aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig14
-rw-r--r--mm/Makefile2
-rw-r--r--mm/filemap.c4
-rw-r--r--mm/hwpoison-inject.c41
-rw-r--r--mm/madvise.c30
-rw-r--r--mm/memory-failure.c832
-rw-r--r--mm/memory.c24
-rw-r--r--mm/migrate.c2
-rw-r--r--mm/page-writeback.c7
-rw-r--r--mm/page_alloc.c20
-rw-r--r--mm/rmap.c60
-rw-r--r--mm/shmem.c5
-rw-r--r--mm/swapfile.c4
-rw-r--r--mm/truncate.c72
-rw-r--r--mm/vmscan.c2
15 files changed, 1067 insertions, 52 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 71eb0b4cce8d..247760729593 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -245,6 +245,20 @@ config DEFAULT_MMAP_MIN_ADDR
245 /proc/sys/vm/mmap_min_addr tunable. 245 /proc/sys/vm/mmap_min_addr tunable.
246 246
247 247
248config MEMORY_FAILURE
249 depends on MMU
250 depends on X86_MCE
251 bool "Enable recovery from hardware memory errors"
252 help
253 Enables code to recover from some memory failures on systems
254 with MCA recovery. This allows a system to continue running
255 even when some of its memory has uncorrected errors. This requires
256 special hardware support and typically ECC memory.
257
258config HWPOISON_INJECT
259 tristate "Poison pages injector"
260 depends on MEMORY_FAILURE && DEBUG_KERNEL
261
248config NOMMU_INITIAL_TRIM_EXCESS 262config NOMMU_INITIAL_TRIM_EXCESS
249 int "Turn on mmap() excess space trimming before booting" 263 int "Turn on mmap() excess space trimming before booting"
250 depends on !MMU 264 depends on !MMU
diff --git a/mm/Makefile b/mm/Makefile
index 88193d73cd1a..515fd793c17f 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -41,5 +41,7 @@ obj-$(CONFIG_SMP) += allocpercpu.o
41endif 41endif
42obj-$(CONFIG_QUICKLIST) += quicklist.o 42obj-$(CONFIG_QUICKLIST) += quicklist.o
43obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o 43obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o
44obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o
45obj-$(CONFIG_HWPOISON_INJECT) += hwpoison-inject.o
44obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o 46obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o
45obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o 47obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o
diff --git a/mm/filemap.c b/mm/filemap.c
index bcc7372aebbc..c1fc205a92c6 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -104,6 +104,10 @@
104 * 104 *
105 * ->task->proc_lock 105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup) 106 * ->dcache_lock (proc_pid_lookup)
107 *
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
107 */ 111 */
108 112
109/* 113/*
diff --git a/mm/hwpoison-inject.c b/mm/hwpoison-inject.c
new file mode 100644
index 000000000000..e1d85137f086
--- /dev/null
+++ b/mm/hwpoison-inject.c
@@ -0,0 +1,41 @@
1/* Inject a hwpoison memory failure on a arbitary pfn */
2#include <linux/module.h>
3#include <linux/debugfs.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6
7static struct dentry *hwpoison_dir, *corrupt_pfn;
8
9static int hwpoison_inject(void *data, u64 val)
10{
11 if (!capable(CAP_SYS_ADMIN))
12 return -EPERM;
13 printk(KERN_INFO "Injecting memory failure at pfn %Lx\n", val);
14 return __memory_failure(val, 18, 0);
15}
16
17DEFINE_SIMPLE_ATTRIBUTE(hwpoison_fops, NULL, hwpoison_inject, "%lli\n");
18
19static void pfn_inject_exit(void)
20{
21 if (hwpoison_dir)
22 debugfs_remove_recursive(hwpoison_dir);
23}
24
25static int pfn_inject_init(void)
26{
27 hwpoison_dir = debugfs_create_dir("hwpoison", NULL);
28 if (hwpoison_dir == NULL)
29 return -ENOMEM;
30 corrupt_pfn = debugfs_create_file("corrupt-pfn", 0600, hwpoison_dir,
31 NULL, &hwpoison_fops);
32 if (corrupt_pfn == NULL) {
33 pfn_inject_exit();
34 return -ENOMEM;
35 }
36 return 0;
37}
38
39module_init(pfn_inject_init);
40module_exit(pfn_inject_exit);
41MODULE_LICENSE("GPL");
diff --git a/mm/madvise.c b/mm/madvise.c
index d9ae2067952e..35b1479b7c9d 100644
--- a/mm/madvise.c
+++ b/mm/madvise.c
@@ -218,6 +218,32 @@ static long madvise_remove(struct vm_area_struct *vma,
218 return error; 218 return error;
219} 219}
220 220
221#ifdef CONFIG_MEMORY_FAILURE
222/*
223 * Error injection support for memory error handling.
224 */
225static int madvise_hwpoison(unsigned long start, unsigned long end)
226{
227 int ret = 0;
228
229 if (!capable(CAP_SYS_ADMIN))
230 return -EPERM;
231 for (; start < end; start += PAGE_SIZE) {
232 struct page *p;
233 int ret = get_user_pages(current, current->mm, start, 1,
234 0, 0, &p, NULL);
235 if (ret != 1)
236 return ret;
237 printk(KERN_INFO "Injecting memory failure for page %lx at %lx\n",
238 page_to_pfn(p), start);
239 /* Ignore return value for now */
240 __memory_failure(page_to_pfn(p), 0, 1);
241 put_page(p);
242 }
243 return ret;
244}
245#endif
246
221static long 247static long
222madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, 248madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
223 unsigned long start, unsigned long end, int behavior) 249 unsigned long start, unsigned long end, int behavior)
@@ -308,6 +334,10 @@ SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
308 int write; 334 int write;
309 size_t len; 335 size_t len;
310 336
337#ifdef CONFIG_MEMORY_FAILURE
338 if (behavior == MADV_HWPOISON)
339 return madvise_hwpoison(start, start+len_in);
340#endif
311 if (!madvise_behavior_valid(behavior)) 341 if (!madvise_behavior_valid(behavior))
312 return error; 342 return error;
313 343
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
new file mode 100644
index 000000000000..729d4b15b645
--- /dev/null
+++ b/mm/memory-failure.c
@@ -0,0 +1,832 @@
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27/*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33#define DEBUG 1 /* remove me in 2.6.34 */
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/page-flags.h>
37#include <linux/sched.h>
38#include <linux/rmap.h>
39#include <linux/pagemap.h>
40#include <linux/swap.h>
41#include <linux/backing-dev.h>
42#include "internal.h"
43
44int sysctl_memory_failure_early_kill __read_mostly = 0;
45
46int sysctl_memory_failure_recovery __read_mostly = 1;
47
48atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
49
50/*
51 * Send all the processes who have the page mapped an ``action optional''
52 * signal.
