aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig5
-rw-r--r--mm/Makefile3
-rw-r--r--mm/filemap.c85
-rw-r--r--mm/highmem.c9
-rw-r--r--mm/internal.h2
-rw-r--r--mm/madvise.c33
-rw-r--r--mm/memory.c106
-rw-r--r--mm/mmap.c47
-rw-r--r--mm/oom_kill.c17
-rw-r--r--mm/page-writeback.c50
-rw-r--r--mm/page_alloc.c50
-rw-r--r--mm/quicklist.c88
-rw-r--r--mm/readahead.c29
-rw-r--r--mm/rmap.c3
-rw-r--r--mm/shmem.c3
-rw-r--r--mm/slab.c200
-rw-r--r--mm/slob.c57
-rw-r--r--mm/slub.c3520
-rw-r--r--mm/sparse.c2
-rw-r--r--mm/swap.c2
-rw-r--r--mm/swapfile.c3
-rw-r--r--mm/vmalloc.c14
-rw-r--r--mm/vmscan.c13
23 files changed, 4100 insertions, 241 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 7942b333e46c..1ac718f636ec 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -163,3 +163,8 @@ config ZONE_DMA_FLAG
163 default "0" if !ZONE_DMA 163 default "0" if !ZONE_DMA
164 default "1" 164 default "1"
165 165
166config NR_QUICK
167 int
168 depends on QUICKLIST
169 default "1"
170
diff --git a/mm/Makefile b/mm/Makefile
index f3c077eb0b8e..a9148ea329aa 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -25,7 +25,10 @@ obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
25obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o 25obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
26obj-$(CONFIG_SLOB) += slob.o 26obj-$(CONFIG_SLOB) += slob.o
27obj-$(CONFIG_SLAB) += slab.o 27obj-$(CONFIG_SLAB) += slab.o
28obj-$(CONFIG_SLUB) += slub.o
28obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o 29obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
29obj-$(CONFIG_FS_XIP) += filemap_xip.o 30obj-$(CONFIG_FS_XIP) += filemap_xip.o
30obj-$(CONFIG_MIGRATION) += migrate.o 31obj-$(CONFIG_MIGRATION) += migrate.o
31obj-$(CONFIG_SMP) += allocpercpu.o 32obj-$(CONFIG_SMP) += allocpercpu.o
33obj-$(CONFIG_QUICKLIST) += quicklist.o
34
diff --git a/mm/filemap.c b/mm/filemap.c
index 5dfc093ceb3d..5631d6b2a62d 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -868,6 +868,7 @@ void do_generic_mapping_read(struct address_space *mapping,
868 unsigned long last_index; 868 unsigned long last_index;
869 unsigned long next_index; 869 unsigned long next_index;
870 unsigned long prev_index; 870 unsigned long prev_index;
871 unsigned int prev_offset;
871 loff_t isize; 872 loff_t isize;
872 struct page *cached_page; 873 struct page *cached_page;
873 int error; 874 int error;
@@ -876,7 +877,8 @@ void do_generic_mapping_read(struct address_space *mapping,
876 cached_page = NULL; 877 cached_page = NULL;
877 index = *ppos >> PAGE_CACHE_SHIFT; 878 index = *ppos >> PAGE_CACHE_SHIFT;
878 next_index = index; 879 next_index = index;
879 prev_index = ra.prev_page; 880 prev_index = ra.prev_index;
881 prev_offset = ra.prev_offset;
880 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 882 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
881 offset = *ppos & ~PAGE_CACHE_MASK; 883 offset = *ppos & ~PAGE_CACHE_MASK;
882 884
@@ -924,10 +926,10 @@ page_ok:
924 flush_dcache_page(page); 926 flush_dcache_page(page);
925 927
926 /* 928 /*
927 * When (part of) the same page is read multiple times 929 * When a sequential read accesses a page several times,
928 * in succession, only mark it as accessed the first time. 930 * only mark it as accessed the first time.
929 */ 931 */
930 if (prev_index != index) 932 if (prev_index != index || offset != prev_offset)
931 mark_page_accessed(page); 933 mark_page_accessed(page);
932 prev_index = index; 934 prev_index = index;
933 935
@@ -945,6 +947,8 @@ page_ok:
945 offset += ret; 947 offset += ret;
946 index += offset >> PAGE_CACHE_SHIFT; 948 index += offset >> PAGE_CACHE_SHIFT;
947 offset &= ~PAGE_CACHE_MASK; 949 offset &= ~PAGE_CACHE_MASK;
950 prev_offset = offset;
951 ra.prev_offset = offset;
948 952
949 page_cache_release(page); 953 page_cache_release(page);
950 if (ret == nr && desc->count) 954 if (ret == nr && desc->count)
@@ -1446,30 +1450,6 @@ page_not_uptodate:
1446 majmin = VM_FAULT_MAJOR; 1450 majmin = VM_FAULT_MAJOR;
1447 count_vm_event(PGMAJFAULT); 1451 count_vm_event(PGMAJFAULT);
1448 } 1452 }
1449 lock_page(page);
1450
1451 /* Did it get unhashed while we waited for it? */
1452 if (!page->mapping) {
1453 unlock_page(page);
1454 page_cache_release(page);
1455 goto retry_all;
1456 }
1457
1458 /* Did somebody else get it up-to-date? */
1459 if (PageUptodate(page)) {
1460 unlock_page(page);
1461 goto success;
1462 }
1463
1464 error = mapping->a_ops->readpage(file, page);
1465 if (!error) {
1466 wait_on_page_locked(page);
1467 if (PageUptodate(page))
1468 goto success;
1469 } else if (error == AOP_TRUNCATED_PAGE) {
1470 page_cache_release(page);
1471 goto retry_find;
1472 }
1473 1453
1474 /* 1454 /*
1475 * Umm, take care of errors if the page isn't up-to-date. 1455 * Umm, take care of errors if the page isn't up-to-date.
@@ -1726,7 +1706,7 @@ int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1726EXPORT_SYMBOL(generic_file_mmap); 1706EXPORT_SYMBOL(generic_file_mmap);
1727EXPORT_SYMBOL(generic_file_readonly_mmap); 1707EXPORT_SYMBOL(generic_file_readonly_mmap);
1728 1708
1729static inline struct page *__read_cache_page(struct address_space *mapping, 1709static struct page *__read_cache_page(struct address_space *mapping,
1730 unsigned long index, 1710 unsigned long index,
1731 int (*filler)(void *,struct page*), 1711 int (*filler)(void *,struct page*),
1732 void *data) 1712 void *data)
@@ -1763,17 +1743,11 @@ repeat:
1763 return page; 1743 return page;
1764} 1744}
1765 1745
1766/** 1746/*
1767 * read_cache_page - read into page cache, fill it if needed 1747 * Same as read_cache_page, but don't wait for page to become unlocked
1768 * @mapping: the page's address_space 1748 * after submitting it to the filler.
1769 * @index: the page index
1770 * @filler: function to perform the read
1771 * @data: destination for read data
1772 *
1773 * Read into the page cache. If a page already exists,
1774 * and PageUptodate() is not set, try to fill the page.
1775 */ 1749 */
1776struct page *read_cache_page(struct address_space *mapping, 1750struct page *read_cache_page_async(struct address_space *mapping,
1777 unsigned long index, 1751 unsigned long index,
1778 int (*filler)(void *,struct page*), 1752 int (*filler)(void *,struct page*),
1779 void *data) 1753 void *data)
@@ -1805,6 +1779,39 @@ retry:
1805 page = ERR_PTR(err); 1779 page = ERR_PTR(err);
1806 } 1780 }
1807 out: 1781 out:
1782 mark_page_accessed(page);
1783 return page;
1784}
1785EXPORT_SYMBOL(read_cache_page_async);
1786
1787/**
1788 * read_cache_page - read into page cache, fill it if needed
1789 * @mapping: the page's address_space
1790 * @index: the page index
1791 * @filler: function to perform the read
1792 * @data: destination for read data
1793 *
1794 * Read into the page cache. If a page already exists, and PageUptodate() is
1795 * not set, try to fill the page then wait for it to become unlocked.
1796 *
1797 * If the page does not get brought uptodate, return -EIO.
1798 */
1799struct page *read_cache_page(struct address_space *mapping,
1800 unsigned long index,
1801 int (*filler)(void *,struct page*),
1802 void *data)
1803{
1804 struct page *page;
1805
1806 page = read_cache_page_async(mapping, index, filler, data);
1807 if (IS_ERR(page))
1808 goto out;
1809 wait_on_page_locked(page);
1810 if (!PageUptodate(page)) {
1811 page_cache_release(page);
1812 page = ERR_PTR(-EIO);
1813 }
1814 out:
1808 return page; 1815 return page;
1809} 1816}
1810EXPORT_SYMBOL(read_cache_page); 1817EXPORT_SYMBOL(read_cache_page);
diff --git a/mm/highmem.c b/mm/highmem.c
index 51e1c1995fec..be8f8d36a8b9 100644
--- a/mm/highmem.c
+++ b/mm/highmem.c
@@ -99,6 +99,15 @@ static void flush_all_zero_pkmaps(void)
99 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); 99 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
100} 100}
101 101
102/* Flush all unused kmap mappings in order to remove stray
103 mappings. */
104void kmap_flush_unused(void)
105{
106 spin_lock(&kmap_lock);
107 flush_all_zero_pkmaps();
108 spin_unlock(&kmap_lock);
109}
110
102static inline unsigned long map_new_virtual(struct page *page) 111static inline unsigned long map_new_virtual(struct page *page)
103{ 112{
104 unsigned long vaddr; 113 unsigned long vaddr;
diff --git a/mm/internal.h b/mm/internal.h
index d527b80b292f..a3110c02aea7 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -24,7 +24,7 @@ static inline void set_page_count(struct page *page, int v)
24 */ 24 */
25static inline void set_page_refcounted(struct page *page) 25static inline void set_page_refcounted(struct page *page)
26{ 26{
27 VM_BUG_ON(PageCompound(page) && page_private(page) != (unsigned long)page); 27 VM_BUG_ON(PageCompound(page) && PageTail(page));
28 VM_BUG_ON(atomic_read(&page->_count)); 28 VM_BUG_ON(atomic_read(&page->_count));
29 set_page_count(page, 1); 29 set_page_count(page, 1);
30} 30}
diff --git a/mm/madvise.c b/mm/madvise.c
index 603c5257ed6e..e75096b5a6d3 100644
--- a/mm/madvise.c
+++ b/mm/madvise.c
@@ -12,6 +12,24 @@
12#include <linux/hugetlb.h> 12#include <linux/hugetlb.h>
13 13
14/* 14/*
15 * Any behaviour which results in changes to the vma->vm_flags needs to
16 * take mmap_sem for writing. Others, which simply traverse vmas, need
17 * to only take it for reading.
18 */
19static int madvise_need_mmap_write(int behavior)
20{
21 switch (behavior) {
22 case MADV_REMOVE:
23 case MADV_WILLNEED:
24 case MADV_DONTNEED:
25 return 0;
26 default:
27 /* be safe, default to 1. list exceptions explicitly */
28 return 1;
29 }
30}
31
32/*
15 * We can potentially split a vm area into separate 33 * We can potentially split a vm area into separate
16 * areas, each area with its own behavior. 34 * areas, each area with its own behavior.
17 */ 35 */
@@ -183,9 +201,9 @@ static long madvise_remove(struct vm_area_struct *vma,
183 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 201 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
184 202
185 /* vmtruncate_range needs to take i_mutex and i_alloc_sem */ 203 /* vmtruncate_range needs to take i_mutex and i_alloc_sem */
186 up_write(&current->mm->mmap_sem); 204 up_read(&current->mm->mmap_sem);
187 error = vmtruncate_range(mapping->host, offset, endoff); 205 error = vmtruncate_range(mapping->host, offset, endoff);
188 down_write(&current->mm->mmap_sem); 206 down_read(&current->mm->mmap_sem);
189 return error; 207 return error;
190} 208}
191 209
@@ -270,7 +288,10 @@ asmlinkage long sys_madvise(unsigned long start, size_t len_in, int behavior)
270 int error = -EINVAL; 288 int error = -EINVAL;
271 size_t len; 289 size_t len;
272 290
273 down_write(&current->mm->mmap_sem); 291 if (madvise_need_mmap_write(behavior))
292 down_write(&current->mm->mmap_sem);
293 else
294 down_read(&current->mm->mmap_sem);
274 295
275 if (start & ~PAGE_MASK) 296 if (start & ~PAGE_MASK)
276 goto out; 297 goto out;
@@ -332,6 +353,10 @@ asmlinkage long sys_madvise(unsigned long start, size_t len_in, int behavior)
332 vma = find_vma(current->mm, start); 353 vma = find_vma(current->mm, start);
333 } 354 }
334out: 355out:
335 up_write(&current->mm->mmap_sem); 356 if (madvise_need_mmap_write(behavior))
357 up_write(&current->mm->mmap_sem);
358 else
359 up_read(&current->mm->mmap_sem);
360
336 return error; 361 return error;
337} 362}
diff --git a/mm/memory.c b/mm/memory.c
index e7066e71dfa3..1d647ab0ee72 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1448,6 +1448,100 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1448} 1448}
1449EXPORT_SYMBOL(remap_pfn_range); 1449EXPORT_SYMBOL(remap_pfn_range);
1450 1450
1451static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1452 unsigned long addr, unsigned long end,
1453 pte_fn_t fn, void *data)
1454{
1455 pte_t *pte;
1456 int err;
1457 struct page *pmd_page;
1458 spinlock_t *uninitialized_var(ptl);
1459
1460 pte = (mm == &init_mm) ?
1461 pte_alloc_kernel(pmd, addr) :
1462 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1463 if (!pte)
1464 return -ENOMEM;
1465
1466 BUG_ON(pmd_huge(*pmd));
1467
1468 pmd_page = pmd_page(*pmd);
1469
1470 do {
1471 err = fn(pte, pmd_page, addr, data);
1472 if (err)
1473 break;
1474 } while (pte++, addr += PAGE_SIZE, addr != end);
1475
1476 if (mm != &init_mm)
1477 pte_unmap_unlock(pte-1, ptl);
1478 return err;
1479}
1480
1481static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1482 unsigned long addr, unsigned long end,
1483 pte_fn_t fn, void *data)
1484{
1485 pmd_t *pmd;
1486 unsigned long next;
1487 int err;
1488
1489 pmd = pmd_alloc(mm, pud, addr);
1490 if (!pmd)
1491 return -ENOMEM;
1492 do {
1493 next = pmd_addr_end(addr, end);
1494 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1495 if (err)
1496 break;
1497 } while (pmd++, addr = next, addr != end);
1498 return err;
1499}
1500
1501static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1502 unsigned long addr, unsigned long end,
1503 pte_fn_t fn, void *data)
1504{
1505 pud_t *pud;
1506 unsigned long next;
1507 int err;
1508
1509 pud = pud_alloc(mm, pgd, addr);
1510 if (!pud)
1511 return -ENOMEM;
1512 do {
1513 next = pud_addr_end(addr, end);
1514 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1515 if (err)
1516 break;
1517 } while (pud++, addr = next, addr != end);
1518 return err;
1519}
1520
1521/*
1522 * Scan a region of virtual memory, filling in page tables as necessary
1523 * and calling a provided function on each leaf page table.
1524 */
1525int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1526 unsigned long size, pte_fn_t fn, void *data)
1527{
1528 pgd_t *pgd;
1529 unsigned long next;
1530 unsigned long end = addr + size;
1531 int err;
1532
1533 BUG_ON(addr >= end);
1534 pgd = pgd_offset(mm, addr);
1535 do {
1536 next = pgd_addr_end(addr, end);
1537 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1538 if (err)
1539 break;
1540 } while (pgd++, addr = next, addr != end);
1541 return err;
1542}
1543EXPORT_SYMBOL_GPL(apply_to_page_range);
1544
1451/* 1545/*
1452 * handle_pte_fault chooses page fault handler according to an entry 1546 * handle_pte_fault chooses page fault handler according to an entry
1453 * which was read non-atomically. Before making any commitment, on 1547 * which was read non-atomically. Before making any commitment, on
@@ -2539,12 +2633,6 @@ int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2539 spin_unlock(&mm->page_table_lock); 2633 spin_unlock(&mm->page_table_lock);
2540 return 0; 2634 return 0;
2541} 2635}
2542#else
2543/* Workaround for gcc 2.96 */
2544int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2545{
2546 return 0;
2547}
2548#endif /* __PAGETABLE_PUD_FOLDED */ 2636#endif /* __PAGETABLE_PUD_FOLDED */
2549 2637
2550#ifndef __PAGETABLE_PMD_FOLDED 2638#ifndef __PAGETABLE_PMD_FOLDED
@@ -2573,12 +2661,6 @@ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2573 spin_unlock(&mm->page_table_lock); 2661 spin_unlock(&mm->page_table_lock);
2574 return 0; 2662 return 0;
2575} 2663}
2576#else
2577/* Workaround for gcc 2.96 */
2578int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2579{
2580 return 0;
2581}
2582#endif /* __PAGETABLE_PMD_FOLDED */ 2664#endif /* __PAGETABLE_PMD_FOLDED */
2583 2665
2584int make_pages_present(unsigned long addr, unsigned long end) 2666int make_pages_present(unsigned long addr, unsigned long end)
diff --git a/mm/mmap.c b/mm/mmap.c
index 84f997da78d7..52646d61ff69 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -29,6 +29,7 @@
29#include <asm/uaccess.h> 29#include <asm/uaccess.h>
30#include <asm/cacheflush.h> 30#include <asm/cacheflush.h>
31#include <asm/tlb.h> 31#include <asm/tlb.h>
32#include <asm/mmu_context.h>
32 33
33#ifndef arch_mmap_check 34#ifndef arch_mmap_check
34#define arch_mmap_check(addr, len, flags) (0) 35#define arch_mmap_check(addr, len, flags) (0)
@@ -1199,6 +1200,9 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
1199 if (len > TASK_SIZE) 1200 if (len > TASK_SIZE)
1200 return -ENOMEM; 1201 return -ENOMEM;
1201 1202
1203 if (flags & MAP_FIXED)
1204 return addr;
1205
1202 if (addr) { 1206 if (addr) {
1203 addr = PAGE_ALIGN(addr); 1207 addr = PAGE_ALIGN(addr);
1204 vma = find_vma(mm, addr); 1208 vma = find_vma(mm, addr);
@@ -1272,6 +1276,9 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1272 if (len > TASK_SIZE) 1276 if (len > TASK_SIZE)
1273 return -ENOMEM; 1277 return -ENOMEM;
1274 1278
1279 if (flags & MAP_FIXED)
1280 return addr;
1281
1275 /* requesting a specific address */ 1282 /* requesting a specific address */
1276 if (addr) { 1283 if (addr) {
1277 addr = PAGE_ALIGN(addr); 1284 addr = PAGE_ALIGN(addr);
@@ -1360,38 +1367,21 @@ get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1360 unsigned long pgoff, unsigned long flags) 1367 unsigned long pgoff, unsigned long flags)
1361{ 1368{
1362 unsigned long ret; 1369 unsigned long ret;
1363 1370 unsigned long (*get_area)(struct file *, unsigned long,
1364 if (!(flags & MAP_FIXED)) { 1371 unsigned long, unsigned long, unsigned long);
1365 unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1372
1366 1373 get_area = current->mm->get_unmapped_area;
1367 get_area = current->mm->get_unmapped_area; 1374 if (file && file->f_op && file->f_op->get_unmapped_area)
1368 if (file && file->f_op && file->f_op->get_unmapped_area) 1375 get_area = file->f_op->get_unmapped_area;
1369 get_area = file->f_op->get_unmapped_area; 1376 addr = get_area(file, addr, len, pgoff, flags);
1370 addr = get_area(file, addr, len, pgoff, flags); 1377 if (IS_ERR_VALUE(addr))
1371 if (IS_ERR_VALUE(addr)) 1378 return addr;
1372 return addr;
1373 }
1374 1379
1375 if (addr > TASK_SIZE - len) 1380 if (addr > TASK_SIZE - len)
1376 return -ENOMEM; 1381 return -ENOMEM;
1377 if (addr & ~PAGE_MASK) 1382 if (addr & ~PAGE_MASK)
1378 return -EINVAL; 1383 return -EINVAL;
1379 if (file && is_file_hugepages(file)) { 1384
1380 /*
1381 * Check if the given range is hugepage aligned, and
1382 * can be made suitable for hugepages.
1383 */
1384 ret = prepare_hugepage_range(addr, len, pgoff);
1385 } else {
1386 /*
1387 * Ensure that a normal request is not falling in a
1388 * reserved hugepage range. For some archs like IA-64,
1389 * there is a separate region for hugepages.
