diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 9 | ||||
-rw-r--r-- | mm/Makefile | 3 | ||||
-rw-r--r-- | mm/allocpercpu.c | 26 | ||||
-rw-r--r-- | mm/bootmem.c | 948 | ||||
-rw-r--r-- | mm/bounce.c | 2 | ||||
-rw-r--r-- | mm/filemap.c | 432 | ||||
-rw-r--r-- | mm/filemap_xip.c | 70 | ||||
-rw-r--r-- | mm/fremap.c | 3 | ||||
-rw-r--r-- | mm/highmem.c | 6 | ||||
-rw-r--r-- | mm/hugetlb.c | 1681 | ||||
-rw-r--r-- | mm/internal.h | 61 | ||||
-rw-r--r-- | mm/madvise.c | 4 | ||||
-rw-r--r-- | mm/memcontrol.c | 385 | ||||
-rw-r--r-- | mm/memory.c | 397 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 80 | ||||
-rw-r--r-- | mm/mempolicy.c | 16 | ||||
-rw-r--r-- | mm/migrate.c | 65 | ||||
-rw-r--r-- | mm/mlock.c | 2 | ||||
-rw-r--r-- | mm/mm_init.c | 152 | ||||
-rw-r--r-- | mm/mmap.c | 189 | ||||
-rw-r--r-- | mm/mmu_notifier.c | 277 | ||||
-rw-r--r-- | mm/mmzone.c | 2 | ||||
-rw-r--r-- | mm/mprotect.c | 21 | ||||
-rw-r--r-- | mm/mremap.c | 6 | ||||
-rw-r--r-- | mm/nommu.c | 25 | ||||
-rw-r--r-- | mm/oom_kill.c | 6 | ||||
-rw-r--r-- | mm/page-writeback.c | 25 | ||||
-rw-r--r-- | mm/page_alloc.c | 288 | ||||
-rw-r--r-- | mm/page_isolation.c | 13 | ||||
-rw-r--r-- | mm/pdflush.c | 4 | ||||
-rw-r--r-- | mm/quicklist.c | 9 | ||||
-rw-r--r-- | mm/readahead.c | 6 | ||||
-rw-r--r-- | mm/rmap.c | 69 | ||||
-rw-r--r-- | mm/shmem.c | 106 | ||||
-rw-r--r-- | mm/shmem_acl.c | 2 | ||||
-rw-r--r-- | mm/slab.c | 35 | ||||
-rw-r--r-- | mm/slob.c | 28 | ||||
-rw-r--r-- | mm/slub.c | 148 | ||||
-rw-r--r-- | mm/sparse-vmemmap.c | 2 | ||||
-rw-r--r-- | mm/sparse.c | 116 | ||||
-rw-r--r-- | mm/swap.c | 17 | ||||
-rw-r--r-- | mm/swap_state.c | 40 | ||||
-rw-r--r-- | mm/swapfile.c | 65 | ||||
-rw-r--r-- | mm/tiny-shmem.c | 26 | ||||
-rw-r--r-- | mm/truncate.c | 16 | ||||
-rw-r--r-- | mm/util.c | 70 | ||||
-rw-r--r-- | mm/vmalloc.c | 26 | ||||
-rw-r--r-- | mm/vmscan.c | 93 | ||||
-rw-r--r-- | mm/vmstat.c | 22 |
49 files changed, 4336 insertions, 1758 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index 3aa819d628c1..0bd9c2dbb2a0 100644 --- a/mm/Kconfig +++ b/mm/Kconfig | |||
@@ -129,7 +129,7 @@ config MEMORY_HOTPLUG | |||
129 | bool "Allow for memory hot-add" | 129 | bool "Allow for memory hot-add" |
130 | depends on SPARSEMEM || X86_64_ACPI_NUMA | 130 | depends on SPARSEMEM || X86_64_ACPI_NUMA |
131 | depends on HOTPLUG && !HIBERNATION && ARCH_ENABLE_MEMORY_HOTPLUG | 131 | depends on HOTPLUG && !HIBERNATION && ARCH_ENABLE_MEMORY_HOTPLUG |
132 | depends on (IA64 || X86 || PPC64 || SUPERH) | 132 | depends on (IA64 || X86 || PPC64 || SUPERH || S390) |
133 | 133 | ||
134 | comment "Memory hotplug is currently incompatible with Software Suspend" | 134 | comment "Memory hotplug is currently incompatible with Software Suspend" |
135 | depends on SPARSEMEM && HOTPLUG && HIBERNATION | 135 | depends on SPARSEMEM && HOTPLUG && HIBERNATION |
@@ -174,7 +174,7 @@ config SPLIT_PTLOCK_CPUS | |||
174 | config MIGRATION | 174 | config MIGRATION |
175 | bool "Page migration" | 175 | bool "Page migration" |
176 | def_bool y | 176 | def_bool y |
177 | depends on NUMA | 177 | depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE |
178 | help | 178 | help |
179 | Allows the migration of the physical location of pages of processes | 179 | Allows the migration of the physical location of pages of processes |
180 | while the virtual addresses are not changed. This is useful for | 180 | while the virtual addresses are not changed. This is useful for |
@@ -199,9 +199,12 @@ config BOUNCE | |||
199 | config NR_QUICK | 199 | config NR_QUICK |
200 | int | 200 | int |
201 | depends on QUICKLIST | 201 | depends on QUICKLIST |
202 | default "2" if SUPERH | 202 | default "2" if SUPERH || AVR32 |
203 | default "1" | 203 | default "1" |
204 | 204 | ||
205 | config VIRT_TO_BUS | 205 | config VIRT_TO_BUS |
206 | def_bool y | 206 | def_bool y |
207 | depends on !ARCH_NO_VIRT_TO_BUS | 207 | depends on !ARCH_NO_VIRT_TO_BUS |
208 | |||
209 | config MMU_NOTIFIER | ||
210 | bool | ||
diff --git a/mm/Makefile b/mm/Makefile index 18c143b3c46c..da4ccf015aea 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -11,7 +11,7 @@ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \ | |||
11 | maccess.o page_alloc.o page-writeback.o pdflush.o \ | 11 | maccess.o page_alloc.o page-writeback.o pdflush.o \ |
12 | readahead.o swap.o truncate.o vmscan.o \ | 12 | readahead.o swap.o truncate.o vmscan.o \ |
13 | prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \ | 13 | prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \ |
14 | page_isolation.o $(mmu-y) | 14 | page_isolation.o mm_init.o $(mmu-y) |
15 | 15 | ||
16 | obj-$(CONFIG_PROC_PAGE_MONITOR) += pagewalk.o | 16 | obj-$(CONFIG_PROC_PAGE_MONITOR) += pagewalk.o |
17 | obj-$(CONFIG_BOUNCE) += bounce.o | 17 | obj-$(CONFIG_BOUNCE) += bounce.o |
@@ -25,6 +25,7 @@ obj-$(CONFIG_SHMEM) += shmem.o | |||
25 | obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o | 25 | obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o |
26 | obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o | 26 | obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o |
27 | obj-$(CONFIG_SLOB) += slob.o | 27 | obj-$(CONFIG_SLOB) += slob.o |
28 | obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o | ||
28 | obj-$(CONFIG_SLAB) += slab.o | 29 | obj-$(CONFIG_SLAB) += slab.o |
29 | obj-$(CONFIG_SLUB) += slub.o | 30 | obj-$(CONFIG_SLUB) += slub.o |
30 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 31 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index f4026bae6eed..4297bc41bfd2 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /* | 1 | /* |
2 | * linux/mm/allocpercpu.c | 2 | * linux/mm/allocpercpu.c |
3 | * | 3 | * |
4 | * Separated from slab.c August 11, 2006 Christoph Lameter <clameter@sgi.com> | 4 | * Separated from slab.c August 11, 2006 Christoph Lameter |
5 | */ | 5 | */ |
6 | #include <linux/mm.h> | 6 | #include <linux/mm.h> |
7 | #include <linux/module.h> | 7 | #include <linux/module.h> |
@@ -18,27 +18,28 @@ | |||
18 | * Depopulating per-cpu data for a cpu going offline would be a typical | 18 | * Depopulating per-cpu data for a cpu going offline would be a typical |
19 | * use case. You need to register a cpu hotplug handler for that purpose. | 19 | * use case. You need to register a cpu hotplug handler for that purpose. |
20 | */ | 20 | */ |
21 | void percpu_depopulate(void *__pdata, int cpu) | 21 | static void percpu_depopulate(void *__pdata, int cpu) |
22 | { | 22 | { |
23 | struct percpu_data *pdata = __percpu_disguise(__pdata); | 23 | struct percpu_data *pdata = __percpu_disguise(__pdata); |
24 | 24 | ||
25 | kfree(pdata->ptrs[cpu]); | 25 | kfree(pdata->ptrs[cpu]); |
26 | pdata->ptrs[cpu] = NULL; | 26 | pdata->ptrs[cpu] = NULL; |
27 | } | 27 | } |
28 | EXPORT_SYMBOL_GPL(percpu_depopulate); | ||
29 | 28 | ||
30 | /** | 29 | /** |
31 | * percpu_depopulate_mask - depopulate per-cpu data for some cpu's | 30 | * percpu_depopulate_mask - depopulate per-cpu data for some cpu's |
32 | * @__pdata: per-cpu data to depopulate | 31 | * @__pdata: per-cpu data to depopulate |
33 | * @mask: depopulate per-cpu data for cpu's selected through mask bits | 32 | * @mask: depopulate per-cpu data for cpu's selected through mask bits |
34 | */ | 33 | */ |
35 | void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask) | 34 | static void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask) |
36 | { | 35 | { |
37 | int cpu; | 36 | int cpu; |
38 | for_each_cpu_mask(cpu, *mask) | 37 | for_each_cpu_mask_nr(cpu, *mask) |
39 | percpu_depopulate(__pdata, cpu); | 38 | percpu_depopulate(__pdata, cpu); |
40 | } | 39 | } |
41 | EXPORT_SYMBOL_GPL(__percpu_depopulate_mask); | 40 | |
41 | #define percpu_depopulate_mask(__pdata, mask) \ | ||
42 | __percpu_depopulate_mask((__pdata), &(mask)) | ||
42 | 43 | ||
43 | /** | 44 | /** |
44 | * percpu_populate - populate per-cpu data for given cpu | 45 | * percpu_populate - populate per-cpu data for given cpu |
@@ -51,7 +52,7 @@ EXPORT_SYMBOL_GPL(__percpu_depopulate_mask); | |||
51 | * use case. You need to register a cpu hotplug handler for that purpose. | 52 | * use case. You need to register a cpu hotplug handler for that purpose. |
52 | * Per-cpu object is populated with zeroed buffer. | 53 | * Per-cpu object is populated with zeroed buffer. |
53 | */ | 54 | */ |
54 | void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu) | 55 | static void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu) |
55 | { | 56 | { |
56 | struct percpu_data *pdata = __percpu_disguise(__pdata); | 57 | struct percpu_data *pdata = __percpu_disguise(__pdata); |
57 | int node = cpu_to_node(cpu); | 58 | int node = cpu_to_node(cpu); |
@@ -68,7 +69,6 @@ void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu) | |||
68 | pdata->ptrs[cpu] = kzalloc(size, gfp); | 69 | pdata->ptrs[cpu] = kzalloc(size, gfp); |
69 | return pdata->ptrs[cpu]; | 70 | return pdata->ptrs[cpu]; |
70 | } | 71 | } |
71 | EXPORT_SYMBOL_GPL(percpu_populate); | ||
72 | 72 | ||
73 | /** | 73 | /** |
74 | * percpu_populate_mask - populate per-cpu data for more cpu's | 74 | * percpu_populate_mask - populate per-cpu data for more cpu's |
@@ -79,14 +79,14 @@ EXPORT_SYMBOL_GPL(percpu_populate); | |||
79 | * | 79 | * |
80 | * Per-cpu objects are populated with zeroed buffers. | 80 | * Per-cpu objects are populated with zeroed buffers. |
81 | */ | 81 | */ |
82 | int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, | 82 | static int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, |
83 | cpumask_t *mask) | 83 | cpumask_t *mask) |
84 | { | 84 | { |
85 | cpumask_t populated; | 85 | cpumask_t populated; |
86 | int cpu; | 86 | int cpu; |
87 | 87 | ||
88 | cpus_clear(populated); | 88 | cpus_clear(populated); |
89 | for_each_cpu_mask(cpu, *mask) | 89 | for_each_cpu_mask_nr(cpu, *mask) |
90 | if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) { | 90 | if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) { |
91 | __percpu_depopulate_mask(__pdata, &populated); | 91 | __percpu_depopulate_mask(__pdata, &populated); |
92 | return -ENOMEM; | 92 | return -ENOMEM; |
@@ -94,7 +94,9 @@ int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, | |||
94 | cpu_set(cpu, populated); | 94 | cpu_set(cpu, populated); |
95 | return 0; | 95 | return 0; |
96 | } | 96 | } |
97 | EXPORT_SYMBOL_GPL(__percpu_populate_mask); | 97 | |
98 | #define percpu_populate_mask(__pdata, size, gfp, mask) \ | ||
99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) | ||
98 | 100 | ||
99 | /** | 101 | /** |
100 | * percpu_alloc_mask - initial setup of per-cpu data | 102 | * percpu_alloc_mask - initial setup of per-cpu data |
diff --git a/mm/bootmem.c b/mm/bootmem.c index e8fb927392b9..ad8eec6e44a8 100644 --- a/mm/bootmem.c +++ b/mm/bootmem.c | |||
@@ -1,12 +1,12 @@ | |||
1 | /* | 1 | /* |
2 | * linux/mm/bootmem.c | 2 | * bootmem - A boot-time physical memory allocator and configurator |
3 | * | 3 | * |
4 | * Copyright (C) 1999 Ingo Molnar | 4 | * Copyright (C) 1999 Ingo Molnar |
5 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 5 | * 1999 Kanoj Sarcar, SGI |
6 | * 2008 Johannes Weiner | ||
6 | * | 7 | * |
7 | * simple boot-time physical memory area allocator and | 8 | * Access to this subsystem has to be serialized externally (which is true |
8 | * free memory collector. It's used to deal with reserved | 9 | * for the boot process anyway). |
9 | * system memory and memory holes as well. | ||
10 | */ | 10 | */ |
11 | #include <linux/init.h> | 11 | #include <linux/init.h> |
12 | #include <linux/pfn.h> | 12 | #include <linux/pfn.h> |
@@ -19,15 +19,10 @@ | |||
19 | 19 | ||
20 | #include "internal.h" | 20 | #include "internal.h" |
21 | 21 | ||
22 | /* | ||
23 | * Access to this subsystem has to be serialized externally. (this is | ||
24 | * true for the boot process anyway) | ||
25 | */ | ||
26 | unsigned long max_low_pfn; | 22 | unsigned long max_low_pfn; |
27 | unsigned long min_low_pfn; | 23 | unsigned long min_low_pfn; |
28 | unsigned long max_pfn; | 24 | unsigned long max_pfn; |
29 | 25 | ||
30 | static LIST_HEAD(bdata_list); | ||
31 | #ifdef CONFIG_CRASH_DUMP | 26 | #ifdef CONFIG_CRASH_DUMP |
32 | /* | 27 | /* |
33 | * If we have booted due to a crash, max_pfn will be a very low value. We need | 28 | * If we have booted due to a crash, max_pfn will be a very low value. We need |
@@ -36,63 +31,72 @@ static LIST_HEAD(bdata_list); | |||
36 | unsigned long saved_max_pfn; | 31 | unsigned long saved_max_pfn; |
37 | #endif | 32 | #endif |
38 | 33 | ||
39 | /* return the number of _pages_ that will be allocated for the boot bitmap */ | 34 | bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata; |
40 | unsigned long __init bootmem_bootmap_pages(unsigned long pages) | 35 | |
36 | static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list); | ||
37 | |||
38 | static int bootmem_debug; | ||
39 | |||
40 | static int __init bootmem_debug_setup(char *buf) | ||
41 | { | 41 | { |
42 | unsigned long mapsize; | 42 | bootmem_debug = 1; |
43 | return 0; | ||
44 | } | ||
45 | early_param("bootmem_debug", bootmem_debug_setup); | ||
43 | 46 | ||
44 | mapsize = (pages+7)/8; | 47 | #define bdebug(fmt, args...) ({ \ |
45 | mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; | 48 | if (unlikely(bootmem_debug)) \ |
46 | mapsize >>= PAGE_SHIFT; | 49 | printk(KERN_INFO \ |
50 | "bootmem::%s " fmt, \ | ||
51 | __FUNCTION__, ## args); \ | ||
52 | }) | ||
47 | 53 | ||
48 | return mapsize; | 54 | static unsigned long __init bootmap_bytes(unsigned long pages) |
55 | { | ||
56 | unsigned long bytes = (pages + 7) / 8; | ||
57 | |||
58 | return ALIGN(bytes, sizeof(long)); | ||
49 | } | 59 | } |
50 | 60 | ||
51 | /* | 61 | /** |
52 | * link bdata in order | 62 | * bootmem_bootmap_pages - calculate bitmap size in pages |
63 | * @pages: number of pages the bitmap has to represent | ||
53 | */ | 64 | */ |
54 | static void __init link_bootmem(bootmem_data_t *bdata) | 65 | unsigned long __init bootmem_bootmap_pages(unsigned long pages) |
55 | { | 66 | { |
56 | bootmem_data_t *ent; | 67 | unsigned long bytes = bootmap_bytes(pages); |
57 | 68 | ||
58 | if (list_empty(&bdata_list)) { | 69 | return PAGE_ALIGN(bytes) >> PAGE_SHIFT; |
59 | list_add(&bdata->list, &bdata_list); | ||
60 | return; | ||
61 | } | ||
62 | /* insert in order */ | ||
63 | list_for_each_entry(ent, &bdata_list, list) { | ||
64 | if (bdata->node_boot_start < ent->node_boot_start) { | ||
65 | list_add_tail(&bdata->list, &ent->list); | ||
66 | return; | ||
67 | } | ||
68 | } | ||
69 | list_add_tail(&bdata->list, &bdata_list); | ||
70 | } | 70 | } |
71 | 71 | ||
72 | /* | 72 | /* |
73 | * Given an initialised bdata, it returns the size of the boot bitmap | 73 | * link bdata in order |
74 | */ | 74 | */ |
75 | static unsigned long __init get_mapsize(bootmem_data_t *bdata) | 75 | static void __init link_bootmem(bootmem_data_t *bdata) |
76 | { | 76 | { |
77 | unsigned long mapsize; | 77 | struct list_head *iter; |
78 | unsigned long start = PFN_DOWN(bdata->node_boot_start); | ||
79 | unsigned long end = bdata->node_low_pfn; | ||
80 | 78 | ||
81 | mapsize = ((end - start) + 7) / 8; | 79 | list_for_each(iter, &bdata_list) { |
82 | return ALIGN(mapsize, sizeof(long)); | 80 | bootmem_data_t *ent; |
81 | |||
82 | ent = list_entry(iter, bootmem_data_t, list); | ||
83 | if (bdata->node_min_pfn < ent->node_min_pfn) | ||
84 | break; | ||
85 | } | ||
86 | list_add_tail(&bdata->list, iter); | ||
83 | } | 87 | } |
84 | 88 | ||
85 | /* | 89 | /* |
86 | * Called once to set up the allocator itself. | 90 | * Called once to set up the allocator itself. |
87 | */ | 91 | */ |
88 | static unsigned long __init init_bootmem_core(pg_data_t *pgdat, | 92 | static unsigned long __init init_bootmem_core(bootmem_data_t *bdata, |
89 | unsigned long mapstart, unsigned long start, unsigned long end) | 93 | unsigned long mapstart, unsigned long start, unsigned long end) |
90 | { | 94 | { |
91 | bootmem_data_t *bdata = pgdat->bdata; | ||
92 | unsigned long mapsize; | 95 | unsigned long mapsize; |
93 | 96 | ||
97 | mminit_validate_memmodel_limits(&start, &end); | ||
94 | bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); | 98 | bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); |
95 | bdata->node_boot_start = PFN_PHYS(start); | 99 | bdata->node_min_pfn = start; |
96 | bdata->node_low_pfn = end; | 100 | bdata->node_low_pfn = end; |
97 | link_bootmem(bdata); | 101 | link_bootmem(bdata); |
98 | 102 | ||
@@ -100,427 +104,484 @@ static unsigned long __init init_bootmem_core(pg_data_t *pgdat, | |||
100 | * Initially all pages are reserved - setup_arch() has to | 104 | * Initially all pages are reserved - setup_arch() has to |
101 | * register free RAM areas explicitly. | 105 | * register free RAM areas explicitly. |
102 | */ | 106 | */ |
103 | mapsize = get_mapsize(bdata); | 107 | mapsize = bootmap_bytes(end - start); |
104 | memset(bdata->node_bootmem_map, 0xff, mapsize); | 108 | memset(bdata->node_bootmem_map, 0xff, mapsize); |
105 | 109 | ||
110 | bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n", | ||
111 | bdata - bootmem_node_data, start, mapstart, end, mapsize); | ||
112 | |||
106 | return mapsize; | 113 | return mapsize; |
107 | } | 114 | } |
108 | 115 | ||
109 | /* | 116 | /** |
110 | * Marks a particular physical memory range as unallocatable. Usable RAM | 117 | * init_bootmem_node - register a node as boot memory |
111 | * might be used for boot-time allocations - or it might get added | 118 | * @pgdat: node to register |
112 | * to the free page pool later on. | 119 | * @freepfn: pfn where the bitmap for this node is to be placed |
120 | * @startpfn: first pfn on the node | ||
121 | * @endpfn: first pfn after the node | ||
122 | * | ||
123 | * Returns the number of bytes needed to hold the bitmap for this node. | ||
113 | */ | 124 | */ |
114 | static int __init can_reserve_bootmem_core(bootmem_data_t *bdata, | 125 | unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, |
115 | unsigned long addr, unsigned long size, int flags) | 126 | unsigned long startpfn, unsigned long endpfn) |
116 | { | 127 | { |
117 | unsigned long sidx, eidx; | 128 | return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn); |
118 | unsigned long i; | 129 | } |
119 | 130 | ||
120 | BUG_ON(!size); | 131 | /** |
132 | * init_bootmem - register boot memory | ||
133 | * @start: pfn where the bitmap is to be placed | ||
134 | * @pages: number of available physical pages | ||
135 | * | ||
136 | * Returns the number of bytes needed to hold the bitmap. | ||
137 | */ | ||
138 | unsigned long __init init_bootmem(unsigned long start, unsigned long pages) | ||
139 | { | ||
140 | max_low_pfn = pages; | ||
141 | min_low_pfn = start; | ||
142 | return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages); | ||
143 | } | ||
121 | 144 | ||
122 | /* out of range, don't hold other */ | 145 | static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata) |
123 | if (addr + size < bdata->node_boot_start || | 146 | { |
124 | PFN_DOWN(addr) > bdata->node_low_pfn) | 147 | int aligned; |
148 | struct page *page; | ||
149 | unsigned long start, end, pages, count = 0; | ||
150 | |||
151 | if (!bdata->node_bootmem_map) | ||
125 | return 0; | 152 | return 0; |
126 | 153 | ||
154 | start = bdata->node_min_pfn; | ||
155 | end = bdata->node_low_pfn; | ||
156 | |||
127 | /* | 157 | /* |
128 | * Round up to index to the range. | 158 | * If the start is aligned to the machines wordsize, we might |
159 | * be able to free pages in bulks of that order. | ||
129 | */ | 160 | */ |
130 | if (addr > bdata->node_boot_start) | 161 | aligned = !(start & (BITS_PER_LONG - 1)); |
131 | sidx= PFN_DOWN(addr - bdata->node_boot_start); | ||
132 | else | ||
133 | sidx = 0; | ||
134 | 162 | ||
135 | eidx = PFN_UP(addr + size - bdata->node_boot_start); | 163 | bdebug("nid=%td start=%lx end=%lx aligned=%d\n", |
136 | if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) | 164 | bdata - bootmem_node_data, start, end, aligned); |
137 | eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); | ||
138 | 165 | ||
139 | for (i = sidx; i < eidx; i++) { | 166 | while (start < end) { |
140 | if (test_bit(i, bdata->node_bootmem_map)) { | 167 | unsigned long *map, idx, vec; |
141 | if (flags & BOOTMEM_EXCLUSIVE) | 168 | |
142 | return -EBUSY; | 169 | map = bdata->node_bootmem_map; |
170 | idx = start - bdata->node_min_pfn; | ||
171 | vec = ~map[idx / BITS_PER_LONG]; | ||
172 | |||
173 | if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) { | ||
174 | int order = ilog2(BITS_PER_LONG); | ||
175 | |||
176 | __free_pages_bootmem(pfn_to_page(start), order); | ||
177 | count += BITS_PER_LONG; | ||
178 | } else { | ||
179 | unsigned long off = 0; | ||
180 | |||
181 | while (vec && off < BITS_PER_LONG) { | ||
182 | if (vec & 1) { | ||
183 | page = pfn_to_page(start + off); | ||
184 | __free_pages_bootmem(page, 0); | ||
185 | count++; | ||
186 | } | ||
187 | vec >>= 1; | ||
188 | off++; | ||
189 | } | ||
143 | } | 190 | } |
191 | start += BITS_PER_LONG; | ||
144 | } | 192 | } |
145 | 193 | ||
146 | return 0; | 194 | page = virt_to_page(bdata->node_bootmem_map); |
195 | pages = bdata->node_low_pfn - bdata->node_min_pfn; | ||
196 | pages = bootmem_bootmap_pages(pages); | ||
197 | count += pages; | ||
198 | while (pages--) | ||
199 | __free_pages_bootmem(page++, 0); | ||
200 | |||
201 | bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count); | ||
147 | 202 | ||
203 | return count; | ||
148 | } | 204 | } |
149 | 205 | ||
150 | static void __init reserve_bootmem_core(bootmem_data_t *bdata, | 206 | /** |
151 | unsigned long addr, unsigned long size, int flags) | 207 | * free_all_bootmem_node - release a node's free pages to the buddy allocator |
208 | * @pgdat: node to be released | ||
209 | * | ||
210 | * Returns the number of pages actually released. | ||
211 | */ | ||
212 | unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) | ||
152 | { | 213 | { |
153 | unsigned long sidx, eidx; | 214 | register_page_bootmem_info_node(pgdat); |
154 | unsigned long i; | 215 | return free_all_bootmem_core(pgdat->bdata); |
216 | } | ||
155 | 217 | ||
156 | BUG_ON(!size); | 218 | /** |
219 | * free_all_bootmem - release free pages to the buddy allocator | ||
220 | * | ||
221 | * Returns the number of pages actually released. | ||
222 | */ | ||
223 | unsigned long __init free_all_bootmem(void) | ||
224 | { | ||
225 | return free_all_bootmem_core(NODE_DATA(0)->bdata); | ||
226 | } | ||
227 | |||
228 | static void __init __free(bootmem_data_t *bdata, | ||
229 | unsigned long sidx, unsigned long eidx) | ||
230 | { | ||
231 | unsigned long idx; | ||
157 | 232 | ||
158 | /* out of range */ | 233 | bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data, |
159 | if (addr + size < bdata->node_boot_start || | 234 | sidx + bdata->node_min_pfn, |
160 | PFN_DOWN(addr) > bdata->node_low_pfn) | 235 | eidx + bdata->node_min_pfn); |
161 | return; | ||
162 | 236 | ||
163 | /* | 237 | if (bdata->hint_idx > sidx) |
164 | * Round up to index to the range. | 238 | bdata->hint_idx = sidx; |
165 | */ | ||
166 | if (addr > bdata->node_boot_start) | ||
167 | sidx= PFN_DOWN(addr - bdata->node_boot_start); | ||
168 | else | ||
169 | sidx = 0; | ||
170 | 239 | ||
171 | eidx = PFN_UP(addr + size - bdata->node_boot_start); | 240 | for (idx = sidx; idx < eidx; idx++) |
172 | if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) | 241 | if (!test_and_clear_bit(idx, bdata->node_bootmem_map)) |
173 | eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); | 242 | BUG(); |
243 | } | ||
174 | 244 | ||
175 | for (i = sidx; i < eidx; i++) { | 245 | static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx, |
176 | if (test_and_set_bit(i, bdata->node_bootmem_map)) { | 246 | unsigned long eidx, int flags) |
177 | #ifdef CONFIG_DEBUG_BOOTMEM | 247 | { |
178 | printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); | 248 | unsigned long idx; |
179 | #endif | 249 | int exclusive = flags & BOOTMEM_EXCLUSIVE; |
250 | |||
251 | bdebug("nid=%td start=%lx end=%lx flags=%x\n", | ||
252 | bdata - bootmem_node_data, | ||
253 | sidx + bdata->node_min_pfn, | ||
254 | eidx + bdata->node_min_pfn, | ||
255 | flags); | ||
256 | |||
257 | for (idx = sidx; idx < eidx; idx++) | ||
258 | if (test_and_set_bit(idx, bdata->node_bootmem_map)) { | ||
259 | if (exclusive) { | ||
260 | __free(bdata, sidx, idx); | ||
261 | return -EBUSY; | ||
262 | } | ||
263 | bdebug("silent double reserve of PFN %lx\n", | ||
264 | idx + bdata->node_min_pfn); | ||
180 | } | 265 | } |
181 | } | 266 | return 0; |
182 | } | 267 | } |
183 | 268 | ||
184 | static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, | 269 | static int __init mark_bootmem_node(bootmem_data_t *bdata, |
185 | unsigned long size) | 270 | unsigned long start, unsigned long end, |
271 | int reserve, int flags) | ||
186 | { | 272 | { |
187 | unsigned long sidx, eidx; | 273 | unsigned long sidx, eidx; |
188 | unsigned long i; | ||
189 | 274 | ||
190 | BUG_ON(!size); | 275 | bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n", |
276 | bdata - bootmem_node_data, start, end, reserve, flags); | ||
191 | 277 | ||
192 | /* out range */ | 278 | BUG_ON(start < bdata->node_min_pfn); |
193 | if (addr + size < bdata->node_boot_start || | 279 | BUG_ON(end > bdata->node_low_pfn); |
194 | PFN_DOWN(addr) > bdata->node_low_pfn) | ||
195 | return; | ||
196 | /* | ||
197 | * round down end of usable mem, partially free pages are | ||
198 | * considered reserved. | ||
199 | */ | ||
200 | 280 | ||
201 | if (addr >= bdata->node_boot_start && addr < bdata->last_success) | 281 | sidx = start - bdata->node_min_pfn; |
202 | bdata->last_success = addr; | 282 | eidx = end - bdata->node_min_pfn; |
203 | 283 | ||
204 | /* | 284 | if (reserve) |
205 | * Round up to index to the range. | 285 | return __reserve(bdata, sidx, eidx, flags); |
206 | */ | ||
207 | if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start)) | ||
208 | sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start); | ||
209 | else | 286 | else |
210 | sidx = 0; | 287 | __free(bdata, sidx, eidx); |
288 | return 0; | ||
289 | } | ||
211 | 290 | ||
212 | eidx = PFN_DOWN(addr + size - bdata->node_boot_start); | 291 | static int __init mark_bootmem(unsigned long start, unsigned long end, |
213 | if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) | 292 | int reserve, int flags) |
214 | eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); | 293 | { |
294 | unsigned long pos; | ||
295 | bootmem_data_t *bdata; | ||
215 | 296 | ||
216 | for (i = sidx; i < eidx; i++) { | 297 | pos = start; |
217 | if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) | 298 | list_for_each_entry(bdata, &bdata_list, list) { |
218 | BUG(); | 299 | int err; |
300 | unsigned long max; | ||
301 | |||
302 | if (pos < bdata->node_min_pfn || | ||
303 | pos >= bdata->node_low_pfn) { | ||
304 | BUG_ON(pos != start); | ||
305 | continue; | ||
306 | } | ||
307 | |||
308 | max = min(bdata->node_low_pfn, end); | ||
309 | |||
310 | err = mark_bootmem_node(bdata, pos, max, reserve, flags); | ||
311 | if (reserve && err) { | ||
312 | mark_bootmem(start, pos, 0, 0); | ||
313 | return err; | ||
314 | } | ||
315 | |||
316 | if (max == end) | ||
317 | return 0; | ||
318 | pos = bdata->node_low_pfn; | ||
219 | } | 319 | } |
320 | BUG(); | ||
220 | } | 321 | } |
221 | 322 | ||
222 | /* | 323 | /** |
223 | * We 'merge' subsequent allocations to save space. We might 'lose' | 324 | * free_bootmem_node - mark a page range as usable |
224 | * some fraction of a page if allocations cannot be satisfied due to | 325 | * @pgdat: node the range resides on |
225 | * size constraints on boxes where there is physical RAM space | 326 | * @physaddr: starting address of the range |
226 | * fragmentation - in these cases (mostly large memory boxes) this | 327 | * @size: size of the range in bytes |
227 | * is not a problem. | ||
228 | * | 328 | * |
229 | * On low memory boxes we get it right in 100% of the cases. | 329 | * Partial pages will be considered reserved and left as they are. |
230 | * | 330 | * |
231 | * alignment has to be a power of 2 value. | 331 | * The range must reside completely on the specified node. |
232 | * | ||
233 | * NOTE: This function is _not_ reentrant. | ||
234 | */ | 332 | */ |
235 | void * __init | 333 | void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, |
236 | __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, | 334 | unsigned long size) |
237 | unsigned long align, unsigned long goal, unsigned long limit) | ||
238 | { | 335 | { |
239 | unsigned long areasize, preferred; | 336 | unsigned long start, end; |
240 | unsigned long i, start = 0, incr, eidx, end_pfn; | ||
241 | void *ret; | ||
242 | unsigned long node_boot_start; | ||
243 | void *node_bootmem_map; | ||
244 | |||
245 | if (!size) { | ||
246 | printk("__alloc_bootmem_core(): zero-sized request\n"); | ||
247 | BUG(); | ||
248 | } | ||
249 | BUG_ON(align & (align-1)); | ||
250 | 337 | ||
251 | /* on nodes without memory - bootmem_map is NULL */ | 338 | start = PFN_UP(physaddr); |
252 | if (!bdata->node_bootmem_map) | 339 | end = PFN_DOWN(physaddr + size); |
253 | return NULL; | ||
254 | 340 | ||
255 | /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */ | 341 | mark_bootmem_node(pgdat->bdata, start, end, 0, 0); |
256 | node_boot_start = bdata->node_boot_start; | 342 | } |
257 | node_bootmem_map = bdata->node_bootmem_map; | ||
258 | if (align) { | ||
259 | node_boot_start = ALIGN(bdata->node_boot_start, align); | ||
260 | if (node_boot_start > bdata->node_boot_start) | ||
261 | node_bootmem_map = (unsigned long *)bdata->node_bootmem_map + | ||
262 | PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG; | ||
263 | } | ||
264 | |||
265 | if (limit && node_boot_start >= limit) | ||
266 | return NULL; | ||
267 | |||
268 | end_pfn = bdata->node_low_pfn; | ||
269 | limit = PFN_DOWN(limit); | ||
270 | if (limit && end_pfn > limit) | ||
271 | end_pfn = limit; | ||
272 | 343 | ||
273 | eidx = end_pfn - PFN_DOWN(node_boot_start); | 344 | /** |
345 | * free_bootmem - mark a page range as usable | ||
346 | * @addr: starting address of the range | ||
347 | * @size: size of the range in bytes | ||
348 | * | ||
349 | * Partial pages will be considered reserved and left as they are. | ||
350 | * | ||
351 | * The range must be contiguous but may span node boundaries. | ||
352 | */ | ||
353 | void __init free_bootmem(unsigned long addr, unsigned long size) | ||
354 | { | ||
355 | unsigned long start, end; | ||
274 | 356 | ||
275 | /* | 357 | start = PFN_UP(addr); |
276 | * We try to allocate bootmem pages above 'goal' | 358 | end = PFN_DOWN(addr + size); |
277 | * first, then we try to allocate lower pages. | ||
278 | */ | ||
279 | preferred = 0; | ||
280 | if (goal && PFN_DOWN(goal) < end_pfn) { | ||
281 | if (goal > node_boot_start) | ||
282 | preferred = goal - node_boot_start; | ||
283 | |||
284 | if (bdata->last_success > node_boot_start && | ||
285 | bdata->last_success - node_boot_start >= preferred) | ||
286 | if (!limit || (limit && limit > bdata->last_success)) | ||
287 | preferred = bdata->last_success - node_boot_start; | ||
288 | } | ||
289 | 359 | ||
290 | preferred = PFN_DOWN(ALIGN(preferred, align)); | 360 | mark_bootmem(start, end, 0, 0); |
291 | areasize = (size + PAGE_SIZE-1) / PAGE_SIZE; | 361 | } |
292 | incr = align >> PAGE_SHIFT ? : 1; | ||
293 | 362 | ||
294 | restart_scan: | 363 | /** |
295 | for (i = preferred; i < eidx;) { | 364 | * reserve_bootmem_node - mark a page range as reserved |
296 | unsigned long j; | 365 | * @pgdat: node the range resides on |
366 | * @physaddr: starting address of the range | ||
367 | * @size: size of the range in bytes | ||
368 | * @flags: reservation flags (see linux/bootmem.h) | ||
369 | * | ||
370 | * Partial pages will be reserved. | ||
371 | * | ||
372 | * The range must reside completely on the specified node. | ||
373 | */ | ||
374 | int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | ||
375 | unsigned long size, int flags) | ||
376 | { | ||
377 | unsigned long start, end; | ||
297 | 378 | ||
298 | i = find_next_zero_bit(node_bootmem_map, eidx, i); | 379 | start = PFN_DOWN(physaddr); |
299 | i = ALIGN(i, incr); | 380 | end = PFN_UP(physaddr + size); |
300 | if (i >= eidx) | ||
301 | break; | ||
302 | if (test_bit(i, node_bootmem_map)) { | ||
303 | i += incr; | ||
304 | continue; | ||
305 | } | ||
306 | for (j = i + 1; j < i + areasize; ++j) { | ||
307 | if (j >= eidx) | ||
308 | goto fail_block; | ||
309 | if (test_bit(j, node_bootmem_map)) | ||
310 | goto fail_block; | ||
311 | } | ||
312 | start = i; | ||
313 | goto found; | ||
314 | fail_block: | ||
315 | i = ALIGN(j, incr); | ||
316 | if (i == j) | ||
317 | i += incr; | ||
318 | } | ||
319 | 381 | ||
320 | if (preferred > 0) { | 382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); |
321 | preferred = 0; | 383 | } |
322 | goto restart_scan; | ||
323 | } | ||
324 | return NULL; | ||
325 | 384 | ||
326 | found: | 385 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE |
327 | bdata->last_success = PFN_PHYS(start) + node_boot_start; | 386 | /** |
328 | BUG_ON(start >= eidx); | 387 | * reserve_bootmem - mark a page range as usable |
388 | * @addr: starting address of the range | ||
389 | * @size: size of the range in bytes | ||
390 | * @flags: reservation flags (see linux/bootmem.h) | ||
391 | * | ||
392 | * Partial pages will be reserved. | ||
393 | * | ||
394 | * The range must be contiguous but may span node boundaries. | ||
395 | */ | ||
396 | int __init reserve_bootmem(unsigned long addr, unsigned long size, | ||
397 | int flags) | ||
398 | { | ||
399 | unsigned long start, end; | ||
329 | 400 | ||
330 | /* | 401 | start = PFN_DOWN(addr); |
331 | * Is the next page of the previous allocation-end the start | 402 | end = PFN_UP(addr + size); |
332 | * of this allocation's buffer? If yes then we can 'merge' | ||
333 | * the previous partial page with this allocation. | ||
334 | */ | ||
335 | if (align < PAGE_SIZE && | ||
336 | bdata->last_offset && bdata->last_pos+1 == start) { | ||
337 | unsigned long offset, remaining_size; | ||
338 | offset = ALIGN(bdata->last_offset, align); | ||
339 | BUG_ON(offset > PAGE_SIZE); | ||
340 | remaining_size = PAGE_SIZE - offset; | ||
341 | if (size < remaining_size) { | ||
342 | areasize = 0; | ||
343 | /* last_pos unchanged */ | ||
344 | bdata->last_offset = offset + size; | ||
345 | ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + | ||
346 | offset + node_boot_start); | ||
347 | } else { | ||
348 | remaining_size = size - remaining_size; | ||
349 | areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE; | ||
350 | ret = phys_to_virt(bdata->last_pos * PAGE_SIZE + | ||
351 | offset + node_boot_start); | ||
352 | bdata->last_pos = start + areasize - 1; | ||
353 | bdata->last_offset = remaining_size; | ||
354 | } | ||
355 | bdata->last_offset &= ~PAGE_MASK; | ||
356 | } else { | ||
357 | bdata->last_pos = start + areasize - 1; | ||
358 | bdata->last_offset = size & ~PAGE_MASK; | ||
359 | ret = phys_to_virt(start * PAGE_SIZE + node_boot_start); | ||
360 | } | ||
361 | 403 | ||
362 | /* | 404 | return mark_bootmem(start, end, 1, flags); |
363 | * Reserve the area now: | ||
364 | */ | ||
365 | for (i = start; i < start + areasize; i++) | ||
366 | if (unlikely(test_and_set_bit(i, node_bootmem_map))) | ||
367 | BUG(); | ||
368 | memset(ret, 0, size); | ||
369 | return ret; | ||
370 | } | 405 | } |
406 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | ||
371 | 407 | ||
372 | static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat) | 408 | static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx, |
409 | unsigned long step) | ||
373 | { | 410 | { |
374 | struct page *page; | 411 | unsigned long base = bdata->node_min_pfn; |
375 | unsigned long pfn; | ||
376 | bootmem_data_t *bdata = pgdat->bdata; | ||
377 | unsigned long i, count, total = 0; | ||
378 | unsigned long idx; | ||
379 | unsigned long *map; | ||
380 | int gofast = 0; | ||
381 | |||
382 | BUG_ON(!bdata->node_bootmem_map); | ||
383 | |||
384 | count = 0; | ||
385 | /* first extant page of the node */ | ||
386 | pfn = PFN_DOWN(bdata->node_boot_start); | ||
387 | idx = bdata->node_low_pfn - pfn; | ||
388 | map = bdata->node_bootmem_map; | ||
389 | /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */ | ||
390 | if (bdata->node_boot_start == 0 || | ||
391 | ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG)) | ||
392 | gofast = 1; | ||
393 | for (i = 0; i < idx; ) { | ||
394 | unsigned long v = ~map[i / BITS_PER_LONG]; | ||
395 | |||
396 | if (gofast && v == ~0UL) { | ||
397 | int order; | ||
398 | |||
399 | page = pfn_to_page(pfn); | ||
400 | count += BITS_PER_LONG; | ||
401 | order = ffs(BITS_PER_LONG) - 1; | ||
402 | __free_pages_bootmem(page, order); | ||
403 | i += BITS_PER_LONG; | ||
404 | page += BITS_PER_LONG; | ||
405 | } else if (v) { | ||
406 | unsigned long m; | ||
407 | |||
408 | page = pfn_to_page(pfn); | ||
409 | for (m = 1; m && i < idx; m<<=1, page++, i++) { | ||
410 | if (v & m) { | ||
411 | count++; | ||
412 | __free_pages_bootmem(page, 0); | ||
413 | } | ||
414 | } | ||
415 | } else { | ||
416 | i += BITS_PER_LONG; | ||
417 | } | ||
418 | pfn += BITS_PER_LONG; | ||
419 | } | ||
420 | total += count; | ||
421 | 412 | ||
422 | /* | 413 | /* |
423 | * Now free the allocator bitmap itself, it's not | 414 | * Align the index with respect to the node start so that the |
424 | * needed anymore: | 415 | * combination of both satisfies the requested alignment. |
425 | */ | 416 | */ |
426 | page = virt_to_page(bdata->node_bootmem_map); | ||
427 | count = 0; | ||
