aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/memcontrol.c18
-rw-r--r--mm/oom_kill.c259
2 files changed, 129 insertions, 148 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 31abd1c2c0c5..de54ea0094a1 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -1127,6 +1127,24 @@ static int mem_cgroup_count_children(struct mem_cgroup *mem)
1127} 1127}
1128 1128
1129/* 1129/*
1130 * Return the memory (and swap, if configured) limit for a memcg.
1131 */
1132u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1133{
1134 u64 limit;
1135 u64 memsw;
1136
1137 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1138 total_swap_pages;
1139 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1140 /*
1141 * If memsw is finite and limits the amount of swap space available
1142 * to this memcg, return that limit.
1143 */
1144 return min(limit, memsw);
1145}
1146
1147/*
1130 * Visit the first child (need not be the first child as per the ordering 1148 * Visit the first child (need not be the first child as per the ordering
1131 * of the cgroup list, since we track last_scanned_child) of @mem and use 1149 * of the cgroup list, since we track last_scanned_child) of @mem and use
1132 * that to reclaim free pages from. 1150 * that to reclaim free pages from.
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 0a4ca8a0234b..d3def05a33d9 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -4,6 +4,8 @@
4 * Copyright (C) 1998,2000 Rik van Riel 4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and 5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file... 6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
7 * 9 *
8 * The routines in this file are used to kill a process when 10 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages() 11 * we're seriously out of memory. This gets called from __alloc_pages()
@@ -34,7 +36,6 @@ int sysctl_panic_on_oom;
34int sysctl_oom_kill_allocating_task; 36int sysctl_oom_kill_allocating_task;
35int sysctl_oom_dump_tasks = 1; 37int sysctl_oom_dump_tasks = 1;
36static DEFINE_SPINLOCK(zone_scan_lock); 38static DEFINE_SPINLOCK(zone_scan_lock);
37/* #define DEBUG */
38 39
39#ifdef CONFIG_NUMA 40#ifdef CONFIG_NUMA
40/** 41/**
@@ -140,137 +141,76 @@ static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem,
140} 141}
141 142
142/** 143/**
143 * badness - calculate a numeric value for how bad this task has been 144 * oom_badness - heuristic function to determine which candidate task to kill
144 * @p: task struct of which task we should calculate 145 * @p: task struct of which task we should calculate
145 * @uptime: current uptime in seconds 146 * @totalpages: total present RAM allowed for page allocation
146 * 147 *
147 * The formula used is relatively simple and documented inline in the 148 * The heuristic for determining which task to kill is made to be as simple and
148 * function. The main rationale is that we want to select a good task 149 * predictable as possible. The goal is to return the highest value for the
149 * to kill when we run out of memory. 150 * task consuming the most memory to avoid subsequent oom failures.
150 *
151 * Good in this context means that:
152 * 1) we lose the minimum amount of work done
153 * 2) we recover a large amount of memory
154 * 3) we don't kill anything innocent of eating tons of memory
155 * 4) we want to kill the minimum amount of processes (one)
156 * 5) we try to kill the process the user expects us to kill, this
157 * algorithm has been meticulously tuned to meet the principle
158 * of least surprise ... (be careful when you change it)
159 */ 151 */
160unsigned long badness(struct task_struct *p, struct mem_cgroup *mem, 152unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
161 const nodemask_t *nodemask, unsigned long uptime) 153 const nodemask_t *nodemask, unsigned long totalpages)
162{ 154{
163 unsigned long points, cpu_time, run_time; 155 int points;
164 struct task_struct *child;
165 struct task_struct *c, *t;
166 int oom_adj = p->signal->oom_adj;
167 struct task_cputime task_time;
168 unsigned long utime;
169 unsigned long stime;
170 156
171 if (oom_unkillable_task(p, mem, nodemask)) 157 if (oom_unkillable_task(p, mem, nodemask))
172 return 0; 158 return 0;
173 if (oom_adj == OOM_DISABLE)
174 return 0;
175 159
176 p = find_lock_task_mm(p); 160 p = find_lock_task_mm(p);
177 if (!p) 161 if (!p)
178 return 0; 162 return 0;
179 163
180 /* 164 /*
181 * The memory size of the process is the basis for the badness. 165 * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't
182 */ 166 * need to be executed for something that cannot be killed.