1390 */
1391 ret = is_hugepage_only_range(current->mm, addr, len);
1392 }
1393 if (ret)
1394 return -EINVAL;
1395 return addr; 1385 return addr;
1396} 1386}
1397 1387
@@ -1979,6 +1969,9 @@ void exit_mmap(struct mm_struct *mm)
1979 unsigned long nr_accounted = 0; 1969 unsigned long nr_accounted = 0;
1980 unsigned long end; 1970 unsigned long end;
1981 1971
1972 /* mm's last user has gone, and its about to be pulled down */
1973 arch_exit_mmap(mm);
1974
1982 lru_add_drain(); 1975 lru_add_drain();
1983 flush_cache_mm(mm); 1976 flush_cache_mm(mm);
1984 tlb = tlb_gather_mmu(mm, 1); 1977 tlb = tlb_gather_mmu(mm, 1);
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 3791edfffeeb..a7001410ab15 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -147,9 +147,11 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
147 * Adjust the score by oomkilladj. 147 * Adjust the score by oomkilladj.
148 */ 148 */
149 if (p->oomkilladj) { 149 if (p->oomkilladj) {
150 if (p->oomkilladj > 0) 150 if (p->oomkilladj > 0) {
151 if (!points)
152 points = 1;
151 points <<= p->oomkilladj; 153 points <<= p->oomkilladj;
152 else 154 } else
153 points >>= -(p->oomkilladj); 155 points >>= -(p->oomkilladj);
154 } 156 }
155 157
@@ -397,6 +399,7 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
397 struct task_struct *p; 399 struct task_struct *p;
398 unsigned long points = 0; 400 unsigned long points = 0;
399 unsigned long freed = 0; 401 unsigned long freed = 0;
402 int constraint;
400 403
401 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 404 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
402 if (freed > 0) 405 if (freed > 0)
@@ -411,14 +414,18 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
411 show_mem(); 414 show_mem();
412 } 415 }
413 416
414 cpuset_lock(); 417 if (sysctl_panic_on_oom == 2)
415 read_lock(&tasklist_lock); 418 panic("out of memory. Compulsory panic_on_oom is selected.\n");
416 419
417 /* 420 /*
418 * Check if there were limitations on the allocation (only relevant for 421 * Check if there were limitations on the allocation (only relevant for
419 * NUMA) that may require different handling. 422 * NUMA) that may require different handling.
420 */ 423 */
421 switch (constrained_alloc(zonelist, gfp_mask)) { 424 constraint = constrained_alloc(zonelist, gfp_mask);
425 cpuset_lock();
426 read_lock(&tasklist_lock);
427
428 switch (constraint) {
422 case CONSTRAINT_MEMORY_POLICY: 429 case CONSTRAINT_MEMORY_POLICY:
423 oom_kill_process(current, points, 430 oom_kill_process(current, points,
424 "No available memory (MPOL_BIND)"); 431 "No available memory (MPOL_BIND)");
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index a794945fd194..029dfad5a235 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -119,6 +119,44 @@ static void background_writeout(unsigned long _min_pages);
119 * We make sure that the background writeout level is below the adjusted 119 * We make sure that the background writeout level is below the adjusted
120 * clamping level. 120 * clamping level.
121 */ 121 */
122
123static unsigned long highmem_dirtyable_memory(unsigned long total)
124{
125#ifdef CONFIG_HIGHMEM
126 int node;
127 unsigned long x = 0;
128
129 for_each_online_node(node) {
130 struct zone *z =
131 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
132
133 x += zone_page_state(z, NR_FREE_PAGES)
134 + zone_page_state(z, NR_INACTIVE)
135 + zone_page_state(z, NR_ACTIVE);
136 }
137 /*
138 * Make sure that the number of highmem pages is never larger
139 * than the number of the total dirtyable memory. This can only
140 * occur in very strange VM situations but we want to make sure
141 * that this does not occur.
142 */
143 return min(x, total);
144#else
145 return 0;
146#endif
147}
148
149static unsigned long determine_dirtyable_memory(void)
150{
151 unsigned long x;
152
153 x = global_page_state(NR_FREE_PAGES)
154 + global_page_state(NR_INACTIVE)
155 + global_page_state(NR_ACTIVE);
156 x -= highmem_dirtyable_memory(x);
157 return x + 1; /* Ensure that we never return 0 */
158}
159
122static void 160static void
123get_dirty_limits(long *pbackground, long *pdirty, 161get_dirty_limits(long *pbackground, long *pdirty,
124 struct address_space *mapping) 162 struct address_space *mapping)
@@ -128,20 +166,12 @@ get_dirty_limits(long *pbackground, long *pdirty,
128 int unmapped_ratio; 166 int unmapped_ratio;
129 long background; 167 long background;
130 long dirty; 168 long dirty;
131 unsigned long available_memory = vm_total_pages; 169 unsigned long available_memory = determine_dirtyable_memory();
132 struct task_struct *tsk; 170 struct task_struct *tsk;
133 171
134#ifdef CONFIG_HIGHMEM
135 /*
136 * We always exclude high memory from our count.
137 */
138 available_memory -= totalhigh_pages;
139#endif
140
141
142 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) + 172 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
143 global_page_state(NR_ANON_PAGES)) * 100) / 173 global_page_state(NR_ANON_PAGES)) * 100) /
144 vm_total_pages; 174 available_memory;
145 175
146 dirty_ratio = vm_dirty_ratio; 176 dirty_ratio = vm_dirty_ratio;
147 if (dirty_ratio > unmapped_ratio / 2) 177 if (dirty_ratio > unmapped_ratio / 2)
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 353ce9039a86..59164313167f 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -156,10 +156,8 @@ static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
156 156
157static int page_is_consistent(struct zone *zone, struct page *page) 157static int page_is_consistent(struct zone *zone, struct page *page)
158{ 158{
159#ifdef CONFIG_HOLES_IN_ZONE 159 if (!pfn_valid_within(page_to_pfn(page)))
160 if (!pfn_valid(page_to_pfn(page)))
161 return 0; 160 return 0;
162#endif
163 if (zone != page_zone(page)) 161 if (zone != page_zone(page))
164 return 0; 162 return 0;
165 163
@@ -227,7 +225,7 @@ static void bad_page(struct page *page)
227 225
228static void free_compound_page(struct page *page) 226static void free_compound_page(struct page *page)
229{ 227{
230 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 228 __free_pages_ok(page, compound_order(page));
231} 229}
232 230
233static void prep_compound_page(struct page *page, unsigned long order) 231static void prep_compound_page(struct page *page, unsigned long order)
@@ -236,12 +234,13 @@ static void prep_compound_page(struct page *page, unsigned long order)
236 int nr_pages = 1 << order; 234 int nr_pages = 1 << order;
237 235
238 set_compound_page_dtor(page, free_compound_page); 236 set_compound_page_dtor(page, free_compound_page);
239 page[1].lru.prev = (void *)order; 237 set_compound_order(page, order);
240 for (i = 0; i < nr_pages; i++) { 238 __SetPageHead(page);
239 for (i = 1; i < nr_pages; i++) {
241 struct page *p = page + i; 240 struct page *p = page + i;
242 241
243 __SetPageCompound(p); 242 __SetPageTail(p);
244 set_page_private(p, (unsigned long)page); 243 p->first_page = page;
245 } 244 }
246} 245}
247 246
@@ -250,16 +249,19 @@ static void destroy_compound_page(struct page *page, unsigned long order)
250 int i; 249 int i;
251 int nr_pages = 1 << order; 250 int nr_pages = 1 << order;
252 251
253 if (unlikely((unsigned long)page[1].lru.prev != order)) 252 if (unlikely(compound_order(page) != order))
254 bad_page(page); 253 bad_page(page);
255 254
256 for (i = 0; i < nr_pages; i++) { 255 if (unlikely(!PageHead(page)))
256 bad_page(page);
257 __ClearPageHead(page);
258 for (i = 1; i < nr_pages; i++) {
257 struct page *p = page + i; 259 struct page *p = page + i;
258 260
259 if (unlikely(!PageCompound(p) | 261 if (unlikely(!PageTail(p) |
260 (page_private(p) != (unsigned long)page))) 262 (p->first_page != page)))
261 bad_page(page); 263 bad_page(page);
262 __ClearPageCompound(p); 264 __ClearPageTail(p);
263 } 265 }
264} 266}
265 267
@@ -346,10 +348,8 @@ __find_combined_index(unsigned long page_idx, unsigned int order)
346static inline int page_is_buddy(struct page *page, struct page *buddy, 348static inline int page_is_buddy(struct page *page, struct page *buddy,
347 int order) 349 int order)
348{ 350{
349#ifdef CONFIG_HOLES_IN_ZONE 351 if (!pfn_valid_within(page_to_pfn(buddy)))
350 if (!pfn_valid(page_to_pfn(buddy)))
351 return 0; 352 return 0;
352#endif
353 353
354 if (page_zone_id(page) != page_zone_id(buddy)) 354 if (page_zone_id(page) != page_zone_id(buddy))
355 return 0; 355 return 0;
@@ -433,13 +433,18 @@ static inline int free_pages_check(struct page *page)
433 1 << PG_private | 433 1 << PG_private |
434 1 << PG_locked | 434 1 << PG_locked |
435 1 << PG_active | 435 1 << PG_active |
436 1 << PG_reclaim |
437 1 << PG_slab | 436 1 << PG_slab |
438 1 << PG_swapcache | 437 1 << PG_swapcache |
439 1 << PG_writeback | 438 1 << PG_writeback |
440 1 << PG_reserved | 439 1 << PG_reserved |
441 1 << PG_buddy )))) 440 1 << PG_buddy ))))
442 bad_page(page); 441 bad_page(page);
442 /*
443 * PageReclaim == PageTail. It is only an error
444 * for PageReclaim to be set if PageCompound is clear.
445 */
446 if (unlikely(!PageCompound(page) && PageReclaim(page)))
447 bad_page(page);
443 if (PageDirty(page)) 448 if (PageDirty(page))
444 __ClearPageDirty(page); 449 __ClearPageDirty(page);
445 /* 450 /*
@@ -665,7 +670,7 @@ static int rmqueue_bulk(struct zone *zone, unsigned int order,
665} 670}
666 671
667#if MAX_NUMNODES > 1 672#if MAX_NUMNODES > 1
668int nr_node_ids __read_mostly; 673int nr_node_ids __read_mostly = MAX_NUMNODES;
669EXPORT_SYMBOL(nr_node_ids); 674EXPORT_SYMBOL(nr_node_ids);
670 675
671/* 676/*
@@ -770,8 +775,8 @@ void mark_free_pages(struct zone *zone)
770 if (pfn_valid(pfn)) { 775 if (pfn_valid(pfn)) {
771 struct page *page = pfn_to_page(pfn); 776 struct page *page = pfn_to_page(pfn);
772 777
773 if (!PageNosave(page)) 778 if (!swsusp_page_is_forbidden(page))
774 ClearPageNosaveFree(page); 779 swsusp_unset_page_free(page);
775 } 780 }
776 781
777 for (order = MAX_ORDER - 1; order >= 0; --order) 782 for (order = MAX_ORDER - 1; order >= 0; --order)
@@ -780,7 +785,7 @@ void mark_free_pages(struct zone *zone)
780 785
781 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 786 pfn = page_to_pfn(list_entry(curr, struct page, lru));
782 for (i = 0; i < (1UL << order); i++) 787 for (i = 0; i < (1UL << order); i++)
783 SetPageNosaveFree(pfn_to_page(pfn + i)); 788 swsusp_set_page_free(pfn_to_page(pfn + i));
784 } 789 }
785 790
786 spin_unlock_irqrestore(&zone->lock, flags); 791 spin_unlock_irqrestore(&zone->lock, flags);
@@ -3203,7 +3208,8 @@ int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3203 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 3208 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3204{ 3209{
3205 proc_dointvec(table, write, file, buffer, length, ppos); 3210 proc_dointvec(table, write, file, buffer, length, ppos);
3206 setup_per_zone_pages_min(); 3211 if (write)
3212 setup_per_zone_pages_min();
3207 return 0; 3213 return 0;
3208} 3214}
3209 3215
diff --git a/mm/quicklist.c b/mm/quicklist.c
new file mode 100644
index 000000000000..ae8189c2799e
--- /dev/null
+++ b/mm/quicklist.c
@@ -0,0 +1,88 @@
1/*
2 * Quicklist support.
3 *
4 * Quicklists are light weight lists of pages that have a defined state
5 * on alloc and free. Pages must be in the quicklist specific defined state
6 * (zero by default) when the page is freed. It seems that the initial idea
7 * for such lists first came from Dave Miller and then various other people
8 * improved on it.
9 *
10 * Copyright (C) 2007 SGI,
11 * Christoph Lameter <clameter@sgi.com>
12 * Generalized, added support for multiple lists and
13 * constructors / destructors.
14 */
15#include <linux/kernel.h>
16
17#include <linux/mm.h>
18#include <linux/mmzone.h>
19#include <linux/module.h>
20#include <linux/quicklist.h>
21
22DEFINE_PER_CPU(struct quicklist, quicklist)[CONFIG_NR_QUICK];
23
24#define FRACTION_OF_NODE_MEM 16
25
26static unsigned long max_pages(unsigned long min_pages)
27{
28 unsigned long node_free_pages, max;
29
30 node_free_pages = node_page_state(numa_node_id(),
31 NR_FREE_PAGES);
32 max = node_free_pages / FRACTION_OF_NODE_MEM;
33 return max(max, min_pages);
34}
35
36static long min_pages_to_free(struct quicklist *q,
37 unsigned long min_pages, long max_free)
38{
39 long pages_to_free;
40
41 pages_to_free = q->nr_pages - max_pages(min_pages);
42
43 return min(pages_to_free, max_free);
44}
45
46/*
47 * Trim down the number of pages in the quicklist
48 */
49void quicklist_trim(int nr, void (*dtor)(void *),
50 unsigned long min_pages, unsigned long max_free)
51{
52 long pages_to_free;
53 struct quicklist *q;
54
55 q = &get_cpu_var(quicklist)[nr];
56 if (q->nr_pages > min_pages) {
57 pages_to_free = min_pages_to_free(q, min_pages, max_free);
58
59 while (pages_to_free > 0) {
60 /*
61 * We pass a gfp_t of 0 to quicklist_alloc here
62 * because we will never call into the page allocator.
63 */
64 void *p = quicklist_alloc(nr, 0, NULL);
65
66 if (dtor)
67 dtor(p);
68 free_page((unsigned long)p);
69 pages_to_free--;
70 }
71 }
72 put_cpu_var(quicklist);
73}
74
75unsigned long quicklist_total_size(void)
76{
77 unsigned long count = 0;
78 int cpu;
79 struct quicklist *ql, *q;
80
81 for_each_online_cpu(cpu) {
82 ql = per_cpu(quicklist, cpu);
83 for (q = ql; q < ql + CONFIG_NR_QUICK; q++)
84 count += q->nr_pages;
85 }
86 return count;
87}
88
diff --git a/mm/readahead.c b/mm/readahead.c
index 93d9ee692fd8..9861e883fe57 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -37,7 +37,7 @@ void
37file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 37file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
38{ 38{
39 ra->ra_pages = mapping->backing_dev_info->ra_pages; 39 ra->ra_pages = mapping->backing_dev_info->ra_pages;
40 ra->prev_page = -1; 40 ra->prev_index = -1;
41} 41}
42EXPORT_SYMBOL_GPL(file_ra_state_init); 42EXPORT_SYMBOL_GPL(file_ra_state_init);
43 43
@@ -202,17 +202,19 @@ out:
202 * size: Number of pages in that read 202 * size: Number of pages in that read
203 * Together, these form the "current window". 203 * Together, these form the "current window".
204 * Together, start and size represent the `readahead window'. 204 * Together, start and size represent the `readahead window'.
205 * prev_page: The page which the readahead algorithm most-recently inspected. 205 * prev_index: The page which the readahead algorithm most-recently inspected.
206 * It is mainly used to detect sequential file reading. 206 * It is mainly used to detect sequential file reading.
207 * If page_cache_readahead sees that it is again being called for 207 * If page_cache_readahead sees that it is again being called for
208 * a page which it just looked at, it can return immediately without 208 * a page which it just looked at, it can return immediately without
209 * making any state changes. 209 * making any state changes.
210 * offset: Offset in the prev_index where the last read ended - used for
211 * detection of sequential file reading.
210 * ahead_start, 212 * ahead_start,
211 * ahead_size: Together, these form the "ahead window". 213 * ahead_size: Together, these form the "ahead window".
212 * ra_pages: The externally controlled max readahead for this fd. 214 * ra_pages: The externally controlled max readahead for this fd.
213 * 215 *
214 * When readahead is in the off state (size == 0), readahead is disabled. 216 * When readahead is in the off state (size == 0), readahead is disabled.
215 * In this state, prev_page is used to detect the resumption of sequential I/O. 217 * In this state, prev_index is used to detect the resumption of sequential I/O.
216 * 218 *
217 * The readahead code manages two windows - the "current" and the "ahead" 219 * The readahead code manages two windows - the "current" and the "ahead"
218 * windows. The intent is that while the application is walking the pages 220 * windows. The intent is that while the application is walking the pages
@@ -415,7 +417,7 @@ static int make_ahead_window(struct address_space *mapping, struct file *filp,
415 ra->ahead_size = get_next_ra_size(ra); 417 ra->ahead_size = get_next_ra_size(ra);
416 ra->ahead_start = ra->start + ra->size; 418 ra->ahead_start = ra->start + ra->size;
417 419
418 block = force || (ra->prev_page >= ra->ahead_start); 420 block = force || (ra->prev_index >= ra->ahead_start);
419 ret = blockable_page_cache_readahead(mapping, filp, 421 ret = blockable_page_cache_readahead(mapping, filp,
420 ra->ahead_start, ra->ahead_size, ra, block); 422 ra->ahead_start, ra->ahead_size, ra, block);
421 423
@@ -467,12 +469,13 @@ page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
467 * We avoid doing extra work and bogusly perturbing the readahead 469 * We avoid doing extra work and bogusly perturbing the readahead
468 * window expansion logic. 470 * window expansion logic.
469 */ 471 */
470 if (offset == ra->prev_page && --req_size) 472 if (offset == ra->prev_index && --req_size)
471 ++offset; 473 ++offset;
472 474
473 /* Note that prev_page == -1 if it is a first read */ 475 /* Note that prev_index == -1 if it is a first read */
474 sequential = (offset == ra->prev_page + 1); 476 sequential = (offset == ra->prev_index + 1);
475 ra->prev_page = offset; 477 ra->prev_index = offset;
478 ra->prev_offset = 0;
476 479
477 max = get_max_readahead(ra); 480 max = get_max_readahead(ra);
478 newsize = min(req_size, max); 481 newsize = min(req_size, max);
@@ -481,7 +484,7 @@ page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
481 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE)) 484 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
482 goto out; 485 goto out;
483 486
484 ra->prev_page += newsize - 1; 487 ra->prev_index += newsize - 1;
485 488
486 /* 489 /*
487 * Special case - first read at start of file. We'll assume it's 490 * Special case - first read at start of file. We'll assume it's
@@ -537,18 +540,18 @@ page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
537 * we get called back on the first page of the ahead window which 540 * we get called back on the first page of the ahead window which
538 * will allow us to submit more IO. 541 * will allow us to submit more IO.
539 */ 542 */
540 if (ra->prev_page >= ra->ahead_start) { 543 if (ra->prev_index >= ra->ahead_start) {
541 ra->start = ra->ahead_start; 544 ra->start = ra->ahead_start;
542 ra->size = ra->ahead_size; 545 ra->size = ra->ahead_size;
543 make_ahead_window(mapping, filp, ra, 0); 546 make_ahead_window(mapping, filp, ra, 0);
544recheck: 547recheck:
545 /* prev_page shouldn't overrun the ahead window */ 548 /* prev_index shouldn't overrun the ahead window */
546 ra->prev_page = min(ra->prev_page, 549 ra->prev_index = min(ra->prev_index,
547 ra->ahead_start + ra->ahead_size - 1); 550 ra->ahead_start + ra->ahead_size - 1);
548 } 551 }
549 552
550out: 553out:
551 return ra->prev_page + 1; 554 return ra->prev_index + 1;
552} 555}
553EXPORT_SYMBOL_GPL(page_cache_readahead); 556EXPORT_SYMBOL_GPL(page_cache_readahead);
554 557
diff --git a/mm/rmap.c b/mm/rmap.c
index 59da5b734c80..75a32be64a21 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -162,8 +162,7 @@ void anon_vma_unlink(struct vm_area_struct *vma)
162static void anon_vma_ctor(void *data, struct kmem_cache *cachep, 162static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 unsigned long flags) 163 unsigned long flags)
164{ 164{
165 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 165 if (flags & SLAB_CTOR_CONSTRUCTOR) {
166 SLAB_CTOR_CONSTRUCTOR) {
167 struct anon_vma *anon_vma = data; 166 struct anon_vma *anon_vma = data;
168 167
169 spin_lock_init(&anon_vma->lock); 168 spin_lock_init(&anon_vma->lock);
diff --git a/mm/shmem.c b/mm/shmem.c
index b2a35ebf071a..f01e8deed645 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -2358,8 +2358,7 @@ static void init_once(void *foo, struct kmem_cache *cachep,
2358{ 2358{
2359 struct shmem_inode_info *p = (struct shmem_inode_info *) foo; 2359 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2360 2360
2361 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 2361 if (flags & SLAB_CTOR_CONSTRUCTOR) {
2362 SLAB_CTOR_CONSTRUCTOR) {
2363 inode_init_once(&p->vfs_inode); 2362 inode_init_once(&p->vfs_inode);
2364#ifdef CONFIG_TMPFS_POSIX_ACL 2363#ifdef CONFIG_TMPFS_POSIX_ACL
2365 p->i_acl = NULL; 2364 p->i_acl = NULL;
diff --git a/mm/slab.c b/mm/slab.c
index 4cbac24ae2f1..5920a412b377 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -116,8 +116,7 @@
116#include <asm/page.h> 116#include <asm/page.h>
117 117
118/* 118/*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths). 120 * 0 for faster, smaller code (especially in the critical paths).
