 | return 0; |
@@ -138,7 +138,7 @@ void anon_vma_unlink(struct vm_area_struct *vma) | |||
138 | anon_vma_free(anon_vma); | 138 | anon_vma_free(anon_vma); |
139 | } | 139 | } |
140 | 140 | ||
141 | static void anon_vma_ctor(struct kmem_cache *cachep, void *data) | 141 | static void anon_vma_ctor(void *data) |
142 | { | 142 | { |
143 | struct anon_vma *anon_vma = data; | 143 | struct anon_vma *anon_vma = data; |
144 | 144 | ||
@@ -576,14 +576,8 @@ void page_add_anon_rmap(struct page *page, | |||
576 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 576 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
577 | if (atomic_inc_and_test(&page->_mapcount)) | 577 | if (atomic_inc_and_test(&page->_mapcount)) |
578 | __page_set_anon_rmap(page, vma, address); | 578 | __page_set_anon_rmap(page, vma, address); |
579 | else { | 579 | else |
580 | __page_check_anon_rmap(page, vma, address); | 580 | __page_check_anon_rmap(page, vma, address); |
581 | /* | ||
582 | * We unconditionally charged during prepare, we uncharge here | ||
583 | * This takes care of balancing the reference counts | ||
584 | */ | ||
585 | mem_cgroup_uncharge_page(page); | ||
586 | } | ||
587 | } | 581 | } |
588 | 582 | ||
589 | /** | 583 | /** |
@@ -614,12 +608,6 @@ void page_add_file_rmap(struct page *page) | |||
614 | { | 608 | { |
615 | if (atomic_inc_and_test(&page->_mapcount)) | 609 | if (atomic_inc_and_test(&page->_mapcount)) |
616 | __inc_zone_page_state(page, NR_FILE_MAPPED); | 610 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
617 | else | ||
618 | /* | ||
619 | * We unconditionally charged during prepare, we uncharge here | ||
620 | * This takes care of balancing the reference counts | ||
621 | */ | ||
622 | mem_cgroup_uncharge_page(page); | ||
623 | } | 611 | } |
624 | 612 | ||
625 | #ifdef CONFIG_DEBUG_VM | 613 | #ifdef CONFIG_DEBUG_VM |
diff --git a/mm/shmem.c b/mm/shmem.c index e2a6ae1a44e9..952d361774bb 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -922,20 +922,26 @@ found: | |||
922 | error = 1; | 922 | error = 1; |
923 | if (!inode) | 923 | if (!inode) |
924 | goto out; | 924 | goto out; |
925 | /* Precharge page while we can wait, compensate afterwards */ | 925 | /* Precharge page using GFP_KERNEL while we can wait */ |
926 | error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); | 926 | error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); |
927 | if (error) | 927 | if (error) |
928 | goto out; | 928 | goto out; |
929 | error = radix_tree_preload(GFP_KERNEL); | 929 | error = radix_tree_preload(GFP_KERNEL); |
930 | if (error) | 930 | if (error) { |
931 | goto uncharge; | 931 | mem_cgroup_uncharge_cache_page(page); |
932 | goto out; | ||
933 | } | ||
932 | error = 1; | 934 | error = 1; |
933 | 935 | ||
934 | spin_lock(&info->lock); | 936 | spin_lock(&info->lock); |
935 | ptr = shmem_swp_entry(info, idx, NULL); | 937 | ptr = shmem_swp_entry(info, idx, NULL); |
936 | if (ptr && ptr->val == entry.val) | 938 | if (ptr && ptr->val == entry.val) { |
937 | error = add_to_page_cache(page, inode->i_mapping, | 939 | error = add_to_page_cache_locked(page, inode->i_mapping, |
938 | idx, GFP_NOWAIT); | 940 | idx, GFP_NOWAIT); |
941 | /* does mem_cgroup_uncharge_cache_page on error */ | ||
942 | } else /* we must compensate for our precharge above */ | ||
943 | mem_cgroup_uncharge_cache_page(page); | ||
944 | |||
939 | if (error == -EEXIST) { | 945 | if (error == -EEXIST) { |
940 | struct page *filepage = find_get_page(inode->i_mapping, idx); | 946 | struct page *filepage = find_get_page(inode->i_mapping, idx); |
941 | error = 1; | 947 | error = 1; |
@@ -961,8 +967,6 @@ found: | |||
961 | shmem_swp_unmap(ptr); | 967 | shmem_swp_unmap(ptr); |
962 | spin_unlock(&info->lock); | 968 | spin_unlock(&info->lock); |
963 | radix_tree_preload_end(); | 969 | radix_tree_preload_end(); |
964 | uncharge: | ||
965 | mem_cgroup_uncharge_page(page); | ||
966 | out: | 970 | out: |
967 | unlock_page(page); | 971 | unlock_page(page); |
968 | page_cache_release(page); | 972 | page_cache_release(page); |
@@ -1297,8 +1301,8 @@ repeat: | |||
1297 | SetPageUptodate(filepage); | 1301 | SetPageUptodate(filepage); |
1298 | set_page_dirty(filepage); | 1302 | set_page_dirty(filepage); |
1299 | swap_free(swap); | 1303 | swap_free(swap); |
1300 | } else if (!(error = add_to_page_cache( | 1304 | } else if (!(error = add_to_page_cache_locked(swappage, mapping, |
1301 | swappage, mapping, idx, GFP_NOWAIT))) { | 1305 | idx, GFP_NOWAIT))) { |
1302 | info->flags |= SHMEM_PAGEIN; | 1306 | info->flags |= SHMEM_PAGEIN; |
1303 | shmem_swp_set(info, entry, 0); | 1307 | shmem_swp_set(info, entry, 0); |
1304 | shmem_swp_unmap(entry); | 1308 | shmem_swp_unmap(entry); |
@@ -1311,17 +1315,14 @@ repeat: | |||
1311 | shmem_swp_unmap(entry); | 1315 | shmem_swp_unmap(entry); |
1312 | spin_unlock(&info->lock); | 1316 | spin_unlock(&info->lock); |
1313 | unlock_page(swappage); | 1317 | unlock_page(swappage); |
1318 | page_cache_release(swappage); | ||
1314 | if (error == -ENOMEM) { | 1319 | if (error == -ENOMEM) { |
1315 | /* allow reclaim from this memory cgroup */ | 1320 | /* allow reclaim from this memory cgroup */ |
1316 | error = mem_cgroup_cache_charge(swappage, | 1321 | error = mem_cgroup_shrink_usage(current->mm, |
1317 | current->mm, gfp & ~__GFP_HIGHMEM); | 1322 | gfp); |
1318 | if (error) { | 1323 | if (error) |
1319 | page_cache_release(swappage); | ||
1320 | goto failed; | 1324 | goto failed; |
1321 | } | ||
1322 | mem_cgroup_uncharge_page(swappage); | ||
1323 | } | 1325 | } |
1324 | page_cache_release(swappage); | ||
1325 | goto repeat; | 1326 | goto repeat; |
1326 | } | 1327 | } |
1327 | } else if (sgp == SGP_READ && !filepage) { | 1328 | } else if (sgp == SGP_READ && !filepage) { |
@@ -1358,6 +1359,8 @@ repeat: | |||
1358 | } | 1359 | } |
1359 | 1360 | ||
1360 | if (!filepage) { | 1361 | if (!filepage) { |
1362 | int ret; | ||
1363 | |||
1361 | spin_unlock(&info->lock); | 1364 | spin_unlock(&info->lock); |
1362 | filepage = shmem_alloc_page(gfp, info, idx); | 1365 | filepage = shmem_alloc_page(gfp, info, idx); |
1363 | if (!filepage) { | 1366 | if (!filepage) { |
@@ -1386,10 +1389,18 @@ repeat: | |||
1386 | swap = *entry; | 1389 | swap = *entry; |
1387 | shmem_swp_unmap(entry); | 1390 | shmem_swp_unmap(entry); |
1388 | } | 1391 | } |
1389 | if (error || swap.val || 0 != add_to_page_cache_lru( | 1392 | ret = error || swap.val; |
1390 | filepage, mapping, idx, GFP_NOWAIT)) { | 1393 | if (ret) |
1394 | mem_cgroup_uncharge_cache_page(filepage); | ||
1395 | else | ||
1396 | ret = add_to_page_cache_lru(filepage, mapping, | ||
1397 | idx, GFP_NOWAIT); | ||
1398 | /* | ||
1399 | * At add_to_page_cache_lru() failure, uncharge will | ||
1400 | * be done automatically. | ||
1401 | */ | ||
1402 | if (ret) { | ||
1391 | spin_unlock(&info->lock); | 1403 | spin_unlock(&info->lock); |
1392 | mem_cgroup_uncharge_page(filepage); | ||
1393 | page_cache_release(filepage); | 1404 | page_cache_release(filepage); |
1394 | shmem_unacct_blocks(info->flags, 1); | 1405 | shmem_unacct_blocks(info->flags, 1); |
1395 | shmem_free_blocks(inode, 1); | 1406 | shmem_free_blocks(inode, 1); |
@@ -1398,7 +1409,6 @@ repeat: | |||
1398 | goto failed; | 1409 | goto failed; |
1399 | goto repeat; | 1410 | goto repeat; |
1400 | } | 1411 | } |
1401 | mem_cgroup_uncharge_page(filepage); | ||
1402 | info->flags |= SHMEM_PAGEIN; | 1412 | info->flags |= SHMEM_PAGEIN; |
1403 | } | 1413 | } |
1404 | 1414 | ||
@@ -1690,26 +1700,38 @@ static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_ | |||
1690 | file_accessed(filp); | 1700 | file_accessed(filp); |
1691 | } | 1701 | } |
1692 | 1702 | ||
1693 | static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) | 1703 | static ssize_t shmem_file_aio_read(struct kiocb *iocb, |
1704 | const struct iovec *iov, unsigned long nr_segs, loff_t pos) | ||
1694 | { | 1705 | { |