183 points = p->mm->total_vm;
184 task_unlock(p);
185
186 /*
187 * swapoff can easily use up all memory, so kill those first.
188 */
189 if (p->flags & PF_OOM_ORIGIN)
190 return ULONG_MAX;
191
192 /*
193 * Processes which fork a lot of child processes are likely
194 * a good choice. We add half the vmsize of the children if they
195 * have an own mm. This prevents forking servers to flood the
196 * machine with an endless amount of children. In case a single
197 * child is eating the vast majority of memory, adding only half
198 * to the parents will make the child our kill candidate of choice.
199 */ 167 */
200 t = p; 168 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
201 do { 169 task_unlock(p);
202 list_for_each_entry(c, &t->children, sibling) { 170 return 0;
203 child = find_lock_task_mm(c); 171 }
204 if (child) {
205 if (child->mm != p->mm)
206 points += child->mm->total_vm/2 + 1;
207 task_unlock(child);
208 }
209 }
210 } while_each_thread(p, t);
211 172
212 /* 173 /*
213 * CPU time is in tens of seconds and run time is in thousands 174 * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
214 * of seconds. There is no particular reason for this other than 175 * priority for oom killing.
215 * that it turned out to work very well in practice.
216 */ 176 */
217 thread_group_cputime(p, &task_time); 177 if (p->flags & PF_OOM_ORIGIN) {
218 utime = cputime_to_jiffies(task_time.utime); 178 task_unlock(p);
219 stime = cputime_to_jiffies(task_time.stime); 179 return 1000;
220 cpu_time = (utime + stime) >> (SHIFT_HZ + 3); 180 }
221
222
223 if (uptime >= p->start_time.tv_sec)
224 run_time = (uptime - p->start_time.tv_sec) >> 10;
225 else
226 run_time = 0;
227
228 if (cpu_time)
229 points /= int_sqrt(cpu_time);
230 if (run_time)
231 points /= int_sqrt(int_sqrt(run_time));
232 181
233 /* 182 /*
234 * Niced processes are most likely less important, so double 183 * The memory controller may have a limit of 0 bytes, so avoid a divide
235 * their badness points. 184 * by zero, if necessary.
236 */ 185 */
237 if (task_nice(p) > 0) 186 if (!totalpages)
238 points *= 2; 187 totalpages = 1;
239 188
240 /* 189 /*
241 * Superuser processes are usually more important, so we make it 190 * The baseline for the badness score is the proportion of RAM that each
242 * less likely that we kill those. 191 * task's rss and swap space use.
243 */ 192 */
244 if (has_capability_noaudit(p, CAP_SYS_ADMIN) || 193 points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
245 has_capability_noaudit(p, CAP_SYS_RESOURCE)) 194 totalpages;
246 points /= 4; 195 task_unlock(p);
247 196
248 /* 197 /*
249 * We don't want to kill a process with direct hardware access. 198 * Root processes get 3% bonus, just like the __vm_enough_memory()
250 * Not only could that mess up the hardware, but usually users 199 * implementation used by LSMs.
251 * tend to only have this flag set on applications they think
252 * of as important.
253 */ 200 */
254 if (has_capability_noaudit(p, CAP_SYS_RAWIO)) 201 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
255 points /= 4; 202 points -= 30;
256 203
257 /* 204 /*
258 * Adjust the score by oom_adj. 205 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
206 * either completely disable oom killing or always prefer a certain
207 * task.
259 */ 208 */
260 if (oom_adj) { 209 points += p->signal->oom_score_adj;
261 if (oom_adj > 0) {
262 if (!points)
263 points = 1;
264 points <<= oom_adj;
265 } else
266 points >>= -(oom_adj);
267 }
268 210
269#ifdef DEBUG 211 if (points < 0)
270 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 212 return 0;
271 p->pid, p->comm, points); 213 return (points < 1000) ? points : 1000;
272#endif
273 return points;
274} 214}
275 215
276/* 216/*
@@ -278,12 +218,20 @@ unsigned long badness(struct task_struct *p, struct mem_cgroup *mem,
278 */ 218 */
279#ifdef CONFIG_NUMA 219#ifdef CONFIG_NUMA
280static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 220static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
281 gfp_t gfp_mask, nodemask_t *nodemask) 221 gfp_t gfp_mask, nodemask_t *nodemask,
222 unsigned long *totalpages)
282{ 223{
283 struct zone *zone; 224 struct zone *zone;
284 struct zoneref *z; 225 struct zoneref *z;
285 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 226 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
227 bool cpuset_limited = false;
228 int nid;
286 229
230 /* Default to all available memory */
231 *totalpages = totalram_pages + total_swap_pages;
232
233 if (!zonelist)
234 return CONSTRAINT_NONE;
287 /* 235 /*
288 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 236 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
289 * to kill current.We have to random task kill in this case. 237 * to kill current.We have to random task kill in this case.