122 * 121 *
123 * STATS - 1 to collect stats for /proc/slabinfo. 122 * STATS - 1 to collect stats for /proc/slabinfo.
@@ -172,15 +171,15 @@
172 171
173/* Legal flag mask for kmem_cache_create(). */ 172/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG 173#if DEBUG
175# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ 174# define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \ 175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \ 176 SLAB_CACHE_DMA | \
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ 177 SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181#else 180#else
182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ 182 SLAB_CACHE_DMA | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ 183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD) 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186#endif 185#endif
@@ -389,7 +388,6 @@ struct kmem_cache {
389 unsigned int buffer_size; 388 unsigned int buffer_size;
390 u32 reciprocal_buffer_size; 389 u32 reciprocal_buffer_size;
391/* 3) touched by every alloc & free from the backend */ 390/* 3) touched by every alloc & free from the backend */
392 struct kmem_list3 *nodelists[MAX_NUMNODES];
393 391
394 unsigned int flags; /* constant flags */ 392 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */ 393 unsigned int num; /* # of objs per slab */
@@ -444,6 +442,17 @@ struct kmem_cache {
444 int obj_offset; 442 int obj_offset;
445 int obj_size; 443 int obj_size;
446#endif 444#endif
445 /*
446 * We put nodelists[] at the end of kmem_cache, because we want to size
447 * this array to nr_node_ids slots instead of MAX_NUMNODES
448 * (see kmem_cache_init())
449 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
450 * is statically defined, so we reserve the max number of nodes.
451 */
452 struct kmem_list3 *nodelists[MAX_NUMNODES];
453 /*
454 * Do not add fields after nodelists[]
455 */
447}; 456};
448 457
449#define CFLGS_OFF_SLAB (0x80000000UL) 458#define CFLGS_OFF_SLAB (0x80000000UL)
@@ -592,8 +601,7 @@ static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
592 601
593static inline struct kmem_cache *page_get_cache(struct page *page) 602static inline struct kmem_cache *page_get_cache(struct page *page)
594{ 603{
595 if (unlikely(PageCompound(page))) 604 page = compound_head(page);
596 page = (struct page *)page_private(page);
597 BUG_ON(!PageSlab(page)); 605 BUG_ON(!PageSlab(page));
598 return (struct kmem_cache *)page->lru.next; 606 return (struct kmem_cache *)page->lru.next;
599} 607}
@@ -605,21 +613,19 @@ static inline void page_set_slab(struct page *page, struct slab *slab)
605 613
606static inline struct slab *page_get_slab(struct page *page) 614static inline struct slab *page_get_slab(struct page *page)
607{ 615{
608 if (unlikely(PageCompound(page)))
609 page = (struct page *)page_private(page);
610 BUG_ON(!PageSlab(page)); 616 BUG_ON(!PageSlab(page));
611 return (struct slab *)page->lru.prev; 617 return (struct slab *)page->lru.prev;
612} 618}
613 619
614static inline struct kmem_cache *virt_to_cache(const void *obj) 620static inline struct kmem_cache *virt_to_cache(const void *obj)
615{ 621{
616 struct page *page = virt_to_page(obj); 622 struct page *page = virt_to_head_page(obj);
617 return page_get_cache(page); 623 return page_get_cache(page);
618} 624}
619 625
620static inline struct slab *virt_to_slab(const void *obj) 626static inline struct slab *virt_to_slab(const void *obj)
621{ 627{
622 struct page *page = virt_to_page(obj); 628 struct page *page = virt_to_head_page(obj);
623 return page_get_slab(page); 629 return page_get_slab(page);
624} 630}
625 631
@@ -678,9 +684,6 @@ static struct kmem_cache cache_cache = {
678 .shared = 1, 684 .shared = 1,
679 .buffer_size = sizeof(struct kmem_cache), 685 .buffer_size = sizeof(struct kmem_cache),
680 .name = "kmem_cache", 686 .name = "kmem_cache",
681#if DEBUG
682 .obj_size = sizeof(struct kmem_cache),
683#endif
684}; 687};
685 688
686#define BAD_ALIEN_MAGIC 0x01020304ul 689#define BAD_ALIEN_MAGIC 0x01020304ul
@@ -1146,7 +1149,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1146 * Make sure we are not freeing a object from another node to the array 1149 * Make sure we are not freeing a object from another node to the array
1147 * cache on this cpu. 1150 * cache on this cpu.
1148 */ 1151 */
1149 if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches)) 1152 if (likely(slabp->nodeid == node))
1150 return 0; 1153 return 0;
1151 1154
1152 l3 = cachep->nodelists[node]; 1155 l3 = cachep->nodelists[node];
@@ -1223,19 +1226,20 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1223 */ 1226 */
1224 list_for_each_entry(cachep, &cache_chain, next) { 1227 list_for_each_entry(cachep, &cache_chain, next) {
1225 struct array_cache *nc; 1228 struct array_cache *nc;
1226 struct array_cache *shared; 1229 struct array_cache *shared = NULL;
1227 struct array_cache **alien = NULL; 1230 struct array_cache **alien = NULL;
1228 1231
1229 nc = alloc_arraycache(node, cachep->limit, 1232 nc = alloc_arraycache(node, cachep->limit,
1230 cachep->batchcount); 1233 cachep->batchcount);
1231 if (!nc) 1234 if (!nc)
1232 goto bad; 1235 goto bad;
1233 shared = alloc_arraycache(node, 1236 if (cachep->shared) {
1237 shared = alloc_arraycache(node,
1234 cachep->shared * cachep->batchcount, 1238 cachep->shared * cachep->batchcount,
1235 0xbaadf00d); 1239 0xbaadf00d);
1236 if (!shared) 1240 if (!shared)
1237 goto bad; 1241 goto bad;
1238 1242 }
1239 if (use_alien_caches) { 1243 if (use_alien_caches) {
1240 alien = alloc_alien_cache(node, cachep->limit); 1244 alien = alloc_alien_cache(node, cachep->limit);
1241 if (!alien) 1245 if (!alien)
@@ -1317,8 +1321,8 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1317 1321
1318 shared = l3->shared; 1322 shared = l3->shared;
1319 if (shared) { 1323 if (shared) {
1320 free_block(cachep, l3->shared->entry, 1324 free_block(cachep, shared->entry,
1321 l3->shared->avail, node); 1325 shared->avail, node);
1322 l3->shared = NULL; 1326 l3->shared = NULL;
1323 } 1327 }
1324 1328
@@ -1394,6 +1398,9 @@ void __init kmem_cache_init(void)
1394 int order; 1398 int order;
1395 int node; 1399 int node;
1396 1400
1401 if (num_possible_nodes() == 1)
1402 use_alien_caches = 0;
1403
1397 for (i = 0; i < NUM_INIT_LISTS; i++) { 1404 for (i = 0; i < NUM_INIT_LISTS; i++) {
1398 kmem_list3_init(&initkmem_list3[i]); 1405 kmem_list3_init(&initkmem_list3[i]);
1399 if (i < MAX_NUMNODES) 1406 if (i < MAX_NUMNODES)
@@ -1436,6 +1443,15 @@ void __init kmem_cache_init(void)
1436 cache_cache.array[smp_processor_id()] = &initarray_cache.cache; 1443 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1437 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE]; 1444 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1438 1445
1446 /*
1447 * struct kmem_cache size depends on nr_node_ids, which
1448 * can be less than MAX_NUMNODES.
1449 */
1450 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1451 nr_node_ids * sizeof(struct kmem_list3 *);
1452#if DEBUG
1453 cache_cache.obj_size = cache_cache.buffer_size;
1454#endif
1439 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, 1455 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1440 cache_line_size()); 1456 cache_line_size());
1441 cache_cache.reciprocal_buffer_size = 1457 cache_cache.reciprocal_buffer_size =
@@ -1929,7 +1945,7 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1929 * For setting up all the kmem_list3s for cache whose buffer_size is same as 1945 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1930 * size of kmem_list3. 1946 * size of kmem_list3.
1931 */ 1947 */
1932static void set_up_list3s(struct kmem_cache *cachep, int index) 1948static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1933{ 1949{
1934 int node; 1950 int node;
1935 1951
@@ -2151,13 +2167,15 @@ kmem_cache_create (const char *name, size_t size, size_t align,
2151 */ 2167 */
2152 res = probe_kernel_address(pc->name, tmp); 2168 res = probe_kernel_address(pc->name, tmp);
2153 if (res) { 2169 if (res) {
2154 printk("SLAB: cache with size %d has lost its name\n", 2170 printk(KERN_ERR
2171 "SLAB: cache with size %d has lost its name\n",
2155 pc->buffer_size); 2172 pc->buffer_size);
2156 continue; 2173 continue;
2157 } 2174 }
2158 2175
2159 if (!strcmp(pc->name, name)) { 2176 if (!strcmp(pc->name, name)) {
2160 printk("kmem_cache_create: duplicate cache %s\n", name); 2177 printk(KERN_ERR
2178 "kmem_cache_create: duplicate cache %s\n", name);
2161 dump_stack(); 2179 dump_stack();
2162 goto oops; 2180 goto oops;
2163 } 2181 }
@@ -2165,12 +2183,6 @@ kmem_cache_create (const char *name, size_t size, size_t align,
2165 2183
2166#if DEBUG 2184#if DEBUG
2167 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 2185 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2168 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2169 /* No constructor, but inital state check requested */
2170 printk(KERN_ERR "%s: No con, but init state check "
2171 "requested - %s\n", __FUNCTION__, name);
2172 flags &= ~SLAB_DEBUG_INITIAL;
2173 }
2174#if FORCED_DEBUG 2186#if FORCED_DEBUG
2175 /* 2187 /*
2176 * Enable redzoning and last user accounting, except for caches with 2188 * Enable redzoning and last user accounting, except for caches with
@@ -2294,7 +2306,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
2294 left_over = calculate_slab_order(cachep, size, align, flags); 2306 left_over = calculate_slab_order(cachep, size, align, flags);
2295 2307
2296 if (!cachep->num) { 2308 if (!cachep->num) {
2297 printk("kmem_cache_create: couldn't create cache %s.\n", name); 2309 printk(KERN_ERR
2310 "kmem_cache_create: couldn't create cache %s.\n", name);
2298 kmem_cache_free(&cache_cache, cachep); 2311 kmem_cache_free(&cache_cache, cachep);
2299 cachep = NULL; 2312 cachep = NULL;
2300 goto oops; 2313 goto oops;
@@ -2733,19 +2746,10 @@ static int cache_grow(struct kmem_cache *cachep,
2733 * Be lazy and only check for valid flags here, keeping it out of the 2746 * Be lazy and only check for valid flags here, keeping it out of the
2734 * critical path in kmem_cache_alloc(). 2747 * critical path in kmem_cache_alloc().
2735 */ 2748 */
2736 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW)); 2749 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2737 if (flags & __GFP_NO_GROW)
2738 return 0;
2739 2750
2740 ctor_flags = SLAB_CTOR_CONSTRUCTOR; 2751 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2741 local_flags = (flags & GFP_LEVEL_MASK); 2752 local_flags = (flags & GFP_LEVEL_MASK);
2742 if (!(local_flags & __GFP_WAIT))
2743 /*
2744 * Not allowed to sleep. Need to tell a constructor about
2745 * this - it might need to know...
2746 */
2747 ctor_flags |= SLAB_CTOR_ATOMIC;
2748
2749 /* Take the l3 list lock to change the colour_next on this node */ 2753 /* Take the l3 list lock to change the colour_next on this node */
2750 check_irq_off(); 2754 check_irq_off();
2751 l3 = cachep->nodelists[nodeid]; 2755 l3 = cachep->nodelists[nodeid];
@@ -2858,7 +2862,7 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2858 2862
2859 objp -= obj_offset(cachep); 2863 objp -= obj_offset(cachep);
2860 kfree_debugcheck(objp); 2864 kfree_debugcheck(objp);
2861 page = virt_to_page(objp); 2865 page = virt_to_head_page(objp);
2862 2866
2863 slabp = page_get_slab(page); 2867 slabp = page_get_slab(page);
2864 2868
@@ -2875,15 +2879,6 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2875 BUG_ON(objnr >= cachep->num); 2879 BUG_ON(objnr >= cachep->num);
2876 BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); 2880 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2877 2881
2878 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2879 /*
2880 * Need to call the slab's constructor so the caller can
2881 * perform a verify of its state (debugging). Called without
2882 * the cache-lock held.
2883 */
2884 cachep->ctor(objp + obj_offset(cachep),
2885 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2886 }
2887 if (cachep->flags & SLAB_POISON && cachep->dtor) { 2882 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2888 /* we want to cache poison the object, 2883 /* we want to cache poison the object,
2889 * call the destruction callback 2884 * call the destruction callback
@@ -2987,6 +2982,14 @@ retry:
2987 slabp = list_entry(entry, struct slab, list); 2982 slabp = list_entry(entry, struct slab, list);
2988 check_slabp(cachep, slabp); 2983 check_slabp(cachep, slabp);
2989 check_spinlock_acquired(cachep); 2984 check_spinlock_acquired(cachep);
2985
2986 /*
2987 * The slab was either on partial or free list so
2988 * there must be at least one object available for
2989 * allocation.
2990 */
2991 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2992
2990 while (slabp->inuse < cachep->num && batchcount--) { 2993 while (slabp->inuse < cachep->num && batchcount--) {
2991 STATS_INC_ALLOCED(cachep); 2994 STATS_INC_ALLOCED(cachep);
2992 STATS_INC_ACTIVE(cachep); 2995 STATS_INC_ACTIVE(cachep);
@@ -3074,20 +3077,14 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3074 struct slab *slabp; 3077 struct slab *slabp;
3075 unsigned objnr; 3078 unsigned objnr;
3076 3079
3077 slabp = page_get_slab(virt_to_page(objp)); 3080 slabp = page_get_slab(virt_to_head_page(objp));
3078 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; 3081 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3079 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; 3082 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3080 } 3083 }
3081#endif 3084#endif
3082 objp += obj_offset(cachep); 3085 objp += obj_offset(cachep);
3083 if (cachep->ctor && cachep->flags & SLAB_POISON) { 3086 if (cachep->ctor && cachep->flags & SLAB_POISON)
3084 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; 3087 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3085
3086 if (!(flags & __GFP_WAIT))
3087 ctor_flags |= SLAB_CTOR_ATOMIC;
3088
3089 cachep->ctor(objp, cachep, ctor_flags);
3090 }
3091#if ARCH_SLAB_MINALIGN 3088#if ARCH_SLAB_MINALIGN
3092 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { 3089 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3093 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", 3090 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
@@ -3142,7 +3139,7 @@ static int __init failslab_debugfs(void)
3142 struct dentry *dir; 3139 struct dentry *dir;
3143 int err; 3140 int err;
3144 3141
3145 err = init_fault_attr_dentries(&failslab.attr, "failslab"); 3142 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3146 if (err) 3143 if (err)
3147 return err; 3144 return err;
3148 dir = failslab.attr.dentries.dir; 3145 dir = failslab.attr.dentries.dir;
@@ -3180,9 +3177,6 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3180 3177
3181 check_irq_off(); 3178 check_irq_off();
3182 3179
3183 if (should_failslab(cachep, flags))
3184 return NULL;
3185
3186 ac = cpu_cache_get(cachep); 3180 ac = cpu_cache_get(cachep);
3187 if (likely(ac->avail)) { 3181 if (likely(ac->avail)) {
3188 STATS_INC_ALLOCHIT(cachep); 3182 STATS_INC_ALLOCHIT(cachep);
@@ -3256,7 +3250,7 @@ retry:
3256 flags | GFP_THISNODE, nid); 3250 flags | GFP_THISNODE, nid);
3257 } 3251 }
3258 3252
3259 if (!obj && !(flags & __GFP_NO_GROW)) { 3253 if (!obj) {
3260 /* 3254 /*
3261 * This allocation will be performed within the constraints 3255 * This allocation will be performed within the constraints
3262 * of the current cpuset / memory policy requirements. 3256 * of the current cpuset / memory policy requirements.
@@ -3374,6 +3368,9 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3374 unsigned long save_flags; 3368 unsigned long save_flags;
3375 void *ptr; 3369 void *ptr;
3376 3370
3371 if (should_failslab(cachep, flags))
3372 return NULL;
3373
3377 cache_alloc_debugcheck_before(cachep, flags); 3374 cache_alloc_debugcheck_before(cachep, flags);
3378 local_irq_save(save_flags); 3375 local_irq_save(save_flags);
3379 3376
@@ -3444,6 +3441,9 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3444 unsigned long save_flags; 3441 unsigned long save_flags;
3445 void *objp; 3442 void *objp;
3446 3443
3444 if (should_failslab(cachep, flags))
3445 return NULL;
3446
3447 cache_alloc_debugcheck_before(cachep, flags); 3447 cache_alloc_debugcheck_before(cachep, flags);
3448 local_irq_save(save_flags); 3448 local_irq_save(save_flags);
3449 objp = __do_cache_alloc(cachep, flags); 3449 objp = __do_cache_alloc(cachep, flags);
@@ -3563,7 +3563,7 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3563 check_irq_off(); 3563 check_irq_off();
3564 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); 3564 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3565 3565
3566 if (cache_free_alien(cachep, objp)) 3566 if (use_alien_caches && cache_free_alien(cachep, objp))
3567 return; 3567 return;
3568 3568
3569 if (likely(ac->avail < ac->limit)) { 3569 if (likely(ac->avail < ac->limit)) {
@@ -3737,6 +3737,53 @@ EXPORT_SYMBOL(__kmalloc);
3737#endif 3737#endif
3738 3738
3739/** 3739/**
3740 * krealloc - reallocate memory. The contents will remain unchanged.
3741 *
3742 * @p: object to reallocate memory for.
3743 * @new_size: how many bytes of memory are required.
3744 * @flags: the type of memory to allocate.
3745 *
3746 * The contents of the object pointed to are preserved up to the
3747 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3748 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3749 * %NULL pointer, the object pointed to is freed.
3750 */
3751void *krealloc(const void *p, size_t new_size, gfp_t flags)
3752{
3753 struct kmem_cache *cache, *new_cache;
3754 void *ret;
3755
3756 if (unlikely(!p))
3757 return kmalloc_track_caller(new_size, flags);
3758
3759 if (unlikely(!new_size)) {
3760 kfree(p);
3761 return NULL;
3762 }
3763
3764 cache = virt_to_cache(p);
3765 new_cache = __find_general_cachep(new_size, flags);
3766
3767 /*
3768 * If new size fits in the current cache, bail out.
3769 */
3770 if (likely(cache == new_cache))
3771 return (void *)p;
3772
3773 /*
3774 * We are on the slow-path here so do not use __cache_alloc
3775 * because it bloats kernel text.
3776 */
3777 ret = kmalloc_track_caller(new_size, flags);
3778 if (ret) {
3779 memcpy(ret, p, min(new_size, ksize(p)));
3780 kfree(p);
3781 }
3782 return ret;
3783}
3784EXPORT_SYMBOL(krealloc);
3785
3786/**
3740 * kmem_cache_free - Deallocate an object 3787 * kmem_cache_free - Deallocate an object
3741 * @cachep: The cache the allocation was from. 3788 * @cachep: The cache the allocation was from.
3742 * @objp: The previously allocated object. 3789 * @objp: The previously allocated object.
@@ -3812,12 +3859,15 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
3812 goto fail; 3859 goto fail;
3813 } 3860 }
3814 3861
3815 new_shared = alloc_arraycache(node, 3862 new_shared = NULL;
3863 if (cachep->shared) {
3864 new_shared = alloc_arraycache(node,
3816 cachep->shared*cachep->batchcount, 3865 cachep->shared*cachep->batchcount,
3817 0xbaadf00d); 3866 0xbaadf00d);
3818 if (!new_shared) { 3867 if (!new_shared) {
3819 free_alien_cache(new_alien); 3868 free_alien_cache(new_alien);
3820 goto fail; 3869 goto fail;
3870 }
3821 } 3871 }
3822 3872
3823 l3 = cachep->nodelists[node]; 3873 l3 = cachep->nodelists[node];
@@ -3975,10 +4025,8 @@ static int enable_cpucache(struct kmem_cache *cachep)
3975 * to a larger limit. Thus disabled by default. 4025 * to a larger limit. Thus disabled by default.
