aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Makefile1
-rw-r--r--mm/slub.c3144
2 files changed, 3145 insertions, 0 deletions
diff --git a/mm/Makefile b/mm/Makefile
index f3c077eb0b8e..1887148e44e7 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -25,6 +25,7 @@ obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
25obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o 25obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
26obj-$(CONFIG_SLOB) += slob.o 26obj-$(CONFIG_SLOB) += slob.o
27obj-$(CONFIG_SLAB) += slab.o 27obj-$(CONFIG_SLAB) += slab.o
28obj-$(CONFIG_SLUB) += slub.o
28obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o 29obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
29obj-$(CONFIG_FS_XIP) += filemap_xip.o 30obj-$(CONFIG_FS_XIP) += filemap_xip.o
30obj-$(CONFIG_MIGRATION) += migrate.o 31obj-$(CONFIG_MIGRATION) += migrate.o
diff --git a/mm/slub.c b/mm/slub.c
new file mode 100644
index 000000000000..0cd56bd74b64
--- /dev/null
+++ b/mm/slub.c
@@ -0,0 +1,3144 @@
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
90/*
91 * Issues still to be resolved:
92 *
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
97 *
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99 *
100 * - Support DEBUG_SLAB_LEAK. Trouble is we do not know where the full
101 * slabs are in SLUB.
102 *
103 * - SLAB_DEBUG_INITIAL is not supported but I have never seen a use of
104 * it.
105 *
106 * - Variable sizing of the per node arrays
107 */
108
109/* Enable to test recovery from slab corruption on boot */
110#undef SLUB_RESILIENCY_TEST
111
112#if PAGE_SHIFT <= 12
113
114/*
115 * Small page size. Make sure that we do not fragment memory
116 */
117#define DEFAULT_MAX_ORDER 1
118#define DEFAULT_MIN_OBJECTS 4
119
120#else
121
122/*
123 * Large page machines are customarily able to handle larger
124 * page orders.
125 */
126#define DEFAULT_MAX_ORDER 2
127#define DEFAULT_MIN_OBJECTS 8
128
129#endif
130
131/*
132 * Flags from the regular SLAB that SLUB does not support:
133 */
134#define SLUB_UNIMPLEMENTED (SLAB_DEBUG_INITIAL)
135
136#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
138/*
139 * Set of flags that will prevent slab merging
140 */
141#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143
144#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145 SLAB_CACHE_DMA)
146
147#ifndef ARCH_KMALLOC_MINALIGN
148#define ARCH_KMALLOC_MINALIGN sizeof(void *)
149#endif
150
151#ifndef ARCH_SLAB_MINALIGN
152#define ARCH_SLAB_MINALIGN sizeof(void *)
153#endif
154
155/* Internal SLUB flags */
156#define __OBJECT_POISON 0x80000000 /* Poison object */
157
158static int kmem_size = sizeof(struct kmem_cache);
159
160#ifdef CONFIG_SMP
161static struct notifier_block slab_notifier;
162#endif
163
164static enum {
165 DOWN, /* No slab functionality available */
166 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
167 UP, /* Everything works */
168 SYSFS /* Sysfs up */
169} slab_state = DOWN;
170
171/* A list of all slab caches on the system */
172static DECLARE_RWSEM(slub_lock);
173LIST_HEAD(slab_caches);
174
175#ifdef CONFIG_SYSFS
176static int sysfs_slab_add(struct kmem_cache *);
177static int sysfs_slab_alias(struct kmem_cache *, const char *);
178static void sysfs_slab_remove(struct kmem_cache *);
179#else
180static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
181static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
182static void sysfs_slab_remove(struct kmem_cache *s) {}
183#endif
184
185/********************************************************************
186 * Core slab cache functions
187 *******************************************************************/
188
189int slab_is_available(void)
190{
191 return slab_state >= UP;
192}
193
194static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
195{
196#ifdef CONFIG_NUMA
197 return s->node[node];
198#else
199 return &s->local_node;
200#endif
201}
202
203/*
204 * Object debugging
205 */
206static void print_section(char *text, u8 *addr, unsigned int length)
207{
208 int i, offset;
209 int newline = 1;
210 char ascii[17];
211
212 ascii[16] = 0;
213
214 for (i = 0; i < length; i++) {
215 if (newline) {
216 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
217 newline = 0;
218 }
219 printk(" %02x", addr[i]);
220 offset = i % 16;
221 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
222 if (offset == 15) {
223 printk(" %s\n",ascii);
224 newline = 1;
225 }
226 }
227 if (!newline) {
228 i %= 16;
229 while (i < 16) {
230 printk(" ");
231 ascii[i] = ' ';
232 i++;
233 }
234 printk(" %s\n", ascii);
235 }
236}
237
238/*
239 * Slow version of get and set free pointer.
240 *
241 * This requires touching the cache lines of kmem_cache.
242 * The offset can also be obtained from the page. In that
243 * case it is in the cacheline that we already need to touch.
244 */
245static void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
250static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
251{
252 *(void **)(object + s->offset) = fp;
253}
254
255/*
256 * Tracking user of a slab.
257 */
258struct track {
259 void *addr; /* Called from address */
260 int cpu; /* Was running on cpu */
261 int pid; /* Pid context */
262 unsigned long when; /* When did the operation occur */
263};
264
265enum track_item { TRACK_ALLOC, TRACK_FREE };
266
267static struct track *get_track(struct kmem_cache *s, void *object,
268 enum track_item alloc)
269{
270 struct track *p;
271
272 if (s->offset)
273 p = object + s->offset + sizeof(void *);
274 else
275 p = object + s->inuse;
276
277 return p + alloc;
278}
279
280static void set_track(struct kmem_cache *s, void *object,
281 enum track_item alloc, void *addr)
282{
283 struct track *p;
284
285 if (s->offset)
286 p = object + s->offset + sizeof(void *);
287 else
288 p = object + s->inuse;
289
290 p += alloc;
291 if (addr) {
292 p->addr = addr;
293 p->cpu = smp_processor_id();
294 p->pid = current ? current->pid : -1;
295 p->when = jiffies;
296 } else
297 memset(p, 0, sizeof(struct track));
298}
299
300#define set_tracking(__s, __o, __a) set_track(__s, __o, __a, \
301 __builtin_return_address(0))
302
303static void init_tracking(struct kmem_cache *s, void *object)
304{
305 if (s->flags & SLAB_STORE_USER) {
306 set_track(s, object, TRACK_FREE, NULL);
307 set_track(s, object, TRACK_ALLOC, NULL);
308 }
309}
310
311static void print_track(const char *s, struct track *t)
312{
313 if (!t->addr)
314 return;
315
316 printk(KERN_ERR "%s: ", s);
317 __print_symbol("%s", (unsigned long)t->addr);
318 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
319}
320
321static void print_trailer(struct kmem_cache *s, u8 *p)
322{
323 unsigned int off; /* Offset of last byte */
324
325 if (s->flags & SLAB_RED_ZONE)
326 print_section("Redzone", p + s->objsize,
327 s->inuse - s->objsize);
328
329 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
330 p + s->offset,
331 get_freepointer(s, p));
332
333 if (s->offset)
334 off = s->offset + sizeof(void *);
335 else
336 off = s->inuse;
337
338 if (s->flags & SLAB_STORE_USER) {
339 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
340 print_track("Last free ", get_track(s, p, TRACK_FREE));
341 off += 2 * sizeof(struct track);
342 }
343
344 if (off != s->size)
345 /* Beginning of the filler is the free pointer */
346 print_section("Filler", p + off, s->size - off);
347}
348
349static void object_err(struct kmem_cache *s, struct page *page,
350 u8 *object, char *reason)
351{
352 u8 *addr = page_address(page);
353
354 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
355 s->name, reason, object, page);
356 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
357 object - addr, page->flags, page->inuse, page->freelist);
358 if (object > addr + 16)
359 print_section("Bytes b4", object - 16, 16);
360 print_section("Object", object, min(s->objsize, 128));
361 print_trailer(s, object);
362 dump_stack();
363}
364
365static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
366{
367 va_list args;
368 char buf[100];
369
370 va_start(args, reason);
371 vsnprintf(buf, sizeof(buf), reason, args);
372 va_end(args);
373 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
374 page);
375 dump_stack();
376}
377
378static void init_object(struct kmem_cache *s, void *object, int active)
379{
380 u8 *p = object;
381
382 if (s->flags & __OBJECT_POISON) {
383 memset(p, POISON_FREE, s->objsize - 1);
384 p[s->objsize -1] = POISON_END;
385 }
386
387 if (s->flags & SLAB_RED_ZONE)
388 memset(p + s->objsize,
389 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
390 s->inuse - s->objsize);
391}
392
393static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
394{
395 while (bytes) {
396 if (*start != (u8)value)
397 return 0;
398 start++;
399 bytes--;
400 }
401 return 1;
402}
403
404
405static int check_valid_pointer(struct kmem_cache *s, struct page *page,
406 void *object)
407{
408 void *base;
409
410 if (!object)
411 return 1;
412
413 base = page_address(page);
414 if (object < base || object >= base + s->objects * s->size ||
415 (object - base) % s->size) {
416 return 0;
417 }
418
419 return 1;
420}
421
422/*
423 * Object layout:
424 *
425 * object address
426 * Bytes of the object to be managed.
427 * If the freepointer may overlay the object then the free
428 * pointer is the first word of the object.
429 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
430 * 0xa5 (POISON_END)
431 *
432 * object + s->objsize
433 * Padding to reach word boundary. This is also used for Redzoning.
434 * Padding is extended to word size if Redzoning is enabled
435 * and objsize == inuse.
436 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
437 * 0xcc (RED_ACTIVE) for objects in use.
438 *
439 * object + s->inuse
440 * A. Free pointer (if we cannot overwrite object on free)
441 * B. Tracking data for SLAB_STORE_USER
442 * C. Padding to reach required alignment boundary
443 * Padding is done using 0x5a (POISON_INUSE)
444 *
445 * object + s->size
446 *
447 * If slabcaches are merged then the objsize and inuse boundaries are to
448 * be ignored. And therefore no slab options that rely on these boundaries
449 * may be used with merged slabcaches.