@@ -293,26 +241,37 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
293 return CONSTRAINT_NONE; 241 return CONSTRAINT_NONE;
294 242
295 /* 243 /*
296 * The nodemask here is a nodemask passed to alloc_pages(). Now, 244 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
297 * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy 245 * the page allocator means a mempolicy is in effect. Cpuset policy
298 * feature. mempolicy is an only user of nodemask here. 246 * is enforced in get_page_from_freelist().
299 * check mempolicy's nodemask contains all N_HIGH_MEMORY
300 */ 247 */
301 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) 248 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
249 *totalpages = total_swap_pages;
250 for_each_node_mask(nid, *nodemask)
251 *totalpages += node_spanned_pages(nid);
302 return CONSTRAINT_MEMORY_POLICY; 252 return CONSTRAINT_MEMORY_POLICY;
253 }
303 254
304 /* Check this allocation failure is caused by cpuset's wall function */ 255 /* Check this allocation failure is caused by cpuset's wall function */
305 for_each_zone_zonelist_nodemask(zone, z, zonelist, 256 for_each_zone_zonelist_nodemask(zone, z, zonelist,
306 high_zoneidx, nodemask) 257 high_zoneidx, nodemask)
307 if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) 258 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
308 return CONSTRAINT_CPUSET; 259 cpuset_limited = true;
309 260
261 if (cpuset_limited) {
262 *totalpages = total_swap_pages;
263 for_each_node_mask(nid, cpuset_current_mems_allowed)
264 *totalpages += node_spanned_pages(nid);
265 return CONSTRAINT_CPUSET;
266 }
310 return CONSTRAINT_NONE; 267 return CONSTRAINT_NONE;
311} 268}
312#else 269#else
313static enum oom_constraint constrained_alloc(struct zonelist *zonelist, 270static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
314 gfp_t gfp_mask, nodemask_t *nodemask) 271 gfp_t gfp_mask, nodemask_t *nodemask,
272 unsigned long *totalpages)
315{ 273{
274 *totalpages = totalram_pages + total_swap_pages;
316 return CONSTRAINT_NONE; 275 return CONSTRAINT_NONE;
317} 276}
318#endif 277#endif
@@ -323,17 +282,16 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
323 * 282 *
324 * (not docbooked, we don't want this one cluttering up the manual) 283 * (not docbooked, we don't want this one cluttering up the manual)
325 */ 284 */
326static struct task_struct *select_bad_process(unsigned long *ppoints, 285static struct task_struct *select_bad_process(unsigned int *ppoints,
327 struct mem_cgroup *mem, const nodemask_t *nodemask) 286 unsigned long totalpages, struct mem_cgroup *mem,
287 const nodemask_t *nodemask)
328{ 288{
329 struct task_struct *p; 289 struct task_struct *p;
330 struct task_struct *chosen = NULL; 290 struct task_struct *chosen = NULL;
331 struct timespec uptime;
332 *ppoints = 0; 291 *ppoints = 0;
333 292
334 do_posix_clock_monotonic_gettime(&uptime);
335 for_each_process(p) { 293 for_each_process(p) {
336 unsigned long points; 294 unsigned int points;
337 295
338 if (oom_unkillable_task(p, mem, nodemask)) 296 if (oom_unkillable_task(p, mem, nodemask))
339 continue; 297 continue;
@@ -365,11 +323,11 @@ static struct task_struct *select_bad_process(unsigned long *ppoints,
365 return ERR_PTR(-1UL); 323 return ERR_PTR(-1UL);
366 324
367 chosen = p; 325 chosen = p;
368 *ppoints = ULONG_MAX; 326 *ppoints = 1000;
369 } 327 }
370 328
371 points = badness(p, mem, nodemask, uptime.tv_sec); 329 points = oom_badness(p, mem, nodemask, totalpages);
372 if (points > *ppoints || !chosen) { 330 if (points > *ppoints) {
373 chosen = p; 331 chosen = p;
374 *ppoints = points; 332 *ppoints = points;
375 } 333 }
@@ -384,7 +342,7 @@ static struct task_struct *select_bad_process(unsigned long *ppoints,
384 * 342 *
385 * Dumps the current memory state of all system tasks, excluding kernel threads. 343 * Dumps the current memory state of all system tasks, excluding kernel threads.
386 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 344 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
387 * score, and name. 345 * value, oom_score_adj value, and name.
388 * 346 *
389 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 347 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
390 * shown. 348 * shown.
@@ -396,8 +354,7 @@ static void dump_tasks(const struct mem_cgroup *mem)
396 struct task_struct *p; 354 struct task_struct *p;
397 struct task_struct *task; 355 struct task_struct *task;
398 356
399 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " 357 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n");
400 "name\n");
401 for_each_process(p) { 358 for_each_process(p) {
402 if (p->flags & PF_KTHREAD) 359 if (p->flags & PF_KTHREAD)
403 continue; 360 continue;
@@ -414,10 +371,11 @@ static void dump_tasks(const struct mem_cgroup *mem)
414 continue; 371 continue;
415 } 372 }
416 373
417 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3u %3d %s\n", 374 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n",
418 task->pid, __task_cred(task)->uid, task->tgid, 375 task->pid, __task_cred(task)->uid, task->tgid,
419 task->mm->total_vm, get_mm_rss(task->mm), 376 task->mm->total_vm, get_mm_rss(task->mm),
420 task_cpu(task), task->signal->oom_adj, task->comm); 377 task_cpu(task), task->signal->oom_adj,
378 task->signal->oom_score_adj, task->comm);
421 task_unlock(task); 379 task_unlock(task);
422 } 380 }
423} 381}
@@ -427,8 +385,9 @@ static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
427{ 385{
428 task_lock(current); 386 task_lock(current);
429 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " 387 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
430 "oom_adj=%d\n", 388 "oom_adj=%d, oom_score_adj=%d\n",
431 current->comm, gfp_mask, order, current->signal->oom_adj); 389 current->comm, gfp_mask, order, current->signal->oom_adj,
390 current->signal->oom_score_adj);
432 cpuset_print_task_mems_allowed(current); 391 cpuset_print_task_mems_allowed(current);
433 task_unlock(current); 392 task_unlock(current);
434 dump_stack(); 393 dump_stack();
@@ -468,14 +427,14 @@ static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
468#undef K 427#undef K
469 428
470static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 429static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
471 unsigned long points, struct mem_cgroup *mem, 430 unsigned int points, unsigned long totalpages,
472 nodemask_t *nodemask, const char *message) 431 struct mem_cgroup *mem, nodemask_t *nodemask,
432 const char *message)
473{ 433{
474 struct task_struct *victim = p; 434 struct task_struct *victim = p;
475 struct task_struct *child; 435 struct task_struct *child;
476 struct task_struct *t = p; 436 struct task_struct *t = p;
477 unsigned long victim_points = 0; 437 unsigned int victim_points = 0;
478 struct timespec uptime;
479 438
480 if (printk_ratelimit()) 439 if (printk_ratelimit())
481 dump_header(p, gfp_mask, order, mem); 440 dump_header(p, gfp_mask, order, mem);
@@ -491,7 +450,7 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
491 } 450 }
492 451
493 task_lock(p); 452 task_lock(p);
494 pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n", 453 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
495 message, task_pid_nr(p), p->comm, points); 454 message, task_pid_nr(p), p->comm, points);
496 task_unlock(p); 455 task_unlock(p);
497 456
@@ -501,14 +460,15 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
501 * parent. This attempts to lose the minimal amount of work done while 460 * parent. This attempts to lose the minimal amount of work done while
502 * still freeing memory. 461 * still freeing memory.