3976 */ 4026 */
3977 shared = 0; 4027 shared = 0;
3978#ifdef CONFIG_SMP 4028 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3979 if (cachep->buffer_size <= PAGE_SIZE)
3980 shared = 8; 4029 shared = 8;
3981#endif
3982 4030
3983#if DEBUG 4031#if DEBUG
3984 /* 4032 /*
@@ -4478,7 +4526,7 @@ const struct seq_operations slabstats_op = {
4478 * allocated with either kmalloc() or kmem_cache_alloc(). The object 4526 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4479 * must not be freed during the duration of the call. 4527 * must not be freed during the duration of the call.
4480 */ 4528 */
4481unsigned int ksize(const void *objp) 4529size_t ksize(const void *objp)
4482{ 4530{
4483 if (unlikely(objp == NULL)) 4531 if (unlikely(objp == NULL))
4484 return 0; 4532 return 0;
diff --git a/mm/slob.c b/mm/slob.c
index 5adc29cb58dd..c6933bc19bcd 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -21,7 +21,7 @@
21 * 21 *
22 * SLAB is emulated on top of SLOB by simply calling constructors and 22 * SLAB is emulated on top of SLOB by simply calling constructors and
23 * destructors for every SLAB allocation. Objects are returned with 23 * destructors for every SLAB allocation. Objects are returned with
24 * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is 24 * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is
25 * set, in which case the low-level allocator will fragment blocks to 25 * set, in which case the low-level allocator will fragment blocks to
26 * create the proper alignment. Again, objects of page-size or greater 26 * create the proper alignment. Again, objects of page-size or greater
27 * are allocated by calling __get_free_pages. As SLAB objects know 27 * are allocated by calling __get_free_pages. As SLAB objects know
@@ -150,15 +150,6 @@ static void slob_free(void *block, int size)
150 spin_unlock_irqrestore(&slob_lock, flags); 150 spin_unlock_irqrestore(&slob_lock, flags);
151} 151}
152 152
153static int FASTCALL(find_order(int size));
154static int fastcall find_order(int size)
155{
156 int order = 0;
157 for ( ; size > 4096 ; size >>=1)
158 order++;
159 return order;
160}
161
162void *__kmalloc(size_t size, gfp_t gfp) 153void *__kmalloc(size_t size, gfp_t gfp)
163{ 154{
164 slob_t *m; 155 slob_t *m;
@@ -174,7 +165,7 @@ void *__kmalloc(size_t size, gfp_t gfp)
174 if (!bb) 165 if (!bb)
175 return 0; 166 return 0;
176 167
177 bb->order = find_order(size); 168 bb->order = get_order(size);
178 bb->pages = (void *)__get_free_pages(gfp, bb->order); 169 bb->pages = (void *)__get_free_pages(gfp, bb->order);
179 170
180 if (bb->pages) { 171 if (bb->pages) {
@@ -190,6 +181,39 @@ void *__kmalloc(size_t size, gfp_t gfp)
190} 181}
191EXPORT_SYMBOL(__kmalloc); 182EXPORT_SYMBOL(__kmalloc);
192 183
184/**
185 * krealloc - reallocate memory. The contents will remain unchanged.
186 *
187 * @p: object to reallocate memory for.
188 * @new_size: how many bytes of memory are required.
189 * @flags: the type of memory to allocate.
190 *
191 * The contents of the object pointed to are preserved up to the
192 * lesser of the new and old sizes. If @p is %NULL, krealloc()
193 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
194 * %NULL pointer, the object pointed to is freed.
195 */
196void *krealloc(const void *p, size_t new_size, gfp_t flags)
197{
198 void *ret;
199
200 if (unlikely(!p))
201 return kmalloc_track_caller(new_size, flags);
202
203 if (unlikely(!new_size)) {
204 kfree(p);
205 return NULL;
206 }
207
208 ret = kmalloc_track_caller(new_size, flags);
209 if (ret) {
210 memcpy(ret, p, min(new_size, ksize(p)));
211 kfree(p);
212 }
213 return ret;
214}
215EXPORT_SYMBOL(krealloc);
216
193void kfree(const void *block) 217void kfree(const void *block)
194{ 218{
195 bigblock_t *bb, **last = &bigblocks; 219 bigblock_t *bb, **last = &bigblocks;
@@ -219,7 +243,7 @@ void kfree(const void *block)
219 243
220EXPORT_SYMBOL(kfree); 244EXPORT_SYMBOL(kfree);
221 245
222unsigned int ksize(const void *block) 246size_t ksize(const void *block)
223{ 247{
224 bigblock_t *bb; 248 bigblock_t *bb;
225 unsigned long flags; 249 unsigned long flags;
@@ -262,10 +286,11 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
262 c->ctor = ctor; 286 c->ctor = ctor;
263 c->dtor = dtor; 287 c->dtor = dtor;
264 /* ignore alignment unless it's forced */ 288 /* ignore alignment unless it's forced */
265 c->align = (flags & SLAB_MUST_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; 289 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
266 if (c->align < align) 290 if (c->align < align)
267 c->align = align; 291 c->align = align;
268 } 292 } else if (flags & SLAB_PANIC)
293 panic("Cannot create slab cache %s\n", name);
269 294
270 return c; 295 return c;
271} 296}
@@ -284,7 +309,7 @@ void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
284 if (c->size < PAGE_SIZE) 309 if (c->size < PAGE_SIZE)
285 b = slob_alloc(c->size, flags, c->align); 310 b = slob_alloc(c->size, flags, c->align);
286 else 311 else
287 b = (void *)__get_free_pages(flags, find_order(c->size)); 312 b = (void *)__get_free_pages(flags, get_order(c->size));
288 313
289 if (c->ctor) 314 if (c->ctor)
290 c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR); 315 c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR);
@@ -311,7 +336,7 @@ void kmem_cache_free(struct kmem_cache *c, void *b)
311 if (c->size < PAGE_SIZE) 336 if (c->size < PAGE_SIZE)
312 slob_free(b, c->size); 337 slob_free(b, c->size);
313 else 338 else
314 free_pages((unsigned long)b, find_order(c->size)); 339 free_pages((unsigned long)b, get_order(c->size));
315} 340}
316EXPORT_SYMBOL(kmem_cache_free); 341EXPORT_SYMBOL(kmem_cache_free);
317 342
diff --git a/mm/slub.c b/mm/slub.c
new file mode 100644
index 000000000000..5db3da5a60bf
--- /dev/null
+++ b/mm/slub.c
@@ -0,0 +1,3520 @@
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
90/*
91 * Issues still to be resolved:
92 *
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
97 *
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99 *
100 * - Variable sizing of the per node arrays
101 */
102
103/* Enable to test recovery from slab corruption on boot */
104#undef SLUB_RESILIENCY_TEST
105
106#if PAGE_SHIFT <= 12
107
108/*
109 * Small page size. Make sure that we do not fragment memory
110 */
111#define DEFAULT_MAX_ORDER 1
112#define DEFAULT_MIN_OBJECTS 4
113
114#else
115
116/*
117 * Large page machines are customarily able to handle larger
118 * page orders.
119 */
120#define DEFAULT_MAX_ORDER 2
121#define DEFAULT_MIN_OBJECTS 8
122
123#endif
124
125/*
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 */
129#define MIN_PARTIAL 2
130
131/*
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
135 */
136#define MAX_PARTIAL 10
137
138#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
140/*
141 * Set of flags that will prevent slab merging
142 */
143#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145
146#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
148
149#ifndef ARCH_KMALLOC_MINALIGN
150#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
154#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155#endif
156
157/* Internal SLUB flags */
158#define __OBJECT_POISON 0x80000000 /* Poison object */
159
160static int kmem_size = sizeof(struct kmem_cache);
161
162#ifdef CONFIG_SMP
163static struct notifier_block slab_notifier;
164#endif
165
166static enum {
167 DOWN, /* No slab functionality available */
168 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
169 UP, /* Everything works */
170 SYSFS /* Sysfs up */
171} slab_state = DOWN;
172
173/* A list of all slab caches on the system */
174static DECLARE_RWSEM(slub_lock);
175LIST_HEAD(slab_caches);
176
177#ifdef CONFIG_SYSFS
178static int sysfs_slab_add(struct kmem_cache *);
179static int sysfs_slab_alias(struct kmem_cache *, const char *);
180static void sysfs_slab_remove(struct kmem_cache *);
181#else
182static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
183static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
184static void sysfs_slab_remove(struct kmem_cache *s) {}
185#endif
186
187/********************************************************************
188 * Core slab cache functions
189 *******************************************************************/
190
191int slab_is_available(void)
192{
193 return slab_state >= UP;
194}
195
196static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
197{
198#ifdef CONFIG_NUMA
199 return s->node[node];
200#else
201 return &s->local_node;
202#endif
203}
204
205/*
206 * Object debugging
207 */
208static void print_section(char *text, u8 *addr, unsigned int length)
209{
210 int i, offset;
211 int newline = 1;
212 char ascii[17];
213
214 ascii[16] = 0;
215
216 for (i = 0; i < length; i++) {
217 if (newline) {
218 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
219 newline = 0;
220 }
221 printk(" %02x", addr[i]);
222 offset = i % 16;
223 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
224 if (offset == 15) {
225 printk(" %s\n",ascii);
226 newline = 1;
227 }
228 }
229 if (!newline) {
230 i %= 16;
231 while (i < 16) {
232 printk(" ");
233 ascii[i] = ' ';
234 i++;
235 }
236 printk(" %s\n", ascii);
237 }
238}
239
240/*
241 * Slow version of get and set free pointer.
242 *
243 * This requires touching the cache lines of kmem_cache.
244 * The offset can also be obtained from the page. In that
245 * case it is in the cacheline that we already need to touch.
246 */
247static void *get_freepointer(struct kmem_cache *s, void *object)
248{
249 return *(void **)(object + s->offset);
250}
251
252static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
253{
254 *(void **)(object + s->offset) = fp;
255}
256
257/*
258 * Tracking user of a slab.
259 */
260struct track {
261 void *addr; /* Called from address */
262 int cpu; /* Was running on cpu */
263 int pid; /* Pid context */
264 unsigned long when; /* When did the operation occur */
265};
266
267enum track_item { TRACK_ALLOC, TRACK_FREE };
268
269static struct track *get_track(struct kmem_cache *s, void *object,
270 enum track_item alloc)
271{
272 struct track *p;
273
274 if (s->offset)
275 p = object + s->offset + sizeof(void *);
276 else
277 p = object + s->inuse;
278
279 return p + alloc;
280}
281
282static void set_track(struct kmem_cache *s, void *object,
283 enum track_item alloc, void *addr)
284{
285 struct track *p;
286
287 if (s->offset)
288 p = object + s->offset + sizeof(void *);
289 else
290 p = object + s->inuse;
291
292 p += alloc;
293 if (addr) {
294 p->addr = addr;
295 p->cpu = smp_processor_id();
296 p->pid = current ? current->pid : -1;
297 p->when = jiffies;
298 } else
299 memset(p, 0, sizeof(struct track));
300}
301
302static void init_tracking(struct kmem_cache *s, void *object)
303{
304 if (s->flags & SLAB_STORE_USER) {
305 set_track(s, object, TRACK_FREE, NULL);
306 set_track(s, object, TRACK_ALLOC, NULL);
307 }
308}
309
310static void print_track(const char *s, struct track *t)
311{
312 if (!t->addr)
313 return;
314
315 printk(KERN_ERR "%s: ", s);
316 __print_symbol("%s", (unsigned long)t->addr);
317 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
318}
319
320static void print_trailer(struct kmem_cache *s, u8 *p)
321{
322 unsigned int off; /* Offset of last byte */
323
324 if (s->flags & SLAB_RED_ZONE)
325 print_section("Redzone", p + s->objsize,
326 s->inuse - s->objsize);
327
328 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
329 p + s->offset,
330 get_freepointer(s, p));
331
332 if (s->offset)
333 off = s->offset + sizeof(void *);
334 else
335 off = s->inuse;
336
337 if (s->flags & SLAB_STORE_USER) {
338 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
339 print_track("Last free ", get_track(s, p, TRACK_FREE));
340 off += 2 * sizeof(struct track);
341 }
342
343 if (off != s->size)
344 /* Beginning of the filler is the free pointer */
345 print_section("Filler", p + off, s->size - off);
346}
347
348static void object_err(struct kmem_cache *s, struct page *page,
349 u8 *object, char *reason)
350{
351 u8 *addr = page_address(page);
352
353 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
354 s->name, reason, object, page);
355 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
356 object - addr, page->flags, page->inuse, page->freelist);
357 if (object > addr + 16)
358 print_section("Bytes b4", object - 16, 16);
359 print_section("Object", object, min(s->objsize, 128));
360 print_trailer(s, object);
361 dump_stack();
362}
363
364static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
365{
366 va_list args;
367 char buf[100];
368
369 va_start(args, reason);
370 vsnprintf(buf, sizeof(buf), reason, args);
371 va_end(args);
372 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
373 page);
374 dump_stack();
375}
376
377static void init_object(struct kmem_cache *s, void *object, int active)
378{
379 u8 *p = object;
380
381 if (s->flags & __OBJECT_POISON) {
382 memset(p, POISON_FREE, s->objsize - 1);
383 p[s->objsize -1] = POISON_END;
384 }
385
386 if (s->flags & SLAB_RED_ZONE)
387 memset(p + s->objsize,
388 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
389 s->inuse - s->objsize);
390}
391
392static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
393{
394 while (bytes) {
395 if (*start != (u8)value)
396 return 0;
397 start++;
398 bytes--;
399 }
400 return 1;
401}
402
403
404static int check_valid_pointer(struct kmem_cache *s, struct page *page,
405 void *object)
406{
407 void *base;
408
409 if (!object)
410 return 1;
411
412 base = page_address(page);
413 if (object < base || object >= base + s->objects * s->size ||
414 (object - base) % s->size) {
415 return 0;
416 }
417
418 return 1;
419}
420
421/*
422 * Object layout:
423 *
424 * object address
425 * Bytes of the object to be managed.
426 * If the freepointer may overlay the object then the free
427 * pointer is the first word of the object.
428 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
429 * 0xa5 (POISON_END)
430 *
431 * object + s->objsize
432 * Padding to reach word boundary. This is also used for Redzoning.
433 * Padding is extended to word size if Redzoning is enabled
434 * and objsize == inuse.
435 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
436 * 0xcc (RED_ACTIVE) for objects in use.
437 *
438 * object + s->inuse
439 * A. Free pointer (if we cannot overwrite object on free)
440 * B. Tracking data for SLAB_STORE_USER
441 * C. Padding to reach required alignment boundary
442 * Padding is done using 0x5a (POISON_INUSE)
443 *
444 * object + s->size
445 *
446 * If slabcaches are merged then the objsize and inuse boundaries are to
447 * be ignored. And therefore no slab options that rely on these boundaries
448 * may be used with merged slabcaches.
449 */
450
451static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
452 void *from, void *to)
453{
454 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
455 s->name, message, data, from, to - 1);
456 memset(from, data, to - from);
457}
458
459static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
460{
461 unsigned long off = s->inuse; /* The end of info */
462
463 if (s->offset)
464 /* Freepointer is placed after the object. */
465 off += sizeof(void *);
466
467 if (s->flags & SLAB_STORE_USER)
468 /* We also have user information there */
469 off += 2 * sizeof(struct track);
470
471 if (s->size == off)
472 return 1;
473
474 if (check_bytes(p + off, POISON_INUSE, s->size - off))
475 return 1;
476
477 object_err(s, page, p, "Object padding check fails");
478
479 /*
480 * Restore padding
481 */
482 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
483 return 0;
484}
485
486static int slab_pad_check(struct kmem_cache *s, struct page *page)
487{
488 u8 *p;
489 int length, remainder;
490
491 if (!(s->flags & SLAB_POISON))
492 return 1;
493
494 p = page_address(page);
495 length = s->objects * s->size;
496 remainder = (PAGE_SIZE << s->order) - length;
497 if (!remainder)
498 return 1;
499
500 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
501 slab_err(s, page, "Padding check failed");
502 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
503 p + length + remainder);
504 return 0;
505 }
506 return 1;
507}
508
509static int check_object(struct kmem_cache *s, struct page *page,
510 void *object, int active)
511{
512 u8 *p = object;
513 u8 *endobject = object + s->objsize;
514
515 if (s->flags & SLAB_RED_ZONE) {
516 unsigned int red =
517 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
518
519 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
520 object_err(s, page, object,
521 active ? "Redzone Active" : "Redzone Inactive");
522 restore_bytes(s, "redzone", red,
523 endobject, object + s->inuse);
524 return 0;
525 }
526 } else {
527 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
528 !check_bytes(endobject, POISON_INUSE,
529 s->inuse - s->objsize)) {
530 object_err(s, page, p, "Alignment padding check fails");
531 /*
532 * Fix it so that there will not be another report.
533 *
534 * Hmmm... We may be corrupting an object that now expects
535 * to be longer than allowed.
536 */
537 restore_bytes(s, "alignment padding", POISON_INUSE,
538 endobject, object + s->inuse);
539 }
540 }
541
542 if (s->flags & SLAB_POISON) {
543 if (!active && (s->flags & __OBJECT_POISON) &&
544 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
545 p[s->objsize - 1] != POISON_END)) {
546
547 object_err(s, page, p, "Poison check failed");
548 restore_bytes(s, "Poison", POISON_FREE,
549 p, p + s->objsize -1);
550 restore_bytes(s, "Poison", POISON_END,
551 p + s->objsize - 1, p + s->objsize);
552 return 0;
553 }
554 /*
555 * check_pad_bytes cleans up on its own.
556 */
557 check_pad_bytes(s, page, p);
558 }
559
560 if (!s->offset && active)
561 /*
562 * Object and freepointer overlap. Cannot check
563 * freepointer while object is allocated.
564 */
565 return 1;
566
567 /* Check free pointer validity */
568 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
569 object_err(s, page, p, "Freepointer corrupt");
570 /*
571 * No choice but to zap it and thus loose the remainder
572 * of the free objects in this slab. May cause
573 * another error because the object count maybe
574 * wrong now.
575 */
576 set_freepointer(s, p, NULL);
577 return 0;
578 }
579 return 1;
580}
581
582static int check_slab(struct kmem_cache *s, struct page *page)
583{
584 VM_BUG_ON(!irqs_disabled());
585
586 if (!PageSlab(page)) {
587 slab_err(s, page, "Not a valid slab page flags=%lx "
588 "mapping=0x%p count=%d", page->flags, page->mapping,
589 page_count(page));
590 return 0;
591 }
592 if (page->offset * sizeof(void *) != s->offset) {
593 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
594 "mapping=0x%p count=%d",
595 (unsigned long)(page->offset * sizeof(void *)),
596 page->flags,
597 page->mapping,
598 page_count(page));
599 return 0;
600 }
601 if (page->inuse > s->objects) {
602 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
603 "mapping=0x%p count=%d",
604 s->name, page->inuse, s->objects, page->flags,
605 page->mapping, page_count(page));
606 return 0;
607 }
608 /* Slab_pad_check fixes things up after itself */
609 slab_pad_check(s, page);
610 return 1;
611}
612
613/*
614 * Determine if a certain object on a page is on the freelist and
615 * therefore free. Must hold the slab lock for cpu slabs to
616 * guarantee that the chains are consistent.
617 */
618static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
619{
620 int nr = 0;
621 void *fp = page->freelist;
622 void *object = NULL;
623
624 while (fp && nr <= s->objects) {
625 if (fp == search)
626 return 1;
627 if (!check_valid_pointer(s, page, fp)) {
628 if (object) {
629 object_err(s, page, object,
630 "Freechain corrupt");
631 set_freepointer(s, object, NULL);
632 break;
633 } else {
634 slab_err(s, page, "Freepointer 0x%p corrupt",
635 fp);
636 page->freelist = NULL;
637 page->inuse = s->objects;
638 printk(KERN_ERR "@@@ SLUB %s: Freelist "
639 "cleared. Slab 0x%p\n",
640 s->name, page);
641 return 0;
642 }
643 break;
644 }
645 object = fp;
646 fp = get_freepointer(s, object);
647 nr++;
648 }
649
650 if (page->inuse != s->objects - nr) {
651 slab_err(s, page, "Wrong object count. Counter is %d but "
652 "counted were %d", s, page, page->inuse,
653 s->objects - nr);
654 page->inuse = s->objects - nr;
655 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
656 "Slab @0x%p\n", s->name, page);
657 }
658 return search == NULL;
659}
660
661/*
662 * Tracking of fully allocated slabs for debugging
663 */
664static void add_full(struct kmem_cache_node *n, struct page *page)
665{
666 spin_lock(&n->list_lock);
667 list_add(&page->lru, &n->full);
668 spin_unlock(&n->list_lock);
669}
670
671static void remove_full(struct kmem_cache *s, struct page *page)
672{
673 struct kmem_cache_node *n;
674
675 if (!(s->flags & SLAB_STORE_USER))
676 return;
677
678 n = get_node(s, page_to_nid(page));
679
680 spin_lock(&n->list_lock);
681 list_del(&page->lru);
682 spin_unlock(&n->list_lock);
683}
684
685static int alloc_object_checks(struct kmem_cache *s, struct page *page,
686 void *object)
687{
688 if (!check_slab(s, page))
689 goto bad;
690
691 if (object && !on_freelist(s, page, object)) {
692 slab_err(s, page, "Object 0x%p already allocated", object);
693 goto bad;
694 }
695
696 if (!check_valid_pointer(s, page, object)) {
697 object_err(s, page, object, "Freelist Pointer check fails");
698 goto bad;
699 }
700
701 if (!object)
702 return 1;
703
704 if (!check_object(s, page, object, 0))
705 goto bad;
706
707 return 1;
708bad:
709 if (PageSlab(page)) {
710 /*
711 * If this is a slab page then lets do the best we can
712 * to avoid issues in the future. Marking all objects
713 * as used avoids touching the remainder.
714 */
715 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
716 s->name, page);
717 page->inuse = s->objects;
718 page->freelist = NULL;
719 /* Fix up fields that may be corrupted */
720 page->offset = s->offset / sizeof(void *);
721 }
722 return 0;
723}
724
725static int free_object_checks(struct kmem_cache *s, struct page *page,
726 void *object)
727{
728 if (!check_slab(s, page))
729 goto fail;
730
731 if (!check_valid_pointer(s, page, object)) {
732 slab_err(s, page, "Invalid object pointer 0x%p", object);
733 goto fail;
734 }
735
736 if (on_freelist(s, page, object)) {
737 slab_err(s, page, "Object 0x%p already free", object);
738 goto fail;
739 }
740
741 if (!check_object(s, page, object, 1))
742 return 0;
743
744 if (unlikely(s != page->slab)) {
745 if (!PageSlab(page))
746 slab_err(s, page, "Attempt to free object(0x%p) "
747 "outside of slab", object);
748 else
749 if (!page->slab) {
750 printk(KERN_ERR
751 "SLUB <none>: no slab for object 0x%p.\n",
752 object);
753 dump_stack();
754 }
755 else
756 slab_err(s, page, "object at 0x%p belongs "
757 "to slab %s", object, page->slab->name);
758 goto fail;
759 }
760 return 1;
761fail:
762 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
763 s->name, page, object);
764 return 0;
765}
766
767/*
768 * Slab allocation and freeing
769 */
770static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
771{
772 struct page * page;
773 int pages = 1 << s->order;
774
775 if (s->order)
776 flags |= __GFP_COMP;
777
778 if (s->flags & SLAB_CACHE_DMA)
779 flags |= SLUB_DMA;
780
781 if (node == -1)
782 page = alloc_pages(flags, s->order);
783 else
784 page = alloc_pages_node(node, flags, s->order);
785
786 if (!page)
787 return NULL;
788
789 mod_zone_page_state(page_zone(page),
790 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
791 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
792 pages);
793
794 return page;
795}
796
797static void setup_object(struct kmem_cache *s, struct page *page,
798 void *object)
799{
800 if (PageError(page)) {
801 init_object(s, object, 0);
802 init_tracking(s, object);
803 }
804
805 if (unlikely(s->ctor))
806 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
807}
808
809static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
810{
811 struct page *page;
812 struct kmem_cache_node *n;
813 void *start;
814 void *end;
815 void *last;
816 void *p;
817
818 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
819
820 if (flags & __GFP_WAIT)
821 local_irq_enable();
822
823 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
824 if (!page)
825 goto out;
826
827 n = get_node(s, page_to_nid(page));
828 if (n)
829 atomic_long_inc(&n->nr_slabs);
830 page->offset = s->offset / sizeof(void *);
831 page->slab = s;
832 page->flags |= 1 << PG_slab;
833 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
834 SLAB_STORE_USER | SLAB_TRACE))
835 page->flags |= 1 << PG_error;
836
837 start = page_address(page);
838 end = start + s->objects * s->size;
839
840 if (unlikely(s->flags & SLAB_POISON))
841 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
842
843 last = start;
844 for (p = start + s->size; p < end; p += s->size) {
845 setup_object(s, page, last);
846 set_freepointer(s, last, p);
847 last = p;
848 }
849 setup_object(s, page, last);
850 set_freepointer(s, last, NULL);
851
852 page->freelist = start;
853 page->inuse = 0;
854out:
855 if (flags & __GFP_WAIT)
856 local_irq_disable();
857 return page;
858}
859
860static void __free_slab(struct kmem_cache *s, struct page *page)
861{
862 int pages = 1 << s->order;
863
864 if (unlikely(PageError(page) || s->dtor)) {
865 void *start = page_address(page);
866 void *end = start + (pages << PAGE_SHIFT);
867 void *p;
868
869 slab_pad_check(s, page);
870 for (p = start; p <= end - s->size; p += s->size) {
871 if (s->dtor)
872 s->dtor(p, s, 0);
873 check_object(s, page, p, 0);
874 }
875 }
876
877 mod_zone_page_state(page_zone(page),
878 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
879 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
880 - pages);
881
882 page->mapping = NULL;
883 __free_pages(page, s->order);
884}
885
886static void rcu_free_slab(struct rcu_head *h)
887{
888 struct page *page;
889
890 page = container_of((struct list_head *)h, struct page, lru);
891 __free_slab(page->slab, page);
892}
893
894static void free_slab(struct kmem_cache *s, struct page *page)
895{
896 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
897 /*
898 * RCU free overloads the RCU head over the LRU
899 */
900 struct rcu_head *head = (void *)&page->lru;
901
902 call_rcu(head, rcu_free_slab);
903 } else
904 __free_slab(s, page);
905}
906
907static void discard_slab(struct kmem_cache *s, struct page *page)
908{
909 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
910
911 atomic_long_dec(&n->nr_slabs);
912 reset_page_mapcount(page);
913 page->flags &= ~(1 << PG_slab | 1 << PG_error);
914 free_slab(s, page);
915}
916
917/*
918 * Per slab locking using the pagelock
919 */
920static __always_inline void slab_lock(struct page *page)
921{
922 bit_spin_lock(PG_locked, &page->flags);
923}
924
925static __always_inline void slab_unlock(struct page *page)
926{
927 bit_spin_unlock(PG_locked, &page->flags);
928}
929
930static __always_inline int slab_trylock(struct page *page)
931{
932 int rc = 1;
933
934 rc = bit_spin_trylock(PG_locked, &page->flags);
935 return rc;
936}
937
938/*
939 * Management of partially allocated slabs
940 */
941static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
942{
943 spin_lock(&n->list_lock);
944 n->nr_partial++;
945 list_add_tail(&page->lru, &n->partial);
946 spin_unlock(&n->list_lock);
947}
948
949static void add_partial(struct kmem_cache_node *n, struct page *page)
950{
951 spin_lock(&n->list_lock);
952 n->nr_partial++;
953 list_add(&page->lru, &n->partial);
954 spin_unlock(&n->list_lock);
955}
956
957static void remove_partial(struct kmem_cache *s,
958 struct page *page)
959{
960 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
961
962 spin_lock(&n->list_lock);
963 list_del(&page->lru);
964 n->nr_partial--;
965 spin_unlock(&n->list_lock);
966}
967
968/*
969 * Lock page and remove it from the partial list
970 *
971 * Must hold list_lock
972 */
973static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
974{
975 if (slab_trylock(page)) {
976 list_del(&page->lru);
977 n->nr_partial--;
978 return 1;
979 }
980 return 0;
981}
982
983/*
984 * Try to get a partial slab from a specific node
985 */
986static struct page *get_partial_node(struct kmem_cache_node *n)
987{
988 struct page *page;
989
990 /*
991 * Racy check. If we mistakenly see no partial slabs then we
992 * just allocate an empty slab. If we mistakenly try to get a
993 * partial slab then get_partials() will return NULL.
994 */
995 if (!n || !n->nr_partial)
996 return NULL;
997
998 spin_lock(&n->list_lock);
999 list_for_each_entry(page, &n->partial, lru)
1000 if (lock_and_del_slab(n, page))
1001 goto out;
1002 page = NULL;
1003out:
1004 spin_unlock(&n->list_lock);
1005 return page;
1006}
1007
1008/*
1009 * Get a page from somewhere. Search in increasing NUMA
1010 * distances.
1011 */
1012static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1013{
1014#ifdef CONFIG_NUMA
1015 struct zonelist *zonelist;
1016 struct zone **z;
1017 struct page *page;
1018
1019 /*
1020 * The defrag ratio allows to configure the tradeoffs between
1021 * inter node defragmentation and node local allocations.
1022 * A lower defrag_ratio increases the tendency to do local
1023 * allocations instead of scanning throught the partial
1024 * lists on other nodes.
1025 *
1026 * If defrag_ratio is set to 0 then kmalloc() always
1027 * returns node local objects. If its higher then kmalloc()
1028 * may return off node objects in order to avoid fragmentation.
1029 *
1030 * A higher ratio means slabs may be taken from other nodes
1031 * thus reducing the number of partial slabs on those nodes.
1032 *
1033 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1034 * defrag_ratio = 1000) then every (well almost) allocation
1035 * will first attempt to defrag slab caches on other nodes. This
1036 * means scanning over all nodes to look for partial slabs which
1037 * may be a bit expensive to do on every slab allocation.
1038 */
1039 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1040 return NULL;
1041
1042 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1043 ->node_zonelists[gfp_zone(flags)];
1044 for (z = zonelist->zones; *z; z++) {
1045 struct kmem_cache_node *n;
1046
1047 n = get_node(s, zone_to_nid(*z));
1048
1049 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1050 n->nr_partial > MIN_PARTIAL) {
1051 page = get_partial_node(n);
1052 if (page)
1053 return page;
1054 }
1055 }
1056#endif
1057 return NULL;
1058}
1059
1060/*
1061 * Get a partial page, lock it and return it.
1062 */
1063static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1064{
1065 struct page *page;
1066 int searchnode = (node == -1) ? numa_node_id() : node;
1067
1068 page = get_partial_node(get_node(s, searchnode));
1069 if (page || (flags & __GFP_THISNODE))
1070 return page;
1071
1072 return get_any_partial(s, flags);
1073}
1074
1075/*
1076 * Move a page back to the lists.
1077 *
1078 * Must be called with the slab lock held.
1079 *
1080 * On exit the slab lock will have been dropped.
1081 */
1082static void putback_slab(struct kmem_cache *s, struct page *page)
1083{
1084 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1085
1086 if (page->inuse) {
1087
1088 if (page->freelist)
1089 add_partial(n, page);
1090 else if (PageError(page) && (s->flags & SLAB_STORE_USER))
1091 add_full(n, page);
1092 slab_unlock(page);
1093
1094 } else {
1095 if (n->nr_partial < MIN_PARTIAL) {
1096 /*
1097 * Adding an empty page to the partial slabs in order
1098 * to avoid page allocator overhead. This page needs to
1099 * come after all the others that are not fully empty
1100 * in order to make sure that we do maximum
1101 * defragmentation.
1102 */
1103 add_partial_tail(n, page);
1104 slab_unlock(page);
1105 } else {
1106 slab_unlock(page);
1107 discard_slab(s, page);
1108 }
1109 }
1110}
1111
1112/*
1113 * Remove the cpu slab
1114 */
1115static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1116{
1117 s->cpu_slab[cpu] = NULL;
1118 ClearPageActive(page);
1119
1120 putback_slab(s, page);
1121}
1122
1123static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1124{
1125 slab_lock(page);
1126 deactivate_slab(s, page, cpu);
1127}
1128
1129/*
1130 * Flush cpu slab.
1131 * Called from IPI handler with interrupts disabled.
1132 */
1133static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1134{
1135 struct page *page = s->cpu_slab[cpu];
1136
1137 if (likely(page))
1138 flush_slab(s, page, cpu);
1139}
1140
1141static void flush_cpu_slab(void *d)
1142{
1143 struct kmem_cache *s = d;
1144 int cpu = smp_processor_id();
1145
1146 __flush_cpu_slab(s, cpu);
1147}
1148
1149static void flush_all(struct kmem_cache *s)
1150{
1151#ifdef CONFIG_SMP
1152 on_each_cpu(flush_cpu_slab, s, 1, 1);
1153#else
1154 unsigned long flags;
1155
1156 local_irq_save(flags);
1157 flush_cpu_slab(s);
1158 local_irq_restore(flags);
1159#endif
1160}
1161
1162/*
1163 * slab_alloc is optimized to only modify two cachelines on the fast path
1164 * (aside from the stack):
1165 *
1166 * 1. The page struct
1167 * 2. The first cacheline of the object to be allocated.
1168 *
1169 * The only cache lines that are read (apart from code) is the
1170 * per cpu array in the kmem_cache struct.
1171 *
1172 * Fastpath is not possible if we need to get a new slab or have
1173 * debugging enabled (which means all slabs are marked with PageError)
1174 */
1175static void *slab_alloc(struct kmem_cache *s,
1176 gfp_t gfpflags, int node, void *addr)
1177{
1178 struct page *page;
1179 void **object;
1180 unsigned long flags;
1181 int cpu;
1182
1183 local_irq_save(flags);
1184 cpu = smp_processor_id();
1185 page = s->cpu_slab[cpu];
1186 if (!page)
1187 goto new_slab;
1188
1189 slab_lock(page);
1190 if (unlikely(node != -1 && page_to_nid(page) != node))
1191 goto another_slab;
1192redo:
1193 object = page->freelist;
1194 if (unlikely(!object))
1195 goto another_slab;
1196 if (unlikely(PageError(page)))
1197 goto debug;
1198
1199have_object:
1200 page->inuse++;
1201 page->freelist = object[page->offset];
1202 slab_unlock(page);
1203 local_irq_restore(flags);
1204 return object;
1205
1206another_slab:
1207 deactivate_slab(s, page, cpu);
1208
1209new_slab:
1210 page = get_partial(s, gfpflags, node);
1211 if (likely(page)) {
1212have_slab:
1213 s->cpu_slab[cpu] = page;
1214 SetPageActive(page);
1215 goto redo;
1216 }
1217
1218 page = new_slab(s, gfpflags, node);
1219 if (page) {
1220 cpu = smp_processor_id();
1221 if (s->cpu_slab[cpu]) {
1222 /*
1223 * Someone else populated the cpu_slab while we enabled
1224 * interrupts, or we have got scheduled on another cpu.
1225 * The page may not be on the requested node.
1226 */
1227 if (node == -1 ||
1228 page_to_nid(s->cpu_slab[cpu]) == node) {
1229 /*
1230 * Current cpuslab is acceptable and we
1231 * want the current one since its cache hot
1232 */
1233 discard_slab(s, page);
1234 page = s->cpu_slab[cpu];
1235 slab_lock(page);
1236 goto redo;
1237 }
1238 /* Dump the current slab */
1239 flush_slab(s, s->cpu_slab[cpu], cpu);
1240 }
1241 slab_lock(page);
1242 goto have_slab;
1243 }
1244 local_irq_restore(flags);
1245 return NULL;
1246debug:
1247 if (!alloc_object_checks(s, page, object))
1248 goto another_slab;
1249 if (s->flags & SLAB_STORE_USER)
1250 set_track(s, object, TRACK_ALLOC, addr);
1251 if (s->flags & SLAB_TRACE) {
1252 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
1253 s->name, object, page->inuse,
1254 page->freelist);
1255 dump_stack();
1256 }
1257 init_object(s, object, 1);
1258 goto have_object;
1259}
1260
1261void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1262{
1263 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1264}
1265EXPORT_SYMBOL(kmem_cache_alloc);
1266
1267#ifdef CONFIG_NUMA
1268void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1269{
1270 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1271}
1272EXPORT_SYMBOL(kmem_cache_alloc_node);
1273#endif
1274
1275/*
1276 * The fastpath only writes the cacheline of the page struct and the first
1277 * cacheline of the object.
1278 *
1279 * No special cachelines need to be read
1280 */
1281static void slab_free(struct kmem_cache *s, struct page *page,
1282 void *x, void *addr)
1283{
1284 void *prior;
1285 void **object = (void *)x;
1286 unsigned long flags;
1287
1288 local_irq_save(flags);
1289 slab_lock(page);
1290
1291 if (unlikely(PageError(page)))
1292 goto debug;
1293checks_ok:
1294 prior = object[page->offset] = page->freelist;
1295 page->freelist = object;
1296 page->inuse--;
1297
1298 if (unlikely(PageActive(page)))
1299 /*
1300 * Cpu slabs are never on partial lists and are
1301 * never freed.
1302 */
1303 goto out_unlock;
1304
1305 if (unlikely(!page->inuse))
1306 goto slab_empty;
1307
1308 /*
1309 * Objects left in the slab. If it
1310 * was not on the partial list before
1311 * then add it.
1312 */
1313 if (unlikely(!prior))
1314 add_partial(get_node(s, page_to_nid(page)), page);
1315
1316out_unlock:
1317 slab_unlock(page);
1318 local_irq_restore(flags);
1319 return;
1320
1321slab_empty:
1322 if (prior)
1323 /*
1324 * Slab on the partial list.
1325 */
1326 remove_partial(s, page);
1327
1328 slab_unlock(page);
1329 discard_slab(s, page);
1330 local_irq_restore(flags);
1331 return;
1332
1333debug:
1334 if (!free_object_checks(s, page, x))
1335 goto out_unlock;
1336 if (!PageActive(page) && !page->freelist)
1337 remove_full(s, page);
1338 if (s->flags & SLAB_STORE_USER)
1339 set_track(s, x, TRACK_FREE, addr);
1340 if (s->flags & SLAB_TRACE) {
1341 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
1342 s->name, object, page->inuse,
1343 page->freelist);
1344 print_section("Object", (void *)object, s->objsize);
1345 dump_stack();
1346 }
1347 init_object(s, object, 0);
1348 goto checks_ok;
1349}
1350
1351void kmem_cache_free(struct kmem_cache *s, void *x)
1352{
1353 struct page *page;
1354
1355 page = virt_to_head_page(x);
1356
1357 slab_free(s, page, x, __builtin_return_address(0));
1358}
1359EXPORT_SYMBOL(kmem_cache_free);
1360
1361/* Figure out on which slab object the object resides */
1362static struct page *get_object_page(const void *x)
1363{
1364 struct page *page = virt_to_head_page(x);
1365
1366 if (!PageSlab(page))
1367 return NULL;
1368
1369 return page;
1370}
1371
1372/*
1373 * kmem_cache_open produces objects aligned at "size" and the first object
1374 * is placed at offset 0 in the slab (We have no metainformation on the
1375 * slab, all slabs are in essence "off slab").
1376 *
1377 * In order to get the desired alignment one just needs to align the
1378 * size.
1379 *
1380 * Notice that the allocation order determines the sizes of the per cpu
1381 * caches. Each processor has always one slab available for allocations.
1382 * Increasing the allocation order reduces the number of times that slabs
1383 * must be moved on and off the partial lists and therefore may influence
1384 * locking overhead.
1385 *
1386 * The offset is used to relocate the free list link in each object. It is
1387 * therefore possible to move the free list link behind the object. This
1388 * is necessary for RCU to work properly and also useful for debugging.
1389 */
1390
1391/*
1392 * Mininum / Maximum order of slab pages. This influences locking overhead
1393 * and slab fragmentation. A higher order reduces the number of partial slabs
1394 * and increases the number of allocations possible without having to
1395 * take the list_lock.
1396 */
1397static int slub_min_order;
1398static int slub_max_order = DEFAULT_MAX_ORDER;
1399
1400/*
1401 * Minimum number of objects per slab. This is necessary in order to
1402 * reduce locking overhead. Similar to the queue size in SLAB.
1403 */
1404static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1405
1406/*
1407 * Merge control. If this is set then no merging of slab caches will occur.
1408 */
1409static int slub_nomerge;
1410
1411/*
1412 * Debug settings:
1413 */
1414static int slub_debug;
1415
1416static char *slub_debug_slabs;
1417
1418/*
1419 * Calculate the order of allocation given an slab object size.
1420 *
1421 * The order of allocation has significant impact on other elements
1422 * of the system. Generally order 0 allocations should be preferred
1423 * since they do not cause fragmentation in the page allocator. Larger
1424 * objects may have problems with order 0 because there may be too much
1425 * space left unused in a slab. We go to a higher order if more than 1/8th
1426 * of the slab would be wasted.
1427 *
1428 * In order to reach satisfactory performance we must ensure that
1429 * a minimum number of objects is in one slab. Otherwise we may
1430 * generate too much activity on the partial lists. This is less a
1431 * concern for large slabs though. slub_max_order specifies the order
1432 * where we begin to stop considering the number of objects in a slab.
1433 *
1434 * Higher order allocations also allow the placement of more objects
1435 * in a slab and thereby reduce object handling overhead. If the user
1436 * has requested a higher mininum order then we start with that one
1437 * instead of zero.