450 */
451
452static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
453 void *from, void *to)
454{
455 printk(KERN_ERR "@@@ SLUB: %s Restoring %s (0x%x) from 0x%p-0x%p\n",
456 s->name, message, data, from, to - 1);
457 memset(from, data, to - from);
458}
459
460static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
461{
462 unsigned long off = s->inuse; /* The end of info */
463
464 if (s->offset)
465 /* Freepointer is placed after the object. */
466 off += sizeof(void *);
467
468 if (s->flags & SLAB_STORE_USER)
469 /* We also have user information there */
470 off += 2 * sizeof(struct track);
471
472 if (s->size == off)
473 return 1;
474
475 if (check_bytes(p + off, POISON_INUSE, s->size - off))
476 return 1;
477
478 object_err(s, page, p, "Object padding check fails");
479
480 /*
481 * Restore padding
482 */
483 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
484 return 0;
485}
486
487static int slab_pad_check(struct kmem_cache *s, struct page *page)
488{
489 u8 *p;
490 int length, remainder;
491
492 if (!(s->flags & SLAB_POISON))
493 return 1;
494
495 p = page_address(page);
496 length = s->objects * s->size;
497 remainder = (PAGE_SIZE << s->order) - length;
498 if (!remainder)
499 return 1;
500
501 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
502 printk(KERN_ERR "SLUB: %s slab 0x%p: Padding fails check\n",
503 s->name, p);
504 dump_stack();
505 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
506 p + length + remainder);
507 return 0;
508 }
509 return 1;
510}
511
512static int check_object(struct kmem_cache *s, struct page *page,
513 void *object, int active)
514{
515 u8 *p = object;
516 u8 *endobject = object + s->objsize;
517
518 if (s->flags & SLAB_RED_ZONE) {
519 unsigned int red =
520 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
521
522 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
523 object_err(s, page, object,
524 active ? "Redzone Active" : "Redzone Inactive");
525 restore_bytes(s, "redzone", red,
526 endobject, object + s->inuse);
527 return 0;
528 }
529 } else {
530 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
531 !check_bytes(endobject, POISON_INUSE,
532 s->inuse - s->objsize)) {
533 object_err(s, page, p, "Alignment padding check fails");
534 /*
535 * Fix it so that there will not be another report.
536 *
537 * Hmmm... We may be corrupting an object that now expects
538 * to be longer than allowed.
539 */
540 restore_bytes(s, "alignment padding", POISON_INUSE,
541 endobject, object + s->inuse);
542 }
543 }
544
545 if (s->flags & SLAB_POISON) {
546 if (!active && (s->flags & __OBJECT_POISON) &&
547 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
548 p[s->objsize - 1] != POISON_END)) {
549
550 object_err(s, page, p, "Poison check failed");
551 restore_bytes(s, "Poison", POISON_FREE,
552 p, p + s->objsize -1);
553 restore_bytes(s, "Poison", POISON_END,
554 p + s->objsize - 1, p + s->objsize);
555 return 0;
556 }
557 /*
558 * check_pad_bytes cleans up on its own.
559 */
560 check_pad_bytes(s, page, p);
561 }
562
563 if (!s->offset && active)
564 /*
565 * Object and freepointer overlap. Cannot check
566 * freepointer while object is allocated.
567 */
568 return 1;
569
570 /* Check free pointer validity */
571 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
572 object_err(s, page, p, "Freepointer corrupt");
573 /*
574 * No choice but to zap it and thus loose the remainder
575 * of the free objects in this slab. May cause
576 * another error because the object count maybe
577 * wrong now.
578 */
579 set_freepointer(s, p, NULL);
580 return 0;
581 }
582 return 1;
583}
584
585static int check_slab(struct kmem_cache *s, struct page *page)
586{
587 VM_BUG_ON(!irqs_disabled());
588
589 if (!PageSlab(page)) {
590 printk(KERN_ERR "SLUB: %s Not a valid slab page @0x%p "
591 "flags=%lx mapping=0x%p count=%d \n",
592 s->name, page, page->flags, page->mapping,
593 page_count(page));
594 return 0;
595 }
596 if (page->offset * sizeof(void *) != s->offset) {
597 printk(KERN_ERR "SLUB: %s Corrupted offset %lu in slab @0x%p"
598 " flags=0x%lx mapping=0x%p count=%d\n",
599 s->name,
600 (unsigned long)(page->offset * sizeof(void *)),
601 page,
602 page->flags,
603 page->mapping,
604 page_count(page));
605 dump_stack();
606 return 0;
607 }
608 if (page->inuse > s->objects) {
609 printk(KERN_ERR "SLUB: %s Inuse %u > max %u in slab "
610 "page @0x%p flags=%lx mapping=0x%p count=%d\n",
611 s->name, page->inuse, s->objects, page, page->flags,
612 page->mapping, page_count(page));
613 dump_stack();
614 return 0;
615 }
616 /* Slab_pad_check fixes things up after itself */
617 slab_pad_check(s, page);
618 return 1;
619}
620
621/*
622 * Determine if a certain object on a page is on the freelist and
623 * therefore free. Must hold the slab lock for cpu slabs to
624 * guarantee that the chains are consistent.
625 */
626static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
627{
628 int nr = 0;
629 void *fp = page->freelist;
630 void *object = NULL;
631
632 while (fp && nr <= s->objects) {
633 if (fp == search)
634 return 1;
635 if (!check_valid_pointer(s, page, fp)) {
636 if (object) {
637 object_err(s, page, object,
638 "Freechain corrupt");
639 set_freepointer(s, object, NULL);
640 break;
641 } else {
642 printk(KERN_ERR "SLUB: %s slab 0x%p "
643 "freepointer 0x%p corrupted.\n",
644 s->name, page, fp);
645 dump_stack();
646 page->freelist = NULL;
647 page->inuse = s->objects;
648 return 0;
649 }
650 break;
651 }
652 object = fp;
653 fp = get_freepointer(s, object);
654 nr++;
655 }
656
657 if (page->inuse != s->objects - nr) {
658 printk(KERN_ERR "slab %s: page 0x%p wrong object count."
659 " counter is %d but counted were %d\n",
660 s->name, page, page->inuse,
661 s->objects - nr);
662 page->inuse = s->objects - nr;
663 }
664 return search == NULL;
665}
666
667static int alloc_object_checks(struct kmem_cache *s, struct page *page,
668 void *object)
669{
670 if (!check_slab(s, page))
671 goto bad;
672
673 if (object && !on_freelist(s, page, object)) {
674 printk(KERN_ERR "SLUB: %s Object 0x%p@0x%p "
675 "already allocated.\n",
676 s->name, object, page);
677 goto dump;
678 }
679
680 if (!check_valid_pointer(s, page, object)) {
681 object_err(s, page, object, "Freelist Pointer check fails");
682 goto dump;
683 }
684
685 if (!object)
686 return 1;
687
688 if (!check_object(s, page, object, 0))
689 goto bad;
690 init_object(s, object, 1);
691
692 if (s->flags & SLAB_TRACE) {
693 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
694 s->name, object, page->inuse,
695 page->freelist);
696 dump_stack();
697 }
698 return 1;
699dump:
700 dump_stack();
701bad:
702 if (PageSlab(page)) {
703 /*
704 * If this is a slab page then lets do the best we can
705 * to avoid issues in the future. Marking all objects
706 * as used avoids touching the remainder.
707 */
708 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
709 s->name, page);
710 page->inuse = s->objects;
711 page->freelist = NULL;
712 /* Fix up fields that may be corrupted */
713 page->offset = s->offset / sizeof(void *);
714 }
715 return 0;
716}
717
718static int free_object_checks(struct kmem_cache *s, struct page *page,
719 void *object)
720{
721 if (!check_slab(s, page))
722 goto fail;
723
724 if (!check_valid_pointer(s, page, object)) {
725 printk(KERN_ERR "SLUB: %s slab 0x%p invalid "
726 "object pointer 0x%p\n",
727 s->name, page, object);
728 goto fail;
729 }
730
731 if (on_freelist(s, page, object)) {
732 printk(KERN_ERR "SLUB: %s slab 0x%p object "
733 "0x%p already free.\n", s->name, page, object);
734 goto fail;
735 }
736
737 if (!check_object(s, page, object, 1))
738 return 0;
739
740 if (unlikely(s != page->slab)) {
741 if (!PageSlab(page))
742 printk(KERN_ERR "slab_free %s size %d: attempt to"
743 "free object(0x%p) outside of slab.\n",
744 s->name, s->size, object);
745 else
746 if (!page->slab)
747 printk(KERN_ERR
748 "slab_free : no slab(NULL) for object 0x%p.\n",
749 object);
750 else
751 printk(KERN_ERR "slab_free %s(%d): object at 0x%p"
752 " belongs to slab %s(%d)\n",
753 s->name, s->size, object,
754 page->slab->name, page->slab->size);
755 goto fail;
756 }
757 if (s->flags & SLAB_TRACE) {
758 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
759 s->name, object, page->inuse,
760 page->freelist);
761 print_section("Object", object, s->objsize);
762 dump_stack();
763 }
764 init_object(s, object, 0);
765 return 1;
766fail:
767 dump_stack();
768 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
769 s->name, page, object);
770 return 0;
771}
772
773/*
774 * Slab allocation and freeing
775 */
776static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
777{
778 struct page * page;
779 int pages = 1 << s->order;
780
781 if (s->order)
782 flags |= __GFP_COMP;
783
784 if (s->flags & SLAB_CACHE_DMA)
785 flags |= SLUB_DMA;
786
787 if (node == -1)
788 page = alloc_pages(flags, s->order);
789 else
790 page = alloc_pages_node(node, flags, s->order);
791
792 if (!page)
793 return NULL;
794
795 mod_zone_page_state(page_zone(page),
796 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
797 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
798 pages);
799
800 return page;
801}
802
803static void setup_object(struct kmem_cache *s, struct page *page,
804 void *object)
805{
806 if (PageError(page)) {
807 init_object(s, object, 0);
808 init_tracking(s, object);
809 }
810
811 if (unlikely(s->ctor)) {
812 int mode = SLAB_CTOR_CONSTRUCTOR;
813
814 if (!(s->flags & __GFP_WAIT))
815 mode |= SLAB_CTOR_ATOMIC;
816
817 s->ctor(object, s, mode);
818 }
819}
820
821static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
822{
823 struct page *page;
824 struct kmem_cache_node *n;
825 void *start;
826 void *end;
827 void *last;
828 void *p;
829
830 if (flags & __GFP_NO_GROW)
831 return NULL;
832
833 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
834
835 if (flags & __GFP_WAIT)
836 local_irq_enable();
837
838 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
839 if (!page)
840 goto out;
841
842 n = get_node(s, page_to_nid(page));
843 if (n)
844 atomic_long_inc(&n->nr_slabs);
845 page->offset = s->offset / sizeof(void *);
846 page->slab = s;
847 page->flags |= 1 << PG_slab;
848 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
849 SLAB_STORE_USER | SLAB_TRACE))
850 page->flags |= 1 << PG_error;
851
852 start = page_address(page);
853 end = start + s->objects * s->size;
854
855 if (unlikely(s->flags & SLAB_POISON))
856 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
857
858 last = start;
859 for (p = start + s->size; p < end; p += s->size) {
860 setup_object(s, page, last);
861 set_freepointer(s, last, p);
862 last = p;
863 }
864 setup_object(s, page, last);
865 set_freepointer(s, last, NULL);
866
867 page->freelist = start;
868 page->inuse = 0;
869out:
870 if (flags & __GFP_WAIT)
871 local_irq_disable();
872 return page;
873}
874
875static void __free_slab(struct kmem_cache *s, struct page *page)
876{
877 int pages = 1 << s->order;
878
879 if (unlikely(PageError(page) || s->dtor)) {
880 void *start = page_address(page);
881 void *end = start + (pages << PAGE_SHIFT);
882 void *p;
883
884 slab_pad_check(s, page);
885 for (p = start; p <= end - s->size; p += s->size) {
886 if (s->dtor)
887 s->dtor(p, s, 0);
888 check_object(s, page, p, 0);
889 }
890 }
891
892 mod_zone_page_state(page_zone(page),
893 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
894 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
895 - pages);
896
897 page->mapping = NULL;
898 __free_pages(page, s->order);
899}
900
901static void rcu_free_slab(struct rcu_head *h)
902{
903 struct page *page;
904
905 page = container_of((struct list_head *)h, struct page, lru);
906 __free_slab(page->slab, page);
907}
908
909static void free_slab(struct kmem_cache *s, struct page *page)
910{
911 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
912 /*
913 * RCU free overloads the RCU head over the LRU
914 */
915 struct rcu_head *head = (void *)&page->lru;
916
917 call_rcu(head, rcu_free_slab);
918 } else
919 __free_slab(s, page);
920}
921
922static void discard_slab(struct kmem_cache *s, struct page *page)
923{
924 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
925
926 atomic_long_dec(&n->nr_slabs);
927 reset_page_mapcount(page);
928 page->flags &= ~(1 << PG_slab | 1 << PG_error);
929 free_slab(s, page);
930}
931
932/*
933 * Per slab locking using the pagelock
934 */
935static __always_inline void slab_lock(struct page *page)
936{
937 bit_spin_lock(PG_locked, &page->flags);
938}
939
940static __always_inline void slab_unlock(struct page *page)
941{
942 bit_spin_unlock(PG_locked, &page->flags);
943}
944
945static __always_inline int slab_trylock(struct page *page)
946{
947 int rc = 1;
948
949 rc = bit_spin_trylock(PG_locked, &page->flags);
950 return rc;
951}
952
953/*
954 * Management of partially allocated slabs
955 */
956static void add_partial(struct kmem_cache *s, struct page *page)
957{
958 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
959
960 spin_lock(&n->list_lock);
961 n->nr_partial++;
962 list_add(&page->lru, &n->partial);
963 spin_unlock(&n->list_lock);
964}
965
966static void remove_partial(struct kmem_cache *s,
967 struct page *page)
968{
969 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
970
971 spin_lock(&n->list_lock);
972 list_del(&page->lru);
973 n->nr_partial--;
974 spin_unlock(&n->list_lock);
975}
976
977/*
978 * Lock page and remove it from the partial list
979 *
980 * Must hold list_lock
981 */
982static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
983{
984 if (slab_trylock(page)) {
985 list_del(&page->lru);
986 n->nr_partial--;
987 return 1;
988 }
989 return 0;
990}
991
992/*
993 * Try to get a partial slab from a specific node
994 */
995static struct page *get_partial_node(struct kmem_cache_node *n)
996{
997 struct page *page;
998
999 /*
1000 * Racy check. If we mistakenly see no partial slabs then we
1001 * just allocate an empty slab. If we mistakenly try to get a
1002 * partial slab then get_partials() will return NULL.