53 */
54static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
55 unsigned long pfn)
56{
57 struct siginfo si;
58 int ret;
59
60 printk(KERN_ERR
61 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
62 pfn, t->comm, t->pid);
63 si.si_signo = SIGBUS;
64 si.si_errno = 0;
65 si.si_code = BUS_MCEERR_AO;
66 si.si_addr = (void *)addr;
67#ifdef __ARCH_SI_TRAPNO
68 si.si_trapno = trapno;
69#endif
70 si.si_addr_lsb = PAGE_SHIFT;
71 /*
72 * Don't use force here, it's convenient if the signal
73 * can be temporarily blocked.
74 * This could cause a loop when the user sets SIGBUS
75 * to SIG_IGN, but hopefully noone will do that?
76 */
77 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
78 if (ret < 0)
79 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
80 t->comm, t->pid, ret);
81 return ret;
82}
83
84/*
85 * Kill all processes that have a poisoned page mapped and then isolate
86 * the page.
87 *
88 * General strategy:
89 * Find all processes having the page mapped and kill them.
90 * But we keep a page reference around so that the page is not
91 * actually freed yet.
92 * Then stash the page away
93 *
94 * There's no convenient way to get back to mapped processes
95 * from the VMAs. So do a brute-force search over all
96 * running processes.
97 *
98 * Remember that machine checks are not common (or rather
99 * if they are common you have other problems), so this shouldn't
100 * be a performance issue.
101 *
102 * Also there are some races possible while we get from the
103 * error detection to actually handle it.
104 */
105
106struct to_kill {
107 struct list_head nd;
108 struct task_struct *tsk;
109 unsigned long addr;
110 unsigned addr_valid:1;
111};
112
113/*
114 * Failure handling: if we can't find or can't kill a process there's
115 * not much we can do. We just print a message and ignore otherwise.
116 */
117
118/*
119 * Schedule a process for later kill.
120 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
121 * TBD would GFP_NOIO be enough?
122 */
123static void add_to_kill(struct task_struct *tsk, struct page *p,
124 struct vm_area_struct *vma,
125 struct list_head *to_kill,
126 struct to_kill **tkc)
127{
128 struct to_kill *tk;
129
130 if (*tkc) {
131 tk = *tkc;
132 *tkc = NULL;
133 } else {
134 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
135 if (!tk) {
136 printk(KERN_ERR
137 "MCE: Out of memory while machine check handling\n");
138 return;
139 }
140 }
141 tk->addr = page_address_in_vma(p, vma);
142 tk->addr_valid = 1;
143
144 /*
145 * In theory we don't have to kill when the page was
146 * munmaped. But it could be also a mremap. Since that's
147 * likely very rare kill anyways just out of paranoia, but use
148 * a SIGKILL because the error is not contained anymore.
149 */
150 if (tk->addr == -EFAULT) {
151 pr_debug("MCE: Unable to find user space address %lx in %s\n",
152 page_to_pfn(p), tsk->comm);
153 tk->addr_valid = 0;
154 }
155 get_task_struct(tsk);
156 tk->tsk = tsk;
157 list_add_tail(&tk->nd, to_kill);
158}
159
160/*
161 * Kill the processes that have been collected earlier.
162 *
163 * Only do anything when DOIT is set, otherwise just free the list
164 * (this is used for clean pages which do not need killing)
165 * Also when FAIL is set do a force kill because something went
166 * wrong earlier.
167 */
168static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
169 int fail, unsigned long pfn)
170{
171 struct to_kill *tk, *next;
172
173 list_for_each_entry_safe (tk, next, to_kill, nd) {
174 if (doit) {
175 /*
176 * In case something went wrong with munmaping
177 * make sure the process doesn't catch the
178 * signal and then access the memory. Just kill it.
179 * the signal handlers
180 */
181 if (fail || tk->addr_valid == 0) {
182 printk(KERN_ERR
183 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
184 pfn, tk->tsk->comm, tk->tsk->pid);
185 force_sig(SIGKILL, tk->tsk);
186 }
187
188 /*
189 * In theory the process could have mapped
190 * something else on the address in-between. We could
191 * check for that, but we need to tell the
192 * process anyways.
193 */
194 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
195 pfn) < 0)
196 printk(KERN_ERR
197 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
198 pfn, tk->tsk->comm, tk->tsk->pid);
199 }
200 put_task_struct(tk->tsk);
201 kfree(tk);
202 }
203}
204
205static int task_early_kill(struct task_struct *tsk)
206{
207 if (!tsk->mm)
208 return 0;
209 if (tsk->flags & PF_MCE_PROCESS)
210 return !!(tsk->flags & PF_MCE_EARLY);
211 return sysctl_memory_failure_early_kill;
212}
213
214/*
215 * Collect processes when the error hit an anonymous page.
216 */
217static void collect_procs_anon(struct page *page, struct list_head *to_kill,
218 struct to_kill **tkc)
219{
220 struct vm_area_struct *vma;
221 struct task_struct *tsk;
222 struct anon_vma *av;
223
224 read_lock(&tasklist_lock);
225 av = page_lock_anon_vma(page);
226 if (av == NULL) /* Not actually mapped anymore */
227 goto out;
228 for_each_process (tsk) {
229 if (!task_early_kill(tsk))
230 continue;
231 list_for_each_entry (vma, &av->head, anon_vma_node) {
232 if (!page_mapped_in_vma(page, vma))
233 continue;
234 if (vma->vm_mm == tsk->mm)
235 add_to_kill(tsk, page, vma, to_kill, tkc);
236 }
237 }
238 page_unlock_anon_vma(av);
239out:
240 read_unlock(&tasklist_lock);
241}
242
243/*
244 * Collect processes when the error hit a file mapped page.
245 */
246static void collect_procs_file(struct page *page, struct list_head *to_kill,
247 struct to_kill **tkc)
248{
249 struct vm_area_struct *vma;
250 struct task_struct *tsk;
251 struct prio_tree_iter iter;
252 struct address_space *mapping = page->mapping;
253
254 /*
255 * A note on the locking order between the two locks.
256 * We don't rely on this particular order.
257 * If you have some other code that needs a different order
258 * feel free to switch them around. Or add a reverse link
259 * from mm_struct to task_struct, then this could be all
260 * done without taking tasklist_lock and looping over all tasks.
261 */
262
263 read_lock(&tasklist_lock);
264 spin_lock(&mapping->i_mmap_lock);
265 for_each_process(tsk) {
266 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
267
268 if (!task_early_kill(tsk))
269 continue;
270
271 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
272 pgoff) {
273 /*
274 * Send early kill signal to tasks where a vma covers
275 * the page but the corrupted page is not necessarily
276 * mapped it in its pte.
277 * Assume applications who requested early kill want
278 * to be informed of all such data corruptions.
279 */
280 if (vma->vm_mm == tsk->mm)
281 add_to_kill(tsk, page, vma, to_kill, tkc);
282 }
283 }
284 spin_unlock(&mapping->i_mmap_lock);
285 read_unlock(&tasklist_lock);
286}
287
288/*
289 * Collect the processes who have the corrupted page mapped to kill.
290 * This is done in two steps for locking reasons.