1438 */
1439static int calculate_order(int size)
1440{
1441 int order;
1442 int rem;
1443
1444 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1445 order < MAX_ORDER; order++) {
1446 unsigned long slab_size = PAGE_SIZE << order;
1447
1448 if (slub_max_order > order &&
1449 slab_size < slub_min_objects * size)
1450 continue;
1451
1452 if (slab_size < size)
1453 continue;
1454
1455 rem = slab_size % size;
1456
1457 if (rem <= (PAGE_SIZE << order) / 8)
1458 break;
1459
1460 }
1461 if (order >= MAX_ORDER)
1462 return -E2BIG;
1463 return order;
1464}
1465
1466/*
1467 * Function to figure out which alignment to use from the
1468 * various ways of specifying it.
1469 */
1470static unsigned long calculate_alignment(unsigned long flags,
1471 unsigned long align, unsigned long size)
1472{
1473 /*
1474 * If the user wants hardware cache aligned objects then
1475 * follow that suggestion if the object is sufficiently
1476 * large.
1477 *
1478 * The hardware cache alignment cannot override the
1479 * specified alignment though. If that is greater
1480 * then use it.
1481 */
1482 if ((flags & SLAB_HWCACHE_ALIGN) &&
1483 size > L1_CACHE_BYTES / 2)
1484 return max_t(unsigned long, align, L1_CACHE_BYTES);
1485
1486 if (align < ARCH_SLAB_MINALIGN)
1487 return ARCH_SLAB_MINALIGN;
1488
1489 return ALIGN(align, sizeof(void *));
1490}
1491
1492static void init_kmem_cache_node(struct kmem_cache_node *n)
1493{
1494 n->nr_partial = 0;
1495 atomic_long_set(&n->nr_slabs, 0);
1496 spin_lock_init(&n->list_lock);
1497 INIT_LIST_HEAD(&n->partial);
1498 INIT_LIST_HEAD(&n->full);
1499}
1500
1501#ifdef CONFIG_NUMA
1502/*
1503 * No kmalloc_node yet so do it by hand. We know that this is the first
1504 * slab on the node for this slabcache. There are no concurrent accesses
1505 * possible.
1506 *
1507 * Note that this function only works on the kmalloc_node_cache
1508 * when allocating for the kmalloc_node_cache.
1509 */
1510static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1511 int node)
1512{
1513 struct page *page;
1514 struct kmem_cache_node *n;
1515
1516 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1517
1518 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1519 /* new_slab() disables interupts */
1520 local_irq_enable();
1521
1522 BUG_ON(!page);
1523 n = page->freelist;
1524 BUG_ON(!n);
1525 page->freelist = get_freepointer(kmalloc_caches, n);
1526 page->inuse++;
1527 kmalloc_caches->node[node] = n;
1528 init_object(kmalloc_caches, n, 1);
1529 init_kmem_cache_node(n);
1530 atomic_long_inc(&n->nr_slabs);
1531 add_partial(n, page);
1532 return n;
1533}
1534
1535static void free_kmem_cache_nodes(struct kmem_cache *s)
1536{
1537 int node;
1538
1539 for_each_online_node(node) {
1540 struct kmem_cache_node *n = s->node[node];
1541 if (n && n != &s->local_node)
1542 kmem_cache_free(kmalloc_caches, n);
1543 s->node[node] = NULL;
1544 }
1545}
1546
1547static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1548{
1549 int node;
1550 int local_node;
1551
1552 if (slab_state >= UP)
1553 local_node = page_to_nid(virt_to_page(s));
1554 else
1555 local_node = 0;
1556
1557 for_each_online_node(node) {
1558 struct kmem_cache_node *n;
1559
1560 if (local_node == node)
1561 n = &s->local_node;
1562 else {
1563 if (slab_state == DOWN) {
1564 n = early_kmem_cache_node_alloc(gfpflags,
1565 node);
1566 continue;
1567 }
1568 n = kmem_cache_alloc_node(kmalloc_caches,
1569 gfpflags, node);
1570
1571 if (!n) {
1572 free_kmem_cache_nodes(s);
1573 return 0;
1574 }
1575
1576 }
1577 s->node[node] = n;
1578 init_kmem_cache_node(n);
1579 }
1580 return 1;
1581}
1582#else
1583static void free_kmem_cache_nodes(struct kmem_cache *s)
1584{
1585}
1586
1587static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1588{
1589 init_kmem_cache_node(&s->local_node);
1590 return 1;
1591}
1592#endif
1593
1594/*
1595 * calculate_sizes() determines the order and the distribution of data within
1596 * a slab object.
1597 */
1598static int calculate_sizes(struct kmem_cache *s)
1599{
1600 unsigned long flags = s->flags;
1601 unsigned long size = s->objsize;
1602 unsigned long align = s->align;
1603
1604 /*
1605 * Determine if we can poison the object itself. If the user of
1606 * the slab may touch the object after free or before allocation
1607 * then we should never poison the object itself.
1608 */
1609 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1610 !s->ctor && !s->dtor)
1611 s->flags |= __OBJECT_POISON;
1612 else
1613 s->flags &= ~__OBJECT_POISON;
1614
1615 /*
1616 * Round up object size to the next word boundary. We can only
1617 * place the free pointer at word boundaries and this determines
1618 * the possible location of the free pointer.
1619 */
1620 size = ALIGN(size, sizeof(void *));
1621
1622 /*
1623 * If we are redzoning then check if there is some space between the
1624 * end of the object and the free pointer. If not then add an
1625 * additional word, so that we can establish a redzone between
1626 * the object and the freepointer to be able to check for overwrites.
1627 */
1628 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1629 size += sizeof(void *);
1630
1631 /*
1632 * With that we have determined how much of the slab is in actual
1633 * use by the object. This is the potential offset to the free
1634 * pointer.
1635 */
1636 s->inuse = size;
1637
1638 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1639 s->ctor || s->dtor)) {
1640 /*
1641 * Relocate free pointer after the object if it is not
1642 * permitted to overwrite the first word of the object on
1643 * kmem_cache_free.
1644 *
1645 * This is the case if we do RCU, have a constructor or
1646 * destructor or are poisoning the objects.
1647 */
1648 s->offset = size;
1649 size += sizeof(void *);
1650 }
1651
1652 if (flags & SLAB_STORE_USER)
1653 /*
1654 * Need to store information about allocs and frees after
1655 * the object.
1656 */
1657 size += 2 * sizeof(struct track);
1658
1659 if (flags & DEBUG_DEFAULT_FLAGS)
1660 /*
1661 * Add some empty padding so that we can catch
1662 * overwrites from earlier objects rather than let
1663 * tracking information or the free pointer be
1664 * corrupted if an user writes before the start
1665 * of the object.
1666 */
1667 size += sizeof(void *);
1668 /*
1669 * Determine the alignment based on various parameters that the
1670 * user specified (this is unecessarily complex due to the attempt
1671 * to be compatible with SLAB. Should be cleaned up some day).
1672 */
1673 align = calculate_alignment(flags, align, s->objsize);
1674
1675 /*
1676 * SLUB stores one object immediately after another beginning from
1677 * offset 0. In order to align the objects we have to simply size
1678 * each object to conform to the alignment.
1679 */
1680 size = ALIGN(size, align);
1681 s->size = size;
1682
1683 s->order = calculate_order(size);
1684 if (s->order < 0)
1685 return 0;
1686
1687 /*
1688 * Determine the number of objects per slab
1689 */
1690 s->objects = (PAGE_SIZE << s->order) / size;
1691
1692 /*
1693 * Verify that the number of objects is within permitted limits.
1694 * The page->inuse field is only 16 bit wide! So we cannot have
1695 * more than 64k objects per slab.
1696 */
1697 if (!s->objects || s->objects > 65535)
1698 return 0;
1699 return 1;
1700
1701}
1702
1703static int __init finish_bootstrap(void)
1704{
1705 struct list_head *h;
1706 int err;
1707
1708 slab_state = SYSFS;
1709
1710 list_for_each(h, &slab_caches) {
1711 struct kmem_cache *s =
1712 container_of(h, struct kmem_cache, list);
1713
1714 err = sysfs_slab_add(s);
1715 BUG_ON(err);
1716 }
1717 return 0;
1718}
1719
1720static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1721 const char *name, size_t size,
1722 size_t align, unsigned long flags,
1723 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1724 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1725{
1726 memset(s, 0, kmem_size);
1727 s->name = name;
1728 s->ctor = ctor;
1729 s->dtor = dtor;
1730 s->objsize = size;
1731 s->flags = flags;
1732 s->align = align;
1733
1734 /*
1735 * The page->offset field is only 16 bit wide. This is an offset
1736 * in units of words from the beginning of an object. If the slab
1737 * size is bigger then we cannot move the free pointer behind the
1738 * object anymore.
1739 *
1740 * On 32 bit platforms the limit is 256k. On 64bit platforms
1741 * the limit is 512k.
1742 *
1743 * Debugging or ctor/dtors may create a need to move the free
1744 * pointer. Fail if this happens.
1745 */
1746 if (s->size >= 65535 * sizeof(void *)) {
1747 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1748 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1749 BUG_ON(ctor || dtor);
1750 }
1751 else
1752 /*
1753 * Enable debugging if selected on the kernel commandline.
1754 */
1755 if (slub_debug && (!slub_debug_slabs ||
1756 strncmp(slub_debug_slabs, name,
1757 strlen(slub_debug_slabs)) == 0))
1758 s->flags |= slub_debug;
1759
1760 if (!calculate_sizes(s))
1761 goto error;
1762
1763 s->refcount = 1;
1764#ifdef CONFIG_NUMA
1765 s->defrag_ratio = 100;
1766#endif
1767
1768 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1769 return 1;
1770error:
1771 if (flags & SLAB_PANIC)
1772 panic("Cannot create slab %s size=%lu realsize=%u "
1773 "order=%u offset=%u flags=%lx\n",
1774 s->name, (unsigned long)size, s->size, s->order,
1775 s->offset, flags);
1776 return 0;
1777}
1778EXPORT_SYMBOL(kmem_cache_open);
1779
1780/*
1781 * Check if a given pointer is valid
1782 */
1783int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1784{
1785 struct page * page;
1786 void *addr;
1787
1788 page = get_object_page(object);
1789
1790 if (!page || s != page->slab)
1791 /* No slab or wrong slab */
1792 return 0;
1793
1794 addr = page_address(page);
1795 if (object < addr || object >= addr + s->objects * s->size)
1796 /* Out of bounds */
1797 return 0;
1798
1799 if ((object - addr) % s->size)
1800 /* Improperly aligned */
1801 return 0;
1802
1803 /*
1804 * We could also check if the object is on the slabs freelist.
1805 * But this would be too expensive and it seems that the main
1806 * purpose of kmem_ptr_valid is to check if the object belongs
1807 * to a certain slab.
1808 */
1809 return 1;
1810}
1811EXPORT_SYMBOL(kmem_ptr_validate);
1812
1813/*
1814 * Determine the size of a slab object
1815 */
1816unsigned int kmem_cache_size(struct kmem_cache *s)
1817{
1818 return s->objsize;
1819}
1820EXPORT_SYMBOL(kmem_cache_size);
1821
1822const char *kmem_cache_name(struct kmem_cache *s)
1823{
1824 return s->name;
1825}
1826EXPORT_SYMBOL(kmem_cache_name);
1827
1828/*
1829 * Attempt to free all slabs on a node
1830 */
1831static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1832 struct list_head *list)
1833{
1834 int slabs_inuse = 0;
1835 unsigned long flags;
1836 struct page *page, *h;
1837
1838 spin_lock_irqsave(&n->list_lock, flags);
1839 list_for_each_entry_safe(page, h, list, lru)
1840 if (!page->inuse) {
1841 list_del(&page->lru);
1842 discard_slab(s, page);
1843 } else
1844 slabs_inuse++;
1845 spin_unlock_irqrestore(&n->list_lock, flags);
1846 return slabs_inuse;
1847}
1848
1849/*
1850 * Release all resources used by slab cache
1851 */
1852static int kmem_cache_close(struct kmem_cache *s)
1853{
1854 int node;
1855
1856 flush_all(s);
1857
1858 /* Attempt to free all objects */
1859 for_each_online_node(node) {
1860 struct kmem_cache_node *n = get_node(s, node);
1861
1862 n->nr_partial -= free_list(s, n, &n->partial);
1863 if (atomic_long_read(&n->nr_slabs))
1864 return 1;
1865 }
1866 free_kmem_cache_nodes(s);
1867 return 0;
1868}
1869
1870/*
1871 * Close a cache and release the kmem_cache structure
1872 * (must be used for caches created using kmem_cache_create)
1873 */
1874void kmem_cache_destroy(struct kmem_cache *s)
1875{
1876 down_write(&slub_lock);
1877 s->refcount--;
1878 if (!s->refcount) {
1879 list_del(&s->list);
1880 if (kmem_cache_close(s))
1881 WARN_ON(1);
1882 sysfs_slab_remove(s);
1883 kfree(s);
1884 }
1885 up_write(&slub_lock);
1886}
1887EXPORT_SYMBOL(kmem_cache_destroy);
1888
1889/********************************************************************
1890 * Kmalloc subsystem
1891 *******************************************************************/
1892
1893struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1894EXPORT_SYMBOL(kmalloc_caches);
1895
1896#ifdef CONFIG_ZONE_DMA
1897static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1898#endif
1899
1900static int __init setup_slub_min_order(char *str)
1901{
1902 get_option (&str, &slub_min_order);
1903
1904 return 1;
1905}
1906
1907__setup("slub_min_order=", setup_slub_min_order);
1908
1909static int __init setup_slub_max_order(char *str)
1910{
1911 get_option (&str, &slub_max_order);
1912
1913 return 1;
1914}
1915
1916__setup("slub_max_order=", setup_slub_max_order);
1917
1918static int __init setup_slub_min_objects(char *str)
1919{
1920 get_option (&str, &slub_min_objects);
1921
1922 return 1;
1923}
1924
1925__setup("slub_min_objects=", setup_slub_min_objects);
1926
1927static int __init setup_slub_nomerge(char *str)
1928{
1929 slub_nomerge = 1;
1930 return 1;
1931}
1932
1933__setup("slub_nomerge", setup_slub_nomerge);
1934
1935static int __init setup_slub_debug(char *str)
1936{
1937 if (!str || *str != '=')
1938 slub_debug = DEBUG_DEFAULT_FLAGS;
1939 else {
1940 str++;
1941 if (*str == 0 || *str == ',')
1942 slub_debug = DEBUG_DEFAULT_FLAGS;
1943 else
1944 for( ;*str && *str != ','; str++)
1945 switch (*str) {
1946 case 'f' : case 'F' :
1947 slub_debug |= SLAB_DEBUG_FREE;
1948 break;
1949 case 'z' : case 'Z' :
1950 slub_debug |= SLAB_RED_ZONE;
1951 break;
1952 case 'p' : case 'P' :
1953 slub_debug |= SLAB_POISON;
1954 break;
1955 case 'u' : case 'U' :
1956 slub_debug |= SLAB_STORE_USER;
1957 break;
1958 case 't' : case 'T' :
1959 slub_debug |= SLAB_TRACE;
1960 break;
1961 default:
1962 printk(KERN_ERR "slub_debug option '%c' "
1963 "unknown. skipped\n",*str);
1964 }
1965 }
1966
1967 if (*str == ',')
1968 slub_debug_slabs = str + 1;
1969 return 1;
1970}
1971
1972__setup("slub_debug", setup_slub_debug);
1973
1974static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1975 const char *name, int size, gfp_t gfp_flags)
1976{
1977 unsigned int flags = 0;
1978
1979 if (gfp_flags & SLUB_DMA)
1980 flags = SLAB_CACHE_DMA;
1981
1982 down_write(&slub_lock);
1983 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1984 flags, NULL, NULL))
1985 goto panic;
1986
1987 list_add(&s->list, &slab_caches);
1988 up_write(&slub_lock);
1989 if (sysfs_slab_add(s))
1990 goto panic;
1991 return s;
1992
1993panic:
1994 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
1995}
1996
1997static struct kmem_cache *get_slab(size_t size, gfp_t flags)
1998{
1999 int index = kmalloc_index(size);
2000
2001 if (!index)
2002 return NULL;
2003
2004 /* Allocation too large? */
2005 BUG_ON(index < 0);
2006
2007#ifdef CONFIG_ZONE_DMA
2008 if ((flags & SLUB_DMA)) {
2009 struct kmem_cache *s;
2010 struct kmem_cache *x;
2011 char *text;
2012 size_t realsize;
2013
2014 s = kmalloc_caches_dma[index];
2015 if (s)
2016 return s;
2017
2018 /* Dynamically create dma cache */
2019 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2020 if (!x)
2021 panic("Unable to allocate memory for dma cache\n");
2022
2023 if (index <= KMALLOC_SHIFT_HIGH)
2024 realsize = 1 << index;
2025 else {
2026 if (index == 1)
2027 realsize = 96;
2028 else
2029 realsize = 192;
2030 }
2031
2032 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2033 (unsigned int)realsize);
2034 s = create_kmalloc_cache(x, text, realsize, flags);
2035 kmalloc_caches_dma[index] = s;
2036 return s;
2037 }
2038#endif
2039 return &kmalloc_caches[index];
2040}
2041
2042void *__kmalloc(size_t size, gfp_t flags)
2043{
2044 struct kmem_cache *s = get_slab(size, flags);
2045
2046 if (s)
2047 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2048 return NULL;
2049}
2050EXPORT_SYMBOL(__kmalloc);
2051
2052#ifdef CONFIG_NUMA
2053void *__kmalloc_node(size_t size, gfp_t flags, int node)
2054{
2055 struct kmem_cache *s = get_slab(size, flags);
2056
2057 if (s)
2058 return slab_alloc(s, flags, node, __builtin_return_address(0));
2059 return NULL;
2060}
2061EXPORT_SYMBOL(__kmalloc_node);
2062#endif
2063
2064size_t ksize(const void *object)
2065{
2066 struct page *page = get_object_page(object);
2067 struct kmem_cache *s;
2068
2069 BUG_ON(!page);
2070 s = page->slab;
2071 BUG_ON(!s);
2072
2073 /*
2074 * Debugging requires use of the padding between object
2075 * and whatever may come after it.
2076 */
2077 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2078 return s->objsize;
2079
2080 /*
2081 * If we have the need to store the freelist pointer
2082 * back there or track user information then we can
2083 * only use the space before that information.
2084 */
2085 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2086 return s->inuse;
2087
2088 /*
2089 * Else we can use all the padding etc for the allocation
2090 */
2091 return s->size;
2092}
2093EXPORT_SYMBOL(ksize);
2094
2095void kfree(const void *x)
2096{
2097 struct kmem_cache *s;
2098 struct page *page;
2099
2100 if (!x)
2101 return;
2102
2103 page = virt_to_head_page(x);
2104 s = page->slab;
2105
2106 slab_free(s, page, (void *)x, __builtin_return_address(0));
2107}
2108EXPORT_SYMBOL(kfree);
2109
2110/*
2111 * kmem_cache_shrink removes empty slabs from the partial lists
2112 * and then sorts the partially allocated slabs by the number
2113 * of items in use. The slabs with the most items in use
2114 * come first. New allocations will remove these from the
2115 * partial list because they are full. The slabs with the
2116 * least items are placed last. If it happens that the objects
2117 * are freed then the page can be returned to the page allocator.
2118 */
2119int kmem_cache_shrink(struct kmem_cache *s)
2120{
2121 int node;
2122 int i;
2123 struct kmem_cache_node *n;
2124 struct page *page;
2125 struct page *t;
2126 struct list_head *slabs_by_inuse =
2127 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2128 unsigned long flags;
2129
2130 if (!slabs_by_inuse)
2131 return -ENOMEM;
2132
2133 flush_all(s);
2134 for_each_online_node(node) {
2135 n = get_node(s, node);
2136
2137 if (!n->nr_partial)
2138 continue;
2139
2140 for (i = 0; i < s->objects; i++)
2141 INIT_LIST_HEAD(slabs_by_inuse + i);
2142
2143 spin_lock_irqsave(&n->list_lock, flags);
2144
2145 /*
2146 * Build lists indexed by the items in use in
2147 * each slab or free slabs if empty.
2148 *
2149 * Note that concurrent frees may occur while
2150 * we hold the list_lock. page->inuse here is
2151 * the upper limit.
2152 */
2153 list_for_each_entry_safe(page, t, &n->partial, lru) {
2154 if (!page->inuse && slab_trylock(page)) {
2155 /*
2156 * Must hold slab lock here because slab_free
2157 * may have freed the last object and be
2158 * waiting to release the slab.
2159 */
2160 list_del(&page->lru);
2161 n->nr_partial--;
2162 slab_unlock(page);
2163 discard_slab(s, page);
2164 } else {
2165 if (n->nr_partial > MAX_PARTIAL)
2166 list_move(&page->lru,
2167 slabs_by_inuse + page->inuse);
2168 }
2169 }
2170
2171 if (n->nr_partial <= MAX_PARTIAL)
2172 goto out;
2173
2174 /*
2175 * Rebuild the partial list with the slabs filled up
2176 * most first and the least used slabs at the end.