1003 */
1004 if (!n || !n->nr_partial)
1005 return NULL;
1006
1007 spin_lock(&n->list_lock);
1008 list_for_each_entry(page, &n->partial, lru)
1009 if (lock_and_del_slab(n, page))
1010 goto out;
1011 page = NULL;
1012out:
1013 spin_unlock(&n->list_lock);
1014 return page;
1015}
1016
1017/*
1018 * Get a page from somewhere. Search in increasing NUMA
1019 * distances.
1020 */
1021static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1022{
1023#ifdef CONFIG_NUMA
1024 struct zonelist *zonelist;
1025 struct zone **z;
1026 struct page *page;
1027
1028 /*
1029 * The defrag ratio allows to configure the tradeoffs between
1030 * inter node defragmentation and node local allocations.
1031 * A lower defrag_ratio increases the tendency to do local
1032 * allocations instead of scanning throught the partial
1033 * lists on other nodes.
1034 *
1035 * If defrag_ratio is set to 0 then kmalloc() always
1036 * returns node local objects. If its higher then kmalloc()
1037 * may return off node objects in order to avoid fragmentation.
1038 *
1039 * A higher ratio means slabs may be taken from other nodes
1040 * thus reducing the number of partial slabs on those nodes.
1041 *
1042 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1043 * defrag_ratio = 1000) then every (well almost) allocation
1044 * will first attempt to defrag slab caches on other nodes. This
1045 * means scanning over all nodes to look for partial slabs which
1046 * may be a bit expensive to do on every slab allocation.
1047 */
1048 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1049 return NULL;
1050
1051 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1052 ->node_zonelists[gfp_zone(flags)];
1053 for (z = zonelist->zones; *z; z++) {
1054 struct kmem_cache_node *n;
1055
1056 n = get_node(s, zone_to_nid(*z));
1057
1058 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1059 n->nr_partial > 2) {
1060 page = get_partial_node(n);
1061 if (page)
1062 return page;
1063 }
1064 }
1065#endif
1066 return NULL;
1067}
1068
1069/*
1070 * Get a partial page, lock it and return it.
1071 */
1072static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1073{
1074 struct page *page;
1075 int searchnode = (node == -1) ? numa_node_id() : node;
1076
1077 page = get_partial_node(get_node(s, searchnode));
1078 if (page || (flags & __GFP_THISNODE))
1079 return page;
1080
1081 return get_any_partial(s, flags);
1082}
1083
1084/*
1085 * Move a page back to the lists.
1086 *
1087 * Must be called with the slab lock held.
1088 *
1089 * On exit the slab lock will have been dropped.
1090 */
1091static void putback_slab(struct kmem_cache *s, struct page *page)
1092{
1093 if (page->inuse) {
1094 if (page->freelist)
1095 add_partial(s, page);
1096 slab_unlock(page);
1097 } else {
1098 slab_unlock(page);
1099 discard_slab(s, page);
1100 }
1101}
1102
1103/*
1104 * Remove the cpu slab
1105 */
1106static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1107{
1108 s->cpu_slab[cpu] = NULL;
1109 ClearPageActive(page);
1110
1111 putback_slab(s, page);
1112}
1113
1114static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1115{
1116 slab_lock(page);
1117 deactivate_slab(s, page, cpu);
1118}
1119
1120/*
1121 * Flush cpu slab.
1122 * Called from IPI handler with interrupts disabled.
1123 */
1124static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1125{
1126 struct page *page = s->cpu_slab[cpu];
1127
1128 if (likely(page))
1129 flush_slab(s, page, cpu);
1130}
1131
1132static void flush_cpu_slab(void *d)
1133{
1134 struct kmem_cache *s = d;
1135 int cpu = smp_processor_id();
1136
1137 __flush_cpu_slab(s, cpu);
1138}
1139
1140static void flush_all(struct kmem_cache *s)
1141{
1142#ifdef CONFIG_SMP
1143 on_each_cpu(flush_cpu_slab, s, 1, 1);
1144#else
1145 unsigned long flags;
1146
1147 local_irq_save(flags);
1148 flush_cpu_slab(s);
1149 local_irq_restore(flags);
1150#endif
1151}
1152
1153/*
1154 * slab_alloc is optimized to only modify two cachelines on the fast path
1155 * (aside from the stack):
1156 *
1157 * 1. The page struct
1158 * 2. The first cacheline of the object to be allocated.
1159 *
1160 * The only cache lines that are read (apart from code) is the
1161 * per cpu array in the kmem_cache struct.
1162 *
1163 * Fastpath is not possible if we need to get a new slab or have
1164 * debugging enabled (which means all slabs are marked with PageError)
1165 */
1166static __always_inline void *slab_alloc(struct kmem_cache *s,
1167 gfp_t gfpflags, int node)
1168{
1169 struct page *page;
1170 void **object;
1171 unsigned long flags;
1172 int cpu;
1173
1174 local_irq_save(flags);
1175 cpu = smp_processor_id();
1176 page = s->cpu_slab[cpu];
1177 if (!page)
1178 goto new_slab;
1179
1180 slab_lock(page);
1181 if (unlikely(node != -1 && page_to_nid(page) != node))
1182 goto another_slab;
1183redo:
1184 object = page->freelist;
1185 if (unlikely(!object))
1186 goto another_slab;
1187 if (unlikely(PageError(page)))
1188 goto debug;
1189
1190have_object:
1191 page->inuse++;
1192 page->freelist = object[page->offset];
1193 slab_unlock(page);
1194 local_irq_restore(flags);
1195 return object;
1196
1197another_slab:
1198 deactivate_slab(s, page, cpu);
1199
1200new_slab:
1201 page = get_partial(s, gfpflags, node);
1202 if (likely(page)) {
1203have_slab:
1204 s->cpu_slab[cpu] = page;
1205 SetPageActive(page);
1206 goto redo;
1207 }
1208
1209 page = new_slab(s, gfpflags, node);
1210 if (page) {
1211 cpu = smp_processor_id();
1212 if (s->cpu_slab[cpu]) {
1213 /*
1214 * Someone else populated the cpu_slab while we enabled
1215 * interrupts, or we have got scheduled on another cpu.
1216 * The page may not be on the requested node.
1217 */
1218 if (node == -1 ||
1219 page_to_nid(s->cpu_slab[cpu]) == node) {
1220 /*
1221 * Current cpuslab is acceptable and we
1222 * want the current one since its cache hot
1223 */
1224 discard_slab(s, page);
1225 page = s->cpu_slab[cpu];
1226 slab_lock(page);
1227 goto redo;
1228 }
1229 /* Dump the current slab */
1230 flush_slab(s, s->cpu_slab[cpu], cpu);
1231 }
1232 slab_lock(page);
1233 goto have_slab;
1234 }
1235 local_irq_restore(flags);
1236 return NULL;
1237debug:
1238 if (!alloc_object_checks(s, page, object))
1239 goto another_slab;
1240 if (s->flags & SLAB_STORE_USER)
1241 set_tracking(s, object, TRACK_ALLOC);
1242 goto have_object;
1243}
1244
1245void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1246{
1247 return slab_alloc(s, gfpflags, -1);
1248}
1249EXPORT_SYMBOL(kmem_cache_alloc);
1250
1251#ifdef CONFIG_NUMA
1252void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1253{
1254 return slab_alloc(s, gfpflags, node);
1255}
1256EXPORT_SYMBOL(kmem_cache_alloc_node);
1257#endif
1258
1259/*
1260 * The fastpath only writes the cacheline of the page struct and the first
1261 * cacheline of the object.
