diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/hugetlb.c | 14 | ||||
-rw-r--r-- | mm/madvise.c | 21 | ||||
-rw-r--r-- | mm/memory.c | 17 | ||||
-rw-r--r-- | mm/mempolicy.c | 189 | ||||
-rw-r--r-- | mm/nommu.c | 2 | ||||
-rw-r--r-- | mm/oom_kill.c | 124 | ||||
-rw-r--r-- | mm/page_alloc.c | 62 | ||||
-rw-r--r-- | mm/rmap.c | 51 | ||||
-rw-r--r-- | mm/shmem.c | 89 | ||||
-rw-r--r-- | mm/slab.c | 823 | ||||
-rw-r--r-- | mm/slob.c | 2 | ||||
-rw-r--r-- | mm/swap.c | 32 | ||||
-rw-r--r-- | mm/swap_state.c | 1 | ||||
-rw-r--r-- | mm/swapfile.c | 16 | ||||
-rw-r--r-- | mm/vmscan.c | 441 |
15 files changed, 1345 insertions, 539 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index b21d78c941b5..508707704d2c 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -85,7 +85,7 @@ void free_huge_page(struct page *page) | |||
85 | BUG_ON(page_count(page)); | 85 | BUG_ON(page_count(page)); |
86 | 86 | ||
87 | INIT_LIST_HEAD(&page->lru); | 87 | INIT_LIST_HEAD(&page->lru); |
88 | page[1].mapping = NULL; | 88 | page[1].lru.next = NULL; /* reset dtor */ |
89 | 89 | ||
90 | spin_lock(&hugetlb_lock); | 90 | spin_lock(&hugetlb_lock); |
91 | enqueue_huge_page(page); | 91 | enqueue_huge_page(page); |
@@ -105,9 +105,9 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr) | |||
105 | } | 105 | } |
106 | spin_unlock(&hugetlb_lock); | 106 | spin_unlock(&hugetlb_lock); |
107 | set_page_count(page, 1); | 107 | set_page_count(page, 1); |
108 | page[1].mapping = (void *)free_huge_page; | 108 | page[1].lru.next = (void *)free_huge_page; /* set dtor */ |
109 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i) | 109 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i) |
110 | clear_highpage(&page[i]); | 110 | clear_user_highpage(&page[i], addr); |
111 | return page; | 111 | return page; |
112 | } | 112 | } |
113 | 113 | ||
@@ -391,12 +391,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
391 | 391 | ||
392 | if (!new_page) { | 392 | if (!new_page) { |
393 | page_cache_release(old_page); | 393 | page_cache_release(old_page); |
394 | 394 | return VM_FAULT_OOM; | |
395 | /* Logically this is OOM, not a SIGBUS, but an OOM | ||
396 | * could cause the kernel to go killing other | ||
397 | * processes which won't help the hugepage situation | ||
398 | * at all (?) */ | ||
399 | return VM_FAULT_SIGBUS; | ||
400 | } | 395 | } |
401 | 396 | ||
402 | spin_unlock(&mm->page_table_lock); | 397 | spin_unlock(&mm->page_table_lock); |
@@ -444,6 +439,7 @@ retry: | |||
444 | page = alloc_huge_page(vma, address); | 439 | page = alloc_huge_page(vma, address); |
445 | if (!page) { | 440 | if (!page) { |
446 | hugetlb_put_quota(mapping); | 441 | hugetlb_put_quota(mapping); |
442 | ret = VM_FAULT_OOM; | ||
447 | goto out; | 443 | goto out; |
448 | } | 444 | } |
449 | 445 | ||
diff --git a/mm/madvise.c b/mm/madvise.c index ae0ae3ea299a..af3d573b0141 100644 --- a/mm/madvise.c +++ b/mm/madvise.c | |||
@@ -22,16 +22,23 @@ static long madvise_behavior(struct vm_area_struct * vma, | |||
22 | struct mm_struct * mm = vma->vm_mm; | 22 | struct mm_struct * mm = vma->vm_mm; |
23 | int error = 0; | 23 | int error = 0; |
24 | pgoff_t pgoff; | 24 | pgoff_t pgoff; |
25 | int new_flags = vma->vm_flags & ~VM_READHINTMASK; | 25 | int new_flags = vma->vm_flags; |
26 | 26 | ||
27 | switch (behavior) { | 27 | switch (behavior) { |
28 | case MADV_NORMAL: | ||
29 | new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; | ||
30 | break; | ||
28 | case MADV_SEQUENTIAL: | 31 | case MADV_SEQUENTIAL: |
29 | new_flags |= VM_SEQ_READ; | 32 | new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; |
30 | break; | 33 | break; |
31 | case MADV_RANDOM: | 34 | case MADV_RANDOM: |
32 | new_flags |= VM_RAND_READ; | 35 | new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; |
33 | break; | 36 | break; |
34 | default: | 37 | case MADV_DONTFORK: |
38 | new_flags |= VM_DONTCOPY; | ||
39 | break; | ||
40 | case MADV_DOFORK: | ||
41 | new_flags &= ~VM_DONTCOPY; | ||
35 | break; | 42 | break; |
36 | } | 43 | } |
37 | 44 | ||
@@ -177,6 +184,12 @@ madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, | |||
177 | long error; | 184 | long error; |
178 | 185 | ||
179 | switch (behavior) { | 186 | switch (behavior) { |
187 | case MADV_DOFORK: | ||
188 | if (vma->vm_flags & VM_IO) { | ||
189 | error = -EINVAL; | ||
190 | break; | ||
191 | } | ||
192 | case MADV_DONTFORK: | ||
180 | case MADV_NORMAL: | 193 | case MADV_NORMAL: |
181 | case MADV_SEQUENTIAL: | 194 | case MADV_SEQUENTIAL: |
182 | case MADV_RANDOM: | 195 | case MADV_RANDOM: |
diff --git a/mm/memory.c b/mm/memory.c index 7a11ddd5060f..9abc6008544b 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -82,6 +82,16 @@ EXPORT_SYMBOL(num_physpages); | |||
82 | EXPORT_SYMBOL(high_memory); | 82 | EXPORT_SYMBOL(high_memory); |
83 | EXPORT_SYMBOL(vmalloc_earlyreserve); | 83 | EXPORT_SYMBOL(vmalloc_earlyreserve); |
84 | 84 | ||
85 | int randomize_va_space __read_mostly = 1; | ||
86 | |||
87 | static int __init disable_randmaps(char *s) | ||
88 | { | ||
89 | randomize_va_space = 0; | ||
90 | return 0; | ||
91 | } | ||
92 | __setup("norandmaps", disable_randmaps); | ||
93 | |||
94 | |||
85 | /* | 95 | /* |
86 | * If a p?d_bad entry is found while walking page tables, report | 96 | * If a p?d_bad entry is found while walking page tables, report |
87 | * the error, before resetting entry to p?d_none. Usually (but | 97 | * the error, before resetting entry to p?d_none. Usually (but |
@@ -1871,6 +1881,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1871 | goto out; | 1881 | goto out; |
1872 | 1882 | ||
1873 | entry = pte_to_swp_entry(orig_pte); | 1883 | entry = pte_to_swp_entry(orig_pte); |
1884 | again: | ||
1874 | page = lookup_swap_cache(entry); | 1885 | page = lookup_swap_cache(entry); |
1875 | if (!page) { | 1886 | if (!page) { |
1876 | swapin_readahead(entry, address, vma); | 1887 | swapin_readahead(entry, address, vma); |
@@ -1894,6 +1905,12 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1894 | 1905 | ||
1895 | mark_page_accessed(page); | 1906 | mark_page_accessed(page); |
1896 | lock_page(page); | 1907 | lock_page(page); |
1908 | if (!PageSwapCache(page)) { | ||
1909 | /* Page migration has occured */ | ||
1910 | unlock_page(page); | ||
1911 | page_cache_release(page); | ||
1912 | goto again; | ||
1913 | } | ||
1897 | 1914 | ||
1898 | /* | 1915 | /* |
1899 | * Back out if somebody else already faulted in this pte. | 1916 | * Back out if somebody else already faulted in this pte. |
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 73790188b0eb..880831bd3003 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -95,6 +95,9 @@ | |||
95 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ | 95 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ |
96 | #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ | 96 | #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ |
97 | 97 | ||
98 | /* The number of pages to migrate per call to migrate_pages() */ | ||
99 | #define MIGRATE_CHUNK_SIZE 256 | ||
100 | |||
98 | static kmem_cache_t *policy_cache; | 101 | static kmem_cache_t *policy_cache; |
99 | static kmem_cache_t *sn_cache; | 102 | static kmem_cache_t *sn_cache; |
100 | 103 | ||
@@ -129,19 +132,29 @@ static int mpol_check_policy(int mode, nodemask_t *nodes) | |||
129 | } | 132 | } |
130 | return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL; | 133 | return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL; |
131 | } | 134 | } |
135 | |||
132 | /* Generate a custom zonelist for the BIND policy. */ | 136 | /* Generate a custom zonelist for the BIND policy. */ |
133 | static struct zonelist *bind_zonelist(nodemask_t *nodes) | 137 | static struct zonelist *bind_zonelist(nodemask_t *nodes) |
134 | { | 138 | { |
135 | struct zonelist *zl; | 139 | struct zonelist *zl; |
136 | int num, max, nd; | 140 | int num, max, nd, k; |
137 | 141 | ||
138 | max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); | 142 | max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); |
139 | zl = kmalloc(sizeof(void *) * max, GFP_KERNEL); | 143 | zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL); |
140 | if (!zl) | 144 | if (!zl) |
141 | return NULL; | 145 | return NULL; |
142 | num = 0; | 146 | num = 0; |
143 | for_each_node_mask(nd, *nodes) | 147 | /* First put in the highest zones from all nodes, then all the next |
144 | zl->zones[num++] = &NODE_DATA(nd)->node_zones[policy_zone]; | 148 | lower zones etc. Avoid empty zones because the memory allocator |
149 | doesn't like them. If you implement node hot removal you | ||
150 | have to fix that. */ | ||
151 | for (k = policy_zone; k >= 0; k--) { | ||
152 | for_each_node_mask(nd, *nodes) { | ||
153 | struct zone *z = &NODE_DATA(nd)->node_zones[k]; | ||
154 | if (z->present_pages > 0) | ||
155 | zl->zones[num++] = z; | ||
156 | } | ||
157 | } | ||
145 | zl->zones[num] = NULL; | 158 | zl->zones[num] = NULL; |
146 | return zl; | 159 | return zl; |
147 | } | 160 | } |
@@ -543,24 +556,91 @@ static void migrate_page_add(struct page *page, struct list_head *pagelist, | |||
543 | } | 556 | } |
544 | } | 557 | } |
545 | 558 | ||
546 | static int swap_pages(struct list_head *pagelist) | 559 | /* |
560 | * Migrate the list 'pagelist' of pages to a certain destination. | ||
561 | * | ||
562 | * Specify destination with either non-NULL vma or dest_node >= 0 | ||
563 | * Return the number of pages not migrated or error code | ||
564 | */ | ||
565 | static int migrate_pages_to(struct list_head *pagelist, | ||
566 | struct vm_area_struct *vma, int dest) | ||
547 | { | 567 | { |
568 | LIST_HEAD(newlist); | ||
548 | LIST_HEAD(moved); | 569 | LIST_HEAD(moved); |
549 | LIST_HEAD(failed); | 570 | LIST_HEAD(failed); |
550 | int n; | 571 | int err = 0; |
572 | int nr_pages; | ||
573 | struct page *page; | ||
574 | struct list_head *p; | ||
551 | 575 | ||
552 | n = migrate_pages(pagelist, NULL, &moved, &failed); | 576 | redo: |
553 | putback_lru_pages(&failed); | 577 | nr_pages = 0; |
554 | putback_lru_pages(&moved); | 578 | list_for_each(p, pagelist) { |
579 | if (vma) | ||
580 | page = alloc_page_vma(GFP_HIGHUSER, vma, vma->vm_start); | ||
581 | else | ||
582 | page = alloc_pages_node(dest, GFP_HIGHUSER, 0); | ||
555 | 583 | ||
556 | return n; | 584 | if (!page) { |
585 | err = -ENOMEM; | ||
586 | goto out; | ||
587 | } | ||
588 | list_add(&page->lru, &newlist); | ||
589 | nr_pages++; | ||
590 | if (nr_pages > MIGRATE_CHUNK_SIZE) | ||
591 | break; | ||
592 | } | ||
593 | err = migrate_pages(pagelist, &newlist, &moved, &failed); | ||
594 | |||
595 | putback_lru_pages(&moved); /* Call release pages instead ?? */ | ||
596 | |||
597 | if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) | ||
598 | goto redo; | ||
599 | out: | ||
600 | /* Return leftover allocated pages */ | ||
601 | while (!list_empty(&newlist)) { | ||
602 | page = list_entry(newlist.next, struct page, lru); | ||
603 | list_del(&page->lru); | ||
604 | __free_page(page); | ||
605 | } | ||
606 | list_splice(&failed, pagelist); | ||
607 | if (err < 0) | ||
608 | return err; | ||
609 | |||
610 | /* Calculate number of leftover pages */ | ||
611 | nr_pages = 0; | ||
612 | list_for_each(p, pagelist) | ||
613 | nr_pages++; | ||
614 | return nr_pages; | ||
557 | } | 615 | } |
558 | 616 | ||
559 | /* | 617 | /* |
560 | * For now migrate_pages simply swaps out the pages from nodes that are in | 618 | * Migrate pages from one node to a target node. |
561 | * the source set but not in the target set. In the future, we would | 619 | * Returns error or the number of pages not migrated. |
562 | * want a function that moves pages between the two nodesets in such | 620 | */ |
563 | * a way as to preserve the physical layout as much as possible. | 621 | int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags) |
622 | { | ||
623 | nodemask_t nmask; | ||
624 | LIST_HEAD(pagelist); | ||
625 | int err = 0; | ||
626 | |||
627 | nodes_clear(nmask); | ||
628 | node_set(source, nmask); | ||
629 | |||
630 | check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask, | ||
631 | flags | MPOL_MF_DISCONTIG_OK, &pagelist); | ||
632 | |||
633 | if (!list_empty(&pagelist)) { | ||
634 | err = migrate_pages_to(&pagelist, NULL, dest); | ||
635 | if (!list_empty(&pagelist)) | ||
636 | putback_lru_pages(&pagelist); | ||
637 | } | ||
638 | return err; | ||
639 | } | ||
640 | |||
641 | /* | ||
642 | * Move pages between the two nodesets so as to preserve the physical | ||
643 | * layout as much as possible. | ||
564 | * | 644 | * |
565 | * Returns the number of page that could not be moved. | 645 | * Returns the number of page that could not be moved. |
566 | */ | 646 | */ |
@@ -568,22 +648,76 @@ int do_migrate_pages(struct mm_struct *mm, | |||
568 | const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) | 648 | const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) |
569 | { | 649 | { |
570 | LIST_HEAD(pagelist); | 650 | LIST_HEAD(pagelist); |
571 | int count = 0; | 651 | int busy = 0; |
572 | nodemask_t nodes; | 652 | int err = 0; |
653 | nodemask_t tmp; | ||
573 | 654 | ||
574 | nodes_andnot(nodes, *from_nodes, *to_nodes); | 655 | down_read(&mm->mmap_sem); |
575 | 656 | ||
576 | down_read(&mm->mmap_sem); | 657 | /* |
577 | check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nodes, | 658 | * Find a 'source' bit set in 'tmp' whose corresponding 'dest' |
578 | flags | MPOL_MF_DISCONTIG_OK, &pagelist); | 659 | * bit in 'to' is not also set in 'tmp'. Clear the found 'source' |
660 | * bit in 'tmp', and return that <source, dest> pair for migration. | ||
661 | * The pair of nodemasks 'to' and 'from' define the map. | ||
662 | * | ||
663 | * If no pair of bits is found that way, fallback to picking some | ||
664 | * pair of 'source' and 'dest' bits that are not the same. If the | ||
665 | * 'source' and 'dest' bits are the same, this represents a node | ||
666 | * that will be migrating to itself, so no pages need move. | ||
667 | * | ||
668 | * If no bits are left in 'tmp', or if all remaining bits left | ||
669 | * in 'tmp' correspond to the same bit in 'to', return false | ||
670 | * (nothing left to migrate). | ||
671 | * | ||
672 | * This lets us pick a pair of nodes to migrate between, such that | ||
673 | * if possible the dest node is not already occupied by some other | ||
674 | * source node, minimizing the risk of overloading the memory on a | ||
675 | * node that would happen if we migrated incoming memory to a node | ||
676 | * before migrating outgoing memory source that same node. | ||
677 | * | ||
678 | * A single scan of tmp is sufficient. As we go, we remember the | ||
679 | * most recent <s, d> pair that moved (s != d). If we find a pair | ||
680 | * that not only moved, but what's better, moved to an empty slot | ||
681 | * (d is not set in tmp), then we break out then, with that pair. | ||
682 | * Otherwise when we finish scannng from_tmp, we at least have the | ||
683 | * most recent <s, d> pair that moved. If we get all the way through | ||
684 | * the scan of tmp without finding any node that moved, much less | ||
685 | * moved to an empty node, then there is nothing left worth migrating. | ||
686 | */ | ||
579 | 687 | ||
580 | if (!list_empty(&pagelist)) { | 688 | tmp = *from_nodes; |
581 | count = swap_pages(&pagelist); | 689 | while (!nodes_empty(tmp)) { |
582 | putback_lru_pages(&pagelist); | 690 | int s,d; |
691 | int source = -1; | ||
692 | int dest = 0; | ||
693 | |||
694 | for_each_node_mask(s, tmp) { | ||
695 | d = node_remap(s, *from_nodes, *to_nodes); | ||
696 | if (s == d) | ||
697 | continue; | ||
698 | |||
699 | source = s; /* Node moved. Memorize */ | ||
700 | dest = d; | ||
701 | |||
702 | /* dest not in remaining from nodes? */ | ||
703 | if (!node_isset(dest, tmp)) | ||
704 | break; | ||
705 | } | ||
706 | if (source == -1) | ||
707 | break; | ||
708 | |||
709 | node_clear(source, tmp); | ||
710 | err = migrate_to_node(mm, source, dest, flags); | ||
711 | if (err > 0) | ||
712 | busy += err; | ||
713 | if (err < 0) | ||
714 | break; | ||
583 | } | 715 | } |
584 | 716 | ||
585 | up_read(&mm->mmap_sem); | 717 | up_read(&mm->mmap_sem); |
586 | return count; | 718 | if (err < 0) |
719 | return err; | ||
720 | return busy; | ||
587 | } | 721 | } |
588 | 722 | ||
589 | long do_mbind(unsigned long start, unsigned long len, | 723 | long do_mbind(unsigned long start, unsigned long len, |
@@ -643,8 +777,9 @@ long do_mbind(unsigned long start, unsigned long len, | |||
643 | int nr_failed = 0; | 777 | int nr_failed = 0; |
644 | 778 | ||
645 | err = mbind_range(vma, start, end, new); | 779 | err = mbind_range(vma, start, end, new); |
780 | |||
646 | if (!list_empty(&pagelist)) | 781 | if (!list_empty(&pagelist)) |
647 | nr_failed = swap_pages(&pagelist); | 782 | nr_failed = migrate_pages_to(&pagelist, vma, -1); |
648 | 783 | ||
649 | if (!err && nr_failed && (flags & MPOL_MF_STRICT)) | 784 | if (!err && nr_failed && (flags & MPOL_MF_STRICT)) |
650 | err = -EIO; | 785 | err = -EIO; |
@@ -673,6 +808,8 @@ static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, | |||
673 | nodes_clear(*nodes); | 808 | nodes_clear(*nodes); |
674 | if (maxnode == 0 || !nmask) | 809 | if (maxnode == 0 || !nmask) |
675 | return 0; | 810 | return 0; |
811 | if (maxnode > PAGE_SIZE*BITS_PER_BYTE) | ||
812 | return -EINVAL; | ||
676 | 813 | ||
677 | nlongs = BITS_TO_LONGS(maxnode); | 814 | nlongs = BITS_TO_LONGS(maxnode); |
678 | if ((maxnode % BITS_PER_LONG) == 0) | 815 | if ((maxnode % BITS_PER_LONG) == 0) |
@@ -1034,6 +1171,7 @@ static inline unsigned interleave_nid(struct mempolicy *pol, | |||
1034 | return interleave_nodes(pol); | 1171 | return interleave_nodes(pol); |
1035 | } | 1172 | } |
1036 | 1173 | ||
1174 | #ifdef CONFIG_HUGETLBFS | ||
1037 | /* Return a zonelist suitable for a huge page allocation. */ | 1175 | /* Return a zonelist suitable for a huge page allocation. */ |
1038 | struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr) | 1176 | struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr) |
1039 | { | 1177 | { |
@@ -1047,6 +1185,7 @@ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr) | |||
1047 | } | 1185 | } |
1048 | return zonelist_policy(GFP_HIGHUSER, pol); | 1186 | return zonelist_policy(GFP_HIGHUSER, pol); |
1049 | } | 1187 | } |
1188 | #endif | ||
1050 | 1189 | ||
1051 | /* Allocate a page in interleaved policy. | 1190 | /* Allocate a page in interleaved policy. |
1052 | Own path because it needs to do special accounting. */ | 1191 | Own path because it needs to do special accounting. */ |
diff --git a/mm/nommu.c b/mm/nommu.c index c10262d68232..99d21020ec9d 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -57,6 +57,8 @@ EXPORT_SYMBOL(vmalloc); | |||
57 | EXPORT_SYMBOL(vfree); | 57 | EXPORT_SYMBOL(vfree); |
58 | EXPORT_SYMBOL(vmalloc_to_page); | 58 | EXPORT_SYMBOL(vmalloc_to_page); |
59 | EXPORT_SYMBOL(vmalloc_32); | 59 | EXPORT_SYMBOL(vmalloc_32); |
60 | EXPORT_SYMBOL(vmap); | ||
61 | EXPORT_SYMBOL(vunmap); | ||
60 | 62 | ||
61 | /* | 63 | /* |
62 | * Handle all mappings that got truncated by a "truncate()" | 64 | * Handle all mappings that got truncated by a "truncate()" |
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 14bd4ec79597..8123fad5a485 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
@@ -58,15 +58,17 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
58 | 58 | ||
59 | /* | 59 | /* |
60 | * Processes which fork a lot of child processes are likely | 60 | * Processes which fork a lot of child processes are likely |
61 | * a good choice. We add the vmsize of the children if they | 61 | * a good choice. We add half the vmsize of the children if they |
62 | * have an own mm. This prevents forking servers to flood the | 62 | * have an own mm. This prevents forking servers to flood the |
63 | * machine with an endless amount of children | 63 | * machine with an endless amount of children. In case a single |
64 | * child is eating the vast majority of memory, adding only half | ||
65 | * to the parents will make the child our kill candidate of choice. | ||
64 | */ | 66 | */ |
65 | list_for_each(tsk, &p->children) { | 67 | list_for_each(tsk, &p->children) { |
66 | struct task_struct *chld; | 68 | struct task_struct *chld; |
67 | chld = list_entry(tsk, struct task_struct, sibling); | 69 | chld = list_entry(tsk, struct task_struct, sibling); |
68 | if (chld->mm != p->mm && chld->mm) | 70 | if (chld->mm != p->mm && chld->mm) |
69 | points += chld->mm->total_vm; | 71 | points += chld->mm->total_vm/2 + 1; |
70 | } | 72 | } |
71 | 73 | ||
72 | /* | 74 | /* |
@@ -131,17 +133,47 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
131 | } | 133 | } |
132 | 134 | ||
133 | /* | 135 | /* |
136 | * Types of limitations to the nodes from which allocations may occur | ||
137 | */ | ||
138 | #define CONSTRAINT_NONE 1 | ||
139 | #define CONSTRAINT_MEMORY_POLICY 2 | ||
140 | #define CONSTRAINT_CPUSET 3 | ||
141 | |||
142 | /* | ||
143 | * Determine the type of allocation constraint. | ||
144 | */ | ||
145 | static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask) | ||
146 | { | ||
147 | #ifdef CONFIG_NUMA | ||
148 | struct zone **z; | ||
149 | nodemask_t nodes = node_online_map; | ||
150 | |||
151 | for (z = zonelist->zones; *z; z++) | ||
152 | if (cpuset_zone_allowed(*z, gfp_mask)) | ||
153 | node_clear((*z)->zone_pgdat->node_id, | ||
154 | nodes); | ||
155 | else | ||
156 | return CONSTRAINT_CPUSET; | ||
157 | |||
158 | if (!nodes_empty(nodes)) | ||
159 | return CONSTRAINT_MEMORY_POLICY; | ||
160 | #endif | ||
161 | |||
162 | return CONSTRAINT_NONE; | ||
163 | } | ||
164 | |||
165 | /* | ||
134 | * Simple selection loop. We chose the process with the highest | 166 | * Simple selection loop. We chose the process with the highest |
135 | * number of 'points'. We expect the caller will lock the tasklist. | 167 | * number of 'points'. We expect the caller will lock the tasklist. |
136 | * | 168 | * |
137 | * (not docbooked, we don't want this one cluttering up the manual) | 169 | * (not docbooked, we don't want this one cluttering up the manual) |
138 | */ | 170 | */ |
139 | static struct task_struct * select_bad_process(void) | 171 | static struct task_struct *select_bad_process(unsigned long *ppoints) |
140 | { | 172 | { |
141 | unsigned long maxpoints = 0; | ||
142 | struct task_struct *g, *p; | 173 | struct task_struct *g, *p; |
143 | struct task_struct *chosen = NULL; | 174 | struct task_struct *chosen = NULL; |
144 | struct timespec uptime; | 175 | struct timespec uptime; |
176 | *ppoints = 0; | ||
145 | 177 | ||
146 | do_posix_clock_monotonic_gettime(&uptime); | 178 | do_posix_clock_monotonic_gettime(&uptime); |
147 | do_each_thread(g, p) { | 179 | do_each_thread(g, p) { |
@@ -169,9 +201,9 @@ static struct task_struct * select_bad_process(void) | |||
169 | return p; | 201 | return p; |