2177 */
2178 for (i = s->objects - 1; i >= 0; i--)
2179 list_splice(slabs_by_inuse + i, n->partial.prev);
2180
2181 out:
2182 spin_unlock_irqrestore(&n->list_lock, flags);
2183 }
2184
2185 kfree(slabs_by_inuse);
2186 return 0;
2187}
2188EXPORT_SYMBOL(kmem_cache_shrink);
2189
2190/**
2191 * krealloc - reallocate memory. The contents will remain unchanged.
2192 *
2193 * @p: object to reallocate memory for.
2194 * @new_size: how many bytes of memory are required.
2195 * @flags: the type of memory to allocate.
2196 *
2197 * The contents of the object pointed to are preserved up to the
2198 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2199 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2200 * %NULL pointer, the object pointed to is freed.
2201 */
2202void *krealloc(const void *p, size_t new_size, gfp_t flags)
2203{
2204 struct kmem_cache *new_cache;
2205 void *ret;
2206 struct page *page;
2207
2208 if (unlikely(!p))
2209 return kmalloc(new_size, flags);
2210
2211 if (unlikely(!new_size)) {
2212 kfree(p);
2213 return NULL;
2214 }
2215
2216 page = virt_to_head_page(p);
2217
2218 new_cache = get_slab(new_size, flags);
2219
2220 /*
2221 * If new size fits in the current cache, bail out.
2222 */
2223 if (likely(page->slab == new_cache))
2224 return (void *)p;
2225
2226 ret = kmalloc(new_size, flags);
2227 if (ret) {
2228 memcpy(ret, p, min(new_size, ksize(p)));
2229 kfree(p);
2230 }
2231 return ret;
2232}
2233EXPORT_SYMBOL(krealloc);
2234
2235/********************************************************************
2236 * Basic setup of slabs
2237 *******************************************************************/
2238
2239void __init kmem_cache_init(void)
2240{
2241 int i;
2242
2243#ifdef CONFIG_NUMA
2244 /*
2245 * Must first have the slab cache available for the allocations of the
2246 * struct kmalloc_cache_node's. There is special bootstrap code in
2247 * kmem_cache_open for slab_state == DOWN.
2248 */
2249 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2250 sizeof(struct kmem_cache_node), GFP_KERNEL);
2251#endif
2252
2253 /* Able to allocate the per node structures */
2254 slab_state = PARTIAL;
2255
2256 /* Caches that are not of the two-to-the-power-of size */
2257 create_kmalloc_cache(&kmalloc_caches[1],
2258 "kmalloc-96", 96, GFP_KERNEL);
2259 create_kmalloc_cache(&kmalloc_caches[2],
2260 "kmalloc-192", 192, GFP_KERNEL);
2261
2262 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2263 create_kmalloc_cache(&kmalloc_caches[i],
2264 "kmalloc", 1 << i, GFP_KERNEL);
2265
2266 slab_state = UP;
2267
2268 /* Provide the correct kmalloc names now that the caches are up */
2269 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2270 kmalloc_caches[i]. name =
2271 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2272
2273#ifdef CONFIG_SMP
2274 register_cpu_notifier(&slab_notifier);
2275#endif
2276
2277 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2278 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2279 + nr_cpu_ids * sizeof(struct page *);
2280
2281 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2282 " Processors=%d, Nodes=%d\n",
2283 KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES,
2284 slub_min_order, slub_max_order, slub_min_objects,
2285 nr_cpu_ids, nr_node_ids);
2286}
2287
2288/*
2289 * Find a mergeable slab cache
2290 */
2291static int slab_unmergeable(struct kmem_cache *s)
2292{
2293 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2294 return 1;
2295
2296 if (s->ctor || s->dtor)
2297 return 1;
2298
2299 return 0;
2300}
2301
2302static struct kmem_cache *find_mergeable(size_t size,
2303 size_t align, unsigned long flags,
2304 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2305 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2306{
2307 struct list_head *h;
2308
2309 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2310 return NULL;
2311
2312 if (ctor || dtor)
2313 return NULL;
2314
2315 size = ALIGN(size, sizeof(void *));
2316 align = calculate_alignment(flags, align, size);
2317 size = ALIGN(size, align);
2318
2319 list_for_each(h, &slab_caches) {
2320 struct kmem_cache *s =
2321 container_of(h, struct kmem_cache, list);
2322
2323 if (slab_unmergeable(s))
2324 continue;
2325
2326 if (size > s->size)
2327 continue;
2328
2329 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2330 (s->flags & SLUB_MERGE_SAME))
2331 continue;
2332 /*
2333 * Check if alignment is compatible.
2334 * Courtesy of Adrian Drzewiecki
2335 */
2336 if ((s->size & ~(align -1)) != s->size)
2337 continue;
2338
2339 if (s->size - size >= sizeof(void *))
2340 continue;
2341
2342 return s;
2343 }
2344 return NULL;
2345}
2346
2347struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2348 size_t align, unsigned long flags,
2349 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2350 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2351{
2352 struct kmem_cache *s;
2353
2354 down_write(&slub_lock);
2355 s = find_mergeable(size, align, flags, dtor, ctor);
2356 if (s) {
2357 s->refcount++;
2358 /*
2359 * Adjust the object sizes so that we clear
2360 * the complete object on kzalloc.
2361 */
2362 s->objsize = max(s->objsize, (int)size);
2363 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2364 if (sysfs_slab_alias(s, name))
2365 goto err;
2366 } else {
2367 s = kmalloc(kmem_size, GFP_KERNEL);
2368 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2369 size, align, flags, ctor, dtor)) {
2370 if (sysfs_slab_add(s)) {
2371 kfree(s);
2372 goto err;
2373 }
2374 list_add(&s->list, &slab_caches);
2375 } else
2376 kfree(s);
2377 }
2378 up_write(&slub_lock);
2379 return s;
2380
2381err:
2382 up_write(&slub_lock);
2383 if (flags & SLAB_PANIC)
2384 panic("Cannot create slabcache %s\n", name);
2385 else
2386 s = NULL;
2387 return s;
2388}
2389EXPORT_SYMBOL(kmem_cache_create);
2390
2391void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2392{
2393 void *x;
2394
2395 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2396 if (x)
2397 memset(x, 0, s->objsize);
2398 return x;
2399}
2400EXPORT_SYMBOL(kmem_cache_zalloc);
2401
2402#ifdef CONFIG_SMP
2403static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2404{
2405 struct list_head *h;
2406
2407 down_read(&slub_lock);
2408 list_for_each(h, &slab_caches) {
2409 struct kmem_cache *s =
2410 container_of(h, struct kmem_cache, list);
2411
2412 func(s, cpu);
2413 }
2414 up_read(&slub_lock);
2415}
2416
2417/*
2418 * Use the cpu notifier to insure that the slab are flushed
2419 * when necessary.
2420 */
2421static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2422 unsigned long action, void *hcpu)
2423{
2424 long cpu = (long)hcpu;
2425
2426 switch (action) {
2427 case CPU_UP_CANCELED:
2428 case CPU_DEAD:
2429 for_all_slabs(__flush_cpu_slab, cpu);
2430 break;
2431 default:
2432 break;
2433 }
2434 return NOTIFY_OK;
2435}
2436
2437static struct notifier_block __cpuinitdata slab_notifier =
2438 { &slab_cpuup_callback, NULL, 0 };
2439
2440#endif
2441
2442#ifdef CONFIG_NUMA
2443
2444/*****************************************************************
2445 * Generic reaper used to support the page allocator
2446 * (the cpu slabs are reaped by a per slab workqueue).
2447 *
2448 * Maybe move this to the page allocator?
2449 ****************************************************************/
2450
2451static DEFINE_PER_CPU(unsigned long, reap_node);
2452
2453static void init_reap_node(int cpu)
2454{
2455 int node;
2456
2457 node = next_node(cpu_to_node(cpu), node_online_map);
2458 if (node == MAX_NUMNODES)
2459 node = first_node(node_online_map);
2460
2461 __get_cpu_var(reap_node) = node;
2462}
2463
2464static void next_reap_node(void)
2465{
2466 int node = __get_cpu_var(reap_node);
2467
2468 /*
2469 * Also drain per cpu pages on remote zones
2470 */
2471 if (node != numa_node_id())
2472 drain_node_pages(node);
2473
2474 node = next_node(node, node_online_map);
2475 if (unlikely(node >= MAX_NUMNODES))
2476 node = first_node(node_online_map);
2477 __get_cpu_var(reap_node) = node;
2478}
2479#else
2480#define init_reap_node(cpu) do { } while (0)
2481#define next_reap_node(void) do { } while (0)
2482#endif
2483
2484#define REAPTIMEOUT_CPUC (2*HZ)
2485
2486#ifdef CONFIG_SMP
2487static DEFINE_PER_CPU(struct delayed_work, reap_work);
2488
2489static void cache_reap(struct work_struct *unused)
2490{
2491 next_reap_node();
2492 refresh_cpu_vm_stats(smp_processor_id());
2493 schedule_delayed_work(&__get_cpu_var(reap_work),
2494 REAPTIMEOUT_CPUC);
2495}
2496
2497static void __devinit start_cpu_timer(int cpu)
2498{
2499 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2500
2501 /*
2502 * When this gets called from do_initcalls via cpucache_init(),
2503 * init_workqueues() has already run, so keventd will be setup
2504 * at that time.
2505 */
2506 if (keventd_up() && reap_work->work.func == NULL) {
2507 init_reap_node(cpu);
2508 INIT_DELAYED_WORK(reap_work, cache_reap);
2509 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2510 }
2511}
2512
2513static int __init cpucache_init(void)
2514{
2515 int cpu;
2516
2517 /*
2518 * Register the timers that drain pcp pages and update vm statistics
2519 */
2520 for_each_online_cpu(cpu)
2521 start_cpu_timer(cpu);
2522 return 0;
2523}
2524__initcall(cpucache_init);
2525#endif
2526
2527#ifdef SLUB_RESILIENCY_TEST
2528static unsigned long validate_slab_cache(struct kmem_cache *s);
2529
2530static void resiliency_test(void)
2531{
2532 u8 *p;
2533
2534 printk(KERN_ERR "SLUB resiliency testing\n");
2535 printk(KERN_ERR "-----------------------\n");
2536 printk(KERN_ERR "A. Corruption after allocation\n");
2537
2538 p = kzalloc(16, GFP_KERNEL);
2539 p[16] = 0x12;
2540 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2541 " 0x12->0x%p\n\n", p + 16);
2542
2543 validate_slab_cache(kmalloc_caches + 4);
2544
2545 /* Hmmm... The next two are dangerous */
2546 p = kzalloc(32, GFP_KERNEL);
2547 p[32 + sizeof(void *)] = 0x34;
2548 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2549 " 0x34 -> -0x%p\n", p);
2550 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2551
2552 validate_slab_cache(kmalloc_caches + 5);
2553 p = kzalloc(64, GFP_KERNEL);
2554 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2555 *p = 0x56;
2556 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2557 p);
2558 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2559 validate_slab_cache(kmalloc_caches + 6);
2560
2561 printk(KERN_ERR "\nB. Corruption after free\n");
2562 p = kzalloc(128, GFP_KERNEL);
2563 kfree(p);
2564 *p = 0x78;
2565 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2566 validate_slab_cache(kmalloc_caches + 7);
2567
2568 p = kzalloc(256, GFP_KERNEL);
2569 kfree(p);
2570 p[50] = 0x9a;
2571 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2572 validate_slab_cache(kmalloc_caches + 8);
2573
2574 p = kzalloc(512, GFP_KERNEL);
2575 kfree(p);
2576 p[512] = 0xab;
2577 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2578 validate_slab_cache(kmalloc_caches + 9);
2579}
2580#else
2581static void resiliency_test(void) {};
2582#endif
2583
2584/*
2585 * These are not as efficient as kmalloc for the non debug case.
2586 * We do not have the page struct available so we have to touch one
2587 * cacheline in struct kmem_cache to check slab flags.
2588 */
2589void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2590{
2591 struct kmem_cache *s = get_slab(size, gfpflags);
2592
2593 if (!s)
2594 return NULL;
2595
2596 return slab_alloc(s, gfpflags, -1, caller);
2597}
2598
2599void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2600 int node, void *caller)
2601{
2602 struct kmem_cache *s = get_slab(size, gfpflags);
2603
2604 if (!s)
2605 return NULL;
2606
2607 return slab_alloc(s, gfpflags, node, caller);
2608}
2609
2610#ifdef CONFIG_SYSFS
2611
2612static int validate_slab(struct kmem_cache *s, struct page *page)
2613{
2614 void *p;
2615 void *addr = page_address(page);
2616 unsigned long map[BITS_TO_LONGS(s->objects)];
2617
2618 if (!check_slab(s, page) ||
2619 !on_freelist(s, page, NULL))
2620 return 0;
2621
2622 /* Now we know that a valid freelist exists */
2623 bitmap_zero(map, s->objects);
2624
2625 for(p = page->freelist; p; p = get_freepointer(s, p)) {
2626 set_bit((p - addr) / s->size, map);
2627 if (!check_object(s, page, p, 0))
2628 return 0;
2629 }
2630
2631 for(p = addr; p < addr + s->objects * s->size; p += s->size)
2632 if (!test_bit((p - addr) / s->size, map))
2633 if (!check_object(s, page, p, 1))
2634 return 0;
2635 return 1;
2636}
2637
2638static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2639{
2640 if (slab_trylock(page)) {
2641 validate_slab(s, page);
2642 slab_unlock(page);
2643 } else
2644 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2645 s->name, page);
2646
2647 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2648 if (!PageError(page))
2649 printk(KERN_ERR "SLUB %s: PageError not set "
2650 "on slab 0x%p\n", s->name, page);
2651 } else {
2652 if (PageError(page))
2653 printk(KERN_ERR "SLUB %s: PageError set on "
2654 "slab 0x%p\n", s->name, page);
2655 }
2656}
2657
2658static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2659{
2660 unsigned long count = 0;
2661 struct page *page;
2662 unsigned long flags;
2663
2664 spin_lock_irqsave(&n->list_lock, flags);
2665
2666 list_for_each_entry(page, &n->partial, lru) {
2667 validate_slab_slab(s, page);
2668 count++;
2669 }
2670 if (count != n->nr_partial)
2671 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2672 "counter=%ld\n", s->name, count, n->nr_partial);
2673
2674 if (!(s->flags & SLAB_STORE_USER))
2675 goto out;
2676
2677 list_for_each_entry(page, &n->full, lru) {
2678 validate_slab_slab(s, page);
2679 count++;
2680 }
2681 if (count != atomic_long_read(&n->nr_slabs))
2682 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2683 "counter=%ld\n", s->name, count,
2684 atomic_long_read(&n->nr_slabs));
2685
2686out:
2687 spin_unlock_irqrestore(&n->list_lock, flags);
2688 return count;
2689}
2690
2691static unsigned long validate_slab_cache(struct kmem_cache *s)
2692{
2693 int node;
2694 unsigned long count = 0;
2695
2696 flush_all(s);
2697 for_each_online_node(node) {
2698 struct kmem_cache_node *n = get_node(s, node);
2699
2700 count += validate_slab_node(s, n);
2701 }
2702 return count;
2703}
2704
2705/*
2706 * Generate lists of locations where slabcache objects are allocated
2707 * and freed.
2708 */
2709
2710struct location {
2711 unsigned long count;
2712 void *addr;
2713};
2714
2715struct loc_track {
2716 unsigned long max;
2717 unsigned long count;
2718 struct location *loc;
2719};
2720
2721static void free_loc_track(struct loc_track *t)
2722{
2723 if (t->max)
2724 free_pages((unsigned long)t->loc,
2725 get_order(sizeof(struct location) * t->max));
2726}
2727
2728static int alloc_loc_track(struct loc_track *t, unsigned long max)
2729{
2730 struct location *l;
2731 int order;
2732
2733 if (!max)
2734 max = PAGE_SIZE / sizeof(struct location);
2735
2736 order = get_order(sizeof(struct location) * max);
2737
2738 l = (void *)__get_free_pages(GFP_KERNEL, order);
2739
2740 if (!l)
2741 return 0;
2742
2743 if (t->count) {
2744 memcpy(l, t->loc, sizeof(struct location) * t->count);
2745 free_loc_track(t);
2746 }
2747 t->max = max;
2748 t->loc = l;
2749 return 1;
2750}
2751
2752static int add_location(struct loc_track *t, struct kmem_cache *s,
2753 void *addr)
2754{
2755 long start, end, pos;
2756 struct location *l;
2757 void *caddr;
2758
2759 start = -1;
2760 end = t->count;
2761
2762 for ( ; ; ) {
2763 pos = start + (end - start + 1) / 2;
2764
2765 /*
2766 * There is nothing at "end". If we end up there
2767 * we need to add something to before end.