1695 | read_descriptor_t desc; | 1706 | struct file *filp = iocb->ki_filp; |
1707 | ssize_t retval; | ||
1708 | unsigned long seg; | ||
1709 | size_t count; | ||
1710 | loff_t *ppos = &iocb->ki_pos; | ||
1696 | 1711 | ||
1697 | if ((ssize_t) count < 0) | 1712 | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
1698 | return -EINVAL; | 1713 | if (retval) |
1699 | if (!access_ok(VERIFY_WRITE, buf, count)) | 1714 | return retval; |
1700 | return -EFAULT; | ||
1701 | if (!count) | ||
1702 | return 0; | ||
1703 | 1715 | ||
1704 | desc.written = 0; | 1716 | for (seg = 0; seg < nr_segs; seg++) { |
1705 | desc.count = count; | 1717 | read_descriptor_t desc; |
1706 | desc.arg.buf = buf; | ||
1707 | desc.error = 0; | ||
1708 | 1718 | ||
1709 | do_shmem_file_read(filp, ppos, &desc, file_read_actor); | 1719 | desc.written = 0; |
1710 | if (desc.written) | 1720 | desc.arg.buf = iov[seg].iov_base; |
1711 | return desc.written; | 1721 | desc.count = iov[seg].iov_len; |
1712 | return desc.error; | 1722 | if (desc.count == 0) |
1723 | continue; | ||
1724 | desc.error = 0; | ||
1725 | do_shmem_file_read(filp, ppos, &desc, file_read_actor); | ||
1726 | retval += desc.written; | ||
1727 | if (desc.error) { | ||
1728 | retval = retval ?: desc.error; | ||
1729 | break; | ||
1730 | } | ||
1731 | if (desc.count > 0) | ||
1732 | break; | ||
1733 | } | ||
1734 | return retval; | ||
1713 | } | 1735 | } |
1714 | 1736 | ||
1715 | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | 1737 | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) |
@@ -2330,7 +2352,7 @@ static void shmem_destroy_inode(struct inode *inode) | |||
2330 | kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); | 2352 | kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); |
2331 | } | 2353 | } |
2332 | 2354 | ||
2333 | static void init_once(struct kmem_cache *cachep, void *foo) | 2355 | static void init_once(void *foo) |
2334 | { | 2356 | { |
2335 | struct shmem_inode_info *p = (struct shmem_inode_info *) foo; | 2357 | struct shmem_inode_info *p = (struct shmem_inode_info *) foo; |
2336 | 2358 | ||
@@ -2369,8 +2391,9 @@ static const struct file_operations shmem_file_operations = { | |||
2369 | .mmap = shmem_mmap, | 2391 | .mmap = shmem_mmap, |
2370 | #ifdef CONFIG_TMPFS | 2392 | #ifdef CONFIG_TMPFS |
2371 | .llseek = generic_file_llseek, | 2393 | .llseek = generic_file_llseek, |
2372 | .read = shmem_file_read, | 2394 | .read = do_sync_read, |
2373 | .write = do_sync_write, | 2395 | .write = do_sync_write, |
2396 | .aio_read = shmem_file_aio_read, | ||
2374 | .aio_write = generic_file_aio_write, | 2397 | .aio_write = generic_file_aio_write, |
2375 | .fsync = simple_sync_file, | 2398 | .fsync = simple_sync_file, |
2376 | .splice_read = generic_file_splice_read, | 2399 | .splice_read = generic_file_splice_read, |
@@ -406,7 +406,7 @@ struct kmem_cache { | |||
406 | unsigned int dflags; /* dynamic flags */ | 406 | unsigned int dflags; /* dynamic flags */ |
407 | 407 | ||
408 | /* constructor func */ | 408 | /* constructor func */ |
409 | void (*ctor)(struct kmem_cache *, void *); | 409 | void (*ctor)(void *obj); |
410 | 410 | ||
411 | /* 5) cache creation/removal */ | 411 | /* 5) cache creation/removal */ |
412 | const char *name; | 412 | const char *name; |
@@ -2137,8 +2137,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep) | |||
2137 | */ | 2137 | */ |
2138 | struct kmem_cache * | 2138 | struct kmem_cache * |
2139 | kmem_cache_create (const char *name, size_t size, size_t align, | 2139 | kmem_cache_create (const char *name, size_t size, size_t align, |
2140 | unsigned long flags, | 2140 | unsigned long flags, void (*ctor)(void *)) |
2141 | void (*ctor)(struct kmem_cache *, void *)) | ||
2142 | { | 2141 | { |
2143 | size_t left_over, slab_size, ralign; | 2142 | size_t left_over, slab_size, ralign; |
2144 | struct kmem_cache *cachep = NULL, *pc; | 2143 | struct kmem_cache *cachep = NULL, *pc; |
@@ -2653,7 +2652,7 @@ static void cache_init_objs(struct kmem_cache *cachep, | |||
2653 | * They must also be threaded. | 2652 | * They must also be threaded. |
2654 | */ | 2653 | */ |
2655 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 2654 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) |
2656 | cachep->ctor(cachep, objp + obj_offset(cachep)); | 2655 | cachep->ctor(objp + obj_offset(cachep)); |
2657 | 2656 | ||
2658 | if (cachep->flags & SLAB_RED_ZONE) { | 2657 | if (cachep->flags & SLAB_RED_ZONE) { |
2659 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 2658 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
@@ -2669,7 +2668,7 @@ static void cache_init_objs(struct kmem_cache *cachep, | |||
2669 | cachep->buffer_size / PAGE_SIZE, 0); | 2668 | cachep->buffer_size / PAGE_SIZE, 0); |
2670 | #else | 2669 | #else |
2671 | if (cachep->ctor) | 2670 | if (cachep->ctor) |
2672 | cachep->ctor(cachep, objp); | 2671 | cachep->ctor(objp); |
2673 | #endif | 2672 | #endif |
2674 | slab_bufctl(slabp)[i] = i + 1; | 2673 | slab_bufctl(slabp)[i] = i + 1; |
2675 | } | 2674 | } |
@@ -3093,7 +3092,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, | |||
3093 | #endif | 3092 | #endif |
3094 | objp += obj_offset(cachep); | 3093 | objp += obj_offset(cachep); |
3095 | if (cachep->ctor && cachep->flags & SLAB_POISON) | 3094 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
3096 | cachep->ctor(cachep, objp); | 3095 | cachep->ctor(objp); |
3097 | #if ARCH_SLAB_MINALIGN | 3096 | #if ARCH_SLAB_MINALIGN |
3098 | if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { | 3097 | if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { |
3099 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", | 3098 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
@@ -130,17 +130,17 @@ static LIST_HEAD(free_slob_large); | |||
130 | */ | 130 | */ |
131 | static inline int slob_page(struct slob_page *sp) | 131 | static inline int slob_page(struct slob_page *sp) |
132 | { | 132 | { |
133 | return test_bit(PG_active, &sp->flags); | 133 | return PageSlobPage((struct page *)sp); |
134 | } | 134 | } |
135 | 135 | ||
136 | static inline void set_slob_page(struct slob_page *sp) | 136 | static inline void set_slob_page(struct slob_page *sp) |
137 | { | 137 | { |
138 | __set_bit(PG_active, &sp->flags); | 138 | __SetPageSlobPage((struct page *)sp); |
139 | } | 139 | } |
140 | 140 | ||
141 | static inline void clear_slob_page(struct slob_page *sp) | 141 | static inline void clear_slob_page(struct slob_page *sp) |
142 | { | 142 | { |
143 | __clear_bit(PG_active, &sp->flags); | 143 | __ClearPageSlobPage((struct page *)sp); |
144 | } | 144 | } |
145 | 145 | ||
146 | /* | 146 | /* |
@@ -148,19 +148,19 @@ static inline void clear_slob_page(struct slob_page *sp) | |||
148 | */ | 148 | */ |
149 | static inline int slob_page_free(struct slob_page *sp) | 149 | static inline int slob_page_free(struct slob_page *sp) |
150 | { | 150 | { |
151 | return test_bit(PG_private, &sp->flags); | 151 | return PageSlobFree((struct page *)sp); |
152 | } | 152 | } |
153 | 153 | ||
154 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) | 154 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) |
155 | { | 155 | { |
156 | list_add(&sp->list, list); | 156 | list_add(&sp->list, list); |
157 | __set_bit(PG_private, &sp->flags); | 157 | __SetPageSlobFree((struct page *)sp); |
158 | } | 158 | } |
159 | 159 | ||
160 | static inline void clear_slob_page_free(struct slob_page *sp) | 160 | static inline void clear_slob_page_free(struct slob_page *sp) |
161 | { | 161 | { |
162 | list_del(&sp->list); | 162 | list_del(&sp->list); |
163 | __clear_bit(PG_private, &sp->flags); | 163 | __ClearPageSlobFree((struct page *)sp); |
164 | } | 164 | } |
165 | 165 | ||
166 | #define SLOB_UNIT sizeof(slob_t) | 166 | #define SLOB_UNIT sizeof(slob_t) |
@@ -525,12 +525,11 @@ struct kmem_cache { | |||
525 | unsigned int size, align; | 525 | unsigned int size, align; |