291 * First preallocate one tokill structure outside the spin locks,
292 * so that we can kill at least one process reasonably reliable.
293 */
294static void collect_procs(struct page *page, struct list_head *tokill)
295{
296 struct to_kill *tk;
297
298 if (!page->mapping)
299 return;
300
301 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
302 if (!tk)
303 return;
304 if (PageAnon(page))
305 collect_procs_anon(page, tokill, &tk);
306 else
307 collect_procs_file(page, tokill, &tk);
308 kfree(tk);
309}
310
311/*
312 * Error handlers for various types of pages.
313 */
314
315enum outcome {
316 FAILED, /* Error handling failed */
317 DELAYED, /* Will be handled later */
318 IGNORED, /* Error safely ignored */
319 RECOVERED, /* Successfully recovered */
320};
321
322static const char *action_name[] = {
323 [FAILED] = "Failed",
324 [DELAYED] = "Delayed",
325 [IGNORED] = "Ignored",
326 [RECOVERED] = "Recovered",
327};
328
329/*
330 * Error hit kernel page.
331 * Do nothing, try to be lucky and not touch this instead. For a few cases we
332 * could be more sophisticated.
333 */
334static int me_kernel(struct page *p, unsigned long pfn)
335{
336 return DELAYED;
337}
338
339/*
340 * Already poisoned page.
341 */
342static int me_ignore(struct page *p, unsigned long pfn)
343{
344 return IGNORED;
345}
346
347/*
348 * Page in unknown state. Do nothing.
349 */
350static int me_unknown(struct page *p, unsigned long pfn)
351{
352 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
353 return FAILED;
354}
355
356/*
357 * Free memory
358 */
359static int me_free(struct page *p, unsigned long pfn)
360{
361 return DELAYED;
362}
363
364/*
365 * Clean (or cleaned) page cache page.
366 */
367static int me_pagecache_clean(struct page *p, unsigned long pfn)
368{
369 int err;
370 int ret = FAILED;
371 struct address_space *mapping;
372
373 if (!isolate_lru_page(p))
374 page_cache_release(p);
375
376 /*
377 * For anonymous pages we're done the only reference left
378 * should be the one m_f() holds.
379 */
380 if (PageAnon(p))
381 return RECOVERED;
382
383 /*
384 * Now truncate the page in the page cache. This is really
385 * more like a "temporary hole punch"
386 * Don't do this for block devices when someone else
387 * has a reference, because it could be file system metadata
388 * and that's not safe to truncate.
389 */
390 mapping = page_mapping(p);
391 if (!mapping) {
392 /*
393 * Page has been teared down in the meanwhile
394 */
395 return FAILED;
396 }
397
398 /*
399 * Truncation is a bit tricky. Enable it per file system for now.
400 *
401 * Open: to take i_mutex or not for this? Right now we don't.
402 */
403 if (mapping->a_ops->error_remove_page) {
404 err = mapping->a_ops->error_remove_page(mapping, p);
405 if (err != 0) {
406 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
407 pfn, err);
408 } else if (page_has_private(p) &&
409 !try_to_release_page(p, GFP_NOIO)) {
410 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
411 } else {
412 ret = RECOVERED;
413 }
414 } else {
415 /*
416 * If the file system doesn't support it just invalidate
417 * This fails on dirty or anything with private pages
418 */
419 if (invalidate_inode_page(p))
420 ret = RECOVERED;
421 else
422 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
423 pfn);
424 }
425 return ret;
426}
427
428/*
429 * Dirty cache page page
430 * Issues: when the error hit a hole page the error is not properly
431 * propagated.
432 */
433static int me_pagecache_dirty(struct page *p, unsigned long pfn)
434{
435 struct address_space *mapping = page_mapping(p);
436
437 SetPageError(p);
438 /* TBD: print more information about the file. */
439 if (mapping) {
440 /*
441 * IO error will be reported by write(), fsync(), etc.
442 * who check the mapping.
443 * This way the application knows that something went
444 * wrong with its dirty file data.
445 *
446 * There's one open issue:
447 *
448 * The EIO will be only reported on the next IO
449 * operation and then cleared through the IO map.
450 * Normally Linux has two mechanisms to pass IO error
451 * first through the AS_EIO flag in the address space
452 * and then through the PageError flag in the page.
453 * Since we drop pages on memory failure handling the
454 * only mechanism open to use is through AS_AIO.
455 *
456 * This has the disadvantage that it gets cleared on
457 * the first operation that returns an error, while
458 * the PageError bit is more sticky and only cleared
459 * when the page is reread or dropped. If an
460 * application assumes it will always get error on
461 * fsync, but does other operations on the fd before
462 * and the page is dropped inbetween then the error
463 * will not be properly reported.
464 *
465 * This can already happen even without hwpoisoned
466 * pages: first on metadata IO errors (which only
467 * report through AS_EIO) or when the page is dropped
468 * at the wrong time.
469 *
470 * So right now we assume that the application DTRT on
471 * the first EIO, but we're not worse than other parts
472 * of the kernel.
473 */
474 mapping_set_error(mapping, EIO);
475 }
476
477 return me_pagecache_clean(p, pfn);
478}
479
480/*
481 * Clean and dirty swap cache.
482 *
483 * Dirty swap cache page is tricky to handle. The page could live both in page
484 * cache and swap cache(ie. page is freshly swapped in). So it could be
485 * referenced concurrently by 2 types of PTEs:
486 * normal PTEs and swap PTEs. We try to handle them consistently by calling
487 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
488 * and then
489 * - clear dirty bit to prevent IO
490 * - remove from LRU
491 * - but keep in the swap cache, so that when we return to it on
492 * a later page fault, we know the application is accessing
493 * corrupted data and shall be killed (we installed simple
494 * interception code in do_swap_page to catch it).
495 *
496 * Clean swap cache pages can be directly isolated. A later page fault will
497 * bring in the known good data from disk.
498 */
499static int me_swapcache_dirty(struct page *p, unsigned long pfn)
500{
501 int ret = FAILED;
502
503 ClearPageDirty(p);
504 /* Trigger EIO in shmem: */
505 ClearPageUptodate(p);
506
507 if (!isolate_lru_page(p)) {
508 page_cache_release(p);
509 ret = DELAYED;
510 }
511
512 return ret;
513}
514
515static int me_swapcache_clean(struct page *p, unsigned long pfn)
516{
517 int ret = FAILED;
518
519 if (!isolate_lru_page(p)) {
520 page_cache_release(p);
521 ret = RECOVERED;
522 }
523 delete_from_swap_cache(p);
524 return ret;
525}
526
527/*
528 * Huge pages. Needs work.
529 * Issues:
530 * No rmap support so we cannot find the original mapper. In theory could walk
531 * all MMs and look for the mappings, but that would be non atomic and racy.
532 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
533 * like just walking the current process and hoping it has it mapped (that
534 * should be usually true for the common "shared database cache" case)
535 * Should handle free huge pages and dequeue them too, but this needs to
536 * handle huge page accounting correctly.