1262 *
1263 * No special cachelines need to be read
1264 */
1265static void slab_free(struct kmem_cache *s, struct page *page, void *x)
1266{
1267 void *prior;
1268 void **object = (void *)x;
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 slab_lock(page);
1273
1274 if (unlikely(PageError(page)))
1275 goto debug;
1276checks_ok:
1277 prior = object[page->offset] = page->freelist;
1278 page->freelist = object;
1279 page->inuse--;
1280
1281 if (unlikely(PageActive(page)))
1282 /*
1283 * Cpu slabs are never on partial lists and are
1284 * never freed.
1285 */
1286 goto out_unlock;
1287
1288 if (unlikely(!page->inuse))
1289 goto slab_empty;
1290
1291 /*
1292 * Objects left in the slab. If it
1293 * was not on the partial list before
1294 * then add it.
1295 */
1296 if (unlikely(!prior))
1297 add_partial(s, page);
1298
1299out_unlock:
1300 slab_unlock(page);
1301 local_irq_restore(flags);
1302 return;
1303
1304slab_empty:
1305 if (prior)
1306 /*
1307 * Partially used slab that is on the partial list.
1308 */
1309 remove_partial(s, page);
1310
1311 slab_unlock(page);
1312 discard_slab(s, page);
1313 local_irq_restore(flags);
1314 return;
1315
1316debug:
1317 if (free_object_checks(s, page, x))
1318 goto checks_ok;
1319 goto out_unlock;
1320}
1321
1322void kmem_cache_free(struct kmem_cache *s, void *x)
1323{
1324 struct page * page;
1325
1326 page = virt_to_page(x);
1327
1328 if (unlikely(PageCompound(page)))
1329 page = page->first_page;
1330
1331
1332 if (unlikely(PageError(page) && (s->flags & SLAB_STORE_USER)))
1333 set_tracking(s, x, TRACK_FREE);
1334 slab_free(s, page, x);
1335}
1336EXPORT_SYMBOL(kmem_cache_free);
1337
1338/* Figure out on which slab object the object resides */
1339static struct page *get_object_page(const void *x)
1340{
1341 struct page *page = virt_to_page(x);
1342
1343 if (unlikely(PageCompound(page)))
1344 page = page->first_page;
1345
1346 if (!PageSlab(page))
1347 return NULL;
1348
1349 return page;
1350}
1351
1352/*
1353 * kmem_cache_open produces objects aligned at "size" and the first object
1354 * is placed at offset 0 in the slab (We have no metainformation on the
1355 * slab, all slabs are in essence "off slab").
1356 *
1357 * In order to get the desired alignment one just needs to align the
1358 * size.
1359 *
1360 * Notice that the allocation order determines the sizes of the per cpu
1361 * caches. Each processor has always one slab available for allocations.
1362 * Increasing the allocation order reduces the number of times that slabs
1363 * must be moved on and off the partial lists and therefore may influence
1364 * locking overhead.
1365 *
1366 * The offset is used to relocate the free list link in each object. It is
1367 * therefore possible to move the free list link behind the object. This
1368 * is necessary for RCU to work properly and also useful for debugging.
1369 */
1370
1371/*
1372 * Mininum / Maximum order of slab pages. This influences locking overhead
1373 * and slab fragmentation. A higher order reduces the number of partial slabs
1374 * and increases the number of allocations possible without having to
1375 * take the list_lock.
1376 */
1377static int slub_min_order;
1378static int slub_max_order = DEFAULT_MAX_ORDER;
1379
1380/*
1381 * Minimum number of objects per slab. This is necessary in order to
1382 * reduce locking overhead. Similar to the queue size in SLAB.
1383 */
1384static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1385
1386/*
1387 * Merge control. If this is set then no merging of slab caches will occur.
1388 */
1389static int slub_nomerge;
1390
1391/*
1392 * Debug settings:
1393 */
1394static int slub_debug;
1395
1396static char *slub_debug_slabs;
1397
1398/*
1399 * Calculate the order of allocation given an slab object size.
1400 *
1401 * The order of allocation has significant impact on other elements
1402 * of the system. Generally order 0 allocations should be preferred
1403 * since they do not cause fragmentation in the page allocator. Larger
1404 * objects may have problems with order 0 because there may be too much
1405 * space left unused in a slab. We go to a higher order if more than 1/8th
1406 * of the slab would be wasted.
1407 *
1408 * In order to reach satisfactory performance we must ensure that
1409 * a minimum number of objects is in one slab. Otherwise we may
1410 * generate too much activity on the partial lists. This is less a
1411 * concern for large slabs though. slub_max_order specifies the order
1412 * where we begin to stop considering the number of objects in a slab.
1413 *
1414 * Higher order allocations also allow the placement of more objects
1415 * in a slab and thereby reduce object handling overhead. If the user
1416 * has requested a higher mininum order then we start with that one
1417 * instead of zero.
1418 */
1419static int calculate_order(int size)
1420{
1421 int order;
1422 int rem;
1423
1424 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1425 order < MAX_ORDER; order++) {
1426 unsigned long slab_size = PAGE_SIZE << order;
1427
1428 if (slub_max_order > order &&
1429 slab_size < slub_min_objects * size)
1430 continue;
1431
1432 if (slab_size < size)
1433 continue;
1434
1435 rem = slab_size % size;
1436
1437 if (rem <= (PAGE_SIZE << order) / 8)
1438 break;
1439
1440 }
1441 if (order >= MAX_ORDER)
1442 return -E2BIG;
1443 return order;
1444}
1445
1446/*
1447 * Function to figure out which alignment to use from the
1448 * various ways of specifying it.
1449 */
1450static unsigned long calculate_alignment(unsigned long flags,
1451 unsigned long align, unsigned long size)
1452{
1453 /*
1454 * If the user wants hardware cache aligned objects then
1455 * follow that suggestion if the object is sufficiently
1456 * large.
1457 *
1458 * The hardware cache alignment cannot override the
1459 * specified alignment though. If that is greater
1460 * then use it.
1461 */
1462 if ((flags & (SLAB_MUST_HWCACHE_ALIGN | SLAB_HWCACHE_ALIGN)) &&
1463 size > L1_CACHE_BYTES / 2)
1464 return max_t(unsigned long, align, L1_CACHE_BYTES);
1465
1466 if (align < ARCH_SLAB_MINALIGN)
1467 return ARCH_SLAB_MINALIGN;
1468
1469 return ALIGN(align, sizeof(void *));
1470}
1471
1472static void init_kmem_cache_node(struct kmem_cache_node *n)
1473{
1474 n->nr_partial = 0;
1475 atomic_long_set(&n->nr_slabs, 0);
1476 spin_lock_init(&n->list_lock);
1477 INIT_LIST_HEAD(&n->partial);
1478}
1479
1480#ifdef CONFIG_NUMA
1481/*
1482 * No kmalloc_node yet so do it by hand. We know that this is the first
1483 * slab on the node for this slabcache. There are no concurrent accesses
1484 * possible.
1485 *
1486 * Note that this function only works on the kmalloc_node_cache
1487 * when allocating for the kmalloc_node_cache.
1488 */
1489static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1490 int node)
1491{
1492 struct page *page;
1493 struct kmem_cache_node *n;
1494
1495 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1496
1497 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1498 /* new_slab() disables interupts */
1499 local_irq_enable();
1500
1501 BUG_ON(!page);
1502 n = page->freelist;
1503 BUG_ON(!n);
1504 page->freelist = get_freepointer(kmalloc_caches, n);
1505 page->inuse++;
1506 kmalloc_caches->node[node] = n;
1507 init_object(kmalloc_caches, n, 1);
1508 init_kmem_cache_node(n);
1509 atomic_long_inc(&n->nr_slabs);
1510 add_partial(kmalloc_caches, page);
1511 return n;
1512}
1513
1514static void free_kmem_cache_nodes(struct kmem_cache *s)
1515{
1516 int node;
1517
1518 for_each_online_node(node) {
1519 struct kmem_cache_node *n = s->node[node];
1520 if (n && n != &s->local_node)
1521 kmem_cache_free(kmalloc_caches, n);
1522 s->node[node] = NULL;
1523 }
1524}
1525
1526static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1527{
1528 int node;
1529 int local_node;
1530
1531 if (slab_state >= UP)
1532 local_node = page_to_nid(virt_to_page(s));
1533 else
1534 local_node = 0;
1535
1536 for_each_online_node(node) {
1537 struct kmem_cache_node *n;
1538
1539 if (local_node == node)
1540 n = &s->local_node;
1541 else {
1542 if (slab_state == DOWN) {
1543 n = early_kmem_cache_node_alloc(gfpflags,
1544 node);
1545 continue;
1546 }
1547 n = kmem_cache_alloc_node(kmalloc_caches,
1548 gfpflags, node);
1549
1550 if (!n) {
1551 free_kmem_cache_nodes(s);
1552 return 0;
1553 }
1554
1555 }
1556 s->node[node] = n;
1557 init_kmem_cache_node(n);
1558 }
1559 return 1;
1560}
1561#else
1562static void free_kmem_cache_nodes(struct kmem_cache *s)
1563{
1564}
1565
1566static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1567{
1568 init_kmem_cache_node(&s->local_node);
1569 return 1;
1570}
1571#endif
1572
1573/*
1574 * calculate_sizes() determines the order and the distribution of data within
1575 * a slab object.
1576 */
1577static int calculate_sizes(struct kmem_cache *s)
1578{
1579 unsigned long flags = s->flags;
1580 unsigned long size = s->objsize;
1581 unsigned long align = s->align;
1582
1583 /*
1584 * Determine if we can poison the object itself. If the user of
1585 * the slab may touch the object after free or before allocation
1586 * then we should never poison the object itself.
1587 */
1588 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1589 !s->ctor && !s->dtor)
1590 s->flags |= __OBJECT_POISON;
1591 else
1592 s->flags &= ~__OBJECT_POISON;
1593
1594 /*
1595 * Round up object size to the next word boundary. We can only
1596 * place the free pointer at word boundaries and this determines
1597 * the possible location of the free pointer.
1598 */
1599 size = ALIGN(size, sizeof(void *));
1600
1601 /*
1602 * If we are redzoning then check if there is some space between the
1603 * end of the object and the free pointer. If not then add an
1604 * additional word, so that we can establish a redzone between
1605 * the object and the freepointer to be able to check for overwrites.
1606 */
1607 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1608 size += sizeof(void *);
1609
1610 /*
1611 * With that we have determined how much of the slab is in actual
1612 * use by the object. This is the potential offset to the free
1613 * pointer.
1614 */
1615 s->inuse = size;
1616
1617 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1618 s->ctor || s->dtor)) {
1619 /*
1620 * Relocate free pointer after the object if it is not
1621 * permitted to overwrite the first word of the object on
1622 * kmem_cache_free.
1623 *
1624 * This is the case if we do RCU, have a constructor or
1625 * destructor or are poisoning the objects.
1626 */
1627 s->offset = size;
1628 size += sizeof(void *);
1629 }
1630
1631 if (flags & SLAB_STORE_USER)
1632 /*
1633 * Need to store information about allocs and frees after
1634 * the object.