526 | unsigned long flags; | 526 | unsigned long flags; |
527 | const char *name; | 527 | const char *name; |
528 | void (*ctor)(struct kmem_cache *, void *); | 528 | void (*ctor)(void *); |
529 | }; | 529 | }; |
530 | 530 | ||
531 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 531 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
532 | size_t align, unsigned long flags, | 532 | size_t align, unsigned long flags, void (*ctor)(void *)) |
533 | void (*ctor)(struct kmem_cache *, void *)) | ||
534 | { | 533 | { |
535 | struct kmem_cache *c; | 534 | struct kmem_cache *c; |
536 | 535 | ||
@@ -575,7 +574,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | |||
575 | b = slob_new_page(flags, get_order(c->size), node); | 574 | b = slob_new_page(flags, get_order(c->size), node); |
576 | 575 | ||
577 | if (c->ctor) | 576 | if (c->ctor) |
578 | c->ctor(c, b); | 577 | c->ctor(b); |
579 | 578 | ||
580 | return b; | 579 | return b; |
581 | } | 580 | } |
@@ -102,44 +102,12 @@ | |||
102 | * the fast path and disables lockless freelists. | 102 | * the fast path and disables lockless freelists. |
103 | */ | 103 | */ |
104 | 104 | ||
105 | #define FROZEN (1 << PG_active) | ||
106 | |||
107 | #ifdef CONFIG_SLUB_DEBUG | 105 | #ifdef CONFIG_SLUB_DEBUG |
108 | #define SLABDEBUG (1 << PG_error) | 106 | #define SLABDEBUG 1 |
109 | #else | 107 | #else |
110 | #define SLABDEBUG 0 | 108 | #define SLABDEBUG 0 |
111 | #endif | 109 | #endif |
112 | 110 | ||
113 | static inline int SlabFrozen(struct page *page) | ||
114 | { | ||
115 | return page->flags & FROZEN; | ||
116 | } | ||
117 | |||
118 | static inline void SetSlabFrozen(struct page *page) | ||
119 | { | ||
120 | page->flags |= FROZEN; | ||
121 | } | ||
122 | |||
123 | static inline void ClearSlabFrozen(struct page *page) | ||
124 | { | ||
125 | page->flags &= ~FROZEN; | ||
126 | } | ||
127 | |||
128 | static inline int SlabDebug(struct page *page) | ||
129 | { | ||
130 | return page->flags & SLABDEBUG; | ||
131 | } | ||
132 | |||
133 | static inline void SetSlabDebug(struct page *page) | ||
134 | { | ||
135 | page->flags |= SLABDEBUG; | ||
136 | } | ||
137 | |||
138 | static inline void ClearSlabDebug(struct page *page) | ||
139 | { | ||
140 | page->flags &= ~SLABDEBUG; | ||
141 | } | ||
142 | |||
143 | /* | 111 | /* |
144 | * Issues still to be resolved: | 112 | * Issues still to be resolved: |
145 | * | 113 | * |
@@ -971,7 +939,7 @@ static int free_debug_processing(struct kmem_cache *s, struct page *page, | |||
971 | } | 939 | } |
972 | 940 | ||
973 | /* Special debug activities for freeing objects */ | 941 | /* Special debug activities for freeing objects */ |
974 | if (!SlabFrozen(page) && !page->freelist) | 942 | if (!PageSlubFrozen(page) && !page->freelist) |
975 | remove_full(s, page); | 943 | remove_full(s, page); |
976 | if (s->flags & SLAB_STORE_USER) | 944 | if (s->flags & SLAB_STORE_USER) |
977 | set_track(s, object, TRACK_FREE, addr); | 945 | set_track(s, object, TRACK_FREE, addr); |
@@ -1044,7 +1012,7 @@ __setup("slub_debug", setup_slub_debug); | |||
1044 | 1012 | ||
1045 | static unsigned long kmem_cache_flags(unsigned long objsize, | 1013 | static unsigned long kmem_cache_flags(unsigned long objsize, |
1046 | unsigned long flags, const char *name, | 1014 | unsigned long flags, const char *name, |
1047 | void (*ctor)(struct kmem_cache *, void *)) | 1015 | void (*ctor)(void *)) |
1048 | { | 1016 | { |
1049 | /* | 1017 | /* |
1050 | * Enable debugging if selected on the kernel commandline. | 1018 | * Enable debugging if selected on the kernel commandline. |
@@ -1072,7 +1040,7 @@ static inline int check_object(struct kmem_cache *s, struct page *page, | |||
1072 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} | 1040 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
1073 | static inline unsigned long kmem_cache_flags(unsigned long objsize, | 1041 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1074 | unsigned long flags, const char *name, | 1042 | unsigned long flags, const char *name, |
1075 | void (*ctor)(struct kmem_cache *, void *)) | 1043 | void (*ctor)(void *)) |
1076 | { | 1044 | { |
1077 | return flags; | 1045 | return flags; |
1078 | } | 1046 | } |
@@ -1135,7 +1103,7 @@ static void setup_object(struct kmem_cache *s, struct page *page, | |||
1135 | { | 1103 | { |
1136 | setup_object_debug(s, page, object); | 1104 | setup_object_debug(s, page, object); |
1137 | if (unlikely(s->ctor)) | 1105 | if (unlikely(s->ctor)) |
1138 | s->ctor(s, object); | 1106 | s->ctor(object); |
1139 | } | 1107 | } |
1140 | 1108 | ||
1141 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 1109 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
@@ -1157,7 +1125,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |||
1157 | page->flags |= 1 << PG_slab; | 1125 | page->flags |= 1 << PG_slab; |
1158 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | 1126 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | |
1159 | SLAB_STORE_USER | SLAB_TRACE)) | 1127 | SLAB_STORE_USER | SLAB_TRACE)) |
1160 | SetSlabDebug(page); | 1128 | __SetPageSlubDebug(page); |
1161 | 1129 | ||
1162 | start = page_address(page); | 1130 | start = page_address(page); |
1163 | 1131 | ||
@@ -1184,14 +1152,14 @@ static void __free_slab(struct kmem_cache *s, struct page *page) | |||
1184 | int order = compound_order(page); | 1152 | int order = compound_order(page); |
1185 | int pages = 1 << order; | 1153 | int pages = 1 << order; |
1186 | 1154 | ||
1187 | if (unlikely(SlabDebug(page))) { | 1155 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { |
1188 | void *p; | 1156 | void *p; |
1189 | 1157 | ||
1190 | slab_pad_check(s, page); | 1158 | slab_pad_check(s, page); |
1191 | for_each_object(p, s, page_address(page), | 1159 | for_each_object(p, s, page_address(page), |
1192 | page->objects) | 1160 | page->objects) |
1193 | check_object(s, page, p, 0); | 1161 | check_object(s, page, p, 0); |
1194 | ClearSlabDebug(page); | 1162 | __ClearPageSlubDebug(page); |
1195 | } | 1163 | } |
1196 | 1164 | ||
1197 | mod_zone_page_state(page_zone(page), | 1165 | mod_zone_page_state(page_zone(page), |
@@ -1288,7 +1256,7 @@ static inline int lock_and_freeze_slab(struct kmem_cache_node *n, | |||
1288 | if (slab_trylock(page)) { | 1256 | if (slab_trylock(page)) { |
1289 | list_del(&page->lru); | 1257 | list_del(&page->lru); |
1290 | n->nr_partial--; | 1258 | n->nr_partial--; |
1291 | SetSlabFrozen(page); | 1259 | __SetPageSlubFrozen(page); |
1292 | return 1; | 1260 | return 1; |
1293 | } | 1261 | } |
1294 | return 0; | 1262 | return 0; |
@@ -1398,7 +1366,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
1398 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 1366 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1399 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); | 1367 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); |
1400 | 1368 | ||
1401 | ClearSlabFrozen(page); | 1369 | __ClearPageSlubFrozen(page); |
1402 | if (page->inuse) { | 1370 | if (page->inuse) { |
1403 | 1371 | ||
1404 | if (page->freelist) { | 1372 | if (page->freelist) { |
@@ -1406,7 +1374,8 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
1406 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | 1374 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
1407 | } else { | 1375 | } else { |
1408 | stat(c, DEACTIVATE_FULL); | 1376 | stat(c, DEACTIVATE_FULL); |
1409 | if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) | 1377 | if (SLABDEBUG && PageSlubDebug(page) && |
1378 | (s->flags & SLAB_STORE_USER)) | ||
1410 | add_full(n, page); | 1379 | add_full(n, page); |
1411 | } | 1380 | } |
1412 | slab_unlock(page); | 1381 | slab_unlock(page); |
@@ -1551,7 +1520,7 @@ load_freelist: | |||
1551 | object = c->page->freelist; | 1520 | object = c->page->freelist; |
1552 | if (unlikely(!object)) | 1521 | if (unlikely(!object)) |
1553 | goto another_slab; | 1522 | goto another_slab; |