537 */
538static int me_huge_page(struct page *p, unsigned long pfn)
539{
540 return FAILED;
541}
542
543/*
544 * Various page states we can handle.
545 *
546 * A page state is defined by its current page->flags bits.
547 * The table matches them in order and calls the right handler.
548 *
549 * This is quite tricky because we can access page at any time
550 * in its live cycle, so all accesses have to be extremly careful.
551 *
552 * This is not complete. More states could be added.
553 * For any missing state don't attempt recovery.
554 */
555
556#define dirty (1UL << PG_dirty)
557#define sc (1UL << PG_swapcache)
558#define unevict (1UL << PG_unevictable)
559#define mlock (1UL << PG_mlocked)
560#define writeback (1UL << PG_writeback)
561#define lru (1UL << PG_lru)
562#define swapbacked (1UL << PG_swapbacked)
563#define head (1UL << PG_head)
564#define tail (1UL << PG_tail)
565#define compound (1UL << PG_compound)
566#define slab (1UL << PG_slab)
567#define buddy (1UL << PG_buddy)
568#define reserved (1UL << PG_reserved)
569
570static struct page_state {
571 unsigned long mask;
572 unsigned long res;
573 char *msg;
574 int (*action)(struct page *p, unsigned long pfn);
575} error_states[] = {
576 { reserved, reserved, "reserved kernel", me_ignore },
577 { buddy, buddy, "free kernel", me_free },
578
579 /*
580 * Could in theory check if slab page is free or if we can drop
581 * currently unused objects without touching them. But just
582 * treat it as standard kernel for now.
583 */
584 { slab, slab, "kernel slab", me_kernel },
585
586#ifdef CONFIG_PAGEFLAGS_EXTENDED
587 { head, head, "huge", me_huge_page },
588 { tail, tail, "huge", me_huge_page },
589#else
590 { compound, compound, "huge", me_huge_page },
591#endif
592
593 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
594 { sc|dirty, sc, "swapcache", me_swapcache_clean },
595
596 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
597 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
598
599#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
600 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
601 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
602#endif
603
604 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
605 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
606 { swapbacked, swapbacked, "anonymous", me_pagecache_clean },
607
608 /*
609 * Catchall entry: must be at end.
610 */
611 { 0, 0, "unknown page state", me_unknown },
612};
613
614#undef lru
615
616static void action_result(unsigned long pfn, char *msg, int result)
617{
618 struct page *page = NULL;
619 if (pfn_valid(pfn))
620 page = pfn_to_page(pfn);
621
622 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
623 pfn,
624 page && PageDirty(page) ? "dirty " : "",
625 msg, action_name[result]);
626}
627
628static int page_action(struct page_state *ps, struct page *p,
629 unsigned long pfn, int ref)
630{
631 int result;
632
633 result = ps->action(p, pfn);
634 action_result(pfn, ps->msg, result);
635 if (page_count(p) != 1 + ref)
636 printk(KERN_ERR
637 "MCE %#lx: %s page still referenced by %d users\n",
638 pfn, ps->msg, page_count(p) - 1);
639
640 /* Could do more checks here if page looks ok */
641 /*
642 * Could adjust zone counters here to correct for the missing page.
643 */
644
645 return result == RECOVERED ? 0 : -EBUSY;
646}
647
648#define N_UNMAP_TRIES 5
649
650/*
651 * Do all that is necessary to remove user space mappings. Unmap
652 * the pages and send SIGBUS to the processes if the data was dirty.
653 */
654static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
655 int trapno)
656{
657 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
658 struct address_space *mapping;
659 LIST_HEAD(tokill);
660 int ret;
661 int i;
662 int kill = 1;
663
664 if (PageReserved(p) || PageCompound(p) || PageSlab(p))
665 return;
666
667 if (!PageLRU(p))
668 lru_add_drain_all();
669
670 /*
671 * This check implies we don't kill processes if their pages
672 * are in the swap cache early. Those are always late kills.
673 */
674 if (!page_mapped(p))
675 return;
676
677 if (PageSwapCache(p)) {
678 printk(KERN_ERR
679 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
680 ttu |= TTU_IGNORE_HWPOISON;
681 }
682
683 /*
684 * Propagate the dirty bit from PTEs to struct page first, because we
685 * need this to decide if we should kill or just drop the page.
686 */
687 mapping = page_mapping(p);
688 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
689 if (page_mkclean(p)) {
690 SetPageDirty(p);
691 } else {
692 kill = 0;
693 ttu |= TTU_IGNORE_HWPOISON;
694 printk(KERN_INFO
695 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
696 pfn);
697 }
698 }
699
700 /*
701 * First collect all the processes that have the page
702 * mapped in dirty form. This has to be done before try_to_unmap,
703 * because ttu takes the rmap data structures down.
704 *
705 * Error handling: We ignore errors here because
706 * there's nothing that can be done.
707 */
708 if (kill)
709 collect_procs(p, &tokill);
710
711 /*
712 * try_to_unmap can fail temporarily due to races.
713 * Try a few times (RED-PEN better strategy?)
714 */
715 for (i = 0; i < N_UNMAP_TRIES; i++) {
716 ret = try_to_unmap(p, ttu);
717 if (ret == SWAP_SUCCESS)
718 break;
719 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
720 }
721
722 if (ret != SWAP_SUCCESS)
723 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
724 pfn, page_mapcount(p));
725
726 /*
727 * Now that the dirty bit has been propagated to the
728 * struct page and all unmaps done we can decide if
729 * killing is needed or not. Only kill when the page
730 * was dirty, otherwise the tokill list is merely
731 * freed. When there was a problem unmapping earlier
732 * use a more force-full uncatchable kill to prevent
733 * any accesses to the poisoned memory.
734 */
735 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
736 ret != SWAP_SUCCESS, pfn);
737}
738
739int __memory_failure(unsigned long pfn, int trapno, int ref)
740{
741 struct page_state *ps;
742 struct page *p;
743 int res;
744
745 if (!sysctl_memory_failure_recovery)
746 panic("Memory failure from trap %d on page %lx", trapno, pfn);
747
748 if (!pfn_valid(pfn)) {
749 action_result(pfn, "memory outside kernel control", IGNORED);
750 return -EIO;
751 }
752
753 p = pfn_to_page(pfn);
754 if (TestSetPageHWPoison(p)) {
755 action_result(pfn, "already hardware poisoned", IGNORED);
756 return 0;
757 }
758
759 atomic_long_add(1, &mce_bad_pages);
760
761 /*
762 * We need/can do nothing about count=0 pages.
763 * 1) it's a free page, and therefore in safe hand:
764 * prep_new_page() will be the gate keeper.
765 * 2) it's part of a non-compound high order page.
766 * Implies some kernel user: cannot stop them from
767 * R/W the page; let's pray that the page has been
768 * used and will be freed some time later.
769 * In fact it's dangerous to directly bump up page count from 0,
770 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
771 */
772 if (!get_page_unless_zero(compound_head(p))) {
773 action_result(pfn, "free or high order kernel", IGNORED);
774 return PageBuddy(compound_head(p)) ? 0 : -EBUSY;
775 }
776
777 /*
778 * Lock the page and wait for writeback to finish.
779 * It's very difficult to mess with pages currently under IO
780 * and in many cases impossible, so we just avoid it here.
781 */
782 lock_page_nosync(p);
783 wait_on_page_writeback(p);
784
785 /*
786 * Now take care of user space mappings.
787 */
788 hwpoison_user_mappings(p, pfn, trapno);
789
790 /*
791 * Torn down by someone else?
792 */
793 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
794 action_result(pfn, "already truncated LRU", IGNORED);
795 res = 0;
796 goto out;
797 }
798
799 res = -EBUSY;
800 for (ps = error_states;; ps++) {
801 if ((p->flags & ps->mask) == ps->res) {
802 res = page_action(ps, p, pfn, ref);
803 break;
804 }
805 }
806out:
807 unlock_page(p);
808 return res;
809}
810EXPORT_SYMBOL_GPL(__memory_failure);
811
812/**
813 * memory_failure - Handle memory failure of a page.
814 * @pfn: Page Number of the corrupted page
815 * @trapno: Trap number reported in the signal to user space.
816 *
817 * This function is called by the low level machine check code
818 * of an architecture when it detects hardware memory corruption
819 * of a page. It tries its best to recover, which includes
820 * dropping pages, killing processes etc.
821 *
822 * The function is primarily of use for corruptions that
823 * happen outside the current execution context (e.g. when
824 * detected by a background scrubber)
825 *
826 * Must run in process context (e.g. a work queue) with interrupts
827 * enabled and no spinlocks hold.
828 */
829void memory_failure(unsigned long pfn, int trapno)
830{
831 __memory_failure(pfn, trapno, 0);
832}
diff --git a/mm/memory.c b/mm/memory.c
index b1443ac07c00..987389a809e7 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1325,7 +1325,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1325 if (ret & VM_FAULT_ERROR) { 1325 if (ret & VM_FAULT_ERROR) {
1326 if (ret & VM_FAULT_OOM) 1326 if (ret & VM_FAULT_OOM)
1327 return i ? i : -ENOMEM; 1327 return i ? i : -ENOMEM;
1328 else if (ret & VM_FAULT_SIGBUS) 1328 if (ret &
1329 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1329 return i ? i : -EFAULT; 1330 return i ? i : -EFAULT;
1330 BUG(); 1331 BUG();
1331 } 1332 }
@@ -2559,8 +2560,15 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2559 goto out; 2560 goto out;
2560 2561
2561 entry = pte_to_swp_entry(orig_pte); 2562 entry = pte_to_swp_entry(orig_pte);
2562 if (is_migration_entry(entry)) { 2563 if (unlikely(non_swap_entry(entry))) {
2563 migration_entry_wait(mm, pmd, address); 2564 if (is_migration_entry(entry)) {
2565 migration_entry_wait(mm, pmd, address);
2566 } else if (is_hwpoison_entry(entry)) {
2567 ret = VM_FAULT_HWPOISON;
2568 } else {
2569 print_bad_pte(vma, address, orig_pte, NULL);
2570 ret = VM_FAULT_OOM;
2571 }
2564 goto out; 2572 goto out;
2565 } 2573 }
2566 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2574 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
@@ -2584,6 +2592,10 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2584 /* Had to read the page from swap area: Major fault */ 2592 /* Had to read the page from swap area: Major fault */
2585 ret = VM_FAULT_MAJOR; 2593 ret = VM_FAULT_MAJOR;
2586 count_vm_event(PGMAJFAULT); 2594 count_vm_event(PGMAJFAULT);
2595 } else if (PageHWPoison(page)) {
2596 ret = VM_FAULT_HWPOISON;
2597 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2598 goto out;
2587 } 2599 }
2588 2600
2589 lock_page(page); 2601 lock_page(page);
@@ -2760,6 +2772,12 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2760 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2772 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2761 return ret; 2773 return ret;
2762 2774
2775 if (unlikely(PageHWPoison(vmf.page))) {
2776 if (ret & VM_FAULT_LOCKED)
2777 unlock_page(vmf.page);
2778 return VM_FAULT_HWPOISON;
2779 }
2780
2763 /* 2781 /*
2764 * For consistency in subsequent calls, make the faulted page always 2782 * For consistency in subsequent calls, make the faulted page always
2765 * locked. 2783 * locked.
diff --git a/mm/migrate.c b/mm/migrate.c
index 16052e80aaac..1a4bf4813780 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -675,7 +675,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
675 } 675 }
676 676
677 /* Establish migration ptes or remove ptes */ 677 /* Establish migration ptes or remove ptes */
678 try_to_unmap(page, 1); 678 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
679 679
680skip_unmap: 680skip_unmap:
681 if (!page_mapped(page)) 681 if (!page_mapped(page))
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index be197f71b096..d99664e8607e 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -1149,6 +1149,13 @@ int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1149EXPORT_SYMBOL(redirty_page_for_writepage); 1149EXPORT_SYMBOL(redirty_page_for_writepage);
1150 1150
1151/* 1151/*
1152 * Dirty a page.
1153 *
1154 * For pages with a mapping this should be done under the page lock
1155 * for the benefit of asynchronous memory errors who prefer a consistent
1156 * dirty state. This rule can be broken in some special cases,
1157 * but should be better not to.
1158 *
1152 * If the mapping doesn't provide a set_page_dirty a_op, then 1159 * If the mapping doesn't provide a set_page_dirty a_op, then
1153 * just fall through and assume that it wants buffer_heads. 1160 * just fall through and assume that it wants buffer_heads.
1154 */ 1161 */
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 88248b3c20bb..bf720550b44d 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -234,6 +234,12 @@ static void bad_page(struct page *page)
234 static unsigned long nr_shown; 234 static unsigned long nr_shown;
235 static unsigned long nr_unshown; 235 static unsigned long nr_unshown;
236 236
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page)) {
239 __ClearPageBuddy(page);
240 return;
241 }
242
237 /* 243 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute; 244 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second. 245 * or allow a steady drip of one report per second.