1635 */
1636 size += 2 * sizeof(struct track);
1637
1638 if (flags & DEBUG_DEFAULT_FLAGS)
1639 /*
1640 * Add some empty padding so that we can catch
1641 * overwrites from earlier objects rather than let
1642 * tracking information or the free pointer be
1643 * corrupted if an user writes before the start
1644 * of the object.
1645 */
1646 size += sizeof(void *);
1647 /*
1648 * Determine the alignment based on various parameters that the
1649 * user specified (this is unecessarily complex due to the attempt
1650 * to be compatible with SLAB. Should be cleaned up some day).
1651 */
1652 align = calculate_alignment(flags, align, s->objsize);
1653
1654 /*
1655 * SLUB stores one object immediately after another beginning from
1656 * offset 0. In order to align the objects we have to simply size
1657 * each object to conform to the alignment.
1658 */
1659 size = ALIGN(size, align);
1660 s->size = size;
1661
1662 s->order = calculate_order(size);
1663 if (s->order < 0)
1664 return 0;
1665
1666 /*
1667 * Determine the number of objects per slab
1668 */
1669 s->objects = (PAGE_SIZE << s->order) / size;
1670
1671 /*
1672 * Verify that the number of objects is within permitted limits.
1673 * The page->inuse field is only 16 bit wide! So we cannot have
1674 * more than 64k objects per slab.
1675 */
1676 if (!s->objects || s->objects > 65535)
1677 return 0;
1678 return 1;
1679
1680}
1681
1682static int __init finish_bootstrap(void)
1683{
1684 struct list_head *h;
1685 int err;
1686
1687 slab_state = SYSFS;
1688
1689 list_for_each(h, &slab_caches) {
1690 struct kmem_cache *s =
1691 container_of(h, struct kmem_cache, list);
1692
1693 err = sysfs_slab_add(s);
1694 BUG_ON(err);
1695 }
1696 return 0;
1697}
1698
1699static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1700 const char *name, size_t size,
1701 size_t align, unsigned long flags,
1702 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1703 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1704{
1705 memset(s, 0, kmem_size);
1706 s->name = name;
1707 s->ctor = ctor;
1708 s->dtor = dtor;
1709 s->objsize = size;
1710 s->flags = flags;
1711 s->align = align;
1712
1713 BUG_ON(flags & SLUB_UNIMPLEMENTED);
1714
1715 /*
1716 * The page->offset field is only 16 bit wide. This is an offset
1717 * in units of words from the beginning of an object. If the slab
1718 * size is bigger then we cannot move the free pointer behind the
1719 * object anymore.
1720 *
1721 * On 32 bit platforms the limit is 256k. On 64bit platforms
1722 * the limit is 512k.
1723 *
1724 * Debugging or ctor/dtors may create a need to move the free
1725 * pointer. Fail if this happens.
1726 */
1727 if (s->size >= 65535 * sizeof(void *)) {
1728 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1729 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1730 BUG_ON(ctor || dtor);
1731 }
1732 else
1733 /*
1734 * Enable debugging if selected on the kernel commandline.
1735 */
1736 if (slub_debug && (!slub_debug_slabs ||
1737 strncmp(slub_debug_slabs, name,
1738 strlen(slub_debug_slabs)) == 0))
1739 s->flags |= slub_debug;
1740
1741 if (!calculate_sizes(s))
1742 goto error;
1743
1744 s->refcount = 1;
1745#ifdef CONFIG_NUMA
1746 s->defrag_ratio = 100;
1747#endif
1748
1749 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1750 return 1;
1751error:
1752 if (flags & SLAB_PANIC)
1753 panic("Cannot create slab %s size=%lu realsize=%u "
1754 "order=%u offset=%u flags=%lx\n",
1755 s->name, (unsigned long)size, s->size, s->order,
1756 s->offset, flags);
1757 return 0;
1758}
1759EXPORT_SYMBOL(kmem_cache_open);
1760
1761/*
1762 * Check if a given pointer is valid
1763 */
1764int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1765{
1766 struct page * page;
1767 void *addr;
1768
1769 page = get_object_page(object);
1770
1771 if (!page || s != page->slab)
1772 /* No slab or wrong slab */
1773 return 0;
1774
1775 addr = page_address(page);
1776 if (object < addr || object >= addr + s->objects * s->size)
1777 /* Out of bounds */
1778 return 0;
1779
1780 if ((object - addr) % s->size)
1781 /* Improperly aligned */
1782 return 0;
1783
1784 /*
1785 * We could also check if the object is on the slabs freelist.
1786 * But this would be too expensive and it seems that the main
1787 * purpose of kmem_ptr_valid is to check if the object belongs
1788 * to a certain slab.
1789 */
1790 return 1;
1791}
1792EXPORT_SYMBOL(kmem_ptr_validate);
1793
1794/*
1795 * Determine the size of a slab object
1796 */
1797unsigned int kmem_cache_size(struct kmem_cache *s)
1798{
1799 return s->objsize;
1800}
1801EXPORT_SYMBOL(kmem_cache_size);
1802
1803const char *kmem_cache_name(struct kmem_cache *s)
1804{
1805 return s->name;
1806}
1807EXPORT_SYMBOL(kmem_cache_name);
1808
1809/*
1810 * Attempt to free all slabs on a node
1811 */
1812static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1813 struct list_head *list)
1814{
1815 int slabs_inuse = 0;
1816 unsigned long flags;
1817 struct page *page, *h;
1818
1819 spin_lock_irqsave(&n->list_lock, flags);
1820 list_for_each_entry_safe(page, h, list, lru)
1821 if (!page->inuse) {
1822 list_del(&page->lru);
1823 discard_slab(s, page);
1824 } else
1825 slabs_inuse++;
1826 spin_unlock_irqrestore(&n->list_lock, flags);
1827 return slabs_inuse;
1828}
1829
1830/*
1831 * Release all resources used by slab cache
1832 */
1833static int kmem_cache_close(struct kmem_cache *s)
1834{
1835 int node;
1836
1837 flush_all(s);
1838
1839 /* Attempt to free all objects */
1840 for_each_online_node(node) {
1841 struct kmem_cache_node *n = get_node(s, node);
1842
1843 free_list(s, n, &n->partial);
1844 if (atomic_long_read(&n->nr_slabs))
1845 return 1;
1846 }
1847 free_kmem_cache_nodes(s);
1848 return 0;
1849}
1850
1851/*
1852 * Close a cache and release the kmem_cache structure
1853 * (must be used for caches created using kmem_cache_create)
1854 */
1855void kmem_cache_destroy(struct kmem_cache *s)
1856{
1857 down_write(&slub_lock);
1858 s->refcount--;
1859 if (!s->refcount) {
1860 list_del(&s->list);
1861 if (kmem_cache_close(s))
1862 WARN_ON(1);
1863 sysfs_slab_remove(s);
1864 kfree(s);
1865 }
1866 up_write(&slub_lock);
1867}
1868EXPORT_SYMBOL(kmem_cache_destroy);
1869
1870/********************************************************************
1871 * Kmalloc subsystem
1872 *******************************************************************/
1873
1874struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1875EXPORT_SYMBOL(kmalloc_caches);
1876
1877#ifdef CONFIG_ZONE_DMA
1878static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1879#endif
1880
1881static int __init setup_slub_min_order(char *str)
1882{
1883 get_option (&str, &slub_min_order);
1884
1885 return 1;
1886}
1887
1888__setup("slub_min_order=", setup_slub_min_order);
1889
1890static int __init setup_slub_max_order(char *str)
1891{
1892 get_option (&str, &slub_max_order);
1893
1894 return 1;
1895}
1896
1897__setup("slub_max_order=", setup_slub_max_order);
1898
1899static int __init setup_slub_min_objects(char *str)
1900{
1901 get_option (&str, &slub_min_objects);
1902
1903 return 1;
1904}
1905
1906__setup("slub_min_objects=", setup_slub_min_objects);
1907
1908static int __init setup_slub_nomerge(char *str)
1909{
1910 slub_nomerge = 1;
1911 return 1;
1912}
1913
1914__setup("slub_nomerge", setup_slub_nomerge);
1915
1916static int __init setup_slub_debug(char *str)
1917{
1918 if (!str || *str != '=')
1919 slub_debug = DEBUG_DEFAULT_FLAGS;
1920 else {
1921 str++;
1922 if (*str == 0 || *str == ',')
1923 slub_debug = DEBUG_DEFAULT_FLAGS;
1924 else
1925 for( ;*str && *str != ','; str++)
1926 switch (*str) {
1927 case 'f' : case 'F' :
1928 slub_debug |= SLAB_DEBUG_FREE;
1929 break;
1930 case 'z' : case 'Z' :
1931 slub_debug |= SLAB_RED_ZONE;
1932 break;
1933 case 'p' : case 'P' :
1934 slub_debug |= SLAB_POISON;
1935 break;
1936 case 'u' : case 'U' :
1937 slub_debug |= SLAB_STORE_USER;
1938 break;
1939 case 't' : case 'T' :
1940 slub_debug |= SLAB_TRACE;
1941 break;
1942 default:
1943 printk(KERN_ERR "slub_debug option '%c' "
1944 "unknown. skipped\n",*str);
1945 }
1946 }
1947
1948 if (*str == ',')
1949 slub_debug_slabs = str + 1;
1950 return 1;
1951}
1952
1953__setup("slub_debug", setup_slub_debug);
1954
1955static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1956 const char *name, int size, gfp_t gfp_flags)
1957{
1958 unsigned int flags = 0;
1959
1960 if (gfp_flags & SLUB_DMA)
1961 flags = SLAB_CACHE_DMA;
1962
1963 down_write(&slub_lock);
1964 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1965 flags, NULL, NULL))
1966 goto panic;
1967
1968 list_add(&s->list, &slab_caches);
1969 up_write(&slub_lock);
1970 if (sysfs_slab_add(s))
1971 goto panic;
1972 return s;
1973
1974panic:
1975 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
1976}
1977
1978static struct kmem_cache *get_slab(size_t size, gfp_t flags)
1979{
1980 int index = kmalloc_index(size);
1981
1982 if (!size)
1983 return NULL;
1984
1985 /* Allocation too large? */
1986 BUG_ON(index < 0);
1987
1988#ifdef CONFIG_ZONE_DMA
1989 if ((flags & SLUB_DMA)) {
1990 struct kmem_cache *s;
1991 struct kmem_cache *x;
1992 char *text;
1993 size_t realsize;
1994
1995 s = kmalloc_caches_dma[index];
1996 if (s)
1997 return s;
1998
1999 /* Dynamically create dma cache */
2000 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2001 if (!x)
2002 panic("Unable to allocate memory for dma cache\n");
2003
2004 if (index <= KMALLOC_SHIFT_HIGH)
2005 realsize = 1 << index;
2006 else {
2007 if (index == 1)
2008 realsize = 96;
2009 else
2010 realsize = 192;
2011 }
2012
2013 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2014 (unsigned int)realsize);
2015 s = create_kmalloc_cache(x, text, realsize, flags);
2016 kmalloc_caches_dma[index] = s;
2017 return s;
2018 }
2019#endif
2020 return &kmalloc_caches[index];
2021}
2022
2023void *__kmalloc(size_t size, gfp_t flags)
2024{
2025 struct kmem_cache *s = get_slab(size, flags);
2026
2027 if (s)
2028 return kmem_cache_alloc(s, flags);
2029 return NULL;
2030}
2031EXPORT_SYMBOL(__kmalloc);
2032
2033#ifdef CONFIG_NUMA
2034void *__kmalloc_node(size_t size, gfp_t flags, int node)
2035{
2036 struct kmem_cache *s = get_slab(size, flags);
2037
2038 if (s)
2039 return kmem_cache_alloc_node(s, flags, node);
2040 return NULL;
2041}
2042EXPORT_SYMBOL(__kmalloc_node);
2043#endif
2044
2045size_t ksize(const void *object)
2046{
2047 struct page *page = get_object_page(object);
2048 struct kmem_cache *s;
2049
2050 BUG_ON(!page);
2051 s = page->slab;
2052 BUG_ON(!s);
2053
2054 /*
2055 * Debugging requires use of the padding between object
2056 * and whatever may come after it.