1554 | if (unlikely(SlabDebug(c->page))) | 1523 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) |
1555 | goto debug; | 1524 | goto debug; |
1556 | 1525 | ||
1557 | c->freelist = object[c->offset]; | 1526 | c->freelist = object[c->offset]; |
@@ -1588,7 +1557,7 @@ new_slab: | |||
1588 | if (c->page) | 1557 | if (c->page) |
1589 | flush_slab(s, c); | 1558 | flush_slab(s, c); |
1590 | slab_lock(new); | 1559 | slab_lock(new); |
1591 | SetSlabFrozen(new); | 1560 | __SetPageSlubFrozen(new); |
1592 | c->page = new; | 1561 | c->page = new; |
1593 | goto load_freelist; | 1562 | goto load_freelist; |
1594 | } | 1563 | } |
@@ -1674,7 +1643,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, | |||
1674 | stat(c, FREE_SLOWPATH); | 1643 | stat(c, FREE_SLOWPATH); |
1675 | slab_lock(page); | 1644 | slab_lock(page); |
1676 | 1645 | ||
1677 | if (unlikely(SlabDebug(page))) | 1646 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) |
1678 | goto debug; | 1647 | goto debug; |
1679 | 1648 | ||
1680 | checks_ok: | 1649 | checks_ok: |
@@ -1682,7 +1651,7 @@ checks_ok: | |||
1682 | page->freelist = object; | 1651 | page->freelist = object; |
1683 | page->inuse--; | 1652 | page->inuse--; |
1684 | 1653 | ||
1685 | if (unlikely(SlabFrozen(page))) { | 1654 | if (unlikely(PageSlubFrozen(page))) { |
1686 | stat(c, FREE_FROZEN); | 1655 | stat(c, FREE_FROZEN); |
1687 | goto out_unlock; | 1656 | goto out_unlock; |
1688 | } | 1657 | } |
@@ -2317,7 +2286,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) | |||
2317 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | 2286 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2318 | const char *name, size_t size, | 2287 | const char *name, size_t size, |
2319 | size_t align, unsigned long flags, | 2288 | size_t align, unsigned long flags, |
2320 | void (*ctor)(struct kmem_cache *, void *)) | 2289 | void (*ctor)(void *)) |
2321 | { | 2290 | { |
2322 | memset(s, 0, kmem_size); | 2291 | memset(s, 0, kmem_size); |
2323 | s->name = name; | 2292 | s->name = name; |
@@ -3073,7 +3042,7 @@ static int slab_unmergeable(struct kmem_cache *s) | |||
3073 | 3042 | ||
3074 | static struct kmem_cache *find_mergeable(size_t size, | 3043 | static struct kmem_cache *find_mergeable(size_t size, |
3075 | size_t align, unsigned long flags, const char *name, | 3044 | size_t align, unsigned long flags, const char *name, |
3076 | void (*ctor)(struct kmem_cache *, void *)) | 3045 | void (*ctor)(void *)) |
3077 | { | 3046 | { |
3078 | struct kmem_cache *s; | 3047 | struct kmem_cache *s; |
3079 | 3048 | ||
@@ -3113,8 +3082,7 @@ static struct kmem_cache *find_mergeable(size_t size, | |||
3113 | } | 3082 | } |
3114 | 3083 | ||
3115 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 3084 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
3116 | size_t align, unsigned long flags, | 3085 | size_t align, unsigned long flags, void (*ctor)(void *)) |
3117 | void (*ctor)(struct kmem_cache *, void *)) | ||
3118 | { | 3086 | { |
3119 | struct kmem_cache *s; | 3087 | struct kmem_cache *s; |
3120 | 3088 | ||
@@ -3317,12 +3285,12 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page, | |||
3317 | s->name, page); | 3285 | s->name, page); |
3318 | 3286 | ||
3319 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | 3287 | if (s->flags & DEBUG_DEFAULT_FLAGS) { |
3320 | if (!SlabDebug(page)) | 3288 | if (!PageSlubDebug(page)) |
3321 | printk(KERN_ERR "SLUB %s: SlabDebug not set " | 3289 | printk(KERN_ERR "SLUB %s: SlubDebug not set " |
3322 | "on slab 0x%p\n", s->name, page); | 3290 | "on slab 0x%p\n", s->name, page); |
3323 | } else { | 3291 | } else { |
3324 | if (SlabDebug(page)) | 3292 | if (PageSlubDebug(page)) |
3325 | printk(KERN_ERR "SLUB %s: SlabDebug set on " | 3293 | printk(KERN_ERR "SLUB %s: SlubDebug set on " |
3326 | "slab 0x%p\n", s->name, page); | 3294 | "slab 0x%p\n", s->name, page); |
3327 | } | 3295 | } |
3328 | } | 3296 | } |
diff --git a/mm/sparse.c b/mm/sparse.c index 36511c7b5e2c..5d9dbbb9d39e 100644 --- a/mm/sparse.c +++ b/mm/sparse.c | |||
@@ -12,6 +12,7 @@ | |||
12 | #include <asm/dma.h> | 12 | #include <asm/dma.h> |
13 | #include <asm/pgalloc.h> | 13 | #include <asm/pgalloc.h> |
14 | #include <asm/pgtable.h> | 14 | #include <asm/pgtable.h> |
15 | #include "internal.h" | ||
15 | 16 | ||
16 | /* | 17 | /* |
17 | * Permanent SPARSEMEM data: | 18 | * Permanent SPARSEMEM data: |
@@ -147,22 +148,41 @@ static inline int sparse_early_nid(struct mem_section *section) | |||
147 | return (section->section_mem_map >> SECTION_NID_SHIFT); | 148 | return (section->section_mem_map >> SECTION_NID_SHIFT); |
148 | } | 149 | } |
149 | 150 | ||
150 | /* Record a memory area against a node. */ | 151 | /* Validate the physical addressing limitations of the model */ |
151 | void __init memory_present(int nid, unsigned long start, unsigned long end) | 152 | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, |
153 | unsigned long *end_pfn) | ||
152 | { | 154 | { |
153 | unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); | 155 | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); |
154 | unsigned long pfn; | ||
155 | 156 | ||
156 | /* | 157 | /* |
157 | * Sanity checks - do not allow an architecture to pass | 158 | * Sanity checks - do not allow an architecture to pass |
158 | * in larger pfns than the maximum scope of sparsemem: | 159 | * in larger pfns than the maximum scope of sparsemem: |
159 | */ | 160 | */ |
160 | if (start >= max_arch_pfn) | 161 | if (*start_pfn > max_sparsemem_pfn) { |
161 | return; | 162 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
162 | if (end >= max_arch_pfn) | 163 | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
163 | end = max_arch_pfn; | 164 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
165 | WARN_ON_ONCE(1); | ||
166 | *start_pfn = max_sparsemem_pfn; | ||
167 | *end_pfn = max_sparsemem_pfn; | ||
168 | } | ||
169 | |||
170 | if (*end_pfn > max_sparsemem_pfn) { | ||
171 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | ||
172 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | ||
173 | *start_pfn, *end_pfn, max_sparsemem_pfn); | ||
174 | WARN_ON_ONCE(1); | ||
175 | *end_pfn = max_sparsemem_pfn; | ||
176 | } | ||
177 | } | ||
178 | |||
179 | /* Record a memory area against a node. */ | ||
180 | void __init memory_present(int nid, unsigned long start, unsigned long end) | ||
181 | { | ||
182 | unsigned long pfn; | ||
164 | 183 | ||
165 | start &= PAGE_SECTION_MASK; | 184 | start &= PAGE_SECTION_MASK; |
185 | mminit_validate_memmodel_limits(&start, &end); | ||
166 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { | 186 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
167 | unsigned long section = pfn_to_section_nr(pfn); | 187 | unsigned long section = pfn_to_section_nr(pfn); |
168 | struct mem_section *ms; | 188 | struct mem_section *ms; |
@@ -187,6 +207,7 @@ unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, | |||
187 | unsigned long pfn; | 207 | unsigned long pfn; |
188 | unsigned long nr_pages = 0; | 208 | unsigned long nr_pages = 0; |
189 | 209 | ||
210 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); | ||
190 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { | 211 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
191 | if (nid != early_pfn_to_nid(pfn)) | 212 | if (nid != early_pfn_to_nid(pfn)) |
192 | continue; | 213 | continue; |
@@ -248,16 +269,92 @@ static unsigned long *__kmalloc_section_usemap(void) | |||
248 | } | 269 | } |
249 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 270 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
250 | 271 | ||
272 | #ifdef CONFIG_MEMORY_HOTREMOVE | ||
273 | static unsigned long * __init | ||
274 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | ||
275 | { | ||
276 | unsigned long section_nr; | ||
277 | |||
278 | /* | ||
279 | * A page may contain usemaps for other sections preventing the | ||