@@ -666,7 +672,7 @@ static inline void expand(struct zone *zone, struct page *page,
666/* 672/*
667 * This page is about to be returned from the page allocator 673 * This page is about to be returned from the page allocator
668 */ 674 */
669static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 675static inline int check_new_page(struct page *page)
670{ 676{
671 if (unlikely(page_mapcount(page) | 677 if (unlikely(page_mapcount(page) |
672 (page->mapping != NULL) | 678 (page->mapping != NULL) |
@@ -675,6 +681,18 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
675 bad_page(page); 681 bad_page(page);
676 return 1; 682 return 1;
677 } 683 }
684 return 0;
685}
686
687static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
688{
689 int i;
690
691 for (i = 0; i < (1 << order); i++) {
692 struct page *p = page + i;
693 if (unlikely(check_new_page(p)))
694 return 1;
695 }
678 696
679 set_page_private(page, 0); 697 set_page_private(page, 0);
680 set_page_refcounted(page); 698 set_page_refcounted(page);
diff --git a/mm/rmap.c b/mm/rmap.c
index 720fc03a7bc4..28aafe2b5306 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -36,6 +36,11 @@
36 * mapping->tree_lock (widely used, in set_page_dirty, 36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock, 37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode) 38 * within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
39 */ 44 */
40 45
41#include <linux/mm.h> 46#include <linux/mm.h>
@@ -191,7 +196,7 @@ void __init anon_vma_init(void)
191 * Getting a lock on a stable anon_vma from a page off the LRU is 196 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 197 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193 */ 198 */
194static struct anon_vma *page_lock_anon_vma(struct page *page) 199struct anon_vma *page_lock_anon_vma(struct page *page)
195{ 200{
196 struct anon_vma *anon_vma; 201 struct anon_vma *anon_vma;
197 unsigned long anon_mapping; 202 unsigned long anon_mapping;
@@ -211,7 +216,7 @@ out:
211 return NULL; 216 return NULL;
212} 217}
213 218
214static void page_unlock_anon_vma(struct anon_vma *anon_vma) 219void page_unlock_anon_vma(struct anon_vma *anon_vma)
215{ 220{
216 spin_unlock(&anon_vma->lock); 221 spin_unlock(&anon_vma->lock);
217 rcu_read_unlock(); 222 rcu_read_unlock();
@@ -311,7 +316,7 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm,
311 * if the page is not mapped into the page tables of this VMA. Only 316 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs. 317 * valid for normal file or anonymous VMAs.
313 */ 318 */
314static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 319int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315{ 320{
316 unsigned long address; 321 unsigned long address;
317 pte_t *pte; 322 pte_t *pte;
@@ -756,7 +761,7 @@ void page_remove_rmap(struct page *page)
756 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 761 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
757 */ 762 */
758static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 763static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
759 int migration) 764 enum ttu_flags flags)
760{ 765{
761 struct mm_struct *mm = vma->vm_mm; 766 struct mm_struct *mm = vma->vm_mm;
762 unsigned long address; 767 unsigned long address;
@@ -778,11 +783,13 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
778 * If it's recently referenced (perhaps page_referenced 783 * If it's recently referenced (perhaps page_referenced
779 * skipped over this mm) then we should reactivate it. 784 * skipped over this mm) then we should reactivate it.
780 */ 785 */
781 if (!migration) { 786 if (!(flags & TTU_IGNORE_MLOCK)) {
782 if (vma->vm_flags & VM_LOCKED) { 787 if (vma->vm_flags & VM_LOCKED) {
783 ret = SWAP_MLOCK; 788 ret = SWAP_MLOCK;
784 goto out_unmap; 789 goto out_unmap;
785 } 790 }
791 }
792 if (!(flags & TTU_IGNORE_ACCESS)) {
786 if (ptep_clear_flush_young_notify(vma, address, pte)) { 793 if (ptep_clear_flush_young_notify(vma, address, pte)) {
787 ret = SWAP_FAIL; 794 ret = SWAP_FAIL;
788 goto out_unmap; 795 goto out_unmap;
@@ -800,7 +807,14 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
800 /* Update high watermark before we lower rss */ 807 /* Update high watermark before we lower rss */
801 update_hiwater_rss(mm); 808 update_hiwater_rss(mm);
802 809
803 if (PageAnon(page)) { 810 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
811 if (PageAnon(page))
812 dec_mm_counter(mm, anon_rss);
813 else
814 dec_mm_counter(mm, file_rss);
815 set_pte_at(mm, address, pte,
816 swp_entry_to_pte(make_hwpoison_entry(page)));
817 } else if (PageAnon(page)) {
804 swp_entry_t entry = { .val = page_private(page) }; 818 swp_entry_t entry = { .val = page_private(page) };
805 819
806 if (PageSwapCache(page)) { 820 if (PageSwapCache(page)) {
@@ -822,12 +836,12 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
822 * pte. do_swap_page() will wait until the migration 836 * pte. do_swap_page() will wait until the migration
823 * pte is removed and then restart fault handling. 837 * pte is removed and then restart fault handling.
824 */ 838 */
825 BUG_ON(!migration); 839 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
826 entry = make_migration_entry(page, pte_write(pteval)); 840 entry = make_migration_entry(page, pte_write(pteval));
827 } 841 }
828 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 842 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
829 BUG_ON(pte_file(*pte)); 843 BUG_ON(pte_file(*pte));
830 } else if (PAGE_MIGRATION && migration) { 844 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
831 /* Establish migration entry for a file page */ 845 /* Establish migration entry for a file page */
832 swp_entry_t entry; 846 swp_entry_t entry;
833 entry = make_migration_entry(page, pte_write(pteval)); 847 entry = make_migration_entry(page, pte_write(pteval));
@@ -996,12 +1010,13 @@ static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
996 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1010 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
997 * 'LOCKED. 1011 * 'LOCKED.
998 */ 1012 */
999static int try_to_unmap_anon(struct page *page, int unlock, int migration) 1013static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1000{ 1014{
1001 struct anon_vma *anon_vma; 1015 struct anon_vma *anon_vma;
1002 struct vm_area_struct *vma; 1016 struct vm_area_struct *vma;
1003 unsigned int mlocked = 0; 1017 unsigned int mlocked = 0;
1004 int ret = SWAP_AGAIN; 1018 int ret = SWAP_AGAIN;
1019 int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1005 1020
1006 if (MLOCK_PAGES && unlikely(unlock)) 1021 if (MLOCK_PAGES && unlikely(unlock))
1007 ret = SWAP_SUCCESS; /* default for try_to_munlock() */ 1022 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
@@ -1017,7 +1032,7 @@ static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1017 continue; /* must visit all unlocked vmas */ 1032 continue; /* must visit all unlocked vmas */
1018 ret = SWAP_MLOCK; /* saw at least one mlocked vma */ 1033 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1019 } else { 1034 } else {
1020 ret = try_to_unmap_one(page, vma, migration); 1035 ret = try_to_unmap_one(page, vma, flags);
1021 if (ret == SWAP_FAIL || !page_mapped(page)) 1036 if (ret == SWAP_FAIL || !page_mapped(page))
1022 break; 1037 break;
1023 } 1038 }
@@ -1041,8 +1056,7 @@ static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1041/** 1056/**
1042 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1057 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1043 * @page: the page to unmap/unlock 1058 * @page: the page to unmap/unlock
1044 * @unlock: request for unlock rather than unmap [unlikely] 1059 * @flags: action and flags
1045 * @migration: unmapping for migration - ignored if @unlock
1046 * 1060 *
1047 * Find all the mappings of a page using the mapping pointer and the vma chains 1061 * Find all the mappings of a page using the mapping pointer and the vma chains
1048 * contained in the address_space struct it points to. 1062 * contained in the address_space struct it points to.
@@ -1054,7 +1068,7 @@ static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1054 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1068 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1055 * 'LOCKED. 1069 * 'LOCKED.
1056 */ 1070 */
1057static int try_to_unmap_file(struct page *page, int unlock, int migration) 1071static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1058{ 1072{
1059 struct address_space *mapping = page->mapping; 1073 struct address_space *mapping = page->mapping;
1060 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1074 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
@@ -1066,6 +1080,7 @@ static int try_to_unmap_file(struct page *page, int unlock, int migration)
1066 unsigned long max_nl_size = 0; 1080 unsigned long max_nl_size = 0;
1067 unsigned int mapcount; 1081 unsigned int mapcount;
1068 unsigned int mlocked = 0; 1082 unsigned int mlocked = 0;
1083 int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1069 1084
1070 if (MLOCK_PAGES && unlikely(unlock)) 1085 if (MLOCK_PAGES && unlikely(unlock))
1071 ret = SWAP_SUCCESS; /* default for try_to_munlock() */ 1086 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
@@ -1078,7 +1093,7 @@ static int try_to_unmap_file(struct page *page, int unlock, int migration)
1078 continue; /* must visit all vmas */ 1093 continue; /* must visit all vmas */
1079 ret = SWAP_MLOCK; 1094 ret = SWAP_MLOCK;
1080 } else { 1095 } else {
1081 ret = try_to_unmap_one(page, vma, migration); 1096 ret = try_to_unmap_one(page, vma, flags);
1082 if (ret == SWAP_FAIL || !page_mapped(page)) 1097 if (ret == SWAP_FAIL || !page_mapped(page))
1083 goto out; 1098 goto out;
1084 } 1099 }
@@ -1103,7 +1118,8 @@ static int try_to_unmap_file(struct page *page, int unlock, int migration)
1103 ret = SWAP_MLOCK; /* leave mlocked == 0 */ 1118 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1104 goto out; /* no need to look further */ 1119 goto out; /* no need to look further */
1105 } 1120 }
1106 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) 1121 if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1122 (vma->vm_flags & VM_LOCKED))
1107 continue; 1123 continue;
1108 cursor = (unsigned long) vma->vm_private_data; 1124 cursor = (unsigned long) vma->vm_private_data;
1109 if (cursor > max_nl_cursor) 1125 if (cursor > max_nl_cursor)
@@ -1137,7 +1153,7 @@ static int try_to_unmap_file(struct page *page, int unlock, int migration)
1137 do { 1153 do {
1138 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1154 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1139 shared.vm_set.list) { 1155 shared.vm_set.list) {
1140 if (!MLOCK_PAGES && !migration && 1156 if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1141 (vma->vm_flags & VM_LOCKED)) 1157 (vma->vm_flags & VM_LOCKED))
1142 continue; 1158 continue;
1143 cursor = (unsigned long) vma->vm_private_data; 1159 cursor = (unsigned long) vma->vm_private_data;
@@ -1177,7 +1193,7 @@ out:
1177/** 1193/**
1178 * try_to_unmap - try to remove all page table mappings to a page 1194 * try_to_unmap - try to remove all page table mappings to a page
1179 * @page: the page to get unmapped 1195 * @page: the page to get unmapped
1180 * @migration: migration flag 1196 * @flags: action and flags
1181 * 1197 *
1182 * Tries to remove all the page table entries which are mapping this 1198 * Tries to remove all the page table entries which are mapping this
1183 * page, used in the pageout path. Caller must hold the page lock. 1199 * page, used in the pageout path. Caller must hold the page lock.
@@ -1188,16 +1204,16 @@ out:
1188 * SWAP_FAIL - the page is unswappable 1204 * SWAP_FAIL - the page is unswappable
1189 * SWAP_MLOCK - page is mlocked. 1205 * SWAP_MLOCK - page is mlocked.
1190 */ 1206 */
1191int try_to_unmap(struct page *page, int migration) 1207int try_to_unmap(struct page *page, enum ttu_flags flags)
1192{ 1208{
1193 int ret; 1209 int ret;
1194 1210
1195 BUG_ON(!PageLocked(page)); 1211 BUG_ON(!PageLocked(page));
1196 1212
1197 if (PageAnon(page)) 1213 if (PageAnon(page))
1198 ret = try_to_unmap_anon(page, 0, migration); 1214 ret = try_to_unmap_anon(page, flags);
1199 else 1215 else
1200 ret = try_to_unmap_file(page, 0, migration); 1216 ret = try_to_unmap_file(page, flags);
1201 if (ret != SWAP_MLOCK && !page_mapped(page)) 1217 if (ret != SWAP_MLOCK && !page_mapped(page))
1202 ret = SWAP_SUCCESS; 1218 ret = SWAP_SUCCESS;
1203 return ret; 1219 return ret;
@@ -1222,8 +1238,8 @@ int try_to_munlock(struct page *page)
1222 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1238 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1223 1239
1224 if (PageAnon(page)) 1240 if (PageAnon(page))
1225 return try_to_unmap_anon(page, 1, 0); 1241 return try_to_unmap_anon(page, TTU_MUNLOCK);
1226 else 1242 else
1227 return try_to_unmap_file(page, 1, 0); 1243 return try_to_unmap_file(page, TTU_MUNLOCK);
1228} 1244}
1229 1245
diff --git a/mm/shmem.c b/mm/shmem.c
index b206a7a32e2a..98631c26c200 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -1633,8 +1633,8 @@ shmem_write_end(struct file *file, struct address_space *mapping,
1633 if (pos + copied > inode->i_size) 1633 if (pos + copied > inode->i_size)
1634 i_size_write(inode, pos + copied); 1634 i_size_write(inode, pos + copied);
1635 1635
1636 unlock_page(page);
1637 set_page_dirty(page); 1636 set_page_dirty(page);
1637 unlock_page(page);
1638 page_cache_release(page); 1638 page_cache_release(page);
1639 1639
1640 return copied; 1640 return copied;
@@ -1971,13 +1971,13 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s
1971 iput(inode); 1971 iput(inode);
1972 return error; 1972 return error;
1973 } 1973 }
1974 unlock_page(page);
1975 inode->i_mapping->a_ops = &shmem_aops; 1974 inode->i_mapping->a_ops = &shmem_aops;
1976 inode->i_op = &shmem_symlink_inode_operations; 1975 inode->i_op = &shmem_symlink_inode_operations;
1977 kaddr = kmap_atomic(page, KM_USER0); 1976 kaddr = kmap_atomic(page, KM_USER0);
1978 memcpy(kaddr, symname, len); 1977 memcpy(kaddr, symname, len);
1979 kunmap_atomic(kaddr, KM_USER0); 1978 kunmap_atomic(kaddr, KM_USER0);
1980 set_page_dirty(page); 1979 set_page_dirty(page);
1980 unlock_page(page);
1981 page_cache_release(page); 1981 page_cache_release(page);
1982 } 1982 }