2768 */
2769 if (pos == end)
2770 break;
2771
2772 caddr = t->loc[pos].addr;
2773 if (addr == caddr) {
2774 t->loc[pos].count++;
2775 return 1;
2776 }
2777
2778 if (addr < caddr)
2779 end = pos;
2780 else
2781 start = pos;
2782 }
2783
2784 /*
2785 * Not found. Insert new tracking element
2786 */
2787 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2788 return 0;
2789
2790 l = t->loc + pos;
2791 if (pos < t->count)
2792 memmove(l + 1, l,
2793 (t->count - pos) * sizeof(struct location));
2794 t->count++;
2795 l->count = 1;
2796 l->addr = addr;
2797 return 1;
2798}
2799
2800static void process_slab(struct loc_track *t, struct kmem_cache *s,
2801 struct page *page, enum track_item alloc)
2802{
2803 void *addr = page_address(page);
2804 unsigned long map[BITS_TO_LONGS(s->objects)];
2805 void *p;
2806
2807 bitmap_zero(map, s->objects);
2808 for (p = page->freelist; p; p = get_freepointer(s, p))
2809 set_bit((p - addr) / s->size, map);
2810
2811 for (p = addr; p < addr + s->objects * s->size; p += s->size)
2812 if (!test_bit((p - addr) / s->size, map)) {
2813 void *addr = get_track(s, p, alloc)->addr;
2814
2815 add_location(t, s, addr);
2816 }
2817}
2818
2819static int list_locations(struct kmem_cache *s, char *buf,
2820 enum track_item alloc)
2821{
2822 int n = 0;
2823 unsigned long i;
2824 struct loc_track t;
2825 int node;
2826
2827 t.count = 0;
2828 t.max = 0;
2829
2830 /* Push back cpu slabs */
2831 flush_all(s);
2832
2833 for_each_online_node(node) {
2834 struct kmem_cache_node *n = get_node(s, node);
2835 unsigned long flags;
2836 struct page *page;
2837
2838 if (!atomic_read(&n->nr_slabs))
2839 continue;
2840
2841 spin_lock_irqsave(&n->list_lock, flags);
2842 list_for_each_entry(page, &n->partial, lru)
2843 process_slab(&t, s, page, alloc);
2844 list_for_each_entry(page, &n->full, lru)
2845 process_slab(&t, s, page, alloc);
2846 spin_unlock_irqrestore(&n->list_lock, flags);
2847 }
2848
2849 for (i = 0; i < t.count; i++) {
2850 void *addr = t.loc[i].addr;
2851
2852 if (n > PAGE_SIZE - 100)
2853 break;
2854 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2855 if (addr)
2856 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2857 else
2858 n += sprintf(buf + n, "<not-available>");
2859 n += sprintf(buf + n, "\n");
2860 }
2861
2862 free_loc_track(&t);
2863 if (!t.count)
2864 n += sprintf(buf, "No data\n");
2865 return n;
2866}
2867
2868static unsigned long count_partial(struct kmem_cache_node *n)
2869{
2870 unsigned long flags;
2871 unsigned long x = 0;
2872 struct page *page;
2873
2874 spin_lock_irqsave(&n->list_lock, flags);
2875 list_for_each_entry(page, &n->partial, lru)
2876 x += page->inuse;
2877 spin_unlock_irqrestore(&n->list_lock, flags);
2878 return x;
2879}
2880
2881enum slab_stat_type {
2882 SL_FULL,
2883 SL_PARTIAL,
2884 SL_CPU,
2885 SL_OBJECTS
2886};
2887
2888#define SO_FULL (1 << SL_FULL)
2889#define SO_PARTIAL (1 << SL_PARTIAL)
2890#define SO_CPU (1 << SL_CPU)
2891#define SO_OBJECTS (1 << SL_OBJECTS)
2892
2893static unsigned long slab_objects(struct kmem_cache *s,
2894 char *buf, unsigned long flags)
2895{
2896 unsigned long total = 0;
2897 int cpu;
2898 int node;
2899 int x;
2900 unsigned long *nodes;
2901 unsigned long *per_cpu;
2902
2903 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2904 per_cpu = nodes + nr_node_ids;
2905
2906 for_each_possible_cpu(cpu) {
2907 struct page *page = s->cpu_slab[cpu];
2908 int node;
2909
2910 if (page) {
2911 node = page_to_nid(page);
2912 if (flags & SO_CPU) {
2913 int x = 0;
2914
2915 if (flags & SO_OBJECTS)
2916 x = page->inuse;
2917 else
2918 x = 1;
2919 total += x;
2920 nodes[node] += x;
2921 }
2922 per_cpu[node]++;
2923 }
2924 }
2925
2926 for_each_online_node(node) {
2927 struct kmem_cache_node *n = get_node(s, node);
2928
2929 if (flags & SO_PARTIAL) {
2930 if (flags & SO_OBJECTS)
2931 x = count_partial(n);
2932 else
2933 x = n->nr_partial;
2934 total += x;
2935 nodes[node] += x;
2936 }
2937
2938 if (flags & SO_FULL) {
2939 int full_slabs = atomic_read(&n->nr_slabs)
2940 - per_cpu[node]
2941 - n->nr_partial;
2942
2943 if (flags & SO_OBJECTS)
2944 x = full_slabs * s->objects;
2945 else
2946 x = full_slabs;
2947 total += x;
2948 nodes[node] += x;
2949 }
2950 }
2951
2952 x = sprintf(buf, "%lu", total);
2953#ifdef CONFIG_NUMA
2954 for_each_online_node(node)
2955 if (nodes[node])
2956 x += sprintf(buf + x, " N%d=%lu",
2957 node, nodes[node]);
2958#endif
2959 kfree(nodes);
2960 return x + sprintf(buf + x, "\n");
2961}
2962
2963static int any_slab_objects(struct kmem_cache *s)
2964{
2965 int node;
2966 int cpu;
2967
2968 for_each_possible_cpu(cpu)
2969 if (s->cpu_slab[cpu])
2970 return 1;
2971
2972 for_each_node(node) {
2973 struct kmem_cache_node *n = get_node(s, node);
2974
2975 if (n->nr_partial || atomic_read(&n->nr_slabs))
2976 return 1;
2977 }
2978 return 0;
2979}
2980
2981#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2982#define to_slab(n) container_of(n, struct kmem_cache, kobj);
2983
2984struct slab_attribute {
2985 struct attribute attr;
2986 ssize_t (*show)(struct kmem_cache *s, char *buf);
2987 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2988};
2989
2990#define SLAB_ATTR_RO(_name) \
2991 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2992
2993#define SLAB_ATTR(_name) \
2994 static struct slab_attribute _name##_attr = \
2995 __ATTR(_name, 0644, _name##_show, _name##_store)
2996
2997static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
2998{
2999 return sprintf(buf, "%d\n", s->size);
3000}
3001SLAB_ATTR_RO(slab_size);
3002
3003static ssize_t align_show(struct kmem_cache *s, char *buf)
3004{
3005 return sprintf(buf, "%d\n", s->align);
3006}
3007SLAB_ATTR_RO(align);
3008
3009static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3010{
3011 return sprintf(buf, "%d\n", s->objsize);
3012}
3013SLAB_ATTR_RO(object_size);
3014
3015static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3016{
3017 return sprintf(buf, "%d\n", s->objects);
3018}
3019SLAB_ATTR_RO(objs_per_slab);
3020
3021static ssize_t order_show(struct kmem_cache *s, char *buf)
3022{
3023 return sprintf(buf, "%d\n", s->order);
3024}
3025SLAB_ATTR_RO(order);
3026
3027static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3028{
3029 if (s->ctor) {
3030 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3031
3032 return n + sprintf(buf + n, "\n");
3033 }
3034 return 0;
3035}
3036SLAB_ATTR_RO(ctor);
3037
3038static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3039{
3040 if (s->dtor) {
3041 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3042
3043 return n + sprintf(buf + n, "\n");
3044 }
3045 return 0;
3046}
3047SLAB_ATTR_RO(dtor);
3048
3049static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3050{
3051 return sprintf(buf, "%d\n", s->refcount - 1);
3052}
3053SLAB_ATTR_RO(aliases);
3054
3055static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3056{
3057 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3058}
3059SLAB_ATTR_RO(slabs);
3060
3061static ssize_t partial_show(struct kmem_cache *s, char *buf)
3062{
3063 return slab_objects(s, buf, SO_PARTIAL);
3064}
3065SLAB_ATTR_RO(partial);
3066
3067static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3068{
3069 return slab_objects(s, buf, SO_CPU);
3070}
3071SLAB_ATTR_RO(cpu_slabs);
3072
3073static ssize_t objects_show(struct kmem_cache *s, char *buf)
3074{
3075 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3076}
3077SLAB_ATTR_RO(objects);
3078
3079static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3080{
3081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3082}
3083
3084static ssize_t sanity_checks_store(struct kmem_cache *s,
3085 const char *buf, size_t length)
3086{
3087 s->flags &= ~SLAB_DEBUG_FREE;
3088 if (buf[0] == '1')
3089 s->flags |= SLAB_DEBUG_FREE;
3090 return length;
3091}
3092SLAB_ATTR(sanity_checks);
3093
3094static ssize_t trace_show(struct kmem_cache *s, char *buf)
3095{
3096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3097}
3098
3099static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3100 size_t length)
3101{
3102 s->flags &= ~SLAB_TRACE;
3103 if (buf[0] == '1')
3104 s->flags |= SLAB_TRACE;
3105 return length;
3106}
3107SLAB_ATTR(trace);
3108
3109static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3110{
3111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3112}
3113
3114static ssize_t reclaim_account_store(struct kmem_cache *s,
3115 const char *buf, size_t length)
3116{
3117 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3118 if (buf[0] == '1')
3119 s->flags |= SLAB_RECLAIM_ACCOUNT;
3120 return length;
3121}
3122SLAB_ATTR(reclaim_account);
3123
3124static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3125{
3126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3127}
3128SLAB_ATTR_RO(hwcache_align);
3129
3130#ifdef CONFIG_ZONE_DMA
3131static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3132{
3133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3134}
3135SLAB_ATTR_RO(cache_dma);
3136#endif
3137
3138static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3139{
3140 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3141}
3142SLAB_ATTR_RO(destroy_by_rcu);
3143
3144static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3145{
3146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3147}
3148
3149static ssize_t red_zone_store(struct kmem_cache *s,
3150 const char *buf, size_t length)
3151{
3152 if (any_slab_objects(s))
3153 return -EBUSY;
3154
3155 s->flags &= ~SLAB_RED_ZONE;
3156 if (buf[0] == '1')
3157 s->flags |= SLAB_RED_ZONE;
3158 calculate_sizes(s);
3159 return length;
3160}
3161SLAB_ATTR(red_zone);
3162
3163static ssize_t poison_show(struct kmem_cache *s, char *buf)
3164{
3165 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3166}
3167
3168static ssize_t poison_store(struct kmem_cache *s,
3169 const char *buf, size_t length)
3170{
3171 if (any_slab_objects(s))
3172 return -EBUSY;
3173
3174 s->flags &= ~SLAB_POISON;
3175 if (buf[0] == '1')
3176 s->flags |= SLAB_POISON;
3177 calculate_sizes(s);
3178 return length;
3179}
3180SLAB_ATTR(poison);
3181
3182static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3183{
3184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3185}
3186
3187static ssize_t store_user_store(struct kmem_cache *s,
3188 const char *buf, size_t length)
3189{
3190 if (any_slab_objects(s))
3191 return -EBUSY;
3192
3193 s->flags &= ~SLAB_STORE_USER;
3194 if (buf[0] == '1')
3195 s->flags |= SLAB_STORE_USER;
3196 calculate_sizes(s);
3197 return length;
3198}
3199SLAB_ATTR(store_user);
3200
3201static ssize_t validate_show(struct kmem_cache *s, char *buf)
3202{
3203 return 0;
3204}
3205
3206static ssize_t validate_store(struct kmem_cache *s,
3207 const char *buf, size_t length)
3208{
3209 if (buf[0] == '1')
3210 validate_slab_cache(s);
3211 else
3212 return -EINVAL;
3213 return length;
3214}
3215SLAB_ATTR(validate);
3216
3217static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3218{
3219 return 0;
3220}
3221
3222static ssize_t shrink_store(struct kmem_cache *s,
3223 const char *buf, size_t length)
3224{
3225 if (buf[0] == '1') {
3226 int rc = kmem_cache_shrink(s);
3227
3228 if (rc)
3229 return rc;
3230 } else
3231 return -EINVAL;
3232 return length;
3233}
3234SLAB_ATTR(shrink);
3235
3236static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3237{
3238 if (!(s->flags & SLAB_STORE_USER))
3239 return -ENOSYS;
3240 return list_locations(s, buf, TRACK_ALLOC);
3241}
3242SLAB_ATTR_RO(alloc_calls);
3243
3244static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3245{
3246 if (!(s->flags & SLAB_STORE_USER))
3247 return -ENOSYS;
3248 return list_locations(s, buf, TRACK_FREE);
3249}
3250SLAB_ATTR_RO(free_calls);
3251
3252#ifdef CONFIG_NUMA
3253static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3254{
3255 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3256}
3257
3258static ssize_t defrag_ratio_store(struct kmem_cache *s,
3259 const char *buf, size_t length)
3260{
3261 int n = simple_strtoul(buf, NULL, 10);
3262
3263 if (n < 100)
3264 s->defrag_ratio = n * 10;
3265 return length;
3266}
3267SLAB_ATTR(defrag_ratio);
3268#endif
3269
3270static struct attribute * slab_attrs[] = {
3271 &slab_size_attr.attr,
3272 &object_size_attr.attr,
3273 &objs_per_slab_attr.attr,
3274 &order_attr.attr,
3275 &objects_attr.attr,
3276 &slabs_attr.attr,
3277 &partial_attr.attr,
3278 &cpu_slabs_attr.attr,
3279 &ctor_attr.attr,
3280 &dtor_attr.attr,
3281 &aliases_attr.attr,
3282 &align_attr.attr,
3283 &sanity_checks_attr.attr,
3284 &trace_attr.attr,
3285 &hwcache_align_attr.attr,
3286 &reclaim_account_attr.attr,
3287 &destroy_by_rcu_attr.attr,
3288 &red_zone_attr.attr,
3289 &poison_attr.attr,
3290 &store_user_attr.attr,
3291 &validate_attr.attr,
3292 &shrink_attr.attr,
3293 &alloc_calls_attr.attr,
3294 &free_calls_attr.attr,
3295#ifdef CONFIG_ZONE_DMA
3296 &cache_dma_attr.attr,
3297#endif
3298#ifdef CONFIG_NUMA
3299 &defrag_ratio_attr.attr,
3300#endif
3301 NULL
3302};
3303
3304static struct attribute_group slab_attr_group = {
3305 .attrs = slab_attrs,
3306};
3307
3308static ssize_t slab_attr_show(struct kobject *kobj,
3309 struct attribute *attr,
3310 char *buf)
3311{
3312 struct slab_attribute *attribute;
3313 struct kmem_cache *s;
3314 int err;
3315
3316 attribute = to_slab_attr(attr);
3317 s = to_slab(kobj);
3318
3319 if (!attribute->show)
3320 return -EIO;
3321
3322 err = attribute->show(s, buf);
3323
3324 return err;
3325}
3326
3327static ssize_t slab_attr_store(struct kobject *kobj,
3328 struct attribute *attr,
3329 const char *buf, size_t len)
3330{
3331 struct slab_attribute *attribute;
3332 struct kmem_cache *s;
3333 int err;
3334
3335 attribute = to_slab_attr(attr);
3336 s = to_slab(kobj);
3337
3338 if (!attribute->store)
3339 return -EIO;
3340
3341 err = attribute->store(s, buf, len);
3342
3343 return err;
3344}
3345
3346static struct sysfs_ops slab_sysfs_ops = {
3347 .show = slab_attr_show,
3348 .store = slab_attr_store,
3349};
3350
3351static struct kobj_type slab_ktype = {
3352 .sysfs_ops = &slab_sysfs_ops,
3353};
3354
3355static int uevent_filter(struct kset *kset, struct kobject *kobj)
3356{
3357 struct kobj_type *ktype = get_ktype(kobj);
3358
3359 if (ktype == &slab_ktype)
3360 return 1;
3361 return 0;
3362}
3363
3364static struct kset_uevent_ops slab_uevent_ops = {
3365 .filter = uevent_filter,
3366};
3367
3368decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3369
3370#define ID_STR_LENGTH 64
3371
3372/* Create a unique string id for a slab cache:
3373 * format
3374 * :[flags-]size:[memory address of kmemcache]
3375 */
3376static char *create_unique_id(struct kmem_cache *s)
3377{
3378 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3379 char *p = name;
3380
3381 BUG_ON(!name);
3382
3383 *p++ = ':';
3384 /*
3385 * First flags affecting slabcache operations. We will only
3386 * get here for aliasable slabs so we do not need to support
3387 * too many flags. The flags here must cover all flags that
3388 * are matched during merging to guarantee that the id is
3389 * unique.
3390 */
3391 if (s->flags & SLAB_CACHE_DMA)
3392 *p++ = 'd';
3393 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3394 *p++ = 'a';
3395 if (s->flags & SLAB_DEBUG_FREE)
3396 *p++ = 'F';
3397 if (p != name + 1)
3398 *p++ = '-';
3399 p += sprintf(p, "%07d", s->size);
3400 BUG_ON(p > name + ID_STR_LENGTH - 1);
3401 return name;
3402}
3403
3404static int sysfs_slab_add(struct kmem_cache *s)
3405{
3406 int err;
3407 const char *name;
3408 int unmergeable;
3409
3410 if (slab_state < SYSFS)
3411 /* Defer until later */
3412 return 0;
3413
3414 unmergeable = slab_unmergeable(s);
3415 if (unmergeable) {
3416 /*
3417 * Slabcache can never be merged so we can use the name proper.
3418 * This is typically the case for debug situations. In that
3419 * case we can catch duplicate names easily.
3420 */
3421 sysfs_remove_link(&slab_subsys.kobj, s->name);
3422 name = s->name;
3423 } else {
3424 /*
3425 * Create a unique name for the slab as a target
3426 * for the symlinks.
3427 */
3428 name = create_unique_id(s);
3429 }
3430
3431 kobj_set_kset_s(s, slab_subsys);
3432 kobject_set_name(&s->kobj, name);
3433 kobject_init(&s->kobj);
3434 err = kobject_add(&s->kobj);
3435 if (err)
3436 return err;
3437
3438 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3439 if (err)
3440 return err;
3441 kobject_uevent(&s->kobj, KOBJ_ADD);
3442 if (!unmergeable) {
3443 /* Setup first alias */
3444 sysfs_slab_alias(s, s->name);
3445 kfree(name);
3446 }
3447 return 0;
3448}
3449
3450static void sysfs_slab_remove(struct kmem_cache *s)
3451{
3452 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3453 kobject_del(&s->kobj);
3454}
3455
3456/*
3457 * Need to buffer aliases during bootup until sysfs becomes
3458 * available lest we loose that information.
3459 */
3460struct saved_alias {
3461 struct kmem_cache *s;
3462 const char *name;
3463 struct saved_alias *next;
3464};
3465
3466struct saved_alias *alias_list;
3467
3468static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3469{
3470 struct saved_alias *al;
3471
3472 if (slab_state == SYSFS) {
3473 /*
3474 * If we have a leftover link then remove it.
3475 */
3476 sysfs_remove_link(&slab_subsys.kobj, name);
3477 return sysfs_create_link(&slab_subsys.kobj,
3478 &s->kobj, name);
3479 }
3480
3481 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3482 if (!al)
3483 return -ENOMEM;
3484
3485 al->s = s;
3486 al->name = name;
3487 al->next = alias_list;
3488 alias_list = al;
3489 return 0;
3490}
3491
3492static int __init slab_sysfs_init(void)
3493{
3494 int err;
3495
3496 err = subsystem_register(&slab_subsys);
3497 if (err) {
3498 printk(KERN_ERR "Cannot register slab subsystem.\n");
3499 return -ENOSYS;
3500 }
3501
3502 finish_bootstrap();
3503
3504 while (alias_list) {
3505 struct saved_alias *al = alias_list;
3506
3507 alias_list = alias_list->next;
3508 err = sysfs_slab_alias(al->s, al->name);
3509 BUG_ON(err);
3510 kfree(al);
3511 }
3512
3513 resiliency_test();
3514 return 0;
3515}
3516
3517__initcall(slab_sysfs_init);
3518#else
3519__initcall(finish_bootstrap);
3520#endif
diff --git a/mm/sparse.c b/mm/sparse.c
index ac26eb0d73cd..893e5621c247 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -272,7 +272,7 @@ static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
272 * Allocate the accumulated non-linear sections, allocate a mem_map 272 * Allocate the accumulated non-linear sections, allocate a mem_map
273 * for each and record the physical to section mapping. 273 * for each and record the physical to section mapping.
274 */ 274 */
275void sparse_init(void) 275void __init sparse_init(void)
276{ 276{
277 unsigned long pnum; 277 unsigned long pnum;
278 struct page *map; 278 struct page *map;
diff --git a/mm/swap.c b/mm/swap.c
index 2ed7be39795e..218c52a24a21 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -55,7 +55,7 @@ static void fastcall __page_cache_release(struct page *page)
55 55
56static void put_compound_page(struct page *page) 56static void put_compound_page(struct page *page)
57{ 57{
58 page = (struct page *)page_private(page); 58 page = compound_head(page);
59 if (put_page_testzero(page)) { 59 if (put_page_testzero(page)) {
60 compound_page_dtor *dtor; 60 compound_page_dtor *dtor;
61 61
diff --git a/mm/swapfile.c b/mm/swapfile.c
index a2d9bb4e80df..acc172cbe3aa 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -1531,9 +1531,6 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1531 error = PTR_ERR(page); 1531 error = PTR_ERR(page);
1532 goto bad_swap; 1532 goto bad_swap;
1533 } 1533 }
1534 wait_on_page_locked(page);
1535 if (!PageUptodate(page))
1536 goto bad_swap;
1537 kmap(page); 1534 kmap(page);
1538 swap_header = page_address(page); 1535 swap_header = page_address(page);
1539 1536
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 9eef486da909..cb5aabda7046 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -431,7 +431,7 @@ void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
431 area->flags |= VM_VPAGES; 431 area->flags |= VM_VPAGES;
432 } else { 432 } else {
433 pages = kmalloc_node(array_size, 433 pages = kmalloc_node(array_size,
434 (gfp_mask & ~(__GFP_HIGHMEM | __GFP_ZERO)), 434 (gfp_mask & GFP_LEVEL_MASK),
435 node); 435 node);
436 } 436 }
437 area->pages = pages; 437 area->pages = pages;
@@ -577,6 +577,14 @@ void *vmalloc_exec(unsigned long size)
577 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 577 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
578} 578}
579 579
580#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
581#define GFP_VMALLOC32 GFP_DMA32
582#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
583#define GFP_VMALLOC32 GFP_DMA
584#else
585#define GFP_VMALLOC32 GFP_KERNEL
586#endif
587
580/** 588/**
581 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 589 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
582 * @size: allocation size 590 * @size: allocation size
@@ -586,7 +594,7 @@ void *vmalloc_exec(unsigned long size)
586 */ 594 */
587void *vmalloc_32(unsigned long size) 595void *vmalloc_32(unsigned long size)
588{ 596{
589 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 597 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
590} 598}
591EXPORT_SYMBOL(vmalloc_32); 599EXPORT_SYMBOL(vmalloc_32);
592 600
@@ -602,7 +610,7 @@ void *vmalloc_32_user(unsigned long size)
602 struct vm_struct *area; 610 struct vm_struct *area;
603 void *ret; 611 void *ret;
604 612
605 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 613 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
606 if (ret) { 614 if (ret) {
607 write_lock(&vmlist_lock); 615 write_lock(&vmlist_lock);
608 area = __find_vm_area(ret); 616 area = __find_vm_area(ret);
diff --git a/mm/vmscan.c b/mm/vmscan.c
index db023e2ff385..56651a10c366 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -1323,8 +1323,6 @@ static int kswapd(void *p)
1323 for ( ; ; ) { 1323 for ( ; ; ) {
1324 unsigned long new_order; 1324 unsigned long new_order;
1325 1325
1326 try_to_freeze();
1327
1328 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1326 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1329 new_order = pgdat->kswapd_max_order; 1327 new_order = pgdat->kswapd_max_order;
1330 pgdat->kswapd_max_order = 0; 1328 pgdat->kswapd_max_order = 0;
@@ -1335,12 +1333,19 @@ static int kswapd(void *p)
1335 */ 1333 */
1336 order = new_order; 1334 order = new_order;
1337 } else { 1335 } else {
1338 schedule(); 1336 if (!freezing(current))
1337 schedule();
1338
1339 order = pgdat->kswapd_max_order; 1339 order = pgdat->kswapd_max_order;
1340 } 1340 }
1341 finish_wait(&pgdat->kswapd_wait, &wait); 1341 finish_wait(&pgdat->kswapd_wait, &wait);
1342 1342
1343 balance_pgdat(pgdat, order); 1343 if (!try_to_freeze()) {
1344 /* We can speed up thawing tasks if we don't call
1345 * balance_pgdat after returning from the refrigerator
1346 */
1347 balance_pgdat(pgdat, order);
1348 }
1344 } 1349 }
1345 return 0; 1350 return 0;
1346} 1351}