280 | * page being freed and making a section unremovable while | ||
281 | * other sections referencing the usemap retmain active. Similarly, | ||
282 | * a pgdat can prevent a section being removed. If section A | ||
283 | * contains a pgdat and section B contains the usemap, both | ||
284 | * sections become inter-dependent. This allocates usemaps | ||
285 | * from the same section as the pgdat where possible to avoid | ||
286 | * this problem. | ||
287 | */ | ||
288 | section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | ||
289 | return alloc_bootmem_section(usemap_size(), section_nr); | ||
290 | } | ||
291 | |||
292 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | ||
293 | { | ||
294 | unsigned long usemap_snr, pgdat_snr; | ||
295 | static unsigned long old_usemap_snr = NR_MEM_SECTIONS; | ||
296 | static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; | ||
297 | struct pglist_data *pgdat = NODE_DATA(nid); | ||
298 | int usemap_nid; | ||
299 | |||
300 | usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); | ||
301 | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | ||
302 | if (usemap_snr == pgdat_snr) | ||
303 | return; | ||
304 | |||
305 | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) | ||
306 | /* skip redundant message */ | ||
307 | return; | ||
308 | |||
309 | old_usemap_snr = usemap_snr; | ||
310 | old_pgdat_snr = pgdat_snr; | ||
311 | |||
312 | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); | ||
313 | if (usemap_nid != nid) { | ||
314 | printk(KERN_INFO | ||
315 | "node %d must be removed before remove section %ld\n", | ||
316 | nid, usemap_snr); | ||
317 | return; | ||
318 | } | ||
319 | /* | ||
320 | * There is a circular dependency. | ||
321 | * Some platforms allow un-removable section because they will just | ||
322 | * gather other removable sections for dynamic partitioning. | ||
323 | * Just notify un-removable section's number here. | ||
324 | */ | ||
325 | printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, | ||
326 | pgdat_snr, nid); | ||
327 | printk(KERN_CONT | ||
328 | " have a circular dependency on usemap and pgdat allocations\n"); | ||
329 | } | ||
330 | #else | ||
331 | static unsigned long * __init | ||
332 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | ||
333 | { | ||
334 | return NULL; | ||
335 | } | ||
336 | |||
337 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | ||
338 | { | ||
339 | } | ||
340 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | ||
341 | |||
251 | static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) | 342 | static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) |
252 | { | 343 | { |
253 | unsigned long *usemap; | 344 | unsigned long *usemap; |
254 | struct mem_section *ms = __nr_to_section(pnum); | 345 | struct mem_section *ms = __nr_to_section(pnum); |
255 | int nid = sparse_early_nid(ms); | 346 | int nid = sparse_early_nid(ms); |
256 | 347 | ||
257 | usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); | 348 | usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid)); |
258 | if (usemap) | 349 | if (usemap) |
259 | return usemap; | 350 | return usemap; |
260 | 351 | ||
352 | usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); | ||
353 | if (usemap) { | ||
354 | check_usemap_section_nr(nid, usemap); | ||
355 | return usemap; | ||
356 | } | ||
357 | |||
261 | /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ | 358 | /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ |
262 | nid = 0; | 359 | nid = 0; |
263 | 360 | ||
@@ -280,7 +377,7 @@ struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) | |||
280 | } | 377 | } |
281 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ | 378 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ |
282 | 379 | ||
283 | struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) | 380 | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) |
284 | { | 381 | { |
285 | struct page *map; | 382 | struct page *map; |
286 | struct mem_section *ms = __nr_to_section(pnum); | 383 | struct mem_section *ms = __nr_to_section(pnum); |
@@ -34,9 +34,9 @@ | |||
34 | /* How many pages do we try to swap or page in/out together? */ | 34 | /* How many pages do we try to swap or page in/out together? */ |
35 | int page_cluster; | 35 | int page_cluster; |
36 | 36 | ||
37 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, }; | 37 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs); |
38 | static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, }; | 38 | static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs); |
39 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, }; | 39 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); |
40 | 40 | ||
41 | /* | 41 | /* |
42 | * This path almost never happens for VM activity - pages are normally | 42 | * This path almost never happens for VM activity - pages are normally |
@@ -493,7 +493,7 @@ EXPORT_SYMBOL(pagevec_lookup_tag); | |||
493 | */ | 493 | */ |
494 | #define ACCT_THRESHOLD max(16, NR_CPUS * 2) | 494 | #define ACCT_THRESHOLD max(16, NR_CPUS * 2) |
495 | 495 | ||
496 | static DEFINE_PER_CPU(long, committed_space) = 0; | 496 | static DEFINE_PER_CPU(long, committed_space); |
497 | 497 | ||
498 | void vm_acct_memory(long pages) | 498 | void vm_acct_memory(long pages) |
499 | { | 499 | { |
diff --git a/mm/swap_state.c b/mm/swap_state.c index d8aadaf2a0ba..b8035b055129 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c | |||
@@ -39,7 +39,7 @@ static struct backing_dev_info swap_backing_dev_info = { | |||
39 | 39 | ||
40 | struct address_space swapper_space = { | 40 | struct address_space swapper_space = { |
41 | .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), | 41 | .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), |
42 | .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock), | 42 | .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), |
43 | .a_ops = &swap_aops, | 43 | .a_ops = &swap_aops, |
44 | .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), | 44 | .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), |
45 | .backing_dev_info = &swap_backing_dev_info, | 45 | .backing_dev_info = &swap_backing_dev_info, |
@@ -56,7 +56,8 @@ static struct { | |||
56 | 56 | ||
57 | void show_swap_cache_info(void) | 57 | void show_swap_cache_info(void) |
58 | { | 58 | { |
59 | printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n", | 59 | printk("%lu pages in swap cache\n", total_swapcache_pages); |
60 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | ||
60 | swap_cache_info.add_total, swap_cache_info.del_total, | 61 | swap_cache_info.add_total, swap_cache_info.del_total, |
61 | swap_cache_info.find_success, swap_cache_info.find_total); | 62 | swap_cache_info.find_success, swap_cache_info.find_total); |
62 | printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10)); | 63 | printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10)); |
@@ -64,7 +65,7 @@ void show_swap_cache_info(void) | |||
64 | } | 65 | } |
65 | 66 | ||
66 | /* | 67 | /* |
67 | * add_to_swap_cache resembles add_to_page_cache on swapper_space, | 68 | * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
68 | * but sets SwapCache flag and private instead of mapping and index. | 69 | * but sets SwapCache flag and private instead of mapping and index. |
69 | */ | 70 | */ |
70 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 71 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) |
@@ -76,19 +77,26 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | |||
76 | BUG_ON(PagePrivate(page)); | 77 | BUG_ON(PagePrivate(page)); |
77 | error = radix_tree_preload(gfp_mask); | 78 | error = radix_tree_preload(gfp_mask); |
78 | if (!error) { | 79 | if (!error) { |
79 | write_lock_irq(&swapper_space.tree_lock); | 80 | page_cache_get(page); |
81 | SetPageSwapCache(page); | ||
82 | set_page_private(page, entry.val); | ||
83 | |||
84 | spin_lock_irq(&swapper_space.tree_lock); | ||
80 | error = radix_tree_insert(&swapper_space.page_tree, | 85 | error = radix_tree_insert(&swapper_space.page_tree, |
81 | entry.val, page); | 86 | entry.val, page); |
82 | if (!error) { | 87 | if (likely(!error)) { |
83 | page_cache_get(page); | ||
84 | SetPageSwapCache(page); | ||
85 | set_page_private(page, entry.val); | ||
86 | total_swapcache_pages++; | 88 | total_swapcache_pages++; |
87 | __inc_zone_page_state(page, NR_FILE_PAGES); | 89 | __inc_zone_page_state(page, NR_FILE_PAGES); |
88 | INC_CACHE_INFO(add_total); | 90 | INC_CACHE_INFO(add_total); |
89 | } | 91 | } |
90 | write_unlock_irq(&swapper_space.tree_lock); | 92 | spin_unlock_irq(&swapper_space.tree_lock); |
91 | radix_tree_preload_end(); | 93 | radix_tree_preload_end(); |
94 | |||
95 | if (unlikely(error)) { | ||
96 | set_page_private(page, 0UL); | ||
97 | ClearPageSwapCache(page); | ||
98 | page_cache_release(page); | ||
99 | } | ||
92 | } | 100 | } |
93 | return error; | 101 | return error; |
94 | } | 102 | } |
@@ -175,9 +183,9 @@ void delete_from_swap_cache(struct page *page) | |||
175 | 183 | ||
176 | entry.val = page_private(page); | 184 | entry.val = page_private(page); |
177 | 185 | ||
178 | write_lock_irq(&swapper_space.tree_lock); | 186 | spin_lock_irq(&swapper_space.tree_lock); |
179 | __delete_from_swap_cache(page); | 187 | __delete_from_swap_cache(page); |
180 | write_unlock_irq(&swapper_space.tree_lock); | 188 | spin_unlock_irq(&swapper_space.tree_lock); |
181 | 189 | ||
182 | swap_free(entry); | 190 | swap_free(entry); |
183 | page_cache_release(page); | 191 | page_cache_release(page); |
diff --git a/mm/swapfile.c b/mm/swapfile.c index bd1bb5920306..6beb6251e99d 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
@@ -33,17 +33,18 @@ | |||
33 | #include <asm/tlbflush.h> | 33 | #include <asm/tlbflush.h> |
34 | #include <linux/swapops.h> | 34 | #include <linux/swapops.h> |
35 | 35 | ||
36 | DEFINE_SPINLOCK(swap_lock); | 36 | static DEFINE_SPINLOCK(swap_lock); |
37 | unsigned int nr_swapfiles; | 37 | static unsigned int nr_swapfiles; |
38 | long total_swap_pages; | 38 | long total_swap_pages; |
39 | static int swap_overflow; | 39 | static int swap_overflow; |
40 | static int least_priority; | ||
40 | 41 | ||
41 | static const char Bad_file[] = "Bad swap file entry "; | 42 | static const char Bad_file[] = "Bad swap file entry "; |
42 | static const char Unused_file[] = "Unused swap file entry "; | 43 | static const char Unused_file[] = "Unused swap file entry "; |
43 | static const char Bad_offset[] = "Bad swap offset entry "; | 44 | static const char Bad_offset[] = "Bad swap offset entry "; |
44 | static const char Unused_offset[] = "Unused swap offset entry "; | 45 | static const char Unused_offset[] = "Unused swap offset entry "; |
45 | 46 | ||
46 | struct swap_list_t swap_list = {-1, -1}; | 47 | static struct swap_list_t swap_list = {-1, -1}; |
47 | 48 | ||
48 | static struct swap_info_struct swap_info[MAX_SWAPFILES]; | 49 | static struct swap_info_struct swap_info[MAX_SWAPFILES]; |
49 | 50 | ||
@@ -368,13 +369,13 @@ int remove_exclusive_swap_page(struct page *page) | |||
368 | retval = 0; | 369 | retval = 0; |
369 | if (p->swap_map[swp_offset(entry)] == 1) { | 370 | if (p->swap_map[swp_offset(entry)] == 1) { |
370 | /* Recheck the page count with the swapcache lock held.. */ | 371 | /* Recheck the page count with the swapcache lock held.. */ |
371 | write_lock_irq(&swapper_space.tree_lock); | 372 | spin_lock_irq(&swapper_space.tree_lock); |
372 | if ((page_count(page) == 2) && !PageWriteback(page)) { | 373 | if ((page_count(page) == 2) && !PageWriteback(page)) { |
373 | __delete_from_swap_cache(page); | 374 | __delete_from_swap_cache(page); |
374 | SetPageDirty(page); | 375 | SetPageDirty(page); |
375 | retval = 1; | 376 | retval = 1; |
376 | } | 377 | } |
377 | write_unlock_irq(&swapper_space.tree_lock); | 378 | spin_unlock_irq(&swapper_space.tree_lock); |
378 | } | 379 | } |
379 | spin_unlock(&swap_lock); | 380 | spin_unlock(&swap_lock); |
380 | 381 | ||
@@ -1260,6 +1261,11 @@ asmlinkage long sys_swapoff(const char __user * specialfile) | |||
1260 | /* just pick something that's safe... */ | 1261 | /* just pick something that's safe... */ |
1261 | swap_list.next = swap_list.head; | 1262 | swap_list.next = swap_list.head; |
1262 | } | 1263 | } |
1264 | if (p->prio < 0) { | ||
1265 | for (i = p->next; i >= 0; i = swap_info[i].next) | ||
1266 | swap_info[i].prio = p->prio--; | ||
1267 | least_priority++; | ||
1268 | } | ||
1263 | nr_swap_pages -= p->pages; | 1269 | nr_swap_pages -= p->pages; |
1264 | total_swap_pages -= p->pages; | 1270 | total_swap_pages -= p->pages; |
1265 | p->flags &= ~SWP_WRITEOK; | 1271 | p->flags &= ~SWP_WRITEOK; |
@@ -1272,9 +1278,14 @@ asmlinkage long sys_swapoff(const char __user * specialfile) | |||
1272 | if (err) { | 1278 | if (err) { |
1273 | /* re-insert swap space back into swap_list */ | 1279 | /* re-insert swap space back into swap_list */ |
1274 | spin_lock(&swap_lock); | 1280 | spin_lock(&swap_lock); |
1275 | for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) | 1281 | if (p->prio < 0) |
1282 | p->prio = --least_priority; | ||
1283 | prev = -1; | ||
1284 | for (i = swap_list.head; i >= 0; i = swap_info[i].next) { | ||
1276 | if (p->prio >= swap_info[i].prio) | 1285 | if (p->prio >= swap_info[i].prio) |
1277 | break; | 1286 | break; |
1287 | prev = i; | ||
1288 | } | ||
1278 | p->next = i; | 1289 | p->next = i; |
1279 | if (prev < 0) | 1290 | if (prev < 0) |
1280 | swap_list.head = swap_list.next = p - swap_info; | 1291 | swap_list.head = swap_list.next = p - swap_info; |
@@ -1447,7 +1458,6 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1447 | unsigned int type; | 1458 | unsigned int type; |
1448 | int i, prev; | 1459 | int i, prev; |
1449 | int error; | 1460 | int error; |
1450 | static int least_priority; | ||
1451 | union swap_header *swap_header = NULL; | 1461 | union swap_header *swap_header = NULL; |
1452 | int swap_header_version; | 1462 | int swap_header_version; |
1453 | unsigned int nr_good_pages = 0; | 1463 | unsigned int nr_good_pages = 0; |
@@ -1455,7 +1465,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1455 | sector_t span; | 1465 | sector_t span; |
1456 | unsigned long maxpages = 1; | 1466 | unsigned long maxpages = 1; |
1457 | int swapfilesize; | 1467 | int swapfilesize; |
1458 | unsigned short *swap_map; | 1468 | unsigned short *swap_map = NULL; |
1459 | struct page *page = NULL; | 1469 | struct page *page = NULL; |
1460 | struct inode *inode = NULL; | 1470 | struct inode *inode = NULL; |
1461 | int did_down = 0; | 1471 | int did_down = 0; |
@@ -1474,22 +1484,10 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1474 | } | 1484 | } |
1475 | if (type >= nr_swapfiles) | 1485 | if (type >= nr_swapfiles) |
1476 | nr_swapfiles = type+1; | 1486 | nr_swapfiles = type+1; |
1487 | memset(p, 0, sizeof(*p)); | ||
1477 | INIT_LIST_HEAD(&p->extent_list); | 1488 | INIT_LIST_HEAD(&p->extent_list); |
1478 | p->flags = SWP_USED; | 1489 | p->flags = SWP_USED; |
1479 | p->swap_file = NULL; | ||
1480 | p->old_block_size = 0; | ||
1481 | p->swap_map = NULL; | ||
1482 | p->lowest_bit = 0; | ||
1483 | p->highest_bit = 0; | ||
1484 | p->cluster_nr = 0; | ||
1485 | p->inuse_pages = 0; | ||
1486 | p->next = -1; | 1490 | p->next = -1; |
1487 | if (swap_flags & SWAP_FLAG_PREFER) { | ||
1488 | p->prio = | ||
1489 | (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; | ||
1490 | } else { | ||
1491 | p->prio = --least_priority; | ||
1492 | } | ||
1493 | spin_unlock(&swap_lock); | 1491 | spin_unlock(&swap_lock); |
1494 | name = getname(specialfile); | 1492 | name = getname(specialfile); |
1495 | error = PTR_ERR(name); | 1493 | error = PTR_ERR(name); |
@@ -1632,19 +1630,20 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1632 | goto bad_swap; | 1630 | goto bad_swap; |