2057 */
2058 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2059 return s->objsize;
2060
2061 /*
2062 * If we have the need to store the freelist pointer
2063 * back there or track user information then we can
2064 * only use the space before that information.
2065 */
2066 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2067 return s->inuse;
2068
2069 /*
2070 * Else we can use all the padding etc for the allocation
2071 */
2072 return s->size;
2073}
2074EXPORT_SYMBOL(ksize);
2075
2076void kfree(const void *x)
2077{
2078 struct kmem_cache *s;
2079 struct page *page;
2080
2081 if (!x)
2082 return;
2083
2084 page = virt_to_page(x);
2085
2086 if (unlikely(PageCompound(page)))
2087 page = page->first_page;
2088
2089 s = page->slab;
2090
2091 if (unlikely(PageError(page) && (s->flags & SLAB_STORE_USER)))
2092 set_tracking(s, (void *)x, TRACK_FREE);
2093 slab_free(s, page, (void *)x);
2094}
2095EXPORT_SYMBOL(kfree);
2096
2097/**
2098 * krealloc - reallocate memory. The contents will remain unchanged.
2099 *
2100 * @p: object to reallocate memory for.
2101 * @new_size: how many bytes of memory are required.
2102 * @flags: the type of memory to allocate.
2103 *
2104 * The contents of the object pointed to are preserved up to the
2105 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2106 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2107 * %NULL pointer, the object pointed to is freed.
2108 */
2109void *krealloc(const void *p, size_t new_size, gfp_t flags)
2110{
2111 struct kmem_cache *new_cache;
2112 void *ret;
2113 struct page *page;
2114
2115 if (unlikely(!p))
2116 return kmalloc(new_size, flags);
2117
2118 if (unlikely(!new_size)) {
2119 kfree(p);
2120 return NULL;
2121 }
2122
2123 page = virt_to_page(p);
2124
2125 if (unlikely(PageCompound(page)))
2126 page = page->first_page;
2127
2128 new_cache = get_slab(new_size, flags);
2129
2130 /*
2131 * If new size fits in the current cache, bail out.
2132 */
2133 if (likely(page->slab == new_cache))
2134 return (void *)p;
2135
2136 ret = kmalloc(new_size, flags);
2137 if (ret) {
2138 memcpy(ret, p, min(new_size, ksize(p)));
2139 kfree(p);
2140 }
2141 return ret;
2142}
2143EXPORT_SYMBOL(krealloc);
2144
2145/********************************************************************
2146 * Basic setup of slabs
2147 *******************************************************************/
2148
2149void __init kmem_cache_init(void)
2150{
2151 int i;
2152
2153#ifdef CONFIG_NUMA
2154 /*
2155 * Must first have the slab cache available for the allocations of the
2156 * struct kmalloc_cache_node's. There is special bootstrap code in
2157 * kmem_cache_open for slab_state == DOWN.
2158 */
2159 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2160 sizeof(struct kmem_cache_node), GFP_KERNEL);
2161#endif
2162
2163 /* Able to allocate the per node structures */
2164 slab_state = PARTIAL;
2165
2166 /* Caches that are not of the two-to-the-power-of size */
2167 create_kmalloc_cache(&kmalloc_caches[1],
2168 "kmalloc-96", 96, GFP_KERNEL);
2169 create_kmalloc_cache(&kmalloc_caches[2],
2170 "kmalloc-192", 192, GFP_KERNEL);
2171
2172 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2173 create_kmalloc_cache(&kmalloc_caches[i],
2174 "kmalloc", 1 << i, GFP_KERNEL);
2175
2176 slab_state = UP;
2177
2178 /* Provide the correct kmalloc names now that the caches are up */
2179 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2180 kmalloc_caches[i]. name =
2181 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2182
2183#ifdef CONFIG_SMP
2184 register_cpu_notifier(&slab_notifier);
2185#endif
2186
2187 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2188 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2189 + nr_cpu_ids * sizeof(struct page *);
2190
2191 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2192 " Processors=%d, Nodes=%d\n",
2193 KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES,
2194 slub_min_order, slub_max_order, slub_min_objects,
2195 nr_cpu_ids, nr_node_ids);
2196}
2197
2198/*
2199 * Find a mergeable slab cache
2200 */
2201static int slab_unmergeable(struct kmem_cache *s)
2202{
2203 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2204 return 1;
2205
2206 if (s->ctor || s->dtor)
2207 return 1;
2208
2209 return 0;
2210}
2211
2212static struct kmem_cache *find_mergeable(size_t size,
2213 size_t align, unsigned long flags,
2214 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2215 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2216{
2217 struct list_head *h;
2218
2219 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2220 return NULL;
2221
2222 if (ctor || dtor)
2223 return NULL;
2224
2225 size = ALIGN(size, sizeof(void *));
2226 align = calculate_alignment(flags, align, size);
2227 size = ALIGN(size, align);
2228
2229 list_for_each(h, &slab_caches) {
2230 struct kmem_cache *s =
2231 container_of(h, struct kmem_cache, list);
2232
2233 if (slab_unmergeable(s))
2234 continue;
2235
2236 if (size > s->size)
2237 continue;
2238
2239 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2240 (s->flags & SLUB_MERGE_SAME))
2241 continue;
2242 /*
2243 * Check if alignment is compatible.
2244 * Courtesy of Adrian Drzewiecki
2245 */
2246 if ((s->size & ~(align -1)) != s->size)
2247 continue;
2248
2249 if (s->size - size >= sizeof(void *))
2250 continue;
2251
2252 return s;
2253 }
2254 return NULL;
2255}
2256
2257struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2258 size_t align, unsigned long flags,
2259 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2260 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2261{
2262 struct kmem_cache *s;
2263
2264 down_write(&slub_lock);
2265 s = find_mergeable(size, align, flags, dtor, ctor);
2266 if (s) {
2267 s->refcount++;
2268 /*
2269 * Adjust the object sizes so that we clear
2270 * the complete object on kzalloc.
2271 */
2272 s->objsize = max(s->objsize, (int)size);
2273 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2274 if (sysfs_slab_alias(s, name))
2275 goto err;
2276 } else {
2277 s = kmalloc(kmem_size, GFP_KERNEL);
2278 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2279 size, align, flags, ctor, dtor)) {
2280 if (sysfs_slab_add(s)) {
2281 kfree(s);
2282 goto err;
2283 }
2284 list_add(&s->list, &slab_caches);
2285 } else
2286 kfree(s);
2287 }
2288 up_write(&slub_lock);
2289 return s;
2290
2291err:
2292 up_write(&slub_lock);
2293 if (flags & SLAB_PANIC)
2294 panic("Cannot create slabcache %s\n", name);
2295 else
2296 s = NULL;
2297 return s;
2298}
2299EXPORT_SYMBOL(kmem_cache_create);
2300
2301void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2302{
2303 void *x;
2304
2305 x = kmem_cache_alloc(s, flags);
2306 if (x)
2307 memset(x, 0, s->objsize);
2308 return x;
2309}
2310EXPORT_SYMBOL(kmem_cache_zalloc);
2311
2312#ifdef CONFIG_SMP
2313static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2314{
2315 struct list_head *h;
2316
2317 down_read(&slub_lock);
2318 list_for_each(h, &slab_caches) {
2319 struct kmem_cache *s =
2320 container_of(h, struct kmem_cache, list);
2321
2322 func(s, cpu);
2323 }
2324 up_read(&slub_lock);
2325}
2326
2327/*
2328 * Use the cpu notifier to insure that the slab are flushed
2329 * when necessary.
2330 */
2331static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2332 unsigned long action, void *hcpu)
2333{
2334 long cpu = (long)hcpu;
2335
2336 switch (action) {
2337 case CPU_UP_CANCELED:
2338 case CPU_DEAD:
2339 for_all_slabs(__flush_cpu_slab, cpu);
2340 break;
2341 default:
2342 break;
2343 }
2344 return NOTIFY_OK;
2345}
2346
2347static struct notifier_block __cpuinitdata slab_notifier =
2348 { &slab_cpuup_callback, NULL, 0 };
2349
2350#endif
2351
2352/***************************************************************
2353 * Compatiblility definitions
2354 **************************************************************/
2355
2356int kmem_cache_shrink(struct kmem_cache *s)
2357{
2358 flush_all(s);
2359 return 0;
2360}
2361EXPORT_SYMBOL(kmem_cache_shrink);
2362
2363#ifdef CONFIG_NUMA
2364
2365/*****************************************************************
2366 * Generic reaper used to support the page allocator
2367 * (the cpu slabs are reaped by a per slab workqueue).
2368 *
2369 * Maybe move this to the page allocator?
2370 ****************************************************************/
2371
2372static DEFINE_PER_CPU(unsigned long, reap_node);
2373
2374static void init_reap_node(int cpu)
2375{
2376 int node;
2377
2378 node = next_node(cpu_to_node(cpu), node_online_map);
2379 if (node == MAX_NUMNODES)
2380 node = first_node(node_online_map);
2381
2382 __get_cpu_var(reap_node) = node;
2383}
2384
2385static void next_reap_node(void)
2386{
2387 int node = __get_cpu_var(reap_node);
2388
2389 /*
2390 * Also drain per cpu pages on remote zones
2391 */
2392 if (node != numa_node_id())
2393 drain_node_pages(node);
2394
2395 node = next_node(node, node_online_map);
2396 if (unlikely(node >= MAX_NUMNODES))
2397 node = first_node(node_online_map);
2398 __get_cpu_var(reap_node) = node;
2399}
2400#else
2401#define init_reap_node(cpu) do { } while (0)
2402#define next_reap_node(void) do { } while (0)
2403#endif
2404
2405#define REAPTIMEOUT_CPUC (2*HZ)
2406
2407#ifdef CONFIG_SMP
2408static DEFINE_PER_CPU(struct delayed_work, reap_work);
2409
2410static void cache_reap(struct work_struct *unused)
2411{
2412 next_reap_node();
2413 refresh_cpu_vm_stats(smp_processor_id());
2414 schedule_delayed_work(&__get_cpu_var(reap_work),
2415 REAPTIMEOUT_CPUC);
2416}
2417
2418static void __devinit start_cpu_timer(int cpu)
2419{
2420 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2421
2422 /*
2423 * When this gets called from do_initcalls via cpucache_init(),
2424 * init_workqueues() has already run, so keventd will be setup
2425 * at that time.
2426 */
2427 if (keventd_up() && reap_work->work.func == NULL) {
2428 init_reap_node(cpu);
2429 INIT_DELAYED_WORK(reap_work, cache_reap);
2430 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2431 }
2432}
2433
2434static int __init cpucache_init(void)
2435{
2436 int cpu;
2437
2438 /*
2439 * Register the timers that drain pcp pages and update vm statistics
2440 */
2441 for_each_online_cpu(cpu)
2442 start_cpu_timer(cpu);
2443 return 0;
2444}
2445__initcall(cpucache_init);
2446#endif
2447
2448#ifdef SLUB_RESILIENCY_TEST
2449static unsigned long validate_slab_cache(struct kmem_cache *s);
2450
2451static void resiliency_test(void)
2452{
2453 u8 *p;
2454
2455 printk(KERN_ERR "SLUB resiliency testing\n");
2456 printk(KERN_ERR "-----------------------\n");
2457 printk(KERN_ERR "A. Corruption after allocation\n");
2458
2459 p = kzalloc(16, GFP_KERNEL);
2460 p[16] = 0x12;
2461 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2462 " 0x12->0x%p\n\n", p + 16);
2463
2464 validate_slab_cache(kmalloc_caches + 4);
2465
2466 /* Hmmm... The next two are dangerous */
2467 p = kzalloc(32, GFP_KERNEL);
2468 p[32 + sizeof(void *)] = 0x34;
2469 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2470 " 0x34 -> -0x%p\n", p);
2471 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2472
2473 validate_slab_cache(kmalloc_caches + 5);
2474 p = kzalloc(64, GFP_KERNEL);
2475 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2476 *p = 0x56;
2477 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2478 p);
2479 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2480 validate_slab_cache(kmalloc_caches + 6);
2481
2482 printk(KERN_ERR "\nB. Corruption after free\n");
2483 p = kzalloc(128, GFP_KERNEL);
2484 kfree(p);
2485 *p = 0x78;
2486 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2487 validate_slab_cache(kmalloc_caches + 7);
2488
2489 p = kzalloc(256, GFP_KERNEL);
2490 kfree(p);
2491 p[50] = 0x9a;
2492 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2493 validate_slab_cache(kmalloc_caches + 8);
2494
2495 p = kzalloc(512, GFP_KERNEL);
2496 kfree(p);
2497 p[512] = 0xab;
2498 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2499 validate_slab_cache(kmalloc_caches + 9);
2500}
2501#else
2502static void resiliency_test(void) {};
2503#endif
2504
2505/*
2506 * These are not as efficient as kmalloc for the non debug case.
2507 * We do not have the page struct available so we have to touch one
2508 * cacheline in struct kmem_cache to check slab flags.
2509 */
2510void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2511{
2512 struct kmem_cache *s = get_slab(size, gfpflags);
2513 void *object;
2514
2515 if (!s)
2516 return NULL;
2517
2518 object = kmem_cache_alloc(s, gfpflags);
2519
2520 if (object && (s->flags & SLAB_STORE_USER))
2521 set_track(s, object, TRACK_ALLOC, caller);
2522
2523 return object;
2524}
2525
2526void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2527 int node, void *caller)
2528{
2529 struct kmem_cache *s = get_slab(size, gfpflags);
2530 void *object;
2531
2532 if (!s)
2533 return NULL;
2534
2535 object = kmem_cache_alloc_node(s, gfpflags, node);
2536
2537 if (object && (s->flags & SLAB_STORE_USER))
2538 set_track(s, object, TRACK_ALLOC, caller);
2539
2540 return object;
2541}
2542
2543#ifdef CONFIG_SYSFS
2544
2545static unsigned long count_partial(struct kmem_cache_node *n)
2546{
2547 unsigned long flags;
2548 unsigned long x = 0;
2549 struct page *page;
2550
2551 spin_lock_irqsave(&n->list_lock, flags);
2552 list_for_each_entry(page, &n->partial, lru)
2553 x += page->inuse;
2554 spin_unlock_irqrestore(&n->list_lock, flags);
2555 return x;
2556}
2557
2558enum slab_stat_type {
2559 SL_FULL,
2560 SL_PARTIAL,
2561 SL_CPU,
2562 SL_OBJECTS
2563};
2564
2565#define SO_FULL (1 << SL_FULL)
2566#define SO_PARTIAL (1 << SL_PARTIAL)
2567#define SO_CPU (1 << SL_CPU)
2568#define SO_OBJECTS (1 << SL_OBJECTS)
2569
2570static unsigned long slab_objects(struct kmem_cache *s,
2571 char *buf, unsigned long flags)
2572{
2573 unsigned long total = 0;
2574 int cpu;
2575 int node;
2576 int x;
2577 unsigned long *nodes;
2578 unsigned long *per_cpu;
2579
2580 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2581 per_cpu = nodes + nr_node_ids;
2582
2583 for_each_possible_cpu(cpu) {
2584 struct page *page = s->cpu_slab[cpu];
2585 int node;
2586
2587 if (page) {
2588 node = page_to_nid(page);
2589 if (flags & SO_CPU) {
2590 int x = 0;
2591
2592 if (flags & SO_OBJECTS)
2593 x = page->inuse;
2594 else
2595 x = 1;
2596 total += x;
2597 nodes[node] += x;
2598 }
2599 per_cpu[node]++;
2600 }
2601 }
2602
2603 for_each_online_node(node) {
2604 struct kmem_cache_node *n = get_node(s, node);
2605
2606 if (flags & SO_PARTIAL) {
2607 if (flags & SO_OBJECTS)
2608 x = count_partial(n);
2609 else
2610 x = n->nr_partial;
2611 total += x;
2612 nodes[node] += x;
2613 }
2614
2615 if (flags & SO_FULL) {
2616 int full_slabs = atomic_read(&n->nr_slabs)
2617 - per_cpu[node]
2618 - n->nr_partial;
2619
2620 if (flags & SO_OBJECTS)
2621 x = full_slabs * s->objects;
2622 else
2623 x = full_slabs;
2624 total += x;
2625 nodes[node] += x;
2626 }
2627 }
2628
2629 x = sprintf(buf, "%lu", total);
2630#ifdef CONFIG_NUMA
2631 for_each_online_node(node)
2632 if (nodes[node])
2633 x += sprintf(buf + x, " N%d=%lu",
2634 node, nodes[node]);
2635#endif
2636 kfree(nodes);
2637 return x + sprintf(buf + x, "\n");
2638}
2639
2640static int any_slab_objects(struct kmem_cache *s)
2641{
2642 int node;
2643 int cpu;
2644
2645 for_each_possible_cpu(cpu)
2646 if (s->cpu_slab[cpu])
2647 return 1;
2648
2649 for_each_node(node) {
2650 struct kmem_cache_node *n = get_node(s, node);
2651
2652 if (n->nr_partial || atomic_read(&n->nr_slabs))
2653 return 1;
2654 }
2655 return 0;
2656}
2657
2658#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2659#define to_slab(n) container_of(n, struct kmem_cache, kobj);
2660
2661struct slab_attribute {
2662 struct attribute attr;
2663 ssize_t (*show)(struct kmem_cache *s, char *buf);
2664 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2665};
2666
2667#define SLAB_ATTR_RO(_name) \
2668 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2669
2670#define SLAB_ATTR(_name) \
2671 static struct slab_attribute _name##_attr = \
2672 __ATTR(_name, 0644, _name##_show, _name##_store)
2673
2674
2675static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
2676{
2677 return sprintf(buf, "%d\n", s->size);
2678}
2679SLAB_ATTR_RO(slab_size);
2680
2681static ssize_t align_show(struct kmem_cache *s, char *buf)
2682{
2683 return sprintf(buf, "%d\n", s->align);
2684}
2685SLAB_ATTR_RO(align);
2686
2687static ssize_t object_size_show(struct kmem_cache *s, char *buf)
2688{
2689 return sprintf(buf, "%d\n", s->objsize);
2690}
2691SLAB_ATTR_RO(object_size);
2692
2693static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
2694{
2695 return sprintf(buf, "%d\n", s->objects);
2696}
2697SLAB_ATTR_RO(objs_per_slab);
2698
2699static ssize_t order_show(struct kmem_cache *s, char *buf)
2700{
2701 return sprintf(buf, "%d\n", s->order);
2702}
2703SLAB_ATTR_RO(order);
2704
2705static ssize_t ctor_show(struct kmem_cache *s, char *buf)
2706{
2707 if (s->ctor) {
2708 int n = sprint_symbol(buf, (unsigned long)s->ctor);
2709
2710 return n + sprintf(buf + n, "\n");
2711 }
2712 return 0;
2713}
2714SLAB_ATTR_RO(ctor);
2715
2716static ssize_t dtor_show(struct kmem_cache *s, char *buf)
2717{
2718 if (s->dtor) {
2719 int n = sprint_symbol(buf, (unsigned long)s->dtor);
2720
2721 return n + sprintf(buf + n, "\n");
2722 }
2723 return 0;
2724}
2725SLAB_ATTR_RO(dtor);
2726
2727static ssize_t aliases_show(struct kmem_cache *s, char *buf)
2728{
2729 return sprintf(buf, "%d\n", s->refcount - 1);
2730}
2731SLAB_ATTR_RO(aliases);
2732
2733static ssize_t slabs_show(struct kmem_cache *s, char *buf)
2734{
2735 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
2736}
2737SLAB_ATTR_RO(slabs);
2738
2739static ssize_t partial_show(struct kmem_cache *s, char *buf)
2740{
2741 return slab_objects(s, buf, SO_PARTIAL);
2742}
2743SLAB_ATTR_RO(partial);
2744
2745static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
2746{
2747 return slab_objects(s, buf, SO_CPU);
2748}
2749SLAB_ATTR_RO(cpu_slabs);
2750
2751static ssize_t objects_show(struct kmem_cache *s, char *buf)
2752{
2753 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
2754}
2755SLAB_ATTR_RO(objects);
2756
2757static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
2758{
2759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
2760}
2761
2762static ssize_t sanity_checks_store(struct kmem_cache *s,
2763 const char *buf, size_t length)
2764{
2765 s->flags &= ~SLAB_DEBUG_FREE;
2766 if (buf[0] == '1')
2767 s->flags |= SLAB_DEBUG_FREE;
2768 return length;
2769}
2770SLAB_ATTR(sanity_checks);
2771
2772static ssize_t trace_show(struct kmem_cache *s, char *buf)
2773{
2774 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
2775}
2776
2777static ssize_t trace_store(struct kmem_cache *s, const char *buf,
2778 size_t length)
2779{
2780 s->flags &= ~SLAB_TRACE;
2781 if (buf[0] == '1')
2782 s->flags |= SLAB_TRACE;
2783 return length;
2784}
2785SLAB_ATTR(trace);
2786
2787static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
2788{
2789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
2790}
2791
2792static ssize_t reclaim_account_store(struct kmem_cache *s,
2793 const char *buf, size_t length)
2794{
2795 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
2796 if (buf[0] == '1')
2797 s->flags |= SLAB_RECLAIM_ACCOUNT;
2798 return length;
2799}
2800SLAB_ATTR(reclaim_account);
2801
2802static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
2803{
2804 return sprintf(buf, "%d\n", !!(s->flags &
2805 (SLAB_HWCACHE_ALIGN|SLAB_MUST_HWCACHE_ALIGN)));
2806}
2807SLAB_ATTR_RO(hwcache_align);
2808
2809#ifdef CONFIG_ZONE_DMA
2810static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
2811{
2812 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
2813}
2814SLAB_ATTR_RO(cache_dma);
2815#endif
2816
2817static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
2818{
2819 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
2820}
2821SLAB_ATTR_RO(destroy_by_rcu);
2822
2823static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
2824{
2825 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
2826}
2827
2828static ssize_t red_zone_store(struct kmem_cache *s,
2829 const char *buf, size_t length)
2830{
2831 if (any_slab_objects(s))
2832 return -EBUSY;
2833
2834 s->flags &= ~SLAB_RED_ZONE;
2835 if (buf[0] == '1')
2836 s->flags |= SLAB_RED_ZONE;
2837 calculate_sizes(s);
2838 return length;
2839}
2840SLAB_ATTR(red_zone);
2841
2842static ssize_t poison_show(struct kmem_cache *s, char *buf)
2843{
2844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
2845}
2846
2847static ssize_t poison_store(struct kmem_cache *s,
2848 const char *buf, size_t length)
2849{
2850 if (any_slab_objects(s))
2851 return -EBUSY;
2852
2853 s->flags &= ~SLAB_POISON;
2854 if (buf[0] == '1')
2855 s->flags |= SLAB_POISON;
2856 calculate_sizes(s);
2857 return length;
2858}
2859SLAB_ATTR(poison);
2860
2861static ssize_t store_user_show(struct kmem_cache *s, char *buf)
2862{
2863 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
2864}
2865
2866static ssize_t store_user_store(struct kmem_cache *s,
2867 const char *buf, size_t length)
2868{
2869 if (any_slab_objects(s))
2870 return -EBUSY;
2871
2872 s->flags &= ~SLAB_STORE_USER;
2873 if (buf[0] == '1')
2874 s->flags |= SLAB_STORE_USER;
2875 calculate_sizes(s);
2876 return length;
2877}
2878SLAB_ATTR(store_user);
2879
2880#ifdef CONFIG_NUMA
2881static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
2882{
2883 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
2884}
2885
2886static ssize_t defrag_ratio_store(struct kmem_cache *s,
2887 const char *buf, size_t length)
2888{
2889 int n = simple_strtoul(buf, NULL, 10);
2890
2891 if (n < 100)
2892 s->defrag_ratio = n * 10;
2893 return length;
2894}
2895SLAB_ATTR(defrag_ratio);
2896#endif
2897
2898static struct attribute * slab_attrs[] = {
2899 &slab_size_attr.attr,
2900 &object_size_attr.attr,
2901 &objs_per_slab_attr.attr,
2902 &order_attr.attr,
2903 &objects_attr.attr,
2904 &slabs_attr.attr,
2905 &partial_attr.attr,
2906 &cpu_slabs_attr.attr,
2907 &ctor_attr.attr,
2908 &dtor_attr.attr,
2909 &aliases_attr.attr,
2910 &align_attr.attr,
2911 &sanity_checks_attr.attr,
2912 &trace_attr.attr,
2913 &hwcache_align_attr.attr,
2914 &reclaim_account_attr.attr,
2915 &destroy_by_rcu_attr.attr,
2916 &red_zone_attr.attr,
2917 &poison_attr.attr,
2918 &store_user_attr.attr,
2919#ifdef CONFIG_ZONE_DMA
2920 &cache_dma_attr.attr,
2921#endif
2922#ifdef CONFIG_NUMA
2923 &defrag_ratio_attr.attr,
2924#endif
2925 NULL
2926};
2927
2928static struct attribute_group slab_attr_group = {
2929 .attrs = slab_attrs,
2930};
2931
2932static ssize_t slab_attr_show(struct kobject *kobj,
2933 struct attribute *attr,
2934 char *buf)
2935{
2936 struct slab_attribute *attribute;
2937 struct kmem_cache *s;
2938 int err;
2939
2940 attribute = to_slab_attr(attr);
2941 s = to_slab(kobj);
2942
2943 if (!attribute->show)
2944 return -EIO;
2945
2946 err = attribute->show(s, buf);
2947
2948 return err;
2949}
2950
2951static ssize_t slab_attr_store(struct kobject *kobj,
2952 struct attribute *attr,
2953 const char *buf, size_t len)
2954{
2955 struct slab_attribute *attribute;
2956 struct kmem_cache *s;
2957 int err;
2958
2959 attribute = to_slab_attr(attr);
2960 s = to_slab(kobj);
2961
2962 if (!attribute->store)
2963 return -EIO;
2964
2965 err = attribute->store(s, buf, len);
2966
2967 return err;
2968}
2969
2970static struct sysfs_ops slab_sysfs_ops = {
2971 .show = slab_attr_show,
2972 .store = slab_attr_store,
2973};
2974
2975static struct kobj_type slab_ktype = {
2976 .sysfs_ops = &slab_sysfs_ops,
2977};
2978
2979static int uevent_filter(struct kset *kset, struct kobject *kobj)
2980{
2981 struct kobj_type *ktype = get_ktype(kobj);
2982
2983 if (ktype == &slab_ktype)
2984 return 1;
2985 return 0;
2986}
2987
2988static struct kset_uevent_ops slab_uevent_ops = {
2989 .filter = uevent_filter,
2990};
2991
2992decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
2993
2994#define ID_STR_LENGTH 64
2995
2996/* Create a unique string id for a slab cache:
2997 * format
2998 * :[flags-]size:[memory address of kmemcache]
2999 */
3000static char *create_unique_id(struct kmem_cache *s)
3001{
3002 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3003 char *p = name;
3004
3005 BUG_ON(!name);
3006
3007 *p++ = ':';
3008 /*
3009 * First flags affecting slabcache operations. We will only
3010 * get here for aliasable slabs so we do not need to support
3011 * too many flags. The flags here must cover all flags that
3012 * are matched during merging to guarantee that the id is
3013 * unique.
3014 */
3015 if (s->flags & SLAB_CACHE_DMA)
3016 *p++ = 'd';
3017 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3018 *p++ = 'a';
3019 if (s->flags & SLAB_DEBUG_FREE)
3020 *p++ = 'F';
3021 if (p != name + 1)
3022 *p++ = '-';
3023 p += sprintf(p, "%07d", s->size);
3024 BUG_ON(p > name + ID_STR_LENGTH - 1);
3025 return name;
3026}
3027
3028static int sysfs_slab_add(struct kmem_cache *s)
3029{
3030 int err;
3031 const char *name;
3032 int unmergeable;
3033
3034 if (slab_state < SYSFS)
3035 /* Defer until later */
3036 return 0;
3037
3038 unmergeable = slab_unmergeable(s);
3039 if (unmergeable) {
3040 /*
3041 * Slabcache can never be merged so we can use the name proper.
3042 * This is typically the case for debug situations. In that
3043 * case we can catch duplicate names easily.
3044 */
3045 sysfs_remove_link(&slab_subsys.kset.kobj, s->name);
3046 name = s->name;
3047 } else {
3048 /*
3049 * Create a unique name for the slab as a target
3050 * for the symlinks.
3051 */
3052 name = create_unique_id(s);
3053 }
3054
3055 kobj_set_kset_s(s, slab_subsys);
3056 kobject_set_name(&s->kobj, name);
3057 kobject_init(&s->kobj);
3058 err = kobject_add(&s->kobj);
3059 if (err)
3060 return err;
3061
3062 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3063 if (err)
3064 return err;
3065 kobject_uevent(&s->kobj, KOBJ_ADD);
3066 if (!unmergeable) {
3067 /* Setup first alias */
3068 sysfs_slab_alias(s, s->name);
3069 kfree(name);
3070 }
3071 return 0;
3072}
3073
3074static void sysfs_slab_remove(struct kmem_cache *s)
3075{
3076 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3077 kobject_del(&s->kobj);
3078}
3079
3080/*
3081 * Need to buffer aliases during bootup until sysfs becomes
3082 * available lest we loose that information.
3083 */
3084struct saved_alias {
3085 struct kmem_cache *s;
3086 const char *name;
3087 struct saved_alias *next;
3088};
3089
3090struct saved_alias *alias_list;
3091
3092static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3093{
3094 struct saved_alias *al;
3095
3096 if (slab_state == SYSFS) {
3097 /*
3098 * If we have a leftover link then remove it.
3099 */
3100 sysfs_remove_link(&slab_subsys.kset.kobj, name);
3101 return sysfs_create_link(&slab_subsys.kset.kobj,
3102 &s->kobj, name);
3103 }
3104
3105 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3106 if (!al)
3107 return -ENOMEM;
3108
3109 al->s = s;
3110 al->name = name;
3111 al->next = alias_list;
3112 alias_list = al;
3113 return 0;
3114}
3115
3116static int __init slab_sysfs_init(void)
3117{
3118 int err;
3119
3120 err = subsystem_register(&slab_subsys);
3121 if (err) {
3122 printk(KERN_ERR "Cannot register slab subsystem.\n");
3123 return -ENOSYS;
3124 }
3125
3126 finish_bootstrap();
3127
3128 while (alias_list) {
3129 struct saved_alias *al = alias_list;
3130
3131 alias_list = alias_list->next;
3132 err = sysfs_slab_alias(al->s, al->name);
3133 BUG_ON(err);
3134 kfree(al);
3135 }
3136
3137 resiliency_test();
3138 return 0;
3139}
3140
3141__initcall(slab_sysfs_init);
3142#else
3143__initcall(finish_bootstrap);
3144#endif