503 */ 462 */
504 do_posix_clock_monotonic_gettime(&uptime);
505 do { 463 do {
506 list_for_each_entry(child, &t->children, sibling) { 464 list_for_each_entry(child, &t->children, sibling) {
507 unsigned long child_points; 465 unsigned int child_points;
508 466
509 /* badness() returns 0 if the thread is unkillable */ 467 /*
510 child_points = badness(child, mem, nodemask, 468 * oom_badness() returns 0 if the thread is unkillable
511 uptime.tv_sec); 469 */
470 child_points = oom_badness(child, mem, nodemask,
471 totalpages);
512 if (child_points > victim_points) { 472 if (child_points > victim_points) {
513 victim = child; 473 victim = child;
514 victim_points = child_points; 474 victim_points = child_points;
@@ -546,17 +506,19 @@ static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
546#ifdef CONFIG_CGROUP_MEM_RES_CTLR 506#ifdef CONFIG_CGROUP_MEM_RES_CTLR
547void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 507void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
548{ 508{
549 unsigned long points = 0; 509 unsigned long limit;
510 unsigned int points = 0;
550 struct task_struct *p; 511 struct task_struct *p;
551 512
552 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0); 513 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0);
514 limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
553 read_lock(&tasklist_lock); 515 read_lock(&tasklist_lock);
554retry: 516retry:
555 p = select_bad_process(&points, mem, NULL); 517 p = select_bad_process(&points, limit, mem, NULL);
556 if (!p || PTR_ERR(p) == -1UL) 518 if (!p || PTR_ERR(p) == -1UL)
557 goto out; 519 goto out;
558 520
559 if (oom_kill_process(p, gfp_mask, 0, points, mem, NULL, 521 if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
560 "Memory cgroup out of memory")) 522 "Memory cgroup out of memory"))
561 goto retry; 523 goto retry;
562out: 524out:
@@ -681,8 +643,9 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
681 int order, nodemask_t *nodemask) 643 int order, nodemask_t *nodemask)
682{ 644{
683 struct task_struct *p; 645 struct task_struct *p;
646 unsigned long totalpages;
684 unsigned long freed = 0; 647 unsigned long freed = 0;
685 unsigned long points; 648 unsigned int points;
686 enum oom_constraint constraint = CONSTRAINT_NONE; 649 enum oom_constraint constraint = CONSTRAINT_NONE;
687 650
688 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 651 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
@@ -705,8 +668,8 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
705 * Check if there were limitations on the allocation (only relevant for 668 * Check if there were limitations on the allocation (only relevant for
706 * NUMA) that may require different handling. 669 * NUMA) that may require different handling.
707 */ 670 */
708 if (zonelist) 671 constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
709 constraint = constrained_alloc(zonelist, gfp_mask, nodemask); 672 &totalpages);
710 check_panic_on_oom(constraint, gfp_mask, order); 673 check_panic_on_oom(constraint, gfp_mask, order);
711 674
712 read_lock(&tasklist_lock); 675 read_lock(&tasklist_lock);
@@ -718,14 +681,14 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
718 * non-zero, current could not be killed so we must fallback to 681 * non-zero, current could not be killed so we must fallback to
719 * the tasklist scan. 682 * the tasklist scan.
720 */ 683 */
721 if (!oom_kill_process(current, gfp_mask, order, 0, NULL, 684 if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
722 nodemask, 685 NULL, nodemask,
723 "Out of memory (oom_kill_allocating_task)")) 686 "Out of memory (oom_kill_allocating_task)"))
724 return; 687 return;
725 } 688 }
726 689
727retry: 690retry:
728 p = select_bad_process(&points, NULL, 691 p = select_bad_process(&points, totalpages, NULL,
729 constraint == CONSTRAINT_MEMORY_POLICY ? nodemask : 692 constraint == CONSTRAINT_MEMORY_POLICY ? nodemask :
730 NULL); 693 NULL);
731 if (PTR_ERR(p) == -1UL) 694 if (PTR_ERR(p) == -1UL)
@@ -738,8 +701,8 @@ retry:
738 panic("Out of memory and no killable processes...\n"); 701 panic("Out of memory and no killable processes...\n");
739 } 702 }
740 703
741 if (oom_kill_process(p, gfp_mask, order, points, NULL, nodemask, 704 if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
742 "Out of memory")) 705 nodemask, "Out of memory"))
743 goto retry; 706 goto retry;
744 read_unlock(&tasklist_lock); 707 read_unlock(&tasklist_lock);
745 708