1633 | 1631 | ||
1634 | /* OK, set up the swap map and apply the bad block list */ | 1632 | /* OK, set up the swap map and apply the bad block list */ |
1635 | if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { | 1633 | swap_map = vmalloc(maxpages * sizeof(short)); |
1634 | if (!swap_map) { | ||
1636 | error = -ENOMEM; | 1635 | error = -ENOMEM; |
1637 | goto bad_swap; | 1636 | goto bad_swap; |
1638 | } | 1637 | } |
1639 | 1638 | ||
1640 | error = 0; | 1639 | error = 0; |
1641 | memset(p->swap_map, 0, maxpages * sizeof(short)); | 1640 | memset(swap_map, 0, maxpages * sizeof(short)); |
1642 | for (i = 0; i < swap_header->info.nr_badpages; i++) { | 1641 | for (i = 0; i < swap_header->info.nr_badpages; i++) { |
1643 | int page_nr = swap_header->info.badpages[i]; | 1642 | int page_nr = swap_header->info.badpages[i]; |
1644 | if (page_nr <= 0 || page_nr >= swap_header->info.last_page) | 1643 | if (page_nr <= 0 || page_nr >= swap_header->info.last_page) |
1645 | error = -EINVAL; | 1644 | error = -EINVAL; |
1646 | else | 1645 | else |
1647 | p->swap_map[page_nr] = SWAP_MAP_BAD; | 1646 | swap_map[page_nr] = SWAP_MAP_BAD; |
1648 | } | 1647 | } |
1649 | nr_good_pages = swap_header->info.last_page - | 1648 | nr_good_pages = swap_header->info.last_page - |
1650 | swap_header->info.nr_badpages - | 1649 | swap_header->info.nr_badpages - |
@@ -1654,7 +1653,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1654 | } | 1653 | } |
1655 | 1654 | ||
1656 | if (nr_good_pages) { | 1655 | if (nr_good_pages) { |
1657 | p->swap_map[0] = SWAP_MAP_BAD; | 1656 | swap_map[0] = SWAP_MAP_BAD; |
1658 | p->max = maxpages; | 1657 | p->max = maxpages; |
1659 | p->pages = nr_good_pages; | 1658 | p->pages = nr_good_pages; |
1660 | nr_extents = setup_swap_extents(p, &span); | 1659 | nr_extents = setup_swap_extents(p, &span); |
@@ -1672,6 +1671,12 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1672 | 1671 | ||
1673 | mutex_lock(&swapon_mutex); | 1672 | mutex_lock(&swapon_mutex); |
1674 | spin_lock(&swap_lock); | 1673 | spin_lock(&swap_lock); |
1674 | if (swap_flags & SWAP_FLAG_PREFER) | ||
1675 | p->prio = | ||
1676 | (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; | ||
1677 | else | ||
1678 | p->prio = --least_priority; | ||
1679 | p->swap_map = swap_map; | ||
1675 | p->flags = SWP_ACTIVE; | 1680 | p->flags = SWP_ACTIVE; |
1676 | nr_swap_pages += nr_good_pages; | 1681 | nr_swap_pages += nr_good_pages; |
1677 | total_swap_pages += nr_good_pages; | 1682 | total_swap_pages += nr_good_pages; |
@@ -1707,12 +1712,8 @@ bad_swap: | |||
1707 | destroy_swap_extents(p); | 1712 | destroy_swap_extents(p); |
1708 | bad_swap_2: | 1713 | bad_swap_2: |
1709 | spin_lock(&swap_lock); | 1714 | spin_lock(&swap_lock); |
1710 | swap_map = p->swap_map; | ||
1711 | p->swap_file = NULL; | 1715 | p->swap_file = NULL; |
1712 | p->swap_map = NULL; | ||
1713 | p->flags = 0; | 1716 | p->flags = 0; |
1714 | if (!(swap_flags & SWAP_FLAG_PREFER)) | ||
1715 | ++least_priority; | ||
1716 | spin_unlock(&swap_lock); | 1717 | spin_unlock(&swap_lock); |
1717 | vfree(swap_map); | 1718 | vfree(swap_map); |
1718 | if (swap_file) | 1719 | if (swap_file) |
diff --git a/mm/truncate.c b/mm/truncate.c index b8961cb63414..e68443d74567 100644 --- a/mm/truncate.c +++ b/mm/truncate.c | |||
@@ -349,18 +349,18 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) | |||
349 | if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) | 349 | if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) |
350 | return 0; | 350 | return 0; |
351 | 351 | ||
352 | write_lock_irq(&mapping->tree_lock); | 352 | spin_lock_irq(&mapping->tree_lock); |
353 | if (PageDirty(page)) | 353 | if (PageDirty(page)) |
354 | goto failed; | 354 | goto failed; |
355 | 355 | ||
356 | BUG_ON(PagePrivate(page)); | 356 | BUG_ON(PagePrivate(page)); |
357 | __remove_from_page_cache(page); | 357 | __remove_from_page_cache(page); |
358 | write_unlock_irq(&mapping->tree_lock); | 358 | spin_unlock_irq(&mapping->tree_lock); |
359 | ClearPageUptodate(page); | 359 | ClearPageUptodate(page); |
360 | page_cache_release(page); /* pagecache ref */ | 360 | page_cache_release(page); /* pagecache ref */ |
361 | return 1; | 361 | return 1; |
362 | failed: | 362 | failed: |
363 | write_unlock_irq(&mapping->tree_lock); | 363 | spin_unlock_irq(&mapping->tree_lock); |
364 | return 0; | 364 | return 0; |
365 | } | 365 | } |
366 | 366 | ||
@@ -1,7 +1,9 @@ | |||
1 | #include <linux/mm.h> | ||
1 | #include <linux/slab.h> | 2 | #include <linux/slab.h> |
2 | #include <linux/string.h> | 3 | #include <linux/string.h> |
3 | #include <linux/module.h> | 4 | #include <linux/module.h> |
4 | #include <linux/err.h> | 5 | #include <linux/err.h> |
6 | #include <linux/sched.h> | ||
5 | #include <asm/uaccess.h> | 7 | #include <asm/uaccess.h> |
6 | 8 | ||
7 | /** | 9 | /** |
@@ -160,3 +162,12 @@ char *strndup_user(const char __user *s, long n) | |||
160 | return p; | 162 | return p; |
161 | } | 163 | } |
162 | EXPORT_SYMBOL(strndup_user); | 164 | EXPORT_SYMBOL(strndup_user); |
165 | |||
166 | #ifndef HAVE_ARCH_PICK_MMAP_LAYOUT | ||
167 | void arch_pick_mmap_layout(struct mm_struct *mm) | ||
168 | { | ||
169 | mm->mmap_base = TASK_UNMAPPED_BASE; | ||
170 | mm->get_unmapped_area = arch_get_unmapped_area; | ||
171 | mm->unmap_area = arch_unmap_area; | ||
172 | } | ||
173 | #endif | ||
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 6e45b0f3d125..85b9a0d2c877 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -381,16 +381,14 @@ static void __vunmap(const void *addr, int deallocate_pages) | |||
381 | return; | 381 | return; |
382 | 382 | ||
383 | if ((PAGE_SIZE-1) & (unsigned long)addr) { | 383 | if ((PAGE_SIZE-1) & (unsigned long)addr) { |
384 | printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); | 384 | WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); |
385 | WARN_ON(1); | ||
386 | return; | 385 | return; |
387 | } | 386 | } |
388 | 387 | ||
389 | area = remove_vm_area(addr); | 388 | area = remove_vm_area(addr); |
390 | if (unlikely(!area)) { | 389 | if (unlikely(!area)) { |
391 | printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | 390 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
392 | addr); | 391 | addr); |
393 | WARN_ON(1); | ||
394 | return; | 392 | return; |
395 | } | 393 | } |
396 | 394 | ||
@@ -931,6 +929,25 @@ static void s_stop(struct seq_file *m, void *p) | |||
931 | read_unlock(&vmlist_lock); | 929 | read_unlock(&vmlist_lock); |
932 | } | 930 | } |
933 | 931 | ||
932 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) | ||
933 | { | ||
934 | if (NUMA_BUILD) { | ||
935 | unsigned int nr, *counters = m->private; | ||
936 | |||
937 | if (!counters) | ||
938 | return; | ||
939 | |||
940 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | ||
941 | |||
942 | for (nr = 0; nr < v->nr_pages; nr++) | ||
943 | counters[page_to_nid(v->pages[nr])]++; | ||
944 | |||
945 | for_each_node_state(nr, N_HIGH_MEMORY) | ||
946 | if (counters[nr]) | ||
947 | seq_printf(m, " N%u=%u", nr, counters[nr]); | ||
948 | } | ||
949 | } | ||
950 | |||
934 | static int s_show(struct seq_file *m, void *p) | 951 | static int s_show(struct seq_file *m, void *p) |
935 | { | 952 | { |
936 | struct vm_struct *v = p; | 953 | struct vm_struct *v = p; |
@@ -967,6 +984,7 @@ static int s_show(struct seq_file *m, void *p) | |||
967 | if (v->flags & VM_VPAGES) | 984 | if (v->flags & VM_VPAGES) |
968 | seq_printf(m, " vpages"); | 985 | seq_printf(m, " vpages"); |
969 | 986 | ||
987 | show_numa_info(m, v); | ||
970 | seq_putc(m, '\n'); | 988 | seq_putc(m, '\n'); |
971 | return 0; | 989 | return 0; |
972 | } | 990 | } |
diff --git a/mm/vmscan.c b/mm/vmscan.c index 967d30ccd92b..8f71761bc4b7 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -38,6 +38,7 @@ | |||
38 | #include <linux/kthread.h> | 38 | #include <linux/kthread.h> |
39 | #include <linux/freezer.h> | 39 | #include <linux/freezer.h> |
40 | #include <linux/memcontrol.h> | 40 | #include <linux/memcontrol.h> |
41 | #include <linux/delayacct.h> | ||
41 | 42 | ||
42 | #include <asm/tlbflush.h> | 43 | #include <asm/tlbflush.h> |
43 | #include <asm/div64.h> | 44 | #include <asm/div64.h> |
@@ -390,17 +391,15 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
390 | } | 391 | } |
391 | 392 | ||
392 | /* | 393 | /* |
393 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | 394 | * Same as remove_mapping, but if the page is removed from the mapping, it |
394 | * someone else has a ref on the page, abort and return 0. If it was | 395 | * gets returned with a refcount of 0. |
395 | * successfully detached, return 1. Assumes the caller has a single ref on | ||
396 | * this page. | ||
397 | */ | 396 | */ |
398 | int remove_mapping(struct address_space *mapping, struct page *page) | 397 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
399 | { | 398 | { |
400 | BUG_ON(!PageLocked(page)); | 399 | BUG_ON(!PageLocked(page)); |
401 | BUG_ON(mapping != page_mapping(page)); | 400 | BUG_ON(mapping != page_mapping(page)); |
402 | 401 | ||
403 | write_lock_irq(&mapping->tree_lock); | 402 | spin_lock_irq(&mapping->tree_lock); |
404 | /* | 403 | /* |
405 | * The non racy check for a busy page. | 404 | * The non racy check for a busy page. |
406 | * | 405 | * |
@@ -426,28 +425,48 @@ int remove_mapping(struct address_space *mapping, struct page *page) | |||
426 | * Note that if SetPageDirty is always performed via set_page_dirty, | 425 | * Note that if SetPageDirty is always performed via set_page_dirty, |
427 | * and thus under tree_lock, then this ordering is not required. | 426 | * and thus under tree_lock, then this ordering is not required. |
428 | */ | 427 | */ |
429 | if (unlikely(page_count(page) != 2)) | 428 | if (!page_freeze_refs(page, 2)) |
430 | goto cannot_free; | 429 | goto cannot_free; |
431 | smp_rmb(); | 430 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
432 | if (unlikely(PageDirty(page))) | 431 | if (unlikely(PageDirty(page))) { |
432 | page_unfreeze_refs(page, 2); | ||
433 | goto cannot_free; | 433 | goto cannot_free; |
434 | } | ||
434 | 435 | ||
435 | if (PageSwapCache(page)) { | 436 | if (PageSwapCache(page)) { |
436 | swp_entry_t swap = { .val = page_private(page) }; | 437 | swp_entry_t swap = { .val = page_private(page) }; |
437 | __delete_from_swap_cache(page); | 438 | __delete_from_swap_cache(page); |
438 | write_unlock_irq(&mapping->tree_lock); | 439 | spin_unlock_irq(&mapping->tree_lock); |
439 | swap_free(swap); | 440 | swap_free(swap); |
440 | __put_page(page); /* The pagecache ref */ | 441 | } else { |
441 | return 1; | 442 | __remove_from_page_cache(page); |
443 | spin_unlock_irq(&mapping->tree_lock); | ||
442 | } | 444 | } |
443 | 445 | ||
444 | __remove_from_page_cache(page); | ||
445 | write_unlock_irq(&mapping->tree_lock); | ||
446 | __put_page(page); | ||
447 | return 1; | 446 | return 1; |
448 | 447 | ||
449 | cannot_free: | 448 | cannot_free: |
450 | write_unlock_irq(&mapping->tree_lock); | 449 | spin_unlock_irq(&mapping->tree_lock); |
450 | return 0; | ||
451 | } | ||
452 | |||
453 | /* | ||
454 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | ||
455 | * someone else has a ref on the page, abort and return 0. If it was | ||
456 | * successfully detached, return 1. Assumes the caller has a single ref on | ||
457 | * this page. | ||
458 | */ | ||
459 | int remove_mapping(struct address_space *mapping, struct page *page) | ||
460 | { | ||
461 | if (__remove_mapping(mapping, page)) { | ||
462 | /* | ||
463 | * Unfreezing the refcount with 1 rather than 2 effectively | ||
464 | * drops the pagecache ref for us without requiring another | ||
465 | * atomic operation. | ||
466 | */ | ||
467 | page_unfreeze_refs(page, 1); | ||
468 | return 1; | ||
469 | } | ||
451 | return 0; | 470 | return 0; |
452 | } | 471 | } |
453 | 472 | ||
@@ -597,18 +616,34 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
597 | if (PagePrivate(page)) { | 616 | if (PagePrivate(page)) { |
598 | if (!try_to_release_page(page, sc->gfp_mask)) | 617 | if (!try_to_release_page(page, sc->gfp_mask)) |
599 | goto activate_locked; | 618 | goto activate_locked; |
600 | if (!mapping && page_count(page) == 1) | 619 | if (!mapping && page_count(page) == 1) { |
601 | goto free_it; | 620 | unlock_page(page); |
621 | if (put_page_testzero(page)) | ||
622 | goto free_it; | ||
623 | else { | ||
624 | /* | ||
625 | * rare race with speculative reference. | ||
626 | * the speculative reference will free | ||
627 | * this page shortly, so we may | ||
628 | * increment nr_reclaimed here (and | ||
629 | * leave it off the LRU). | ||
630 | */ | ||
631 | nr_reclaimed++; | ||
632 | continue; | ||
633 | } | ||
634 | } | ||
602 | } | 635 | } |
603 | 636 | ||
604 | if (!mapping || !remove_mapping(mapping, page)) | 637 | if (!mapping || !__remove_mapping(mapping, page)) |
605 | goto keep_locked; | 638 | goto keep_locked; |
606 | 639 | ||
607 | free_it: | ||
608 | unlock_page(page); | 640 | unlock_page(page); |
641 | free_it: | ||
609 | nr_reclaimed++; | 642 | nr_reclaimed++; |
610 | if (!pagevec_add(&freed_pvec, page)) | 643 | if (!pagevec_add(&freed_pvec, page)) { |
611 | __pagevec_release_nonlru(&freed_pvec); | 644 | __pagevec_free(&freed_pvec); |
645 | pagevec_reinit(&freed_pvec); | ||
646 | } | ||
612 | continue; | 647 | continue; |
613 | 648 | ||
614 | activate_locked: | 649 | activate_locked: |
@@ -622,7 +657,7 @@ keep: | |||
622 | } | 657 | } |
623 | list_splice(&ret_pages, page_list); | 658 | list_splice(&ret_pages, page_list); |
624 | if (pagevec_count(&freed_pvec)) | 659 | if (pagevec_count(&freed_pvec)) |
625 | __pagevec_release_nonlru(&freed_pvec); | 660 | __pagevec_free(&freed_pvec); |
626 | count_vm_events(PGACTIVATE, pgactivate); | 661 | count_vm_events(PGACTIVATE, pgactivate); |
627 | return nr_reclaimed; | 662 | return nr_reclaimed; |
628 | } | 663 | } |
@@ -1316,6 +1351,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1316 | struct zone *zone; | 1351 | struct zone *zone; |
1317 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); | 1352 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); |
1318 | 1353 | ||
1354 | delayacct_freepages_start(); | ||
1355 | |||
1319 | if (scan_global_lru(sc)) | 1356 | if (scan_global_lru(sc)) |
1320 | count_vm_event(ALLOCSTALL); | 1357 | count_vm_event(ALLOCSTALL); |
1321 | /* | 1358 | /* |
@@ -1396,6 +1433,8 @@ out: | |||
1396 | } else | 1433 | } else |
1397 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); | 1434 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); |
1398 | 1435 | ||
1436 | delayacct_freepages_end(); | ||
1437 | |||
1399 | return ret; | 1438 | return ret; |
1400 | } | 1439 | } |
1401 | 1440 | ||
diff --git a/mm/vmstat.c b/mm/vmstat.c index db9eabb2c5b3..b0d08e667ece 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c | |||
@@ -13,6 +13,7 @@ | |||
13 | #include <linux/err.h> | 13 | #include <linux/err.h> |
14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
15 | #include <linux/cpu.h> | 15 | #include <linux/cpu.h> |
16 | #include <linux/vmstat.h> | ||
16 | #include <linux/sched.h> | 17 | #include <linux/sched.h> |
17 | 18 | ||
18 | #ifdef CONFIG_VM_EVENT_COUNTERS | 19 | #ifdef CONFIG_VM_EVENT_COUNTERS |
@@ -26,7 +27,7 @@ static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask) | |||
26 | 27 | ||
27 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 28 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
28 | 29 | ||
29 | for_each_cpu_mask(cpu, *cpumask) { | 30 | for_each_cpu_mask_nr(cpu, *cpumask) { |
30 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 31 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
31 | 32 | ||
32 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 33 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |