diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Makefile | 1 | ||||
-rw-r--r-- | mm/slub.c | 3144 |
2 files changed, 3145 insertions, 0 deletions
diff --git a/mm/Makefile b/mm/Makefile index f3c077eb0b8e..1887148e44e7 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -25,6 +25,7 @@ obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o | |||
25 | obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o | 25 | obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o |
26 | obj-$(CONFIG_SLOB) += slob.o | 26 | obj-$(CONFIG_SLOB) += slob.o |
27 | obj-$(CONFIG_SLAB) += slab.o | 27 | obj-$(CONFIG_SLAB) += slab.o |
28 | obj-$(CONFIG_SLUB) += slub.o | ||
28 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 29 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
29 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 30 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
30 | obj-$(CONFIG_MIGRATION) += migrate.o | 31 | obj-$(CONFIG_MIGRATION) += migrate.o |
diff --git a/mm/slub.c b/mm/slub.c new file mode 100644 index 000000000000..0cd56bd74b64 --- /dev/null +++ b/mm/slub.c | |||
@@ -0,0 +1,3144 @@ | |||
1 | /* | ||
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | ||
3 | * objects in per cpu and per node lists. | ||
4 | * | ||
5 | * The allocator synchronizes using per slab locks and only | ||
6 | * uses a centralized lock to manage a pool of partial slabs. | ||
7 | * | ||
8 | * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> | ||
9 | */ | ||
10 | |||
11 | #include <linux/mm.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/bit_spinlock.h> | ||
14 | #include <linux/interrupt.h> | ||
15 | #include <linux/bitops.h> | ||
16 | #include <linux/slab.h> | ||
17 | #include <linux/seq_file.h> | ||
18 | #include <linux/cpu.h> | ||
19 | #include <linux/cpuset.h> | ||
20 | #include <linux/mempolicy.h> | ||
21 | #include <linux/ctype.h> | ||
22 | #include <linux/kallsyms.h> | ||
23 | |||
24 | /* | ||
25 | * Lock order: | ||
26 | * 1. slab_lock(page) | ||
27 | * 2. slab->list_lock | ||
28 | * | ||
29 | * The slab_lock protects operations on the object of a particular | ||
30 | * slab and its metadata in the page struct. If the slab lock | ||
31 | * has been taken then no allocations nor frees can be performed | ||
32 | * on the objects in the slab nor can the slab be added or removed | ||
33 | * from the partial or full lists since this would mean modifying | ||
34 | * the page_struct of the slab. | ||
35 | * | ||
36 | * The list_lock protects the partial and full list on each node and | ||
37 | * the partial slab counter. If taken then no new slabs may be added or | ||
38 | * removed from the lists nor make the number of partial slabs be modified. | ||
39 | * (Note that the total number of slabs is an atomic value that may be | ||
40 | * modified without taking the list lock). | ||
41 | * | ||
42 | * The list_lock is a centralized lock and thus we avoid taking it as | ||
43 | * much as possible. As long as SLUB does not have to handle partial | ||
44 | * slabs, operations can continue without any centralized lock. F.e. | ||
45 | * allocating a long series of objects that fill up slabs does not require | ||
46 | * the list lock. | ||
47 | * | ||
48 | * The lock order is sometimes inverted when we are trying to get a slab | ||
49 | * off a list. We take the list_lock and then look for a page on the list | ||
50 | * to use. While we do that objects in the slabs may be freed. We can | ||
51 | * only operate on the slab if we have also taken the slab_lock. So we use | ||
52 | * a slab_trylock() on the slab. If trylock was successful then no frees | ||
53 | * can occur anymore and we can use the slab for allocations etc. If the | ||
54 | * slab_trylock() does not succeed then frees are in progress in the slab and | ||
55 | * we must stay away from it for a while since we may cause a bouncing | ||
56 | * cacheline if we try to acquire the lock. So go onto the next slab. | ||
57 | * If all pages are busy then we may allocate a new slab instead of reusing | ||
58 | * a partial slab. A new slab has noone operating on it and thus there is | ||
59 | * no danger of cacheline contention. | ||
60 | * | ||
61 | * Interrupts are disabled during allocation and deallocation in order to | ||
62 | * make the slab allocator safe to use in the context of an irq. In addition | ||
63 | * interrupts are disabled to ensure that the processor does not change | ||
64 | * while handling per_cpu slabs, due to kernel preemption. | ||
65 | * | ||
66 | * SLUB assigns one slab for allocation to each processor. | ||
67 | * Allocations only occur from these slabs called cpu slabs. | ||
68 | * | ||
69 | * Slabs with free elements are kept on a partial list. | ||
70 | * There is no list for full slabs. If an object in a full slab is | ||
71 | * freed then the slab will show up again on the partial lists. | ||
72 | * Otherwise there is no need to track full slabs unless we have to | ||
73 | * track full slabs for debugging purposes. | ||
74 | * | ||
75 | * Slabs are freed when they become empty. Teardown and setup is | ||
76 | * minimal so we rely on the page allocators per cpu caches for | ||
77 | * fast frees and allocs. | ||
78 | * | ||
79 | * Overloading of page flags that are otherwise used for LRU management. | ||
80 | * | ||
81 | * PageActive The slab is used as a cpu cache. Allocations | ||
82 | * may be performed from the slab. The slab is not | ||
83 | * on any slab list and cannot be moved onto one. | ||
84 | * | ||
85 | * PageError Slab requires special handling due to debug | ||
86 | * options set. This moves slab handling out of | ||
87 | * the fast path. | ||
88 | */ | ||
89 | |||
90 | /* | ||
91 | * Issues still to be resolved: | ||
92 | * | ||
93 | * - The per cpu array is updated for each new slab and and is a remote | ||
94 | * cacheline for most nodes. This could become a bouncing cacheline given | ||
95 | * enough frequent updates. There are 16 pointers in a cacheline.so at | ||
96 | * max 16 cpus could compete. Likely okay. | ||
97 | * | ||
98 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | ||
99 | * | ||
100 | * - Support DEBUG_SLAB_LEAK. Trouble is we do not know where the full | ||
101 | * slabs are in SLUB. | ||
102 | * | ||
103 | * - SLAB_DEBUG_INITIAL is not supported but I have never seen a use of | ||
104 | * it. | ||
105 | * | ||
106 | * - Variable sizing of the per node arrays | ||
107 | */ | ||
108 | |||
109 | /* Enable to test recovery from slab corruption on boot */ | ||
110 | #undef SLUB_RESILIENCY_TEST | ||
111 | |||
112 | #if PAGE_SHIFT <= 12 | ||
113 | |||
114 | /* | ||
115 | * Small page size. Make sure that we do not fragment memory | ||
116 | */ | ||
117 | #define DEFAULT_MAX_ORDER 1 | ||
118 | #define DEFAULT_MIN_OBJECTS 4 | ||
119 | |||
120 | #else | ||
121 | |||
122 | /* | ||
123 | * Large page machines are customarily able to handle larger | ||
124 | * page orders. | ||
125 | */ | ||
126 | #define DEFAULT_MAX_ORDER 2 | ||
127 | #define DEFAULT_MIN_OBJECTS 8 | ||
128 | |||
129 | #endif | ||
130 | |||
131 | /* | ||
132 | * Flags from the regular SLAB that SLUB does not support: | ||
133 | */ | ||
134 | #define SLUB_UNIMPLEMENTED (SLAB_DEBUG_INITIAL) | ||
135 | |||
136 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ | ||
137 | SLAB_POISON | SLAB_STORE_USER) | ||
138 | /* | ||
139 | * Set of flags that will prevent slab merging | ||
140 | */ | ||
141 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | ||
142 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | ||
143 | |||
144 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | ||
145 | SLAB_CACHE_DMA) | ||
146 | |||
147 | #ifndef ARCH_KMALLOC_MINALIGN | ||
148 | #define ARCH_KMALLOC_MINALIGN sizeof(void *) | ||
149 | #endif | ||
150 | |||
151 | #ifndef ARCH_SLAB_MINALIGN | ||
152 | #define ARCH_SLAB_MINALIGN sizeof(void *) | ||
153 | #endif | ||
154 | |||
155 | /* Internal SLUB flags */ | ||
156 | #define __OBJECT_POISON 0x80000000 /* Poison object */ | ||
157 | |||
158 | static int kmem_size = sizeof(struct kmem_cache); | ||
159 | |||
160 | #ifdef CONFIG_SMP | ||
161 | static struct notifier_block slab_notifier; | ||
162 | #endif | ||
163 | |||
164 | static enum { | ||
165 | DOWN, /* No slab functionality available */ | ||
166 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ | ||
167 | UP, /* Everything works */ | ||
168 | SYSFS /* Sysfs up */ | ||
169 | } slab_state = DOWN; | ||
170 | |||
171 | /* A list of all slab caches on the system */ | ||
172 | static DECLARE_RWSEM(slub_lock); | ||
173 | LIST_HEAD(slab_caches); | ||
174 | |||
175 | #ifdef CONFIG_SYSFS | ||
176 | static int sysfs_slab_add(struct kmem_cache *); | ||
177 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | ||
178 | static void sysfs_slab_remove(struct kmem_cache *); | ||
179 | #else | ||
180 | static int sysfs_slab_add(struct kmem_cache *s) { return 0; } | ||
181 | static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; } | ||
182 | static void sysfs_slab_remove(struct kmem_cache *s) {} | ||
183 | #endif | ||
184 | |||
185 | /******************************************************************** | ||
186 | * Core slab cache functions | ||
187 | *******************************************************************/ | ||
188 | |||
189 | int slab_is_available(void) | ||
190 | { | ||
191 | return slab_state >= UP; | ||
192 | } | ||
193 | |||
194 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | ||
195 | { | ||
196 | #ifdef CONFIG_NUMA | ||
197 | return s->node[node]; | ||
198 | #else | ||
199 | return &s->local_node; | ||
200 | #endif | ||
201 | } | ||
202 | |||
203 | /* | ||
204 | * Object debugging | ||
205 | */ | ||
206 | static void print_section(char *text, u8 *addr, unsigned int length) | ||
207 | { | ||
208 | int i, offset; | ||
209 | int newline = 1; | ||
210 | char ascii[17]; | ||
211 | |||
212 | ascii[16] = 0; | ||
213 | |||
214 | for (i = 0; i < length; i++) { | ||
215 | if (newline) { | ||
216 | printk(KERN_ERR "%10s 0x%p: ", text, addr + i); | ||
217 | newline = 0; | ||
218 | } | ||
219 | printk(" %02x", addr[i]); | ||
220 | offset = i % 16; | ||
221 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | ||
222 | if (offset == 15) { | ||
223 | printk(" %s\n",ascii); | ||
224 | newline = 1; | ||
225 | } | ||
226 | } | ||
227 | if (!newline) { | ||
228 | i %= 16; | ||
229 | while (i < 16) { | ||
230 | printk(" "); | ||
231 | ascii[i] = ' '; | ||
232 | i++; | ||
233 | } | ||
234 | printk(" %s\n", ascii); | ||
235 | } | ||
236 | } | ||
237 | |||
238 | /* | ||
239 | * Slow version of get and set free pointer. | ||
240 | * | ||
241 | * This requires touching the cache lines of kmem_cache. | ||
242 | * The offset can also be obtained from the page. In that | ||
243 | * case it is in the cacheline that we already need to touch. | ||
244 | */ | ||
245 | static void *get_freepointer(struct kmem_cache *s, void *object) | ||
246 | { | ||
247 | return *(void **)(object + s->offset); | ||
248 | } | ||
249 | |||
250 | static void set_freepointer(struct kmem_cache *s, void *object, void *fp) | ||
251 | { | ||
252 | *(void **)(object + s->offset) = fp; | ||
253 | } | ||
254 | |||
255 | /* | ||
256 | * Tracking user of a slab. | ||
257 | */ | ||
258 | struct track { | ||
259 | void *addr; /* Called from address */ | ||
260 | int cpu; /* Was running on cpu */ | ||
261 | int pid; /* Pid context */ | ||
262 | unsigned long when; /* When did the operation occur */ | ||
263 | }; | ||
264 | |||
265 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | ||
266 | |||
267 | static struct track *get_track(struct kmem_cache *s, void *object, | ||
268 | enum track_item alloc) | ||
269 | { | ||
270 | struct track *p; | ||
271 | |||
272 | if (s->offset) | ||
273 | p = object + s->offset + sizeof(void *); | ||
274 | else | ||
275 | p = object + s->inuse; | ||
276 | |||
277 | return p + alloc; | ||
278 | } | ||
279 | |||
280 | static void set_track(struct kmem_cache *s, void *object, | ||
281 | enum track_item alloc, void *addr) | ||
282 | { | ||
283 | struct track *p; | ||
284 | |||
285 | if (s->offset) | ||
286 | p = object + s->offset + sizeof(void *); | ||
287 | else | ||
288 | p = object + s->inuse; | ||
289 | |||
290 | p += alloc; | ||
291 | if (addr) { | ||
292 | p->addr = addr; | ||
293 | p->cpu = smp_processor_id(); | ||
294 | p->pid = current ? current->pid : -1; | ||
295 | p->when = jiffies; | ||
296 | } else | ||
297 | memset(p, 0, sizeof(struct track)); | ||
298 | } | ||
299 | |||
300 | #define set_tracking(__s, __o, __a) set_track(__s, __o, __a, \ | ||
301 | __builtin_return_address(0)) | ||
302 | |||
303 | static void init_tracking(struct kmem_cache *s, void *object) | ||
304 | { | ||
305 | if (s->flags & SLAB_STORE_USER) { | ||
306 | set_track(s, object, TRACK_FREE, NULL); | ||
307 | set_track(s, object, TRACK_ALLOC, NULL); | ||
308 | } | ||
309 | } | ||
310 | |||
311 | static void print_track(const char *s, struct track *t) | ||
312 | { | ||
313 | if (!t->addr) | ||
314 | return; | ||
315 | |||
316 | printk(KERN_ERR "%s: ", s); | ||
317 | __print_symbol("%s", (unsigned long)t->addr); | ||
318 | printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); | ||
319 | } | ||
320 | |||
321 | static void print_trailer(struct kmem_cache *s, u8 *p) | ||
322 | { | ||
323 | unsigned int off; /* Offset of last byte */ | ||
324 | |||
325 | if (s->flags & SLAB_RED_ZONE) | ||
326 | print_section("Redzone", p + s->objsize, | ||
327 | s->inuse - s->objsize); | ||
328 | |||
329 | printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n", | ||
330 | p + s->offset, | ||
331 | get_freepointer(s, p)); | ||
332 | |||
333 | if (s->offset) | ||
334 | off = s->offset + sizeof(void *); | ||
335 | else | ||
336 | off = s->inuse; | ||
337 | |||
338 | if (s->flags & SLAB_STORE_USER) { | ||
339 | print_track("Last alloc", get_track(s, p, TRACK_ALLOC)); | ||
340 | print_track("Last free ", get_track(s, p, TRACK_FREE)); | ||
341 | off += 2 * sizeof(struct track); | ||
342 | } | ||
343 | |||
344 | if (off != s->size) | ||
345 | /* Beginning of the filler is the free pointer */ | ||
346 | print_section("Filler", p + off, s->size - off); | ||
347 | } | ||
348 | |||
349 | static void object_err(struct kmem_cache *s, struct page *page, | ||
350 | u8 *object, char *reason) | ||
351 | { | ||
352 | u8 *addr = page_address(page); | ||
353 | |||
354 | printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n", | ||
355 | s->name, reason, object, page); | ||
356 | printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n", | ||
357 | object - addr, page->flags, page->inuse, page->freelist); | ||
358 | if (object > addr + 16) | ||
359 | print_section("Bytes b4", object - 16, 16); | ||
360 | print_section("Object", object, min(s->objsize, 128)); | ||
361 | print_trailer(s, object); | ||
362 | dump_stack(); | ||
363 | } | ||
364 | |||
365 | static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...) | ||
366 | { | ||
367 | va_list args; | ||
368 | char buf[100]; | ||
369 | |||
370 | va_start(args, reason); | ||
371 | vsnprintf(buf, sizeof(buf), reason, args); | ||
372 | va_end(args); | ||
373 | printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf, | ||
374 | page); | ||
375 | dump_stack(); | ||
376 | } | ||
377 | |||
378 | static void init_object(struct kmem_cache *s, void *object, int active) | ||
379 | { | ||
380 | u8 *p = object; | ||
381 | |||
382 | if (s->flags & __OBJECT_POISON) { | ||
383 | memset(p, POISON_FREE, s->objsize - 1); | ||
384 | p[s->objsize -1] = POISON_END; | ||
385 | } | ||
386 | |||
387 | if (s->flags & SLAB_RED_ZONE) | ||
388 | memset(p + s->objsize, | ||
389 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | ||
390 | s->inuse - s->objsize); | ||
391 | } | ||
392 | |||
393 | static int check_bytes(u8 *start, unsigned int value, unsigned int bytes) | ||
394 | { | ||
395 | while (bytes) { | ||
396 | if (*start != (u8)value) | ||
397 | return 0; | ||
398 | start++; | ||
399 | bytes--; | ||
400 | } | ||
401 | return 1; | ||
402 | } | ||
403 | |||
404 | |||
405 | static int check_valid_pointer(struct kmem_cache *s, struct page *page, | ||
406 | void *object) | ||
407 | { | ||
408 | void *base; | ||
409 | |||
410 | if (!object) | ||
411 | return 1; | ||
412 | |||
413 | base = page_address(page); | ||
414 | if (object < base || object >= base + s->objects * s->size || | ||
415 | (object - base) % s->size) { | ||
416 | return 0; | ||
417 | } | ||
418 | |||
419 | return 1; | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * Object layout: | ||
424 | * | ||
425 | * object address | ||
426 | * Bytes of the object to be managed. | ||
427 | * If the freepointer may overlay the object then the free | ||
428 | * pointer is the first word of the object. | ||
429 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is | ||
430 | * 0xa5 (POISON_END) | ||
431 | * | ||
432 | * object + s->objsize | ||
433 | * Padding to reach word boundary. This is also used for Redzoning. | ||
434 | * Padding is extended to word size if Redzoning is enabled | ||
435 | * and objsize == inuse. | ||
436 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with | ||
437 | * 0xcc (RED_ACTIVE) for objects in use. | ||
438 | * | ||
439 | * object + s->inuse | ||
440 | * A. Free pointer (if we cannot overwrite object on free) | ||
441 | * B. Tracking data for SLAB_STORE_USER | ||
442 | * C. Padding to reach required alignment boundary | ||
443 | * Padding is done using 0x5a (POISON_INUSE) | ||
444 | * | ||
445 | * object + s->size | ||
446 | * | ||
447 | * If slabcaches are merged then the objsize and inuse boundaries are to | ||
448 | * be ignored. And therefore no slab options that rely on these boundaries | ||
449 | * may be used with merged slabcaches. | ||
450 | */ | ||
451 | |||
452 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | ||
453 | void *from, void *to) | ||
454 | { | ||
455 | printk(KERN_ERR "@@@ SLUB: %s Restoring %s (0x%x) from 0x%p-0x%p\n", | ||
456 | s->name, message, data, from, to - 1); | ||
457 | memset(from, data, to - from); | ||
458 | } | ||
459 | |||
460 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | ||
461 | { | ||
462 | unsigned long off = s->inuse; /* The end of info */ | ||
463 | |||
464 | if (s->offset) | ||
465 | /* Freepointer is placed after the object. */ | ||
466 | off += sizeof(void *); | ||
467 | |||
468 | if (s->flags & SLAB_STORE_USER) | ||
469 | /* We also have user information there */ | ||
470 | off += 2 * sizeof(struct track); | ||
471 | |||
472 | if (s->size == off) | ||
473 | return 1; | ||
474 | |||
475 | if (check_bytes(p + off, POISON_INUSE, s->size - off)) | ||
476 | return 1; | ||
477 | |||
478 | object_err(s, page, p, "Object padding check fails"); | ||
479 | |||
480 | /* | ||
481 | * Restore padding | ||
482 | */ | ||
483 | restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size); | ||
484 | return 0; | ||
485 | } | ||
486 | |||
487 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | ||
488 | { | ||
489 | u8 *p; | ||
490 | int length, remainder; | ||
491 | |||
492 | if (!(s->flags & SLAB_POISON)) | ||
493 | return 1; | ||
494 | |||
495 | p = page_address(page); | ||
496 | length = s->objects * s->size; | ||
497 | remainder = (PAGE_SIZE << s->order) - length; | ||
498 | if (!remainder) | ||
499 | return 1; | ||
500 | |||
501 | if (!check_bytes(p + length, POISON_INUSE, remainder)) { | ||
502 | printk(KERN_ERR "SLUB: %s slab 0x%p: Padding fails check\n", | ||
503 | s->name, p); | ||
504 | dump_stack(); | ||
505 | restore_bytes(s, "slab padding", POISON_INUSE, p + length, | ||
506 | p + length + remainder); | ||
507 | return 0; | ||
508 | } | ||
509 | return 1; | ||
510 | } | ||
511 | |||
512 | static int check_object(struct kmem_cache *s, struct page *page, | ||
513 | void *object, int active) | ||
514 | { | ||
515 | u8 *p = object; | ||
516 | u8 *endobject = object + s->objsize; | ||
517 | |||
518 | if (s->flags & SLAB_RED_ZONE) { | ||
519 | unsigned int red = | ||
520 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | ||
521 | |||
522 | if (!check_bytes(endobject, red, s->inuse - s->objsize)) { | ||
523 | object_err(s, page, object, | ||
524 | active ? "Redzone Active" : "Redzone Inactive"); | ||
525 | restore_bytes(s, "redzone", red, | ||
526 | endobject, object + s->inuse); | ||
527 | return 0; | ||
528 | } | ||
529 | } else { | ||
530 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse && | ||
531 | !check_bytes(endobject, POISON_INUSE, | ||
532 | s->inuse - s->objsize)) { | ||
533 | object_err(s, page, p, "Alignment padding check fails"); | ||
534 | /* | ||
535 | * Fix it so that there will not be another report. | ||
536 | * | ||
537 | * Hmmm... We may be corrupting an object that now expects | ||
538 | * to be longer than allowed. | ||
539 | */ | ||
540 | restore_bytes(s, "alignment padding", POISON_INUSE, | ||
541 | endobject, object + s->inuse); | ||
542 | } | ||
543 | } | ||
544 | |||
545 | if (s->flags & SLAB_POISON) { | ||
546 | if (!active && (s->flags & __OBJECT_POISON) && | ||
547 | (!check_bytes(p, POISON_FREE, s->objsize - 1) || | ||
548 | p[s->objsize - 1] != POISON_END)) { | ||
549 | |||
550 | object_err(s, page, p, "Poison check failed"); | ||
551 | restore_bytes(s, "Poison", POISON_FREE, | ||
552 | p, p + s->objsize -1); | ||
553 | restore_bytes(s, "Poison", POISON_END, | ||
554 | p + s->objsize - 1, p + s->objsize); | ||
555 | return 0; | ||
556 | } | ||
557 | /* | ||
558 | * check_pad_bytes cleans up on its own. | ||
559 | */ | ||
560 | check_pad_bytes(s, page, p); | ||
561 | } | ||
562 | |||
563 | if (!s->offset && active) | ||
564 | /* | ||
565 | * Object and freepointer overlap. Cannot check | ||
566 | * freepointer while object is allocated. | ||
567 | */ | ||
568 | return 1; | ||
569 | |||
570 | /* Check free pointer validity */ | ||
571 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | ||
572 | object_err(s, page, p, "Freepointer corrupt"); | ||
573 | /* | ||
574 | * No choice but to zap it and thus loose the remainder | ||
575 | * of the free objects in this slab. May cause | ||
576 | * another error because the object count maybe | ||
577 | * wrong now. | ||
578 | */ | ||
579 | set_freepointer(s, p, NULL); | ||
580 | return 0; | ||
581 | } | ||
582 | return 1; | ||
583 | } | ||
584 | |||
585 | static int check_slab(struct kmem_cache *s, struct page *page) | ||
586 | { | ||
587 | VM_BUG_ON(!irqs_disabled()); | ||
588 | |||
589 | if (!PageSlab(page)) { | ||
590 | printk(KERN_ERR "SLUB: %s Not a valid slab page @0x%p " | ||
591 | "flags=%lx mapping=0x%p count=%d \n", | ||
592 | s->name, page, page->flags, page->mapping, | ||
593 | page_count(page)); | ||
594 | return 0; | ||
595 | } | ||
596 | if (page->offset * sizeof(void *) != s->offset) { | ||
597 | printk(KERN_ERR "SLUB: %s Corrupted offset %lu in slab @0x%p" | ||
598 | " flags=0x%lx mapping=0x%p count=%d\n", | ||
599 | s->name, | ||
600 | (unsigned long)(page->offset * sizeof(void *)), | ||
601 | page, | ||
602 | page->flags, | ||
603 | page->mapping, | ||
604 | page_count(page)); | ||
605 | dump_stack(); | ||
606 | return 0; | ||
607 | } | ||
608 | if (page->inuse > s->objects) { | ||
609 | printk(KERN_ERR "SLUB: %s Inuse %u > max %u in slab " | ||
610 | "page @0x%p flags=%lx mapping=0x%p count=%d\n", | ||
611 | s->name, page->inuse, s->objects, page, page->flags, | ||
612 | page->mapping, page_count(page)); | ||
613 | dump_stack(); | ||
614 | return 0; | ||
615 | } | ||
616 | /* Slab_pad_check fixes things up after itself */ | ||
617 | slab_pad_check(s, page); | ||
618 | return 1; | ||
619 | } | ||
620 | |||
621 | /* | ||
622 | * Determine if a certain object on a page is on the freelist and | ||
623 | * therefore free. Must hold the slab lock for cpu slabs to | ||
624 | * guarantee that the chains are consistent. | ||
625 | */ | ||
626 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | ||
627 | { | ||
628 | int nr = 0; | ||
629 | void *fp = page->freelist; | ||
630 | void *object = NULL; | ||
631 | |||
632 | while (fp && nr <= s->objects) { | ||
633 | if (fp == search) | ||
634 | return 1; | ||
635 | if (!check_valid_pointer(s, page, fp)) { | ||
636 | if (object) { | ||
637 | object_err(s, page, object, | ||
638 | "Freechain corrupt"); | ||
639 | set_freepointer(s, object, NULL); | ||
640 | break; | ||
641 | } else { | ||
642 | printk(KERN_ERR "SLUB: %s slab 0x%p " | ||
643 | "freepointer 0x%p corrupted.\n", | ||
644 | s->name, page, fp); | ||
645 | dump_stack(); | ||
646 | page->freelist = NULL; | ||
647 | page->inuse = s->objects; | ||
648 | return 0; | ||
649 | } | ||
650 | break; | ||
651 | } | ||
652 | object = fp; | ||
653 | fp = get_freepointer(s, object); | ||
654 | nr++; | ||
655 | } | ||
656 | |||
657 | if (page->inuse != s->objects - nr) { | ||
658 | printk(KERN_ERR "slab %s: page 0x%p wrong object count." | ||
659 | " counter is %d but counted were %d\n", | ||
660 | s->name, page, page->inuse, | ||
661 | s->objects - nr); | ||
662 | page->inuse = s->objects - nr; | ||
663 | } | ||
664 | return search == NULL; | ||
665 | } | ||
666 | |||
667 | static int alloc_object_checks(struct kmem_cache *s, struct page *page, | ||
668 | void *object) | ||
669 | { | ||
670 | if (!check_slab(s, page)) | ||
671 | goto bad; | ||
672 | |||
673 | if (object && !on_freelist(s, page, object)) { | ||
674 | printk(KERN_ERR "SLUB: %s Object 0x%p@0x%p " | ||
675 | "already allocated.\n", | ||
676 | s->name, object, page); | ||
677 | goto dump; | ||
678 | } | ||
679 | |||
680 | if (!check_valid_pointer(s, page, object)) { | ||
681 | object_err(s, page, object, "Freelist Pointer check fails"); | ||
682 | goto dump; | ||
683 | } | ||
684 | |||
685 | if (!object) | ||
686 | return 1; | ||
687 | |||
688 | if (!check_object(s, page, object, 0)) | ||
689 | goto bad; | ||
690 | init_object(s, object, 1); | ||
691 | |||
692 | if (s->flags & SLAB_TRACE) { | ||
693 | printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n", | ||
694 | s->name, object, page->inuse, | ||
695 | page->freelist); | ||
696 | dump_stack(); | ||
697 | } | ||
698 | return 1; | ||
699 | dump: | ||
700 | dump_stack(); | ||
701 | bad: | ||
702 | if (PageSlab(page)) { | ||
703 | /* | ||
704 | * If this is a slab page then lets do the best we can | ||
705 | * to avoid issues in the future. Marking all objects | ||
706 | * as used avoids touching the remainder. | ||
707 | */ | ||
708 | printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n", | ||
709 | s->name, page); | ||
710 | page->inuse = s->objects; | ||
711 | page->freelist = NULL; | ||
712 | /* Fix up fields that may be corrupted */ | ||
713 | page->offset = s->offset / sizeof(void *); | ||
714 | } | ||
715 | return 0; | ||
716 | } | ||
717 | |||
718 | static int free_object_checks(struct kmem_cache *s, struct page *page, | ||
719 | void *object) | ||
720 | { | ||
721 | if (!check_slab(s, page)) | ||
722 | goto fail; | ||
723 | |||
724 | if (!check_valid_pointer(s, page, object)) { | ||
725 | printk(KERN_ERR "SLUB: %s slab 0x%p invalid " | ||
726 | "object pointer 0x%p\n", | ||
727 | s->name, page, object); | ||
728 | goto fail; | ||
729 | } | ||
730 | |||
731 | if (on_freelist(s, page, object)) { | ||
732 | printk(KERN_ERR "SLUB: %s slab 0x%p object " | ||
733 | "0x%p already free.\n", s->name, page, object); | ||
734 | goto fail; | ||
735 | } | ||
736 | |||
737 | if (!check_object(s, page, object, 1)) | ||
738 | return 0; | ||
739 | |||
740 | if (unlikely(s != page->slab)) { | ||
741 | if (!PageSlab(page)) | ||
742 | printk(KERN_ERR "slab_free %s size %d: attempt to" | ||
743 | "free object(0x%p) outside of slab.\n", | ||
744 | s->name, s->size, object); | ||
745 | else | ||
746 | if (!page->slab) | ||
747 | printk(KERN_ERR | ||
748 | "slab_free : no slab(NULL) for object 0x%p.\n", | ||
749 | object); | ||
750 | else | ||
751 | printk(KERN_ERR "slab_free %s(%d): object at 0x%p" | ||
752 | " belongs to slab %s(%d)\n", | ||
753 | s->name, s->size, object, | ||
754 | page->slab->name, page->slab->size); | ||
755 | goto fail; | ||
756 | } | ||
757 | if (s->flags & SLAB_TRACE) { | ||
758 | printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n", | ||
759 | s->name, object, page->inuse, | ||
760 | page->freelist); | ||
761 | print_section("Object", object, s->objsize); | ||
762 | dump_stack(); | ||
763 | } | ||
764 | init_object(s, object, 0); | ||
765 | return 1; | ||
766 | fail: | ||
767 | dump_stack(); | ||
768 | printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n", | ||
769 | s->name, page, object); | ||
770 | return 0; | ||
771 | } | ||
772 | |||
773 | /* | ||
774 | * Slab allocation and freeing | ||
775 | */ | ||
776 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | ||
777 | { | ||
778 | struct page * page; | ||
779 | int pages = 1 << s->order; | ||
780 | |||
781 | if (s->order) | ||
782 | flags |= __GFP_COMP; | ||
783 | |||
784 | if (s->flags & SLAB_CACHE_DMA) | ||
785 | flags |= SLUB_DMA; | ||
786 | |||
787 | if (node == -1) | ||
788 | page = alloc_pages(flags, s->order); | ||
789 | else | ||
790 | page = alloc_pages_node(node, flags, s->order); | ||
791 | |||
792 | if (!page) | ||
793 | return NULL; | ||
794 | |||
795 | mod_zone_page_state(page_zone(page), | ||
796 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | ||
797 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | ||
798 | pages); | ||
799 | |||
800 | return page; | ||
801 | } | ||
802 | |||
803 | static void setup_object(struct kmem_cache *s, struct page *page, | ||
804 | void *object) | ||
805 | { | ||
806 | if (PageError(page)) { | ||
807 | init_object(s, object, 0); | ||
808 | init_tracking(s, object); | ||
809 | } | ||
810 | |||
811 | if (unlikely(s->ctor)) { | ||
812 | int mode = SLAB_CTOR_CONSTRUCTOR; | ||
813 | |||
814 | if (!(s->flags & __GFP_WAIT)) | ||
815 | mode |= SLAB_CTOR_ATOMIC; | ||
816 | |||
817 | s->ctor(object, s, mode); | ||
818 | } | ||
819 | } | ||
820 | |||
821 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | ||
822 | { | ||
823 | struct page *page; | ||
824 | struct kmem_cache_node *n; | ||
825 | void *start; | ||
826 | void *end; | ||
827 | void *last; | ||
828 | void *p; | ||
829 | |||
830 | if (flags & __GFP_NO_GROW) | ||
831 | return NULL; | ||
832 | |||
833 | BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK)); | ||
834 | |||
835 | if (flags & __GFP_WAIT) | ||
836 | local_irq_enable(); | ||
837 | |||
838 | page = allocate_slab(s, flags & GFP_LEVEL_MASK, node); | ||
839 | if (!page) | ||
840 | goto out; | ||
841 | |||
842 | n = get_node(s, page_to_nid(page)); | ||
843 | if (n) | ||
844 | atomic_long_inc(&n->nr_slabs); | ||
845 | page->offset = s->offset / sizeof(void *); | ||
846 | page->slab = s; | ||
847 | page->flags |= 1 << PG_slab; | ||
848 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | ||
849 | SLAB_STORE_USER | SLAB_TRACE)) | ||
850 | page->flags |= 1 << PG_error; | ||
851 | |||
852 | start = page_address(page); | ||
853 | end = start + s->objects * s->size; | ||
854 | |||
855 | if (unlikely(s->flags & SLAB_POISON)) | ||
856 | memset(start, POISON_INUSE, PAGE_SIZE << s->order); | ||
857 | |||
858 | last = start; | ||
859 | for (p = start + s->size; p < end; p += s->size) { | ||
860 | setup_object(s, page, last); | ||
861 | set_freepointer(s, last, p); | ||
862 | last = p; | ||
863 | } | ||
864 | setup_object(s, page, last); | ||
865 | set_freepointer(s, last, NULL); | ||
866 | |||
867 | page->freelist = start; | ||
868 | page->inuse = 0; | ||
869 | out: | ||
870 | if (flags & __GFP_WAIT) | ||
871 | local_irq_disable(); | ||
872 | return page; | ||
873 | } | ||
874 | |||
875 | static void __free_slab(struct kmem_cache *s, struct page *page) | ||
876 | { | ||
877 | int pages = 1 << s->order; | ||
878 | |||
879 | if (unlikely(PageError(page) || s->dtor)) { | ||
880 | void *start = page_address(page); | ||
881 | void *end = start + (pages << PAGE_SHIFT); | ||
882 | void *p; | ||
883 | |||
884 | slab_pad_check(s, page); | ||
885 | for (p = start; p <= end - s->size; p += s->size) { | ||
886 | if (s->dtor) | ||
887 | s->dtor(p, s, 0); | ||
888 | check_object(s, page, p, 0); | ||
889 | } | ||
890 | } | ||
891 | |||
892 | mod_zone_page_state(page_zone(page), | ||
893 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | ||
894 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | ||
895 | - pages); | ||
896 | |||
897 | page->mapping = NULL; | ||
898 | __free_pages(page, s->order); | ||
899 | } | ||
900 | |||
901 | static void rcu_free_slab(struct rcu_head *h) | ||
902 | { | ||
903 | struct page *page; | ||
904 | |||
905 | page = container_of((struct list_head *)h, struct page, lru); | ||
906 | __free_slab(page->slab, page); | ||
907 | } | ||
908 | |||
909 | static void free_slab(struct kmem_cache *s, struct page *page) | ||
910 | { | ||
911 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | ||
912 | /* | ||
913 | * RCU free overloads the RCU head over the LRU | ||
914 | */ | ||
915 | struct rcu_head *head = (void *)&page->lru; | ||
916 | |||
917 | call_rcu(head, rcu_free_slab); | ||
918 | } else | ||
919 | __free_slab(s, page); | ||
920 | } | ||
921 | |||
922 | static void discard_slab(struct kmem_cache *s, struct page *page) | ||
923 | { | ||
924 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | ||
925 | |||
926 | atomic_long_dec(&n->nr_slabs); | ||
927 | reset_page_mapcount(page); | ||
928 | page->flags &= ~(1 << PG_slab | 1 << PG_error); | ||
929 | free_slab(s, page); | ||
930 | } | ||
931 | |||
932 | /* | ||
933 | * Per slab locking using the pagelock | ||
934 | */ | ||
935 | static __always_inline void slab_lock(struct page *page) | ||
936 | { | ||
937 | bit_spin_lock(PG_locked, &page->flags); | ||
938 | } | ||
939 | |||
940 | static __always_inline void slab_unlock(struct page *page) | ||
941 | { | ||
942 | bit_spin_unlock(PG_locked, &page->flags); | ||
943 | } | ||
944 | |||
945 | static __always_inline int slab_trylock(struct page *page) | ||
946 | { | ||
947 | int rc = 1; | ||
948 | |||
949 | rc = bit_spin_trylock(PG_locked, &page->flags); | ||
950 | return rc; | ||
951 | } | ||
952 | |||
953 | /* | ||
954 | * Management of partially allocated slabs | ||
955 | */ | ||
956 | static void add_partial(struct kmem_cache *s, struct page *page) | ||
957 | { | ||
958 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | ||
959 | |||
960 | spin_lock(&n->list_lock); | ||
961 | n->nr_partial++; | ||
962 | list_add(&page->lru, &n->partial); | ||
963 | spin_unlock(&n->list_lock); | ||
964 | } | ||
965 | |||
966 | static void remove_partial(struct kmem_cache *s, | ||
967 | struct page *page) | ||
968 | { | ||
969 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | ||
970 | |||
971 | spin_lock(&n->list_lock); | ||
972 | list_del(&page->lru); | ||
973 | n->nr_partial--; | ||
974 | spin_unlock(&n->list_lock); | ||
975 | } | ||
976 | |||
977 | /* | ||
978 | * Lock page and remove it from the partial list | ||
979 | * | ||
980 | * Must hold list_lock | ||
981 | */ | ||
982 | static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page) | ||
983 | { | ||
984 | if (slab_trylock(page)) { | ||
985 | list_del(&page->lru); | ||
986 | n->nr_partial--; | ||
987 | return 1; | ||
988 | } | ||
989 | return 0; | ||
990 | } | ||
991 | |||
992 | /* | ||
993 | * Try to get a partial slab from a specific node | ||
994 | */ | ||
995 | static struct page *get_partial_node(struct kmem_cache_node *n) | ||
996 | { | ||
997 | struct page *page; | ||
998 | |||
999 | /* | ||
1000 | * Racy check. If we mistakenly see no partial slabs then we | ||
1001 | * just allocate an empty slab. If we mistakenly try to get a | ||
1002 | * partial slab then get_partials() will return NULL. | ||
1003 | */ | ||
1004 | if (!n || !n->nr_partial) | ||
1005 | return NULL; | ||
1006 | |||
1007 | spin_lock(&n->list_lock); | ||
1008 | list_for_each_entry(page, &n->partial, lru) | ||
1009 | if (lock_and_del_slab(n, page)) | ||
1010 | goto out; | ||
1011 | page = NULL; | ||
1012 | out: | ||
1013 | spin_unlock(&n->list_lock); | ||
1014 | return page; | ||
1015 | } | ||
1016 | |||
1017 | /* | ||
1018 | * Get a page from somewhere. Search in increasing NUMA | ||
1019 | * distances. | ||
1020 | */ | ||
1021 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | ||
1022 | { | ||
1023 | #ifdef CONFIG_NUMA | ||
1024 | struct zonelist *zonelist; | ||
1025 | struct zone **z; | ||
1026 | struct page *page; | ||
1027 | |||
1028 | /* | ||
1029 | * The defrag ratio allows to configure the tradeoffs between | ||
1030 | * inter node defragmentation and node local allocations. | ||
1031 | * A lower defrag_ratio increases the tendency to do local | ||
1032 | * allocations instead of scanning throught the partial | ||
1033 | * lists on other nodes. | ||
1034 | * | ||
1035 | * If defrag_ratio is set to 0 then kmalloc() always | ||
1036 | * returns node local objects. If its higher then kmalloc() | ||
1037 | * may return off node objects in order to avoid fragmentation. | ||
1038 | * | ||
1039 | * A higher ratio means slabs may be taken from other nodes | ||
1040 | * thus reducing the number of partial slabs on those nodes. | ||
1041 | * | ||
1042 | * If /sys/slab/xx/defrag_ratio is set to 100 (which makes | ||
1043 | * defrag_ratio = 1000) then every (well almost) allocation | ||
1044 | * will first attempt to defrag slab caches on other nodes. This | ||
1045 | * means scanning over all nodes to look for partial slabs which | ||
1046 | * may be a bit expensive to do on every slab allocation. | ||
1047 | */ | ||
1048 | if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) | ||
1049 | return NULL; | ||
1050 | |||
1051 | zonelist = &NODE_DATA(slab_node(current->mempolicy)) | ||
1052 | ->node_zonelists[gfp_zone(flags)]; | ||
1053 | for (z = zonelist->zones; *z; z++) { | ||
1054 | struct kmem_cache_node *n; | ||
1055 | |||
1056 | n = get_node(s, zone_to_nid(*z)); | ||
1057 | |||
1058 | if (n && cpuset_zone_allowed_hardwall(*z, flags) && | ||
1059 | n->nr_partial > 2) { | ||
1060 | page = get_partial_node(n); | ||
1061 | if (page) | ||
1062 | return page; | ||
1063 | } | ||
1064 | } | ||
1065 | #endif | ||
1066 | return NULL; | ||
1067 | } | ||
1068 | |||
1069 | /* | ||
1070 | * Get a partial page, lock it and return it. | ||
1071 | */ | ||
1072 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | ||
1073 | { | ||
1074 | struct page *page; | ||
1075 | int searchnode = (node == -1) ? numa_node_id() : node; | ||
1076 | |||
1077 | page = get_partial_node(get_node(s, searchnode)); | ||
1078 | if (page || (flags & __GFP_THISNODE)) | ||
1079 | return page; | ||
1080 | |||
1081 | return get_any_partial(s, flags); | ||
1082 | } | ||
1083 | |||
1084 | /* | ||
1085 | * Move a page back to the lists. | ||
1086 | * | ||
1087 | * Must be called with the slab lock held. | ||
1088 | * | ||
1089 | * On exit the slab lock will have been dropped. | ||
1090 | */ | ||
1091 | static void putback_slab(struct kmem_cache *s, struct page *page) | ||
1092 | { | ||
1093 | if (page->inuse) { | ||
1094 | if (page->freelist) | ||
1095 | add_partial(s, page); | ||
1096 | slab_unlock(page); | ||
1097 | } else { | ||
1098 | slab_unlock(page); | ||
1099 | discard_slab(s, page); | ||
1100 | } | ||
1101 | } | ||
1102 | |||
1103 | /* | ||
1104 | * Remove the cpu slab | ||
1105 | */ | ||
1106 | static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu) | ||
1107 | { | ||
1108 | s->cpu_slab[cpu] = NULL; | ||
1109 | ClearPageActive(page); | ||
1110 | |||
1111 | putback_slab(s, page); | ||
1112 | } | ||
1113 | |||
1114 | static void flush_slab(struct kmem_cache *s, struct page *page, int cpu) | ||
1115 | { | ||
1116 | slab_lock(page); | ||
1117 | deactivate_slab(s, page, cpu); | ||
1118 | } | ||
1119 | |||
1120 | /* | ||
1121 | * Flush cpu slab. | ||
1122 | * Called from IPI handler with interrupts disabled. | ||
1123 | */ | ||
1124 | static void __flush_cpu_slab(struct kmem_cache *s, int cpu) | ||
1125 | { | ||
1126 | struct page *page = s->cpu_slab[cpu]; | ||
1127 | |||
1128 | if (likely(page)) | ||
1129 | flush_slab(s, page, cpu); | ||
1130 | } | ||
1131 | |||
1132 | static void flush_cpu_slab(void *d) | ||
1133 | { | ||
1134 | struct kmem_cache *s = d; | ||
1135 | int cpu = smp_processor_id(); | ||
1136 | |||
1137 | __flush_cpu_slab(s, cpu); | ||
1138 | } | ||
1139 | |||
1140 | static void flush_all(struct kmem_cache *s) | ||
1141 | { | ||
1142 | #ifdef CONFIG_SMP | ||
1143 | on_each_cpu(flush_cpu_slab, s, 1, 1); | ||
1144 | #else | ||
1145 | unsigned long flags; | ||
1146 | |||
1147 | local_irq_save(flags); | ||
1148 | flush_cpu_slab(s); | ||
1149 | local_irq_restore(flags); | ||
1150 | #endif | ||
1151 | } | ||
1152 | |||
1153 | /* | ||
1154 | * slab_alloc is optimized to only modify two cachelines on the fast path | ||
1155 | * (aside from the stack): | ||
1156 | * | ||
1157 | * 1. The page struct | ||
1158 | * 2. The first cacheline of the object to be allocated. | ||
1159 | * | ||
1160 | * The only cache lines that are read (apart from code) is the | ||
1161 | * per cpu array in the kmem_cache struct. | ||
1162 | * | ||
1163 | * Fastpath is not possible if we need to get a new slab or have | ||
1164 | * debugging enabled (which means all slabs are marked with PageError) | ||
1165 | */ | ||
1166 | static __always_inline void *slab_alloc(struct kmem_cache *s, | ||
1167 | gfp_t gfpflags, int node) | ||
1168 | { | ||
1169 | struct page *page; | ||
1170 | void **object; | ||
1171 | unsigned long flags; | ||
1172 | int cpu; | ||
1173 | |||
1174 | local_irq_save(flags); | ||
1175 | cpu = smp_processor_id(); | ||
1176 | page = s->cpu_slab[cpu]; | ||
1177 | if (!page) | ||
1178 | goto new_slab; | ||
1179 | |||
1180 | slab_lock(page); | ||
1181 | if (unlikely(node != -1 && page_to_nid(page) != node)) | ||
1182 | goto another_slab; | ||
1183 | redo: | ||
1184 | object = page->freelist; | ||
1185 | if (unlikely(!object)) | ||
1186 | goto another_slab; | ||
1187 | if (unlikely(PageError(page))) | ||
1188 | goto debug; | ||
1189 | |||
1190 | have_object: | ||
1191 | page->inuse++; | ||
1192 | page->freelist = object[page->offset]; | ||
1193 | slab_unlock(page); | ||
1194 | local_irq_restore(flags); | ||
1195 | return object; | ||
1196 | |||
1197 | another_slab: | ||
1198 | deactivate_slab(s, page, cpu); | ||
1199 | |||
1200 | new_slab: | ||
1201 | page = get_partial(s, gfpflags, node); | ||
1202 | if (likely(page)) { | ||
1203 | have_slab: | ||
1204 | s->cpu_slab[cpu] = page; | ||
1205 | SetPageActive(page); | ||
1206 | goto redo; | ||
1207 | } | ||
1208 | |||
1209 | page = new_slab(s, gfpflags, node); | ||
1210 | if (page) { | ||
1211 | cpu = smp_processor_id(); | ||
1212 | if (s->cpu_slab[cpu]) { | ||
1213 | /* | ||
1214 | * Someone else populated the cpu_slab while we enabled | ||
1215 | * interrupts, or we have got scheduled on another cpu. | ||
1216 | * The page may not be on the requested node. | ||
1217 | */ | ||
1218 | if (node == -1 || | ||
1219 | page_to_nid(s->cpu_slab[cpu]) == node) { | ||
1220 | /* | ||
1221 | * Current cpuslab is acceptable and we | ||
1222 | * want the current one since its cache hot | ||
1223 | */ | ||
1224 | discard_slab(s, page); | ||
1225 | page = s->cpu_slab[cpu]; | ||
1226 | slab_lock(page); | ||
1227 | goto redo; | ||
1228 | } | ||
1229 | /* Dump the current slab */ | ||
1230 | flush_slab(s, s->cpu_slab[cpu], cpu); | ||
1231 | } | ||
1232 | slab_lock(page); | ||
1233 | goto have_slab; | ||
1234 | } | ||
1235 | local_irq_restore(flags); | ||
1236 | return NULL; | ||
1237 | debug: | ||
1238 | if (!alloc_object_checks(s, page, object)) | ||
1239 | goto another_slab; | ||
1240 | if (s->flags & SLAB_STORE_USER) | ||
1241 | set_tracking(s, object, TRACK_ALLOC); | ||
1242 | goto have_object; | ||
1243 | } | ||
1244 | |||
1245 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | ||
1246 | { | ||
1247 | return slab_alloc(s, gfpflags, -1); | ||
1248 | } | ||
1249 | EXPORT_SYMBOL(kmem_cache_alloc); | ||
1250 | |||
1251 | #ifdef CONFIG_NUMA | ||
1252 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | ||
1253 | { | ||
1254 | return slab_alloc(s, gfpflags, node); | ||
1255 | } | ||
1256 | EXPORT_SYMBOL(kmem_cache_alloc_node); | ||
1257 | #endif | ||
1258 | |||
1259 | /* | ||
1260 | * The fastpath only writes the cacheline of the page struct and the first | ||
1261 | * cacheline of the object. | ||
1262 | * | ||
1263 | * No special cachelines need to be read | ||
1264 | */ | ||
1265 | static void slab_free(struct kmem_cache *s, struct page *page, void *x) | ||
1266 | { | ||
1267 | void *prior; | ||
1268 | void **object = (void *)x; | ||
1269 | unsigned long flags; | ||
1270 | |||
1271 | local_irq_save(flags); | ||
1272 | slab_lock(page); | ||
1273 | |||
1274 | if (unlikely(PageError(page))) | ||
1275 | goto debug; | ||
1276 | checks_ok: | ||
1277 | prior = object[page->offset] = page->freelist; | ||
1278 | page->freelist = object; | ||
1279 | page->inuse--; | ||
1280 | |||
1281 | if (unlikely(PageActive(page))) | ||
1282 | /* | ||
1283 | * Cpu slabs are never on partial lists and are | ||
1284 | * never freed. | ||
1285 | */ | ||
1286 | goto out_unlock; | ||
1287 | |||
1288 | if (unlikely(!page->inuse)) | ||
1289 | goto slab_empty; | ||
1290 | |||
1291 | /* | ||
1292 | * Objects left in the slab. If it | ||
1293 | * was not on the partial list before | ||
1294 | * then add it. | ||
1295 | */ | ||
1296 | if (unlikely(!prior)) | ||
1297 | add_partial(s, page); | ||
1298 | |||
1299 | out_unlock: | ||
1300 | slab_unlock(page); | ||
1301 | local_irq_restore(flags); | ||
1302 | return; | ||
1303 | |||
1304 | slab_empty: | ||
1305 | if (prior) | ||
1306 | /* | ||
1307 | * Partially used slab that is on the partial list. | ||
1308 | */ | ||
1309 | remove_partial(s, page); | ||
1310 | |||
1311 | slab_unlock(page); | ||
1312 | discard_slab(s, page); | ||
1313 | local_irq_restore(flags); | ||
1314 | return; | ||
1315 | |||
1316 | debug: | ||
1317 | if (free_object_checks(s, page, x)) | ||
1318 | goto checks_ok; | ||
1319 | goto out_unlock; | ||
1320 | } | ||
1321 | |||
1322 | void kmem_cache_free(struct kmem_cache *s, void *x) | ||
1323 | { | ||
1324 | struct page * page; | ||
1325 | |||
1326 | page = virt_to_page(x); | ||
1327 | |||
1328 | if (unlikely(PageCompound(page))) | ||
1329 | page = page->first_page; | ||
1330 | |||
1331 | |||
1332 | if (unlikely(PageError(page) && (s->flags & SLAB_STORE_USER))) | ||
1333 | set_tracking(s, x, TRACK_FREE); | ||
1334 | slab_free(s, page, x); | ||
1335 | } | ||
1336 | EXPORT_SYMBOL(kmem_cache_free); | ||
1337 | |||
1338 | /* Figure out on which slab object the object resides */ | ||
1339 | static struct page *get_object_page(const void *x) | ||
1340 | { | ||
1341 | struct page *page = virt_to_page(x); | ||
1342 | |||
1343 | if (unlikely(PageCompound(page))) | ||
1344 | page = page->first_page; | ||
1345 | |||
1346 | if (!PageSlab(page)) | ||
1347 | return NULL; | ||
1348 | |||
1349 | return page; | ||
1350 | } | ||
1351 | |||
1352 | /* | ||
1353 | * kmem_cache_open produces objects aligned at "size" and the first object | ||
1354 | * is placed at offset 0 in the slab (We have no metainformation on the | ||
1355 | * slab, all slabs are in essence "off slab"). | ||
1356 | * | ||
1357 | * In order to get the desired alignment one just needs to align the | ||
1358 | * size. | ||
1359 | * | ||
1360 | * Notice that the allocation order determines the sizes of the per cpu | ||
1361 | * caches. Each processor has always one slab available for allocations. | ||
1362 | * Increasing the allocation order reduces the number of times that slabs | ||
1363 | * must be moved on and off the partial lists and therefore may influence | ||
1364 | * locking overhead. | ||
1365 | * | ||
1366 | * The offset is used to relocate the free list link in each object. It is | ||
1367 | * therefore possible to move the free list link behind the object. This | ||
1368 | * is necessary for RCU to work properly and also useful for debugging. | ||
1369 | */ | ||
1370 | |||
1371 | /* | ||
1372 | * Mininum / Maximum order of slab pages. This influences locking overhead | ||
1373 | * and slab fragmentation. A higher order reduces the number of partial slabs | ||
1374 | * and increases the number of allocations possible without having to | ||
1375 | * take the list_lock. | ||
1376 | */ | ||
1377 | static int slub_min_order; | ||
1378 | static int slub_max_order = DEFAULT_MAX_ORDER; | ||
1379 | |||
1380 | /* | ||
1381 | * Minimum number of objects per slab. This is necessary in order to | ||
1382 | * reduce locking overhead. Similar to the queue size in SLAB. | ||
1383 | */ | ||
1384 | static int slub_min_objects = DEFAULT_MIN_OBJECTS; | ||
1385 | |||
1386 | /* | ||
1387 | * Merge control. If this is set then no merging of slab caches will occur. | ||
1388 | */ | ||
1389 | static int slub_nomerge; | ||
1390 | |||
1391 | /* | ||
1392 | * Debug settings: | ||
1393 | */ | ||
1394 | static int slub_debug; | ||
1395 | |||
1396 | static char *slub_debug_slabs; | ||
1397 | |||
1398 | /* | ||
1399 | * Calculate the order of allocation given an slab object size. | ||
1400 | * | ||
1401 | * The order of allocation has significant impact on other elements | ||
1402 | * of the system. Generally order 0 allocations should be preferred | ||
1403 | * since they do not cause fragmentation in the page allocator. Larger | ||
1404 | * objects may have problems with order 0 because there may be too much | ||
1405 | * space left unused in a slab. We go to a higher order if more than 1/8th | ||
1406 | * of the slab would be wasted. | ||
1407 | * | ||
1408 | * In order to reach satisfactory performance we must ensure that | ||
1409 | * a minimum number of objects is in one slab. Otherwise we may | ||
1410 | * generate too much activity on the partial lists. This is less a | ||
1411 | * concern for large slabs though. slub_max_order specifies the order | ||
1412 | * where we begin to stop considering the number of objects in a slab. | ||
1413 | * | ||
1414 | * Higher order allocations also allow the placement of more objects | ||
1415 | * in a slab and thereby reduce object handling overhead. If the user | ||
1416 | * has requested a higher mininum order then we start with that one | ||
1417 | * instead of zero. | ||
1418 | */ | ||
1419 | static int calculate_order(int size) | ||
1420 | { | ||
1421 | int order; | ||
1422 | int rem; | ||
1423 | |||
1424 | for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT); | ||
1425 | order < MAX_ORDER; order++) { | ||
1426 | unsigned long slab_size = PAGE_SIZE << order; | ||
1427 | |||
1428 | if (slub_max_order > order && | ||
1429 | slab_size < slub_min_objects * size) | ||
1430 | continue; | ||
1431 | |||
1432 | if (slab_size < size) | ||
1433 | continue; | ||
1434 | |||
1435 | rem = slab_size % size; | ||
1436 | |||
1437 | if (rem <= (PAGE_SIZE << order) / 8) | ||
1438 | break; | ||
1439 | |||
1440 | } | ||
1441 | if (order >= MAX_ORDER) | ||
1442 | return -E2BIG; | ||
1443 | return order; | ||
1444 | } | ||
1445 | |||
1446 | /* | ||
1447 | * Function to figure out which alignment to use from the | ||
1448 | * various ways of specifying it. | ||
1449 | */ | ||
1450 | static unsigned long calculate_alignment(unsigned long flags, | ||
1451 | unsigned long align, unsigned long size) | ||
1452 | { | ||
1453 | /* | ||
1454 | * If the user wants hardware cache aligned objects then | ||
1455 | * follow that suggestion if the object is sufficiently | ||
1456 | * large. | ||
1457 | * | ||
1458 | * The hardware cache alignment cannot override the | ||
1459 | * specified alignment though. If that is greater | ||
1460 | * then use it. | ||
1461 | */ | ||
1462 | if ((flags & (SLAB_MUST_HWCACHE_ALIGN | SLAB_HWCACHE_ALIGN)) && | ||
1463 | size > L1_CACHE_BYTES / 2) | ||
1464 | return max_t(unsigned long, align, L1_CACHE_BYTES); | ||
1465 | |||
1466 | if (align < ARCH_SLAB_MINALIGN) | ||
1467 | return ARCH_SLAB_MINALIGN; | ||
1468 | |||
1469 | return ALIGN(align, sizeof(void *)); | ||
1470 | } | ||
1471 | |||
1472 | static void init_kmem_cache_node(struct kmem_cache_node *n) | ||
1473 | { | ||
1474 | n->nr_partial = 0; | ||
1475 | atomic_long_set(&n->nr_slabs, 0); | ||
1476 | spin_lock_init(&n->list_lock); | ||
1477 | INIT_LIST_HEAD(&n->partial); | ||
1478 | } | ||
1479 | |||
1480 | #ifdef CONFIG_NUMA | ||
1481 | /* | ||
1482 | * No kmalloc_node yet so do it by hand. We know that this is the first | ||
1483 | * slab on the node for this slabcache. There are no concurrent accesses | ||
1484 | * possible. | ||
1485 | * | ||
1486 | * Note that this function only works on the kmalloc_node_cache | ||
1487 | * when allocating for the kmalloc_node_cache. | ||
1488 | */ | ||
1489 | static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags, | ||
1490 | int node) | ||
1491 | { | ||
1492 | struct page *page; | ||
1493 | struct kmem_cache_node *n; | ||
1494 | |||
1495 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | ||
1496 | |||
1497 | page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node); | ||
1498 | /* new_slab() disables interupts */ | ||
1499 | local_irq_enable(); | ||
1500 | |||
1501 | BUG_ON(!page); | ||
1502 | n = page->freelist; | ||
1503 | BUG_ON(!n); | ||
1504 | page->freelist = get_freepointer(kmalloc_caches, n); | ||
1505 | page->inuse++; | ||
1506 | kmalloc_caches->node[node] = n; | ||
1507 | init_object(kmalloc_caches, n, 1); | ||
1508 | init_kmem_cache_node(n); | ||
1509 | atomic_long_inc(&n->nr_slabs); | ||
1510 | add_partial(kmalloc_caches, page); | ||
1511 | return n; | ||
1512 | } | ||
1513 | |||
1514 | static void free_kmem_cache_nodes(struct kmem_cache *s) | ||
1515 | { | ||
1516 | int node; | ||
1517 | |||
1518 | for_each_online_node(node) { | ||
1519 | struct kmem_cache_node *n = s->node[node]; | ||
1520 | if (n && n != &s->local_node) | ||
1521 | kmem_cache_free(kmalloc_caches, n); | ||
1522 | s->node[node] = NULL; | ||
1523 | } | ||
1524 | } | ||
1525 | |||
1526 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | ||
1527 | { | ||
1528 | int node; | ||
1529 | int local_node; | ||
1530 | |||
1531 | if (slab_state >= UP) | ||
1532 | local_node = page_to_nid(virt_to_page(s)); | ||
1533 | else | ||
1534 | local_node = 0; | ||
1535 | |||
1536 | for_each_online_node(node) { | ||
1537 | struct kmem_cache_node *n; | ||
1538 | |||
1539 | if (local_node == node) | ||
1540 | n = &s->local_node; | ||
1541 | else { | ||
1542 | if (slab_state == DOWN) { | ||
1543 | n = early_kmem_cache_node_alloc(gfpflags, | ||
1544 | node); | ||
1545 | continue; | ||
1546 | } | ||
1547 | n = kmem_cache_alloc_node(kmalloc_caches, | ||
1548 | gfpflags, node); | ||
1549 | |||
1550 | if (!n) { | ||
1551 | free_kmem_cache_nodes(s); | ||
1552 | return 0; | ||
1553 | } | ||
1554 | |||
1555 | } | ||
1556 | s->node[node] = n; | ||
1557 | init_kmem_cache_node(n); | ||
1558 | } | ||
1559 | return 1; | ||
1560 | } | ||
1561 | #else | ||
1562 | static void free_kmem_cache_nodes(struct kmem_cache *s) | ||
1563 | { | ||
1564 | } | ||
1565 | |||
1566 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | ||
1567 | { | ||
1568 | init_kmem_cache_node(&s->local_node); | ||
1569 | return 1; | ||
1570 | } | ||
1571 | #endif | ||
1572 | |||
1573 | /* | ||
1574 | * calculate_sizes() determines the order and the distribution of data within | ||
1575 | * a slab object. | ||
1576 | */ | ||
1577 | static int calculate_sizes(struct kmem_cache *s) | ||
1578 | { | ||
1579 | unsigned long flags = s->flags; | ||
1580 | unsigned long size = s->objsize; | ||
1581 | unsigned long align = s->align; | ||
1582 | |||
1583 | /* | ||
1584 | * Determine if we can poison the object itself. If the user of | ||
1585 | * the slab may touch the object after free or before allocation | ||
1586 | * then we should never poison the object itself. | ||
1587 | */ | ||
1588 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | ||
1589 | !s->ctor && !s->dtor) | ||
1590 | s->flags |= __OBJECT_POISON; | ||
1591 | else | ||
1592 | s->flags &= ~__OBJECT_POISON; | ||
1593 | |||
1594 | /* | ||
1595 | * Round up object size to the next word boundary. We can only | ||
1596 | * place the free pointer at word boundaries and this determines | ||
1597 | * the possible location of the free pointer. | ||
1598 | */ | ||
1599 | size = ALIGN(size, sizeof(void *)); | ||
1600 | |||
1601 | /* | ||
1602 | * If we are redzoning then check if there is some space between the | ||
1603 | * end of the object and the free pointer. If not then add an | ||
1604 | * additional word, so that we can establish a redzone between | ||
1605 | * the object and the freepointer to be able to check for overwrites. | ||
1606 | */ | ||
1607 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | ||
1608 | size += sizeof(void *); | ||
1609 | |||
1610 | /* | ||
1611 | * With that we have determined how much of the slab is in actual | ||
1612 | * use by the object. This is the potential offset to the free | ||
1613 | * pointer. | ||
1614 | */ | ||
1615 | s->inuse = size; | ||
1616 | |||
1617 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | ||
1618 | s->ctor || s->dtor)) { | ||
1619 | /* | ||
1620 | * Relocate free pointer after the object if it is not | ||
1621 | * permitted to overwrite the first word of the object on | ||
1622 | * kmem_cache_free. | ||
1623 | * | ||
1624 | * This is the case if we do RCU, have a constructor or | ||
1625 | * destructor or are poisoning the objects. | ||
1626 | */ | ||
1627 | s->offset = size; | ||
1628 | size += sizeof(void *); | ||
1629 | } | ||
1630 | |||
1631 | if (flags & SLAB_STORE_USER) | ||
1632 | /* | ||
1633 | * Need to store information about allocs and frees after | ||
1634 | * the object. | ||
1635 | */ | ||
1636 | size += 2 * sizeof(struct track); | ||
1637 | |||
1638 | if (flags & DEBUG_DEFAULT_FLAGS) | ||
1639 | /* | ||
1640 | * Add some empty padding so that we can catch | ||
1641 | * overwrites from earlier objects rather than let | ||
1642 | * tracking information or the free pointer be | ||
1643 | * corrupted if an user writes before the start | ||
1644 | * of the object. | ||
1645 | */ | ||
1646 | size += sizeof(void *); | ||
1647 | /* | ||
1648 | * Determine the alignment based on various parameters that the | ||
1649 | * user specified (this is unecessarily complex due to the attempt | ||
1650 | * to be compatible with SLAB. Should be cleaned up some day). | ||
1651 | */ | ||
1652 | align = calculate_alignment(flags, align, s->objsize); | ||
1653 | |||
1654 | /* | ||
1655 | * SLUB stores one object immediately after another beginning from | ||
1656 | * offset 0. In order to align the objects we have to simply size | ||
1657 | * each object to conform to the alignment. | ||
1658 | */ | ||
1659 | size = ALIGN(size, align); | ||
1660 | s->size = size; | ||
1661 | |||
1662 | s->order = calculate_order(size); | ||
1663 | if (s->order < 0) | ||
1664 | return 0; | ||
1665 | |||
1666 | /* | ||
1667 | * Determine the number of objects per slab | ||
1668 | */ | ||
1669 | s->objects = (PAGE_SIZE << s->order) / size; | ||
1670 | |||
1671 | /* | ||
1672 | * Verify that the number of objects is within permitted limits. | ||
1673 | * The page->inuse field is only 16 bit wide! So we cannot have | ||
1674 | * more than 64k objects per slab. | ||
1675 | */ | ||
1676 | if (!s->objects || s->objects > 65535) | ||
1677 | return 0; | ||
1678 | return 1; | ||
1679 | |||
1680 | } | ||
1681 | |||
1682 | static int __init finish_bootstrap(void) | ||
1683 | { | ||
1684 | struct list_head *h; | ||
1685 | int err; | ||
1686 | |||
1687 | slab_state = SYSFS; | ||
1688 | |||
1689 | list_for_each(h, &slab_caches) { | ||
1690 | struct kmem_cache *s = | ||
1691 | container_of(h, struct kmem_cache, list); | ||
1692 | |||
1693 | err = sysfs_slab_add(s); | ||
1694 | BUG_ON(err); | ||
1695 | } | ||
1696 | return 0; | ||
1697 | } | ||
1698 | |||
1699 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | ||
1700 | const char *name, size_t size, | ||
1701 | size_t align, unsigned long flags, | ||
1702 | void (*ctor)(void *, struct kmem_cache *, unsigned long), | ||
1703 | void (*dtor)(void *, struct kmem_cache *, unsigned long)) | ||
1704 | { | ||
1705 | memset(s, 0, kmem_size); | ||
1706 | s->name = name; | ||
1707 | s->ctor = ctor; | ||
1708 | s->dtor = dtor; | ||
1709 | s->objsize = size; | ||
1710 | s->flags = flags; | ||
1711 | s->align = align; | ||
1712 | |||
1713 | BUG_ON(flags & SLUB_UNIMPLEMENTED); | ||
1714 | |||
1715 | /* | ||
1716 | * The page->offset field is only 16 bit wide. This is an offset | ||
1717 | * in units of words from the beginning of an object. If the slab | ||
1718 | * size is bigger then we cannot move the free pointer behind the | ||
1719 | * object anymore. | ||
1720 | * | ||
1721 | * On 32 bit platforms the limit is 256k. On 64bit platforms | ||
1722 | * the limit is 512k. | ||
1723 | * | ||
1724 | * Debugging or ctor/dtors may create a need to move the free | ||
1725 | * pointer. Fail if this happens. | ||
1726 | */ | ||
1727 | if (s->size >= 65535 * sizeof(void *)) { | ||
1728 | BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON | | ||
1729 | SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); | ||
1730 | BUG_ON(ctor || dtor); | ||
1731 | } | ||
1732 | else | ||
1733 | /* | ||
1734 | * Enable debugging if selected on the kernel commandline. | ||
1735 | */ | ||
1736 | if (slub_debug && (!slub_debug_slabs || | ||
1737 | strncmp(slub_debug_slabs, name, | ||
1738 | strlen(slub_debug_slabs)) == 0)) | ||
1739 | s->flags |= slub_debug; | ||
1740 | |||
1741 | if (!calculate_sizes(s)) | ||
1742 | goto error; | ||
1743 | |||
1744 | s->refcount = 1; | ||
1745 | #ifdef CONFIG_NUMA | ||
1746 | s->defrag_ratio = 100; | ||
1747 | #endif | ||
1748 | |||
1749 | if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) | ||
1750 | return 1; | ||
1751 | error: | ||
1752 | if (flags & SLAB_PANIC) | ||
1753 | panic("Cannot create slab %s size=%lu realsize=%u " | ||
1754 | "order=%u offset=%u flags=%lx\n", | ||
1755 | s->name, (unsigned long)size, s->size, s->order, | ||
1756 | s->offset, flags); | ||
1757 | return 0; | ||
1758 | } | ||
1759 | EXPORT_SYMBOL(kmem_cache_open); | ||
1760 | |||
1761 | /* | ||
1762 | * Check if a given pointer is valid | ||
1763 | */ | ||
1764 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | ||
1765 | { | ||
1766 | struct page * page; | ||
1767 | void *addr; | ||
1768 | |||
1769 | page = get_object_page(object); | ||
1770 | |||
1771 | if (!page || s != page->slab) | ||
1772 | /* No slab or wrong slab */ | ||
1773 | return 0; | ||
1774 | |||
1775 | addr = page_address(page); | ||
1776 | if (object < addr || object >= addr + s->objects * s->size) | ||
1777 | /* Out of bounds */ | ||
1778 | return 0; | ||
1779 | |||
1780 | if ((object - addr) % s->size) | ||
1781 | /* Improperly aligned */ | ||
1782 | return 0; | ||
1783 | |||
1784 | /* | ||
1785 | * We could also check if the object is on the slabs freelist. | ||
1786 | * But this would be too expensive and it seems that the main | ||
1787 | * purpose of kmem_ptr_valid is to check if the object belongs | ||
1788 | * to a certain slab. | ||
1789 | */ | ||
1790 | return 1; | ||
1791 | } | ||
1792 | EXPORT_SYMBOL(kmem_ptr_validate); | ||
1793 | |||
1794 | /* | ||
1795 | * Determine the size of a slab object | ||
1796 | */ | ||
1797 | unsigned int kmem_cache_size(struct kmem_cache *s) | ||
1798 | { | ||
1799 | return s->objsize; | ||
1800 | } | ||
1801 | EXPORT_SYMBOL(kmem_cache_size); | ||
1802 | |||
1803 | const char *kmem_cache_name(struct kmem_cache *s) | ||
1804 | { | ||
1805 | return s->name; | ||
1806 | } | ||
1807 | EXPORT_SYMBOL(kmem_cache_name); | ||
1808 | |||
1809 | /* | ||
1810 | * Attempt to free all slabs on a node | ||
1811 | */ | ||
1812 | static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, | ||
1813 | struct list_head *list) | ||
1814 | { | ||
1815 | int slabs_inuse = 0; | ||
1816 | unsigned long flags; | ||
1817 | struct page *page, *h; | ||
1818 | |||
1819 | spin_lock_irqsave(&n->list_lock, flags); | ||
1820 | list_for_each_entry_safe(page, h, list, lru) | ||
1821 | if (!page->inuse) { | ||
1822 | list_del(&page->lru); | ||
1823 | discard_slab(s, page); | ||
1824 | } else | ||
1825 | slabs_inuse++; | ||
1826 | spin_unlock_irqrestore(&n->list_lock, flags); | ||
1827 | return slabs_inuse; | ||
1828 | } | ||
1829 | |||
1830 | /* | ||
1831 | * Release all resources used by slab cache | ||
1832 | */ | ||
1833 | static int kmem_cache_close(struct kmem_cache *s) | ||
1834 | { | ||
1835 | int node; | ||
1836 | |||
1837 | flush_all(s); | ||
1838 | |||
1839 | /* Attempt to free all objects */ | ||
1840 | for_each_online_node(node) { | ||
1841 | struct kmem_cache_node *n = get_node(s, node); | ||
1842 | |||
1843 | free_list(s, n, &n->partial); | ||
1844 | if (atomic_long_read(&n->nr_slabs)) | ||
1845 | return 1; | ||
1846 | } | ||
1847 | free_kmem_cache_nodes(s); | ||
1848 | return 0; | ||
1849 | } | ||
1850 | |||
1851 | /* | ||
1852 | * Close a cache and release the kmem_cache structure | ||
1853 | * (must be used for caches created using kmem_cache_create) | ||
1854 | */ | ||
1855 | void kmem_cache_destroy(struct kmem_cache *s) | ||
1856 | { | ||
1857 | down_write(&slub_lock); | ||
1858 | s->refcount--; | ||
1859 | if (!s->refcount) { | ||
1860 | list_del(&s->list); | ||
1861 | if (kmem_cache_close(s)) | ||
1862 | WARN_ON(1); | ||
1863 | sysfs_slab_remove(s); | ||
1864 | kfree(s); | ||
1865 | } | ||
1866 | up_write(&slub_lock); | ||
1867 | } | ||
1868 | EXPORT_SYMBOL(kmem_cache_destroy); | ||
1869 | |||
1870 | /******************************************************************** | ||
1871 | * Kmalloc subsystem | ||
1872 | *******************************************************************/ | ||
1873 | |||
1874 | struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned; | ||
1875 | EXPORT_SYMBOL(kmalloc_caches); | ||
1876 | |||
1877 | #ifdef CONFIG_ZONE_DMA | ||
1878 | static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1]; | ||
1879 | #endif | ||
1880 | |||
1881 | static int __init setup_slub_min_order(char *str) | ||
1882 | { | ||
1883 | get_option (&str, &slub_min_order); | ||
1884 | |||
1885 | return 1; | ||
1886 | } | ||
1887 | |||
1888 | __setup("slub_min_order=", setup_slub_min_order); | ||
1889 | |||
1890 | static int __init setup_slub_max_order(char *str) | ||
1891 | { | ||
1892 | get_option (&str, &slub_max_order); | ||
1893 | |||
1894 | return 1; | ||
1895 | } | ||
1896 | |||
1897 | __setup("slub_max_order=", setup_slub_max_order); | ||
1898 | |||
1899 | static int __init setup_slub_min_objects(char *str) | ||
1900 | { | ||
1901 | get_option (&str, &slub_min_objects); | ||
1902 | |||
1903 | return 1; | ||
1904 | } | ||
1905 | |||
1906 | __setup("slub_min_objects=", setup_slub_min_objects); | ||
1907 | |||
1908 | static int __init setup_slub_nomerge(char *str) | ||
1909 | { | ||
1910 | slub_nomerge = 1; | ||
1911 | return 1; | ||
1912 | } | ||
1913 | |||
1914 | __setup("slub_nomerge", setup_slub_nomerge); | ||
1915 | |||
1916 | static int __init setup_slub_debug(char *str) | ||
1917 | { | ||
1918 | if (!str || *str != '=') | ||
1919 | slub_debug = DEBUG_DEFAULT_FLAGS; | ||
1920 | else { | ||
1921 | str++; | ||
1922 | if (*str == 0 || *str == ',') | ||
1923 | slub_debug = DEBUG_DEFAULT_FLAGS; | ||
1924 | else | ||
1925 | for( ;*str && *str != ','; str++) | ||
1926 | switch (*str) { | ||
1927 | case 'f' : case 'F' : | ||
1928 | slub_debug |= SLAB_DEBUG_FREE; | ||
1929 | break; | ||
1930 | case 'z' : case 'Z' : | ||
1931 | slub_debug |= SLAB_RED_ZONE; | ||
1932 | break; | ||
1933 | case 'p' : case 'P' : | ||
1934 | slub_debug |= SLAB_POISON; | ||
1935 | break; | ||
1936 | case 'u' : case 'U' : | ||
1937 | slub_debug |= SLAB_STORE_USER; | ||
1938 | break; | ||
1939 | case 't' : case 'T' : | ||
1940 | slub_debug |= SLAB_TRACE; | ||
1941 | break; | ||
1942 | default: | ||
1943 | printk(KERN_ERR "slub_debug option '%c' " | ||
1944 | "unknown. skipped\n",*str); | ||
1945 | } | ||
1946 | } | ||
1947 | |||
1948 | if (*str == ',') | ||
1949 | slub_debug_slabs = str + 1; | ||
1950 | return 1; | ||
1951 | } | ||
1952 | |||
1953 | __setup("slub_debug", setup_slub_debug); | ||
1954 | |||
1955 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, | ||
1956 | const char *name, int size, gfp_t gfp_flags) | ||
1957 | { | ||
1958 | unsigned int flags = 0; | ||
1959 | |||
1960 | if (gfp_flags & SLUB_DMA) | ||
1961 | flags = SLAB_CACHE_DMA; | ||
1962 | |||
1963 | down_write(&slub_lock); | ||
1964 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | ||
1965 | flags, NULL, NULL)) | ||
1966 | goto panic; | ||
1967 | |||
1968 | list_add(&s->list, &slab_caches); | ||
1969 | up_write(&slub_lock); | ||
1970 | if (sysfs_slab_add(s)) | ||
1971 | goto panic; | ||
1972 | return s; | ||
1973 | |||
1974 | panic: | ||
1975 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | ||
1976 | } | ||
1977 | |||
1978 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | ||
1979 | { | ||
1980 | int index = kmalloc_index(size); | ||
1981 | |||
1982 | if (!size) | ||
1983 | return NULL; | ||
1984 | |||
1985 | /* Allocation too large? */ | ||
1986 | BUG_ON(index < 0); | ||
1987 | |||
1988 | #ifdef CONFIG_ZONE_DMA | ||
1989 | if ((flags & SLUB_DMA)) { | ||
1990 | struct kmem_cache *s; | ||
1991 | struct kmem_cache *x; | ||
1992 | char *text; | ||
1993 | size_t realsize; | ||
1994 | |||
1995 | s = kmalloc_caches_dma[index]; | ||
1996 | if (s) | ||
1997 | return s; | ||
1998 | |||
1999 | /* Dynamically create dma cache */ | ||
2000 | x = kmalloc(kmem_size, flags & ~SLUB_DMA); | ||
2001 | if (!x) | ||
2002 | panic("Unable to allocate memory for dma cache\n"); | ||
2003 | |||
2004 | if (index <= KMALLOC_SHIFT_HIGH) | ||
2005 | realsize = 1 << index; | ||
2006 | else { | ||
2007 | if (index == 1) | ||
2008 | realsize = 96; | ||
2009 | else | ||
2010 | realsize = 192; | ||
2011 | } | ||
2012 | |||
2013 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", | ||
2014 | (unsigned int)realsize); | ||
2015 | s = create_kmalloc_cache(x, text, realsize, flags); | ||
2016 | kmalloc_caches_dma[index] = s; | ||
2017 | return s; | ||
2018 | } | ||
2019 | #endif | ||
2020 | return &kmalloc_caches[index]; | ||
2021 | } | ||
2022 | |||
2023 | void *__kmalloc(size_t size, gfp_t flags) | ||
2024 | { | ||
2025 | struct kmem_cache *s = get_slab(size, flags); | ||
2026 | |||
2027 | if (s) | ||
2028 | return kmem_cache_alloc(s, flags); | ||
2029 | return NULL; | ||
2030 | } | ||
2031 | EXPORT_SYMBOL(__kmalloc); | ||
2032 | |||
2033 | #ifdef CONFIG_NUMA | ||
2034 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | ||
2035 | { | ||
2036 | struct kmem_cache *s = get_slab(size, flags); | ||
2037 | |||
2038 | if (s) | ||
2039 | return kmem_cache_alloc_node(s, flags, node); | ||
2040 | return NULL; | ||
2041 | } | ||
2042 | EXPORT_SYMBOL(__kmalloc_node); | ||
2043 | #endif | ||
2044 | |||
2045 | size_t ksize(const void *object) | ||
2046 | { | ||
2047 | struct page *page = get_object_page(object); | ||
2048 | struct kmem_cache *s; | ||
2049 | |||
2050 | BUG_ON(!page); | ||
2051 | s = page->slab; | ||
2052 | BUG_ON(!s); | ||
2053 | |||
2054 | /* | ||
2055 | * Debugging requires use of the padding between object | ||
2056 | * and whatever may come after it. | ||
2057 | */ | ||
2058 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | ||
2059 | return s->objsize; | ||
2060 | |||
2061 | /* | ||
2062 | * If we have the need to store the freelist pointer | ||
2063 | * back there or track user information then we can | ||
2064 | * only use the space before that information. | ||
2065 | */ | ||
2066 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | ||
2067 | return s->inuse; | ||
2068 | |||
2069 | /* | ||
2070 | * Else we can use all the padding etc for the allocation | ||
2071 | */ | ||
2072 | return s->size; | ||
2073 | } | ||
2074 | EXPORT_SYMBOL(ksize); | ||
2075 | |||
2076 | void kfree(const void *x) | ||
2077 | { | ||
2078 | struct kmem_cache *s; | ||
2079 | struct page *page; | ||
2080 | |||
2081 | if (!x) | ||
2082 | return; | ||
2083 | |||
2084 | page = virt_to_page(x); | ||
2085 | |||
2086 | if (unlikely(PageCompound(page))) | ||
2087 | page = page->first_page; | ||
2088 | |||
2089 | s = page->slab; | ||
2090 | |||
2091 | if (unlikely(PageError(page) && (s->flags & SLAB_STORE_USER))) | ||
2092 | set_tracking(s, (void *)x, TRACK_FREE); | ||
2093 | slab_free(s, page, (void *)x); | ||
2094 | } | ||
2095 | EXPORT_SYMBOL(kfree); | ||
2096 | |||
2097 | /** | ||
2098 | * krealloc - reallocate memory. The contents will remain unchanged. | ||
2099 | * | ||
2100 | * @p: object to reallocate memory for. | ||
2101 | * @new_size: how many bytes of memory are required. | ||
2102 | * @flags: the type of memory to allocate. | ||
2103 | * | ||
2104 | * The contents of the object pointed to are preserved up to the | ||
2105 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | ||
2106 | * behaves exactly like kmalloc(). If @size is 0 and @p is not a | ||
2107 | * %NULL pointer, the object pointed to is freed. | ||
2108 | */ | ||
2109 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | ||
2110 | { | ||
2111 | struct kmem_cache *new_cache; | ||
2112 | void *ret; | ||
2113 | struct page *page; | ||
2114 | |||
2115 | if (unlikely(!p)) | ||
2116 | return kmalloc(new_size, flags); | ||
2117 | |||
2118 | if (unlikely(!new_size)) { | ||
2119 | kfree(p); | ||
2120 | return NULL; | ||
2121 | } | ||
2122 | |||
2123 | page = virt_to_page(p); | ||
2124 | |||
2125 | if (unlikely(PageCompound(page))) | ||
2126 | page = page->first_page; | ||
2127 | |||
2128 | new_cache = get_slab(new_size, flags); | ||
2129 | |||
2130 | /* | ||
2131 | * If new size fits in the current cache, bail out. | ||
2132 | */ | ||
2133 | if (likely(page->slab == new_cache)) | ||
2134 | return (void *)p; | ||
2135 | |||
2136 | ret = kmalloc(new_size, flags); | ||
2137 | if (ret) { | ||
2138 | memcpy(ret, p, min(new_size, ksize(p))); | ||
2139 | kfree(p); | ||
2140 | } | ||
2141 | return ret; | ||
2142 | } | ||
2143 | EXPORT_SYMBOL(krealloc); | ||
2144 | |||
2145 | /******************************************************************** | ||
2146 | * Basic setup of slabs | ||
2147 | *******************************************************************/ | ||
2148 | |||
2149 | void __init kmem_cache_init(void) | ||
2150 | { | ||
2151 | int i; | ||
2152 | |||
2153 | #ifdef CONFIG_NUMA | ||
2154 | /* | ||
2155 | * Must first have the slab cache available for the allocations of the | ||
2156 | * struct kmalloc_cache_node's. There is special bootstrap code in | ||
2157 | * kmem_cache_open for slab_state == DOWN. | ||
2158 | */ | ||
2159 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | ||
2160 | sizeof(struct kmem_cache_node), GFP_KERNEL); | ||
2161 | #endif | ||
2162 | |||
2163 | /* Able to allocate the per node structures */ | ||
2164 | slab_state = PARTIAL; | ||
2165 | |||
2166 | /* Caches that are not of the two-to-the-power-of size */ | ||
2167 | create_kmalloc_cache(&kmalloc_caches[1], | ||
2168 | "kmalloc-96", 96, GFP_KERNEL); | ||
2169 | create_kmalloc_cache(&kmalloc_caches[2], | ||
2170 | "kmalloc-192", 192, GFP_KERNEL); | ||
2171 | |||
2172 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | ||
2173 | create_kmalloc_cache(&kmalloc_caches[i], | ||
2174 | "kmalloc", 1 << i, GFP_KERNEL); | ||
2175 | |||
2176 | slab_state = UP; | ||
2177 | |||
2178 | /* Provide the correct kmalloc names now that the caches are up */ | ||
2179 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | ||
2180 | kmalloc_caches[i]. name = | ||
2181 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | ||
2182 | |||
2183 | #ifdef CONFIG_SMP | ||
2184 | register_cpu_notifier(&slab_notifier); | ||
2185 | #endif | ||
2186 | |||
2187 | if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */ | ||
2188 | kmem_size = offsetof(struct kmem_cache, cpu_slab) | ||
2189 | + nr_cpu_ids * sizeof(struct page *); | ||
2190 | |||
2191 | printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | ||
2192 | " Processors=%d, Nodes=%d\n", | ||
2193 | KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES, | ||
2194 | slub_min_order, slub_max_order, slub_min_objects, | ||
2195 | nr_cpu_ids, nr_node_ids); | ||
2196 | } | ||
2197 | |||
2198 | /* | ||
2199 | * Find a mergeable slab cache | ||
2200 | */ | ||
2201 | static int slab_unmergeable(struct kmem_cache *s) | ||
2202 | { | ||
2203 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | ||
2204 | return 1; | ||
2205 | |||
2206 | if (s->ctor || s->dtor) | ||
2207 | return 1; | ||
2208 | |||
2209 | return 0; | ||
2210 | } | ||
2211 | |||
2212 | static struct kmem_cache *find_mergeable(size_t size, | ||
2213 | size_t align, unsigned long flags, | ||
2214 | void (*ctor)(void *, struct kmem_cache *, unsigned long), | ||
2215 | void (*dtor)(void *, struct kmem_cache *, unsigned long)) | ||
2216 | { | ||
2217 | struct list_head *h; | ||
2218 | |||
2219 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | ||
2220 | return NULL; | ||
2221 | |||
2222 | if (ctor || dtor) | ||
2223 | return NULL; | ||
2224 | |||
2225 | size = ALIGN(size, sizeof(void *)); | ||
2226 | align = calculate_alignment(flags, align, size); | ||
2227 | size = ALIGN(size, align); | ||
2228 | |||
2229 | list_for_each(h, &slab_caches) { | ||
2230 | struct kmem_cache *s = | ||
2231 | container_of(h, struct kmem_cache, list); | ||
2232 | |||
2233 | if (slab_unmergeable(s)) | ||
2234 | continue; | ||
2235 | |||
2236 | if (size > s->size) | ||
2237 | continue; | ||
2238 | |||
2239 | if (((flags | slub_debug) & SLUB_MERGE_SAME) != | ||
2240 | (s->flags & SLUB_MERGE_SAME)) | ||
2241 | continue; | ||
2242 | /* | ||
2243 | * Check if alignment is compatible. | ||
2244 | * Courtesy of Adrian Drzewiecki | ||
2245 | */ | ||
2246 | if ((s->size & ~(align -1)) != s->size) | ||
2247 | continue; | ||
2248 | |||
2249 | if (s->size - size >= sizeof(void *)) | ||
2250 | continue; | ||
2251 | |||
2252 | return s; | ||
2253 | } | ||
2254 | return NULL; | ||
2255 | } | ||
2256 | |||
2257 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | ||
2258 | size_t align, unsigned long flags, | ||
2259 | void (*ctor)(void *, struct kmem_cache *, unsigned long), | ||
2260 | void (*dtor)(void *, struct kmem_cache *, unsigned long)) | ||
2261 | { | ||
2262 | struct kmem_cache *s; | ||
2263 | |||
2264 | down_write(&slub_lock); | ||
2265 | s = find_mergeable(size, align, flags, dtor, ctor); | ||
2266 | if (s) { | ||
2267 | s->refcount++; | ||
2268 | /* | ||
2269 | * Adjust the object sizes so that we clear | ||
2270 | * the complete object on kzalloc. | ||
2271 | */ | ||
2272 | s->objsize = max(s->objsize, (int)size); | ||
2273 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | ||
2274 | if (sysfs_slab_alias(s, name)) | ||
2275 | goto err; | ||
2276 | } else { | ||
2277 | s = kmalloc(kmem_size, GFP_KERNEL); | ||
2278 | if (s && kmem_cache_open(s, GFP_KERNEL, name, | ||
2279 | size, align, flags, ctor, dtor)) { | ||
2280 | if (sysfs_slab_add(s)) { | ||
2281 | kfree(s); | ||
2282 | goto err; | ||
2283 | } | ||
2284 | list_add(&s->list, &slab_caches); | ||
2285 | } else | ||
2286 | kfree(s); | ||
2287 | } | ||
2288 | up_write(&slub_lock); | ||
2289 | return s; | ||
2290 | |||
2291 | err: | ||
2292 | up_write(&slub_lock); | ||
2293 | if (flags & SLAB_PANIC) | ||
2294 | panic("Cannot create slabcache %s\n", name); | ||
2295 | else | ||
2296 | s = NULL; | ||
2297 | return s; | ||
2298 | } | ||
2299 | EXPORT_SYMBOL(kmem_cache_create); | ||
2300 | |||
2301 | void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags) | ||
2302 | { | ||
2303 | void *x; | ||
2304 | |||
2305 | x = kmem_cache_alloc(s, flags); | ||
2306 | if (x) | ||
2307 | memset(x, 0, s->objsize); | ||
2308 | return x; | ||
2309 | } | ||
2310 | EXPORT_SYMBOL(kmem_cache_zalloc); | ||
2311 | |||
2312 | #ifdef CONFIG_SMP | ||
2313 | static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu) | ||
2314 | { | ||
2315 | struct list_head *h; | ||
2316 | |||
2317 | down_read(&slub_lock); | ||
2318 | list_for_each(h, &slab_caches) { | ||
2319 | struct kmem_cache *s = | ||
2320 | container_of(h, struct kmem_cache, list); | ||
2321 | |||
2322 | func(s, cpu); | ||
2323 | } | ||
2324 | up_read(&slub_lock); | ||
2325 | } | ||
2326 | |||
2327 | /* | ||
2328 | * Use the cpu notifier to insure that the slab are flushed | ||
2329 | * when necessary. | ||
2330 | */ | ||
2331 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | ||
2332 | unsigned long action, void *hcpu) | ||
2333 | { | ||
2334 | long cpu = (long)hcpu; | ||
2335 | |||
2336 | switch (action) { | ||
2337 | case CPU_UP_CANCELED: | ||
2338 | case CPU_DEAD: | ||
2339 | for_all_slabs(__flush_cpu_slab, cpu); | ||
2340 | break; | ||
2341 | default: | ||
2342 | break; | ||
2343 | } | ||
2344 | return NOTIFY_OK; | ||
2345 | } | ||
2346 | |||
2347 | static struct notifier_block __cpuinitdata slab_notifier = | ||
2348 | { &slab_cpuup_callback, NULL, 0 }; | ||
2349 | |||
2350 | #endif | ||
2351 | |||
2352 | /*************************************************************** | ||
2353 | * Compatiblility definitions | ||
2354 | **************************************************************/ | ||
2355 | |||
2356 | int kmem_cache_shrink(struct kmem_cache *s) | ||
2357 | { | ||
2358 | flush_all(s); | ||
2359 | return 0; | ||
2360 | } | ||
2361 | EXPORT_SYMBOL(kmem_cache_shrink); | ||
2362 | |||
2363 | #ifdef CONFIG_NUMA | ||
2364 | |||
2365 | /***************************************************************** | ||
2366 | * Generic reaper used to support the page allocator | ||
2367 | * (the cpu slabs are reaped by a per slab workqueue). | ||
2368 | * | ||
2369 | * Maybe move this to the page allocator? | ||
2370 | ****************************************************************/ | ||
2371 | |||
2372 | static DEFINE_PER_CPU(unsigned long, reap_node); | ||
2373 | |||
2374 | static void init_reap_node(int cpu) | ||
2375 | { | ||
2376 | int node; | ||
2377 | |||
2378 | node = next_node(cpu_to_node(cpu), node_online_map); | ||
2379 | if (node == MAX_NUMNODES) | ||
2380 | node = first_node(node_online_map); | ||
2381 | |||
2382 | __get_cpu_var(reap_node) = node; | ||
2383 | } | ||
2384 | |||
2385 | static void next_reap_node(void) | ||
2386 | { | ||
2387 | int node = __get_cpu_var(reap_node); | ||
2388 | |||
2389 | /* | ||
2390 | * Also drain per cpu pages on remote zones | ||
2391 | */ | ||
2392 | if (node != numa_node_id()) | ||
2393 | drain_node_pages(node); | ||
2394 | |||
2395 | node = next_node(node, node_online_map); | ||
2396 | if (unlikely(node >= MAX_NUMNODES)) | ||
2397 | node = first_node(node_online_map); | ||
2398 | __get_cpu_var(reap_node) = node; | ||
2399 | } | ||
2400 | #else | ||
2401 | #define init_reap_node(cpu) do { } while (0) | ||
2402 | #define next_reap_node(void) do { } while (0) | ||
2403 | #endif | ||
2404 | |||
2405 | #define REAPTIMEOUT_CPUC (2*HZ) | ||
2406 | |||
2407 | #ifdef CONFIG_SMP | ||
2408 | static DEFINE_PER_CPU(struct delayed_work, reap_work); | ||
2409 | |||
2410 | static void cache_reap(struct work_struct *unused) | ||
2411 | { | ||
2412 | next_reap_node(); | ||
2413 | refresh_cpu_vm_stats(smp_processor_id()); | ||
2414 | schedule_delayed_work(&__get_cpu_var(reap_work), | ||
2415 | REAPTIMEOUT_CPUC); | ||
2416 | } | ||
2417 | |||
2418 | static void __devinit start_cpu_timer(int cpu) | ||
2419 | { | ||
2420 | struct delayed_work *reap_work = &per_cpu(reap_work, cpu); | ||
2421 | |||
2422 | /* | ||
2423 | * When this gets called from do_initcalls via cpucache_init(), | ||
2424 | * init_workqueues() has already run, so keventd will be setup | ||
2425 | * at that time. | ||
2426 | */ | ||
2427 | if (keventd_up() && reap_work->work.func == NULL) { | ||
2428 | init_reap_node(cpu); | ||
2429 | INIT_DELAYED_WORK(reap_work, cache_reap); | ||
2430 | schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); | ||
2431 | } | ||
2432 | } | ||
2433 | |||
2434 | static int __init cpucache_init(void) | ||
2435 | { | ||
2436 | int cpu; | ||
2437 | |||
2438 | /* | ||
2439 | * Register the timers that drain pcp pages and update vm statistics | ||
2440 | */ | ||
2441 | for_each_online_cpu(cpu) | ||
2442 | start_cpu_timer(cpu); | ||
2443 | return 0; | ||
2444 | } | ||
2445 | __initcall(cpucache_init); | ||
2446 | #endif | ||
2447 | |||
2448 | #ifdef SLUB_RESILIENCY_TEST | ||
2449 | static unsigned long validate_slab_cache(struct kmem_cache *s); | ||
2450 | |||
2451 | static void resiliency_test(void) | ||
2452 | { | ||
2453 | u8 *p; | ||
2454 | |||
2455 | printk(KERN_ERR "SLUB resiliency testing\n"); | ||
2456 | printk(KERN_ERR "-----------------------\n"); | ||
2457 | printk(KERN_ERR "A. Corruption after allocation\n"); | ||
2458 | |||
2459 | p = kzalloc(16, GFP_KERNEL); | ||
2460 | p[16] = 0x12; | ||
2461 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | ||
2462 | " 0x12->0x%p\n\n", p + 16); | ||
2463 | |||
2464 | validate_slab_cache(kmalloc_caches + 4); | ||
2465 | |||
2466 | /* Hmmm... The next two are dangerous */ | ||
2467 | p = kzalloc(32, GFP_KERNEL); | ||
2468 | p[32 + sizeof(void *)] = 0x34; | ||
2469 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | ||
2470 | " 0x34 -> -0x%p\n", p); | ||
2471 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | ||
2472 | |||
2473 | validate_slab_cache(kmalloc_caches + 5); | ||
2474 | p = kzalloc(64, GFP_KERNEL); | ||
2475 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | ||
2476 | *p = 0x56; | ||
2477 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | ||
2478 | p); | ||
2479 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | ||
2480 | validate_slab_cache(kmalloc_caches + 6); | ||
2481 | |||
2482 | printk(KERN_ERR "\nB. Corruption after free\n"); | ||
2483 | p = kzalloc(128, GFP_KERNEL); | ||
2484 | kfree(p); | ||
2485 | *p = 0x78; | ||
2486 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | ||
2487 | validate_slab_cache(kmalloc_caches + 7); | ||
2488 | |||
2489 | p = kzalloc(256, GFP_KERNEL); | ||
2490 | kfree(p); | ||
2491 | p[50] = 0x9a; | ||
2492 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | ||
2493 | validate_slab_cache(kmalloc_caches + 8); | ||
2494 | |||
2495 | p = kzalloc(512, GFP_KERNEL); | ||
2496 | kfree(p); | ||
2497 | p[512] = 0xab; | ||
2498 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | ||
2499 | validate_slab_cache(kmalloc_caches + 9); | ||
2500 | } | ||
2501 | #else | ||
2502 | static void resiliency_test(void) {}; | ||
2503 | #endif | ||
2504 | |||
2505 | /* | ||
2506 | * These are not as efficient as kmalloc for the non debug case. | ||
2507 | * We do not have the page struct available so we have to touch one | ||
2508 | * cacheline in struct kmem_cache to check slab flags. | ||
2509 | */ | ||
2510 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) | ||
2511 | { | ||
2512 | struct kmem_cache *s = get_slab(size, gfpflags); | ||
2513 | void *object; | ||
2514 | |||
2515 | if (!s) | ||
2516 | return NULL; | ||
2517 | |||
2518 | object = kmem_cache_alloc(s, gfpflags); | ||
2519 | |||
2520 | if (object && (s->flags & SLAB_STORE_USER)) | ||
2521 | set_track(s, object, TRACK_ALLOC, caller); | ||
2522 | |||
2523 | return object; | ||
2524 | } | ||
2525 | |||
2526 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | ||
2527 | int node, void *caller) | ||
2528 | { | ||
2529 | struct kmem_cache *s = get_slab(size, gfpflags); | ||
2530 | void *object; | ||
2531 | |||
2532 | if (!s) | ||
2533 | return NULL; | ||
2534 | |||
2535 | object = kmem_cache_alloc_node(s, gfpflags, node); | ||
2536 | |||
2537 | if (object && (s->flags & SLAB_STORE_USER)) | ||
2538 | set_track(s, object, TRACK_ALLOC, caller); | ||
2539 | |||
2540 | return object; | ||
2541 | } | ||
2542 | |||
2543 | #ifdef CONFIG_SYSFS | ||
2544 | |||
2545 | static unsigned long count_partial(struct kmem_cache_node *n) | ||
2546 | { | ||
2547 | unsigned long flags; | ||
2548 | unsigned long x = 0; | ||
2549 | struct page *page; | ||
2550 | |||
2551 | spin_lock_irqsave(&n->list_lock, flags); | ||
2552 | list_for_each_entry(page, &n->partial, lru) | ||
2553 | x += page->inuse; | ||
2554 | spin_unlock_irqrestore(&n->list_lock, flags); | ||
2555 | return x; | ||
2556 | } | ||
2557 | |||
2558 | enum slab_stat_type { | ||
2559 | SL_FULL, | ||
2560 | SL_PARTIAL, | ||
2561 | SL_CPU, | ||
2562 | SL_OBJECTS | ||
2563 | }; | ||
2564 | |||
2565 | #define SO_FULL (1 << SL_FULL) | ||
2566 | #define SO_PARTIAL (1 << SL_PARTIAL) | ||
2567 | #define SO_CPU (1 << SL_CPU) | ||
2568 | #define SO_OBJECTS (1 << SL_OBJECTS) | ||
2569 | |||
2570 | static unsigned long slab_objects(struct kmem_cache *s, | ||
2571 | char *buf, unsigned long flags) | ||
2572 | { | ||
2573 | unsigned long total = 0; | ||
2574 | int cpu; | ||
2575 | int node; | ||
2576 | int x; | ||
2577 | unsigned long *nodes; | ||
2578 | unsigned long *per_cpu; | ||
2579 | |||
2580 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | ||
2581 | per_cpu = nodes + nr_node_ids; | ||
2582 | |||
2583 | for_each_possible_cpu(cpu) { | ||
2584 | struct page *page = s->cpu_slab[cpu]; | ||
2585 | int node; | ||
2586 | |||
2587 | if (page) { | ||
2588 | node = page_to_nid(page); | ||
2589 | if (flags & SO_CPU) { | ||
2590 | int x = 0; | ||
2591 | |||
2592 | if (flags & SO_OBJECTS) | ||
2593 | x = page->inuse; | ||
2594 | else | ||
2595 | x = 1; | ||
2596 | total += x; | ||
2597 | nodes[node] += x; | ||
2598 | } | ||
2599 | per_cpu[node]++; | ||
2600 | } | ||
2601 | } | ||
2602 | |||
2603 | for_each_online_node(node) { | ||
2604 | struct kmem_cache_node *n = get_node(s, node); | ||
2605 | |||
2606 | if (flags & SO_PARTIAL) { | ||
2607 | if (flags & SO_OBJECTS) | ||
2608 | x = count_partial(n); | ||
2609 | else | ||
2610 | x = n->nr_partial; | ||
2611 | total += x; | ||
2612 | nodes[node] += x; | ||
2613 | } | ||
2614 | |||
2615 | if (flags & SO_FULL) { | ||
2616 | int full_slabs = atomic_read(&n->nr_slabs) | ||
2617 | - per_cpu[node] | ||
2618 | - n->nr_partial; | ||
2619 | |||
2620 | if (flags & SO_OBJECTS) | ||
2621 | x = full_slabs * s->objects; | ||
2622 | else | ||
2623 | x = full_slabs; | ||
2624 | total += x; | ||
2625 | nodes[node] += x; | ||
2626 | } | ||
2627 | } | ||
2628 | |||
2629 | x = sprintf(buf, "%lu", total); | ||
2630 | #ifdef CONFIG_NUMA | ||
2631 | for_each_online_node(node) | ||
2632 | if (nodes[node]) | ||
2633 | x += sprintf(buf + x, " N%d=%lu", | ||
2634 | node, nodes[node]); | ||
2635 | #endif | ||
2636 | kfree(nodes); | ||
2637 | return x + sprintf(buf + x, "\n"); | ||
2638 | } | ||
2639 | |||
2640 | static int any_slab_objects(struct kmem_cache *s) | ||
2641 | { | ||
2642 | int node; | ||
2643 | int cpu; | ||
2644 | |||
2645 | for_each_possible_cpu(cpu) | ||
2646 | if (s->cpu_slab[cpu]) | ||
2647 | return 1; | ||
2648 | |||
2649 | for_each_node(node) { | ||
2650 | struct kmem_cache_node *n = get_node(s, node); | ||
2651 | |||
2652 | if (n->nr_partial || atomic_read(&n->nr_slabs)) | ||
2653 | return 1; | ||
2654 | } | ||
2655 | return 0; | ||
2656 | } | ||
2657 | |||
2658 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | ||
2659 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | ||
2660 | |||
2661 | struct slab_attribute { | ||
2662 | struct attribute attr; | ||
2663 | ssize_t (*show)(struct kmem_cache *s, char *buf); | ||
2664 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | ||
2665 | }; | ||
2666 | |||
2667 | #define SLAB_ATTR_RO(_name) \ | ||
2668 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | ||
2669 | |||
2670 | #define SLAB_ATTR(_name) \ | ||
2671 | static struct slab_attribute _name##_attr = \ | ||
2672 | __ATTR(_name, 0644, _name##_show, _name##_store) | ||
2673 | |||
2674 | |||
2675 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | ||
2676 | { | ||
2677 | return sprintf(buf, "%d\n", s->size); | ||
2678 | } | ||
2679 | SLAB_ATTR_RO(slab_size); | ||
2680 | |||
2681 | static ssize_t align_show(struct kmem_cache *s, char *buf) | ||
2682 | { | ||
2683 | return sprintf(buf, "%d\n", s->align); | ||
2684 | } | ||
2685 | SLAB_ATTR_RO(align); | ||
2686 | |||
2687 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | ||
2688 | { | ||
2689 | return sprintf(buf, "%d\n", s->objsize); | ||
2690 | } | ||
2691 | SLAB_ATTR_RO(object_size); | ||
2692 | |||
2693 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | ||
2694 | { | ||
2695 | return sprintf(buf, "%d\n", s->objects); | ||
2696 | } | ||
2697 | SLAB_ATTR_RO(objs_per_slab); | ||
2698 | |||
2699 | static ssize_t order_show(struct kmem_cache *s, char *buf) | ||
2700 | { | ||
2701 | return sprintf(buf, "%d\n", s->order); | ||
2702 | } | ||
2703 | SLAB_ATTR_RO(order); | ||
2704 | |||
2705 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | ||
2706 | { | ||
2707 | if (s->ctor) { | ||
2708 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | ||
2709 | |||
2710 | return n + sprintf(buf + n, "\n"); | ||
2711 | } | ||
2712 | return 0; | ||
2713 | } | ||
2714 | SLAB_ATTR_RO(ctor); | ||
2715 | |||
2716 | static ssize_t dtor_show(struct kmem_cache *s, char *buf) | ||
2717 | { | ||
2718 | if (s->dtor) { | ||
2719 | int n = sprint_symbol(buf, (unsigned long)s->dtor); | ||
2720 | |||
2721 | return n + sprintf(buf + n, "\n"); | ||
2722 | } | ||
2723 | return 0; | ||
2724 | } | ||
2725 | SLAB_ATTR_RO(dtor); | ||
2726 | |||
2727 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | ||
2728 | { | ||
2729 | return sprintf(buf, "%d\n", s->refcount - 1); | ||
2730 | } | ||
2731 | SLAB_ATTR_RO(aliases); | ||
2732 | |||
2733 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | ||
2734 | { | ||
2735 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); | ||
2736 | } | ||
2737 | SLAB_ATTR_RO(slabs); | ||
2738 | |||
2739 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | ||
2740 | { | ||
2741 | return slab_objects(s, buf, SO_PARTIAL); | ||
2742 | } | ||
2743 | SLAB_ATTR_RO(partial); | ||
2744 | |||
2745 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | ||
2746 | { | ||
2747 | return slab_objects(s, buf, SO_CPU); | ||
2748 | } | ||
2749 | SLAB_ATTR_RO(cpu_slabs); | ||
2750 | |||
2751 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | ||
2752 | { | ||
2753 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); | ||
2754 | } | ||
2755 | SLAB_ATTR_RO(objects); | ||
2756 | |||
2757 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | ||
2758 | { | ||
2759 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | ||
2760 | } | ||
2761 | |||
2762 | static ssize_t sanity_checks_store(struct kmem_cache *s, | ||
2763 | const char *buf, size_t length) | ||
2764 | { | ||
2765 | s->flags &= ~SLAB_DEBUG_FREE; | ||
2766 | if (buf[0] == '1') | ||
2767 | s->flags |= SLAB_DEBUG_FREE; | ||
2768 | return length; | ||
2769 | } | ||
2770 | SLAB_ATTR(sanity_checks); | ||
2771 | |||
2772 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | ||
2773 | { | ||
2774 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | ||
2775 | } | ||
2776 | |||
2777 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | ||
2778 | size_t length) | ||
2779 | { | ||
2780 | s->flags &= ~SLAB_TRACE; | ||
2781 | if (buf[0] == '1') | ||
2782 | s->flags |= SLAB_TRACE; | ||
2783 | return length; | ||
2784 | } | ||
2785 | SLAB_ATTR(trace); | ||
2786 | |||
2787 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | ||
2788 | { | ||
2789 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | ||
2790 | } | ||
2791 | |||
2792 | static ssize_t reclaim_account_store(struct kmem_cache *s, | ||
2793 | const char *buf, size_t length) | ||
2794 | { | ||
2795 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | ||
2796 | if (buf[0] == '1') | ||
2797 | s->flags |= SLAB_RECLAIM_ACCOUNT; | ||
2798 | return length; | ||
2799 | } | ||
2800 | SLAB_ATTR(reclaim_account); | ||
2801 | |||
2802 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | ||
2803 | { | ||
2804 | return sprintf(buf, "%d\n", !!(s->flags & | ||
2805 | (SLAB_HWCACHE_ALIGN|SLAB_MUST_HWCACHE_ALIGN))); | ||
2806 | } | ||
2807 | SLAB_ATTR_RO(hwcache_align); | ||
2808 | |||
2809 | #ifdef CONFIG_ZONE_DMA | ||
2810 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | ||
2811 | { | ||
2812 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | ||
2813 | } | ||
2814 | SLAB_ATTR_RO(cache_dma); | ||
2815 | #endif | ||
2816 | |||
2817 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | ||
2818 | { | ||
2819 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | ||
2820 | } | ||
2821 | SLAB_ATTR_RO(destroy_by_rcu); | ||
2822 | |||
2823 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | ||
2824 | { | ||
2825 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | ||
2826 | } | ||
2827 | |||
2828 | static ssize_t red_zone_store(struct kmem_cache *s, | ||
2829 | const char *buf, size_t length) | ||
2830 | { | ||
2831 | if (any_slab_objects(s)) | ||
2832 | return -EBUSY; | ||
2833 | |||
2834 | s->flags &= ~SLAB_RED_ZONE; | ||
2835 | if (buf[0] == '1') | ||
2836 | s->flags |= SLAB_RED_ZONE; | ||
2837 | calculate_sizes(s); | ||
2838 | return length; | ||
2839 | } | ||
2840 | SLAB_ATTR(red_zone); | ||
2841 | |||
2842 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | ||
2843 | { | ||
2844 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | ||
2845 | } | ||
2846 | |||
2847 | static ssize_t poison_store(struct kmem_cache *s, | ||
2848 | const char *buf, size_t length) | ||
2849 | { | ||
2850 | if (any_slab_objects(s)) | ||
2851 | return -EBUSY; | ||
2852 | |||
2853 | s->flags &= ~SLAB_POISON; | ||
2854 | if (buf[0] == '1') | ||
2855 | s->flags |= SLAB_POISON; | ||
2856 | calculate_sizes(s); | ||
2857 | return length; | ||
2858 | } | ||
2859 | SLAB_ATTR(poison); | ||
2860 | |||
2861 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | ||
2862 | { | ||
2863 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | ||
2864 | } | ||
2865 | |||
2866 | static ssize_t store_user_store(struct kmem_cache *s, | ||
2867 | const char *buf, size_t length) | ||
2868 | { | ||
2869 | if (any_slab_objects(s)) | ||
2870 | return -EBUSY; | ||
2871 | |||
2872 | s->flags &= ~SLAB_STORE_USER; | ||
2873 | if (buf[0] == '1') | ||
2874 | s->flags |= SLAB_STORE_USER; | ||
2875 | calculate_sizes(s); | ||
2876 | return length; | ||
2877 | } | ||
2878 | SLAB_ATTR(store_user); | ||
2879 | |||
2880 | #ifdef CONFIG_NUMA | ||
2881 | static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) | ||
2882 | { | ||
2883 | return sprintf(buf, "%d\n", s->defrag_ratio / 10); | ||
2884 | } | ||
2885 | |||
2886 | static ssize_t defrag_ratio_store(struct kmem_cache *s, | ||
2887 | const char *buf, size_t length) | ||
2888 | { | ||
2889 | int n = simple_strtoul(buf, NULL, 10); | ||
2890 | |||
2891 | if (n < 100) | ||
2892 | s->defrag_ratio = n * 10; | ||
2893 | return length; | ||
2894 | } | ||
2895 | SLAB_ATTR(defrag_ratio); | ||
2896 | #endif | ||
2897 | |||
2898 | static struct attribute * slab_attrs[] = { | ||
2899 | &slab_size_attr.attr, | ||
2900 | &object_size_attr.attr, | ||
2901 | &objs_per_slab_attr.attr, | ||
2902 | &order_attr.attr, | ||
2903 | &objects_attr.attr, | ||
2904 | &slabs_attr.attr, | ||
2905 | &partial_attr.attr, | ||
2906 | &cpu_slabs_attr.attr, | ||
2907 | &ctor_attr.attr, | ||
2908 | &dtor_attr.attr, | ||
2909 | &aliases_attr.attr, | ||
2910 | &align_attr.attr, | ||
2911 | &sanity_checks_attr.attr, | ||
2912 | &trace_attr.attr, | ||
2913 | &hwcache_align_attr.attr, | ||
2914 | &reclaim_account_attr.attr, | ||
2915 | &destroy_by_rcu_attr.attr, | ||
2916 | &red_zone_attr.attr, | ||
2917 | &poison_attr.attr, | ||
2918 | &store_user_attr.attr, | ||
2919 | #ifdef CONFIG_ZONE_DMA | ||
2920 | &cache_dma_attr.attr, | ||
2921 | #endif | ||
2922 | #ifdef CONFIG_NUMA | ||
2923 | &defrag_ratio_attr.attr, | ||
2924 | #endif | ||
2925 | NULL | ||
2926 | }; | ||
2927 | |||
2928 | static struct attribute_group slab_attr_group = { | ||
2929 | .attrs = slab_attrs, | ||
2930 | }; | ||
2931 | |||
2932 | static ssize_t slab_attr_show(struct kobject *kobj, | ||
2933 | struct attribute *attr, | ||
2934 | char *buf) | ||
2935 | { | ||
2936 | struct slab_attribute *attribute; | ||
2937 | struct kmem_cache *s; | ||
2938 | int err; | ||
2939 | |||
2940 | attribute = to_slab_attr(attr); | ||
2941 | s = to_slab(kobj); | ||
2942 | |||
2943 | if (!attribute->show) | ||
2944 | return -EIO; | ||
2945 | |||
2946 | err = attribute->show(s, buf); | ||
2947 | |||
2948 | return err; | ||
2949 | } | ||
2950 | |||
2951 | static ssize_t slab_attr_store(struct kobject *kobj, | ||
2952 | struct attribute *attr, | ||
2953 | const char *buf, size_t len) | ||
2954 | { | ||
2955 | struct slab_attribute *attribute; | ||
2956 | struct kmem_cache *s; | ||
2957 | int err; | ||
2958 | |||
2959 | attribute = to_slab_attr(attr); | ||
2960 | s = to_slab(kobj); | ||
2961 | |||
2962 | if (!attribute->store) | ||
2963 | return -EIO; | ||
2964 | |||
2965 | err = attribute->store(s, buf, len); | ||
2966 | |||
2967 | return err; | ||
2968 | } | ||
2969 | |||
2970 | static struct sysfs_ops slab_sysfs_ops = { | ||
2971 | .show = slab_attr_show, | ||
2972 | .store = slab_attr_store, | ||
2973 | }; | ||
2974 | |||
2975 | static struct kobj_type slab_ktype = { | ||
2976 | .sysfs_ops = &slab_sysfs_ops, | ||
2977 | }; | ||
2978 | |||
2979 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | ||
2980 | { | ||
2981 | struct kobj_type *ktype = get_ktype(kobj); | ||
2982 | |||
2983 | if (ktype == &slab_ktype) | ||
2984 | return 1; | ||
2985 | return 0; | ||
2986 | } | ||
2987 | |||
2988 | static struct kset_uevent_ops slab_uevent_ops = { | ||
2989 | .filter = uevent_filter, | ||
2990 | }; | ||
2991 | |||
2992 | decl_subsys(slab, &slab_ktype, &slab_uevent_ops); | ||
2993 | |||
2994 | #define ID_STR_LENGTH 64 | ||
2995 | |||
2996 | /* Create a unique string id for a slab cache: | ||
2997 | * format | ||
2998 | * :[flags-]size:[memory address of kmemcache] | ||
2999 | */ | ||
3000 | static char *create_unique_id(struct kmem_cache *s) | ||
3001 | { | ||
3002 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | ||
3003 | char *p = name; | ||
3004 | |||
3005 | BUG_ON(!name); | ||
3006 | |||
3007 | *p++ = ':'; | ||
3008 | /* | ||
3009 | * First flags affecting slabcache operations. We will only | ||
3010 | * get here for aliasable slabs so we do not need to support | ||
3011 | * too many flags. The flags here must cover all flags that | ||
3012 | * are matched during merging to guarantee that the id is | ||
3013 | * unique. | ||
3014 | */ | ||
3015 | if (s->flags & SLAB_CACHE_DMA) | ||
3016 | *p++ = 'd'; | ||
3017 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | ||
3018 | *p++ = 'a'; | ||
3019 | if (s->flags & SLAB_DEBUG_FREE) | ||
3020 | *p++ = 'F'; | ||
3021 | if (p != name + 1) | ||
3022 | *p++ = '-'; | ||
3023 | p += sprintf(p, "%07d", s->size); | ||
3024 | BUG_ON(p > name + ID_STR_LENGTH - 1); | ||
3025 | return name; | ||
3026 | } | ||
3027 | |||
3028 | static int sysfs_slab_add(struct kmem_cache *s) | ||
3029 | { | ||
3030 | int err; | ||
3031 | const char *name; | ||
3032 | int unmergeable; | ||
3033 | |||
3034 | if (slab_state < SYSFS) | ||
3035 | /* Defer until later */ | ||
3036 | return 0; | ||
3037 | |||
3038 | unmergeable = slab_unmergeable(s); | ||
3039 | if (unmergeable) { | ||
3040 | /* | ||
3041 | * Slabcache can never be merged so we can use the name proper. | ||
3042 | * This is typically the case for debug situations. In that | ||
3043 | * case we can catch duplicate names easily. | ||
3044 | */ | ||
3045 | sysfs_remove_link(&slab_subsys.kset.kobj, s->name); | ||
3046 | name = s->name; | ||
3047 | } else { | ||
3048 | /* | ||
3049 | * Create a unique name for the slab as a target | ||
3050 | * for the symlinks. | ||
3051 | */ | ||
3052 | name = create_unique_id(s); | ||
3053 | } | ||
3054 | |||
3055 | kobj_set_kset_s(s, slab_subsys); | ||
3056 | kobject_set_name(&s->kobj, name); | ||
3057 | kobject_init(&s->kobj); | ||
3058 | err = kobject_add(&s->kobj); | ||
3059 | if (err) | ||
3060 | return err; | ||
3061 | |||
3062 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | ||
3063 | if (err) | ||
3064 | return err; | ||
3065 | kobject_uevent(&s->kobj, KOBJ_ADD); | ||
3066 | if (!unmergeable) { | ||
3067 | /* Setup first alias */ | ||
3068 | sysfs_slab_alias(s, s->name); | ||
3069 | kfree(name); | ||
3070 | } | ||
3071 | return 0; | ||
3072 | } | ||
3073 | |||
3074 | static void sysfs_slab_remove(struct kmem_cache *s) | ||
3075 | { | ||
3076 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | ||
3077 | kobject_del(&s->kobj); | ||
3078 | } | ||
3079 | |||
3080 | /* | ||
3081 | * Need to buffer aliases during bootup until sysfs becomes | ||
3082 | * available lest we loose that information. | ||
3083 | */ | ||
3084 | struct saved_alias { | ||
3085 | struct kmem_cache *s; | ||
3086 | const char *name; | ||
3087 | struct saved_alias *next; | ||
3088 | }; | ||
3089 | |||
3090 | struct saved_alias *alias_list; | ||
3091 | |||
3092 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | ||
3093 | { | ||
3094 | struct saved_alias *al; | ||
3095 | |||
3096 | if (slab_state == SYSFS) { | ||
3097 | /* | ||
3098 | * If we have a leftover link then remove it. | ||
3099 | */ | ||
3100 | sysfs_remove_link(&slab_subsys.kset.kobj, name); | ||
3101 | return sysfs_create_link(&slab_subsys.kset.kobj, | ||
3102 | &s->kobj, name); | ||
3103 | } | ||
3104 | |||
3105 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | ||
3106 | if (!al) | ||
3107 | return -ENOMEM; | ||
3108 | |||
3109 | al->s = s; | ||
3110 | al->name = name; | ||
3111 | al->next = alias_list; | ||
3112 | alias_list = al; | ||
3113 | return 0; | ||
3114 | } | ||
3115 | |||
3116 | static int __init slab_sysfs_init(void) | ||
3117 | { | ||
3118 | int err; | ||
3119 | |||
3120 | err = subsystem_register(&slab_subsys); | ||
3121 | if (err) { | ||
3122 | printk(KERN_ERR "Cannot register slab subsystem.\n"); | ||
3123 | return -ENOSYS; | ||
3124 | } | ||
3125 | |||
3126 | finish_bootstrap(); | ||
3127 | |||
3128 | while (alias_list) { | ||
3129 | struct saved_alias *al = alias_list; | ||
3130 | |||
3131 | alias_list = alias_list->next; | ||
3132 | err = sysfs_slab_alias(al->s, al->name); | ||
3133 | BUG_ON(err); | ||
3134 | kfree(al); | ||
3135 | } | ||
3136 | |||
3137 | resiliency_test(); | ||
3138 | return 0; | ||
3139 | } | ||
3140 | |||
3141 | __initcall(slab_sysfs_init); | ||
3142 | #else | ||
3143 | __initcall(finish_bootstrap); | ||
3144 | #endif | ||