1983 if (dir->i_mode & S_ISGID) 1983 if (dir->i_mode & S_ISGID)
@@ -2420,6 +2420,7 @@ static const struct address_space_operations shmem_aops = {
2420 .write_end = shmem_write_end, 2420 .write_end = shmem_write_end,
2421#endif 2421#endif
2422 .migratepage = migrate_page, 2422 .migratepage = migrate_page,
2423 .error_remove_page = generic_error_remove_page,
2423}; 2424};
2424 2425
2425static const struct file_operations shmem_file_operations = { 2426static const struct file_operations shmem_file_operations = {
diff --git a/mm/swapfile.c b/mm/swapfile.c
index f1bf19daadc6..4de7f02f820b 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -699,7 +699,7 @@ int free_swap_and_cache(swp_entry_t entry)
699 struct swap_info_struct *p; 699 struct swap_info_struct *p;
700 struct page *page = NULL; 700 struct page *page = NULL;
701 701
702 if (is_migration_entry(entry)) 702 if (non_swap_entry(entry))
703 return 1; 703 return 1;
704 704
705 p = swap_info_get(entry); 705 p = swap_info_get(entry);
@@ -2085,7 +2085,7 @@ static int __swap_duplicate(swp_entry_t entry, bool cache)
2085 int count; 2085 int count;
2086 bool has_cache; 2086 bool has_cache;
2087 2087
2088 if (is_migration_entry(entry)) 2088 if (non_swap_entry(entry))
2089 return -EINVAL; 2089 return -EINVAL;
2090 2090
2091 type = swp_type(entry); 2091 type = swp_type(entry);
diff --git a/mm/truncate.c b/mm/truncate.c
index ccc3ecf7cb98..a17b3977cfdf 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -93,11 +93,11 @@ EXPORT_SYMBOL(cancel_dirty_page);
93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
95 */ 95 */
96static void 96static int
97truncate_complete_page(struct address_space *mapping, struct page *page) 97truncate_complete_page(struct address_space *mapping, struct page *page)
98{ 98{
99 if (page->mapping != mapping) 99 if (page->mapping != mapping)
100 return; 100 return -EIO;
101 101
102 if (page_has_private(page)) 102 if (page_has_private(page))
103 do_invalidatepage(page, 0); 103 do_invalidatepage(page, 0);
@@ -108,6 +108,7 @@ truncate_complete_page(struct address_space *mapping, struct page *page)
108 remove_from_page_cache(page); 108 remove_from_page_cache(page);
109 ClearPageMappedToDisk(page); 109 ClearPageMappedToDisk(page);
110 page_cache_release(page); /* pagecache ref */ 110 page_cache_release(page); /* pagecache ref */
111 return 0;
111} 112}
112 113
113/* 114/*
@@ -135,6 +136,51 @@ invalidate_complete_page(struct address_space *mapping, struct page *page)
135 return ret; 136 return ret;
136} 137}
137 138
139int truncate_inode_page(struct address_space *mapping, struct page *page)
140{
141 if (page_mapped(page)) {
142 unmap_mapping_range(mapping,
143 (loff_t)page->index << PAGE_CACHE_SHIFT,
144 PAGE_CACHE_SIZE, 0);
145 }
146 return truncate_complete_page(mapping, page);
147}
148
149/*
150 * Used to get rid of pages on hardware memory corruption.
151 */
152int generic_error_remove_page(struct address_space *mapping, struct page *page)
153{
154 if (!mapping)
155 return -EINVAL;
156 /*
157 * Only punch for normal data pages for now.
158 * Handling other types like directories would need more auditing.
159 */
160 if (!S_ISREG(mapping->host->i_mode))
161 return -EIO;
162 return truncate_inode_page(mapping, page);
163}
164EXPORT_SYMBOL(generic_error_remove_page);
165
166/*
167 * Safely invalidate one page from its pagecache mapping.
168 * It only drops clean, unused pages. The page must be locked.
169 *
170 * Returns 1 if the page is successfully invalidated, otherwise 0.
171 */
172int invalidate_inode_page(struct page *page)
173{
174 struct address_space *mapping = page_mapping(page);
175 if (!mapping)
176 return 0;
177 if (PageDirty(page) || PageWriteback(page))
178 return 0;
179 if (page_mapped(page))
180 return 0;
181 return invalidate_complete_page(mapping, page);
182}
183
138/** 184/**
139 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 185 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
140 * @mapping: mapping to truncate 186 * @mapping: mapping to truncate
@@ -196,12 +242,7 @@ void truncate_inode_pages_range(struct address_space *mapping,
196 unlock_page(page); 242 unlock_page(page);
197 continue; 243 continue;
198 } 244 }
199 if (page_mapped(page)) { 245 truncate_inode_page(mapping, page);
200 unmap_mapping_range(mapping,
201 (loff_t)page_index<<PAGE_CACHE_SHIFT,
202 PAGE_CACHE_SIZE, 0);
203 }
204 truncate_complete_page(mapping, page);
205 unlock_page(page); 246 unlock_page(page);
206 } 247 }
207 pagevec_release(&pvec); 248 pagevec_release(&pvec);
@@ -238,15 +279,10 @@ void truncate_inode_pages_range(struct address_space *mapping,
238 break; 279 break;
239 lock_page(page); 280 lock_page(page);
240 wait_on_page_writeback(page); 281 wait_on_page_writeback(page);
241 if (page_mapped(page)) { 282 truncate_inode_page(mapping, page);
242 unmap_mapping_range(mapping,
243 (loff_t)page->index<<PAGE_CACHE_SHIFT,
244 PAGE_CACHE_SIZE, 0);
245 }
246 if (page->index > next) 283 if (page->index > next)
247 next = page->index; 284 next = page->index;
248 next++; 285 next++;
249 truncate_complete_page(mapping, page);
250 unlock_page(page); 286 unlock_page(page);
251 } 287 }
252 pagevec_release(&pvec); 288 pagevec_release(&pvec);
@@ -311,12 +347,8 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping,
311 if (lock_failed) 347 if (lock_failed)
312 continue; 348 continue;
313 349
314 if (PageDirty(page) || PageWriteback(page)) 350 ret += invalidate_inode_page(page);
315 goto unlock; 351
316 if (page_mapped(page))
317 goto unlock;
318 ret += invalidate_complete_page(mapping, page);
319unlock:
320 unlock_page(page); 352 unlock_page(page);
321 if (next > end) 353 if (next > end)
322 break; 354 break;
diff --git a/mm/vmscan.c b/mm/vmscan.c
index f444b7409085..1219ceb8a9b2 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -663,7 +663,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
663 * processes. Try to unmap it here. 663 * processes. Try to unmap it here.
664 */ 664 */
665 if (page_mapped(page) && mapping) { 665 if (page_mapped(page) && mapping) {
666 switch (try_to_unmap(page, 0)) { 666 switch (try_to_unmap(page, TTU_UNMAP)) {
667 case SWAP_FAIL: 667 case SWAP_FAIL:
668 goto activate_locked; 668 goto activate_locked;
669 case SWAP_AGAIN: 669 case SWAP_AGAIN: