diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/hugetlb.c | 4 | ||||
-rw-r--r-- | mm/madvise.c | 21 | ||||
-rw-r--r-- | mm/memory.c | 10 | ||||
-rw-r--r-- | mm/mempolicy.c | 22 | ||||
-rw-r--r-- | mm/nommu.c | 2 | ||||
-rw-r--r-- | mm/oom_kill.c | 123 | ||||
-rw-r--r-- | mm/page_alloc.c | 46 | ||||
-rw-r--r-- | mm/shmem.c | 81 | ||||
-rw-r--r-- | mm/slab.c | 10 | ||||
-rw-r--r-- | mm/swap.c | 2 | ||||
-rw-r--r-- | mm/vmscan.c | 106 |
11 files changed, 306 insertions, 121 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 67f29516662a..508707704d2c 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -85,7 +85,7 @@ void free_huge_page(struct page *page) | |||
85 | BUG_ON(page_count(page)); | 85 | BUG_ON(page_count(page)); |
86 | 86 | ||
87 | INIT_LIST_HEAD(&page->lru); | 87 | INIT_LIST_HEAD(&page->lru); |
88 | page[1].mapping = NULL; | 88 | page[1].lru.next = NULL; /* reset dtor */ |
89 | 89 | ||
90 | spin_lock(&hugetlb_lock); | 90 | spin_lock(&hugetlb_lock); |
91 | enqueue_huge_page(page); | 91 | enqueue_huge_page(page); |
@@ -105,7 +105,7 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr) | |||
105 | } | 105 | } |
106 | spin_unlock(&hugetlb_lock); | 106 | spin_unlock(&hugetlb_lock); |
107 | set_page_count(page, 1); | 107 | set_page_count(page, 1); |
108 | page[1].mapping = (void *)free_huge_page; | 108 | page[1].lru.next = (void *)free_huge_page; /* set dtor */ |
109 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i) | 109 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i) |
110 | clear_user_highpage(&page[i], addr); | 110 | clear_user_highpage(&page[i], addr); |
111 | return page; | 111 | return page; |
diff --git a/mm/madvise.c b/mm/madvise.c index ae0ae3ea299a..af3d573b0141 100644 --- a/mm/madvise.c +++ b/mm/madvise.c | |||
@@ -22,16 +22,23 @@ static long madvise_behavior(struct vm_area_struct * vma, | |||
22 | struct mm_struct * mm = vma->vm_mm; | 22 | struct mm_struct * mm = vma->vm_mm; |
23 | int error = 0; | 23 | int error = 0; |
24 | pgoff_t pgoff; | 24 | pgoff_t pgoff; |
25 | int new_flags = vma->vm_flags & ~VM_READHINTMASK; | 25 | int new_flags = vma->vm_flags; |
26 | 26 | ||
27 | switch (behavior) { | 27 | switch (behavior) { |
28 | case MADV_NORMAL: | ||
29 | new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; | ||
30 | break; | ||
28 | case MADV_SEQUENTIAL: | 31 | case MADV_SEQUENTIAL: |
29 | new_flags |= VM_SEQ_READ; | 32 | new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; |
30 | break; | 33 | break; |
31 | case MADV_RANDOM: | 34 | case MADV_RANDOM: |
32 | new_flags |= VM_RAND_READ; | 35 | new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; |
33 | break; | 36 | break; |
34 | default: | 37 | case MADV_DONTFORK: |
38 | new_flags |= VM_DONTCOPY; | ||
39 | break; | ||
40 | case MADV_DOFORK: | ||
41 | new_flags &= ~VM_DONTCOPY; | ||
35 | break; | 42 | break; |
36 | } | 43 | } |
37 | 44 | ||
@@ -177,6 +184,12 @@ madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, | |||
177 | long error; | 184 | long error; |
178 | 185 | ||
179 | switch (behavior) { | 186 | switch (behavior) { |
187 | case MADV_DOFORK: | ||
188 | if (vma->vm_flags & VM_IO) { | ||
189 | error = -EINVAL; | ||
190 | break; | ||
191 | } | ||
192 | case MADV_DONTFORK: | ||
180 | case MADV_NORMAL: | 193 | case MADV_NORMAL: |
181 | case MADV_SEQUENTIAL: | 194 | case MADV_SEQUENTIAL: |
182 | case MADV_RANDOM: | 195 | case MADV_RANDOM: |
diff --git a/mm/memory.c b/mm/memory.c index 2bee1f21aa8a..9abc6008544b 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -82,6 +82,16 @@ EXPORT_SYMBOL(num_physpages); | |||
82 | EXPORT_SYMBOL(high_memory); | 82 | EXPORT_SYMBOL(high_memory); |
83 | EXPORT_SYMBOL(vmalloc_earlyreserve); | 83 | EXPORT_SYMBOL(vmalloc_earlyreserve); |
84 | 84 | ||
85 | int randomize_va_space __read_mostly = 1; | ||
86 | |||
87 | static int __init disable_randmaps(char *s) | ||
88 | { | ||
89 | randomize_va_space = 0; | ||
90 | return 0; | ||
91 | } | ||
92 | __setup("norandmaps", disable_randmaps); | ||
93 | |||
94 | |||
85 | /* | 95 | /* |
86 | * If a p?d_bad entry is found while walking page tables, report | 96 | * If a p?d_bad entry is found while walking page tables, report |
87 | * the error, before resetting entry to p?d_none. Usually (but | 97 | * the error, before resetting entry to p?d_none. Usually (but |
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 3bd7fb7e4b75..880831bd3003 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -132,19 +132,29 @@ static int mpol_check_policy(int mode, nodemask_t *nodes) | |||
132 | } | 132 | } |
133 | return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL; | 133 | return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL; |
134 | } | 134 | } |
135 | |||
135 | /* Generate a custom zonelist for the BIND policy. */ | 136 | /* Generate a custom zonelist for the BIND policy. */ |