170 | 202 | ||
171 | points = badness(p, uptime.tv_sec); | 203 | points = badness(p, uptime.tv_sec); |
172 | if (points > maxpoints || !chosen) { | 204 | if (points > *ppoints || !chosen) { |
173 | chosen = p; | 205 | chosen = p; |
174 | maxpoints = points; | 206 | *ppoints = points; |
175 | } | 207 | } |
176 | } while_each_thread(g, p); | 208 | } while_each_thread(g, p); |
177 | return chosen; | 209 | return chosen; |
@@ -182,7 +214,7 @@ static struct task_struct * select_bad_process(void) | |||
182 | * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that | 214 | * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that |
183 | * we select a process with CAP_SYS_RAW_IO set). | 215 | * we select a process with CAP_SYS_RAW_IO set). |
184 | */ | 216 | */ |
185 | static void __oom_kill_task(task_t *p) | 217 | static void __oom_kill_task(task_t *p, const char *message) |
186 | { | 218 | { |
187 | if (p->pid == 1) { | 219 | if (p->pid == 1) { |
188 | WARN_ON(1); | 220 | WARN_ON(1); |
@@ -198,8 +230,8 @@ static void __oom_kill_task(task_t *p) | |||
198 | return; | 230 | return; |
199 | } | 231 | } |
200 | task_unlock(p); | 232 | task_unlock(p); |
201 | printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n", | 233 | printk(KERN_ERR "%s: Killed process %d (%s).\n", |
202 | p->pid, p->comm); | 234 | message, p->pid, p->comm); |
203 | 235 | ||
204 | /* | 236 | /* |
205 | * We give our sacrificial lamb high priority and access to | 237 | * We give our sacrificial lamb high priority and access to |
@@ -212,7 +244,7 @@ static void __oom_kill_task(task_t *p) | |||
212 | force_sig(SIGKILL, p); | 244 | force_sig(SIGKILL, p); |
213 | } | 245 | } |
214 | 246 | ||
215 | static struct mm_struct *oom_kill_task(task_t *p) | 247 | static struct mm_struct *oom_kill_task(task_t *p, const char *message) |
216 | { | 248 | { |
217 | struct mm_struct *mm = get_task_mm(p); | 249 | struct mm_struct *mm = get_task_mm(p); |
218 | task_t * g, * q; | 250 | task_t * g, * q; |
@@ -224,35 +256,38 @@ static struct mm_struct *oom_kill_task(task_t *p) | |||
224 | return NULL; | 256 | return NULL; |
225 | } | 257 | } |
226 | 258 | ||
227 | __oom_kill_task(p); | 259 | __oom_kill_task(p, message); |
228 | /* | 260 | /* |
229 | * kill all processes that share the ->mm (i.e. all threads), | 261 | * kill all processes that share the ->mm (i.e. all threads), |
230 | * but are in a different thread group | 262 | * but are in a different thread group |
231 | */ | 263 | */ |
232 | do_each_thread(g, q) | 264 | do_each_thread(g, q) |
233 | if (q->mm == mm && q->tgid != p->tgid) | 265 | if (q->mm == mm && q->tgid != p->tgid) |
234 | __oom_kill_task(q); | 266 | __oom_kill_task(q, message); |
235 | while_each_thread(g, q); | 267 | while_each_thread(g, q); |
236 | 268 | ||
237 | return mm; | 269 | return mm; |
238 | } | 270 | } |
239 | 271 | ||
240 | static struct mm_struct *oom_kill_process(struct task_struct *p) | 272 | static struct mm_struct *oom_kill_process(struct task_struct *p, |
273 | unsigned long points, const char *message) | ||
241 | { | 274 | { |
242 | struct mm_struct *mm; | 275 | struct mm_struct *mm; |
243 | struct task_struct *c; | 276 | struct task_struct *c; |
244 | struct list_head *tsk; | 277 | struct list_head *tsk; |
245 | 278 | ||
279 | printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li and " | ||
280 | "children.\n", p->pid, p->comm, points); | ||
246 | /* Try to kill a child first */ | 281 | /* Try to kill a child first */ |
247 | list_for_each(tsk, &p->children) { | 282 | list_for_each(tsk, &p->children) { |
248 | c = list_entry(tsk, struct task_struct, sibling); | 283 | c = list_entry(tsk, struct task_struct, sibling); |
249 | if (c->mm == p->mm) | 284 | if (c->mm == p->mm) |
250 | continue; | 285 | continue; |
251 | mm = oom_kill_task(c); | 286 | mm = oom_kill_task(c, message); |
252 | if (mm) | 287 | if (mm) |
253 | return mm; | 288 | return mm; |
254 | } | 289 | } |
255 | return oom_kill_task(p); | 290 | return oom_kill_task(p, message); |
256 | } | 291 | } |
257 | 292 | ||
258 | /** | 293 | /** |
@@ -263,38 +298,63 @@ static struct mm_struct *oom_kill_process(struct task_struct *p) | |||
263 | * OR try to be smart about which process to kill. Note that we | 298 | * OR try to be smart about which process to kill. Note that we |
264 | * don't have to be perfect here, we just have to be good. | 299 | * don't have to be perfect here, we just have to be good. |
265 | */ | 300 | */ |
266 | void out_of_memory(gfp_t gfp_mask, int order) | 301 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) |
267 | { | 302 | { |
268 | struct mm_struct *mm = NULL; | 303 | struct mm_struct *mm = NULL; |
269 | task_t * p; | 304 | task_t *p; |
305 | unsigned long points; | ||
270 | 306 | ||
271 | if (printk_ratelimit()) { | 307 | if (printk_ratelimit()) { |
272 | printk("oom-killer: gfp_mask=0x%x, order=%d\n", | 308 | printk("oom-killer: gfp_mask=0x%x, order=%d\n", |
273 | gfp_mask, order); | 309 | gfp_mask, order); |
310 | dump_stack(); | ||
274 | show_mem(); | 311 | show_mem(); |
275 | } | 312 | } |
276 | 313 | ||
277 | cpuset_lock(); | 314 | cpuset_lock(); |
278 | read_lock(&tasklist_lock); | 315 | read_lock(&tasklist_lock); |
316 | |||
317 | /* | ||
318 | * Check if there were limitations on the allocation (only relevant for | ||
319 | * NUMA) that may require different handling. | ||
320 | */ | ||
321 | switch (constrained_alloc(zonelist, gfp_mask)) { | ||
322 | case CONSTRAINT_MEMORY_POLICY: | ||
323 | mm = oom_kill_process(current, points, | ||
324 | "No available memory (MPOL_BIND)"); | ||
325 | break; | ||
326 | |||
327 | case CONSTRAINT_CPUSET: | ||
328 | mm = oom_kill_process(current, points, | ||
329 | "No available memory in cpuset"); | ||
330 | break; | ||
331 | |||
332 | case CONSTRAINT_NONE: | ||
279 | retry: | 333 | retry: |
280 | p = select_bad_process(); | 334 | /* |
335 | * Rambo mode: Shoot down a process and hope it solves whatever | ||
336 | * issues we may have. | ||
337 | */ | ||
338 | p = select_bad_process(&points); | ||
281 | 339 | ||
282 | if (PTR_ERR(p) == -1UL) | 340 | if (PTR_ERR(p) == -1UL) |
283 | goto out; | 341 | goto out; |
284 | 342 | ||
285 | /* Found nothing?!?! Either we hang forever, or we panic. */ | 343 | /* Found nothing?!?! Either we hang forever, or we panic. */ |
286 | if (!p) { | 344 | if (!p) { |
287 | read_unlock(&tasklist_lock); | 345 | read_unlock(&tasklist_lock); |
288 | cpuset_unlock(); | 346 | cpuset_unlock(); |
289 | panic("Out of memory and no killable processes...\n"); | 347 | panic("Out of memory and no killable processes...\n"); |
290 | } | 348 | } |
291 | 349 | ||
292 | mm = oom_kill_process(p); | 350 | mm = oom_kill_process(p, points, "Out of memory"); |
293 | if (!mm) | 351 | if (!mm) |
294 | goto retry; | 352 | goto retry; |
353 | |||
354 | break; | ||
355 | } | ||
295 | 356 | ||
296 | out: | 357 | out: |
297 | read_unlock(&tasklist_lock); | ||
298 | cpuset_unlock(); | 358 | cpuset_unlock(); |
299 | if (mm) | 359 | if (mm) |
300 | mmput(mm); | 360 | mmput(mm); |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index df54e2fc8ee0..791690d7d3fa 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -56,6 +56,7 @@ long nr_swap_pages; | |||
56 | int percpu_pagelist_fraction; | 56 | int percpu_pagelist_fraction; |
57 | 57 | ||
58 | static void fastcall free_hot_cold_page(struct page *page, int cold); | 58 | static void fastcall free_hot_cold_page(struct page *page, int cold); |
59 | static void __free_pages_ok(struct page *page, unsigned int order); | ||
59 | 60 | ||
60 | /* | 61 | /* |
61 | * results with 256, 32 in the lowmem_reserve sysctl: | 62 | * results with 256, 32 in the lowmem_reserve sysctl: |
@@ -169,20 +170,23 @@ static void bad_page(struct page *page) | |||
169 | * All pages have PG_compound set. All pages have their ->private pointing at | 170 | * All pages have PG_compound set. All pages have their ->private pointing at |
170 | * the head page (even the head page has this). | 171 | * the head page (even the head page has this). |
171 | * | 172 | * |
172 | * The first tail page's ->mapping, if non-zero, holds the address of the | 173 | * The first tail page's ->lru.next holds the address of the compound page's |
173 | * compound page's put_page() function. | 174 | * put_page() function. Its ->lru.prev holds the order of allocation. |
174 | * | 175 | * This usage means that zero-order pages may not be compound. |
175 | * The order of the allocation is stored in the first tail page's ->index | ||
176 | * This is only for debug at present. This usage means that zero-order pages | ||
177 | * may not be compound. | ||
178 | */ | 176 | */ |
177 | |||
178 | static void free_compound_page(struct page *page) | ||
179 | { | ||
180 | __free_pages_ok(page, (unsigned long)page[1].lru.prev); | ||
181 | } | ||
182 | |||
179 | static void prep_compound_page(struct page *page, unsigned long order) | 183 | static void prep_compound_page(struct page *page, unsigned long order) |
180 | { | 184 | { |
181 | int i; | 185 | int i; |
182 | int nr_pages = 1 << order; | 186 | int nr_pages = 1 << order; |
183 | 187 | ||
184 | page[1].mapping = NULL; | 188 | page[1].lru.next = (void *)free_compound_page; /* set dtor */ |
185 | page[1].index = order; | 189 | page[1].lru.prev = (void *)order; |
186 | for (i = 0; i < nr_pages; i++) { | 190 | for (i = 0; i < nr_pages; i++) { |
187 | struct page *p = page + i; | 191 | struct page *p = page + i; |
188 | 192 | ||
@@ -196,7 +200,7 @@ static void destroy_compound_page(struct page *page, unsigned long order) | |||
196 | int i; | 200 | int i; |
197 | int nr_pages = 1 << order; | 201 | int nr_pages = 1 << order; |
198 | 202 | ||
199 | if (unlikely(page[1].index != order)) | 203 | if (unlikely((unsigned long)page[1].lru.prev != order)) |
200 | bad_page(page); | 204 | bad_page(page); |
201 | 205 | ||
202 | for (i = 0; i < nr_pages; i++) { | 206 | for (i = 0; i < nr_pages; i++) { |
@@ -1011,7 +1015,7 @@ rebalance: | |||
1011 | if (page) | 1015 | if (page) |
1012 | goto got_pg; | 1016 | goto got_pg; |
1013 | 1017 | ||
1014 | out_of_memory(gfp_mask, order); | 1018 | out_of_memory(zonelist, gfp_mask, order); |
1015 | goto restart; | 1019 | goto restart; |
1016 | } | 1020 | } |
1017 | 1021 | ||
@@ -1213,18 +1217,21 @@ static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) | |||
1213 | { | 1217 | { |
1214 | int cpu = 0; | 1218 | int cpu = 0; |
1215 | 1219 | ||
1216 | memset(ret, 0, sizeof(*ret)); | 1220 | memset(ret, 0, nr * sizeof(unsigned long)); |
1217 | cpus_and(*cpumask, *cpumask, cpu_online_map); | 1221 | cpus_and(*cpumask, *cpumask, cpu_online_map); |
1218 | 1222 | ||
1219 | cpu = first_cpu(*cpumask); | 1223 | cpu = first_cpu(*cpumask); |
1220 | while (cpu < NR_CPUS) { | 1224 | while (cpu < NR_CPUS) { |
1221 | unsigned long *in, *out, off; | 1225 | unsigned long *in, *out, off; |
1222 | 1226 | ||
1227 | if (!cpu_isset(cpu, *cpumask)) | ||
1228 | continue; | ||
1229 | |||
1223 | in = (unsigned long *)&per_cpu(page_states, cpu); | 1230 | in = (unsigned long *)&per_cpu(page_states, cpu); |
1224 | 1231 | ||
1225 | cpu = next_cpu(cpu, *cpumask); | 1232 | cpu = next_cpu(cpu, *cpumask); |
1226 | 1233 | ||
1227 | if (cpu < NR_CPUS) | 1234 | if (likely(cpu < NR_CPUS)) |
1228 | prefetch(&per_cpu(page_states, cpu)); | 1235 | prefetch(&per_cpu(page_states, cpu)); |
1229 | 1236 | ||
1230 | out = (unsigned long *)ret; | 1237 | out = (unsigned long *)ret; |
@@ -1534,29 +1541,29 @@ static int __initdata node_load[MAX_NUMNODES]; | |||
1534 | */ | 1541 | */ |
1535 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) | 1542 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) |
1536 | { | 1543 | { |
1537 | int i, n, val; | 1544 | int n, val; |
1538 | int min_val = INT_MAX; | 1545 | int min_val = INT_MAX; |
1539 | int best_node = -1; | 1546 | int best_node = -1; |
1540 | 1547 | ||
1541 | for_each_online_node(i) { | 1548 | /* Use the local node if we haven't already */ |
1542 | cpumask_t tmp; | 1549 | if (!node_isset(node, *used_node_mask)) { |
1550 | node_set(node, *used_node_mask); | ||
1551 | return node; | ||
1552 | } | ||
1543 | 1553 | ||
1544 | /* Start from local node */ | 1554 | for_each_online_node(n) { |
1545 | n = (node+i) % num_online_nodes(); | 1555 | cpumask_t tmp; |
1546 | 1556 | ||
1547 | /* Don't want a node to appear more than once */ | 1557 | /* Don't want a node to appear more than once */ |
1548 | if (node_isset(n, *used_node_mask)) | 1558 | if (node_isset(n, *used_node_mask)) |
1549 | continue; | 1559 | continue; |
1550 | 1560 | ||
1551 | /* Use the local node if we haven't already */ | ||
1552 | if (!node_isset(node, *used_node_mask)) { | ||
1553 | best_node = node; | ||
1554 | break; | ||
1555 | } | ||
1556 | |||
1557 | /* Use the distance array to find the distance */ | 1561 | /* Use the distance array to find the distance */ |
1558 | val = node_distance(node, n); | 1562 | val = node_distance(node, n); |
1559 | 1563 | ||
1564 | /* Penalize nodes under us ("prefer the next node") */ | ||
1565 | val += (n < node); | ||
1566 | |||
1560 | /* Give preference to headless and unused nodes */ | 1567 | /* Give preference to headless and unused nodes */ |
1561 | tmp = node_to_cpumask(n); | 1568 | tmp = node_to_cpumask(n); |
1562 | if (!cpus_empty(tmp)) | 1569 | if (!cpus_empty(tmp)) |
@@ -1799,7 +1806,7 @@ void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, | |||
1799 | memmap_init_zone((size), (nid), (zone), (start_pfn)) | 1806 | memmap_init_zone((size), (nid), (zone), (start_pfn)) |
1800 | #endif | 1807 | #endif |
1801 | 1808 | ||
1802 | static int __meminit zone_batchsize(struct zone *zone) | 1809 | static int __cpuinit zone_batchsize(struct zone *zone) |
1803 | { | 1810 | { |
1804 | int batch; | 1811 | int batch; |
1805 | 1812 | ||
@@ -1886,14 +1893,13 @@ static void setup_pagelist_highmark(struct per_cpu_pageset *p, | |||
1886 | * not check if the processor is online before following the pageset pointer. | 1893 | * not check if the processor is online before following the pageset pointer. |
1887 | * Other parts of the kernel may not check if the zone is available. | 1894 | * Other parts of the kernel may not check if the zone is available. |
1888 | */ | 1895 | */ |
1889 | static struct per_cpu_pageset | 1896 | static struct per_cpu_pageset boot_pageset[NR_CPUS]; |
1890 | boot_pageset[NR_CPUS]; | ||
1891 | 1897 | ||
1892 | /* | 1898 | /* |
1893 | * Dynamically allocate memory for the | 1899 | * Dynamically allocate memory for the |
1894 | * per cpu pageset array in struct zone. | 1900 | * per cpu pageset array in struct zone. |
1895 | */ | 1901 | */ |
1896 | static int __meminit process_zones(int cpu) | 1902 | static int __cpuinit process_zones(int cpu) |
1897 | { | 1903 | { |
1898 | struct zone *zone, *dzone; | 1904 | struct zone *zone, *dzone; |
1899 | 1905 | ||
@@ -1934,7 +1940,7 @@ static inline void free_zone_pagesets(int cpu) | |||
1934 | } | 1940 | } |
1935 | } | 1941 | } |
1936 | 1942 | ||
1937 | static int __meminit pageset_cpuup_callback(struct notifier_block *nfb, | 1943 | static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, |
1938 | unsigned long action, | 1944 | unsigned long action, |
1939 | void *hcpu) | 1945 | void *hcpu) |
1940 | { | 1946 | { |
@@ -52,6 +52,7 @@ | |||
52 | #include <linux/init.h> | 52 | #include <linux/init.h> |
53 | #include <linux/rmap.h> | 53 | #include <linux/rmap.h> |
54 | #include <linux/rcupdate.h> | 54 | #include <linux/rcupdate.h> |
55 | #include <linux/module.h> | ||
55 | 56 | ||
56 | #include <asm/tlbflush.h> | 57 | #include <asm/tlbflush.h> |
57 | 58 | ||
@@ -205,6 +206,36 @@ out: | |||
205 | return anon_vma; | 206 | return anon_vma; |
206 | } | 207 | } |
207 | 208 | ||
209 | #ifdef CONFIG_MIGRATION | ||
210 | /* | ||
211 | * Remove an anonymous page from swap replacing the swap pte's | ||
212 | * through real pte's pointing to valid pages and then releasing | ||
213 | * the page from the swap cache. | ||
214 | * | ||
215 | * Must hold page lock on page. | ||
216 | */ | ||
217 | void remove_from_swap(struct page *page) | ||
218 | { | ||
219 | struct anon_vma *anon_vma; | ||
220 | struct vm_area_struct *vma; | ||
221 | |||
222 | if (!PageAnon(page) || !PageSwapCache(page)) | ||
223 | return; | ||
224 | |||
225 | anon_vma = page_lock_anon_vma(page); | ||
226 | if (!anon_vma) | ||
227 | return; | ||
228 | |||
229 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) | ||
230 | remove_vma_swap(vma, page); | ||
231 | |||
232 | spin_unlock(&anon_vma->lock); | ||
233 | |||
234 | delete_from_swap_cache(page); | ||
235 | } | ||
236 | EXPORT_SYMBOL(remove_from_swap); | ||
237 | #endif | ||
238 | |||
208 | /* | 239 | /* |
209 | * At what user virtual address is page expected in vma? | 240 | * At what user virtual address is page expected in vma? |
210 | */ | 241 | */ |
@@ -541,7 +572,8 @@ void page_remove_rmap(struct page *page) | |||
541 | * Subfunctions of try_to_unmap: try_to_unmap_one called | 572 | * Subfunctions of try_to_unmap: try_to_unmap_one called |
542 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | 573 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. |
543 | */ | 574 | */ |
544 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) | 575 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
576 | int ignore_refs) | ||
545 | { | 577 | { |
546 | struct mm_struct *mm = vma->vm_mm; | 578 | struct mm_struct *mm = vma->vm_mm; |
547 | unsigned long address; | 579 | unsigned long address; |
@@ -564,7 +596,8 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) | |||
564 | * skipped over this mm) then we should reactivate it. | 596 | * skipped over this mm) then we should reactivate it. |
565 | */ | 597 | */ |
566 | if ((vma->vm_flags & VM_LOCKED) || | 598 | if ((vma->vm_flags & VM_LOCKED) || |
567 | ptep_clear_flush_young(vma, address, pte)) { | 599 | (ptep_clear_flush_young(vma, address, pte) |
600 | && !ignore_refs)) { | ||
568 | ret = SWAP_FAIL; | 601 | ret = SWAP_FAIL; |
569 | goto out_unmap; | 602 | goto out_unmap; |
570 | } | 603 | } |
@@ -698,7 +731,7 @@ static void try_to_unmap_cluster(unsigned long cursor, | |||
698 | pte_unmap_unlock(pte - 1, ptl); | 731 | pte_unmap_unlock(pte - 1, ptl); |
699 | } | 732 | } |
700 | 733 | ||
701 | static int try_to_unmap_anon(struct page *page) | 734 | static int try_to_unmap_anon(struct page *page, int ignore_refs) |
702 | { | 735 | { |
703 | struct anon_vma *anon_vma; | 736 | struct anon_vma *anon_vma; |
704 | struct vm_area_struct *vma; | 737 | struct vm_area_struct *vma; |
@@ -709,7 +742,7 @@ static int try_to_unmap_anon(struct page *page) | |||
709 | return ret; | 742 | return ret; |
710 | 743 | ||
711 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | 744 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
712 | ret = try_to_unmap_one(page, vma); | 745 | ret = try_to_unmap_one(page, vma, ignore_refs); |
713 | if (ret == SWAP_FAIL || !page_mapped(page)) | 746 | if (ret == SWAP_FAIL || !page_mapped(page)) |
714 | break; | 747 | break; |
715 | } | 748 | } |
@@ -726,7 +759,7 @@ static int try_to_unmap_anon(struct page *page) | |||
726 | * | 759 | * |
727 | * This function is only called from try_to_unmap for object-based pages. | 760 | * This function is only called from try_to_unmap for object-based pages. |
728 | */ | 761 | */ |
729 | static int try_to_unmap_file(struct page *page) | 762 | static int try_to_unmap_file(struct page *page, int ignore_refs) |
730 | { | 763 | { |
731 | struct address_space *mapping = page->mapping; | 764 | struct address_space *mapping = page->mapping; |
732 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 765 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
@@ -740,7 +773,7 @@ static int try_to_unmap_file(struct page *page) | |||
740 | 773 | ||
741 | spin_lock(&mapping->i_mmap_lock); | 774 | spin_lock(&mapping->i_mmap_lock); |
742 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 775 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
743 | ret = try_to_unmap_one(page, vma); | 776 | ret = try_to_unmap_one(page, vma, ignore_refs); |
744 | if (ret == SWAP_FAIL || !page_mapped(page)) | 777 | if (ret == SWAP_FAIL || !page_mapped(page)) |
745 | goto out; | 778 | goto out; |
746 | } | 779 | } |
@@ -825,16 +858,16 @@ out: | |||
825 | * SWAP_AGAIN - we missed a mapping, try again later | 858 | * SWAP_AGAIN - we missed a mapping, try again later |
826 | * SWAP_FAIL - the page is unswappable | 859 | * SWAP_FAIL - the page is unswappable |
827 | */ | 860 | */ |
828 | int try_to_unmap(struct page *page) | 861 | int try_to_unmap(struct page *page, int ignore_refs) |
829 | { | 862 | { |
830 | int ret; | 863 | int ret; |
831 | 864 | ||
832 | BUG_ON(!PageLocked(page)); | 865 | BUG_ON(!PageLocked(page)); |
833 | 866 | ||
834 | if (PageAnon(page)) | 867 | if (PageAnon(page)) |
835 | ret = try_to_unmap_anon(page); | 868 | ret = try_to_unmap_anon(page, ignore_refs); |
836 | else | 869 | else |
837 | ret = try_to_unmap_file(page); | 870 | ret = try_to_unmap_file(page, ignore_refs); |
838 | 871 | ||
839 | if (!page_mapped(page)) | 872 | if (!page_mapped(page)) |
840 | ret = SWAP_SUCCESS; | 873 | ret = SWAP_SUCCESS; |
diff --git a/mm/shmem.c b/mm/shmem.c index ce501bce1c2e..7c455fbaff7b 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -45,6 +45,7 @@ | |||
45 | #include <linux/swapops.h> | 45 | #include <linux/swapops.h> |
46 | #include <linux/mempolicy.h> | 46 | #include <linux/mempolicy.h> |
47 | #include <linux/namei.h> | 47 | #include <linux/namei.h> |
48 | #include <linux/ctype.h> | ||
48 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
49 | #include <asm/div64.h> | 50 | #include <asm/div64.h> |
50 | #include <asm/pgtable.h> | 51 | #include <asm/pgtable.h> |
@@ -874,6 +875,51 @@ redirty: | |||
874 | } | 875 | } |
875 | 876 | ||
876 | #ifdef CONFIG_NUMA | 877 | #ifdef CONFIG_NUMA |
878 | static int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes) | ||
879 | { | ||
880 | char *nodelist = strchr(value, ':'); | ||
881 | int err = 1; | ||
882 | |||
883 | if (nodelist) { | ||
884 | /* NUL-terminate policy string */ | ||
885 | *nodelist++ = '\0'; | ||
886 | if (nodelist_parse(nodelist, *policy_nodes)) | ||
887 | goto out; | ||
888 | } | ||
889 | if (!strcmp(value, "default")) { | ||
890 | *policy = MPOL_DEFAULT; | ||
891 | /* Don't allow a nodelist */ | ||
892 | if (!nodelist) | ||
893 | err = 0; | ||
894 | } else if (!strcmp(value, "prefer")) { | ||
895 | *policy = MPOL_PREFERRED; | ||
896 | /* Insist on a nodelist of one node only */ | ||
897 | if (nodelist) { | ||
898 | char *rest = nodelist; | ||
899 | while (isdigit(*rest)) | ||
900 | rest++; | ||
901 | if (!*rest) | ||
902 | err = 0; | ||
903 | } | ||
904 | } else if (!strcmp(value, "bind")) { | ||
905 | *policy = MPOL_BIND; | ||
906 | /* Insist on a nodelist */ | ||
907 | if (nodelist) | ||
908 | err = 0; | ||
909 | } else if (!strcmp(value, "interleave")) { | ||
910 | *policy = MPOL_INTERLEAVE; | ||
911 | /* Default to nodes online if no nodelist */ | ||
912 | if (!nodelist) | ||
913 | *policy_nodes = node_online_map; | ||
914 | err = 0; | ||
915 | } | ||
916 | out: | ||
917 | /* Restore string for error message */ | ||
918 | if (nodelist) | ||
919 | *--nodelist = ':'; | ||
920 | return err; | ||
921 | } | ||
922 | |||
877 | static struct page *shmem_swapin_async(struct shared_policy *p, | 923 | static struct page *shmem_swapin_async(struct shared_policy *p, |
878 | swp_entry_t entry, unsigned long idx) | 924 | swp_entry_t entry, unsigned long idx) |
879 | { | 925 | { |
@@ -926,6 +972,11 @@ shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info, | |||
926 | return page; | 972 | return page; |
927 | } | 973 | } |
928 | #else | 974 | #else |
975 | static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes) | ||
976 | { | ||
977 | return 1; | ||
978 | } | ||
979 | |||
929 | static inline struct page * | 980 | static inline struct page * |
930 | shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx) | 981 | shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx) |
931 | { | 982 | { |
@@ -1028,6 +1079,14 @@ repeat: | |||
1028 | page_cache_release(swappage); | 1079 | page_cache_release(swappage); |
1029 | goto repeat; | 1080 | goto repeat; |
1030 | } | 1081 | } |
1082 | if (!PageSwapCache(swappage)) { | ||
1083 | /* Page migration has occured */ | ||
1084 | shmem_swp_unmap(entry); | ||
1085 | spin_unlock(&info->lock); | ||
1086 | unlock_page(swappage); | ||
1087 | page_cache_release(swappage); | ||
1088 | goto repeat; | ||
1089 | } | ||
1031 | if (PageWriteback(swappage)) { | 1090 | if (PageWriteback(swappage)) { |
1032 | shmem_swp_unmap(entry); | 1091 | shmem_swp_unmap(entry); |
1033 | spin_unlock(&info->lock); | 1092 | spin_unlock(&info->lock); |
@@ -1851,7 +1910,23 @@ static int shmem_parse_options(char *options, int *mode, uid_t *uid, | |||
1851 | { | 1910 | { |
1852 | char *this_char, *value, *rest; | 1911 | char *this_char, *value, *rest; |
1853 | 1912 | ||
1854 | while ((this_char = strsep(&options, ",")) != NULL) { | 1913 | while (options != NULL) { |
1914 | this_char = options; | ||
1915 | for (;;) { | ||
1916 | /* | ||
1917 | * NUL-terminate this option: unfortunately, | ||
1918 | * mount options form a comma-separated list, | ||
1919 | * but mpol's nodelist may also contain commas. | ||
1920 | */ | ||
1921 | options = strchr(options, ','); | ||
1922 | if (options == NULL) | ||
1923 | break; | ||
1924 | options++; | ||
1925 | if (!isdigit(*options)) { | ||
1926 | options[-1] = '\0'; | ||
1927 | break; | ||
1928 | } | ||
1929 | } | ||
1855 | if (!*this_char) | 1930 | if (!*this_char) |
1856 | continue; | 1931 | continue; |
1857 | if ((value = strchr(this_char,'=')) != NULL) { | 1932 | if ((value = strchr(this_char,'=')) != NULL) { |
@@ -1902,18 +1977,8 @@ static int shmem_parse_options(char *options, int *mode, uid_t *uid, | |||
1902 | if (*rest) | 1977 | if (*rest) |
1903 | goto bad_val; | 1978 | goto bad_val; |
1904 | } else if (!strcmp(this_char,"mpol")) { | 1979 | } else if (!strcmp(this_char,"mpol")) { |
1905 | if (!strcmp(value,"default")) | 1980 | if (shmem_parse_mpol(value,policy,policy_nodes)) |
1906 | *policy = MPOL_DEFAULT; | ||
1907 | else if (!strcmp(value,"preferred")) | ||
1908 | *policy = MPOL_PREFERRED; | ||
1909 | else if (!strcmp(value,"bind")) | ||
1910 | *policy = MPOL_BIND; | ||
1911 | else if (!strcmp(value,"interleave")) | ||
1912 | *policy = MPOL_INTERLEAVE; | ||
1913 | else | ||
1914 | goto bad_val; | 1981 | goto bad_val; |
1915 | } else if (!strcmp(this_char,"mpol_nodelist")) { | ||
1916 | nodelist_parse(value, *policy_nodes); | ||
1917 | } else { | 1982 | } else { |
1918 | printk(KERN_ERR "tmpfs: Bad mount option %s\n", | 1983 | printk(KERN_ERR "tmpfs: Bad mount option %s\n", |
1919 | this_char); | 1984 | this_char); |
@@ -55,7 +55,7 @@ | |||
55 | * | 55 | * |
56 | * SMP synchronization: | 56 | * SMP synchronization: |
57 | * constructors and destructors are called without any locking. | 57 | * constructors and destructors are called without any locking. |
58 | * Several members in kmem_cache_t and struct slab never change, they | 58 | * Several members in struct kmem_cache and struct slab never change, they |
59 | * are accessed without any locking. | 59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | 60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, |
61 | * and local interrupts are disabled so slab code is preempt-safe. | 61 | * and local interrupts are disabled so slab code is preempt-safe. |
@@ -244,7 +244,7 @@ struct slab { | |||
244 | */ | 244 | */ |
245 | struct slab_rcu { | 245 | struct slab_rcu { |
246 | struct rcu_head head; | 246 | struct rcu_head head; |
247 | kmem_cache_t *cachep; | 247 | struct kmem_cache *cachep; |
248 | void *addr; | 248 | void *addr; |
249 | }; | 249 | }; |
250 | 250 | ||
@@ -294,6 +294,7 @@ struct kmem_list3 { | |||
294 | unsigned long next_reap; | 294 | unsigned long next_reap; |
295 | int free_touched; | 295 | int free_touched; |
296 | unsigned int free_limit; | 296 | unsigned int free_limit; |
297 | unsigned int colour_next; /* Per-node cache coloring */ | ||
297 | spinlock_t list_lock; | 298 | spinlock_t list_lock; |
298 | struct array_cache *shared; /* shared per node */ | 299 | struct array_cache *shared; /* shared per node */ |
299 | struct array_cache **alien; /* on other nodes */ | 300 | struct array_cache **alien; /* on other nodes */ |
@@ -316,6 +317,8 @@ struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | |||
316 | */ | 317 | */ |
317 | static __always_inline int index_of(const size_t size) | 318 | static __always_inline int index_of(const size_t size) |
318 | { | 319 | { |
320 | extern void __bad_size(void); | ||
321 | |||
319 | if (__builtin_constant_p(size)) { | 322 | if (__builtin_constant_p(size)) { |
320 | int i = 0; | 323 | int i = 0; |
321 | 324 | ||
@@ -326,25 +329,23 @@ static __always_inline int index_of(const size_t size) | |||
326 | i++; | 329 | i++; |
327 | #include "linux/kmalloc_sizes.h" | 330 | #include "linux/kmalloc_sizes.h" |
328 | #undef CACHE | 331 | #undef CACHE |
329 | { | 332 | __bad_size(); |
330 | extern void __bad_size(void); | ||
331 | __bad_size(); | ||
332 | } | ||
333 | } else | 333 | } else |
334 | BUG(); | 334 | __bad_size(); |
335 | return 0; | 335 | return 0; |
336 | } | 336 | } |
337 | 337 | ||
338 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) | 338 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) |
339 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | 339 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) |
340 | 340 | ||
341 | static inline void kmem_list3_init(struct kmem_list3 *parent) | 341 | static void kmem_list3_init(struct kmem_list3 *parent) |
342 | { | 342 | { |
343 | INIT_LIST_HEAD(&parent->slabs_full); | 343 | INIT_LIST_HEAD(&parent->slabs_full); |
344 | INIT_LIST_HEAD(&parent->slabs_partial); | 344 | INIT_LIST_HEAD(&parent->slabs_partial); |
345 | INIT_LIST_HEAD(&parent->slabs_free); | 345 | INIT_LIST_HEAD(&parent->slabs_free); |
346 | parent->shared = NULL; | 346 | parent->shared = NULL; |
347 | parent->alien = NULL; | 347 | parent->alien = NULL; |
348 | parent->colour_next = 0; | ||
348 | spin_lock_init(&parent->list_lock); | 349 | spin_lock_init(&parent->list_lock); |
349 | parent->free_objects = 0; | 350 | parent->free_objects = 0; |
350 | parent->free_touched = 0; | 351 | parent->free_touched = 0; |
@@ -364,7 +365,7 @@ static inline void kmem_list3_init(struct kmem_list3 *parent) | |||
364 | } while (0) | 365 | } while (0) |
365 | 366 | ||
366 | /* | 367 | /* |
367 | * kmem_cache_t | 368 | * struct kmem_cache |
368 | * | 369 | * |
369 | * manages a cache. | 370 | * manages a cache. |
370 | */ | 371 | */ |
@@ -375,7 +376,7 @@ struct kmem_cache { | |||
375 | unsigned int batchcount; | 376 | unsigned int batchcount; |
376 | unsigned int limit; | 377 | unsigned int limit; |
377 | unsigned int shared; | 378 | unsigned int shared; |
378 | unsigned int objsize; | 379 | unsigned int buffer_size; |
379 | /* 2) touched by every alloc & free from the backend */ | 380 | /* 2) touched by every alloc & free from the backend */ |
380 | struct kmem_list3 *nodelists[MAX_NUMNODES]; | 381 | struct kmem_list3 *nodelists[MAX_NUMNODES]; |
381 | unsigned int flags; /* constant flags */ | 382 | unsigned int flags; /* constant flags */ |
@@ -391,16 +392,15 @@ struct kmem_cache { | |||
391 | 392 | ||
392 | size_t colour; /* cache colouring range */ | 393 | size_t colour; /* cache colouring range */ |
393 | unsigned int colour_off; /* colour offset */ | 394 | unsigned int colour_off; /* colour offset */ |
394 | unsigned int colour_next; /* cache colouring */ | 395 | struct kmem_cache *slabp_cache; |
395 | kmem_cache_t *slabp_cache; | ||
396 | unsigned int slab_size; | 396 | unsigned int slab_size; |
397 | unsigned int dflags; /* dynamic flags */ | 397 | unsigned int dflags; /* dynamic flags */ |
398 | 398 | ||
399 | /* constructor func */ | 399 | /* constructor func */ |
400 | void (*ctor) (void *, kmem_cache_t *, unsigned long); | 400 | void (*ctor) (void *, struct kmem_cache *, unsigned long); |
401 | 401 | ||
402 | /* de-constructor func */ | 402 | /* de-constructor func */ |
403 | void (*dtor) (void *, kmem_cache_t *, unsigned long); | 403 | void (*dtor) (void *, struct kmem_cache *, unsigned long); |
404 | 404 | ||
405 | /* 4) cache creation/removal */ | 405 | /* 4) cache creation/removal */ |
406 | const char *name; | 406 | const char *name; |
@@ -423,8 +423,14 @@ struct kmem_cache { | |||
423 | atomic_t freemiss; | 423 | atomic_t freemiss; |
424 | #endif | 424 | #endif |
425 | #if DEBUG | 425 | #if DEBUG |
426 | int dbghead; | 426 | /* |
427 | int reallen; | 427 | * If debugging is enabled, then the allocator can add additional |
428 | * fields and/or padding to every object. buffer_size contains the total | ||
429 | * object size including these internal fields, the following two | ||
430 | * variables contain the offset to the user object and its size. | ||
431 | */ | ||
432 | int obj_offset; | ||
433 | int obj_size; | ||
428 | #endif | 434 | #endif |
429 | }; | 435 | }; |
430 | 436 | ||
@@ -495,50 +501,50 @@ struct kmem_cache { | |||
495 | 501 | ||
496 | /* memory layout of objects: | 502 | /* memory layout of objects: |
497 | * 0 : objp | 503 | * 0 : objp |
498 | * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that | 504 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
499 | * the end of an object is aligned with the end of the real | 505 | * the end of an object is aligned with the end of the real |
500 | * allocation. Catches writes behind the end of the allocation. | 506 | * allocation. Catches writes behind the end of the allocation. |
501 | * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: | 507 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
502 | * redzone word. | 508 | * redzone word. |
503 | * cachep->dbghead: The real object. | 509 | * cachep->obj_offset: The real object. |
504 | * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | 510 | * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
505 | * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] | 511 | * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] |
506 | */ | 512 | */ |
507 | static int obj_dbghead(kmem_cache_t *cachep) | 513 | static int obj_offset(struct kmem_cache *cachep) |
508 | { | 514 | { |
509 | return cachep->dbghead; | 515 | return cachep->obj_offset; |
510 | } | 516 | } |
511 | 517 | ||
512 | static int obj_reallen(kmem_cache_t *cachep) | 518 | static int obj_size(struct kmem_cache *cachep) |
513 | { | 519 | { |
514 | return cachep->reallen; | 520 | return cachep->obj_size; |
515 | } | 521 | } |
516 | 522 | ||
517 | static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) | 523 | static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
518 | { | 524 | { |
519 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 525 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); |
520 | return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); | 526 | return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD); |
521 | } | 527 | } |
522 | 528 | ||
523 | static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) | 529 | static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
524 | { | 530 | { |
525 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 531 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); |
526 | if (cachep->flags & SLAB_STORE_USER) | 532 | if (cachep->flags & SLAB_STORE_USER) |
527 | return (unsigned long *)(objp + cachep->objsize - | 533 | return (unsigned long *)(objp + cachep->buffer_size - |
528 | 2 * BYTES_PER_WORD); | 534 | 2 * BYTES_PER_WORD); |
529 | return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD); | 535 | return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD); |
530 | } | 536 | } |
531 | 537 | ||
532 | static void **dbg_userword(kmem_cache_t *cachep, void *objp) | 538 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
533 | { | 539 | { |
534 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | 540 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); |
535 | return (void **)(objp + cachep->objsize - BYTES_PER_WORD); | 541 | return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); |
536 | } | 542 | } |
537 | 543 | ||
538 | #else | 544 | #else |
539 | 545 | ||
540 | #define obj_dbghead(x) 0 | 546 | #define obj_offset(x) 0 |
541 | #define obj_reallen(cachep) (cachep->objsize) | 547 | #define obj_size(cachep) (cachep->buffer_size) |
542 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | 548 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;}) |
543 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) | 549 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;}) |
544 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) | 550 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
@@ -591,6 +597,18 @@ static inline struct slab *page_get_slab(struct page *page) | |||
591 | return (struct slab *)page->lru.prev; | 597 | return (struct slab *)page->lru.prev; |
592 | } | 598 | } |
593 | 599 | ||
600 | static inline struct kmem_cache *virt_to_cache(const void *obj) | ||
601 | { | ||
602 | struct page *page = virt_to_page(obj); | ||
603 | return page_get_cache(page); | ||
604 | } | ||
605 | |||
606 | static inline struct slab *virt_to_slab(const void *obj) | ||
607 | { | ||
608 | struct page *page = virt_to_page(obj); | ||
609 | return page_get_slab(page); | ||
610 | } | ||
611 | |||
594 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ | 612 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ |
595 | struct cache_sizes malloc_sizes[] = { | 613 | struct cache_sizes malloc_sizes[] = { |
596 | #define CACHE(x) { .cs_size = (x) }, | 614 | #define CACHE(x) { .cs_size = (x) }, |
@@ -619,16 +637,16 @@ static struct arraycache_init initarray_generic = | |||
619 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 637 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
620 | 638 | ||
621 | /* internal cache of cache description objs */ | 639 | /* internal cache of cache description objs */ |
622 | static kmem_cache_t cache_cache = { | 640 | static struct kmem_cache cache_cache = { |
623 | .batchcount = 1, | 641 | .batchcount = 1, |
624 | .limit = BOOT_CPUCACHE_ENTRIES, | 642 | .limit = BOOT_CPUCACHE_ENTRIES, |
625 | .shared = 1, | 643 | .shared = 1, |
626 | .objsize = sizeof(kmem_cache_t), | 644 | .buffer_size = sizeof(struct kmem_cache), |
627 | .flags = SLAB_NO_REAP, | 645 | .flags = SLAB_NO_REAP, |
628 | .spinlock = SPIN_LOCK_UNLOCKED, | 646 | .spinlock = SPIN_LOCK_UNLOCKED, |
629 | .name = "kmem_cache", | 647 | .name = "kmem_cache", |
630 | #if DEBUG | 648 | #if DEBUG |
631 | .reallen = sizeof(kmem_cache_t), | 649 | .obj_size = sizeof(struct kmem_cache), |
632 | #endif | 650 | #endif |
633 | }; | 651 | }; |
634 | 652 | ||
@@ -657,17 +675,17 @@ static enum { | |||
657 | 675 | ||
658 | static DEFINE_PER_CPU(struct work_struct, reap_work); | 676 | static DEFINE_PER_CPU(struct work_struct, reap_work); |
659 | 677 | ||
660 | static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node); | 678 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node); |
661 | static void enable_cpucache(kmem_cache_t *cachep); | 679 | static void enable_cpucache(struct kmem_cache *cachep); |
662 | static void cache_reap(void *unused); | 680 | static void cache_reap(void *unused); |
663 | static int __node_shrink(kmem_cache_t *cachep, int node); | 681 | static int __node_shrink(struct kmem_cache *cachep, int node); |
664 | 682 | ||
665 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) | 683 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
666 | { | 684 | { |
667 | return cachep->array[smp_processor_id()]; | 685 | return cachep->array[smp_processor_id()]; |
668 | } | 686 | } |
669 | 687 | ||
670 | static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags) | 688 | static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags) |
671 | { | 689 | { |
672 | struct cache_sizes *csizep = malloc_sizes; | 690 | struct cache_sizes *csizep = malloc_sizes; |
673 | 691 | ||
@@ -691,43 +709,80 @@ static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags) | |||
691 | return csizep->cs_cachep; | 709 | return csizep->cs_cachep; |
692 | } | 710 | } |
693 | 711 | ||
694 | kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags) | 712 | struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
695 | { | 713 | { |
696 | return __find_general_cachep(size, gfpflags); | 714 | return __find_general_cachep(size, gfpflags); |
697 | } | 715 | } |
698 | EXPORT_SYMBOL(kmem_find_general_cachep); | 716 | EXPORT_SYMBOL(kmem_find_general_cachep); |
699 | 717 | ||
700 | /* Cal the num objs, wastage, and bytes left over for a given slab size. */ | 718 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
701 | static void cache_estimate(unsigned long gfporder, size_t size, size_t align, | ||
702 | int flags, size_t *left_over, unsigned int *num) | ||
703 | { | 719 | { |
704 | int i; | 720 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
705 | size_t wastage = PAGE_SIZE << gfporder; | 721 | } |
706 | size_t extra = 0; | ||
707 | size_t base = 0; | ||
708 | 722 | ||
709 | if (!(flags & CFLGS_OFF_SLAB)) { | 723 | /* Calculate the number of objects and left-over bytes for a given |
710 | base = sizeof(struct slab); | 724 | buffer size. */ |
711 | extra = sizeof(kmem_bufctl_t); | 725 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
712 | } | 726 | size_t align, int flags, size_t *left_over, |
713 | i = 0; | 727 | unsigned int *num) |
714 | while (i * size + ALIGN(base + i * extra, align) <= wastage) | 728 | { |
715 | i++; | 729 | int nr_objs; |
716 | if (i > 0) | 730 | size_t mgmt_size; |
717 | i--; | 731 | size_t slab_size = PAGE_SIZE << gfporder; |
732 | |||
733 | /* | ||
734 | * The slab management structure can be either off the slab or | ||
735 | * on it. For the latter case, the memory allocated for a | ||
736 | * slab is used for: | ||
737 | * | ||
738 | * - The struct slab | ||
739 | * - One kmem_bufctl_t for each object | ||
740 | * - Padding to respect alignment of @align | ||
741 | * - @buffer_size bytes for each object | ||
742 | * | ||
743 | * If the slab management structure is off the slab, then the | ||
744 | * alignment will already be calculated into the size. Because | ||
745 | * the slabs are all pages aligned, the objects will be at the | ||
746 | * correct alignment when allocated. | ||
747 | */ | ||
748 | if (flags & CFLGS_OFF_SLAB) { | ||
749 | mgmt_size = 0; | ||
750 | nr_objs = slab_size / buffer_size; | ||
751 | |||
752 | if (nr_objs > SLAB_LIMIT) | ||
753 | nr_objs = SLAB_LIMIT; | ||
754 | } else { | ||
755 | /* | ||
756 | * Ignore padding for the initial guess. The padding | ||
757 | * is at most @align-1 bytes, and @buffer_size is at | ||
758 | * least @align. In the worst case, this result will | ||
759 | * be one greater than the number of objects that fit | ||
760 | * into the memory allocation when taking the padding | ||
761 | * into account. | ||
762 | */ | ||
763 | nr_objs = (slab_size - sizeof(struct slab)) / | ||
764 | (buffer_size + sizeof(kmem_bufctl_t)); | ||
765 | |||
766 | /* | ||
767 | * This calculated number will be either the right | ||
768 | * amount, or one greater than what we want. | ||
769 | */ | ||
770 | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | ||
771 | > slab_size) | ||
772 | nr_objs--; | ||
718 | 773 | ||
719 | if (i > SLAB_LIMIT) | 774 | if (nr_objs > SLAB_LIMIT) |
720 | i = SLAB_LIMIT; | 775 | nr_objs = SLAB_LIMIT; |
721 | 776 | ||
722 | *num = i; | 777 | mgmt_size = slab_mgmt_size(nr_objs, align); |
723 | wastage -= i * size; | 778 | } |
724 | wastage -= ALIGN(base + i * extra, align); | 779 | *num = nr_objs; |
725 | *left_over = wastage; | 780 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; |
726 | } | 781 | } |
727 | 782 | ||
728 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) | 783 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) |
729 | 784 | ||
730 | static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) | 785 | static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg) |
731 | { | 786 | { |
732 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | 787 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", |
733 | function, cachep->name, msg); | 788 | function, cachep->name, msg); |
@@ -774,9 +829,9 @@ static struct array_cache *alloc_arraycache(int node, int entries, | |||
774 | } | 829 | } |
775 | 830 | ||
776 | #ifdef CONFIG_NUMA | 831 | #ifdef CONFIG_NUMA |
777 | static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int); | 832 | static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int); |
778 | 833 | ||
779 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | 834 | static struct array_cache **alloc_alien_cache(int node, int limit) |
780 | { | 835 | { |
781 | struct array_cache **ac_ptr; | 836 | struct array_cache **ac_ptr; |
782 | int memsize = sizeof(void *) * MAX_NUMNODES; | 837 | int memsize = sizeof(void *) * MAX_NUMNODES; |
@@ -803,7 +858,7 @@ static inline struct array_cache **alloc_alien_cache(int node, int limit) | |||
803 | return ac_ptr; | 858 | return ac_ptr; |
804 | } | 859 | } |
805 | 860 | ||
806 | static inline void free_alien_cache(struct array_cache **ac_ptr) | 861 | static void free_alien_cache(struct array_cache **ac_ptr) |
807 | { | 862 | { |
808 | int i; | 863 | int i; |
809 | 864 | ||
@@ -816,8 +871,8 @@ static inline void free_alien_cache(struct array_cache **ac_ptr) | |||
816 | kfree(ac_ptr); | 871 | kfree(ac_ptr); |
817 | } | 872 | } |
818 | 873 | ||
819 | static inline void __drain_alien_cache(kmem_cache_t *cachep, | 874 | static void __drain_alien_cache(struct kmem_cache *cachep, |
820 | struct array_cache *ac, int node) | 875 | struct array_cache *ac, int node) |
821 | { | 876 | { |
822 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | 877 | struct kmem_list3 *rl3 = cachep->nodelists[node]; |
823 | 878 | ||
@@ -829,14 +884,14 @@ static inline void __drain_alien_cache(kmem_cache_t *cachep, | |||
829 | } | 884 | } |
830 | } | 885 | } |
831 | 886 | ||
832 | static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) | 887 | static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien) |
833 | { | 888 | { |
834 | int i = 0; | 889 | int i = 0; |
835 | struct array_cache *ac; | 890 | struct array_cache *ac; |
836 | unsigned long flags; | 891 | unsigned long flags; |
837 | 892 | ||
838 | for_each_online_node(i) { | 893 | for_each_online_node(i) { |
839 | ac = l3->alien[i]; | 894 | ac = alien[i]; |
840 | if (ac) { | 895 | if (ac) { |
841 | spin_lock_irqsave(&ac->lock, flags); | 896 | spin_lock_irqsave(&ac->lock, flags); |
842 | __drain_alien_cache(cachep, ac, i); | 897 | __drain_alien_cache(cachep, ac, i); |
@@ -845,16 +900,25 @@ static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) | |||
845 | } | 900 | } |
846 | } | 901 | } |
847 | #else | 902 | #else |
848 | #define alloc_alien_cache(node, limit) do { } while (0) | 903 | |
849 | #define free_alien_cache(ac_ptr) do { } while (0) | 904 | #define drain_alien_cache(cachep, alien) do { } while (0) |
850 | #define drain_alien_cache(cachep, l3) do { } while (0) | 905 | |
906 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | ||
907 | { | ||
908 | return (struct array_cache **) 0x01020304ul; | ||
909 | } | ||
910 | |||
911 | static inline void free_alien_cache(struct array_cache **ac_ptr) | ||
912 | { | ||
913 | } | ||
914 | |||
851 | #endif | 915 | #endif |
852 | 916 | ||
853 | static int __devinit cpuup_callback(struct notifier_block *nfb, | 917 | static int __devinit cpuup_callback(struct notifier_block *nfb, |
854 | unsigned long action, void *hcpu) | 918 | unsigned long action, void *hcpu) |
855 | { | 919 | { |
856 | long cpu = (long)hcpu; | 920 | long cpu = (long)hcpu; |
857 | kmem_cache_t *cachep; | 921 | struct kmem_cache *cachep; |
858 | struct kmem_list3 *l3 = NULL; | 922 | struct kmem_list3 *l3 = NULL; |
859 | int node = cpu_to_node(cpu); | 923 | int node = cpu_to_node(cpu); |
860 | int memsize = sizeof(struct kmem_list3); | 924 | int memsize = sizeof(struct kmem_list3); |
@@ -881,6 +945,11 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, | |||
881 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | 945 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + |
882 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 946 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
883 | 947 | ||
948 | /* | ||
949 | * The l3s don't come and go as CPUs come and | ||
950 | * go. cache_chain_mutex is sufficient | ||
951 | * protection here. | ||
952 | */ | ||
884 | cachep->nodelists[node] = l3; | 953 | cachep->nodelists[node] = l3; |
885 | } | 954 | } |
886 | 955 | ||
@@ -895,26 +964,46 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, | |||
895 | & array cache's */ | 964 | & array cache's */ |
896 | list_for_each_entry(cachep, &cache_chain, next) { | 965 | list_for_each_entry(cachep, &cache_chain, next) { |
897 | struct array_cache *nc; | 966 | struct array_cache *nc; |
967 | struct array_cache *shared; | ||
968 | struct array_cache **alien; | ||
898 | 969 | ||
899 | nc = alloc_arraycache(node, cachep->limit, | 970 | nc = alloc_arraycache(node, cachep->limit, |
900 | cachep->batchcount); | 971 | cachep->batchcount); |
901 | if (!nc) | 972 | if (!nc) |
902 | goto bad; | 973 | goto bad; |
974 | shared = alloc_arraycache(node, | ||
975 | cachep->shared * cachep->batchcount, | ||
976 | 0xbaadf00d); | ||
977 | if (!shared) | ||
978 | goto bad; | ||
979 | |||
980 | alien = alloc_alien_cache(node, cachep->limit); | ||
981 | if (!alien) | ||
982 | goto bad; | ||
903 | cachep->array[cpu] = nc; | 983 | cachep->array[cpu] = nc; |
904 | 984 | ||
905 | l3 = cachep->nodelists[node]; | 985 | l3 = cachep->nodelists[node]; |
906 | BUG_ON(!l3); | 986 | BUG_ON(!l3); |
907 | if (!l3->shared) { | ||
908 | if (!(nc = alloc_arraycache(node, | ||
909 | cachep->shared * | ||
910 | cachep->batchcount, | ||
911 | 0xbaadf00d))) | ||
912 | goto bad; | ||
913 | 987 | ||
914 | /* we are serialised from CPU_DEAD or | 988 | spin_lock_irq(&l3->list_lock); |
915 | CPU_UP_CANCELLED by the cpucontrol lock */ | 989 | if (!l3->shared) { |
916 | l3->shared = nc; | 990 | /* |
991 | * We are serialised from CPU_DEAD or | ||
992 | * CPU_UP_CANCELLED by the cpucontrol lock | ||
993 | */ | ||
994 | l3->shared = shared; | ||
995 | shared = NULL; | ||
917 | } | 996 | } |
997 | #ifdef CONFIG_NUMA | ||
998 | if (!l3->alien) { | ||
999 | l3->alien = alien; | ||
1000 | alien = NULL; | ||
1001 | } | ||
1002 | #endif | ||
1003 | spin_unlock_irq(&l3->list_lock); | ||
1004 | |||
1005 | kfree(shared); | ||
1006 | free_alien_cache(alien); | ||
918 | } | 1007 | } |
919 | mutex_unlock(&cache_chain_mutex); | 1008 | mutex_unlock(&cache_chain_mutex); |
920 | break; | 1009 | break; |
@@ -923,25 +1012,34 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, | |||
923 | break; | 1012 | break; |
924 | #ifdef CONFIG_HOTPLUG_CPU | 1013 | #ifdef CONFIG_HOTPLUG_CPU |
925 | case CPU_DEAD: | 1014 | case CPU_DEAD: |
1015 | /* | ||
1016 | * Even if all the cpus of a node are down, we don't free the | ||
1017 | * kmem_list3 of any cache. This to avoid a race between | ||
1018 | * cpu_down, and a kmalloc allocation from another cpu for | ||
1019 | * memory from the node of the cpu going down. The list3 | ||
1020 | * structure is usually allocated from kmem_cache_create() and | ||
1021 | * gets destroyed at kmem_cache_destroy(). | ||
1022 | */ | ||
926 | /* fall thru */ | 1023 | /* fall thru */ |
927 | case CPU_UP_CANCELED: | 1024 | case CPU_UP_CANCELED: |
928 | mutex_lock(&cache_chain_mutex); | 1025 | mutex_lock(&cache_chain_mutex); |
929 | 1026 | ||
930 | list_for_each_entry(cachep, &cache_chain, next) { | 1027 | list_for_each_entry(cachep, &cache_chain, next) { |
931 | struct array_cache *nc; | 1028 | struct array_cache *nc; |
1029 | struct array_cache *shared; | ||
1030 | struct array_cache **alien; | ||
932 | cpumask_t mask; | 1031 | cpumask_t mask; |
933 | 1032 | ||
934 | mask = node_to_cpumask(node); | 1033 | mask = node_to_cpumask(node); |
935 | spin_lock_irq(&cachep->spinlock); | ||
936 | /* cpu is dead; no one can alloc from it. */ | 1034 | /* cpu is dead; no one can alloc from it. */ |
937 | nc = cachep->array[cpu]; | 1035 | nc = cachep->array[cpu]; |
938 | cachep->array[cpu] = NULL; | 1036 | cachep->array[cpu] = NULL; |
939 | l3 = cachep->nodelists[node]; | 1037 | l3 = cachep->nodelists[node]; |
940 | 1038 | ||
941 | if (!l3) | 1039 | if (!l3) |
942 | goto unlock_cache; | 1040 | goto free_array_cache; |
943 | 1041 | ||
944 | spin_lock(&l3->list_lock); | 1042 | spin_lock_irq(&l3->list_lock); |
945 | 1043 | ||
946 | /* Free limit for this kmem_list3 */ | 1044 | /* Free limit for this kmem_list3 */ |
947 | l3->free_limit -= cachep->batchcount; | 1045 | l3->free_limit -= cachep->batchcount; |
@@ -949,34 +1047,44 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, | |||
949 | free_block(cachep, nc->entry, nc->avail, node); | 1047 | free_block(cachep, nc->entry, nc->avail, node); |
950 | 1048 | ||
951 | if (!cpus_empty(mask)) { | 1049 | if (!cpus_empty(mask)) { |
952 | spin_unlock(&l3->list_lock); | 1050 | spin_unlock_irq(&l3->list_lock); |
953 | goto unlock_cache; | 1051 | goto free_array_cache; |
954 | } | 1052 | } |
955 | 1053 | ||
956 | if (l3->shared) { | 1054 | shared = l3->shared; |
1055 | if (shared) { | ||
957 | free_block(cachep, l3->shared->entry, | 1056 | free_block(cachep, l3->shared->entry, |
958 | l3->shared->avail, node); | 1057 | l3->shared->avail, node); |
959 | kfree(l3->shared); | ||
960 | l3->shared = NULL; | 1058 | l3->shared = NULL; |
961 | } | 1059 | } |
962 | if (l3->alien) { | ||
963 | drain_alien_cache(cachep, l3); | ||
964 | free_alien_cache(l3->alien); | ||
965 | l3->alien = NULL; | ||
966 | } | ||
967 | 1060 | ||
968 | /* free slabs belonging to this node */ | 1061 | alien = l3->alien; |
969 | if (__node_shrink(cachep, node)) { | 1062 | l3->alien = NULL; |
970 | cachep->nodelists[node] = NULL; | 1063 | |
971 | spin_unlock(&l3->list_lock); | 1064 | spin_unlock_irq(&l3->list_lock); |
972 | kfree(l3); | 1065 | |
973 | } else { | 1066 | kfree(shared); |
974 | spin_unlock(&l3->list_lock); | 1067 | if (alien) { |
1068 | drain_alien_cache(cachep, alien); | ||
1069 | free_alien_cache(alien); | ||
975 | } | 1070 | } |
976 | unlock_cache: | 1071 | free_array_cache: |
977 | spin_unlock_irq(&cachep->spinlock); | ||
978 | kfree(nc); | 1072 | kfree(nc); |
979 | } | 1073 | } |
1074 | /* | ||
1075 | * In the previous loop, all the objects were freed to | ||
1076 | * the respective cache's slabs, now we can go ahead and | ||
1077 | * shrink each nodelist to its limit. | ||
1078 | */ | ||
1079 | list_for_each_entry(cachep, &cache_chain, next) { | ||
1080 | l3 = cachep->nodelists[node]; | ||
1081 | if (!l3) | ||
1082 | continue; | ||
1083 | spin_lock_irq(&l3->list_lock); | ||
1084 | /* free slabs belonging to this node */ | ||
1085 | __node_shrink(cachep, node); | ||
1086 | spin_unlock_irq(&l3->list_lock); | ||
1087 | } | ||
980 | mutex_unlock(&cache_chain_mutex); | 1088 | mutex_unlock(&cache_chain_mutex); |
981 | break; | 1089 | break; |
982 | #endif | 1090 | #endif |
@@ -992,7 +1100,7 @@ static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | |||
992 | /* | 1100 | /* |
993 | * swap the static kmem_list3 with kmalloced memory | 1101 | * swap the static kmem_list3 with kmalloced memory |
994 | */ | 1102 | */ |
995 | static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid) | 1103 | static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid) |
996 | { | 1104 | { |
997 | struct kmem_list3 *ptr; | 1105 | struct kmem_list3 *ptr; |
998 | 1106 | ||
@@ -1032,14 +1140,14 @@ void __init kmem_cache_init(void) | |||
1032 | 1140 | ||
1033 | /* Bootstrap is tricky, because several objects are allocated | 1141 | /* Bootstrap is tricky, because several objects are allocated |
1034 | * from caches that do not exist yet: | 1142 | * from caches that do not exist yet: |
1035 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t | 1143 | * 1) initialize the cache_cache cache: it contains the struct kmem_cache |
1036 | * structures of all caches, except cache_cache itself: cache_cache | 1144 | * structures of all caches, except cache_cache itself: cache_cache |
1037 | * is statically allocated. | 1145 | * is statically allocated. |
1038 | * Initially an __init data area is used for the head array and the | 1146 | * Initially an __init data area is used for the head array and the |
1039 | * kmem_list3 structures, it's replaced with a kmalloc allocated | 1147 | * kmem_list3 structures, it's replaced with a kmalloc allocated |
1040 | * array at the end of the bootstrap. | 1148 | * array at the end of the bootstrap. |
1041 | * 2) Create the first kmalloc cache. | 1149 | * 2) Create the first kmalloc cache. |
1042 | * The kmem_cache_t for the new cache is allocated normally. | 1150 | * The struct kmem_cache for the new cache is allocated normally. |
1043 | * An __init data area is used for the head array. | 1151 | * An __init data area is used for the head array. |
1044 | * 3) Create the remaining kmalloc caches, with minimally sized | 1152 | * 3) Create the remaining kmalloc caches, with minimally sized |
1045 | * head arrays. | 1153 | * head arrays. |
@@ -1057,15 +1165,14 @@ void __init kmem_cache_init(void) | |||
1057 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | 1165 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; |
1058 | cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; | 1166 | cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; |
1059 | 1167 | ||
1060 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); | 1168 | cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size()); |
1061 | 1169 | ||
1062 | cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, | 1170 | cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0, |
1063 | &left_over, &cache_cache.num); | 1171 | &left_over, &cache_cache.num); |
1064 | if (!cache_cache.num) | 1172 | if (!cache_cache.num) |
1065 | BUG(); | 1173 | BUG(); |
1066 | 1174 | ||
1067 | cache_cache.colour = left_over / cache_cache.colour_off; | 1175 | cache_cache.colour = left_over / cache_cache.colour_off; |
1068 | cache_cache.colour_next = 0; | ||
1069 | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + | 1176 | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + |
1070 | sizeof(struct slab), cache_line_size()); | 1177 | sizeof(struct slab), cache_line_size()); |
1071 | 1178 | ||
@@ -1132,8 +1239,8 @@ void __init kmem_cache_init(void) | |||
1132 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 1239 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
1133 | 1240 | ||
1134 | local_irq_disable(); | 1241 | local_irq_disable(); |
1135 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); | 1242 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); |
1136 | memcpy(ptr, ac_data(&cache_cache), | 1243 | memcpy(ptr, cpu_cache_get(&cache_cache), |
1137 | sizeof(struct arraycache_init)); | 1244 | sizeof(struct arraycache_init)); |
1138 | cache_cache.array[smp_processor_id()] = ptr; | 1245 | cache_cache.array[smp_processor_id()] = ptr; |
1139 | local_irq_enable(); | 1246 | local_irq_enable(); |
@@ -1141,9 +1248,9 @@ void __init kmem_cache_init(void) | |||
1141 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 1248 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
1142 | 1249 | ||
1143 | local_irq_disable(); | 1250 | local_irq_disable(); |
1144 | BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep) | 1251 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) |
1145 | != &initarray_generic.cache); | 1252 | != &initarray_generic.cache); |
1146 | memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep), | 1253 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
1147 | sizeof(struct arraycache_init)); | 1254 | sizeof(struct arraycache_init)); |
1148 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = | 1255 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
1149 | ptr; | 1256 | ptr; |
@@ -1170,7 +1277,7 @@ void __init kmem_cache_init(void) | |||
1170 | 1277 | ||
1171 | /* 6) resize the head arrays to their final sizes */ | 1278 | /* 6) resize the head arrays to their final sizes */ |
1172 | { | 1279 | { |
1173 | kmem_cache_t *cachep; | 1280 | struct kmem_cache *cachep; |
1174 | mutex_lock(&cache_chain_mutex); | 1281 | mutex_lock(&cache_chain_mutex); |
1175 | list_for_each_entry(cachep, &cache_chain, next) | 1282 | list_for_each_entry(cachep, &cache_chain, next) |
1176 | enable_cpucache(cachep); | 1283 | enable_cpucache(cachep); |
@@ -1181,7 +1288,7 @@ void __init kmem_cache_init(void) | |||
1181 | g_cpucache_up = FULL; | 1288 | g_cpucache_up = FULL; |
1182 | 1289 | ||
1183 | /* Register a cpu startup notifier callback | 1290 | /* Register a cpu startup notifier callback |
1184 | * that initializes ac_data for all new cpus | 1291 | * that initializes cpu_cache_get for all new cpus |
1185 | */ | 1292 | */ |
1186 | register_cpu_notifier(&cpucache_notifier); | 1293 | register_cpu_notifier(&cpucache_notifier); |
1187 | 1294 | ||
@@ -1213,7 +1320,7 @@ __initcall(cpucache_init); | |||
1213 | * did not request dmaable memory, we might get it, but that | 1320 | * did not request dmaable memory, we might get it, but that |
1214 | * would be relatively rare and ignorable. | 1321 | * would be relatively rare and ignorable. |
1215 | */ | 1322 | */ |
1216 | static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid) | 1323 | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
1217 | { | 1324 | { |
1218 | struct page *page; | 1325 | struct page *page; |
1219 | void *addr; | 1326 | void *addr; |
@@ -1239,7 +1346,7 @@ static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid) | |||
1239 | /* | 1346 | /* |
1240 | * Interface to system's page release. | 1347 | * Interface to system's page release. |
1241 | */ | 1348 | */ |
1242 | static void kmem_freepages(kmem_cache_t *cachep, void *addr) | 1349 | static void kmem_freepages(struct kmem_cache *cachep, void *addr) |
1243 | { | 1350 | { |
1244 | unsigned long i = (1 << cachep->gfporder); | 1351 | unsigned long i = (1 << cachep->gfporder); |
1245 | struct page *page = virt_to_page(addr); | 1352 | struct page *page = virt_to_page(addr); |
@@ -1261,7 +1368,7 @@ static void kmem_freepages(kmem_cache_t *cachep, void *addr) | |||
1261 | static void kmem_rcu_free(struct rcu_head *head) | 1368 | static void kmem_rcu_free(struct rcu_head *head) |
1262 | { | 1369 | { |
1263 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; | 1370 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; |
1264 | kmem_cache_t *cachep = slab_rcu->cachep; | 1371 | struct kmem_cache *cachep = slab_rcu->cachep; |
1265 | 1372 | ||
1266 | kmem_freepages(cachep, slab_rcu->addr); | 1373 | kmem_freepages(cachep, slab_rcu->addr); |
1267 | if (OFF_SLAB(cachep)) | 1374 | if (OFF_SLAB(cachep)) |
@@ -1271,12 +1378,12 @@ static void kmem_rcu_free(struct rcu_head *head) | |||
1271 | #if DEBUG | 1378 | #if DEBUG |
1272 | 1379 | ||
1273 | #ifdef CONFIG_DEBUG_PAGEALLOC | 1380 | #ifdef CONFIG_DEBUG_PAGEALLOC |
1274 | static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, | 1381 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
1275 | unsigned long caller) | 1382 | unsigned long caller) |
1276 | { | 1383 | { |
1277 | int size = obj_reallen(cachep); | 1384 | int size = obj_size(cachep); |
1278 | 1385 | ||
1279 | addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)]; | 1386 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1280 | 1387 | ||
1281 | if (size < 5 * sizeof(unsigned long)) | 1388 | if (size < 5 * sizeof(unsigned long)) |
1282 | return; | 1389 | return; |
@@ -1304,10 +1411,10 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, | |||
1304 | } | 1411 | } |
1305 | #endif | 1412 | #endif |
1306 | 1413 | ||
1307 | static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) | 1414 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1308 | { | 1415 | { |
1309 | int size = obj_reallen(cachep); | 1416 | int size = obj_size(cachep); |
1310 | addr = &((char *)addr)[obj_dbghead(cachep)]; | 1417 | addr = &((char *)addr)[obj_offset(cachep)]; |
1311 | 1418 | ||
1312 | memset(addr, val, size); | 1419 | memset(addr, val, size); |
1313 | *(unsigned char *)(addr + size - 1) = POISON_END; | 1420 | *(unsigned char *)(addr + size - 1) = POISON_END; |
@@ -1326,7 +1433,7 @@ static void dump_line(char *data, int offset, int limit) | |||
1326 | 1433 | ||
1327 | #if DEBUG | 1434 | #if DEBUG |
1328 | 1435 | ||
1329 | static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | 1436 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1330 | { | 1437 | { |
1331 | int i, size; | 1438 | int i, size; |
1332 | char *realobj; | 1439 | char *realobj; |
@@ -1344,8 +1451,8 @@ static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | |||
1344 | (unsigned long)*dbg_userword(cachep, objp)); | 1451 | (unsigned long)*dbg_userword(cachep, objp)); |
1345 | printk("\n"); | 1452 | printk("\n"); |
1346 | } | 1453 | } |
1347 | realobj = (char *)objp + obj_dbghead(cachep); | 1454 | realobj = (char *)objp + obj_offset(cachep); |
1348 | size = obj_reallen(cachep); | 1455 | size = obj_size(cachep); |
1349 | for (i = 0; i < size && lines; i += 16, lines--) { | 1456 | for (i = 0; i < size && lines; i += 16, lines--) { |
1350 | int limit; | 1457 | int limit; |
1351 | limit = 16; | 1458 | limit = 16; |
@@ -1355,14 +1462,14 @@ static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | |||
1355 | } | 1462 | } |
1356 | } | 1463 | } |
1357 | 1464 | ||
1358 | static void check_poison_obj(kmem_cache_t *cachep, void *objp) | 1465 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1359 | { | 1466 | { |
1360 | char *realobj; | 1467 | char *realobj; |
1361 | int size, i; | 1468 | int size, i; |
1362 | int lines = 0; | 1469 | int lines = 0; |
1363 | 1470 | ||
1364 | realobj = (char *)objp + obj_dbghead(cachep); | 1471 | realobj = (char *)objp + obj_offset(cachep); |
1365 | size = obj_reallen(cachep); | 1472 | size = obj_size(cachep); |
1366 | 1473 | ||
1367 | for (i = 0; i < size; i++) { | 1474 | for (i = 0; i < size; i++) { |
1368 | char exp = POISON_FREE; | 1475 | char exp = POISON_FREE; |
@@ -1395,20 +1502,20 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp) | |||
1395 | /* Print some data about the neighboring objects, if they | 1502 | /* Print some data about the neighboring objects, if they |
1396 | * exist: | 1503 | * exist: |
1397 | */ | 1504 | */ |
1398 | struct slab *slabp = page_get_slab(virt_to_page(objp)); | 1505 | struct slab *slabp = virt_to_slab(objp); |
1399 | int objnr; | 1506 | int objnr; |
1400 | 1507 | ||
1401 | objnr = (objp - slabp->s_mem) / cachep->objsize; | 1508 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; |
1402 | if (objnr) { | 1509 | if (objnr) { |
1403 | objp = slabp->s_mem + (objnr - 1) * cachep->objsize; | 1510 | objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size; |
1404 | realobj = (char *)objp + obj_dbghead(cachep); | 1511 | realobj = (char *)objp + obj_offset(cachep); |
1405 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | 1512 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
1406 | realobj, size); | 1513 | realobj, size); |
1407 | print_objinfo(cachep, objp, 2); | 1514 | print_objinfo(cachep, objp, 2); |
1408 | } | 1515 | } |
1409 | if (objnr + 1 < cachep->num) { | 1516 | if (objnr + 1 < cachep->num) { |
1410 | objp = slabp->s_mem + (objnr + 1) * cachep->objsize; | 1517 | objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size; |
1411 | realobj = (char *)objp + obj_dbghead(cachep); | 1518 | realobj = (char *)objp + obj_offset(cachep); |
1412 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", | 1519 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
1413 | realobj, size); | 1520 | realobj, size); |
1414 | print_objinfo(cachep, objp, 2); | 1521 | print_objinfo(cachep, objp, 2); |
@@ -1417,25 +1524,23 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp) | |||
1417 | } | 1524 | } |
1418 | #endif | 1525 | #endif |
1419 | 1526 | ||
1420 | /* Destroy all the objs in a slab, and release the mem back to the system. | 1527 | #if DEBUG |
1421 | * Before calling the slab must have been unlinked from the cache. | 1528 | /** |
1422 | * The cache-lock is not held/needed. | 1529 | * slab_destroy_objs - call the registered destructor for each object in |
1530 | * a slab that is to be destroyed. | ||
1423 | */ | 1531 | */ |
1424 | static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp) | 1532 | static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) |
1425 | { | 1533 | { |
1426 | void *addr = slabp->s_mem - slabp->colouroff; | ||
1427 | |||
1428 | #if DEBUG | ||
1429 | int i; | 1534 | int i; |
1430 | for (i = 0; i < cachep->num; i++) { | 1535 | for (i = 0; i < cachep->num; i++) { |
1431 | void *objp = slabp->s_mem + cachep->objsize * i; | 1536 | void *objp = slabp->s_mem + cachep->buffer_size * i; |
1432 | 1537 | ||
1433 | if (cachep->flags & SLAB_POISON) { | 1538 | if (cachep->flags & SLAB_POISON) { |
1434 | #ifdef CONFIG_DEBUG_PAGEALLOC | 1539 | #ifdef CONFIG_DEBUG_PAGEALLOC |
1435 | if ((cachep->objsize % PAGE_SIZE) == 0 | 1540 | if ((cachep->buffer_size % PAGE_SIZE) == 0 |
1436 | && OFF_SLAB(cachep)) | 1541 | && OFF_SLAB(cachep)) |
1437 | kernel_map_pages(virt_to_page(objp), | 1542 | kernel_map_pages(virt_to_page(objp), |
1438 | cachep->objsize / PAGE_SIZE, | 1543 | cachep->buffer_size / PAGE_SIZE, |
1439 | 1); | 1544 | 1); |
1440 | else | 1545 | else |
1441 | check_poison_obj(cachep, objp); | 1546 | check_poison_obj(cachep, objp); |
@@ -1452,18 +1557,32 @@ static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp) | |||
1452 | "was overwritten"); | 1557 | "was overwritten"); |
1453 | } | 1558 | } |
1454 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) | 1559 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) |
1455 | (cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0); | 1560 | (cachep->dtor) (objp + obj_offset(cachep), cachep, 0); |
1456 | } | 1561 | } |
1562 | } | ||
1457 | #else | 1563 | #else |
1564 | static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) | ||
1565 | { | ||
1458 | if (cachep->dtor) { | 1566 | if (cachep->dtor) { |
1459 | int i; | 1567 | int i; |
1460 | for (i = 0; i < cachep->num; i++) { | 1568 | for (i = 0; i < cachep->num; i++) { |
1461 | void *objp = slabp->s_mem + cachep->objsize * i; | 1569 | void *objp = slabp->s_mem + cachep->buffer_size * i; |
1462 | (cachep->dtor) (objp, cachep, 0); | 1570 | (cachep->dtor) (objp, cachep, 0); |
1463 | } | 1571 | } |
1464 | } | 1572 | } |
1573 | } | ||
1465 | #endif | 1574 | #endif |
1466 | 1575 | ||
1576 | /** | ||
1577 | * Destroy all the objs in a slab, and release the mem back to the system. | ||
1578 | * Before calling the slab must have been unlinked from the cache. | ||
1579 | * The cache-lock is not held/needed. | ||
1580 | */ | ||
1581 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) | ||
1582 | { | ||
1583 | void *addr = slabp->s_mem - slabp->colouroff; | ||
1584 | |||
1585 | slab_destroy_objs(cachep, slabp); | ||
1467 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | 1586 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
1468 | struct slab_rcu *slab_rcu; | 1587 | struct slab_rcu *slab_rcu; |
1469 | 1588 | ||
@@ -1478,9 +1597,9 @@ static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp) | |||
1478 | } | 1597 | } |
1479 | } | 1598 | } |
1480 | 1599 | ||
1481 | /* For setting up all the kmem_list3s for cache whose objsize is same | 1600 | /* For setting up all the kmem_list3s for cache whose buffer_size is same |
1482 | as size of kmem_list3. */ | 1601 | as size of kmem_list3. */ |
1483 | static inline void set_up_list3s(kmem_cache_t *cachep, int index) | 1602 | static void set_up_list3s(struct kmem_cache *cachep, int index) |
1484 | { | 1603 | { |
1485 | int node; | 1604 | int node; |
1486 | 1605 | ||
@@ -1493,15 +1612,20 @@ static inline void set_up_list3s(kmem_cache_t *cachep, int index) | |||
1493 | } | 1612 | } |
1494 | 1613 | ||
1495 | /** | 1614 | /** |
1496 | * calculate_slab_order - calculate size (page order) of slabs and the number | 1615 | * calculate_slab_order - calculate size (page order) of slabs |
1497 | * of objects per slab. | 1616 | * @cachep: pointer to the cache that is being created |
1617 | * @size: size of objects to be created in this cache. | ||
1618 | * @align: required alignment for the objects. | ||
1619 | * @flags: slab allocation flags | ||
1620 | * | ||
1621 | * Also calculates the number of objects per slab. | ||
1498 | * | 1622 | * |
1499 | * This could be made much more intelligent. For now, try to avoid using | 1623 | * This could be made much more intelligent. For now, try to avoid using |
1500 | * high order pages for slabs. When the gfp() functions are more friendly | 1624 | * high order pages for slabs. When the gfp() functions are more friendly |
1501 | * towards high-order requests, this should be changed. | 1625 | * towards high-order requests, this should be changed. |
1502 | */ | 1626 | */ |
1503 | static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size, | 1627 | static inline size_t calculate_slab_order(struct kmem_cache *cachep, |
1504 | size_t align, gfp_t flags) | 1628 | size_t size, size_t align, unsigned long flags) |
1505 | { | 1629 | { |
1506 | size_t left_over = 0; | 1630 | size_t left_over = 0; |
1507 | 1631 | ||
@@ -1572,13 +1696,13 @@ static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size, | |||
1572 | * cacheline. This can be beneficial if you're counting cycles as closely | 1696 | * cacheline. This can be beneficial if you're counting cycles as closely |
1573 | * as davem. | 1697 | * as davem. |
1574 | */ | 1698 | */ |
1575 | kmem_cache_t * | 1699 | struct kmem_cache * |
1576 | kmem_cache_create (const char *name, size_t size, size_t align, | 1700 | kmem_cache_create (const char *name, size_t size, size_t align, |
1577 | unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), | 1701 | unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long), |
1578 | void (*dtor)(void*, kmem_cache_t *, unsigned long)) | 1702 | void (*dtor)(void*, struct kmem_cache *, unsigned long)) |
1579 | { | 1703 | { |
1580 | size_t left_over, slab_size, ralign; | 1704 | size_t left_over, slab_size, ralign; |
1581 | kmem_cache_t *cachep = NULL; | 1705 | struct kmem_cache *cachep = NULL; |
1582 | struct list_head *p; | 1706 | struct list_head *p; |
1583 | 1707 | ||
1584 | /* | 1708 | /* |
@@ -1593,10 +1717,16 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1593 | BUG(); | 1717 | BUG(); |
1594 | } | 1718 | } |
1595 | 1719 | ||
1720 | /* | ||
1721 | * Prevent CPUs from coming and going. | ||
1722 | * lock_cpu_hotplug() nests outside cache_chain_mutex | ||
1723 | */ | ||
1724 | lock_cpu_hotplug(); | ||
1725 | |||
1596 | mutex_lock(&cache_chain_mutex); | 1726 | mutex_lock(&cache_chain_mutex); |
1597 | 1727 | ||
1598 | list_for_each(p, &cache_chain) { | 1728 | list_for_each(p, &cache_chain) { |
1599 | kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); | 1729 | struct kmem_cache *pc = list_entry(p, struct kmem_cache, next); |
1600 | mm_segment_t old_fs = get_fs(); | 1730 | mm_segment_t old_fs = get_fs(); |
1601 | char tmp; | 1731 | char tmp; |
1602 | int res; | 1732 | int res; |
@@ -1611,7 +1741,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1611 | set_fs(old_fs); | 1741 | set_fs(old_fs); |
1612 | if (res) { | 1742 | if (res) { |
1613 | printk("SLAB: cache with size %d has lost its name\n", | 1743 | printk("SLAB: cache with size %d has lost its name\n", |
1614 | pc->objsize); | 1744 | pc->buffer_size); |
1615 | continue; | 1745 | continue; |
1616 | } | 1746 | } |
1617 | 1747 | ||
@@ -1696,20 +1826,20 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1696 | align = ralign; | 1826 | align = ralign; |
1697 | 1827 | ||
1698 | /* Get cache's description obj. */ | 1828 | /* Get cache's description obj. */ |
1699 | cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); | 1829 | cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL); |
1700 | if (!cachep) | 1830 | if (!cachep) |
1701 | goto oops; | 1831 | goto oops; |
1702 | memset(cachep, 0, sizeof(kmem_cache_t)); | 1832 | memset(cachep, 0, sizeof(struct kmem_cache)); |
1703 | 1833 | ||
1704 | #if DEBUG | 1834 | #if DEBUG |
1705 | cachep->reallen = size; | 1835 | cachep->obj_size = size; |
1706 | 1836 | ||
1707 | if (flags & SLAB_RED_ZONE) { | 1837 | if (flags & SLAB_RED_ZONE) { |
1708 | /* redzoning only works with word aligned caches */ | 1838 | /* redzoning only works with word aligned caches */ |
1709 | align = BYTES_PER_WORD; | 1839 | align = BYTES_PER_WORD; |
1710 | 1840 | ||
1711 | /* add space for red zone words */ | 1841 | /* add space for red zone words */ |
1712 | cachep->dbghead += BYTES_PER_WORD; | 1842 | cachep->obj_offset += BYTES_PER_WORD; |
1713 | size += 2 * BYTES_PER_WORD; | 1843 | size += 2 * BYTES_PER_WORD; |
1714 | } | 1844 | } |
1715 | if (flags & SLAB_STORE_USER) { | 1845 | if (flags & SLAB_STORE_USER) { |
@@ -1722,8 +1852,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1722 | } | 1852 | } |
1723 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 1853 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) |
1724 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size | 1854 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
1725 | && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { | 1855 | && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { |
1726 | cachep->dbghead += PAGE_SIZE - size; | 1856 | cachep->obj_offset += PAGE_SIZE - size; |
1727 | size = PAGE_SIZE; | 1857 | size = PAGE_SIZE; |
1728 | } | 1858 | } |
1729 | #endif | 1859 | #endif |
@@ -1786,7 +1916,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1786 | if (flags & SLAB_CACHE_DMA) | 1916 | if (flags & SLAB_CACHE_DMA) |
1787 | cachep->gfpflags |= GFP_DMA; | 1917 | cachep->gfpflags |= GFP_DMA; |
1788 | spin_lock_init(&cachep->spinlock); | 1918 | spin_lock_init(&cachep->spinlock); |
1789 | cachep->objsize = size; | 1919 | cachep->buffer_size = size; |
1790 | 1920 | ||
1791 | if (flags & CFLGS_OFF_SLAB) | 1921 | if (flags & CFLGS_OFF_SLAB) |
1792 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); | 1922 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
@@ -1794,8 +1924,6 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1794 | cachep->dtor = dtor; | 1924 | cachep->dtor = dtor; |
1795 | cachep->name = name; | 1925 | cachep->name = name; |
1796 | 1926 | ||
1797 | /* Don't let CPUs to come and go */ | ||
1798 | lock_cpu_hotplug(); | ||
1799 | 1927 | ||
1800 | if (g_cpucache_up == FULL) { | 1928 | if (g_cpucache_up == FULL) { |
1801 | enable_cpucache(cachep); | 1929 | enable_cpucache(cachep); |
@@ -1843,23 +1971,23 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1843 | jiffies + REAPTIMEOUT_LIST3 + | 1971 | jiffies + REAPTIMEOUT_LIST3 + |
1844 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 1972 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
1845 | 1973 | ||
1846 | BUG_ON(!ac_data(cachep)); | 1974 | BUG_ON(!cpu_cache_get(cachep)); |
1847 | ac_data(cachep)->avail = 0; | 1975 | cpu_cache_get(cachep)->avail = 0; |
1848 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | 1976 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; |
1849 | ac_data(cachep)->batchcount = 1; | 1977 | cpu_cache_get(cachep)->batchcount = 1; |
1850 | ac_data(cachep)->touched = 0; | 1978 | cpu_cache_get(cachep)->touched = 0; |
1851 | cachep->batchcount = 1; | 1979 | cachep->batchcount = 1; |
1852 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | 1980 | cachep->limit = BOOT_CPUCACHE_ENTRIES; |
1853 | } | 1981 | } |
1854 | 1982 | ||
1855 | /* cache setup completed, link it into the list */ | 1983 | /* cache setup completed, link it into the list */ |
1856 | list_add(&cachep->next, &cache_chain); | 1984 | list_add(&cachep->next, &cache_chain); |
1857 | unlock_cpu_hotplug(); | ||
1858 | oops: | 1985 | oops: |
1859 | if (!cachep && (flags & SLAB_PANIC)) | 1986 | if (!cachep && (flags & SLAB_PANIC)) |
1860 | panic("kmem_cache_create(): failed to create slab `%s'\n", | 1987 | panic("kmem_cache_create(): failed to create slab `%s'\n", |
1861 | name); | 1988 | name); |
1862 | mutex_unlock(&cache_chain_mutex); | 1989 | mutex_unlock(&cache_chain_mutex); |
1990 | unlock_cpu_hotplug(); | ||
1863 | return cachep; | 1991 | return cachep; |
1864 | } | 1992 | } |
1865 | EXPORT_SYMBOL(kmem_cache_create); | 1993 | EXPORT_SYMBOL(kmem_cache_create); |
@@ -1875,7 +2003,7 @@ static void check_irq_on(void) | |||
1875 | BUG_ON(irqs_disabled()); | 2003 | BUG_ON(irqs_disabled()); |
1876 | } | 2004 | } |
1877 | 2005 | ||
1878 | static void check_spinlock_acquired(kmem_cache_t *cachep) | 2006 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1879 | { | 2007 | { |
1880 | #ifdef CONFIG_SMP | 2008 | #ifdef CONFIG_SMP |
1881 | check_irq_off(); | 2009 | check_irq_off(); |
@@ -1883,7 +2011,7 @@ static void check_spinlock_acquired(kmem_cache_t *cachep) | |||
1883 | #endif | 2011 | #endif |
1884 | } | 2012 | } |
1885 | 2013 | ||
1886 | static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node) | 2014 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
1887 | { | 2015 | { |
1888 | #ifdef CONFIG_SMP | 2016 | #ifdef CONFIG_SMP |
1889 | check_irq_off(); | 2017 | check_irq_off(); |
@@ -1916,45 +2044,43 @@ static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg) | |||
1916 | preempt_enable(); | 2044 | preempt_enable(); |
1917 | } | 2045 | } |
1918 | 2046 | ||
1919 | static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac, | 2047 | static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
1920 | int force, int node); | 2048 | int force, int node); |
1921 | 2049 | ||
1922 | static void do_drain(void *arg) | 2050 | static void do_drain(void *arg) |
1923 | { | 2051 | { |
1924 | kmem_cache_t *cachep = (kmem_cache_t *) arg; | 2052 | struct kmem_cache *cachep = (struct kmem_cache *) arg; |
1925 | struct array_cache *ac; | 2053 | struct array_cache *ac; |
1926 | int node = numa_node_id(); | 2054 | int node = numa_node_id(); |
1927 | 2055 | ||
1928 | check_irq_off(); | 2056 | check_irq_off(); |
1929 | ac = ac_data(cachep); | 2057 | ac = cpu_cache_get(cachep); |
1930 | spin_lock(&cachep->nodelists[node]->list_lock); | 2058 | spin_lock(&cachep->nodelists[node]->list_lock); |
1931 | free_block(cachep, ac->entry, ac->avail, node); | 2059 | free_block(cachep, ac->entry, ac->avail, node); |
1932 | spin_unlock(&cachep->nodelists[node]->list_lock); | 2060 | spin_unlock(&cachep->nodelists[node]->list_lock); |
1933 | ac->avail = 0; | 2061 | ac->avail = 0; |
1934 | } | 2062 | } |
1935 | 2063 | ||
1936 | static void drain_cpu_caches(kmem_cache_t *cachep) | 2064 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1937 | { | 2065 | { |
1938 | struct kmem_list3 *l3; | 2066 | struct kmem_list3 *l3; |
1939 | int node; | 2067 | int node; |
1940 | 2068 | ||
1941 | smp_call_function_all_cpus(do_drain, cachep); | 2069 | smp_call_function_all_cpus(do_drain, cachep); |
1942 | check_irq_on(); | 2070 | check_irq_on(); |
1943 | spin_lock_irq(&cachep->spinlock); | ||
1944 | for_each_online_node(node) { | 2071 | for_each_online_node(node) { |
1945 | l3 = cachep->nodelists[node]; | 2072 | l3 = cachep->nodelists[node]; |
1946 | if (l3) { | 2073 | if (l3) { |
1947 | spin_lock(&l3->list_lock); | 2074 | spin_lock_irq(&l3->list_lock); |
1948 | drain_array_locked(cachep, l3->shared, 1, node); | 2075 | drain_array_locked(cachep, l3->shared, 1, node); |
1949 | spin_unlock(&l3->list_lock); | 2076 | spin_unlock_irq(&l3->list_lock); |
1950 | if (l3->alien) | 2077 | if (l3->alien) |
1951 | drain_alien_cache(cachep, l3); | 2078 | drain_alien_cache(cachep, l3->alien); |
1952 | } | 2079 | } |
1953 | } | 2080 | } |
1954 | spin_unlock_irq(&cachep->spinlock); | ||
1955 | } | 2081 | } |
1956 | 2082 | ||
1957 | static int __node_shrink(kmem_cache_t *cachep, int node) | 2083 | static int __node_shrink(struct kmem_cache *cachep, int node) |
1958 | { | 2084 | { |
1959 | struct slab *slabp; | 2085 | struct slab *slabp; |
1960 | struct kmem_list3 *l3 = cachep->nodelists[node]; | 2086 | struct kmem_list3 *l3 = cachep->nodelists[node]; |
@@ -1983,7 +2109,7 @@ static int __node_shrink(kmem_cache_t *cachep, int node) | |||
1983 | return ret; | 2109 | return ret; |
1984 | } | 2110 | } |
1985 | 2111 | ||
1986 | static int __cache_shrink(kmem_cache_t *cachep) | 2112 | static int __cache_shrink(struct kmem_cache *cachep) |
1987 | { | 2113 | { |
1988 | int ret = 0, i = 0; | 2114 | int ret = 0, i = 0; |
1989 | struct kmem_list3 *l3; | 2115 | struct kmem_list3 *l3; |
@@ -2009,7 +2135,7 @@ static int __cache_shrink(kmem_cache_t *cachep) | |||
2009 | * Releases as many slabs as possible for a cache. | 2135 | * Releases as many slabs as possible for a cache. |
2010 | * To help debugging, a zero exit status indicates all slabs were released. | 2136 | * To help debugging, a zero exit status indicates all slabs were released. |
2011 | */ | 2137 | */ |
2012 | int kmem_cache_shrink(kmem_cache_t *cachep) | 2138 | int kmem_cache_shrink(struct kmem_cache *cachep) |
2013 | { | 2139 | { |
2014 | if (!cachep || in_interrupt()) | 2140 | if (!cachep || in_interrupt()) |
2015 | BUG(); | 2141 | BUG(); |
@@ -2022,7 +2148,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); | |||
2022 | * kmem_cache_destroy - delete a cache | 2148 | * kmem_cache_destroy - delete a cache |
2023 | * @cachep: the cache to destroy | 2149 | * @cachep: the cache to destroy |
2024 | * | 2150 | * |
2025 | * Remove a kmem_cache_t object from the slab cache. | 2151 | * Remove a struct kmem_cache object from the slab cache. |
2026 | * Returns 0 on success. | 2152 | * Returns 0 on success. |
2027 | * | 2153 | * |
2028 | * It is expected this function will be called by a module when it is | 2154 | * It is expected this function will be called by a module when it is |
@@ -2035,7 +2161,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); | |||
2035 | * The caller must guarantee that noone will allocate memory from the cache | 2161 | * The caller must guarantee that noone will allocate memory from the cache |
2036 | * during the kmem_cache_destroy(). | 2162 | * during the kmem_cache_destroy(). |
2037 | */ | 2163 | */ |
2038 | int kmem_cache_destroy(kmem_cache_t *cachep) | 2164 | int kmem_cache_destroy(struct kmem_cache *cachep) |
2039 | { | 2165 | { |
2040 | int i; | 2166 | int i; |
2041 | struct kmem_list3 *l3; | 2167 | struct kmem_list3 *l3; |
@@ -2086,7 +2212,7 @@ int kmem_cache_destroy(kmem_cache_t *cachep) | |||
2086 | EXPORT_SYMBOL(kmem_cache_destroy); | 2212 | EXPORT_SYMBOL(kmem_cache_destroy); |
2087 | 2213 | ||
2088 | /* Get the memory for a slab management obj. */ | 2214 | /* Get the memory for a slab management obj. */ |
2089 | static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp, | 2215 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
2090 | int colour_off, gfp_t local_flags) | 2216 | int colour_off, gfp_t local_flags) |
2091 | { | 2217 | { |
2092 | struct slab *slabp; | 2218 | struct slab *slabp; |
@@ -2112,13 +2238,13 @@ static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |||
2112 | return (kmem_bufctl_t *) (slabp + 1); | 2238 | return (kmem_bufctl_t *) (slabp + 1); |
2113 | } | 2239 | } |
2114 | 2240 | ||
2115 | static void cache_init_objs(kmem_cache_t *cachep, | 2241 | static void cache_init_objs(struct kmem_cache *cachep, |
2116 | struct slab *slabp, unsigned long ctor_flags) | 2242 | struct slab *slabp, unsigned long ctor_flags) |
2117 | { | 2243 | { |
2118 | int i; | 2244 | int i; |
2119 | 2245 | ||
2120 | for (i = 0; i < cachep->num; i++) { | 2246 | for (i = 0; i < cachep->num; i++) { |
2121 | void *objp = slabp->s_mem + cachep->objsize * i; | 2247 | void *objp = slabp->s_mem + cachep->buffer_size * i; |
2122 | #if DEBUG | 2248 | #if DEBUG |
2123 | /* need to poison the objs? */ | 2249 | /* need to poison the objs? */ |
2124 | if (cachep->flags & SLAB_POISON) | 2250 | if (cachep->flags & SLAB_POISON) |
@@ -2136,7 +2262,7 @@ static void cache_init_objs(kmem_cache_t *cachep, | |||
2136 | * Otherwise, deadlock. They must also be threaded. | 2262 | * Otherwise, deadlock. They must also be threaded. |
2137 | */ | 2263 | */ |
2138 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 2264 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) |
2139 | cachep->ctor(objp + obj_dbghead(cachep), cachep, | 2265 | cachep->ctor(objp + obj_offset(cachep), cachep, |
2140 | ctor_flags); | 2266 | ctor_flags); |
2141 | 2267 | ||
2142 | if (cachep->flags & SLAB_RED_ZONE) { | 2268 | if (cachep->flags & SLAB_RED_ZONE) { |
@@ -2147,10 +2273,10 @@ static void cache_init_objs(kmem_cache_t *cachep, | |||
2147 | slab_error(cachep, "constructor overwrote the" | 2273 | slab_error(cachep, "constructor overwrote the" |
2148 | " start of an object"); | 2274 | " start of an object"); |
2149 | } | 2275 | } |
2150 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) | 2276 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep) |
2151 | && cachep->flags & SLAB_POISON) | 2277 | && cachep->flags & SLAB_POISON) |
2152 | kernel_map_pages(virt_to_page(objp), | 2278 | kernel_map_pages(virt_to_page(objp), |
2153 | cachep->objsize / PAGE_SIZE, 0); | 2279 | cachep->buffer_size / PAGE_SIZE, 0); |
2154 | #else | 2280 | #else |
2155 | if (cachep->ctor) | 2281 | if (cachep->ctor) |
2156 | cachep->ctor(objp, cachep, ctor_flags); | 2282 | cachep->ctor(objp, cachep, ctor_flags); |
@@ -2161,7 +2287,7 @@ static void cache_init_objs(kmem_cache_t *cachep, | |||
2161 | slabp->free = 0; | 2287 | slabp->free = 0; |
2162 | } | 2288 | } |
2163 | 2289 | ||
2164 | static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags) | 2290 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
2165 | { | 2291 | { |
2166 | if (flags & SLAB_DMA) { | 2292 | if (flags & SLAB_DMA) { |
2167 | if (!(cachep->gfpflags & GFP_DMA)) | 2293 | if (!(cachep->gfpflags & GFP_DMA)) |
@@ -2172,7 +2298,43 @@ static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags) | |||
2172 | } | 2298 | } |
2173 | } | 2299 | } |
2174 | 2300 | ||
2175 | static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) | 2301 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid) |
2302 | { | ||
2303 | void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size); | ||
2304 | kmem_bufctl_t next; | ||
2305 | |||
2306 | slabp->inuse++; | ||
2307 | next = slab_bufctl(slabp)[slabp->free]; | ||
2308 | #if DEBUG | ||
2309 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | ||
2310 | WARN_ON(slabp->nodeid != nodeid); | ||
2311 | #endif | ||
2312 | slabp->free = next; | ||
2313 | |||
2314 | return objp; | ||
2315 | } | ||
2316 | |||
2317 | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp, | ||
2318 | int nodeid) | ||
2319 | { | ||
2320 | unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size; | ||
2321 | |||
2322 | #if DEBUG | ||
2323 | /* Verify that the slab belongs to the intended node */ | ||
2324 | WARN_ON(slabp->nodeid != nodeid); | ||
2325 | |||
2326 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { | ||
2327 | printk(KERN_ERR "slab: double free detected in cache " | ||
2328 | "'%s', objp %p\n", cachep->name, objp); | ||
2329 | BUG(); | ||
2330 | } | ||
2331 | #endif | ||
2332 | slab_bufctl(slabp)[objnr] = slabp->free; | ||
2333 | slabp->free = objnr; | ||
2334 | slabp->inuse--; | ||
2335 | } | ||
2336 | |||
2337 | static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp) | ||
2176 | { | 2338 | { |
2177 | int i; | 2339 | int i; |
2178 | struct page *page; | 2340 | struct page *page; |
@@ -2191,7 +2353,7 @@ static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) | |||
2191 | * Grow (by 1) the number of slabs within a cache. This is called by | 2353 | * Grow (by 1) the number of slabs within a cache. This is called by |
2192 | * kmem_cache_alloc() when there are no active objs left in a cache. | 2354 | * kmem_cache_alloc() when there are no active objs left in a cache. |
2193 | */ | 2355 | */ |
2194 | static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid) | 2356 | static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
2195 | { | 2357 | { |
2196 | struct slab *slabp; | 2358 | struct slab *slabp; |
2197 | void *objp; | 2359 | void *objp; |
@@ -2217,20 +2379,20 @@ static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid) | |||
2217 | */ | 2379 | */ |
2218 | ctor_flags |= SLAB_CTOR_ATOMIC; | 2380 | ctor_flags |= SLAB_CTOR_ATOMIC; |
2219 | 2381 | ||
2220 | /* About to mess with non-constant members - lock. */ | 2382 | /* Take the l3 list lock to change the colour_next on this node */ |
2221 | check_irq_off(); | 2383 | check_irq_off(); |
2222 | spin_lock(&cachep->spinlock); | 2384 | l3 = cachep->nodelists[nodeid]; |
2385 | spin_lock(&l3->list_lock); | ||
2223 | 2386 | ||
2224 | /* Get colour for the slab, and cal the next value. */ | 2387 | /* Get colour for the slab, and cal the next value. */ |
2225 | offset = cachep->colour_next; | 2388 | offset = l3->colour_next; |
2226 | cachep->colour_next++; | 2389 | l3->colour_next++; |
2227 | if (cachep->colour_next >= cachep->colour) | 2390 | if (l3->colour_next >= cachep->colour) |
2228 | cachep->colour_next = 0; | 2391 | l3->colour_next = 0; |
2229 | offset *= cachep->colour_off; | 2392 | spin_unlock(&l3->list_lock); |
2230 | 2393 | ||
2231 | spin_unlock(&cachep->spinlock); | 2394 | offset *= cachep->colour_off; |
2232 | 2395 | ||
2233 | check_irq_off(); | ||
2234 | if (local_flags & __GFP_WAIT) | 2396 | if (local_flags & __GFP_WAIT) |
2235 | local_irq_enable(); | 2397 | local_irq_enable(); |
2236 | 2398 | ||
@@ -2260,7 +2422,6 @@ static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid) | |||
2260 | if (local_flags & __GFP_WAIT) | 2422 | if (local_flags & __GFP_WAIT) |
2261 | local_irq_disable(); | 2423 | local_irq_disable(); |
2262 | check_irq_off(); | 2424 | check_irq_off(); |
2263 | l3 = cachep->nodelists[nodeid]; | ||
2264 | spin_lock(&l3->list_lock); | 2425 | spin_lock(&l3->list_lock); |
2265 | 2426 | ||
2266 | /* Make slab active. */ | 2427 | /* Make slab active. */ |
@@ -2302,14 +2463,14 @@ static void kfree_debugcheck(const void *objp) | |||
2302 | } | 2463 | } |
2303 | } | 2464 | } |
2304 | 2465 | ||
2305 | static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | 2466 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
2306 | void *caller) | 2467 | void *caller) |
2307 | { | 2468 | { |
2308 | struct page *page; | 2469 | struct page *page; |
2309 | unsigned int objnr; | 2470 | unsigned int objnr; |
2310 | struct slab *slabp; | 2471 | struct slab *slabp; |
2311 | 2472 | ||
2312 | objp -= obj_dbghead(cachep); | 2473 | objp -= obj_offset(cachep); |
2313 | kfree_debugcheck(objp); | 2474 | kfree_debugcheck(objp); |
2314 | page = virt_to_page(objp); | 2475 | page = virt_to_page(objp); |
2315 | 2476 | ||
@@ -2341,31 +2502,31 @@ static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | |||
2341 | if (cachep->flags & SLAB_STORE_USER) | 2502 | if (cachep->flags & SLAB_STORE_USER) |
2342 | *dbg_userword(cachep, objp) = caller; | 2503 | *dbg_userword(cachep, objp) = caller; |
2343 | 2504 | ||
2344 | objnr = (objp - slabp->s_mem) / cachep->objsize; | 2505 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; |
2345 | 2506 | ||
2346 | BUG_ON(objnr >= cachep->num); | 2507 | BUG_ON(objnr >= cachep->num); |
2347 | BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize); | 2508 | BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size); |
2348 | 2509 | ||
2349 | if (cachep->flags & SLAB_DEBUG_INITIAL) { | 2510 | if (cachep->flags & SLAB_DEBUG_INITIAL) { |
2350 | /* Need to call the slab's constructor so the | 2511 | /* Need to call the slab's constructor so the |
2351 | * caller can perform a verify of its state (debugging). | 2512 | * caller can perform a verify of its state (debugging). |
2352 | * Called without the cache-lock held. | 2513 | * Called without the cache-lock held. |
2353 | */ | 2514 | */ |
2354 | cachep->ctor(objp + obj_dbghead(cachep), | 2515 | cachep->ctor(objp + obj_offset(cachep), |
2355 | cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); | 2516 | cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); |
2356 | } | 2517 | } |
2357 | if (cachep->flags & SLAB_POISON && cachep->dtor) { | 2518 | if (cachep->flags & SLAB_POISON && cachep->dtor) { |
2358 | /* we want to cache poison the object, | 2519 | /* we want to cache poison the object, |
2359 | * call the destruction callback | 2520 | * call the destruction callback |
2360 | */ | 2521 | */ |
2361 | cachep->dtor(objp + obj_dbghead(cachep), cachep, 0); | 2522 | cachep->dtor(objp + obj_offset(cachep), cachep, 0); |
2362 | } | 2523 | } |
2363 | if (cachep->flags & SLAB_POISON) { | 2524 | if (cachep->flags & SLAB_POISON) { |
2364 | #ifdef CONFIG_DEBUG_PAGEALLOC | 2525 | #ifdef CONFIG_DEBUG_PAGEALLOC |
2365 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { | 2526 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { |
2366 | store_stackinfo(cachep, objp, (unsigned long)caller); | 2527 | store_stackinfo(cachep, objp, (unsigned long)caller); |
2367 | kernel_map_pages(virt_to_page(objp), | 2528 | kernel_map_pages(virt_to_page(objp), |
2368 | cachep->objsize / PAGE_SIZE, 0); | 2529 | cachep->buffer_size / PAGE_SIZE, 0); |
2369 | } else { | 2530 | } else { |
2370 | poison_obj(cachep, objp, POISON_FREE); | 2531 | poison_obj(cachep, objp, POISON_FREE); |
2371 | } | 2532 | } |
@@ -2376,7 +2537,7 @@ static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | |||
2376 | return objp; | 2537 | return objp; |
2377 | } | 2538 | } |
2378 | 2539 | ||
2379 | static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | 2540 | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) |
2380 | { | 2541 | { |
2381 | kmem_bufctl_t i; | 2542 | kmem_bufctl_t i; |
2382 | int entries = 0; | 2543 | int entries = 0; |
@@ -2409,14 +2570,14 @@ static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | |||
2409 | #define check_slabp(x,y) do { } while(0) | 2570 | #define check_slabp(x,y) do { } while(0) |
2410 | #endif | 2571 | #endif |
2411 | 2572 | ||
2412 | static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags) | 2573 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
2413 | { | 2574 | { |
2414 | int batchcount; | 2575 | int batchcount; |
2415 | struct kmem_list3 *l3; | 2576 | struct kmem_list3 *l3; |
2416 | struct array_cache *ac; | 2577 | struct array_cache *ac; |
2417 | 2578 | ||
2418 | check_irq_off(); | 2579 | check_irq_off(); |
2419 | ac = ac_data(cachep); | 2580 | ac = cpu_cache_get(cachep); |
2420 | retry: | 2581 | retry: |
2421 | batchcount = ac->batchcount; | 2582 | batchcount = ac->batchcount; |
2422 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | 2583 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { |
@@ -2461,22 +2622,12 @@ static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags) | |||
2461 | check_slabp(cachep, slabp); | 2622 | check_slabp(cachep, slabp); |
2462 | check_spinlock_acquired(cachep); | 2623 | check_spinlock_acquired(cachep); |
2463 | while (slabp->inuse < cachep->num && batchcount--) { | 2624 | while (slabp->inuse < cachep->num && batchcount--) { |
2464 | kmem_bufctl_t next; | ||
2465 | STATS_INC_ALLOCED(cachep); | 2625 | STATS_INC_ALLOCED(cachep); |
2466 | STATS_INC_ACTIVE(cachep); | 2626 | STATS_INC_ACTIVE(cachep); |
2467 | STATS_SET_HIGH(cachep); | 2627 | STATS_SET_HIGH(cachep); |
2468 | 2628 | ||
2469 | /* get obj pointer */ | 2629 | ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, |
2470 | ac->entry[ac->avail++] = slabp->s_mem + | 2630 | numa_node_id()); |
2471 | slabp->free * cachep->objsize; | ||
2472 | |||
2473 | slabp->inuse++; | ||
2474 | next = slab_bufctl(slabp)[slabp->free]; | ||
2475 | #if DEBUG | ||
2476 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | ||
2477 | WARN_ON(numa_node_id() != slabp->nodeid); | ||
2478 | #endif | ||
2479 | slabp->free = next; | ||
2480 | } | 2631 | } |
2481 | check_slabp(cachep, slabp); | 2632 | check_slabp(cachep, slabp); |
2482 | 2633 | ||
@@ -2498,7 +2649,7 @@ static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags) | |||
2498 | x = cache_grow(cachep, flags, numa_node_id()); | 2649 | x = cache_grow(cachep, flags, numa_node_id()); |
2499 | 2650 | ||
2500 | // cache_grow can reenable interrupts, then ac could change. | 2651 | // cache_grow can reenable interrupts, then ac could change. |
2501 | ac = ac_data(cachep); | 2652 | ac = cpu_cache_get(cachep); |
2502 | if (!x && ac->avail == 0) // no objects in sight? abort | 2653 | if (!x && ac->avail == 0) // no objects in sight? abort |
2503 | return NULL; | 2654 | return NULL; |
2504 | 2655 | ||
@@ -2510,7 +2661,7 @@ static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags) | |||
2510 | } | 2661 | } |
2511 | 2662 | ||
2512 | static inline void | 2663 | static inline void |
2513 | cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags) | 2664 | cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags) |
2514 | { | 2665 | { |
2515 | might_sleep_if(flags & __GFP_WAIT); | 2666 | might_sleep_if(flags & __GFP_WAIT); |
2516 | #if DEBUG | 2667 | #if DEBUG |
@@ -2519,16 +2670,16 @@ cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags) | |||
2519 | } | 2670 | } |
2520 | 2671 | ||
2521 | #if DEBUG | 2672 | #if DEBUG |
2522 | static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags, | 2673 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags, |
2523 | void *objp, void *caller) | 2674 | void *objp, void *caller) |
2524 | { | 2675 | { |
2525 | if (!objp) | 2676 | if (!objp) |
2526 | return objp; | 2677 | return objp; |
2527 | if (cachep->flags & SLAB_POISON) { | 2678 | if (cachep->flags & SLAB_POISON) { |
2528 | #ifdef CONFIG_DEBUG_PAGEALLOC | 2679 | #ifdef CONFIG_DEBUG_PAGEALLOC |
2529 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | 2680 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
2530 | kernel_map_pages(virt_to_page(objp), | 2681 | kernel_map_pages(virt_to_page(objp), |
2531 | cachep->objsize / PAGE_SIZE, 1); | 2682 | cachep->buffer_size / PAGE_SIZE, 1); |
2532 | else | 2683 | else |
2533 | check_poison_obj(cachep, objp); | 2684 | check_poison_obj(cachep, objp); |
2534 | #else | 2685 | #else |
@@ -2553,7 +2704,7 @@ static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags, | |||
2553 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | 2704 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; |
2554 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | 2705 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; |
2555 | } | 2706 | } |
2556 | objp += obj_dbghead(cachep); | 2707 | objp += obj_offset(cachep); |
2557 | if (cachep->ctor && cachep->flags & SLAB_POISON) { | 2708 | if (cachep->ctor && cachep->flags & SLAB_POISON) { |
2558 | unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; | 2709 | unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; |
2559 | 2710 | ||
@@ -2568,7 +2719,7 @@ static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags, | |||
2568 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | 2719 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) |
2569 | #endif | 2720 | #endif |
2570 | 2721 | ||
2571 | static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags) | 2722 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
2572 | { | 2723 | { |
2573 | void *objp; | 2724 | void *objp; |
2574 | struct array_cache *ac; | 2725 | struct array_cache *ac; |
@@ -2583,7 +2734,7 @@ static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags) | |||
2583 | #endif | 2734 | #endif |
2584 | 2735 | ||
2585 | check_irq_off(); | 2736 | check_irq_off(); |
2586 | ac = ac_data(cachep); | 2737 | ac = cpu_cache_get(cachep); |
2587 | if (likely(ac->avail)) { | 2738 | if (likely(ac->avail)) { |
2588 | STATS_INC_ALLOCHIT(cachep); | 2739 | STATS_INC_ALLOCHIT(cachep); |
2589 | ac->touched = 1; | 2740 | ac->touched = 1; |
@@ -2595,7 +2746,8 @@ static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags) | |||
2595 | return objp; | 2746 | return objp; |
2596 | } | 2747 | } |
2597 | 2748 | ||
2598 | static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) | 2749 | static __always_inline void * |
2750 | __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | ||
2599 | { | 2751 | { |
2600 | unsigned long save_flags; | 2752 | unsigned long save_flags; |
2601 | void *objp; | 2753 | void *objp; |
@@ -2606,7 +2758,7 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) | |||
2606 | objp = ____cache_alloc(cachep, flags); | 2758 | objp = ____cache_alloc(cachep, flags); |
2607 | local_irq_restore(save_flags); | 2759 | local_irq_restore(save_flags); |
2608 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, | 2760 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, |
2609 | __builtin_return_address(0)); | 2761 | caller); |
2610 | prefetchw(objp); | 2762 | prefetchw(objp); |
2611 | return objp; | 2763 | return objp; |
2612 | } | 2764 | } |
@@ -2615,19 +2767,19 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) | |||
2615 | /* | 2767 | /* |
2616 | * A interface to enable slab creation on nodeid | 2768 | * A interface to enable slab creation on nodeid |
2617 | */ | 2769 | */ |
2618 | static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) | 2770 | static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
2619 | { | 2771 | { |
2620 | struct list_head *entry; | 2772 | struct list_head *entry; |
2621 | struct slab *slabp; | 2773 | struct slab *slabp; |
2622 | struct kmem_list3 *l3; | 2774 | struct kmem_list3 *l3; |
2623 | void *obj; | 2775 | void *obj; |
2624 | kmem_bufctl_t next; | ||
2625 | int x; | 2776 | int x; |
2626 | 2777 | ||
2627 | l3 = cachep->nodelists[nodeid]; | 2778 | l3 = cachep->nodelists[nodeid]; |
2628 | BUG_ON(!l3); | 2779 | BUG_ON(!l3); |
2629 | 2780 | ||
2630 | retry: | 2781 | retry: |
2782 | check_irq_off(); | ||
2631 | spin_lock(&l3->list_lock); | 2783 | spin_lock(&l3->list_lock); |
2632 | entry = l3->slabs_partial.next; | 2784 | entry = l3->slabs_partial.next; |
2633 | if (entry == &l3->slabs_partial) { | 2785 | if (entry == &l3->slabs_partial) { |
@@ -2647,14 +2799,7 @@ static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) | |||
2647 | 2799 | ||
2648 | BUG_ON(slabp->inuse == cachep->num); | 2800 | BUG_ON(slabp->inuse == cachep->num); |
2649 | 2801 | ||
2650 | /* get obj pointer */ | 2802 | obj = slab_get_obj(cachep, slabp, nodeid); |
2651 | obj = slabp->s_mem + slabp->free * cachep->objsize; | ||
2652 | slabp->inuse++; | ||
2653 | next = slab_bufctl(slabp)[slabp->free]; | ||
2654 | #if DEBUG | ||
2655 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | ||
2656 | #endif | ||
2657 | slabp->free = next; | ||
2658 | check_slabp(cachep, slabp); | 2803 | check_slabp(cachep, slabp); |
2659 | l3->free_objects--; | 2804 | l3->free_objects--; |
2660 | /* move slabp to correct slabp list: */ | 2805 | /* move slabp to correct slabp list: */ |
@@ -2685,7 +2830,7 @@ static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) | |||
2685 | /* | 2830 | /* |
2686 | * Caller needs to acquire correct kmem_list's list_lock | 2831 | * Caller needs to acquire correct kmem_list's list_lock |
2687 | */ | 2832 | */ |
2688 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, | 2833 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
2689 | int node) | 2834 | int node) |
2690 | { | 2835 | { |
2691 | int i; | 2836 | int i; |
@@ -2694,29 +2839,14 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, | |||
2694 | for (i = 0; i < nr_objects; i++) { | 2839 | for (i = 0; i < nr_objects; i++) { |
2695 | void *objp = objpp[i]; | 2840 | void *objp = objpp[i]; |
2696 | struct slab *slabp; | 2841 | struct slab *slabp; |
2697 | unsigned int objnr; | ||
2698 | 2842 | ||
2699 | slabp = page_get_slab(virt_to_page(objp)); | 2843 | slabp = virt_to_slab(objp); |
2700 | l3 = cachep->nodelists[node]; | 2844 | l3 = cachep->nodelists[node]; |
2701 | list_del(&slabp->list); | 2845 | list_del(&slabp->list); |
2702 | objnr = (objp - slabp->s_mem) / cachep->objsize; | ||
2703 | check_spinlock_acquired_node(cachep, node); | 2846 | check_spinlock_acquired_node(cachep, node); |
2704 | check_slabp(cachep, slabp); | 2847 | check_slabp(cachep, slabp); |
2705 | 2848 | slab_put_obj(cachep, slabp, objp, node); | |
2706 | #if DEBUG | ||
2707 | /* Verify that the slab belongs to the intended node */ | ||
2708 | WARN_ON(slabp->nodeid != node); | ||
2709 | |||
2710 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { | ||
2711 | printk(KERN_ERR "slab: double free detected in cache " | ||
2712 | "'%s', objp %p\n", cachep->name, objp); | ||
2713 | BUG(); | ||
2714 | } | ||
2715 | #endif | ||
2716 | slab_bufctl(slabp)[objnr] = slabp->free; | ||
2717 | slabp->free = objnr; | ||
2718 | STATS_DEC_ACTIVE(cachep); | 2849 | STATS_DEC_ACTIVE(cachep); |
2719 | slabp->inuse--; | ||
2720 | l3->free_objects++; | 2850 | l3->free_objects++; |
2721 | check_slabp(cachep, slabp); | 2851 | check_slabp(cachep, slabp); |
2722 | 2852 | ||
@@ -2738,7 +2868,7 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, | |||
2738 | } | 2868 | } |
2739 | } | 2869 | } |
2740 | 2870 | ||
2741 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | 2871 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
2742 | { | 2872 | { |
2743 | int batchcount; | 2873 | int batchcount; |
2744 | struct kmem_list3 *l3; | 2874 | struct kmem_list3 *l3; |
@@ -2797,9 +2927,9 @@ static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | |||
2797 | * | 2927 | * |
2798 | * Called with disabled ints. | 2928 | * Called with disabled ints. |
2799 | */ | 2929 | */ |
2800 | static inline void __cache_free(kmem_cache_t *cachep, void *objp) | 2930 | static inline void __cache_free(struct kmem_cache *cachep, void *objp) |
2801 | { | 2931 | { |
2802 | struct array_cache *ac = ac_data(cachep); | 2932 | struct array_cache *ac = cpu_cache_get(cachep); |
2803 | 2933 | ||
2804 | check_irq_off(); | 2934 | check_irq_off(); |
2805 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | 2935 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); |
@@ -2810,7 +2940,7 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp) | |||
2810 | #ifdef CONFIG_NUMA | 2940 | #ifdef CONFIG_NUMA |
2811 | { | 2941 | { |
2812 | struct slab *slabp; | 2942 | struct slab *slabp; |
2813 | slabp = page_get_slab(virt_to_page(objp)); | 2943 | slabp = virt_to_slab(objp); |
2814 | if (unlikely(slabp->nodeid != numa_node_id())) { | 2944 | if (unlikely(slabp->nodeid != numa_node_id())) { |
2815 | struct array_cache *alien = NULL; | 2945 | struct array_cache *alien = NULL; |
2816 | int nodeid = slabp->nodeid; | 2946 | int nodeid = slabp->nodeid; |
@@ -2856,9 +2986,9 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp) | |||
2856 | * Allocate an object from this cache. The flags are only relevant | 2986 | * Allocate an object from this cache. The flags are only relevant |
2857 | * if the cache has no available objects. | 2987 | * if the cache has no available objects. |
2858 | */ | 2988 | */ |
2859 | void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags) | 2989 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
2860 | { | 2990 | { |
2861 | return __cache_alloc(cachep, flags); | 2991 | return __cache_alloc(cachep, flags, __builtin_return_address(0)); |
2862 | } | 2992 | } |
2863 | EXPORT_SYMBOL(kmem_cache_alloc); | 2993 | EXPORT_SYMBOL(kmem_cache_alloc); |
2864 | 2994 | ||
@@ -2876,12 +3006,12 @@ EXPORT_SYMBOL(kmem_cache_alloc); | |||
2876 | * | 3006 | * |
2877 | * Currently only used for dentry validation. | 3007 | * Currently only used for dentry validation. |
2878 | */ | 3008 | */ |
2879 | int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) | 3009 | int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr) |
2880 | { | 3010 | { |
2881 | unsigned long addr = (unsigned long)ptr; | 3011 | unsigned long addr = (unsigned long)ptr; |
2882 | unsigned long min_addr = PAGE_OFFSET; | 3012 | unsigned long min_addr = PAGE_OFFSET; |
2883 | unsigned long align_mask = BYTES_PER_WORD - 1; | 3013 | unsigned long align_mask = BYTES_PER_WORD - 1; |
2884 | unsigned long size = cachep->objsize; | 3014 | unsigned long size = cachep->buffer_size; |
2885 | struct page *page; | 3015 | struct page *page; |
2886 | 3016 | ||
2887 | if (unlikely(addr < min_addr)) | 3017 | if (unlikely(addr < min_addr)) |
@@ -2917,32 +3047,23 @@ int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) | |||
2917 | * New and improved: it will now make sure that the object gets | 3047 | * New and improved: it will now make sure that the object gets |
2918 | * put on the correct node list so that there is no false sharing. | 3048 | * put on the correct node list so that there is no false sharing. |
2919 | */ | 3049 | */ |
2920 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) | 3050 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
2921 | { | 3051 | { |
2922 | unsigned long save_flags; | 3052 | unsigned long save_flags; |
2923 | void *ptr; | 3053 | void *ptr; |
2924 | 3054 | ||
2925 | if (nodeid == -1) | ||
2926 | return __cache_alloc(cachep, flags); | ||
2927 | |||
2928 | if (unlikely(!cachep->nodelists[nodeid])) { | ||
2929 | /* Fall back to __cache_alloc if we run into trouble */ | ||
2930 | printk(KERN_WARNING | ||
2931 | "slab: not allocating in inactive node %d for cache %s\n", | ||
2932 | nodeid, cachep->name); | ||
2933 | return __cache_alloc(cachep, flags); | ||
2934 | } | ||
2935 | |||
2936 | cache_alloc_debugcheck_before(cachep, flags); | 3055 | cache_alloc_debugcheck_before(cachep, flags); |
2937 | local_irq_save(save_flags); | 3056 | local_irq_save(save_flags); |
2938 | if (nodeid == numa_node_id()) | 3057 | |
3058 | if (nodeid == -1 || nodeid == numa_node_id() || | ||
3059 | !cachep->nodelists[nodeid]) | ||
2939 | ptr = ____cache_alloc(cachep, flags); | 3060 | ptr = ____cache_alloc(cachep, flags); |
2940 | else | 3061 | else |
2941 | ptr = __cache_alloc_node(cachep, flags, nodeid); | 3062 | ptr = __cache_alloc_node(cachep, flags, nodeid); |
2942 | local_irq_restore(save_flags); | 3063 | local_irq_restore(save_flags); |
2943 | ptr = | 3064 | |
2944 | cache_alloc_debugcheck_after(cachep, flags, ptr, | 3065 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, |
2945 | __builtin_return_address(0)); | 3066 | __builtin_return_address(0)); |
2946 | 3067 | ||
2947 | return ptr; | 3068 | return ptr; |
2948 | } | 3069 | } |
@@ -2950,7 +3071,7 @@ EXPORT_SYMBOL(kmem_cache_alloc_node); | |||
2950 | 3071 | ||
2951 | void *kmalloc_node(size_t size, gfp_t flags, int node) | 3072 | void *kmalloc_node(size_t size, gfp_t flags, int node) |
2952 | { | 3073 | { |
2953 | kmem_cache_t *cachep; | 3074 | struct kmem_cache *cachep; |
2954 | 3075 | ||
2955 | cachep = kmem_find_general_cachep(size, flags); | 3076 | cachep = kmem_find_general_cachep(size, flags); |
2956 | if (unlikely(cachep == NULL)) | 3077 | if (unlikely(cachep == NULL)) |
@@ -2981,9 +3102,10 @@ EXPORT_SYMBOL(kmalloc_node); | |||
2981 | * platforms. For example, on i386, it means that the memory must come | 3102 | * platforms. For example, on i386, it means that the memory must come |
2982 | * from the first 16MB. | 3103 | * from the first 16MB. |
2983 | */ | 3104 | */ |
2984 | void *__kmalloc(size_t size, gfp_t flags) | 3105 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
3106 | void *caller) | ||
2985 | { | 3107 | { |
2986 | kmem_cache_t *cachep; | 3108 | struct kmem_cache *cachep; |
2987 | 3109 | ||
2988 | /* If you want to save a few bytes .text space: replace | 3110 | /* If you want to save a few bytes .text space: replace |
2989 | * __ with kmem_. | 3111 | * __ with kmem_. |
@@ -2993,10 +3115,27 @@ void *__kmalloc(size_t size, gfp_t flags) | |||
2993 | cachep = __find_general_cachep(size, flags); | 3115 | cachep = __find_general_cachep(size, flags); |
2994 | if (unlikely(cachep == NULL)) | 3116 | if (unlikely(cachep == NULL)) |
2995 | return NULL; | 3117 | return NULL; |
2996 | return __cache_alloc(cachep, flags); | 3118 | return __cache_alloc(cachep, flags, caller); |
3119 | } | ||
3120 | |||
3121 | #ifndef CONFIG_DEBUG_SLAB | ||
3122 | |||
3123 | void *__kmalloc(size_t size, gfp_t flags) | ||
3124 | { | ||
3125 | return __do_kmalloc(size, flags, NULL); | ||
2997 | } | 3126 | } |
2998 | EXPORT_SYMBOL(__kmalloc); | 3127 | EXPORT_SYMBOL(__kmalloc); |
2999 | 3128 | ||
3129 | #else | ||
3130 | |||
3131 | void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller) | ||
3132 | { | ||
3133 | return __do_kmalloc(size, flags, caller); | ||
3134 | } | ||
3135 | EXPORT_SYMBOL(__kmalloc_track_caller); | ||
3136 | |||
3137 | #endif | ||
3138 | |||
3000 | #ifdef CONFIG_SMP | 3139 | #ifdef CONFIG_SMP |
3001 | /** | 3140 | /** |
3002 | * __alloc_percpu - allocate one copy of the object for every present | 3141 | * __alloc_percpu - allocate one copy of the object for every present |
@@ -3054,7 +3193,7 @@ EXPORT_SYMBOL(__alloc_percpu); | |||
3054 | * Free an object which was previously allocated from this | 3193 | * Free an object which was previously allocated from this |
3055 | * cache. | 3194 | * cache. |
3056 | */ | 3195 | */ |
3057 | void kmem_cache_free(kmem_cache_t *cachep, void *objp) | 3196 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
3058 | { | 3197 | { |
3059 | unsigned long flags; | 3198 | unsigned long flags; |
3060 | 3199 | ||
@@ -3075,15 +3214,15 @@ EXPORT_SYMBOL(kmem_cache_free); | |||
3075 | */ | 3214 | */ |
3076 | void kfree(const void *objp) | 3215 | void kfree(const void *objp) |
3077 | { | 3216 | { |
3078 | kmem_cache_t *c; | 3217 | struct kmem_cache *c; |
3079 | unsigned long flags; | 3218 | unsigned long flags; |
3080 | 3219 | ||
3081 | if (unlikely(!objp)) | 3220 | if (unlikely(!objp)) |
3082 | return; | 3221 | return; |
3083 | local_irq_save(flags); | 3222 | local_irq_save(flags); |
3084 | kfree_debugcheck(objp); | 3223 | kfree_debugcheck(objp); |
3085 | c = page_get_cache(virt_to_page(objp)); | 3224 | c = virt_to_cache(objp); |
3086 | mutex_debug_check_no_locks_freed(objp, obj_reallen(c)); | 3225 | mutex_debug_check_no_locks_freed(objp, obj_size(c)); |
3087 | __cache_free(c, (void *)objp); | 3226 | __cache_free(c, (void *)objp); |
3088 | local_irq_restore(flags); | 3227 | local_irq_restore(flags); |
3089 | } | 3228 | } |
@@ -3112,13 +3251,13 @@ void free_percpu(const void *objp) | |||
3112 | EXPORT_SYMBOL(free_percpu); | 3251 | EXPORT_SYMBOL(free_percpu); |
3113 | #endif | 3252 | #endif |
3114 | 3253 | ||
3115 | unsigned int kmem_cache_size(kmem_cache_t *cachep) | 3254 | unsigned int kmem_cache_size(struct kmem_cache *cachep) |
3116 | { | 3255 | { |
3117 | return obj_reallen(cachep); | 3256 | return obj_size(cachep); |
3118 | } | 3257 | } |
3119 | EXPORT_SYMBOL(kmem_cache_size); | 3258 | EXPORT_SYMBOL(kmem_cache_size); |
3120 | 3259 | ||
3121 | const char *kmem_cache_name(kmem_cache_t *cachep) | 3260 | const char *kmem_cache_name(struct kmem_cache *cachep) |
3122 | { | 3261 | { |
3123 | return cachep->name; | 3262 | return cachep->name; |
3124 | } | 3263 | } |
@@ -3127,7 +3266,7 @@ EXPORT_SYMBOL_GPL(kmem_cache_name); | |||
3127 | /* | 3266 | /* |
3128 | * This initializes kmem_list3 for all nodes. | 3267 | * This initializes kmem_list3 for all nodes. |
3129 | */ | 3268 | */ |
3130 | static int alloc_kmemlist(kmem_cache_t *cachep) | 3269 | static int alloc_kmemlist(struct kmem_cache *cachep) |
3131 | { | 3270 | { |
3132 | int node; | 3271 | int node; |
3133 | struct kmem_list3 *l3; | 3272 | struct kmem_list3 *l3; |
@@ -3183,7 +3322,7 @@ static int alloc_kmemlist(kmem_cache_t *cachep) | |||
3183 | } | 3322 | } |
3184 | 3323 | ||
3185 | struct ccupdate_struct { | 3324 | struct ccupdate_struct { |
3186 | kmem_cache_t *cachep; | 3325 | struct kmem_cache *cachep; |
3187 | struct array_cache *new[NR_CPUS]; | 3326 | struct array_cache *new[NR_CPUS]; |
3188 | }; | 3327 | }; |
3189 | 3328 | ||
@@ -3193,13 +3332,13 @@ static void do_ccupdate_local(void *info) | |||
3193 | struct array_cache *old; | 3332 | struct array_cache *old; |
3194 | 3333 | ||
3195 | check_irq_off(); | 3334 | check_irq_off(); |
3196 | old = ac_data(new->cachep); | 3335 | old = cpu_cache_get(new->cachep); |
3197 | 3336 | ||
3198 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; | 3337 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3199 | new->new[smp_processor_id()] = old; | 3338 | new->new[smp_processor_id()] = old; |
3200 | } | 3339 | } |
3201 | 3340 | ||
3202 | static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | 3341 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount, |
3203 | int shared) | 3342 | int shared) |
3204 | { | 3343 | { |
3205 | struct ccupdate_struct new; | 3344 | struct ccupdate_struct new; |
@@ -3220,11 +3359,11 @@ static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | |||
3220 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); | 3359 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); |
3221 | 3360 | ||
3222 | check_irq_on(); | 3361 | check_irq_on(); |
3223 | spin_lock_irq(&cachep->spinlock); | 3362 | spin_lock(&cachep->spinlock); |
3224 | cachep->batchcount = batchcount; | 3363 | cachep->batchcount = batchcount; |
3225 | cachep->limit = limit; | 3364 | cachep->limit = limit; |
3226 | cachep->shared = shared; | 3365 | cachep->shared = shared; |
3227 | spin_unlock_irq(&cachep->spinlock); | 3366 | spin_unlock(&cachep->spinlock); |
3228 | 3367 | ||
3229 | for_each_online_cpu(i) { | 3368 | for_each_online_cpu(i) { |
3230 | struct array_cache *ccold = new.new[i]; | 3369 | struct array_cache *ccold = new.new[i]; |
@@ -3245,7 +3384,7 @@ static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | |||
3245 | return 0; | 3384 | return 0; |
3246 | } | 3385 | } |
3247 | 3386 | ||
3248 | static void enable_cpucache(kmem_cache_t *cachep) | 3387 | static void enable_cpucache(struct kmem_cache *cachep) |
3249 | { | 3388 | { |
3250 | int err; | 3389 | int err; |
3251 | int limit, shared; | 3390 | int limit, shared; |
@@ -3258,13 +3397,13 @@ static void enable_cpucache(kmem_cache_t *cachep) | |||
3258 | * The numbers are guessed, we should auto-tune as described by | 3397 | * The numbers are guessed, we should auto-tune as described by |
3259 | * Bonwick. | 3398 | * Bonwick. |
3260 | */ | 3399 | */ |
3261 | if (cachep->objsize > 131072) | 3400 | if (cachep->buffer_size > 131072) |
3262 | limit = 1; | 3401 | limit = 1; |
3263 | else if (cachep->objsize > PAGE_SIZE) | 3402 | else if (cachep->buffer_size > PAGE_SIZE) |
3264 | limit = 8; | 3403 | limit = 8; |
3265 | else if (cachep->objsize > 1024) | 3404 | else if (cachep->buffer_size > 1024) |
3266 | limit = 24; | 3405 | limit = 24; |
3267 | else if (cachep->objsize > 256) | 3406 | else if (cachep->buffer_size > 256) |
3268 | limit = 54; | 3407 | limit = 54; |
3269 | else | 3408 | else |
3270 | limit = 120; | 3409 | limit = 120; |
@@ -3279,7 +3418,7 @@ static void enable_cpucache(kmem_cache_t *cachep) | |||
3279 | */ | 3418 | */ |
3280 | shared = 0; | 3419 | shared = 0; |
3281 | #ifdef CONFIG_SMP | 3420 | #ifdef CONFIG_SMP |
3282 | if (cachep->objsize <= PAGE_SIZE) | 3421 | if (cachep->buffer_size <= PAGE_SIZE) |
3283 | shared = 8; | 3422 | shared = 8; |
3284 | #endif | 3423 | #endif |
3285 | 3424 | ||
@@ -3297,7 +3436,7 @@ static void enable_cpucache(kmem_cache_t *cachep) | |||
3297 | cachep->name, -err); | 3436 | cachep->name, -err); |
3298 | } | 3437 | } |
3299 | 3438 | ||
3300 | static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac, | 3439 | static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
3301 | int force, int node) | 3440 | int force, int node) |
3302 | { | 3441 | { |
3303 | int tofree; | 3442 | int tofree; |
@@ -3342,12 +3481,12 @@ static void cache_reap(void *unused) | |||
3342 | } | 3481 | } |
3343 | 3482 | ||
3344 | list_for_each(walk, &cache_chain) { | 3483 | list_for_each(walk, &cache_chain) { |
3345 | kmem_cache_t *searchp; | 3484 | struct kmem_cache *searchp; |
3346 | struct list_head *p; | 3485 | struct list_head *p; |
3347 | int tofree; | 3486 | int tofree; |
3348 | struct slab *slabp; | 3487 | struct slab *slabp; |
3349 | 3488 | ||
3350 | searchp = list_entry(walk, kmem_cache_t, next); | 3489 | searchp = list_entry(walk, struct kmem_cache, next); |
3351 | 3490 | ||
3352 | if (searchp->flags & SLAB_NO_REAP) | 3491 | if (searchp->flags & SLAB_NO_REAP) |
3353 | goto next; | 3492 | goto next; |
@@ -3356,10 +3495,10 @@ static void cache_reap(void *unused) | |||
3356 | 3495 | ||
3357 | l3 = searchp->nodelists[numa_node_id()]; | 3496 | l3 = searchp->nodelists[numa_node_id()]; |
3358 | if (l3->alien) | 3497 | if (l3->alien) |
3359 | drain_alien_cache(searchp, l3); | 3498 | drain_alien_cache(searchp, l3->alien); |
3360 | spin_lock_irq(&l3->list_lock); | 3499 | spin_lock_irq(&l3->list_lock); |
3361 | 3500 | ||
3362 | drain_array_locked(searchp, ac_data(searchp), 0, | 3501 | drain_array_locked(searchp, cpu_cache_get(searchp), 0, |
3363 | numa_node_id()); | 3502 | numa_node_id()); |
3364 | 3503 | ||
3365 | if (time_after(l3->next_reap, jiffies)) | 3504 | if (time_after(l3->next_reap, jiffies)) |
@@ -3450,15 +3589,15 @@ static void *s_start(struct seq_file *m, loff_t *pos) | |||
3450 | if (p == &cache_chain) | 3589 | if (p == &cache_chain) |
3451 | return NULL; | 3590 | return NULL; |
3452 | } | 3591 | } |
3453 | return list_entry(p, kmem_cache_t, next); | 3592 | return list_entry(p, struct kmem_cache, next); |
3454 | } | 3593 | } |
3455 | 3594 | ||
3456 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 3595 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) |
3457 | { | 3596 | { |
3458 | kmem_cache_t *cachep = p; | 3597 | struct kmem_cache *cachep = p; |
3459 | ++*pos; | 3598 | ++*pos; |
3460 | return cachep->next.next == &cache_chain ? NULL | 3599 | return cachep->next.next == &cache_chain ? NULL |
3461 | : list_entry(cachep->next.next, kmem_cache_t, next); | 3600 | : list_entry(cachep->next.next, struct kmem_cache, next); |
3462 | } | 3601 | } |
3463 | 3602 | ||
3464 | static void s_stop(struct seq_file *m, void *p) | 3603 | static void s_stop(struct seq_file *m, void *p) |
@@ -3468,7 +3607,7 @@ static void s_stop(struct seq_file *m, void *p) | |||
3468 | 3607 | ||
3469 | static int s_show(struct seq_file *m, void *p) | 3608 | static int s_show(struct seq_file *m, void *p) |
3470 | { | 3609 | { |
3471 | kmem_cache_t *cachep = p; | 3610 | struct kmem_cache *cachep = p; |
3472 | struct list_head *q; | 3611 | struct list_head *q; |
3473 | struct slab *slabp; | 3612 | struct slab *slabp; |
3474 | unsigned long active_objs; | 3613 | unsigned long active_objs; |
@@ -3480,8 +3619,7 @@ static int s_show(struct seq_file *m, void *p) | |||
3480 | int node; | 3619 | int node; |
3481 | struct kmem_list3 *l3; | 3620 | struct kmem_list3 *l3; |
3482 | 3621 | ||
3483 | check_irq_on(); | 3622 | spin_lock(&cachep->spinlock); |
3484 | spin_lock_irq(&cachep->spinlock); | ||
3485 | active_objs = 0; | 3623 | active_objs = 0; |
3486 | num_slabs = 0; | 3624 | num_slabs = 0; |
3487 | for_each_online_node(node) { | 3625 | for_each_online_node(node) { |
@@ -3489,7 +3627,8 @@ static int s_show(struct seq_file *m, void *p) | |||
3489 | if (!l3) | 3627 | if (!l3) |
3490 | continue; | 3628 | continue; |
3491 | 3629 | ||
3492 | spin_lock(&l3->list_lock); | 3630 | check_irq_on(); |
3631 | spin_lock_irq(&l3->list_lock); | ||
3493 | 3632 | ||
3494 | list_for_each(q, &l3->slabs_full) { | 3633 | list_for_each(q, &l3->slabs_full) { |
3495 | slabp = list_entry(q, struct slab, list); | 3634 | slabp = list_entry(q, struct slab, list); |
@@ -3514,9 +3653,10 @@ static int s_show(struct seq_file *m, void *p) | |||
3514 | num_slabs++; | 3653 | num_slabs++; |
3515 | } | 3654 | } |
3516 | free_objects += l3->free_objects; | 3655 | free_objects += l3->free_objects; |
3517 | shared_avail += l3->shared->avail; | 3656 | if (l3->shared) |
3657 | shared_avail += l3->shared->avail; | ||
3518 | 3658 | ||
3519 | spin_unlock(&l3->list_lock); | 3659 | spin_unlock_irq(&l3->list_lock); |
3520 | } | 3660 | } |
3521 | num_slabs += active_slabs; | 3661 | num_slabs += active_slabs; |
3522 | num_objs = num_slabs * cachep->num; | 3662 | num_objs = num_slabs * cachep->num; |
@@ -3528,7 +3668,7 @@ static int s_show(struct seq_file *m, void *p) | |||
3528 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | 3668 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); |
3529 | 3669 | ||
3530 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 3670 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
3531 | name, active_objs, num_objs, cachep->objsize, | 3671 | name, active_objs, num_objs, cachep->buffer_size, |
3532 | cachep->num, (1 << cachep->gfporder)); | 3672 | cachep->num, (1 << cachep->gfporder)); |
3533 | seq_printf(m, " : tunables %4u %4u %4u", | 3673 | seq_printf(m, " : tunables %4u %4u %4u", |
3534 | cachep->limit, cachep->batchcount, cachep->shared); | 3674 | cachep->limit, cachep->batchcount, cachep->shared); |
@@ -3560,7 +3700,7 @@ static int s_show(struct seq_file *m, void *p) | |||
3560 | } | 3700 | } |
3561 | #endif | 3701 | #endif |
3562 | seq_putc(m, '\n'); | 3702 | seq_putc(m, '\n'); |
3563 | spin_unlock_irq(&cachep->spinlock); | 3703 | spin_unlock(&cachep->spinlock); |
3564 | return 0; | 3704 | return 0; |
3565 | } | 3705 | } |
3566 | 3706 | ||
@@ -3618,7 +3758,8 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer, | |||
3618 | mutex_lock(&cache_chain_mutex); | 3758 | mutex_lock(&cache_chain_mutex); |
3619 | res = -EINVAL; | 3759 | res = -EINVAL; |
3620 | list_for_each(p, &cache_chain) { | 3760 | list_for_each(p, &cache_chain) { |
3621 | kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); | 3761 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, |
3762 | next); | ||
3622 | 3763 | ||
3623 | if (!strcmp(cachep->name, kbuf)) { | 3764 | if (!strcmp(cachep->name, kbuf)) { |
3624 | if (limit < 1 || | 3765 | if (limit < 1 || |
@@ -3656,5 +3797,5 @@ unsigned int ksize(const void *objp) | |||
3656 | if (unlikely(objp == NULL)) | 3797 | if (unlikely(objp == NULL)) |
3657 | return 0; | 3798 | return 0; |
3658 | 3799 | ||
3659 | return obj_reallen(page_get_cache(virt_to_page(objp))); | 3800 | return obj_size(virt_to_cache(objp)); |
3660 | } | 3801 | } |
@@ -336,7 +336,7 @@ EXPORT_SYMBOL(slab_reclaim_pages); | |||
336 | 336 | ||
337 | #ifdef CONFIG_SMP | 337 | #ifdef CONFIG_SMP |
338 | 338 | ||
339 | void *__alloc_percpu(size_t size, size_t align) | 339 | void *__alloc_percpu(size_t size) |
340 | { | 340 | { |
341 | int i; | 341 | int i; |
342 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); | 342 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); |
@@ -34,19 +34,22 @@ | |||
34 | /* How many pages do we try to swap or page in/out together? */ | 34 | /* How many pages do we try to swap or page in/out together? */ |
35 | int page_cluster; | 35 | int page_cluster; |
36 | 36 | ||
37 | void put_page(struct page *page) | 37 | static void put_compound_page(struct page *page) |
38 | { | 38 | { |
39 | if (unlikely(PageCompound(page))) { | 39 | page = (struct page *)page_private(page); |
40 | page = (struct page *)page_private(page); | 40 | if (put_page_testzero(page)) { |
41 | if (put_page_testzero(page)) { | 41 | void (*dtor)(struct page *page); |
42 | void (*dtor)(struct page *page); | ||
43 | 42 | ||
44 | dtor = (void (*)(struct page *))page[1].mapping; | 43 | dtor = (void (*)(struct page *))page[1].lru.next; |
45 | (*dtor)(page); | 44 | (*dtor)(page); |
46 | } | ||
47 | return; | ||
48 | } | 45 | } |
49 | if (put_page_testzero(page)) | 46 | } |
47 | |||
48 | void put_page(struct page *page) | ||
49 | { | ||
50 | if (unlikely(PageCompound(page))) | ||
51 | put_compound_page(page); | ||
52 | else if (put_page_testzero(page)) | ||
50 | __page_cache_release(page); | 53 | __page_cache_release(page); |
51 | } | 54 | } |
52 | EXPORT_SYMBOL(put_page); | 55 | EXPORT_SYMBOL(put_page); |
@@ -244,6 +247,15 @@ void release_pages(struct page **pages, int nr, int cold) | |||
244 | struct page *page = pages[i]; | 247 | struct page *page = pages[i]; |
245 | struct zone *pagezone; | 248 | struct zone *pagezone; |
246 | 249 | ||
250 | if (unlikely(PageCompound(page))) { | ||
251 | if (zone) { | ||
252 | spin_unlock_irq(&zone->lru_lock); | ||
253 | zone = NULL; | ||
254 | } | ||
255 | put_compound_page(page); | ||
256 | continue; | ||
257 | } | ||
258 | |||
247 | if (!put_page_testzero(page)) | 259 | if (!put_page_testzero(page)) |
248 | continue; | 260 | continue; |
249 | 261 | ||
diff --git a/mm/swap_state.c b/mm/swap_state.c index 7b09ac503fec..db8a3d3e1636 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c | |||
@@ -27,6 +27,7 @@ static struct address_space_operations swap_aops = { | |||
27 | .writepage = swap_writepage, | 27 | .writepage = swap_writepage, |
28 | .sync_page = block_sync_page, | 28 | .sync_page = block_sync_page, |
29 | .set_page_dirty = __set_page_dirty_nobuffers, | 29 | .set_page_dirty = __set_page_dirty_nobuffers, |
30 | .migratepage = migrate_page, | ||
30 | }; | 31 | }; |
31 | 32 | ||
32 | static struct backing_dev_info swap_backing_dev_info = { | 33 | static struct backing_dev_info swap_backing_dev_info = { |
diff --git a/mm/swapfile.c b/mm/swapfile.c index f1e69c30d203..1f9cf0d073b8 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
@@ -554,6 +554,15 @@ static int unuse_mm(struct mm_struct *mm, | |||
554 | return 0; | 554 | return 0; |
555 | } | 555 | } |
556 | 556 | ||
557 | #ifdef CONFIG_MIGRATION | ||
558 | int remove_vma_swap(struct vm_area_struct *vma, struct page *page) | ||
559 | { | ||
560 | swp_entry_t entry = { .val = page_private(page) }; | ||
561 | |||
562 | return unuse_vma(vma, entry, page); | ||
563 | } | ||
564 | #endif | ||
565 | |||
557 | /* | 566 | /* |
558 | * Scan swap_map from current position to next entry still in use. | 567 | * Scan swap_map from current position to next entry still in use. |
559 | * Recycle to start on reaching the end, returning 0 when empty. | 568 | * Recycle to start on reaching the end, returning 0 when empty. |
@@ -646,6 +655,7 @@ static int try_to_unuse(unsigned int type) | |||
646 | */ | 655 | */ |
647 | swap_map = &si->swap_map[i]; | 656 | swap_map = &si->swap_map[i]; |
648 | entry = swp_entry(type, i); | 657 | entry = swp_entry(type, i); |
658 | again: | ||
649 | page = read_swap_cache_async(entry, NULL, 0); | 659 | page = read_swap_cache_async(entry, NULL, 0); |
650 | if (!page) { | 660 | if (!page) { |
651 | /* | 661 | /* |
@@ -680,6 +690,12 @@ static int try_to_unuse(unsigned int type) | |||
680 | wait_on_page_locked(page); | 690 | wait_on_page_locked(page); |
681 | wait_on_page_writeback(page); | 691 | wait_on_page_writeback(page); |
682 | lock_page(page); | 692 | lock_page(page); |
693 | if (!PageSwapCache(page)) { | ||
694 | /* Page migration has occured */ | ||
695 | unlock_page(page); | ||
696 | page_cache_release(page); | ||
697 | goto again; | ||
698 | } | ||
683 | wait_on_page_writeback(page); | 699 | wait_on_page_writeback(page); |
684 | 700 | ||
685 | /* | 701 | /* |
diff --git a/mm/vmscan.c b/mm/vmscan.c index 2e34b61a70c7..1838c15ca4fd 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -443,6 +443,10 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc) | |||
443 | BUG_ON(PageActive(page)); | 443 | BUG_ON(PageActive(page)); |
444 | 444 | ||
445 | sc->nr_scanned++; | 445 | sc->nr_scanned++; |
446 | |||
447 | if (!sc->may_swap && page_mapped(page)) | ||
448 | goto keep_locked; | ||
449 | |||
446 | /* Double the slab pressure for mapped and swapcache pages */ | 450 | /* Double the slab pressure for mapped and swapcache pages */ |
447 | if (page_mapped(page) || PageSwapCache(page)) | 451 | if (page_mapped(page) || PageSwapCache(page)) |
448 | sc->nr_scanned++; | 452 | sc->nr_scanned++; |
@@ -477,7 +481,13 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc) | |||
477 | * processes. Try to unmap it here. | 481 | * processes. Try to unmap it here. |
478 | */ | 482 | */ |
479 | if (page_mapped(page) && mapping) { | 483 | if (page_mapped(page) && mapping) { |
480 | switch (try_to_unmap(page)) { | 484 | /* |
485 | * No unmapping if we do not swap | ||
486 | */ | ||
487 | if (!sc->may_swap) | ||
488 | goto keep_locked; | ||
489 | |||
490 | switch (try_to_unmap(page, 0)) { | ||
481 | case SWAP_FAIL: | 491 | case SWAP_FAIL: |
482 | goto activate_locked; | 492 | goto activate_locked; |
483 | case SWAP_AGAIN: | 493 | case SWAP_AGAIN: |
@@ -492,7 +502,7 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc) | |||
492 | goto keep_locked; | 502 | goto keep_locked; |
493 | if (!may_enter_fs) | 503 | if (!may_enter_fs) |
494 | goto keep_locked; | 504 | goto keep_locked; |
495 | if (laptop_mode && !sc->may_writepage) | 505 | if (!sc->may_writepage) |
496 | goto keep_locked; | 506 | goto keep_locked; |
497 | 507 | ||
498 | /* Page is dirty, try to write it out here */ | 508 | /* Page is dirty, try to write it out here */ |
@@ -609,6 +619,15 @@ int putback_lru_pages(struct list_head *l) | |||
609 | } | 619 | } |
610 | 620 | ||
611 | /* | 621 | /* |
622 | * Non migratable page | ||
623 | */ | ||
624 | int fail_migrate_page(struct page *newpage, struct page *page) | ||
625 | { | ||
626 | return -EIO; | ||
627 | } | ||
628 | EXPORT_SYMBOL(fail_migrate_page); | ||
629 | |||
630 | /* | ||
612 | * swapout a single page | 631 | * swapout a single page |
613 | * page is locked upon entry, unlocked on exit | 632 | * page is locked upon entry, unlocked on exit |
614 | */ | 633 | */ |
@@ -617,7 +636,7 @@ static int swap_page(struct page *page) | |||
617 | struct address_space *mapping = page_mapping(page); | 636 | struct address_space *mapping = page_mapping(page); |
618 | 637 | ||
619 | if (page_mapped(page) && mapping) | 638 | if (page_mapped(page) && mapping) |
620 | if (try_to_unmap(page) != SWAP_SUCCESS) | 639 | if (try_to_unmap(page, 1) != SWAP_SUCCESS) |
621 | goto unlock_retry; | 640 | goto unlock_retry; |
622 | 641 | ||
623 | if (PageDirty(page)) { | 642 | if (PageDirty(page)) { |
@@ -653,6 +672,167 @@ unlock_retry: | |||
653 | retry: | 672 | retry: |
654 | return -EAGAIN; | 673 | return -EAGAIN; |
655 | } | 674 | } |
675 | EXPORT_SYMBOL(swap_page); | ||
676 | |||
677 | /* | ||
678 | * Page migration was first developed in the context of the memory hotplug | ||
679 | * project. The main authors of the migration code are: | ||
680 | * | ||
681 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | ||
682 | * Hirokazu Takahashi <taka@valinux.co.jp> | ||
683 | * Dave Hansen <haveblue@us.ibm.com> | ||
684 | * Christoph Lameter <clameter@sgi.com> | ||
685 | */ | ||
686 | |||
687 | /* | ||
688 | * Remove references for a page and establish the new page with the correct | ||
689 | * basic settings to be able to stop accesses to the page. | ||
690 | */ | ||
691 | int migrate_page_remove_references(struct page *newpage, | ||
692 | struct page *page, int nr_refs) | ||
693 | { | ||
694 | struct address_space *mapping = page_mapping(page); | ||
695 | struct page **radix_pointer; | ||
696 | |||
697 | /* | ||
698 | * Avoid doing any of the following work if the page count | ||
699 | * indicates that the page is in use or truncate has removed | ||
700 | * the page. | ||
701 | */ | ||
702 | if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) | ||
703 | return 1; | ||
704 | |||
705 | /* | ||
706 | * Establish swap ptes for anonymous pages or destroy pte | ||
707 | * maps for files. | ||
708 | * | ||
709 | * In order to reestablish file backed mappings the fault handlers | ||
710 | * will take the radix tree_lock which may then be used to stop | ||
711 | * processses from accessing this page until the new page is ready. | ||
712 | * | ||
713 | * A process accessing via a swap pte (an anonymous page) will take a | ||
714 | * page_lock on the old page which will block the process until the | ||
715 | * migration attempt is complete. At that time the PageSwapCache bit | ||
716 | * will be examined. If the page was migrated then the PageSwapCache | ||
717 | * bit will be clear and the operation to retrieve the page will be | ||
718 | * retried which will find the new page in the radix tree. Then a new | ||
719 | * direct mapping may be generated based on the radix tree contents. | ||
720 | * | ||
721 | * If the page was not migrated then the PageSwapCache bit | ||
722 | * is still set and the operation may continue. | ||
723 | */ | ||
724 | try_to_unmap(page, 1); | ||
725 | |||
726 | /* | ||
727 | * Give up if we were unable to remove all mappings. | ||
728 | */ | ||
729 | if (page_mapcount(page)) | ||
730 | return 1; | ||
731 | |||
732 | write_lock_irq(&mapping->tree_lock); | ||
733 | |||
734 | radix_pointer = (struct page **)radix_tree_lookup_slot( | ||
735 | &mapping->page_tree, | ||
736 | page_index(page)); | ||
737 | |||
738 | if (!page_mapping(page) || page_count(page) != nr_refs || | ||
739 | *radix_pointer != page) { | ||
740 | write_unlock_irq(&mapping->tree_lock); | ||
741 | return 1; | ||
742 | } | ||
743 | |||
744 | /* | ||
745 | * Now we know that no one else is looking at the page. | ||
746 | * | ||
747 | * Certain minimal information about a page must be available | ||
748 | * in order for other subsystems to properly handle the page if they | ||
749 | * find it through the radix tree update before we are finished | ||
750 | * copying the page. | ||
751 | */ | ||
752 | get_page(newpage); | ||
753 | newpage->index = page->index; | ||
754 | newpage->mapping = page->mapping; | ||
755 | if (PageSwapCache(page)) { | ||
756 | SetPageSwapCache(newpage); | ||
757 | set_page_private(newpage, page_private(page)); | ||
758 | } | ||
759 | |||
760 | *radix_pointer = newpage; | ||
761 | __put_page(page); | ||
762 | write_unlock_irq(&mapping->tree_lock); | ||
763 | |||
764 | return 0; | ||
765 | } | ||
766 | EXPORT_SYMBOL(migrate_page_remove_references); | ||
767 | |||
768 | /* | ||
769 | * Copy the page to its new location | ||
770 | */ | ||
771 | void migrate_page_copy(struct page *newpage, struct page *page) | ||
772 | { | ||
773 | copy_highpage(newpage, page); | ||
774 | |||
775 | if (PageError(page)) | ||
776 | SetPageError(newpage); | ||
777 | if (PageReferenced(page)) | ||
778 | SetPageReferenced(newpage); | ||
779 | if (PageUptodate(page)) | ||
780 | SetPageUptodate(newpage); | ||
781 | if (PageActive(page)) | ||
782 | SetPageActive(newpage); | ||
783 | if (PageChecked(page)) | ||
784 | SetPageChecked(newpage); | ||
785 | if (PageMappedToDisk(page)) | ||
786 | SetPageMappedToDisk(newpage); | ||
787 | |||
788 | if (PageDirty(page)) { | ||
789 | clear_page_dirty_for_io(page); | ||
790 | set_page_dirty(newpage); | ||
791 | } | ||
792 | |||
793 | ClearPageSwapCache(page); | ||
794 | ClearPageActive(page); | ||
795 | ClearPagePrivate(page); | ||
796 | set_page_private(page, 0); | ||
797 | page->mapping = NULL; | ||
798 | |||
799 | /* | ||
800 | * If any waiters have accumulated on the new page then | ||
801 | * wake them up. | ||
802 | */ | ||
803 | if (PageWriteback(newpage)) | ||
804 | end_page_writeback(newpage); | ||
805 | } | ||
806 | EXPORT_SYMBOL(migrate_page_copy); | ||
807 | |||
808 | /* | ||
809 | * Common logic to directly migrate a single page suitable for | ||
810 | * pages that do not use PagePrivate. | ||
811 | * | ||
812 | * Pages are locked upon entry and exit. | ||
813 | */ | ||
814 | int migrate_page(struct page *newpage, struct page *page) | ||
815 | { | ||
816 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | ||
817 | |||
818 | if (migrate_page_remove_references(newpage, page, 2)) | ||
819 | return -EAGAIN; | ||
820 | |||
821 | migrate_page_copy(newpage, page); | ||
822 | |||
823 | /* | ||
824 | * Remove auxiliary swap entries and replace | ||
825 | * them with real ptes. | ||
826 | * | ||
827 | * Note that a real pte entry will allow processes that are not | ||
828 | * waiting on the page lock to use the new page via the page tables | ||
829 | * before the new page is unlocked. | ||
830 | */ | ||
831 | remove_from_swap(newpage); | ||
832 | return 0; | ||
833 | } | ||
834 | EXPORT_SYMBOL(migrate_page); | ||
835 | |||
656 | /* | 836 | /* |
657 | * migrate_pages | 837 | * migrate_pages |
658 | * | 838 | * |
@@ -663,14 +843,9 @@ retry: | |||
663 | * pages are swapped out. | 843 | * pages are swapped out. |
664 | * | 844 | * |
665 | * The function returns after 10 attempts or if no pages | 845 | * The function returns after 10 attempts or if no pages |
666 | * are movable anymore because t has become empty | 846 | * are movable anymore because to has become empty |
667 | * or no retryable pages exist anymore. | 847 | * or no retryable pages exist anymore. |
668 | * | 848 | * |
669 | * SIMPLIFIED VERSION: This implementation of migrate_pages | ||
670 | * is only swapping out pages and never touches the second | ||
671 | * list. The direct migration patchset | ||
672 | * extends this function to avoid the use of swap. | ||
673 | * | ||
674 | * Return: Number of pages not migrated when "to" ran empty. | 849 | * Return: Number of pages not migrated when "to" ran empty. |
675 | */ | 850 | */ |
676 | int migrate_pages(struct list_head *from, struct list_head *to, | 851 | int migrate_pages(struct list_head *from, struct list_head *to, |
@@ -691,6 +866,9 @@ redo: | |||
691 | retry = 0; | 866 | retry = 0; |
692 | 867 | ||
693 | list_for_each_entry_safe(page, page2, from, lru) { | 868 | list_for_each_entry_safe(page, page2, from, lru) { |
869 | struct page *newpage = NULL; | ||
870 | struct address_space *mapping; | ||
871 | |||
694 | cond_resched(); | 872 | cond_resched(); |
695 | 873 | ||
696 | rc = 0; | 874 | rc = 0; |
@@ -698,6 +876,9 @@ redo: | |||
698 | /* page was freed from under us. So we are done. */ | 876 | /* page was freed from under us. So we are done. */ |
699 | goto next; | 877 | goto next; |
700 | 878 | ||
879 | if (to && list_empty(to)) | ||
880 | break; | ||
881 | |||
701 | /* | 882 | /* |
702 | * Skip locked pages during the first two passes to give the | 883 | * Skip locked pages during the first two passes to give the |
703 | * functions holding the lock time to release the page. Later we | 884 | * functions holding the lock time to release the page. Later we |
@@ -734,12 +915,84 @@ redo: | |||
734 | } | 915 | } |
735 | } | 916 | } |
736 | 917 | ||
918 | if (!to) { | ||
919 | rc = swap_page(page); | ||
920 | goto next; | ||
921 | } | ||
922 | |||
923 | newpage = lru_to_page(to); | ||
924 | lock_page(newpage); | ||
925 | |||
737 | /* | 926 | /* |
738 | * Page is properly locked and writeback is complete. | 927 | * Pages are properly locked and writeback is complete. |
739 | * Try to migrate the page. | 928 | * Try to migrate the page. |
740 | */ | 929 | */ |
741 | rc = swap_page(page); | 930 | mapping = page_mapping(page); |
742 | goto next; | 931 | if (!mapping) |
932 | goto unlock_both; | ||
933 | |||
934 | if (mapping->a_ops->migratepage) { | ||
935 | /* | ||
936 | * Most pages have a mapping and most filesystems | ||
937 | * should provide a migration function. Anonymous | ||
938 | * pages are part of swap space which also has its | ||
939 | * own migration function. This is the most common | ||
940 | * path for page migration. | ||
941 | */ | ||
942 | rc = mapping->a_ops->migratepage(newpage, page); | ||
943 | goto unlock_both; | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * Default handling if a filesystem does not provide | ||
948 | * a migration function. We can only migrate clean | ||
949 | * pages so try to write out any dirty pages first. | ||
950 | */ | ||
951 | if (PageDirty(page)) { | ||
952 | switch (pageout(page, mapping)) { | ||
953 | case PAGE_KEEP: | ||
954 | case PAGE_ACTIVATE: | ||
955 | goto unlock_both; | ||
956 | |||
957 | case PAGE_SUCCESS: | ||
958 | unlock_page(newpage); | ||
959 | goto next; | ||
960 | |||
961 | case PAGE_CLEAN: | ||
962 | ; /* try to migrate the page below */ | ||
963 | } | ||
964 | } | ||
965 | |||
966 | /* | ||
967 | * Buffers are managed in a filesystem specific way. | ||
968 | * We must have no buffers or drop them. | ||
969 | */ | ||
970 | if (!page_has_buffers(page) || | ||
971 | try_to_release_page(page, GFP_KERNEL)) { | ||
972 | rc = migrate_page(newpage, page); | ||
973 | goto unlock_both; | ||
974 | } | ||
975 | |||
976 | /* | ||
977 | * On early passes with mapped pages simply | ||
978 | * retry. There may be a lock held for some | ||
979 | * buffers that may go away. Later | ||
980 | * swap them out. | ||
981 | */ | ||
982 | if (pass > 4) { | ||
983 | /* | ||
984 | * Persistently unable to drop buffers..... As a | ||
985 | * measure of last resort we fall back to | ||
986 | * swap_page(). | ||
987 | */ | ||
988 | unlock_page(newpage); | ||
989 | newpage = NULL; | ||
990 | rc = swap_page(page); | ||
991 | goto next; | ||
992 | } | ||
993 | |||
994 | unlock_both: | ||
995 | unlock_page(newpage); | ||
743 | 996 | ||
744 | unlock_page: | 997 | unlock_page: |
745 | unlock_page(page); | 998 | unlock_page(page); |
@@ -752,7 +1005,10 @@ next: | |||
752 | list_move(&page->lru, failed); | 1005 | list_move(&page->lru, failed); |
753 | nr_failed++; | 1006 | nr_failed++; |
754 | } else { | 1007 | } else { |
755 | /* Success */ | 1008 | if (newpage) { |
1009 | /* Successful migration. Return page to LRU */ | ||
1010 | move_to_lru(newpage); | ||
1011 | } | ||
756 | list_move(&page->lru, moved); | 1012 | list_move(&page->lru, moved); |
757 | } | 1013 | } |
758 | } | 1014 | } |
@@ -939,9 +1195,47 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc) | |||
939 | struct page *page; | 1195 | struct page *page; |
940 | struct pagevec pvec; | 1196 | struct pagevec pvec; |
941 | int reclaim_mapped = 0; | 1197 | int reclaim_mapped = 0; |
942 | long mapped_ratio; | 1198 | |
943 | long distress; | 1199 | if (unlikely(sc->may_swap)) { |
944 | long swap_tendency; | 1200 | long mapped_ratio; |
1201 | long distress; | ||
1202 | long swap_tendency; | ||
1203 | |||
1204 | /* | ||
1205 | * `distress' is a measure of how much trouble we're having | ||
1206 | * reclaiming pages. 0 -> no problems. 100 -> great trouble. | ||
1207 | */ | ||
1208 | distress = 100 >> zone->prev_priority; | ||
1209 | |||
1210 | /* | ||
1211 | * The point of this algorithm is to decide when to start | ||
1212 | * reclaiming mapped memory instead of just pagecache. Work out | ||
1213 | * how much memory | ||
1214 | * is mapped. | ||
1215 | */ | ||
1216 | mapped_ratio = (sc->nr_mapped * 100) / total_memory; | ||
1217 | |||
1218 | /* | ||
1219 | * Now decide how much we really want to unmap some pages. The | ||
1220 | * mapped ratio is downgraded - just because there's a lot of | ||
1221 | * mapped memory doesn't necessarily mean that page reclaim | ||
1222 | * isn't succeeding. | ||
1223 | * | ||
1224 | * The distress ratio is important - we don't want to start | ||
1225 | * going oom. | ||
1226 | * | ||
1227 | * A 100% value of vm_swappiness overrides this algorithm | ||
1228 | * altogether. | ||
1229 | */ | ||
1230 | swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; | ||
1231 | |||
1232 | /* | ||
1233 | * Now use this metric to decide whether to start moving mapped | ||
1234 | * memory onto the inactive list. | ||
1235 | */ | ||
1236 | if (swap_tendency >= 100) | ||
1237 | reclaim_mapped = 1; | ||
1238 | } | ||
945 | 1239 | ||
946 | lru_add_drain(); | 1240 | lru_add_drain(); |
947 | spin_lock_irq(&zone->lru_lock); | 1241 | spin_lock_irq(&zone->lru_lock); |
@@ -951,37 +1245,6 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc) | |||
951 | zone->nr_active -= pgmoved; | 1245 | zone->nr_active -= pgmoved; |
952 | spin_unlock_irq(&zone->lru_lock); | 1246 | spin_unlock_irq(&zone->lru_lock); |
953 | 1247 | ||
954 | /* | ||
955 | * `distress' is a measure of how much trouble we're having reclaiming | ||
956 | * pages. 0 -> no problems. 100 -> great trouble. | ||
957 | */ | ||
958 | distress = 100 >> zone->prev_priority; | ||
959 | |||
960 | /* | ||
961 | * The point of this algorithm is to decide when to start reclaiming | ||
962 | * mapped memory instead of just pagecache. Work out how much memory | ||
963 | * is mapped. | ||
964 | */ | ||
965 | mapped_ratio = (sc->nr_mapped * 100) / total_memory; | ||
966 | |||
967 | /* | ||
968 | * Now decide how much we really want to unmap some pages. The mapped | ||
969 | * ratio is downgraded - just because there's a lot of mapped memory | ||
970 | * doesn't necessarily mean that page reclaim isn't succeeding. | ||
971 | * | ||
972 | * The distress ratio is important - we don't want to start going oom. | ||
973 | * | ||
974 | * A 100% value of vm_swappiness overrides this algorithm altogether. | ||
975 | */ | ||
976 | swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; | ||
977 | |||
978 | /* | ||
979 | * Now use this metric to decide whether to start moving mapped memory | ||
980 | * onto the inactive list. | ||
981 | */ | ||
982 | if (swap_tendency >= 100) | ||
983 | reclaim_mapped = 1; | ||
984 | |||
985 | while (!list_empty(&l_hold)) { | 1248 | while (!list_empty(&l_hold)) { |
986 | cond_resched(); | 1249 | cond_resched(); |
987 | page = lru_to_page(&l_hold); | 1250 | page = lru_to_page(&l_hold); |
@@ -1170,7 +1433,7 @@ int try_to_free_pages(struct zone **zones, gfp_t gfp_mask) | |||
1170 | int i; | 1433 | int i; |
1171 | 1434 | ||
1172 | sc.gfp_mask = gfp_mask; | 1435 | sc.gfp_mask = gfp_mask; |
1173 | sc.may_writepage = 0; | 1436 | sc.may_writepage = !laptop_mode; |
1174 | sc.may_swap = 1; | 1437 | sc.may_swap = 1; |
1175 | 1438 | ||
1176 | inc_page_state(allocstall); | 1439 | inc_page_state(allocstall); |
@@ -1273,7 +1536,7 @@ loop_again: | |||
1273 | total_scanned = 0; | 1536 | total_scanned = 0; |
1274 | total_reclaimed = 0; | 1537 | total_reclaimed = 0; |
1275 | sc.gfp_mask = GFP_KERNEL; | 1538 | sc.gfp_mask = GFP_KERNEL; |
1276 | sc.may_writepage = 0; | 1539 | sc.may_writepage = !laptop_mode; |
1277 | sc.may_swap = 1; | 1540 | sc.may_swap = 1; |
1278 | sc.nr_mapped = read_page_state(nr_mapped); | 1541 | sc.nr_mapped = read_page_state(nr_mapped); |
1279 | 1542 | ||
@@ -1358,9 +1621,7 @@ scan: | |||
1358 | sc.nr_reclaimed = 0; | 1621 | sc.nr_reclaimed = 0; |
1359 | sc.priority = priority; | 1622 | sc.priority = priority; |
1360 | sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; | 1623 | sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; |
1361 | atomic_inc(&zone->reclaim_in_progress); | ||
1362 | shrink_zone(zone, &sc); | 1624 | shrink_zone(zone, &sc); |
1363 | atomic_dec(&zone->reclaim_in_progress); | ||
1364 | reclaim_state->reclaimed_slab = 0; | 1625 | reclaim_state->reclaimed_slab = 0; |
1365 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, | 1626 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, |
1366 | lru_pages); | 1627 | lru_pages); |
@@ -1586,40 +1847,61 @@ module_init(kswapd_init) | |||
1586 | */ | 1847 | */ |
1587 | int zone_reclaim_mode __read_mostly; | 1848 | int zone_reclaim_mode __read_mostly; |
1588 | 1849 | ||
1850 | #define RECLAIM_OFF 0 | ||
1851 | #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ | ||
1852 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ | ||
1853 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | ||
1854 | #define RECLAIM_SLAB (1<<3) /* Do a global slab shrink if the zone is out of memory */ | ||
1855 | |||
1589 | /* | 1856 | /* |
1590 | * Mininum time between zone reclaim scans | 1857 | * Mininum time between zone reclaim scans |
1591 | */ | 1858 | */ |
1592 | #define ZONE_RECLAIM_INTERVAL HZ/2 | 1859 | int zone_reclaim_interval __read_mostly = 30*HZ; |
1860 | |||
1861 | /* | ||
1862 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | ||
1863 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | ||
1864 | * a zone. | ||
1865 | */ | ||
1866 | #define ZONE_RECLAIM_PRIORITY 4 | ||
1867 | |||
1593 | /* | 1868 | /* |
1594 | * Try to free up some pages from this zone through reclaim. | 1869 | * Try to free up some pages from this zone through reclaim. |
1595 | */ | 1870 | */ |
1596 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | 1871 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
1597 | { | 1872 | { |
1598 | int nr_pages = 1 << order; | 1873 | int nr_pages; |
1599 | struct task_struct *p = current; | 1874 | struct task_struct *p = current; |
1600 | struct reclaim_state reclaim_state; | 1875 | struct reclaim_state reclaim_state; |
1601 | struct scan_control sc = { | 1876 | struct scan_control sc; |
1602 | .gfp_mask = gfp_mask, | 1877 | cpumask_t mask; |
1603 | .may_writepage = 0, | 1878 | int node_id; |
1604 | .may_swap = 0, | 1879 | |
1605 | .nr_mapped = read_page_state(nr_mapped), | 1880 | if (time_before(jiffies, |
1606 | .nr_scanned = 0, | 1881 | zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval)) |
1607 | .nr_reclaimed = 0, | 1882 | return 0; |
1608 | .priority = 0 | ||
1609 | }; | ||
1610 | 1883 | ||
1611 | if (!(gfp_mask & __GFP_WAIT) || | 1884 | if (!(gfp_mask & __GFP_WAIT) || |
1612 | zone->zone_pgdat->node_id != numa_node_id() || | ||
1613 | zone->all_unreclaimable || | 1885 | zone->all_unreclaimable || |
1614 | atomic_read(&zone->reclaim_in_progress) > 0) | 1886 | atomic_read(&zone->reclaim_in_progress) > 0) |
1615 | return 0; | 1887 | return 0; |
1616 | 1888 | ||
1617 | if (time_before(jiffies, | 1889 | node_id = zone->zone_pgdat->node_id; |
1618 | zone->last_unsuccessful_zone_reclaim + ZONE_RECLAIM_INTERVAL)) | 1890 | mask = node_to_cpumask(node_id); |
1619 | return 0; | 1891 | if (!cpus_empty(mask) && node_id != numa_node_id()) |
1892 | return 0; | ||
1893 | |||
1894 | sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE); | ||
1895 | sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP); | ||
1896 | sc.nr_scanned = 0; | ||
1897 | sc.nr_reclaimed = 0; | ||
1898 | sc.priority = ZONE_RECLAIM_PRIORITY + 1; | ||
1899 | sc.nr_mapped = read_page_state(nr_mapped); | ||
1900 | sc.gfp_mask = gfp_mask; | ||
1620 | 1901 | ||
1621 | disable_swap_token(); | 1902 | disable_swap_token(); |
1622 | 1903 | ||
1904 | nr_pages = 1 << order; | ||
1623 | if (nr_pages > SWAP_CLUSTER_MAX) | 1905 | if (nr_pages > SWAP_CLUSTER_MAX) |
1624 | sc.swap_cluster_max = nr_pages; | 1906 | sc.swap_cluster_max = nr_pages; |
1625 | else | 1907 | else |
@@ -1629,14 +1911,37 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
1629 | p->flags |= PF_MEMALLOC; | 1911 | p->flags |= PF_MEMALLOC; |
1630 | reclaim_state.reclaimed_slab = 0; | 1912 | reclaim_state.reclaimed_slab = 0; |
1631 | p->reclaim_state = &reclaim_state; | 1913 | p->reclaim_state = &reclaim_state; |
1632 | shrink_zone(zone, &sc); | 1914 | |
1915 | /* | ||
1916 | * Free memory by calling shrink zone with increasing priorities | ||
1917 | * until we have enough memory freed. | ||
1918 | */ | ||
1919 | do { | ||
1920 | sc.priority--; | ||
1921 | shrink_zone(zone, &sc); | ||
1922 | |||
1923 | } while (sc.nr_reclaimed < nr_pages && sc.priority > 0); | ||
1924 | |||
1925 | if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) { | ||
1926 | /* | ||
1927 | * shrink_slab does not currently allow us to determine | ||
1928 | * how many pages were freed in the zone. So we just | ||
1929 | * shake the slab and then go offnode for a single allocation. | ||
1930 | * | ||
1931 | * shrink_slab will free memory on all zones and may take | ||
1932 | * a long time. | ||
1933 | */ | ||
1934 | shrink_slab(sc.nr_scanned, gfp_mask, order); | ||
1935 | sc.nr_reclaimed = 1; /* Avoid getting the off node timeout */ | ||
1936 | } | ||
1937 | |||
1633 | p->reclaim_state = NULL; | 1938 | p->reclaim_state = NULL; |
1634 | current->flags &= ~PF_MEMALLOC; | 1939 | current->flags &= ~PF_MEMALLOC; |
1635 | 1940 | ||
1636 | if (sc.nr_reclaimed == 0) | 1941 | if (sc.nr_reclaimed == 0) |
1637 | zone->last_unsuccessful_zone_reclaim = jiffies; | 1942 | zone->last_unsuccessful_zone_reclaim = jiffies; |
1638 | 1943 | ||
1639 | return sc.nr_reclaimed > nr_pages; | 1944 | return sc.nr_reclaimed >= nr_pages; |
1640 | } | 1945 | } |
1641 | #endif | 1946 | #endif |
1642 | 1947 | ||