136 | static struct zonelist *bind_zonelist(nodemask_t *nodes) | 137 | static struct zonelist *bind_zonelist(nodemask_t *nodes) |
137 | { | 138 | { |
138 | struct zonelist *zl; | 139 | struct zonelist *zl; |
139 | int num, max, nd; | 140 | int num, max, nd, k; |
140 | 141 | ||
141 | max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); | 142 | max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); |
142 | zl = kmalloc(sizeof(void *) * max, GFP_KERNEL); | 143 | zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL); |
143 | if (!zl) | 144 | if (!zl) |
144 | return NULL; | 145 | return NULL; |
145 | num = 0; | 146 | num = 0; |
146 | for_each_node_mask(nd, *nodes) | 147 | /* First put in the highest zones from all nodes, then all the next |
147 | zl->zones[num++] = &NODE_DATA(nd)->node_zones[policy_zone]; | 148 | lower zones etc. Avoid empty zones because the memory allocator |
149 | doesn't like them. If you implement node hot removal you | ||
150 | have to fix that. */ | ||
151 | for (k = policy_zone; k >= 0; k--) { | ||
152 | for_each_node_mask(nd, *nodes) { | ||
153 | struct zone *z = &NODE_DATA(nd)->node_zones[k]; | ||
154 | if (z->present_pages > 0) | ||
155 | zl->zones[num++] = z; | ||
156 | } | ||
157 | } | ||
148 | zl->zones[num] = NULL; | 158 | zl->zones[num] = NULL; |
149 | return zl; | 159 | return zl; |
150 | } | 160 | } |
@@ -577,7 +587,7 @@ redo: | |||
577 | } | 587 | } |
578 | list_add(&page->lru, &newlist); | 588 | list_add(&page->lru, &newlist); |
579 | nr_pages++; | 589 | nr_pages++; |
580 | if (nr_pages > MIGRATE_CHUNK_SIZE); | 590 | if (nr_pages > MIGRATE_CHUNK_SIZE) |
581 | break; | 591 | break; |
582 | } | 592 | } |
583 | err = migrate_pages(pagelist, &newlist, &moved, &failed); | 593 | err = migrate_pages(pagelist, &newlist, &moved, &failed); |
@@ -798,6 +808,8 @@ static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, | |||
798 | nodes_clear(*nodes); | 808 | nodes_clear(*nodes); |
799 | if (maxnode == 0 || !nmask) | 809 | if (maxnode == 0 || !nmask) |
800 | return 0; | 810 | return 0; |
811 | if (maxnode > PAGE_SIZE*BITS_PER_BYTE) | ||
812 | return -EINVAL; | ||
801 | 813 | ||
802 | nlongs = BITS_TO_LONGS(maxnode); | 814 | nlongs = BITS_TO_LONGS(maxnode); |
803 | if ((maxnode % BITS_PER_LONG) == 0) | 815 | if ((maxnode % BITS_PER_LONG) == 0) |
diff --git a/mm/nommu.c b/mm/nommu.c index c10262d68232..99d21020ec9d 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -57,6 +57,8 @@ EXPORT_SYMBOL(vmalloc); | |||
57 | EXPORT_SYMBOL(vfree); | 57 | EXPORT_SYMBOL(vfree); |
58 | EXPORT_SYMBOL(vmalloc_to_page); | 58 | EXPORT_SYMBOL(vmalloc_to_page); |
59 | EXPORT_SYMBOL(vmalloc_32); | 59 | EXPORT_SYMBOL(vmalloc_32); |
60 | EXPORT_SYMBOL(vmap); | ||
61 | EXPORT_SYMBOL(vunmap); | ||
60 | 62 | ||
61 | /* | 63 | /* |
62 | * Handle all mappings that got truncated by a "truncate()" | 64 | * Handle all mappings that got truncated by a "truncate()" |
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index b05ab8f2a562..8123fad5a485 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
@@ -58,15 +58,17 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
58 | 58 | ||
59 | /* | 59 | /* |
60 | * Processes which fork a lot of child processes are likely | 60 | * Processes which fork a lot of child processes are likely |
61 | * a good choice. We add the vmsize of the children if they | 61 | * a good choice. We add half the vmsize of the children if they |
62 | * have an own mm. This prevents forking servers to flood the | 62 | * have an own mm. This prevents forking servers to flood the |
63 | * machine with an endless amount of children | 63 | * machine with an endless amount of children. In case a single |
64 | * child is eating the vast majority of memory, adding only half | ||
65 | * to the parents will make the child our kill candidate of choice. | ||
64 | */ | 66 | */ |
65 | list_for_each(tsk, &p->children) { | 67 | list_for_each(tsk, &p->children) { |
66 | struct task_struct *chld; | 68 | struct task_struct *chld; |
67 | chld = list_entry(tsk, struct task_struct, sibling); | 69 | chld = list_entry(tsk, struct task_struct, sibling); |
68 | if (chld->mm != p->mm && chld->mm) | 70 | if (chld->mm != p->mm && chld->mm) |
69 | points += chld->mm->total_vm; | 71 | points += chld->mm->total_vm/2 + 1; |
70 | } | 72 | } |
71 | 73 | ||
72 | /* | 74 | /* |
@@ -131,17 +133,47 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
131 | } | 133 | } |
132 | 134 | ||
133 | /* | 135 | /* |
136 | * Types of limitations to the nodes from which allocations may occur | ||
137 | */ | ||
138 | #define CONSTRAINT_NONE 1 | ||
139 | #define CONSTRAINT_MEMORY_POLICY 2 | ||
140 | #define CONSTRAINT_CPUSET 3 | ||
141 | |||
142 | /* | ||
143 | * Determine the type of allocation constraint. | ||
144 | */ | ||
145 | static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask) | ||
146 | { | ||
147 | #ifdef CONFIG_NUMA | ||
148 | struct zone **z; | ||
149 | nodemask_t nodes = node_online_map; | ||
150 | |||
151 | for (z = zonelist->zones; *z; z++) | ||
152 | if (cpuset_zone_allowed(*z, gfp_mask)) | ||
153 | node_clear((*z)->zone_pgdat->node_id, | ||
154 | nodes); | ||
155 | else | ||
156 | return CONSTRAINT_CPUSET; | ||
157 | |||
158 | if (!nodes_empty(nodes)) | ||
159 | return CONSTRAINT_MEMORY_POLICY; | ||
160 | #endif | ||
161 | |||
162 | return CONSTRAINT_NONE; | ||
163 | } | ||
164 | |||
165 | /* | ||
134 | * Simple selection loop. We chose the process with the highest | 166 | * Simple selection loop. We chose the process with the highest |
135 | * number of 'points'. We expect the caller will lock the tasklist. | 167 | * number of 'points'. We expect the caller will lock the tasklist. |
136 | * | 168 | * |
137 | * (not docbooked, we don't want this one cluttering up the manual) | 169 | * (not docbooked, we don't want this one cluttering up the manual) |
138 | */ | 170 | */ |
139 | static struct task_struct * select_bad_process(void) | 171 | static struct task_struct *select_bad_process(unsigned long *ppoints) |
140 | { | 172 | { |
141 | unsigned long maxpoints = 0; | ||
142 | struct task_struct *g, *p; | 173 | struct task_struct *g, *p; |
143 | struct task_struct *chosen = NULL; | 174 | struct task_struct *chosen = NULL; |
144 | struct timespec uptime; | 175 | struct timespec uptime; |
176 | *ppoints = 0; | ||
145 | 177 | ||
146 | do_posix_clock_monotonic_gettime(&uptime); | 178 | do_posix_clock_monotonic_gettime(&uptime); |
147 | do_each_thread(g, p) { | 179 | do_each_thread(g, p) { |
@@ -169,9 +201,9 @@ static struct task_struct * select_bad_process(void) | |||
169 | return p; | 201 | return p; |
170 | 202 | ||
171 | points = badness(p, uptime.tv_sec); | 203 | points = badness(p, uptime.tv_sec); |
172 | if (points > maxpoints || !chosen) { | 204 | if (points > *ppoints || !chosen) { |
173 | chosen = p; | 205 | chosen = p; |
174 | maxpoints = points; | 206 | *ppoints = points; |
175 | } | 207 | } |
176 | } while_each_thread(g, p); | 208 | } while_each_thread(g, p); |
177 | return chosen; | 209 | return chosen; |
@@ -182,7 +214,7 @@ static struct task_struct * select_bad_process(void) | |||
182 | * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that | 214 | * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that |
183 | * we select a process with CAP_SYS_RAW_IO set). | 215 | * we select a process with CAP_SYS_RAW_IO set). |
184 | */ | 216 | */ |
185 | static void __oom_kill_task(task_t *p) | 217 | static void __oom_kill_task(task_t *p, const char *message) |
186 | { | 218 | { |
187 | if (p->pid == 1) { | 219 | if (p->pid == 1) { |
188 | WARN_ON(1); | 220 | WARN_ON(1); |
@@ -198,8 +230,8 @@ static void __oom_kill_task(task_t *p) | |||
198 | return; | 230 | return; |
199 | } | 231 | } |
200 | task_unlock(p); | 232 | task_unlock(p); |
201 | printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n", | 233 | printk(KERN_ERR "%s: Killed process %d (%s).\n", |
202 | p->pid, p->comm); | 234 | message, p->pid, p->comm); |
203 | 235 | ||
204 | /* | 236 | /* |
205 | * We give our sacrificial lamb high priority and access to | 237 | * We give our sacrificial lamb high priority and access to |
@@ -212,7 +244,7 @@ static void __oom_kill_task(task_t *p) | |||
212 | force_sig(SIGKILL, p); | 244 | force_sig(SIGKILL, p); |
213 | } | 245 | } |
214 | 246 | ||
215 | static struct mm_struct *oom_kill_task(task_t *p) | 247 | static struct mm_struct *oom_kill_task(task_t *p, const char *message) |
216 | { | 248 | { |
217 | struct mm_struct *mm = get_task_mm(p); | 249 | struct mm_struct *mm = get_task_mm(p); |
218 | task_t * g, * q; | 250 | task_t * g, * q; |
@@ -224,35 +256,38 @@ static struct mm_struct *oom_kill_task(task_t *p) | |||
224 | return NULL; | 256 | return NULL; |
225 | } | 257 | } |
226 | 258 | ||
227 | __oom_kill_task(p); | 259 | __oom_kill_task(p, message); |
228 | /* | 260 | /* |
229 | * kill all processes that share the ->mm (i.e. all threads), | 261 | * kill all processes that share the ->mm (i.e. all threads), |
230 | * but are in a different thread group | 262 | * but are in a different thread group |
231 | */ | 263 | */ |
232 | do_each_thread(g, q) | 264 | do_each_thread(g, q) |
233 | if (q->mm == mm && q->tgid != p->tgid) | 265 | if (q->mm == mm && q->tgid != p->tgid) |
234 | __oom_kill_task(q); | 266 | __oom_kill_task(q, message); |
235 | while_each_thread(g, q); | 267 | while_each_thread(g, q); |
236 | 268 | ||
237 | return mm; | 269 | return mm; |
238 | } | 270 | } |
239 | 271 | ||
240 | static struct mm_struct *oom_kill_process(struct task_struct *p) | 272 | static struct mm_struct *oom_kill_process(struct task_struct *p, |
273 | unsigned long points, const char *message) | ||
241 | { | 274 | { |
242 | struct mm_struct *mm; | 275 | struct mm_struct *mm; |
243 | struct task_struct *c; | 276 | struct task_struct *c; |
244 | struct list_head *tsk; | 277 | struct list_head *tsk; |
245 | 278 | ||
279 | printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li and " | ||
280 | "children.\n", p->pid, p->comm, points); | ||
246 | /* Try to kill a child first */ | 281 | /* Try to kill a child first */ |
247 | list_for_each(tsk, &p->children) { | 282 | list_for_each(tsk, &p->children) { |
248 | c = list_entry(tsk, struct task_struct, sibling); | 283 | c = list_entry(tsk, struct task_struct, sibling); |
249 | if (c->mm == p->mm) | 284 | if (c->mm == p->mm) |
250 | continue; | 285 | continue; |
251 | mm = oom_kill_task(c); | 286 | mm = oom_kill_task(c, message); |
252 | if (mm) | 287 | if (mm) |
253 | return mm; | 288 | return mm; |
254 | } | 289 | } |
255 | return oom_kill_task(p); | 290 | return oom_kill_task(p, message); |
256 | } | 291 | } |
257 | 292 | ||
258 | /** | 293 | /** |
@@ -263,10 +298,11 @@ static struct mm_struct *oom_kill_process(struct task_struct *p) | |||
263 | * OR try to be smart about which process to kill. Note that we | 298 | * OR try to be smart about which process to kill. Note that we |
264 | * don't have to be perfect here, we just have to be good. | 299 | * don't have to be perfect here, we just have to be good. |
265 | */ | 300 | */ |
266 | void out_of_memory(gfp_t gfp_mask, int order) | 301 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) |
267 | { | 302 | { |
268 | struct mm_struct *mm = NULL; | 303 | struct mm_struct *mm = NULL; |
269 | task_t * p; | 304 | task_t *p; |
305 | unsigned long points; | ||
270 | 306 | ||
271 | if (printk_ratelimit()) { | 307 | if (printk_ratelimit()) { |
272 | printk("oom-killer: gfp_mask=0x%x, order=%d\n", | 308 | printk("oom-killer: gfp_mask=0x%x, order=%d\n", |
@@ -277,25 +313,48 @@ void out_of_memory(gfp_t gfp_mask, int order) | |||
277 | 313 | ||
278 | cpuset_lock(); | 314 | cpuset_lock(); |
279 | read_lock(&tasklist_lock); | 315 | read_lock(&tasklist_lock); |
316 | |||
317 | /* | ||
318 | * Check if there were limitations on the allocation (only relevant for | ||
319 | * NUMA) that may require different handling. | ||
320 | */ | ||
321 | switch (constrained_alloc(zonelist, gfp_mask)) { | ||
322 | case CONSTRAINT_MEMORY_POLICY: | ||
323 | mm = oom_kill_process(current, points, | ||
324 | "No available memory (MPOL_BIND)"); | ||
325 | break; | ||
326 | |||
327 | case CONSTRAINT_CPUSET: | ||
328 | mm = oom_kill_process(current, points, | ||
329 | "No available memory in cpuset"); | ||
330 | break; | ||
331 | |||
332 | case CONSTRAINT_NONE: | ||
280 | retry: | 333 | retry: |
281 | p = select_bad_process(); | 334 | /* |
335 | * Rambo mode: Shoot down a process and hope it solves whatever | ||
336 | * issues we may have. | ||
337 | */ | ||
338 | p = select_bad_process(&points); | ||
282 | 339 | ||
283 | if (PTR_ERR(p) == -1UL) | 340 | if (PTR_ERR(p) == -1UL) |
284 | goto out; | 341 | goto out; |
285 | 342 | ||
286 | /* Found nothing?!?! Either we hang forever, or we panic. */ | 343 | /* Found nothing?!?! Either we hang forever, or we panic. */ |
287 | if (!p) { | 344 | if (!p) { |
288 | read_unlock(&tasklist_lock); | 345 | read_unlock(&tasklist_lock); |
289 | cpuset_unlock(); | 346 | cpuset_unlock(); |
290 | panic("Out of memory and no killable processes...\n"); | 347 | panic("Out of memory and no killable processes...\n"); |
291 | } | 348 | } |
292 | 349 | ||
293 | mm = oom_kill_process(p); | 350 | mm = oom_kill_process(p, points, "Out of memory"); |
294 | if (!mm) | 351 | if (!mm) |
295 | goto retry; | 352 | goto retry; |
353 | |||
354 | break; | ||
355 | } | ||
296 | 356 | ||
297 | out: | 357 | out: |
298 | read_unlock(&tasklist_lock); | ||
299 | cpuset_unlock(); | 358 | cpuset_unlock(); |
300 | if (mm) | 359 | if (mm) |
301 | mmput(mm); | 360 | mmput(mm); |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index dde04ff4be31..791690d7d3fa 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -56,6 +56,7 @@ long nr_swap_pages; | |||
56 | int percpu_pagelist_fraction; | 56 | int percpu_pagelist_fraction; |
57 | 57 | ||
58 | static void fastcall free_hot_cold_page(struct page *page, int cold); | 58 | static void fastcall free_hot_cold_page(struct page *page, int cold); |
59 | static void __free_pages_ok(struct page *page, unsigned int order); | ||
59 | 60 | ||
60 | /* | 61 | /* |
61 | * results with 256, 32 in the lowmem_reserve sysctl: | 62 | * results with 256, 32 in the lowmem_reserve sysctl: |
@@ -169,20 +170,23 @@ static void bad_page(struct page *page) | |||
169 | * All pages have PG_compound set. All pages have their ->private pointing at | 170 | * All pages have PG_compound set. All pages have their ->private pointing at |
170 | * the head page (even the head page has this). | 171 | * the head page (even the head page has this). |
171 | * | 172 | * |
172 | * The first tail page's ->mapping, if non-zero, holds the address of the | 173 | * The first tail page's ->lru.next holds the address of the compound page's |
173 | * compound page's put_page() function. | 174 | * put_page() function. Its ->lru.prev holds the order of allocation. |
174 | * | 175 | * This usage means that zero-order pages may not be compound. |
175 | * The order of the allocation is stored in the first tail page's ->index | ||
176 | * This is only for debug at present. This usage means that zero-order pages | ||
177 | * may not be compound. | ||
178 | */ | 176 | */ |
177 | |||
178 | static void free_compound_page(struct page *page) | ||
179 | { | ||
180 | __free_pages_ok(page, (unsigned long)page[1].lru.prev); | ||
181 | } | ||
182 | |||
179 | static void prep_compound_page(struct page *page, unsigned long order) | 183 | static void prep_compound_page(struct page *page, unsigned long order) |
180 | { | 184 | { |
181 | int i; | 185 | int i; |
182 | int nr_pages = 1 << order; | 186 | int nr_pages = 1 << order; |
183 | 187 | ||
184 | page[1].mapping = NULL; | 188 | page[1].lru.next = (void *)free_compound_page; /* set dtor */ |
185 | page[1].index = order; | 189 | page[1].lru.prev = (void *)order; |
186 | for (i = 0; i < nr_pages; i++) { | 190 | for (i = 0; i < nr_pages; i++) { |
187 | struct page *p = page + i; | 191 | struct page *p = page + i; |
188 | 192 | ||
@@ -196,7 +200,7 @@ static void destroy_compound_page(struct page *page, unsigned long order) | |||
196 | int i; | 200 | int i; |
197 | int nr_pages = 1 << order; | 201 | int nr_pages = 1 << order; |
198 | 202 | ||
199 | if (unlikely(page[1].index != order)) | 203 | if (unlikely((unsigned long)page[1].lru.prev != order)) |
200 | bad_page(page); | 204 | bad_page(page); |
201 | 205 | ||
202 | for (i = 0; i < nr_pages; i++) { | 206 | for (i = 0; i < nr_pages; i++) { |
@@ -1011,7 +1015,7 @@ rebalance: | |||
1011 | if (page) | 1015 | if (page) |
1012 | goto got_pg; | 1016 | goto got_pg; |
1013 | 1017 | ||
1014 | out_of_memory(gfp_mask, order); | 1018 | out_of_memory(zonelist, gfp_mask, order); |
1015 | goto restart; | 1019 | goto restart; |
1016 | } | 1020 | } |
1017 | 1021 | ||
@@ -1537,29 +1541,29 @@ static int __initdata node_load[MAX_NUMNODES]; | |||
1537 | */ | 1541 | */ |
1538 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) | 1542 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) |
1539 | { | 1543 | { |
1540 | int i, n, val; | 1544 | int n, val; |
1541 | int min_val = INT_MAX; | 1545 | int min_val = INT_MAX; |
1542 | int best_node = -1; | 1546 | int best_node = -1; |
1543 | 1547 | ||
1544 | for_each_online_node(i) { | 1548 | /* Use the local node if we haven't already */ |
1545 | cpumask_t tmp; | 1549 | if (!node_isset(node, *used_node_mask)) { |
1550 | node_set(node, *used_node_mask); | ||
1551 | return node; | ||
1552 | } | ||
1546 | 1553 | ||
1547 | /* Start from local node */ | 1554 | for_each_online_node(n) { |
1548 | n = (node+i) % num_online_nodes(); | 1555 | cpumask_t tmp; |
1549 | 1556 | ||
1550 | /* Don't want a node to appear more than once */ | 1557 | /* Don't want a node to appear more than once */ |
1551 | if (node_isset(n, *used_node_mask)) | 1558 | if (node_isset(n, *used_node_mask)) |
1552 | continue; | 1559 | continue; |
1553 | 1560 | ||
1554 | /* Use the local node if we haven't already */ | ||
1555 | if (!node_isset(node, *used_node_mask)) { | ||
1556 | best_node = node; | ||
1557 | break; | ||
1558 | } | ||
1559 | |||
1560 | /* Use the distance array to find the distance */ | 1561 | /* Use the distance array to find the distance */ |
1561 | val = node_distance(node, n); | 1562 | val = node_distance(node, n); |
1562 | 1563 | ||
1564 | /* Penalize nodes under us ("prefer the next node") */ | ||
1565 | val += (n < node); | ||
1566 | |||
1563 | /* Give preference to headless and unused nodes */ | 1567 | /* Give preference to headless and unused nodes */ |
1564 | tmp = node_to_cpumask(n); | 1568 | tmp = node_to_cpumask(n); |
1565 | if (!cpus_empty(tmp)) | 1569 | if (!cpus_empty(tmp)) |
diff --git a/mm/shmem.c b/mm/shmem.c index f7ac7b812f92..7c455fbaff7b 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -45,6 +45,7 @@ | |||
45 | #include <linux/swapops.h> | 45 | #include <linux/swapops.h> |
46 | #include <linux/mempolicy.h> | 46 | #include <linux/mempolicy.h> |
47 | #include <linux/namei.h> | 47 | #include <linux/namei.h> |
48 | #include <linux/ctype.h> | ||
48 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
49 | #include <asm/div64.h> | 50 | #include <asm/div64.h> |
50 | #include <asm/pgtable.h> | 51 | #include <asm/pgtable.h> |
@@ -874,6 +875,51 @@ redirty: | |||
874 | } | 875 | } |
875 | 876 | ||
876 | #ifdef CONFIG_NUMA | 877 | #ifdef CONFIG_NUMA |
878 | static int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes) | ||
879 | { | ||
880 | char *nodelist = strchr(value, ':'); | ||
881 | int err = 1; | ||
882 | |||
883 | if (nodelist) { | ||
884 | /* NUL-terminate policy string */ | ||
885 | *nodelist++ = '\0'; | ||
886 | if (nodelist_parse(nodelist, *policy_nodes)) | ||
887 | goto out; | ||
888 | } | ||
889 | if (!strcmp(value, "default")) { | ||
890 | *policy = MPOL_DEFAULT; | ||
891 | /* Don't allow a nodelist */ | ||
892 | if (!nodelist) | ||
893 | err = 0; | ||
894 | } else if (!strcmp(value, "prefer")) { | ||
895 | *policy = MPOL_PREFERRED; | ||
896 | /* Insist on a nodelist of one node only */ | ||
897 | if (nodelist) { | ||
898 | char *rest = nodelist; | ||
899 | while (isdigit(*rest)) | ||
900 | rest++; | ||
901 | if (!*rest) | ||
902 | err = 0; | ||
903 | } | ||
904 | } else if (!strcmp(value, "bind")) { | ||
905 | *policy = MPOL_BIND; | ||
906 | /* Insist on a nodelist */ | ||
907 | if (nodelist) | ||
908 | err = 0; | ||
909 | } else if (!strcmp(value, "interleave")) { | ||
910 | *policy = MPOL_INTERLEAVE; | ||
911 | /* Default to nodes online if no nodelist */ | ||
912 | if (!nodelist) | ||
913 | *policy_nodes = node_online_map; | ||
914 | err = 0; | ||
915 | } | ||
916 | out: | ||
917 | /* Restore string for error message */ | ||
918 | if (nodelist) | ||
919 | *--nodelist = ':'; | ||
920 | return err; | ||
921 | } | ||
922 | |||
877 | static struct page *shmem_swapin_async(struct shared_policy *p, | 923 | static struct page *shmem_swapin_async(struct shared_policy *p, |
878 | swp_entry_t entry, unsigned long idx) | 924 | swp_entry_t entry, unsigned long idx) |
879 | { | 925 | { |
@@ -926,6 +972,11 @@ shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info, | |||
926 | return page; | 972 | return page; |
927 | } | 973 | } |
928 | #else | 974 | #else |
975 | static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes) | ||
976 | { | ||
977 | return 1; | ||
978 | } | ||
979 | |||
929 | static inline struct page * | 980 | static inline struct page * |
930 | shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx) | 981 | shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx) |
931 | { | 982 | { |
@@ -1859,7 +1910,23 @@ static int shmem_parse_options(char *options, int *mode, uid_t *uid, | |||
1859 | { | 1910 | { |
1860 | char *this_char, *value, *rest; | 1911 | char *this_char, *value, *rest; |
1861 | 1912 | ||
1862 | while ((this_char = strsep(&options, ",")) != NULL) { | 1913 | while (options != NULL) { |
1914 | this_char = options; | ||
1915 | for (;;) { | ||
1916 | /* | ||
1917 | * NUL-terminate this option: unfortunately, | ||
1918 | * mount options form a comma-separated list, | ||
1919 | * but mpol's nodelist may also contain commas. | ||
1920 | */ | ||
1921 | options = strchr(options, ','); | ||
1922 | if (options == NULL) | ||
1923 | break; | ||
1924 | options++; | ||
1925 | if (!isdigit(*options)) { | ||
1926 | options[-1] = '\0'; | ||
1927 | break; | ||
1928 | } | ||
1929 | } | ||
1863 | if (!*this_char) | 1930 | if (!*this_char) |
1864 | continue; | 1931 | continue; |
1865 | if ((value = strchr(this_char,'=')) != NULL) { | 1932 | if ((value = strchr(this_char,'=')) != NULL) { |
@@ -1910,18 +1977,8 @@ static int shmem_parse_options(char *options, int *mode, uid_t *uid, | |||
1910 | if (*rest) | 1977 | if (*rest) |
1911 | goto bad_val; | 1978 | goto bad_val; |
1912 | } else if (!strcmp(this_char,"mpol")) { | 1979 | } else if (!strcmp(this_char,"mpol")) { |
1913 | if (!strcmp(value,"default")) | 1980 | if (shmem_parse_mpol(value,policy,policy_nodes)) |
1914 | *policy = MPOL_DEFAULT; | ||
1915 | else if (!strcmp(value,"preferred")) | ||
1916 | *policy = MPOL_PREFERRED; | ||
1917 | else if (!strcmp(value,"bind")) | ||
1918 | *policy = MPOL_BIND; | ||
1919 | else if (!strcmp(value,"interleave")) | ||
1920 | *policy = MPOL_INTERLEAVE; | ||
1921 | else | ||
1922 | goto bad_val; | 1981 | goto bad_val; |
1923 | } else if (!strcmp(this_char,"mpol_nodelist")) { | ||
1924 | nodelist_parse(value, *policy_nodes); | ||
1925 | } else { | 1982 | } else { |
1926 | printk(KERN_ERR "tmpfs: Bad mount option %s\n", | 1983 | printk(KERN_ERR "tmpfs: Bad mount option %s\n", |
1927 | this_char); | 1984 | this_char); |
@@ -1717,6 +1717,12 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1717 | BUG(); | 1717 | BUG(); |
1718 | } | 1718 | } |
1719 | 1719 | ||
1720 | /* | ||
1721 | * Prevent CPUs from coming and going. | ||
1722 | * lock_cpu_hotplug() nests outside cache_chain_mutex | ||
1723 | */ | ||
1724 | lock_cpu_hotplug(); | ||
1725 | |||
1720 | mutex_lock(&cache_chain_mutex); | 1726 | mutex_lock(&cache_chain_mutex); |
1721 | 1727 | ||
1722 | list_for_each(p, &cache_chain) { | 1728 | list_for_each(p, &cache_chain) { |
@@ -1918,8 +1924,6 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1918 | cachep->dtor = dtor; | 1924 | cachep->dtor = dtor; |
1919 | cachep->name = name; | 1925 | cachep->name = name; |
1920 | 1926 | ||
1921 | /* Don't let CPUs to come and go */ | ||
1922 | lock_cpu_hotplug(); | ||
1923 | 1927 | ||
1924 | if (g_cpucache_up == FULL) { | 1928 | if (g_cpucache_up == FULL) { |
1925 | enable_cpucache(cachep); | 1929 | enable_cpucache(cachep); |
@@ -1978,12 +1982,12 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1978 | 1982 | ||
1979 | /* cache setup completed, link it into the list */ | 1983 | /* cache setup completed, link it into the list */ |
1980 | list_add(&cachep->next, &cache_chain); | 1984 | list_add(&cachep->next, &cache_chain); |
1981 | unlock_cpu_hotplug(); | ||
1982 | oops: | 1985 | oops: |
1983 | if (!cachep && (flags & SLAB_PANIC)) | 1986 | if (!cachep && (flags & SLAB_PANIC)) |
1984 | panic("kmem_cache_create(): failed to create slab `%s'\n", | 1987 | panic("kmem_cache_create(): failed to create slab `%s'\n", |
1985 | name); | 1988 | name); |
1986 | mutex_unlock(&cache_chain_mutex); | 1989 | mutex_unlock(&cache_chain_mutex); |
1990 | unlock_cpu_hotplug(); | ||
1987 | return cachep; | 1991 | return cachep; |
1988 | } | 1992 | } |
1989 | EXPORT_SYMBOL(kmem_cache_create); | 1993 | EXPORT_SYMBOL(kmem_cache_create); |
@@ -40,7 +40,7 @@ static void put_compound_page(struct page *page) | |||
40 | if (put_page_testzero(page)) { | 40 | if (put_page_testzero(page)) { |
41 | void (*dtor)(struct page *page); | 41 | void (*dtor)(struct page *page); |
42 | 42 | ||
43 | dtor = (void (*)(struct page *))page[1].mapping; | 43 | dtor = (void (*)(struct page *))page[1].lru.next; |
44 | (*dtor)(page); | 44 | (*dtor)(page); |
45 | } | 45 | } |
46 | } | 46 | } |
diff --git a/mm/vmscan.c b/mm/vmscan.c index 5a610804cd06..1838c15ca4fd 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -443,6 +443,10 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc) | |||
443 | BUG_ON(PageActive(page)); | 443 | BUG_ON(PageActive(page)); |
444 | 444 | ||
445 | sc->nr_scanned++; | 445 | sc->nr_scanned++; |
446 | |||
447 | if (!sc->may_swap && page_mapped(page)) | ||
448 | goto keep_locked; | ||
449 | |||
446 | /* Double the slab pressure for mapped and swapcache pages */ | 450 | /* Double the slab pressure for mapped and swapcache pages */ |
447 | if (page_mapped(page) || PageSwapCache(page)) | 451 | if (page_mapped(page) || PageSwapCache(page)) |
448 | sc->nr_scanned++; | 452 | sc->nr_scanned++; |
@@ -632,7 +636,7 @@ static int swap_page(struct page *page) | |||
632 | struct address_space *mapping = page_mapping(page); | 636 | struct address_space *mapping = page_mapping(page); |
633 | 637 | ||
634 | if (page_mapped(page) && mapping) | 638 | if (page_mapped(page) && mapping) |
635 | if (try_to_unmap(page, 0) != SWAP_SUCCESS) | 639 | if (try_to_unmap(page, 1) != SWAP_SUCCESS) |
636 | goto unlock_retry; | 640 | goto unlock_retry; |
637 | 641 | ||
638 | if (PageDirty(page)) { | 642 | if (PageDirty(page)) { |
@@ -839,7 +843,7 @@ EXPORT_SYMBOL(migrate_page); | |||
839 | * pages are swapped out. | 843 | * pages are swapped out. |
840 | * | 844 | * |
841 | * The function returns after 10 attempts or if no pages | 845 | * The function returns after 10 attempts or if no pages |
842 | * are movable anymore because t has become empty | 846 | * are movable anymore because to has become empty |
843 | * or no retryable pages exist anymore. | 847 | * or no retryable pages exist anymore. |
844 | * | 848 | * |
845 | * Return: Number of pages not migrated when "to" ran empty. | 849 | * Return: Number of pages not migrated when "to" ran empty. |
@@ -928,12 +932,21 @@ redo: | |||
928 | goto unlock_both; | 932 | goto unlock_both; |
929 | 933 | ||
930 | if (mapping->a_ops->migratepage) { | 934 | if (mapping->a_ops->migratepage) { |
935 | /* | ||
936 | * Most pages have a mapping and most filesystems | ||
937 | * should provide a migration function. Anonymous | ||
938 | * pages are part of swap space which also has its | ||
939 | * own migration function. This is the most common | ||
940 | * path for page migration. | ||
941 | */ | ||
931 | rc = mapping->a_ops->migratepage(newpage, page); | 942 | rc = mapping->a_ops->migratepage(newpage, page); |
932 | goto unlock_both; | 943 | goto unlock_both; |
933 | } | 944 | } |
934 | 945 | ||
935 | /* | 946 | /* |
936 | * Trigger writeout if page is dirty | 947 | * Default handling if a filesystem does not provide |
948 | * a migration function. We can only migrate clean | ||
949 | * pages so try to write out any dirty pages first. | ||
937 | */ | 950 | */ |
938 | if (PageDirty(page)) { | 951 | if (PageDirty(page)) { |
939 | switch (pageout(page, mapping)) { | 952 | switch (pageout(page, mapping)) { |
@@ -949,9 +962,10 @@ redo: | |||
949 | ; /* try to migrate the page below */ | 962 | ; /* try to migrate the page below */ |
950 | } | 963 | } |
951 | } | 964 | } |
965 | |||
952 | /* | 966 | /* |
953 | * If we have no buffer or can release the buffer | 967 | * Buffers are managed in a filesystem specific way. |
954 | * then do a simple migration. | 968 | * We must have no buffers or drop them. |
955 | */ | 969 | */ |
956 | if (!page_has_buffers(page) || | 970 | if (!page_has_buffers(page) || |
957 | try_to_release_page(page, GFP_KERNEL)) { | 971 | try_to_release_page(page, GFP_KERNEL)) { |
@@ -966,6 +980,11 @@ redo: | |||
966 | * swap them out. | 980 | * swap them out. |
967 | */ | 981 | */ |
968 | if (pass > 4) { | 982 | if (pass > 4) { |
983 | /* | ||
984 | * Persistently unable to drop buffers..... As a | ||
985 | * measure of last resort we fall back to | ||
986 | * swap_page(). | ||
987 | */ | ||
969 | unlock_page(newpage); | 988 | unlock_page(newpage); |
970 | newpage = NULL; | 989 | newpage = NULL; |
971 | rc = swap_page(page); | 990 | rc = swap_page(page); |
@@ -1176,9 +1195,47 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc) | |||
1176 | struct page *page; | 1195 | struct page *page; |
1177 | struct pagevec pvec; | 1196 | struct pagevec pvec; |
1178 | int reclaim_mapped = 0; | 1197 | int reclaim_mapped = 0; |
1179 | long mapped_ratio; | 1198 | |
1180 | long distress; | 1199 | if (unlikely(sc->may_swap)) { |
1181 | long swap_tendency; | 1200 | long mapped_ratio; |
1201 | long distress; | ||
1202 | long swap_tendency; | ||
1203 | |||
1204 | /* | ||
1205 | * `distress' is a measure of how much trouble we're having | ||
1206 | * reclaiming pages. 0 -> no problems. 100 -> great trouble. | ||
1207 | */ | ||
1208 | distress = 100 >> zone->prev_priority; | ||
1209 | |||
1210 | /* | ||
1211 | * The point of this algorithm is to decide when to start | ||
1212 | * reclaiming mapped memory instead of just pagecache. Work out | ||
1213 | * how much memory | ||
1214 | * is mapped. | ||
1215 | */ | ||
1216 | mapped_ratio = (sc->nr_mapped * 100) / total_memory; | ||
1217 | |||
1218 | /* | ||
1219 | * Now decide how much we really want to unmap some pages. The | ||
1220 | * mapped ratio is downgraded - just because there's a lot of | ||
1221 | * mapped memory doesn't necessarily mean that page reclaim | ||
1222 | * isn't succeeding. | ||
1223 | * | ||
1224 | * The distress ratio is important - we don't want to start | ||
1225 | * going oom. | ||
1226 | * | ||
1227 | * A 100% value of vm_swappiness overrides this algorithm | ||
1228 | * altogether. | ||
1229 | */ | ||
1230 | swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; | ||
1231 | |||
1232 | /* | ||
1233 | * Now use this metric to decide whether to start moving mapped | ||
1234 | * memory onto the inactive list. | ||
1235 | */ | ||
1236 | if (swap_tendency >= 100) | ||
1237 | reclaim_mapped = 1; | ||
1238 | } | ||
1182 | 1239 | ||
1183 | lru_add_drain(); | 1240 | lru_add_drain(); |
1184 | spin_lock_irq(&zone->lru_lock); | 1241 | spin_lock_irq(&zone->lru_lock); |
@@ -1188,37 +1245,6 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc) | |||
1188 | zone->nr_active -= pgmoved; | 1245 | zone->nr_active -= pgmoved; |
1189 | spin_unlock_irq(&zone->lru_lock); | 1246 | spin_unlock_irq(&zone->lru_lock); |
1190 | 1247 | ||
1191 | /* | ||
1192 | * `distress' is a measure of how much trouble we're having reclaiming | ||
1193 | * pages. 0 -> no problems. 100 -> great trouble. | ||
1194 | */ | ||
1195 | distress = 100 >> zone->prev_priority; | ||
1196 | |||
1197 | /* | ||
1198 | * The point of this algorithm is to decide when to start reclaiming | ||
1199 | * mapped memory instead of just pagecache. Work out how much memory | ||
1200 | * is mapped. | ||
1201 | */ | ||
1202 | mapped_ratio = (sc->nr_mapped * 100) / total_memory; | ||
1203 | |||
1204 | /* | ||
1205 | * Now decide how much we really want to unmap some pages. The mapped | ||
1206 | * ratio is downgraded - just because there's a lot of mapped memory | ||
1207 | * doesn't necessarily mean that page reclaim isn't succeeding. | ||
1208 | * | ||
1209 | * The distress ratio is important - we don't want to start going oom. | ||
1210 | * | ||
1211 | * A 100% value of vm_swappiness overrides this algorithm altogether. | ||
1212 | */ | ||
1213 | swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; | ||
1214 | |||
1215 | /* | ||
1216 | * Now use this metric to decide whether to start moving mapped memory | ||
1217 | * onto the inactive list. | ||
1218 | */ | ||
1219 | if (swap_tendency >= 100) | ||
1220 | reclaim_mapped = 1; | ||
1221 | |||
1222 | while (!list_empty(&l_hold)) { | 1248 | while (!list_empty(&l_hold)) { |
1223 | cond_resched(); | 1249 | cond_resched(); |
1224 | page = lru_to_page(&l_hold); | 1250 | page = lru_to_page(&l_hold); |
@@ -1595,9 +1621,7 @@ scan: | |||
1595 | sc.nr_reclaimed = 0; | 1621 | sc.nr_reclaimed = 0; |
1596 | sc.priority = priority; | 1622 | sc.priority = priority; |
1597 | sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; | 1623 | sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; |
1598 | atomic_inc(&zone->reclaim_in_progress); | ||
1599 | shrink_zone(zone, &sc); | 1624 | shrink_zone(zone, &sc); |
1600 | atomic_dec(&zone->reclaim_in_progress); | ||
1601 | reclaim_state->reclaimed_slab = 0; | 1625 | reclaim_state->reclaimed_slab = 0; |
1602 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, | 1626 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, |
1603 | lru_pages); | 1627 | lru_pages); |