428 | idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT; | ||
429 | for (i = 0; i < idx; i++, page++) { | ||
430 | __free_pages_bootmem(page, 0); | ||
431 | count++; | ||
432 | } | ||
433 | total += count; | ||
434 | bdata->node_bootmem_map = NULL; | ||
435 | 417 | ||
436 | return total; | 418 | return ALIGN(base + idx, step) - base; |
437 | } | 419 | } |
438 | 420 | ||
439 | unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, | 421 | static unsigned long align_off(struct bootmem_data *bdata, unsigned long off, |
440 | unsigned long startpfn, unsigned long endpfn) | 422 | unsigned long align) |
441 | { | 423 | { |
442 | return init_bootmem_core(pgdat, freepfn, startpfn, endpfn); | 424 | unsigned long base = PFN_PHYS(bdata->node_min_pfn); |
443 | } | ||
444 | 425 | ||
445 | void __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | 426 | /* Same as align_idx for byte offsets */ |
446 | unsigned long size, int flags) | ||
447 | { | ||
448 | int ret; | ||
449 | 427 | ||
450 | ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); | 428 | return ALIGN(base + off, align) - base; |
451 | if (ret < 0) | ||
452 | return; | ||
453 | reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); | ||
454 | } | 429 | } |
455 | 430 | ||
456 | void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | 431 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, |
457 | unsigned long size) | 432 | unsigned long size, unsigned long align, |
433 | unsigned long goal, unsigned long limit) | ||
458 | { | 434 | { |
459 | free_bootmem_core(pgdat->bdata, physaddr, size); | 435 | unsigned long fallback = 0; |
460 | } | 436 | unsigned long min, max, start, sidx, midx, step; |
461 | 437 | ||
462 | unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) | 438 | BUG_ON(!size); |
463 | { | 439 | BUG_ON(align & (align - 1)); |
464 | register_page_bootmem_info_node(pgdat); | 440 | BUG_ON(limit && goal + size > limit); |
465 | return free_all_bootmem_core(pgdat); | ||
466 | } | ||
467 | 441 | ||
468 | unsigned long __init init_bootmem(unsigned long start, unsigned long pages) | 442 | if (!bdata->node_bootmem_map) |
469 | { | 443 | return NULL; |
470 | max_low_pfn = pages; | ||
471 | min_low_pfn = start; | ||
472 | return init_bootmem_core(NODE_DATA(0), start, 0, pages); | ||
473 | } | ||
474 | 444 | ||
475 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | 445 | bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n", |
476 | int __init reserve_bootmem(unsigned long addr, unsigned long size, | 446 | bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT, |
477 | int flags) | 447 | align, goal, limit); |
478 | { | ||
479 | bootmem_data_t *bdata; | ||
480 | int ret; | ||
481 | 448 | ||
482 | list_for_each_entry(bdata, &bdata_list, list) { | 449 | min = bdata->node_min_pfn; |
483 | ret = can_reserve_bootmem_core(bdata, addr, size, flags); | 450 | max = bdata->node_low_pfn; |
484 | if (ret < 0) | 451 | |
485 | return ret; | 452 | goal >>= PAGE_SHIFT; |
453 | limit >>= PAGE_SHIFT; | ||
454 | |||
455 | if (limit && max > limit) | ||
456 | max = limit; | ||
457 | if (max <= min) | ||
458 | return NULL; | ||
459 | |||
460 | step = max(align >> PAGE_SHIFT, 1UL); | ||
461 | |||
462 | if (goal && min < goal && goal < max) | ||
463 | start = ALIGN(goal, step); | ||
464 | else | ||
465 | start = ALIGN(min, step); | ||
466 | |||
467 | sidx = start - bdata->node_min_pfn; | ||
468 | midx = max - bdata->node_min_pfn; | ||
469 | |||
470 | if (bdata->hint_idx > sidx) { | ||
471 | /* | ||
472 | * Handle the valid case of sidx being zero and still | ||
473 | * catch the fallback below. | ||
474 | */ | ||
475 | fallback = sidx + 1; | ||
476 | sidx = align_idx(bdata, bdata->hint_idx, step); | ||
486 | } | 477 | } |
487 | list_for_each_entry(bdata, &bdata_list, list) | ||
488 | reserve_bootmem_core(bdata, addr, size, flags); | ||
489 | 478 | ||
490 | return 0; | 479 | while (1) { |
491 | } | 480 | int merge; |
492 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | 481 | void *region; |
482 | unsigned long eidx, i, start_off, end_off; | ||
483 | find_block: | ||
484 | sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx); | ||
485 | sidx = align_idx(bdata, sidx, step); | ||
486 | eidx = sidx + PFN_UP(size); | ||
493 | 487 | ||
494 | void __init free_bootmem(unsigned long addr, unsigned long size) | 488 | if (sidx >= midx || eidx > midx) |
495 | { | 489 | break; |
496 | bootmem_data_t *bdata; | ||
497 | list_for_each_entry(bdata, &bdata_list, list) | ||
498 | free_bootmem_core(bdata, addr, size); | ||
499 | } | ||
500 | 490 | ||
501 | unsigned long __init free_all_bootmem(void) | 491 | for (i = sidx; i < eidx; i++) |
502 | { | 492 | if (test_bit(i, bdata->node_bootmem_map)) { |
503 | return free_all_bootmem_core(NODE_DATA(0)); | 493 | sidx = align_idx(bdata, i, step); |
494 | if (sidx == i) | ||
495 | sidx += step; | ||
496 | goto find_block; | ||
497 | } | ||
498 | |||
499 | if (bdata->last_end_off & (PAGE_SIZE - 1) && | ||
500 | PFN_DOWN(bdata->last_end_off) + 1 == sidx) | ||
501 | start_off = align_off(bdata, bdata->last_end_off, align); | ||
502 | else | ||
503 | start_off = PFN_PHYS(sidx); | ||
504 | |||
505 | merge = PFN_DOWN(start_off) < sidx; | ||
506 | end_off = start_off + size; | ||
507 | |||
508 | bdata->last_end_off = end_off; | ||
509 | bdata->hint_idx = PFN_UP(end_off); | ||
510 | |||
511 | /* | ||
512 | * Reserve the area now: | ||
513 | */ | ||
514 | if (__reserve(bdata, PFN_DOWN(start_off) + merge, | ||
515 | PFN_UP(end_off), BOOTMEM_EXCLUSIVE)) | ||
516 | BUG(); | ||
517 | |||
518 | region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) + | ||
519 | start_off); | ||
520 | memset(region, 0, size); | ||
521 | return region; | ||
522 | } | ||
523 | |||
524 | if (fallback) { | ||
525 | sidx = align_idx(bdata, fallback - 1, step); | ||
526 | fallback = 0; | ||
527 | goto find_block; | ||
528 | } | ||
529 | |||
530 | return NULL; | ||
504 | } | 531 | } |
505 | 532 | ||
506 | void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, | 533 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, |
507 | unsigned long goal) | 534 | unsigned long align, |
535 | unsigned long goal, | ||
536 | unsigned long limit) | ||
508 | { | 537 | { |
509 | bootmem_data_t *bdata; | 538 | bootmem_data_t *bdata; |
510 | void *ptr; | ||
511 | 539 | ||
540 | restart: | ||
512 | list_for_each_entry(bdata, &bdata_list, list) { | 541 | list_for_each_entry(bdata, &bdata_list, list) { |
513 | ptr = __alloc_bootmem_core(bdata, size, align, goal, 0); | 542 | void *region; |
514 | if (ptr) | 543 | |
515 | return ptr; | 544 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) |
545 | continue; | ||
546 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) | ||
547 | break; | ||
548 | |||
549 | region = alloc_bootmem_core(bdata, size, align, goal, limit); | ||
550 | if (region) | ||
551 | return region; | ||
552 | } | ||
553 | |||
554 | if (goal) { | ||
555 | goal = 0; | ||
556 | goto restart; | ||
516 | } | 557 | } |
558 | |||
517 | return NULL; | 559 | return NULL; |
518 | } | 560 | } |
519 | 561 | ||
520 | void * __init __alloc_bootmem(unsigned long size, unsigned long align, | 562 | /** |
521 | unsigned long goal) | 563 | * __alloc_bootmem_nopanic - allocate boot memory without panicking |
564 | * @size: size of the request in bytes | ||
565 | * @align: alignment of the region | ||
566 | * @goal: preferred starting address of the region | ||
567 | * | ||
568 | * The goal is dropped if it can not be satisfied and the allocation will | ||
569 | * fall back to memory below @goal. | ||
570 | * | ||
571 | * Allocation may happen on any node in the system. | ||
572 | * | ||
573 | * Returns NULL on failure. | ||
574 | */ | ||
575 | void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, | ||
576 | unsigned long goal) | ||
522 | { | 577 | { |
523 | void *mem = __alloc_bootmem_nopanic(size,align,goal); | 578 | return ___alloc_bootmem_nopanic(size, align, goal, 0); |
579 | } | ||
580 | |||
581 | static void * __init ___alloc_bootmem(unsigned long size, unsigned long align, | ||
582 | unsigned long goal, unsigned long limit) | ||
583 | { | ||
584 | void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit); | ||
524 | 585 | ||
525 | if (mem) | 586 | if (mem) |
526 | return mem; | 587 | return mem; |
@@ -532,78 +593,135 @@ void * __init __alloc_bootmem(unsigned long size, unsigned long align, | |||
532 | return NULL; | 593 | return NULL; |
533 | } | 594 | } |
534 | 595 | ||
596 | /** | ||
597 | * __alloc_bootmem - allocate boot memory | ||
598 | * @size: size of the request in bytes | ||
599 | * @align: alignment of the region | ||
600 | * @goal: preferred starting address of the region | ||
601 | * | ||
602 | * The goal is dropped if it can not be satisfied and the allocation will | ||
603 | * fall back to memory below @goal. | ||
604 | * | ||
605 | * Allocation may happen on any node in the system. | ||
606 | * | ||
607 | * The function panics if the request can not be satisfied. | ||
608 | */ | ||
609 | void * __init __alloc_bootmem(unsigned long size, unsigned long align, | ||
610 | unsigned long goal) | ||
611 | { | ||
612 | return ___alloc_bootmem(size, align, goal, 0); | ||
613 | } | ||
535 | 614 | ||
536 | void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, | 615 | static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata, |
537 | unsigned long align, unsigned long goal) | 616 | unsigned long size, unsigned long align, |
617 | unsigned long goal, unsigned long limit) | ||
538 | { | 618 | { |
539 | void *ptr; | 619 | void *ptr; |
540 | 620 | ||
541 | ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); | 621 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); |
542 | if (ptr) | 622 | if (ptr) |
543 | return ptr; | 623 | return ptr; |
544 | 624 | ||
545 | return __alloc_bootmem(size, align, goal); | 625 | return ___alloc_bootmem(size, align, goal, limit); |
626 | } | ||
627 | |||
628 | /** | ||
629 | * __alloc_bootmem_node - allocate boot memory from a specific node | ||
630 | * @pgdat: node to allocate from | ||
631 | * @size: size of the request in bytes | ||
632 | * @align: alignment of the region | ||
633 | * @goal: preferred starting address of the region | ||
634 | * | ||
635 | * The goal is dropped if it can not be satisfied and the allocation will | ||
636 | * fall back to memory below @goal. | ||
637 | * | ||
638 | * Allocation may fall back to any node in the system if the specified node | ||
639 | * can not hold the requested memory. | ||
640 | * | ||
641 | * The function panics if the request can not be satisfied. | ||
642 | */ | ||
643 | void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, | ||
644 | unsigned long align, unsigned long goal) | ||
645 | { | ||
646 | return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0); | ||
546 | } | 647 | } |
547 | 648 | ||
548 | #ifdef CONFIG_SPARSEMEM | 649 | #ifdef CONFIG_SPARSEMEM |
650 | /** | ||
651 | * alloc_bootmem_section - allocate boot memory from a specific section | ||
652 | * @size: size of the request in bytes | ||
653 | * @section_nr: sparse map section to allocate from | ||
654 | * | ||
655 | * Return NULL on failure. | ||
656 | */ | ||
549 | void * __init alloc_bootmem_section(unsigned long size, | 657 | void * __init alloc_bootmem_section(unsigned long size, |
550 | unsigned long section_nr) | 658 | unsigned long section_nr) |
551 | { | 659 | { |
552 | void *ptr; | 660 | bootmem_data_t *bdata; |
553 | unsigned long limit, goal, start_nr, end_nr, pfn; | 661 | unsigned long pfn, goal, limit; |
554 | struct pglist_data *pgdat; | ||
555 | 662 | ||
556 | pfn = section_nr_to_pfn(section_nr); | 663 | pfn = section_nr_to_pfn(section_nr); |
557 | goal = PFN_PHYS(pfn); | 664 | goal = pfn << PAGE_SHIFT; |
558 | limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1; | 665 | limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT; |
559 | pgdat = NODE_DATA(early_pfn_to_nid(pfn)); | 666 | bdata = &bootmem_node_data[early_pfn_to_nid(pfn)]; |
560 | ptr = __alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal, | ||
561 | limit); | ||
562 | 667 | ||
563 | if (!ptr) | 668 | return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit); |
564 | return NULL; | 669 | } |
670 | #endif | ||
565 | 671 | ||
566 | start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr))); | 672 | void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, |
567 | end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size)); | 673 | unsigned long align, unsigned long goal) |
568 | if (start_nr != section_nr || end_nr != section_nr) { | 674 | { |
569 | printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n", | 675 | void *ptr; |
570 | section_nr); | ||
571 | free_bootmem_core(pgdat->bdata, __pa(ptr), size); | ||
572 | ptr = NULL; | ||
573 | } | ||
574 | 676 | ||
575 | return ptr; | 677 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); |
678 | if (ptr) | ||
679 | return ptr; | ||
680 | |||
681 | return __alloc_bootmem_nopanic(size, align, goal); | ||
576 | } | 682 | } |
577 | #endif | ||
578 | 683 | ||
579 | #ifndef ARCH_LOW_ADDRESS_LIMIT | 684 | #ifndef ARCH_LOW_ADDRESS_LIMIT |
580 | #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL | 685 | #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL |
581 | #endif | 686 | #endif |
582 | 687 | ||
688 | /** | ||
689 | * __alloc_bootmem_low - allocate low boot memory | ||
690 | * @size: size of the request in bytes | ||
691 | * @align: alignment of the region | ||
692 | * @goal: preferred starting address of the region | ||
693 | * | ||
694 | * The goal is dropped if it can not be satisfied and the allocation will | ||
695 | * fall back to memory below @goal. | ||
696 | * | ||
697 | * Allocation may happen on any node in the system. | ||
698 | * | ||
699 | * The function panics if the request can not be satisfied. | ||
700 | */ | ||
583 | void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, | 701 | void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, |
584 | unsigned long goal) | 702 | unsigned long goal) |
585 | { | 703 | { |
586 | bootmem_data_t *bdata; | 704 | return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT); |
587 | void *ptr; | ||
588 | |||
589 | list_for_each_entry(bdata, &bdata_list, list) { | ||
590 | ptr = __alloc_bootmem_core(bdata, size, align, goal, | ||
591 | ARCH_LOW_ADDRESS_LIMIT); | ||
592 | if (ptr) | ||
593 | return ptr; | ||
594 | } | ||
595 | |||
596 | /* | ||
597 | * Whoops, we cannot satisfy the allocation request. | ||
598 | */ | ||
599 | printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size); | ||
600 | panic("Out of low memory"); | ||
601 | return NULL; | ||
602 | } | 705 | } |
603 | 706 | ||
707 | /** | ||
708 | * __alloc_bootmem_low_node - allocate low boot memory from a specific node | ||
709 | * @pgdat: node to allocate from | ||
710 | * @size: size of the request in bytes | ||
711 | * @align: alignment of the region | ||
712 | * @goal: preferred starting address of the region | ||
713 | * | ||
714 | * The goal is dropped if it can not be satisfied and the allocation will | ||
715 | * fall back to memory below @goal. | ||
716 | * | ||
717 | * Allocation may fall back to any node in the system if the specified node | ||
718 | * can not hold the requested memory. | ||
719 | * | ||
720 | * The function panics if the request can not be satisfied. | ||
721 | */ | ||
604 | void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, | 722 | void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, |
605 | unsigned long align, unsigned long goal) | 723 | unsigned long align, unsigned long goal) |
606 | { | 724 | { |
607 | return __alloc_bootmem_core(pgdat->bdata, size, align, goal, | 725 | return ___alloc_bootmem_node(pgdat->bdata, size, align, |
608 | ARCH_LOW_ADDRESS_LIMIT); | 726 | goal, ARCH_LOW_ADDRESS_LIMIT); |
609 | } | 727 | } |
diff --git a/mm/bounce.c b/mm/bounce.c index b6d2d0f1019b..06722c403058 100644 --- a/mm/bounce.c +++ b/mm/bounce.c | |||
@@ -267,7 +267,7 @@ void blk_queue_bounce(struct request_queue *q, struct bio **bio_orig) | |||
267 | /* | 267 | /* |
268 | * Data-less bio, nothing to bounce | 268 | * Data-less bio, nothing to bounce |
269 | */ | 269 | */ |
270 | if (bio_empty_barrier(*bio_orig)) | 270 | if (!bio_has_data(*bio_orig)) |
271 | return; | 271 | return; |
272 | 272 | ||
273 | /* | 273 | /* |
diff --git a/mm/filemap.c b/mm/filemap.c index 1e6a7d34874f..876bc595d0f8 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -42,9 +42,6 @@ | |||
42 | 42 | ||
43 | #include <asm/mman.h> | 43 | #include <asm/mman.h> |
44 | 44 | ||
45 | static ssize_t | ||
46 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | ||
47 | loff_t offset, unsigned long nr_segs); | ||
48 | 45 | ||
49 | /* | 46 | /* |
50 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | 47 | * Shared mappings implemented 30.11.1994. It's not fully working yet, |
@@ -112,13 +109,13 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | |||
112 | /* | 109 | /* |
113 | * Remove a page from the page cache and free it. Caller has to make | 110 | * Remove a page from the page cache and free it. Caller has to make |
114 | * sure the page is locked and that nobody else uses it - or that usage | 111 | * sure the page is locked and that nobody else uses it - or that usage |
115 | * is safe. The caller must hold a write_lock on the mapping's tree_lock. | 112 | * is safe. The caller must hold the mapping's tree_lock. |
116 | */ | 113 | */ |
117 | void __remove_from_page_cache(struct page *page) | 114 | void __remove_from_page_cache(struct page *page) |
118 | { | 115 | { |
119 | struct address_space *mapping = page->mapping; | 116 | struct address_space *mapping = page->mapping; |
120 | 117 | ||
121 | mem_cgroup_uncharge_page(page); | 118 | mem_cgroup_uncharge_cache_page(page); |
122 | radix_tree_delete(&mapping->page_tree, page->index); | 119 | radix_tree_delete(&mapping->page_tree, page->index); |
123 | page->mapping = NULL; | 120 | page->mapping = NULL; |
124 | mapping->nrpages--; | 121 | mapping->nrpages--; |
@@ -144,9 +141,9 @@ void remove_from_page_cache(struct page *page) | |||
144 | 141 | ||
145 | BUG_ON(!PageLocked(page)); | 142 | BUG_ON(!PageLocked(page)); |
146 | 143 | ||
147 | write_lock_irq(&mapping->tree_lock); | 144 | spin_lock_irq(&mapping->tree_lock); |
148 | __remove_from_page_cache(page); | 145 | __remove_from_page_cache(page); |
149 | write_unlock_irq(&mapping->tree_lock); | 146 | spin_unlock_irq(&mapping->tree_lock); |
150 | } | 147 | } |
151 | 148 | ||
152 | static int sync_page(void *word) | 149 | static int sync_page(void *word) |
@@ -236,11 +233,12 @@ int filemap_fdatawrite(struct address_space *mapping) | |||
236 | } | 233 | } |
237 | EXPORT_SYMBOL(filemap_fdatawrite); | 234 | EXPORT_SYMBOL(filemap_fdatawrite); |
238 | 235 | ||
239 | static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 236 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
240 | loff_t end) | 237 | loff_t end) |
241 | { | 238 | { |
242 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | 239 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); |
243 | } | 240 | } |
241 | EXPORT_SYMBOL(filemap_fdatawrite_range); | ||
244 | 242 | ||
245 | /** | 243 | /** |
246 | * filemap_flush - mostly a non-blocking flush | 244 | * filemap_flush - mostly a non-blocking flush |
@@ -444,48 +442,52 @@ int filemap_write_and_wait_range(struct address_space *mapping, | |||
444 | } | 442 | } |
445 | 443 | ||
446 | /** | 444 | /** |
447 | * add_to_page_cache - add newly allocated pagecache pages | 445 | * add_to_page_cache_locked - add a locked page to the pagecache |
448 | * @page: page to add | 446 | * @page: page to add |
449 | * @mapping: the page's address_space | 447 | * @mapping: the page's address_space |
450 | * @offset: page index | 448 | * @offset: page index |
451 | * @gfp_mask: page allocation mode | 449 | * @gfp_mask: page allocation mode |
452 | * | 450 | * |
453 | * This function is used to add newly allocated pagecache pages; | 451 | * This function is used to add a page to the pagecache. It must be locked. |
454 | * the page is new, so we can just run SetPageLocked() against it. | ||
455 | * The other page state flags were set by rmqueue(). | ||
456 | * | ||
457 | * This function does not add the page to the LRU. The caller must do that. | 452 | * This function does not add the page to the LRU. The caller must do that. |
458 | */ | 453 | */ |
459 | int add_to_page_cache(struct page *page, struct address_space *mapping, | 454 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, |
460 | pgoff_t offset, gfp_t gfp_mask) | 455 | pgoff_t offset, gfp_t gfp_mask) |
461 | { | 456 | { |
462 | int error = mem_cgroup_cache_charge(page, current->mm, | 457 | int error; |
458 | |||
459 | VM_BUG_ON(!PageLocked(page)); | ||
460 | |||
461 | error = mem_cgroup_cache_charge(page, current->mm, | ||
463 | gfp_mask & ~__GFP_HIGHMEM); | 462 | gfp_mask & ~__GFP_HIGHMEM); |
464 | if (error) | 463 | if (error) |
465 | goto out; | 464 | goto out; |
466 | 465 | ||
467 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); | 466 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
468 | if (error == 0) { | 467 | if (error == 0) { |
469 | write_lock_irq(&mapping->tree_lock); | 468 | page_cache_get(page); |
469 | page->mapping = mapping; | ||
470 | page->index = offset; | ||
471 | |||
472 | spin_lock_irq(&mapping->tree_lock); | ||
470 | error = radix_tree_insert(&mapping->page_tree, offset, page); | 473 | error = radix_tree_insert(&mapping->page_tree, offset, page); |
471 | if (!error) { | 474 | if (likely(!error)) { |
472 | page_cache_get(page); | ||
473 | SetPageLocked(page); | ||
474 | page->mapping = mapping; | ||
475 | page->index = offset; | ||
476 | mapping->nrpages++; | 475 | mapping->nrpages++; |
477 | __inc_zone_page_state(page, NR_FILE_PAGES); | 476 | __inc_zone_page_state(page, NR_FILE_PAGES); |
478 | } else | 477 | } else { |
479 | mem_cgroup_uncharge_page(page); | 478 | page->mapping = NULL; |
479 | mem_cgroup_uncharge_cache_page(page); | ||
480 | page_cache_release(page); | ||
481 | } | ||
480 | 482 | ||
481 | write_unlock_irq(&mapping->tree_lock); | 483 | spin_unlock_irq(&mapping->tree_lock); |
482 | radix_tree_preload_end(); | 484 | radix_tree_preload_end(); |
483 | } else | 485 | } else |
484 | mem_cgroup_uncharge_page(page); | 486 | mem_cgroup_uncharge_cache_page(page); |
485 | out: | 487 | out: |
486 | return error; | 488 | return error; |
487 | } | 489 | } |
488 | EXPORT_SYMBOL(add_to_page_cache); | 490 | EXPORT_SYMBOL(add_to_page_cache_locked); |
489 | 491 | ||
490 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | 492 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, |
491 | pgoff_t offset, gfp_t gfp_mask) | 493 | pgoff_t offset, gfp_t gfp_mask) |
@@ -556,14 +558,14 @@ EXPORT_SYMBOL(wait_on_page_bit); | |||
556 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | 558 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
557 | * | 559 | * |
558 | * The first mb is necessary to safely close the critical section opened by the | 560 | * The first mb is necessary to safely close the critical section opened by the |
559 | * TestSetPageLocked(), the second mb is necessary to enforce ordering between | 561 | * test_and_set_bit() to lock the page; the second mb is necessary to enforce |
560 | * the clear_bit and the read of the waitqueue (to avoid SMP races with a | 562 | * ordering between the clear_bit and the read of the waitqueue (to avoid SMP |
561 | * parallel wait_on_page_locked()). | 563 | * races with a parallel wait_on_page_locked()). |
562 | */ | 564 | */ |
563 | void unlock_page(struct page *page) | 565 | void unlock_page(struct page *page) |
564 | { | 566 | { |
565 | smp_mb__before_clear_bit(); | 567 | smp_mb__before_clear_bit(); |
566 | if (!TestClearPageLocked(page)) | 568 | if (!test_and_clear_bit(PG_locked, &page->flags)) |
567 | BUG(); | 569 | BUG(); |
568 | smp_mb__after_clear_bit(); | 570 | smp_mb__after_clear_bit(); |
569 | wake_up_page(page, PG_locked); | 571 | wake_up_page(page, PG_locked); |
@@ -635,15 +637,35 @@ void __lock_page_nosync(struct page *page) | |||
635 | * Is there a pagecache struct page at the given (mapping, offset) tuple? | 637 | * Is there a pagecache struct page at the given (mapping, offset) tuple? |
636 | * If yes, increment its refcount and return it; if no, return NULL. | 638 | * If yes, increment its refcount and return it; if no, return NULL. |
637 | */ | 639 | */ |
638 | struct page * find_get_page(struct address_space *mapping, pgoff_t offset) | 640 | struct page *find_get_page(struct address_space *mapping, pgoff_t offset) |
639 | { | 641 | { |
642 | void **pagep; | ||
640 | struct page *page; | 643 | struct page *page; |
641 | 644 | ||
642 | read_lock_irq(&mapping->tree_lock); | 645 | rcu_read_lock(); |
643 | page = radix_tree_lookup(&mapping->page_tree, offset); | 646 | repeat: |
644 | if (page) | 647 | page = NULL; |
645 | page_cache_get(page); | 648 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); |
646 | read_unlock_irq(&mapping->tree_lock); | 649 | if (pagep) { |
650 | page = radix_tree_deref_slot(pagep); | ||
651 | if (unlikely(!page || page == RADIX_TREE_RETRY)) | ||
652 | goto repeat; | ||
653 | |||
654 | if (!page_cache_get_speculative(page)) | ||
655 | goto repeat; | ||
656 | |||
657 | /* | ||
658 | * Has the page moved? | ||
659 | * This is part of the lockless pagecache protocol. See | ||
660 | * include/linux/pagemap.h for details. | ||
661 | */ | ||
662 | if (unlikely(page != *pagep)) { | ||
663 | page_cache_release(page); | ||
664 | goto repeat; | ||
665 | } | ||
666 | } | ||
667 | rcu_read_unlock(); | ||
668 | |||
647 | return page; | 669 | return page; |
648 | } | 670 | } |
649 | EXPORT_SYMBOL(find_get_page); | 671 | EXPORT_SYMBOL(find_get_page); |
@@ -658,32 +680,22 @@ EXPORT_SYMBOL(find_get_page); | |||
658 | * | 680 | * |
659 | * Returns zero if the page was not present. find_lock_page() may sleep. | 681 | * Returns zero if the page was not present. find_lock_page() may sleep. |
660 | */ | 682 | */ |
661 | struct page *find_lock_page(struct address_space *mapping, | 683 | struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) |
662 | pgoff_t offset) | ||
663 | { | 684 | { |
664 | struct page *page; | 685 | struct page *page; |
665 | 686 | ||
666 | repeat: | 687 | repeat: |
667 | read_lock_irq(&mapping->tree_lock); | 688 | page = find_get_page(mapping, offset); |
668 | page = radix_tree_lookup(&mapping->page_tree, offset); | ||
669 | if (page) { | 689 | if (page) { |
670 | page_cache_get(page); | 690 | lock_page(page); |
671 | if (TestSetPageLocked(page)) { | 691 | /* Has the page been truncated? */ |
672 | read_unlock_irq(&mapping->tree_lock); | 692 | if (unlikely(page->mapping != mapping)) { |
673 | __lock_page(page); | 693 | unlock_page(page); |
674 | 694 | page_cache_release(page); | |
675 | /* Has the page been truncated while we slept? */ | 695 | goto repeat; |
676 | if (unlikely(page->mapping != mapping)) { | ||
677 | unlock_page(page); | ||
678 | page_cache_release(page); | ||
679 | goto repeat; | ||
680 | } | ||
681 | VM_BUG_ON(page->index != offset); | ||
682 | goto out; | ||
683 | } | 696 | } |
697 | VM_BUG_ON(page->index != offset); | ||
684 | } | 698 | } |
685 | read_unlock_irq(&mapping->tree_lock); | ||
686 | out: | ||
687 | return page; | 699 | return page; |
688 | } | 700 | } |
689 | EXPORT_SYMBOL(find_lock_page); | 701 | EXPORT_SYMBOL(find_lock_page); |
@@ -749,13 +761,39 @@ unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |||
749 | { | 761 | { |
750 | unsigned int i; | 762 | unsigned int i; |
751 | unsigned int ret; | 763 | unsigned int ret; |
764 | unsigned int nr_found; | ||
765 | |||
766 | rcu_read_lock(); | ||
767 | restart: | ||
768 | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | ||
769 | (void ***)pages, start, nr_pages); | ||
770 | ret = 0; | ||
771 | for (i = 0; i < nr_found; i++) { | ||
772 | struct page *page; | ||
773 | repeat: | ||
774 | page = radix_tree_deref_slot((void **)pages[i]); | ||
775 | if (unlikely(!page)) | ||
776 | continue; | ||
777 | /* | ||
778 | * this can only trigger if nr_found == 1, making livelock | ||
779 | * a non issue. | ||
780 | */ | ||
781 | if (unlikely(page == RADIX_TREE_RETRY)) | ||
782 | goto restart; | ||
752 | 783 | ||
753 | read_lock_irq(&mapping->tree_lock); | 784 | if (!page_cache_get_speculative(page)) |
754 | ret = radix_tree_gang_lookup(&mapping->page_tree, | 785 | goto repeat; |
755 | (void **)pages, start, nr_pages); | 786 | |
756 | for (i = 0; i < ret; i++) | 787 | /* Has the page moved? */ |
757 | page_cache_get(pages[i]); | 788 | if (unlikely(page != *((void **)pages[i]))) { |
758 | read_unlock_irq(&mapping->tree_lock); | 789 | page_cache_release(page); |
790 | goto repeat; | ||
791 | } | ||
792 | |||
793 | pages[ret] = page; | ||
794 | ret++; | ||
795 | } | ||
796 | rcu_read_unlock(); | ||
759 | return ret; | 797 | return ret; |
760 | } | 798 | } |
761 | 799 | ||
@@ -776,19 +814,44 @@ unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |||
776 | { | 814 | { |
777 | unsigned int i; | 815 | unsigned int i; |
778 | unsigned int ret; | 816 | unsigned int ret; |
817 | unsigned int nr_found; | ||
818 | |||
819 | rcu_read_lock(); | ||
820 | restart: | ||
821 | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | ||
822 | (void ***)pages, index, nr_pages); | ||
823 | ret = 0; | ||
824 | for (i = 0; i < nr_found; i++) { | ||
825 | struct page *page; | ||
826 | repeat: | ||
827 | page = radix_tree_deref_slot((void **)pages[i]); | ||
828 | if (unlikely(!page)) | ||
829 | continue; | ||
830 | /* | ||
831 | * this can only trigger if nr_found == 1, making livelock | ||
832 | * a non issue. | ||
833 | */ | ||
834 | if (unlikely(page == RADIX_TREE_RETRY)) | ||
835 | goto restart; | ||
779 | 836 | ||
780 | read_lock_irq(&mapping->tree_lock); | 837 | if (page->mapping == NULL || page->index != index) |
781 | ret = radix_tree_gang_lookup(&mapping->page_tree, | ||
782 | (void **)pages, index, nr_pages); | ||
783 | for (i = 0; i < ret; i++) { | ||
784 | if (pages[i]->mapping == NULL || pages[i]->index != index) | ||
785 | break; | 838 | break; |
786 | 839 | ||
787 | page_cache_get(pages[i]); | 840 | if (!page_cache_get_speculative(page)) |
841 | goto repeat; | ||
842 | |||
843 | /* Has the page moved? */ | ||
844 | if (unlikely(page != *((void **)pages[i]))) { | ||
845 | page_cache_release(page); | ||
846 | goto repeat; | ||
847 | } | ||
848 | |||
849 | pages[ret] = page; | ||
850 | ret++; | ||
788 | index++; | 851 | index++; |
789 | } | 852 | } |
790 | read_unlock_irq(&mapping->tree_lock); | 853 | rcu_read_unlock(); |
791 | return i; | 854 | return ret; |
792 | } | 855 | } |
793 | EXPORT_SYMBOL(find_get_pages_contig); | 856 | EXPORT_SYMBOL(find_get_pages_contig); |
794 | 857 | ||
@@ -808,15 +871,43 @@ unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |||
808 | { | 871 | { |
809 | unsigned int i; | 872 | unsigned int i; |
810 | unsigned int ret; | 873 | unsigned int ret; |
874 | unsigned int nr_found; | ||
875 | |||
876 | rcu_read_lock(); | ||
877 | restart: | ||
878 | nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, | ||
879 | (void ***)pages, *index, nr_pages, tag); | ||
880 | ret = 0; | ||
881 | for (i = 0; i < nr_found; i++) { | ||
882 | struct page *page; | ||
883 | repeat: | ||
884 | page = radix_tree_deref_slot((void **)pages[i]); | ||
885 | if (unlikely(!page)) | ||
886 | continue; | ||
887 | /* | ||
888 | * this can only trigger if nr_found == 1, making livelock | ||
889 | * a non issue. | ||
890 | */ | ||
891 | if (unlikely(page == RADIX_TREE_RETRY)) | ||
892 | goto restart; | ||
893 | |||
894 | if (!page_cache_get_speculative(page)) | ||
895 | goto repeat; | ||
896 | |||
897 | /* Has the page moved? */ | ||
898 | if (unlikely(page != *((void **)pages[i]))) { | ||
899 | page_cache_release(page); | ||
900 | goto repeat; | ||
901 | } | ||
902 | |||
903 | pages[ret] = page; | ||
904 | ret++; | ||
905 | } | ||
906 | rcu_read_unlock(); | ||
811 | 907 | ||
812 | read_lock_irq(&mapping->tree_lock); | ||
813 | ret = radix_tree_gang_lookup_tag(&mapping->page_tree, | ||
814 | (void **)pages, *index, nr_pages, tag); | ||
815 | for (i = 0; i < ret; i++) | ||
816 | page_cache_get(pages[i]); | ||
817 | if (ret) | 908 | if (ret) |
818 | *index = pages[ret - 1]->index + 1; | 909 | *index = pages[ret - 1]->index + 1; |
819 | read_unlock_irq(&mapping->tree_lock); | 910 | |
820 | return ret; | 911 | return ret; |
821 | } | 912 | } |
822 | EXPORT_SYMBOL(find_get_pages_tag); | 913 | EXPORT_SYMBOL(find_get_pages_tag); |
@@ -840,7 +931,7 @@ grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) | |||
840 | struct page *page = find_get_page(mapping, index); | 931 | struct page *page = find_get_page(mapping, index); |
841 | 932 | ||
842 | if (page) { | 933 | if (page) { |
843 | if (!TestSetPageLocked(page)) | 934 | if (trylock_page(page)) |
844 | return page; | 935 | return page; |
845 | page_cache_release(page); | 936 | page_cache_release(page); |
846 | return NULL; | 937 | return NULL; |
@@ -932,8 +1023,17 @@ find_page: | |||
932 | ra, filp, page, | 1023 | ra, filp, page, |
933 | index, last_index - index); | 1024 | index, last_index - index); |
934 | } | 1025 | } |
935 | if (!PageUptodate(page)) | 1026 | if (!PageUptodate(page)) { |
936 | goto page_not_up_to_date; | 1027 | if (inode->i_blkbits == PAGE_CACHE_SHIFT || |
1028 | !mapping->a_ops->is_partially_uptodate) | ||
1029 | goto page_not_up_to_date; | ||
1030 | if (!trylock_page(page)) | ||
1031 | goto page_not_up_to_date; | ||
1032 | if (!mapping->a_ops->is_partially_uptodate(page, | ||
1033 | desc, offset)) | ||
1034 | goto page_not_up_to_date_locked; | ||
1035 | unlock_page(page); | ||
1036 | } | ||
937 | page_ok: | 1037 | page_ok: |
938 | /* | 1038 | /* |
939 | * i_size must be checked after we know the page is Uptodate. | 1039 | * i_size must be checked after we know the page is Uptodate. |
@@ -1003,6 +1103,7 @@ page_not_up_to_date: | |||
1003 | if (lock_page_killable(page)) | 1103 | if (lock_page_killable(page)) |
1004 | goto readpage_eio; | 1104 | goto readpage_eio; |
1005 | 1105 | ||
1106 | page_not_up_to_date_locked: | ||
1006 | /* Did it get truncated before we got the lock? */ | 1107 | /* Did it get truncated before we got the lock? */ |
1007 | if (!page->mapping) { | 1108 | if (!page->mapping) { |
1008 | unlock_page(page); | 1109 | unlock_page(page); |
@@ -1199,42 +1300,41 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, | |||
1199 | 1300 | ||
1200 | mapping = filp->f_mapping; | 1301 | mapping = filp->f_mapping; |
1201 | inode = mapping->host; | 1302 | inode = mapping->host; |
1202 | retval = 0; | ||
1203 | if (!count) | 1303 | if (!count) |
1204 | goto out; /* skip atime */ | 1304 | goto out; /* skip atime */ |
1205 | size = i_size_read(inode); | 1305 | size = i_size_read(inode); |
1206 | if (pos < size) { | 1306 | if (pos < size) { |
1207 | retval = generic_file_direct_IO(READ, iocb, | 1307 | retval = filemap_write_and_wait(mapping); |
1208 | iov, pos, nr_segs); | 1308 | if (!retval) { |
1309 | retval = mapping->a_ops->direct_IO(READ, iocb, | ||
1310 | iov, pos, nr_segs); | ||
1311 | } | ||
1209 | if (retval > 0) | 1312 | if (retval > 0) |
1210 | *ppos = pos + retval; | 1313 | *ppos = pos + retval; |
1211 | } | 1314 | if (retval) { |
1212 | if (likely(retval != 0)) { | 1315 | file_accessed(filp); |
1213 | file_accessed(filp); | 1316 | goto out; |
1214 | goto out; | 1317 | } |
1215 | } | 1318 | } |
1216 | } | 1319 | } |
1217 | 1320 | ||
1218 | retval = 0; | 1321 | for (seg = 0; seg < nr_segs; seg++) { |
1219 | if (count) { | 1322 | read_descriptor_t desc; |
1220 | for (seg = 0; seg < nr_segs; seg++) { | ||
1221 | read_descriptor_t desc; | ||
1222 | 1323 | ||
1223 | desc.written = 0; | 1324 | desc.written = 0; |
1224 | desc.arg.buf = iov[seg].iov_base; | 1325 | desc.arg.buf = iov[seg].iov_base; |
1225 | desc.count = iov[seg].iov_len; | 1326 | desc.count = iov[seg].iov_len; |
1226 | if (desc.count == 0) | 1327 | if (desc.count == 0) |
1227 | continue; | 1328 | continue; |
1228 | desc.error = 0; | 1329 | desc.error = 0; |
1229 | do_generic_file_read(filp,ppos,&desc,file_read_actor); | 1330 | do_generic_file_read(filp, ppos, &desc, file_read_actor); |
1230 | retval += desc.written; | 1331 | retval += desc.written; |
1231 | if (desc.error) { | 1332 | if (desc.error) { |
1232 | retval = retval ?: desc.error; | 1333 | retval = retval ?: desc.error; |
1233 | break; | 1334 | break; |
1234 | } | ||
1235 | if (desc.count > 0) | ||
1236 | break; | ||
1237 | } | 1335 | } |
1336 | if (desc.count > 0) | ||
1337 | break; | ||
1238 | } | 1338 | } |
1239 | out: | 1339 | out: |
1240 | return retval; | 1340 | return retval; |
@@ -1668,8 +1768,9 @@ static int __remove_suid(struct dentry *dentry, int kill) | |||
1668 | return notify_change(dentry, &newattrs); | 1768 | return notify_change(dentry, &newattrs); |
1669 | } | 1769 | } |
1670 | 1770 | ||
1671 | int remove_suid(struct dentry *dentry) | 1771 | int file_remove_suid(struct file *file) |
1672 | { | 1772 | { |
1773 | struct dentry *dentry = file->f_path.dentry; | ||
1673 | int killsuid = should_remove_suid(dentry); | 1774 | int killsuid = should_remove_suid(dentry); |
1674 | int killpriv = security_inode_need_killpriv(dentry); | 1775 | int killpriv = security_inode_need_killpriv(dentry); |
1675 | int error = 0; | 1776 | int error = 0; |
@@ -1683,7 +1784,7 @@ int remove_suid(struct dentry *dentry) | |||
1683 | 1784 | ||
1684 | return error; | 1785 | return error; |
1685 | } | 1786 | } |
1686 | EXPORT_SYMBOL(remove_suid); | 1787 | EXPORT_SYMBOL(file_remove_suid); |
1687 | 1788 | ||
1688 | static size_t __iovec_copy_from_user_inatomic(char *vaddr, | 1789 | static size_t __iovec_copy_from_user_inatomic(char *vaddr, |
1689 | const struct iovec *iov, size_t base, size_t bytes) | 1790 | const struct iovec *iov, size_t base, size_t bytes) |
@@ -1778,7 +1879,7 @@ void iov_iter_advance(struct iov_iter *i, size_t bytes) | |||
1778 | * The !iov->iov_len check ensures we skip over unlikely | 1879 | * The !iov->iov_len check ensures we skip over unlikely |
1779 | * zero-length segments (without overruning the iovec). | 1880 | * zero-length segments (without overruning the iovec). |
1780 | */ | 1881 | */ |
1781 | while (bytes || unlikely(!iov->iov_len && i->count)) { | 1882 | while (bytes || unlikely(i->count && !iov->iov_len)) { |
1782 | int copy; | 1883 | int copy; |
1783 | 1884 | ||
1784 | copy = min(bytes, iov->iov_len - base); | 1885 | copy = min(bytes, iov->iov_len - base); |
@@ -2003,11 +2104,62 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | |||
2003 | struct address_space *mapping = file->f_mapping; | 2104 | struct address_space *mapping = file->f_mapping; |
2004 | struct inode *inode = mapping->host; | 2105 | struct inode *inode = mapping->host; |
2005 | ssize_t written; | 2106 | ssize_t written; |
2107 | size_t write_len; | ||
2108 | pgoff_t end; | ||
2006 | 2109 | ||
2007 | if (count != ocount) | 2110 | if (count != ocount) |
2008 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); | 2111 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); |
2009 | 2112 | ||
2010 | written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); | 2113 | /* |
2114 | * Unmap all mmappings of the file up-front. | ||
2115 | * | ||
2116 | * This will cause any pte dirty bits to be propagated into the | ||
2117 | * pageframes for the subsequent filemap_write_and_wait(). | ||
2118 | */ | ||
2119 | write_len = iov_length(iov, *nr_segs); | ||
2120 | end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; | ||
2121 | if (mapping_mapped(mapping)) | ||
2122 | unmap_mapping_range(mapping, pos, write_len, 0); | ||
2123 | |||
2124 | written = filemap_write_and_wait(mapping); | ||
2125 | if (written) | ||
2126 | goto out; | ||
2127 | |||
2128 | /* | ||
2129 | * After a write we want buffered reads to be sure to go to disk to get | ||
2130 | * the new data. We invalidate clean cached page from the region we're | ||
2131 | * about to write. We do this *before* the write so that we can return | ||
2132 | * without clobbering -EIOCBQUEUED from ->direct_IO(). | ||
2133 | */ | ||
2134 | if (mapping->nrpages) { | ||
2135 | written = invalidate_inode_pages2_range(mapping, | ||
2136 | pos >> PAGE_CACHE_SHIFT, end); | ||
2137 | /* | ||
2138 | * If a page can not be invalidated, return 0 to fall back | ||
2139 | * to buffered write. | ||
2140 | */ | ||
2141 | if (written) { | ||
2142 | if (written == -EBUSY) | ||
2143 | return 0; | ||
2144 | goto out; | ||
2145 | } | ||
2146 | } | ||
2147 | |||
2148 | written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); | ||
2149 | |||
2150 | /* | ||
2151 | * Finally, try again to invalidate clean pages which might have been | ||
2152 | * cached by non-direct readahead, or faulted in by get_user_pages() | ||
2153 | * if the source of the write was an mmap'ed region of the file | ||
2154 | * we're writing. Either one is a pretty crazy thing to do, | ||
2155 | * so we don't support it 100%. If this invalidation | ||
2156 | * fails, tough, the write still worked... | ||
2157 | */ | ||
2158 | if (mapping->nrpages) { | ||
2159 | invalidate_inode_pages2_range(mapping, | ||
2160 | pos >> PAGE_CACHE_SHIFT, end); | ||
2161 | } | ||
2162 | |||
2011 | if (written > 0) { | 2163 | if (written > 0) { |
2012 | loff_t end = pos + written; | 2164 | loff_t end = pos + written; |
2013 | if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | 2165 | if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
@@ -2023,6 +2175,7 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | |||
2023 | * i_mutex is held, which protects generic_osync_inode() from | 2175 | * i_mutex is held, which protects generic_osync_inode() from |
2024 | * livelocking. AIO O_DIRECT ops attempt to sync metadata here. | 2176 | * livelocking. AIO O_DIRECT ops attempt to sync metadata here. |
2025 | */ | 2177 | */ |
2178 | out: | ||
2026 | if ((written >= 0 || written == -EIOCBQUEUED) && | 2179 | if ((written >= 0 || written == -EIOCBQUEUED) && |
2027 | ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 2180 | ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { |
2028 | int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); | 2181 | int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); |
@@ -2394,7 +2547,7 @@ __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, | |||
2394 | if (count == 0) | 2547 | if (count == 0) |
2395 | goto out; | 2548 | goto out; |
2396 | 2549 | ||
2397 | err = remove_suid(file->f_path.dentry); | 2550 | err = file_remove_suid(file); |
2398 | if (err) | 2551 | if (err) |
2399 | goto out; | 2552 | goto out; |
2400 | 2553 | ||
@@ -2510,66 +2663,6 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, | |||
2510 | } | 2663 | } |
2511 | EXPORT_SYMBOL(generic_file_aio_write); | 2664 | EXPORT_SYMBOL(generic_file_aio_write); |
2512 | 2665 | ||
2513 | /* | ||
2514 | * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something | ||
2515 | * went wrong during pagecache shootdown. | ||
2516 | */ | ||
2517 | static ssize_t | ||
2518 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | ||
2519 | loff_t offset, unsigned long nr_segs) | ||
2520 | { | ||
2521 | struct file *file = iocb->ki_filp; | ||
2522 | struct address_space *mapping = file->f_mapping; | ||
2523 | ssize_t retval; | ||
2524 | size_t write_len; | ||
2525 | pgoff_t end = 0; /* silence gcc */ | ||
2526 | |||
2527 | /* | ||
2528 | * If it's a write, unmap all mmappings of the file up-front. This | ||
2529 | * will cause any pte dirty bits to be propagated into the pageframes | ||
2530 | * for the subsequent filemap_write_and_wait(). | ||
2531 | */ | ||
2532 | if (rw == WRITE) { | ||
2533 | write_len = iov_length(iov, nr_segs); | ||
2534 | end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT; | ||
2535 | if (mapping_mapped(mapping)) | ||
2536 | unmap_mapping_range(mapping, offset, write_len, 0); | ||
2537 | } | ||
2538 | |||
2539 | retval = filemap_write_and_wait(mapping); | ||
2540 | if (retval) | ||
2541 | goto out; | ||
2542 | |||
2543 | /* | ||
2544 | * After a write we want buffered reads to be sure to go to disk to get | ||
2545 | * the new data. We invalidate clean cached page from the region we're | ||
2546 | * about to write. We do this *before* the write so that we can return | ||
2547 | * -EIO without clobbering -EIOCBQUEUED from ->direct_IO(). | ||
2548 | */ | ||
2549 | if (rw == WRITE && mapping->nrpages) { | ||
2550 | retval = invalidate_inode_pages2_range(mapping, | ||
2551 | offset >> PAGE_CACHE_SHIFT, end); | ||
2552 | if (retval) | ||
2553 | goto out; | ||
2554 | } | ||
2555 | |||
2556 | retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs); | ||
2557 | |||
2558 | /* | ||
2559 | * Finally, try again to invalidate clean pages which might have been | ||
2560 | * cached by non-direct readahead, or faulted in by get_user_pages() | ||
2561 | * if the source of the write was an mmap'ed region of the file | ||
2562 | * we're writing. Either one is a pretty crazy thing to do, | ||
2563 | * so we don't support it 100%. If this invalidation | ||
2564 | * fails, tough, the write still worked... | ||
2565 | */ | ||
2566 | if (rw == WRITE && mapping->nrpages) { | ||
2567 | invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end); | ||
2568 | } | ||
2569 | out: | ||
2570 | return retval; | ||
2571 | } | ||
2572 | |||
2573 | /** | 2666 | /** |
2574 | * try_to_release_page() - release old fs-specific metadata on a page | 2667 | * try_to_release_page() - release old fs-specific metadata on a page |
2575 | * | 2668 | * |
@@ -2581,9 +2674,8 @@ out: | |||
2581 | * Otherwise return zero. | 2674 | * Otherwise return zero. |
2582 | * | 2675 | * |
2583 | * The @gfp_mask argument specifies whether I/O may be performed to release | 2676 | * The @gfp_mask argument specifies whether I/O may be performed to release |
2584 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). | 2677 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). |
2585 | * | 2678 | * |
2586 | * NOTE: @gfp_mask may go away, and this function may become non-blocking. | ||
2587 | */ | 2679 | */ |
2588 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | 2680 | int try_to_release_page(struct page *page, gfp_t gfp_mask) |
2589 | { | 2681 | { |
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c index 3e744abcce9d..b5167dfb2f2d 100644 --- a/mm/filemap_xip.c +++ b/mm/filemap_xip.c | |||
@@ -13,7 +13,10 @@ | |||
13 | #include <linux/module.h> | 13 | #include <linux/module.h> |
14 | #include <linux/uio.h> | 14 | #include <linux/uio.h> |
15 | #include <linux/rmap.h> | 15 | #include <linux/rmap.h> |
16 | #include <linux/mmu_notifier.h> | ||
16 | #include <linux/sched.h> | 17 | #include <linux/sched.h> |
18 | #include <linux/seqlock.h> | ||
19 | #include <linux/mutex.h> | ||
17 | #include <asm/tlbflush.h> | 20 | #include <asm/tlbflush.h> |
18 | #include <asm/io.h> | 21 | #include <asm/io.h> |
19 | 22 | ||
@@ -21,22 +24,18 @@ | |||
21 | * We do use our own empty page to avoid interference with other users | 24 | * We do use our own empty page to avoid interference with other users |
22 | * of ZERO_PAGE(), such as /dev/zero | 25 | * of ZERO_PAGE(), such as /dev/zero |
23 | */ | 26 | */ |
27 | static DEFINE_MUTEX(xip_sparse_mutex); | ||
28 | static seqcount_t xip_sparse_seq = SEQCNT_ZERO; | ||
24 | static struct page *__xip_sparse_page; | 29 | static struct page *__xip_sparse_page; |
25 | 30 | ||
31 | /* called under xip_sparse_mutex */ | ||
26 | static struct page *xip_sparse_page(void) | 32 | static struct page *xip_sparse_page(void) |
27 | { | 33 | { |
28 | if (!__xip_sparse_page) { | 34 | if (!__xip_sparse_page) { |
29 | struct page *page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); | 35 | struct page *page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); |
30 | 36 | ||
31 | if (page) { | 37 | if (page) |
32 | static DEFINE_SPINLOCK(xip_alloc_lock); | 38 | __xip_sparse_page = page; |
33 | spin_lock(&xip_alloc_lock); | ||
34 | if (!__xip_sparse_page) | ||
35 | __xip_sparse_page = page; | ||
36 | else | ||
37 | __free_page(page); | ||
38 | spin_unlock(&xip_alloc_lock); | ||
39 | } | ||
40 | } | 39 | } |
41 | return __xip_sparse_page; | 40 | return __xip_sparse_page; |
42 | } | 41 | } |
@@ -173,22 +172,27 @@ __xip_unmap (struct address_space * mapping, | |||
173 | pte_t pteval; | 172 | pte_t pteval; |
174 | spinlock_t *ptl; | 173 | spinlock_t *ptl; |
175 | struct page *page; | 174 | struct page *page; |
175 | unsigned count; | ||
176 | int locked = 0; | ||
177 | |||
178 | count = read_seqcount_begin(&xip_sparse_seq); | ||
176 | 179 | ||
177 | page = __xip_sparse_page; | 180 | page = __xip_sparse_page; |
178 | if (!page) | 181 | if (!page) |
179 | return; | 182 | return; |
180 | 183 | ||
184 | retry: | ||
181 | spin_lock(&mapping->i_mmap_lock); | 185 | spin_lock(&mapping->i_mmap_lock); |
182 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 186 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
183 | mm = vma->vm_mm; | 187 | mm = vma->vm_mm; |
184 | address = vma->vm_start + | 188 | address = vma->vm_start + |
185 | ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 189 | ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
186 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 190 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
187 | pte = page_check_address(page, mm, address, &ptl); | 191 | pte = page_check_address(page, mm, address, &ptl, 1); |
188 | if (pte) { | 192 | if (pte) { |
189 | /* Nuke the page table entry. */ | 193 | /* Nuke the page table entry. */ |
190 | flush_cache_page(vma, address, pte_pfn(*pte)); | 194 | flush_cache_page(vma, address, pte_pfn(*pte)); |
191 | pteval = ptep_clear_flush(vma, address, pte); | 195 | pteval = ptep_clear_flush_notify(vma, address, pte); |
192 | page_remove_rmap(page, vma); | 196 | page_remove_rmap(page, vma); |
193 | dec_mm_counter(mm, file_rss); | 197 | dec_mm_counter(mm, file_rss); |
194 | BUG_ON(pte_dirty(pteval)); | 198 | BUG_ON(pte_dirty(pteval)); |
@@ -197,6 +201,14 @@ __xip_unmap (struct address_space * mapping, | |||
197 | } | 201 | } |
198 | } | 202 | } |
199 | spin_unlock(&mapping->i_mmap_lock); | 203 | spin_unlock(&mapping->i_mmap_lock); |
204 | |||
205 | if (locked) { | ||
206 | mutex_unlock(&xip_sparse_mutex); | ||
207 | } else if (read_seqcount_retry(&xip_sparse_seq, count)) { | ||
208 | mutex_lock(&xip_sparse_mutex); | ||
209 | locked = 1; | ||
210 | goto retry; | ||
211 | } | ||
200 | } | 212 | } |
201 | 213 | ||
202 | /* | 214 | /* |
@@ -217,7 +229,7 @@ static int xip_file_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
217 | int error; | 229 | int error; |
218 | 230 | ||
219 | /* XXX: are VM_FAULT_ codes OK? */ | 231 | /* XXX: are VM_FAULT_ codes OK? */ |
220 | 232 | again: | |
221 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 233 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
222 | if (vmf->pgoff >= size) | 234 | if (vmf->pgoff >= size) |
223 | return VM_FAULT_SIGBUS; | 235 | return VM_FAULT_SIGBUS; |
@@ -236,8 +248,10 @@ static int xip_file_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
236 | int err; | 248 | int err; |
237 | 249 | ||
238 | /* maybe shared writable, allocate new block */ | 250 | /* maybe shared writable, allocate new block */ |
251 | mutex_lock(&xip_sparse_mutex); | ||
239 | error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 1, | 252 | error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 1, |
240 | &xip_mem, &xip_pfn); | 253 | &xip_mem, &xip_pfn); |
254 | mutex_unlock(&xip_sparse_mutex); | ||
241 | if (error) | 255 | if (error) |
242 | return VM_FAULT_SIGBUS; | 256 | return VM_FAULT_SIGBUS; |
243 | /* unmap sparse mappings at pgoff from all other vmas */ | 257 | /* unmap sparse mappings at pgoff from all other vmas */ |
@@ -251,14 +265,34 @@ found: | |||
251 | BUG_ON(err); | 265 | BUG_ON(err); |
252 | return VM_FAULT_NOPAGE; | 266 | return VM_FAULT_NOPAGE; |
253 | } else { | 267 | } else { |
268 | int err, ret = VM_FAULT_OOM; | ||
269 | |||
270 | mutex_lock(&xip_sparse_mutex); | ||
271 | write_seqcount_begin(&xip_sparse_seq); | ||
272 | error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 0, | ||
273 | &xip_mem, &xip_pfn); | ||
274 | if (unlikely(!error)) { | ||
275 | write_seqcount_end(&xip_sparse_seq); | ||
276 | mutex_unlock(&xip_sparse_mutex); | ||
277 | goto again; | ||
278 | } | ||
279 | if (error != -ENODATA) | ||
280 | goto out; | ||
254 | /* not shared and writable, use xip_sparse_page() */ | 281 | /* not shared and writable, use xip_sparse_page() */ |
255 | page = xip_sparse_page(); | 282 | page = xip_sparse_page(); |
256 | if (!page) | 283 | if (!page) |
257 | return VM_FAULT_OOM; | 284 | goto out; |
285 | err = vm_insert_page(vma, (unsigned long)vmf->virtual_address, | ||
286 | page); | ||
287 | if (err == -ENOMEM) | ||
288 | goto out; | ||
258 | 289 | ||
259 | page_cache_get(page); | 290 | ret = VM_FAULT_NOPAGE; |
260 | vmf->page = page; | 291 | out: |
261 | return 0; | 292 | write_seqcount_end(&xip_sparse_seq); |
293 | mutex_unlock(&xip_sparse_mutex); | ||
294 | |||
295 | return ret; | ||
262 | } | 296 | } |
263 | } | 297 | } |
264 | 298 | ||
@@ -307,8 +341,10 @@ __xip_file_write(struct file *filp, const char __user *buf, | |||
307 | &xip_mem, &xip_pfn); | 341 | &xip_mem, &xip_pfn); |
308 | if (status == -ENODATA) { | 342 | if (status == -ENODATA) { |
309 | /* we allocate a new page unmap it */ | 343 | /* we allocate a new page unmap it */ |
344 | mutex_lock(&xip_sparse_mutex); | ||
310 | status = a_ops->get_xip_mem(mapping, index, 1, | 345 | status = a_ops->get_xip_mem(mapping, index, 1, |
311 | &xip_mem, &xip_pfn); | 346 | &xip_mem, &xip_pfn); |
347 | mutex_unlock(&xip_sparse_mutex); | ||
312 | if (!status) | 348 | if (!status) |
313 | /* unmap page at pgoff from all other vmas */ | 349 | /* unmap page at pgoff from all other vmas */ |
314 | __xip_unmap(mapping, index); | 350 | __xip_unmap(mapping, index); |
@@ -380,7 +416,7 @@ xip_file_write(struct file *filp, const char __user *buf, size_t len, | |||
380 | if (count == 0) | 416 | if (count == 0) |
381 | goto out_backing; | 417 | goto out_backing; |
382 | 418 | ||
383 | ret = remove_suid(filp->f_path.dentry); | 419 | ret = file_remove_suid(filp); |
384 | if (ret) | 420 | if (ret) |
385 | goto out_backing; | 421 | goto out_backing; |
386 | 422 | ||
diff --git a/mm/fremap.c b/mm/fremap.c index 07a9c82ce1a3..7881638e4a12 100644 --- a/mm/fremap.c +++ b/mm/fremap.c | |||
@@ -15,6 +15,7 @@ | |||
15 | #include <linux/rmap.h> | 15 | #include <linux/rmap.h> |
16 | #include <linux/module.h> | 16 | #include <linux/module.h> |
17 | #include <linux/syscalls.h> | 17 | #include <linux/syscalls.h> |
18 | #include <linux/mmu_notifier.h> | ||
18 | 19 | ||
19 | #include <asm/mmu_context.h> | 20 | #include <asm/mmu_context.h> |
20 | #include <asm/cacheflush.h> | 21 | #include <asm/cacheflush.h> |
@@ -214,7 +215,9 @@ asmlinkage long sys_remap_file_pages(unsigned long start, unsigned long size, | |||
214 | spin_unlock(&mapping->i_mmap_lock); | 215 | spin_unlock(&mapping->i_mmap_lock); |
215 | } | 216 | } |
216 | 217 | ||
218 | mmu_notifier_invalidate_range_start(mm, start, start + size); | ||
217 | err = populate_range(mm, vma, start, size, pgoff); | 219 | err = populate_range(mm, vma, start, size, pgoff); |
220 | mmu_notifier_invalidate_range_end(mm, start, start + size); | ||
218 | if (!err && !(flags & MAP_NONBLOCK)) { | 221 | if (!err && !(flags & MAP_NONBLOCK)) { |
219 | if (unlikely(has_write_lock)) { | 222 | if (unlikely(has_write_lock)) { |
220 | downgrade_write(&mm->mmap_sem); | 223 | downgrade_write(&mm->mmap_sem); |
diff --git a/mm/highmem.c b/mm/highmem.c index 7da4a7b6af11..b36b83b920ff 100644 --- a/mm/highmem.c +++ b/mm/highmem.c | |||
@@ -40,6 +40,7 @@ | |||
40 | #ifdef CONFIG_HIGHMEM | 40 | #ifdef CONFIG_HIGHMEM |
41 | 41 | ||
42 | unsigned long totalhigh_pages __read_mostly; | 42 | unsigned long totalhigh_pages __read_mostly; |
43 | EXPORT_SYMBOL(totalhigh_pages); | ||
43 | 44 | ||
44 | unsigned int nr_free_highpages (void) | 45 | unsigned int nr_free_highpages (void) |
45 | { | 46 | { |
@@ -69,6 +70,7 @@ static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); | |||
69 | static void flush_all_zero_pkmaps(void) | 70 | static void flush_all_zero_pkmaps(void) |
70 | { | 71 | { |
71 | int i; | 72 | int i; |
73 | int need_flush = 0; | ||
72 | 74 | ||
73 | flush_cache_kmaps(); | 75 | flush_cache_kmaps(); |
74 | 76 | ||
@@ -100,8 +102,10 @@ static void flush_all_zero_pkmaps(void) | |||
100 | &pkmap_page_table[i]); | 102 | &pkmap_page_table[i]); |
101 | 103 | ||
102 | set_page_address(page, NULL); | 104 | set_page_address(page, NULL); |
105 | need_flush = 1; | ||
103 | } | 106 | } |
104 | flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); | 107 | if (need_flush) |
108 | flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); | ||
105 | } | 109 | } |
106 | 110 | ||
107 | /** | 111 | /** |
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ab171274ef21..67a71191136e 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -9,43 +9,357 @@ | |||
9 | #include <linux/mm.h> | 9 | #include <linux/mm.h> |
10 | #include <linux/sysctl.h> | 10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | 11 | #include <linux/highmem.h> |
12 | #include <linux/mmu_notifier.h> | ||
12 | #include <linux/nodemask.h> | 13 | #include <linux/nodemask.h> |
13 | #include <linux/pagemap.h> | 14 | #include <linux/pagemap.h> |
14 | #include <linux/mempolicy.h> | 15 | #include <linux/mempolicy.h> |
15 | #include <linux/cpuset.h> | 16 | #include <linux/cpuset.h> |
16 | #include <linux/mutex.h> | 17 | #include <linux/mutex.h> |
18 | #include <linux/bootmem.h> | ||
19 | #include <linux/sysfs.h> | ||
17 | 20 | ||
18 | #include <asm/page.h> | 21 | #include <asm/page.h> |
19 | #include <asm/pgtable.h> | 22 | #include <asm/pgtable.h> |
23 | #include <asm/io.h> | ||
20 | 24 | ||
21 | #include <linux/hugetlb.h> | 25 | #include <linux/hugetlb.h> |
22 | #include "internal.h" | 26 | #include "internal.h" |
23 | 27 | ||
24 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 28 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; |
25 | static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; | ||
26 | static unsigned long surplus_huge_pages; | ||
27 | static unsigned long nr_overcommit_huge_pages; | ||
28 | unsigned long max_huge_pages; | ||
29 | unsigned long sysctl_overcommit_huge_pages; | ||
30 | static struct list_head hugepage_freelists[MAX_NUMNODES]; | ||
31 | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | ||
32 | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | ||
33 | static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; | ||
34 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 29 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
35 | unsigned long hugepages_treat_as_movable; | 30 | unsigned long hugepages_treat_as_movable; |
36 | static int hugetlb_next_nid; | 31 | |
32 | static int max_hstate; | ||
33 | unsigned int default_hstate_idx; | ||
34 | struct hstate hstates[HUGE_MAX_HSTATE]; | ||
35 | |||
36 | __initdata LIST_HEAD(huge_boot_pages); | ||
37 | |||
38 | /* for command line parsing */ | ||
39 | static struct hstate * __initdata parsed_hstate; | ||
40 | static unsigned long __initdata default_hstate_max_huge_pages; | ||
41 | static unsigned long __initdata default_hstate_size; | ||
42 | |||
43 | #define for_each_hstate(h) \ | ||
44 | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | ||
37 | 45 | ||
38 | /* | 46 | /* |
39 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 47 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages |
40 | */ | 48 | */ |
41 | static DEFINE_SPINLOCK(hugetlb_lock); | 49 | static DEFINE_SPINLOCK(hugetlb_lock); |
42 | 50 | ||
43 | static void clear_huge_page(struct page *page, unsigned long addr) | 51 | /* |
52 | * Region tracking -- allows tracking of reservations and instantiated pages | ||
53 | * across the pages in a mapping. | ||
54 | * | ||
55 | * The region data structures are protected by a combination of the mmap_sem | ||
56 | * and the hugetlb_instantion_mutex. To access or modify a region the caller | ||
57 | * must either hold the mmap_sem for write, or the mmap_sem for read and | ||
58 | * the hugetlb_instantiation mutex: | ||
59 | * | ||
60 | * down_write(&mm->mmap_sem); | ||
61 | * or | ||
62 | * down_read(&mm->mmap_sem); | ||
63 | * mutex_lock(&hugetlb_instantiation_mutex); | ||
64 | */ | ||
65 | struct file_region { | ||
66 | struct list_head link; | ||
67 | long from; | ||
68 | long to; | ||
69 | }; | ||
70 | |||
71 | static long region_add(struct list_head *head, long f, long t) | ||
72 | { | ||
73 | struct file_region *rg, *nrg, *trg; | ||
74 | |||
75 | /* Locate the region we are either in or before. */ | ||
76 | list_for_each_entry(rg, head, link) | ||
77 | if (f <= rg->to) | ||
78 | break; | ||
79 | |||
80 | /* Round our left edge to the current segment if it encloses us. */ | ||
81 | if (f > rg->from) | ||
82 | f = rg->from; | ||
83 | |||
84 | /* Check for and consume any regions we now overlap with. */ | ||
85 | nrg = rg; | ||
86 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
87 | if (&rg->link == head) | ||
88 | break; | ||
89 | if (rg->from > t) | ||
90 | break; | ||
91 | |||
92 | /* If this area reaches higher then extend our area to | ||
93 | * include it completely. If this is not the first area | ||
94 | * which we intend to reuse, free it. */ | ||
95 | if (rg->to > t) | ||
96 | t = rg->to; | ||
97 | if (rg != nrg) { | ||
98 | list_del(&rg->link); | ||
99 | kfree(rg); | ||
100 | } | ||
101 | } | ||
102 | nrg->from = f; | ||
103 | nrg->to = t; | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | static long region_chg(struct list_head *head, long f, long t) | ||
108 | { | ||
109 | struct file_region *rg, *nrg; | ||
110 | long chg = 0; | ||
111 | |||
112 | /* Locate the region we are before or in. */ | ||
113 | list_for_each_entry(rg, head, link) | ||
114 | if (f <= rg->to) | ||
115 | break; | ||
116 | |||
117 | /* If we are below the current region then a new region is required. | ||
118 | * Subtle, allocate a new region at the position but make it zero | ||
119 | * size such that we can guarantee to record the reservation. */ | ||
120 | if (&rg->link == head || t < rg->from) { | ||
121 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
122 | if (!nrg) | ||
123 | return -ENOMEM; | ||
124 | nrg->from = f; | ||
125 | nrg->to = f; | ||
126 | INIT_LIST_HEAD(&nrg->link); | ||
127 | list_add(&nrg->link, rg->link.prev); | ||
128 | |||
129 | return t - f; | ||
130 | } | ||
131 | |||
132 | /* Round our left edge to the current segment if it encloses us. */ | ||
133 | if (f > rg->from) | ||
134 | f = rg->from; | ||
135 | chg = t - f; | ||
136 | |||
137 | /* Check for and consume any regions we now overlap with. */ | ||
138 | list_for_each_entry(rg, rg->link.prev, link) { | ||
139 | if (&rg->link == head) | ||
140 | break; | ||
141 | if (rg->from > t) | ||
142 | return chg; | ||
143 | |||
144 | /* We overlap with this area, if it extends futher than | ||
145 | * us then we must extend ourselves. Account for its | ||
146 | * existing reservation. */ | ||
147 | if (rg->to > t) { | ||
148 | chg += rg->to - t; | ||
149 | t = rg->to; | ||
150 | } | ||
151 | chg -= rg->to - rg->from; | ||
152 | } | ||
153 | return chg; | ||
154 | } | ||
155 | |||
156 | static long region_truncate(struct list_head *head, long end) | ||
157 | { | ||
158 | struct file_region *rg, *trg; | ||
159 | long chg = 0; | ||
160 | |||
161 | /* Locate the region we are either in or before. */ | ||
162 | list_for_each_entry(rg, head, link) | ||
163 | if (end <= rg->to) | ||
164 | break; | ||
165 | if (&rg->link == head) | ||
166 | return 0; | ||
167 | |||
168 | /* If we are in the middle of a region then adjust it. */ | ||
169 | if (end > rg->from) { | ||
170 | chg = rg->to - end; | ||
171 | rg->to = end; | ||
172 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
173 | } | ||
174 | |||
175 | /* Drop any remaining regions. */ | ||
176 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
177 | if (&rg->link == head) | ||
178 | break; | ||
179 | chg += rg->to - rg->from; | ||
180 | list_del(&rg->link); | ||
181 | kfree(rg); | ||
182 | } | ||
183 | return chg; | ||
184 | } | ||
185 | |||
186 | static long region_count(struct list_head *head, long f, long t) | ||
187 | { | ||
188 | struct file_region *rg; | ||
189 | long chg = 0; | ||
190 | |||
191 | /* Locate each segment we overlap with, and count that overlap. */ | ||
192 | list_for_each_entry(rg, head, link) { | ||
193 | int seg_from; | ||
194 | int seg_to; | ||
195 | |||
196 | if (rg->to <= f) | ||
197 | continue; | ||
198 | if (rg->from >= t) | ||
199 | break; | ||
200 | |||
201 | seg_from = max(rg->from, f); | ||
202 | seg_to = min(rg->to, t); | ||
203 | |||
204 | chg += seg_to - seg_from; | ||
205 | } | ||
206 | |||
207 | return chg; | ||
208 | } | ||
209 | |||
210 | /* | ||
211 | * Convert the address within this vma to the page offset within | ||
212 | * the mapping, in pagecache page units; huge pages here. | ||
213 | */ | ||
214 | static pgoff_t vma_hugecache_offset(struct hstate *h, | ||
215 | struct vm_area_struct *vma, unsigned long address) | ||
216 | { | ||
217 | return ((address - vma->vm_start) >> huge_page_shift(h)) + | ||
218 | (vma->vm_pgoff >> huge_page_order(h)); | ||
219 | } | ||
220 | |||
221 | /* | ||
222 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | ||
223 | * bits of the reservation map pointer, which are always clear due to | ||
224 | * alignment. | ||
225 | */ | ||
226 | #define HPAGE_RESV_OWNER (1UL << 0) | ||
227 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | ||
228 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | ||
229 | |||
230 | /* | ||
231 | * These helpers are used to track how many pages are reserved for | ||
232 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | ||
233 | * is guaranteed to have their future faults succeed. | ||
234 | * | ||
235 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | ||
236 | * the reserve counters are updated with the hugetlb_lock held. It is safe | ||
237 | * to reset the VMA at fork() time as it is not in use yet and there is no | ||
238 | * chance of the global counters getting corrupted as a result of the values. | ||
239 | * | ||
240 | * The private mapping reservation is represented in a subtly different | ||
241 | * manner to a shared mapping. A shared mapping has a region map associated | ||
242 | * with the underlying file, this region map represents the backing file | ||
243 | * pages which have ever had a reservation assigned which this persists even | ||
244 | * after the page is instantiated. A private mapping has a region map | ||
245 | * associated with the original mmap which is attached to all VMAs which | ||
246 | * reference it, this region map represents those offsets which have consumed | ||
247 | * reservation ie. where pages have been instantiated. | ||
248 | */ | ||
249 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | ||
250 | { | ||
251 | return (unsigned long)vma->vm_private_data; | ||
252 | } | ||
253 | |||
254 | static void set_vma_private_data(struct vm_area_struct *vma, | ||
255 | unsigned long value) | ||
256 | { | ||
257 | vma->vm_private_data = (void *)value; | ||
258 | } | ||
259 | |||
260 | struct resv_map { | ||
261 | struct kref refs; | ||
262 | struct list_head regions; | ||
263 | }; | ||
264 | |||
265 | struct resv_map *resv_map_alloc(void) | ||
266 | { | ||
267 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | ||
268 | if (!resv_map) | ||
269 | return NULL; | ||
270 | |||
271 | kref_init(&resv_map->refs); | ||
272 | INIT_LIST_HEAD(&resv_map->regions); | ||
273 | |||
274 | return resv_map; | ||
275 | } | ||
276 | |||
277 | void resv_map_release(struct kref *ref) | ||
278 | { | ||
279 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | ||
280 | |||
281 | /* Clear out any active regions before we release the map. */ | ||
282 | region_truncate(&resv_map->regions, 0); | ||
283 | kfree(resv_map); | ||
284 | } | ||
285 | |||
286 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | ||
287 | { | ||
288 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
289 | if (!(vma->vm_flags & VM_SHARED)) | ||
290 | return (struct resv_map *)(get_vma_private_data(vma) & | ||
291 | ~HPAGE_RESV_MASK); | ||
292 | return 0; | ||
293 | } | ||
294 | |||
295 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | ||
296 | { | ||
297 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
298 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
299 | |||
300 | set_vma_private_data(vma, (get_vma_private_data(vma) & | ||
301 | HPAGE_RESV_MASK) | (unsigned long)map); | ||
302 | } | ||
303 | |||
304 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | ||
305 | { | ||
306 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
307 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | ||
308 | |||
309 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | ||
310 | } | ||
311 | |||
312 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | ||
313 | { | ||
314 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
315 | |||
316 | return (get_vma_private_data(vma) & flag) != 0; | ||
317 | } | ||
318 | |||
319 | /* Decrement the reserved pages in the hugepage pool by one */ | ||
320 | static void decrement_hugepage_resv_vma(struct hstate *h, | ||
321 | struct vm_area_struct *vma) | ||
322 | { | ||
323 | if (vma->vm_flags & VM_NORESERVE) | ||
324 | return; | ||
325 | |||
326 | if (vma->vm_flags & VM_SHARED) { | ||
327 | /* Shared mappings always use reserves */ | ||
328 | h->resv_huge_pages--; | ||
329 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
330 | /* | ||
331 | * Only the process that called mmap() has reserves for | ||
332 | * private mappings. | ||
333 | */ | ||
334 | h->resv_huge_pages--; | ||
335 | } | ||
336 | } | ||
337 | |||
338 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | ||
339 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | ||
340 | { | ||
341 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | ||
342 | if (!(vma->vm_flags & VM_SHARED)) | ||
343 | vma->vm_private_data = (void *)0; | ||
344 | } | ||
345 | |||
346 | /* Returns true if the VMA has associated reserve pages */ | ||
347 | static int vma_has_reserves(struct vm_area_struct *vma) | ||
348 | { | ||
349 | if (vma->vm_flags & VM_SHARED) | ||
350 | return 1; | ||
351 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | ||
352 | return 1; | ||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | static void clear_huge_page(struct page *page, | ||
357 | unsigned long addr, unsigned long sz) | ||
44 | { | 358 | { |
45 | int i; | 359 | int i; |
46 | 360 | ||
47 | might_sleep(); | 361 | might_sleep(); |
48 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { | 362 | for (i = 0; i < sz/PAGE_SIZE; i++) { |
49 | cond_resched(); | 363 | cond_resched(); |
50 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 364 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
51 | } | 365 | } |
@@ -55,42 +369,44 @@ static void copy_huge_page(struct page *dst, struct page *src, | |||
55 | unsigned long addr, struct vm_area_struct *vma) | 369 | unsigned long addr, struct vm_area_struct *vma) |
56 | { | 370 | { |
57 | int i; | 371 | int i; |
372 | struct hstate *h = hstate_vma(vma); | ||
58 | 373 | ||
59 | might_sleep(); | 374 | might_sleep(); |
60 | for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { | 375 | for (i = 0; i < pages_per_huge_page(h); i++) { |
61 | cond_resched(); | 376 | cond_resched(); |
62 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 377 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
63 | } | 378 | } |
64 | } | 379 | } |
65 | 380 | ||
66 | static void enqueue_huge_page(struct page *page) | 381 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
67 | { | 382 | { |
68 | int nid = page_to_nid(page); | 383 | int nid = page_to_nid(page); |
69 | list_add(&page->lru, &hugepage_freelists[nid]); | 384 | list_add(&page->lru, &h->hugepage_freelists[nid]); |
70 | free_huge_pages++; | 385 | h->free_huge_pages++; |
71 | free_huge_pages_node[nid]++; | 386 | h->free_huge_pages_node[nid]++; |
72 | } | 387 | } |
73 | 388 | ||
74 | static struct page *dequeue_huge_page(void) | 389 | static struct page *dequeue_huge_page(struct hstate *h) |
75 | { | 390 | { |
76 | int nid; | 391 | int nid; |
77 | struct page *page = NULL; | 392 | struct page *page = NULL; |
78 | 393 | ||
79 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { | 394 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { |
80 | if (!list_empty(&hugepage_freelists[nid])) { | 395 | if (!list_empty(&h->hugepage_freelists[nid])) { |
81 | page = list_entry(hugepage_freelists[nid].next, | 396 | page = list_entry(h->hugepage_freelists[nid].next, |
82 | struct page, lru); | 397 | struct page, lru); |
83 | list_del(&page->lru); | 398 | list_del(&page->lru); |
84 | free_huge_pages--; | 399 | h->free_huge_pages--; |
85 | free_huge_pages_node[nid]--; | 400 | h->free_huge_pages_node[nid]--; |
86 | break; | 401 | break; |
87 | } | 402 | } |
88 | } | 403 | } |
89 | return page; | 404 | return page; |
90 | } | 405 | } |
91 | 406 | ||
92 | static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | 407 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
93 | unsigned long address) | 408 | struct vm_area_struct *vma, |
409 | unsigned long address, int avoid_reserve) | ||
94 | { | 410 | { |
95 | int nid; | 411 | int nid; |
96 | struct page *page = NULL; | 412 | struct page *page = NULL; |
@@ -101,18 +417,33 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
101 | struct zone *zone; | 417 | struct zone *zone; |
102 | struct zoneref *z; | 418 | struct zoneref *z; |
103 | 419 | ||
420 | /* | ||
421 | * A child process with MAP_PRIVATE mappings created by their parent | ||
422 | * have no page reserves. This check ensures that reservations are | ||
423 | * not "stolen". The child may still get SIGKILLed | ||
424 | */ | ||
425 | if (!vma_has_reserves(vma) && | ||
426 | h->free_huge_pages - h->resv_huge_pages == 0) | ||
427 | return NULL; | ||
428 | |||
429 | /* If reserves cannot be used, ensure enough pages are in the pool */ | ||
430 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | ||
431 | return NULL; | ||
432 | |||
104 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 433 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
105 | MAX_NR_ZONES - 1, nodemask) { | 434 | MAX_NR_ZONES - 1, nodemask) { |
106 | nid = zone_to_nid(zone); | 435 | nid = zone_to_nid(zone); |
107 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | 436 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && |
108 | !list_empty(&hugepage_freelists[nid])) { | 437 | !list_empty(&h->hugepage_freelists[nid])) { |
109 | page = list_entry(hugepage_freelists[nid].next, | 438 | page = list_entry(h->hugepage_freelists[nid].next, |
110 | struct page, lru); | 439 | struct page, lru); |
111 | list_del(&page->lru); | 440 | list_del(&page->lru); |
112 | free_huge_pages--; | 441 | h->free_huge_pages--; |
113 | free_huge_pages_node[nid]--; | 442 | h->free_huge_pages_node[nid]--; |
114 | if (vma && vma->vm_flags & VM_MAYSHARE) | 443 | |
115 | resv_huge_pages--; | 444 | if (!avoid_reserve) |
445 | decrement_hugepage_resv_vma(h, vma); | ||
446 | |||
116 | break; | 447 | break; |
117 | } | 448 | } |
118 | } | 449 | } |
@@ -120,12 +451,13 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, | |||
120 | return page; | 451 | return page; |
121 | } | 452 | } |
122 | 453 | ||
123 | static void update_and_free_page(struct page *page) | 454 | static void update_and_free_page(struct hstate *h, struct page *page) |
124 | { | 455 | { |
125 | int i; | 456 | int i; |
126 | nr_huge_pages--; | 457 | |
127 | nr_huge_pages_node[page_to_nid(page)]--; | 458 | h->nr_huge_pages--; |
128 | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | 459 | h->nr_huge_pages_node[page_to_nid(page)]--; |
460 | for (i = 0; i < pages_per_huge_page(h); i++) { | ||
129 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | 461 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | |
130 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | 462 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | |
131 | 1 << PG_private | 1<< PG_writeback); | 463 | 1 << PG_private | 1<< PG_writeback); |
@@ -133,11 +465,27 @@ static void update_and_free_page(struct page *page) | |||
133 | set_compound_page_dtor(page, NULL); | 465 | set_compound_page_dtor(page, NULL); |
134 | set_page_refcounted(page); | 466 | set_page_refcounted(page); |
135 | arch_release_hugepage(page); | 467 | arch_release_hugepage(page); |
136 | __free_pages(page, HUGETLB_PAGE_ORDER); | 468 | __free_pages(page, huge_page_order(h)); |
469 | } | ||
470 | |||
471 | struct hstate *size_to_hstate(unsigned long size) | ||
472 | { | ||
473 | struct hstate *h; | ||
474 | |||
475 | for_each_hstate(h) { | ||
476 | if (huge_page_size(h) == size) | ||
477 | return h; | ||
478 | } | ||
479 | return NULL; | ||
137 | } | 480 | } |
138 | 481 | ||
139 | static void free_huge_page(struct page *page) | 482 | static void free_huge_page(struct page *page) |
140 | { | 483 | { |
484 | /* | ||
485 | * Can't pass hstate in here because it is called from the | ||
486 | * compound page destructor. | ||
487 | */ | ||
488 | struct hstate *h = page_hstate(page); | ||
141 | int nid = page_to_nid(page); | 489 | int nid = page_to_nid(page); |
142 | struct address_space *mapping; | 490 | struct address_space *mapping; |
143 | 491 | ||
@@ -147,12 +495,12 @@ static void free_huge_page(struct page *page) | |||
147 | INIT_LIST_HEAD(&page->lru); | 495 | INIT_LIST_HEAD(&page->lru); |
148 | 496 | ||
149 | spin_lock(&hugetlb_lock); | 497 | spin_lock(&hugetlb_lock); |
150 | if (surplus_huge_pages_node[nid]) { | 498 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
151 | update_and_free_page(page); | 499 | update_and_free_page(h, page); |
152 | surplus_huge_pages--; | 500 | h->surplus_huge_pages--; |
153 | surplus_huge_pages_node[nid]--; | 501 | h->surplus_huge_pages_node[nid]--; |
154 | } else { | 502 | } else { |
155 | enqueue_huge_page(page); | 503 | enqueue_huge_page(h, page); |
156 | } | 504 | } |
157 | spin_unlock(&hugetlb_lock); | 505 | spin_unlock(&hugetlb_lock); |
158 | if (mapping) | 506 | if (mapping) |
@@ -164,7 +512,7 @@ static void free_huge_page(struct page *page) | |||
164 | * balanced by operating on them in a round-robin fashion. | 512 | * balanced by operating on them in a round-robin fashion. |
165 | * Returns 1 if an adjustment was made. | 513 | * Returns 1 if an adjustment was made. |
166 | */ | 514 | */ |
167 | static int adjust_pool_surplus(int delta) | 515 | static int adjust_pool_surplus(struct hstate *h, int delta) |
168 | { | 516 | { |
169 | static int prev_nid; | 517 | static int prev_nid; |
170 | int nid = prev_nid; | 518 | int nid = prev_nid; |
@@ -177,15 +525,15 @@ static int adjust_pool_surplus(int delta) | |||
177 | nid = first_node(node_online_map); | 525 | nid = first_node(node_online_map); |
178 | 526 | ||
179 | /* To shrink on this node, there must be a surplus page */ | 527 | /* To shrink on this node, there must be a surplus page */ |
180 | if (delta < 0 && !surplus_huge_pages_node[nid]) | 528 | if (delta < 0 && !h->surplus_huge_pages_node[nid]) |
181 | continue; | 529 | continue; |
182 | /* Surplus cannot exceed the total number of pages */ | 530 | /* Surplus cannot exceed the total number of pages */ |
183 | if (delta > 0 && surplus_huge_pages_node[nid] >= | 531 | if (delta > 0 && h->surplus_huge_pages_node[nid] >= |
184 | nr_huge_pages_node[nid]) | 532 | h->nr_huge_pages_node[nid]) |
185 | continue; | 533 | continue; |
186 | 534 | ||
187 | surplus_huge_pages += delta; | 535 | h->surplus_huge_pages += delta; |
188 | surplus_huge_pages_node[nid] += delta; | 536 | h->surplus_huge_pages_node[nid] += delta; |
189 | ret = 1; | 537 | ret = 1; |
190 | break; | 538 | break; |
191 | } while (nid != prev_nid); | 539 | } while (nid != prev_nid); |
@@ -194,59 +542,74 @@ static int adjust_pool_surplus(int delta) | |||
194 | return ret; | 542 | return ret; |
195 | } | 543 | } |
196 | 544 | ||
197 | static struct page *alloc_fresh_huge_page_node(int nid) | 545 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
546 | { | ||
547 | set_compound_page_dtor(page, free_huge_page); | ||
548 | spin_lock(&hugetlb_lock); | ||
549 | h->nr_huge_pages++; | ||
550 | h->nr_huge_pages_node[nid]++; | ||
551 | spin_unlock(&hugetlb_lock); | ||
552 | put_page(page); /* free it into the hugepage allocator */ | ||
553 | } | ||
554 | |||
555 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | ||
198 | { | 556 | { |
199 | struct page *page; | 557 | struct page *page; |
200 | 558 | ||
559 | if (h->order >= MAX_ORDER) | ||
560 | return NULL; | ||
561 | |||
201 | page = alloc_pages_node(nid, | 562 | page = alloc_pages_node(nid, |
202 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 563 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
203 | __GFP_REPEAT|__GFP_NOWARN, | 564 | __GFP_REPEAT|__GFP_NOWARN, |
204 | HUGETLB_PAGE_ORDER); | 565 | huge_page_order(h)); |
205 | if (page) { | 566 | if (page) { |
206 | if (arch_prepare_hugepage(page)) { | 567 | if (arch_prepare_hugepage(page)) { |
207 | __free_pages(page, HUGETLB_PAGE_ORDER); | 568 | __free_pages(page, huge_page_order(h)); |
208 | return NULL; | 569 | return NULL; |
209 | } | 570 | } |
210 | set_compound_page_dtor(page, free_huge_page); | 571 | prep_new_huge_page(h, page, nid); |
211 | spin_lock(&hugetlb_lock); | ||
212 | nr_huge_pages++; | ||
213 | nr_huge_pages_node[nid]++; | ||
214 | spin_unlock(&hugetlb_lock); | ||
215 | put_page(page); /* free it into the hugepage allocator */ | ||
216 | } | 572 | } |
217 | 573 | ||
218 | return page; | 574 | return page; |
219 | } | 575 | } |
220 | 576 | ||
221 | static int alloc_fresh_huge_page(void) | 577 | /* |
578 | * Use a helper variable to find the next node and then | ||
579 | * copy it back to hugetlb_next_nid afterwards: | ||
580 | * otherwise there's a window in which a racer might | ||
581 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
582 | * But we don't need to use a spin_lock here: it really | ||
583 | * doesn't matter if occasionally a racer chooses the | ||
584 | * same nid as we do. Move nid forward in the mask even | ||
585 | * if we just successfully allocated a hugepage so that | ||
586 | * the next caller gets hugepages on the next node. | ||
587 | */ | ||
588 | static int hstate_next_node(struct hstate *h) | ||
589 | { | ||
590 | int next_nid; | ||
591 | next_nid = next_node(h->hugetlb_next_nid, node_online_map); | ||
592 | if (next_nid == MAX_NUMNODES) | ||
593 | next_nid = first_node(node_online_map); | ||
594 | h->hugetlb_next_nid = next_nid; | ||
595 | return next_nid; | ||
596 | } | ||
597 | |||
598 | static int alloc_fresh_huge_page(struct hstate *h) | ||
222 | { | 599 | { |
223 | struct page *page; | 600 | struct page *page; |
224 | int start_nid; | 601 | int start_nid; |
225 | int next_nid; | 602 | int next_nid; |
226 | int ret = 0; | 603 | int ret = 0; |
227 | 604 | ||
228 | start_nid = hugetlb_next_nid; | 605 | start_nid = h->hugetlb_next_nid; |
229 | 606 | ||
230 | do { | 607 | do { |
231 | page = alloc_fresh_huge_page_node(hugetlb_next_nid); | 608 | page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); |
232 | if (page) | 609 | if (page) |
233 | ret = 1; | 610 | ret = 1; |
234 | /* | 611 | next_nid = hstate_next_node(h); |
235 | * Use a helper variable to find the next node and then | 612 | } while (!page && h->hugetlb_next_nid != start_nid); |
236 | * copy it back to hugetlb_next_nid afterwards: | ||
237 | * otherwise there's a window in which a racer might | ||
238 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | ||
239 | * But we don't need to use a spin_lock here: it really | ||
240 | * doesn't matter if occasionally a racer chooses the | ||
241 | * same nid as we do. Move nid forward in the mask even | ||
242 | * if we just successfully allocated a hugepage so that | ||
243 | * the next caller gets hugepages on the next node. | ||
244 | */ | ||
245 | next_nid = next_node(hugetlb_next_nid, node_online_map); | ||
246 | if (next_nid == MAX_NUMNODES) | ||
247 | next_nid = first_node(node_online_map); | ||
248 | hugetlb_next_nid = next_nid; | ||
249 | } while (!page && hugetlb_next_nid != start_nid); | ||
250 | 613 | ||
251 | if (ret) | 614 | if (ret) |
252 | count_vm_event(HTLB_BUDDY_PGALLOC); | 615 | count_vm_event(HTLB_BUDDY_PGALLOC); |
@@ -256,12 +619,15 @@ static int alloc_fresh_huge_page(void) | |||
256 | return ret; | 619 | return ret; |
257 | } | 620 | } |
258 | 621 | ||
259 | static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | 622 | static struct page *alloc_buddy_huge_page(struct hstate *h, |
260 | unsigned long address) | 623 | struct vm_area_struct *vma, unsigned long address) |
261 | { | 624 | { |
262 | struct page *page; | 625 | struct page *page; |
263 | unsigned int nid; | 626 | unsigned int nid; |
264 | 627 | ||
628 | if (h->order >= MAX_ORDER) | ||
629 | return NULL; | ||
630 | |||
265 | /* | 631 | /* |
266 | * Assume we will successfully allocate the surplus page to | 632 | * Assume we will successfully allocate the surplus page to |
267 | * prevent racing processes from causing the surplus to exceed | 633 | * prevent racing processes from causing the surplus to exceed |
@@ -286,18 +652,23 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
286 | * per-node value is checked there. | 652 | * per-node value is checked there. |
287 | */ | 653 | */ |
288 | spin_lock(&hugetlb_lock); | 654 | spin_lock(&hugetlb_lock); |
289 | if (surplus_huge_pages >= nr_overcommit_huge_pages) { | 655 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
290 | spin_unlock(&hugetlb_lock); | 656 | spin_unlock(&hugetlb_lock); |
291 | return NULL; | 657 | return NULL; |
292 | } else { | 658 | } else { |
293 | nr_huge_pages++; | 659 | h->nr_huge_pages++; |
294 | surplus_huge_pages++; | 660 | h->surplus_huge_pages++; |
295 | } | 661 | } |
296 | spin_unlock(&hugetlb_lock); | 662 | spin_unlock(&hugetlb_lock); |
297 | 663 | ||
298 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 664 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| |
299 | __GFP_REPEAT|__GFP_NOWARN, | 665 | __GFP_REPEAT|__GFP_NOWARN, |
300 | HUGETLB_PAGE_ORDER); | 666 | huge_page_order(h)); |
667 | |||
668 | if (page && arch_prepare_hugepage(page)) { | ||
669 | __free_pages(page, huge_page_order(h)); | ||
670 | return NULL; | ||
671 | } | ||
301 | 672 | ||
302 | spin_lock(&hugetlb_lock); | 673 | spin_lock(&hugetlb_lock); |
303 | if (page) { | 674 | if (page) { |
@@ -312,12 +683,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
312 | /* | 683 | /* |
313 | * We incremented the global counters already | 684 | * We incremented the global counters already |
314 | */ | 685 | */ |
315 | nr_huge_pages_node[nid]++; | 686 | h->nr_huge_pages_node[nid]++; |
316 | surplus_huge_pages_node[nid]++; | 687 | h->surplus_huge_pages_node[nid]++; |
317 | __count_vm_event(HTLB_BUDDY_PGALLOC); | 688 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
318 | } else { | 689 | } else { |
319 | nr_huge_pages--; | 690 | h->nr_huge_pages--; |
320 | surplus_huge_pages--; | 691 | h->surplus_huge_pages--; |
321 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 692 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
322 | } | 693 | } |
323 | spin_unlock(&hugetlb_lock); | 694 | spin_unlock(&hugetlb_lock); |
@@ -329,16 +700,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, | |||
329 | * Increase the hugetlb pool such that it can accomodate a reservation | 700 | * Increase the hugetlb pool such that it can accomodate a reservation |
330 | * of size 'delta'. | 701 | * of size 'delta'. |
331 | */ | 702 | */ |
332 | static int gather_surplus_pages(int delta) | 703 | static int gather_surplus_pages(struct hstate *h, int delta) |
333 | { | 704 | { |
334 | struct list_head surplus_list; | 705 | struct list_head surplus_list; |
335 | struct page *page, *tmp; | 706 | struct page *page, *tmp; |
336 | int ret, i; | 707 | int ret, i; |
337 | int needed, allocated; | 708 | int needed, allocated; |
338 | 709 | ||
339 | needed = (resv_huge_pages + delta) - free_huge_pages; | 710 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
340 | if (needed <= 0) { | 711 | if (needed <= 0) { |
341 | resv_huge_pages += delta; | 712 | h->resv_huge_pages += delta; |
342 | return 0; | 713 | return 0; |
343 | } | 714 | } |
344 | 715 | ||
@@ -349,7 +720,7 @@ static int gather_surplus_pages(int delta) | |||
349 | retry: | 720 | retry: |
350 | spin_unlock(&hugetlb_lock); | 721 | spin_unlock(&hugetlb_lock); |
351 | for (i = 0; i < needed; i++) { | 722 | for (i = 0; i < needed; i++) { |
352 | page = alloc_buddy_huge_page(NULL, 0); | 723 | page = alloc_buddy_huge_page(h, NULL, 0); |
353 | if (!page) { | 724 | if (!page) { |
354 | /* | 725 | /* |
355 | * We were not able to allocate enough pages to | 726 | * We were not able to allocate enough pages to |
@@ -370,7 +741,8 @@ retry: | |||
370 | * because either resv_huge_pages or free_huge_pages may have changed. | 741 | * because either resv_huge_pages or free_huge_pages may have changed. |
371 | */ | 742 | */ |
372 | spin_lock(&hugetlb_lock); | 743 | spin_lock(&hugetlb_lock); |
373 | needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); | 744 | needed = (h->resv_huge_pages + delta) - |
745 | (h->free_huge_pages + allocated); | ||
374 | if (needed > 0) | 746 | if (needed > 0) |
375 | goto retry; | 747 | goto retry; |
376 | 748 | ||
@@ -383,7 +755,7 @@ retry: | |||
383 | * before they are reserved. | 755 | * before they are reserved. |
384 | */ | 756 | */ |
385 | needed += allocated; | 757 | needed += allocated; |
386 | resv_huge_pages += delta; | 758 | h->resv_huge_pages += delta; |
387 | ret = 0; | 759 | ret = 0; |
388 | free: | 760 | free: |
389 | /* Free the needed pages to the hugetlb pool */ | 761 | /* Free the needed pages to the hugetlb pool */ |
@@ -391,7 +763,7 @@ free: | |||
391 | if ((--needed) < 0) | 763 | if ((--needed) < 0) |
392 | break; | 764 | break; |
393 | list_del(&page->lru); | 765 | list_del(&page->lru); |
394 | enqueue_huge_page(page); | 766 | enqueue_huge_page(h, page); |
395 | } | 767 | } |
396 | 768 | ||
397 | /* Free unnecessary surplus pages to the buddy allocator */ | 769 | /* Free unnecessary surplus pages to the buddy allocator */ |
@@ -419,7 +791,8 @@ free: | |||
419 | * allocated to satisfy the reservation must be explicitly freed if they were | 791 | * allocated to satisfy the reservation must be explicitly freed if they were |
420 | * never used. | 792 | * never used. |
421 | */ | 793 | */ |
422 | static void return_unused_surplus_pages(unsigned long unused_resv_pages) | 794 | static void return_unused_surplus_pages(struct hstate *h, |
795 | unsigned long unused_resv_pages) | ||
423 | { | 796 | { |
424 | static int nid = -1; | 797 | static int nid = -1; |
425 | struct page *page; | 798 | struct page *page; |
@@ -434,157 +807,269 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages) | |||
434 | unsigned long remaining_iterations = num_online_nodes(); | 807 | unsigned long remaining_iterations = num_online_nodes(); |
435 | 808 | ||
436 | /* Uncommit the reservation */ | 809 | /* Uncommit the reservation */ |
437 | resv_huge_pages -= unused_resv_pages; | 810 | h->resv_huge_pages -= unused_resv_pages; |
438 | 811 | ||
439 | nr_pages = min(unused_resv_pages, surplus_huge_pages); | 812 | /* Cannot return gigantic pages currently */ |
813 | if (h->order >= MAX_ORDER) | ||
814 | return; | ||
815 | |||
816 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | ||
440 | 817 | ||
441 | while (remaining_iterations-- && nr_pages) { | 818 | while (remaining_iterations-- && nr_pages) { |
442 | nid = next_node(nid, node_online_map); | 819 | nid = next_node(nid, node_online_map); |
443 | if (nid == MAX_NUMNODES) | 820 | if (nid == MAX_NUMNODES) |
444 | nid = first_node(node_online_map); | 821 | nid = first_node(node_online_map); |
445 | 822 | ||
446 | if (!surplus_huge_pages_node[nid]) | 823 | if (!h->surplus_huge_pages_node[nid]) |
447 | continue; | 824 | continue; |
448 | 825 | ||
449 | if (!list_empty(&hugepage_freelists[nid])) { | 826 | if (!list_empty(&h->hugepage_freelists[nid])) { |
450 | page = list_entry(hugepage_freelists[nid].next, | 827 | page = list_entry(h->hugepage_freelists[nid].next, |
451 | struct page, lru); | 828 | struct page, lru); |
452 | list_del(&page->lru); | 829 | list_del(&page->lru); |
453 | update_and_free_page(page); | 830 | update_and_free_page(h, page); |
454 | free_huge_pages--; | 831 | h->free_huge_pages--; |
455 | free_huge_pages_node[nid]--; | 832 | h->free_huge_pages_node[nid]--; |
456 | surplus_huge_pages--; | 833 | h->surplus_huge_pages--; |
457 | surplus_huge_pages_node[nid]--; | 834 | h->surplus_huge_pages_node[nid]--; |
458 | nr_pages--; | 835 | nr_pages--; |
459 | remaining_iterations = num_online_nodes(); | 836 | remaining_iterations = num_online_nodes(); |
460 | } | 837 | } |
461 | } | 838 | } |
462 | } | 839 | } |
463 | 840 | ||
841 | /* | ||
842 | * Determine if the huge page at addr within the vma has an associated | ||
843 | * reservation. Where it does not we will need to logically increase | ||
844 | * reservation and actually increase quota before an allocation can occur. | ||
845 | * Where any new reservation would be required the reservation change is | ||
846 | * prepared, but not committed. Once the page has been quota'd allocated | ||
847 | * an instantiated the change should be committed via vma_commit_reservation. | ||
848 | * No action is required on failure. | ||
849 | */ | ||
850 | static int vma_needs_reservation(struct hstate *h, | ||
851 | struct vm_area_struct *vma, unsigned long addr) | ||
852 | { | ||
853 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
854 | struct inode *inode = mapping->host; | ||
855 | |||
856 | if (vma->vm_flags & VM_SHARED) { | ||
857 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
858 | return region_chg(&inode->i_mapping->private_list, | ||
859 | idx, idx + 1); | ||
860 | |||
861 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
862 | return 1; | ||
863 | |||
864 | } else { | ||
865 | int err; | ||
866 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
867 | struct resv_map *reservations = vma_resv_map(vma); | ||
464 | 868 | ||
465 | static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, | 869 | err = region_chg(&reservations->regions, idx, idx + 1); |
466 | unsigned long addr) | 870 | if (err < 0) |
871 | return err; | ||
872 | return 0; | ||
873 | } | ||
874 | } | ||
875 | static void vma_commit_reservation(struct hstate *h, | ||
876 | struct vm_area_struct *vma, unsigned long addr) | ||
467 | { | 877 | { |
468 | struct page *page; | 878 | struct address_space *mapping = vma->vm_file->f_mapping; |
879 | struct inode *inode = mapping->host; | ||
469 | 880 | ||
470 | spin_lock(&hugetlb_lock); | 881 | if (vma->vm_flags & VM_SHARED) { |
471 | page = dequeue_huge_page_vma(vma, addr); | 882 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
472 | spin_unlock(&hugetlb_lock); | 883 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
473 | return page ? page : ERR_PTR(-VM_FAULT_OOM); | 884 | |
885 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | ||
886 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | ||
887 | struct resv_map *reservations = vma_resv_map(vma); | ||
888 | |||
889 | /* Mark this page used in the map. */ | ||
890 | region_add(&reservations->regions, idx, idx + 1); | ||
891 | } | ||
474 | } | 892 | } |
475 | 893 | ||
476 | static struct page *alloc_huge_page_private(struct vm_area_struct *vma, | 894 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
477 | unsigned long addr) | 895 | unsigned long addr, int avoid_reserve) |
478 | { | 896 | { |
479 | struct page *page = NULL; | 897 | struct hstate *h = hstate_vma(vma); |
898 | struct page *page; | ||
899 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
900 | struct inode *inode = mapping->host; | ||
901 | unsigned int chg; | ||
480 | 902 | ||
481 | if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) | 903 | /* |
482 | return ERR_PTR(-VM_FAULT_SIGBUS); | 904 | * Processes that did not create the mapping will have no reserves and |
905 | * will not have accounted against quota. Check that the quota can be | ||
906 | * made before satisfying the allocation | ||
907 | * MAP_NORESERVE mappings may also need pages and quota allocated | ||
908 | * if no reserve mapping overlaps. | ||
909 | */ | ||
910 | chg = vma_needs_reservation(h, vma, addr); | ||
911 | if (chg < 0) | ||
912 | return ERR_PTR(chg); | ||
913 | if (chg) | ||
914 | if (hugetlb_get_quota(inode->i_mapping, chg)) | ||
915 | return ERR_PTR(-ENOSPC); | ||
483 | 916 | ||
484 | spin_lock(&hugetlb_lock); | 917 | spin_lock(&hugetlb_lock); |
485 | if (free_huge_pages > resv_huge_pages) | 918 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
486 | page = dequeue_huge_page_vma(vma, addr); | ||
487 | spin_unlock(&hugetlb_lock); | 919 | spin_unlock(&hugetlb_lock); |
920 | |||
488 | if (!page) { | 921 | if (!page) { |
489 | page = alloc_buddy_huge_page(vma, addr); | 922 | page = alloc_buddy_huge_page(h, vma, addr); |
490 | if (!page) { | 923 | if (!page) { |
491 | hugetlb_put_quota(vma->vm_file->f_mapping, 1); | 924 | hugetlb_put_quota(inode->i_mapping, chg); |
492 | return ERR_PTR(-VM_FAULT_OOM); | 925 | return ERR_PTR(-VM_FAULT_OOM); |
493 | } | 926 | } |
494 | } | 927 | } |
928 | |||
929 | set_page_refcounted(page); | ||
930 | set_page_private(page, (unsigned long) mapping); | ||
931 | |||
932 | vma_commit_reservation(h, vma, addr); | ||
933 | |||
495 | return page; | 934 | return page; |
496 | } | 935 | } |
497 | 936 | ||
498 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 937 | __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) |
499 | unsigned long addr) | ||
500 | { | 938 | { |
501 | struct page *page; | 939 | struct huge_bootmem_page *m; |
502 | struct address_space *mapping = vma->vm_file->f_mapping; | 940 | int nr_nodes = nodes_weight(node_online_map); |
503 | 941 | ||
504 | if (vma->vm_flags & VM_MAYSHARE) | 942 | while (nr_nodes) { |
505 | page = alloc_huge_page_shared(vma, addr); | 943 | void *addr; |
506 | else | 944 | |
507 | page = alloc_huge_page_private(vma, addr); | 945 | addr = __alloc_bootmem_node_nopanic( |
946 | NODE_DATA(h->hugetlb_next_nid), | ||
947 | huge_page_size(h), huge_page_size(h), 0); | ||
508 | 948 | ||
509 | if (!IS_ERR(page)) { | 949 | if (addr) { |
510 | set_page_refcounted(page); | 950 | /* |
511 | set_page_private(page, (unsigned long) mapping); | 951 | * Use the beginning of the huge page to store the |
952 | * huge_bootmem_page struct (until gather_bootmem | ||
953 | * puts them into the mem_map). | ||
954 | */ | ||
955 | m = addr; | ||
956 | if (m) | ||
957 | goto found; | ||
958 | } | ||
959 | hstate_next_node(h); | ||
960 | nr_nodes--; | ||
512 | } | 961 | } |
513 | return page; | 962 | return 0; |
963 | |||
964 | found: | ||
965 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | ||
966 | /* Put them into a private list first because mem_map is not up yet */ | ||
967 | list_add(&m->list, &huge_boot_pages); | ||
968 | m->hstate = h; | ||
969 | return 1; | ||
514 | } | 970 | } |
515 | 971 | ||
516 | static int __init hugetlb_init(void) | 972 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
973 | static void __init gather_bootmem_prealloc(void) | ||
517 | { | 974 | { |
518 | unsigned long i; | 975 | struct huge_bootmem_page *m; |
519 | 976 | ||
520 | if (HPAGE_SHIFT == 0) | 977 | list_for_each_entry(m, &huge_boot_pages, list) { |
521 | return 0; | 978 | struct page *page = virt_to_page(m); |
522 | 979 | struct hstate *h = m->hstate; | |
523 | for (i = 0; i < MAX_NUMNODES; ++i) | 980 | __ClearPageReserved(page); |
524 | INIT_LIST_HEAD(&hugepage_freelists[i]); | 981 | WARN_ON(page_count(page) != 1); |
982 | prep_compound_page(page, h->order); | ||
983 | prep_new_huge_page(h, page, page_to_nid(page)); | ||
984 | } | ||
985 | } | ||
525 | 986 | ||
526 | hugetlb_next_nid = first_node(node_online_map); | 987 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
988 | { | ||
989 | unsigned long i; | ||
527 | 990 | ||
528 | for (i = 0; i < max_huge_pages; ++i) { | 991 | for (i = 0; i < h->max_huge_pages; ++i) { |
529 | if (!alloc_fresh_huge_page()) | 992 | if (h->order >= MAX_ORDER) { |
993 | if (!alloc_bootmem_huge_page(h)) | ||
994 | break; | ||
995 | } else if (!alloc_fresh_huge_page(h)) | ||
530 | break; | 996 | break; |
531 | } | 997 | } |
532 | max_huge_pages = free_huge_pages = nr_huge_pages = i; | 998 | h->max_huge_pages = i; |
533 | printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | ||
534 | return 0; | ||
535 | } | 999 | } |
536 | module_init(hugetlb_init); | ||
537 | 1000 | ||
538 | static int __init hugetlb_setup(char *s) | 1001 | static void __init hugetlb_init_hstates(void) |
539 | { | 1002 | { |
540 | if (sscanf(s, "%lu", &max_huge_pages) <= 0) | 1003 | struct hstate *h; |
541 | max_huge_pages = 0; | 1004 | |
542 | return 1; | 1005 | for_each_hstate(h) { |
1006 | /* oversize hugepages were init'ed in early boot */ | ||
1007 | if (h->order < MAX_ORDER) | ||
1008 | hugetlb_hstate_alloc_pages(h); | ||
1009 | } | ||
543 | } | 1010 | } |
544 | __setup("hugepages=", hugetlb_setup); | ||
545 | 1011 | ||
546 | static unsigned int cpuset_mems_nr(unsigned int *array) | 1012 | static char * __init memfmt(char *buf, unsigned long n) |
547 | { | 1013 | { |
548 | int node; | 1014 | if (n >= (1UL << 30)) |
549 | unsigned int nr = 0; | 1015 | sprintf(buf, "%lu GB", n >> 30); |
550 | 1016 | else if (n >= (1UL << 20)) | |
551 | for_each_node_mask(node, cpuset_current_mems_allowed) | 1017 | sprintf(buf, "%lu MB", n >> 20); |
552 | nr += array[node]; | 1018 | else |
1019 | sprintf(buf, "%lu KB", n >> 10); | ||
1020 | return buf; | ||
1021 | } | ||
553 | 1022 | ||
554 | return nr; | 1023 | static void __init report_hugepages(void) |
1024 | { | ||
1025 | struct hstate *h; | ||
1026 | |||
1027 | for_each_hstate(h) { | ||
1028 | char buf[32]; | ||
1029 | printk(KERN_INFO "HugeTLB registered %s page size, " | ||
1030 | "pre-allocated %ld pages\n", | ||
1031 | memfmt(buf, huge_page_size(h)), | ||
1032 | h->free_huge_pages); | ||
1033 | } | ||
555 | } | 1034 | } |
556 | 1035 | ||
557 | #ifdef CONFIG_SYSCTL | ||
558 | #ifdef CONFIG_HIGHMEM | 1036 | #ifdef CONFIG_HIGHMEM |
559 | static void try_to_free_low(unsigned long count) | 1037 | static void try_to_free_low(struct hstate *h, unsigned long count) |
560 | { | 1038 | { |
561 | int i; | 1039 | int i; |
562 | 1040 | ||
1041 | if (h->order >= MAX_ORDER) | ||
1042 | return; | ||
1043 | |||
563 | for (i = 0; i < MAX_NUMNODES; ++i) { | 1044 | for (i = 0; i < MAX_NUMNODES; ++i) { |
564 | struct page *page, *next; | 1045 | struct page *page, *next; |
565 | list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | 1046 | struct list_head *freel = &h->hugepage_freelists[i]; |
566 | if (count >= nr_huge_pages) | 1047 | list_for_each_entry_safe(page, next, freel, lru) { |
1048 | if (count >= h->nr_huge_pages) | ||
567 | return; | 1049 | return; |
568 | if (PageHighMem(page)) | 1050 | if (PageHighMem(page)) |
569 | continue; | 1051 | continue; |
570 | list_del(&page->lru); | 1052 | list_del(&page->lru); |
571 | update_and_free_page(page); | 1053 | update_and_free_page(h, page); |
572 | free_huge_pages--; | 1054 | h->free_huge_pages--; |
573 | free_huge_pages_node[page_to_nid(page)]--; | 1055 | h->free_huge_pages_node[page_to_nid(page)]--; |
574 | } | 1056 | } |
575 | } | 1057 | } |
576 | } | 1058 | } |
577 | #else | 1059 | #else |
578 | static inline void try_to_free_low(unsigned long count) | 1060 | static inline void try_to_free_low(struct hstate *h, unsigned long count) |
579 | { | 1061 | { |
580 | } | 1062 | } |
581 | #endif | 1063 | #endif |
582 | 1064 | ||
583 | #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) | 1065 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
584 | static unsigned long set_max_huge_pages(unsigned long count) | 1066 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) |
585 | { | 1067 | { |
586 | unsigned long min_count, ret; | 1068 | unsigned long min_count, ret; |
587 | 1069 | ||
1070 | if (h->order >= MAX_ORDER) | ||
1071 | return h->max_huge_pages; | ||
1072 | |||
588 | /* | 1073 | /* |
589 | * Increase the pool size | 1074 | * Increase the pool size |
590 | * First take pages out of surplus state. Then make up the | 1075 | * First take pages out of surplus state. Then make up the |
@@ -597,20 +1082,19 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
597 | * within all the constraints specified by the sysctls. | 1082 | * within all the constraints specified by the sysctls. |
598 | */ | 1083 | */ |
599 | spin_lock(&hugetlb_lock); | 1084 | spin_lock(&hugetlb_lock); |
600 | while (surplus_huge_pages && count > persistent_huge_pages) { | 1085 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
601 | if (!adjust_pool_surplus(-1)) | 1086 | if (!adjust_pool_surplus(h, -1)) |
602 | break; | 1087 | break; |
603 | } | 1088 | } |
604 | 1089 | ||
605 | while (count > persistent_huge_pages) { | 1090 | while (count > persistent_huge_pages(h)) { |
606 | int ret; | ||
607 | /* | 1091 | /* |
608 | * If this allocation races such that we no longer need the | 1092 | * If this allocation races such that we no longer need the |
609 | * page, free_huge_page will handle it by freeing the page | 1093 | * page, free_huge_page will handle it by freeing the page |
610 | * and reducing the surplus. | 1094 | * and reducing the surplus. |
611 | */ | 1095 | */ |
612 | spin_unlock(&hugetlb_lock); | 1096 | spin_unlock(&hugetlb_lock); |
613 | ret = alloc_fresh_huge_page(); | 1097 | ret = alloc_fresh_huge_page(h); |
614 | spin_lock(&hugetlb_lock); | 1098 | spin_lock(&hugetlb_lock); |
615 | if (!ret) | 1099 | if (!ret) |
616 | goto out; | 1100 | goto out; |
@@ -632,31 +1116,305 @@ static unsigned long set_max_huge_pages(unsigned long count) | |||
632 | * and won't grow the pool anywhere else. Not until one of the | 1116 | * and won't grow the pool anywhere else. Not until one of the |
633 | * sysctls are changed, or the surplus pages go out of use. | 1117 | * sysctls are changed, or the surplus pages go out of use. |
634 | */ | 1118 | */ |
635 | min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; | 1119 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
636 | min_count = max(count, min_count); | 1120 | min_count = max(count, min_count); |
637 | try_to_free_low(min_count); | 1121 | try_to_free_low(h, min_count); |
638 | while (min_count < persistent_huge_pages) { | 1122 | while (min_count < persistent_huge_pages(h)) { |
639 | struct page *page = dequeue_huge_page(); | 1123 | struct page *page = dequeue_huge_page(h); |
640 | if (!page) | 1124 | if (!page) |
641 | break; | 1125 | break; |
642 | update_and_free_page(page); | 1126 | update_and_free_page(h, page); |
643 | } | 1127 | } |
644 | while (count < persistent_huge_pages) { | 1128 | while (count < persistent_huge_pages(h)) { |
645 | if (!adjust_pool_surplus(1)) | 1129 | if (!adjust_pool_surplus(h, 1)) |
646 | break; | 1130 | break; |
647 | } | 1131 | } |
648 | out: | 1132 | out: |
649 | ret = persistent_huge_pages; | 1133 | ret = persistent_huge_pages(h); |
650 | spin_unlock(&hugetlb_lock); | 1134 | spin_unlock(&hugetlb_lock); |
651 | return ret; | 1135 | return ret; |
652 | } | 1136 | } |
653 | 1137 | ||
1138 | #define HSTATE_ATTR_RO(_name) \ | ||
1139 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | ||
1140 | |||
1141 | #define HSTATE_ATTR(_name) \ | ||
1142 | static struct kobj_attribute _name##_attr = \ | ||
1143 | __ATTR(_name, 0644, _name##_show, _name##_store) | ||
1144 | |||
1145 | static struct kobject *hugepages_kobj; | ||
1146 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | ||
1147 | |||
1148 | static struct hstate *kobj_to_hstate(struct kobject *kobj) | ||
1149 | { | ||
1150 | int i; | ||
1151 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | ||
1152 | if (hstate_kobjs[i] == kobj) | ||
1153 | return &hstates[i]; | ||
1154 | BUG(); | ||
1155 | return NULL; | ||
1156 | } | ||
1157 | |||
1158 | static ssize_t nr_hugepages_show(struct kobject *kobj, | ||
1159 | struct kobj_attribute *attr, char *buf) | ||
1160 | { | ||
1161 | struct hstate *h = kobj_to_hstate(kobj); | ||
1162 | return sprintf(buf, "%lu\n", h->nr_huge_pages); | ||
1163 | } | ||
1164 | static ssize_t nr_hugepages_store(struct kobject *kobj, | ||
1165 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1166 | { | ||
1167 | int err; | ||
1168 | unsigned long input; | ||
1169 | struct hstate *h = kobj_to_hstate(kobj); | ||
1170 | |||
1171 | err = strict_strtoul(buf, 10, &input); | ||
1172 | if (err) | ||
1173 | return 0; | ||
1174 | |||
1175 | h->max_huge_pages = set_max_huge_pages(h, input); | ||
1176 | |||
1177 | return count; | ||
1178 | } | ||
1179 | HSTATE_ATTR(nr_hugepages); | ||
1180 | |||
1181 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | ||
1182 | struct kobj_attribute *attr, char *buf) | ||
1183 | { | ||
1184 | struct hstate *h = kobj_to_hstate(kobj); | ||
1185 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | ||
1186 | } | ||
1187 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | ||
1188 | struct kobj_attribute *attr, const char *buf, size_t count) | ||
1189 | { | ||
1190 | int err; | ||
1191 | unsigned long input; | ||
1192 | struct hstate *h = kobj_to_hstate(kobj); | ||
1193 | |||
1194 | err = strict_strtoul(buf, 10, &input); | ||
1195 | if (err) | ||
1196 | return 0; | ||
1197 | |||
1198 | spin_lock(&hugetlb_lock); | ||
1199 | h->nr_overcommit_huge_pages = input; | ||
1200 | spin_unlock(&hugetlb_lock); | ||
1201 | |||
1202 | return count; | ||
1203 | } | ||
1204 | HSTATE_ATTR(nr_overcommit_hugepages); | ||
1205 | |||
1206 | static ssize_t free_hugepages_show(struct kobject *kobj, | ||
1207 | struct kobj_attribute *attr, char *buf) | ||
1208 | { | ||
1209 | struct hstate *h = kobj_to_hstate(kobj); | ||
1210 | return sprintf(buf, "%lu\n", h->free_huge_pages); | ||
1211 | } | ||
1212 | HSTATE_ATTR_RO(free_hugepages); | ||
1213 | |||
1214 | static ssize_t resv_hugepages_show(struct kobject *kobj, | ||
1215 | struct kobj_attribute *attr, char *buf) | ||
1216 | { | ||
1217 | struct hstate *h = kobj_to_hstate(kobj); | ||
1218 | return sprintf(buf, "%lu\n", h->resv_huge_pages); | ||
1219 | } | ||
1220 | HSTATE_ATTR_RO(resv_hugepages); | ||
1221 | |||
1222 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | ||
1223 | struct kobj_attribute *attr, char *buf) | ||
1224 | { | ||
1225 | struct hstate *h = kobj_to_hstate(kobj); | ||
1226 | return sprintf(buf, "%lu\n", h->surplus_huge_pages); | ||
1227 | } | ||
1228 | HSTATE_ATTR_RO(surplus_hugepages); | ||
1229 | |||
1230 | static struct attribute *hstate_attrs[] = { | ||
1231 | &nr_hugepages_attr.attr, | ||
1232 | &nr_overcommit_hugepages_attr.attr, | ||
1233 | &free_hugepages_attr.attr, | ||
1234 | &resv_hugepages_attr.attr, | ||
1235 | &surplus_hugepages_attr.attr, | ||
1236 | NULL, | ||
1237 | }; | ||
1238 | |||
1239 | static struct attribute_group hstate_attr_group = { | ||
1240 | .attrs = hstate_attrs, | ||
1241 | }; | ||
1242 | |||
1243 | static int __init hugetlb_sysfs_add_hstate(struct hstate *h) | ||
1244 | { | ||
1245 | int retval; | ||
1246 | |||
1247 | hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, | ||
1248 | hugepages_kobj); | ||
1249 | if (!hstate_kobjs[h - hstates]) | ||
1250 | return -ENOMEM; | ||
1251 | |||
1252 | retval = sysfs_create_group(hstate_kobjs[h - hstates], | ||
1253 | &hstate_attr_group); | ||
1254 | if (retval) | ||
1255 | kobject_put(hstate_kobjs[h - hstates]); | ||
1256 | |||
1257 | return retval; | ||
1258 | } | ||
1259 | |||
1260 | static void __init hugetlb_sysfs_init(void) | ||
1261 | { | ||
1262 | struct hstate *h; | ||
1263 | int err; | ||
1264 | |||
1265 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | ||
1266 | if (!hugepages_kobj) | ||
1267 | return; | ||
1268 | |||
1269 | for_each_hstate(h) { | ||
1270 | err = hugetlb_sysfs_add_hstate(h); | ||
1271 | if (err) | ||
1272 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | ||
1273 | h->name); | ||
1274 | } | ||
1275 | } | ||
1276 | |||
1277 | static void __exit hugetlb_exit(void) | ||
1278 | { | ||
1279 | struct hstate *h; | ||
1280 | |||
1281 | for_each_hstate(h) { | ||
1282 | kobject_put(hstate_kobjs[h - hstates]); | ||
1283 | } | ||
1284 | |||
1285 | kobject_put(hugepages_kobj); | ||
1286 | } | ||
1287 | module_exit(hugetlb_exit); | ||
1288 | |||
1289 | static int __init hugetlb_init(void) | ||
1290 | { | ||
1291 | /* Some platform decide whether they support huge pages at boot | ||
1292 | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | ||
1293 | * there is no such support | ||
1294 | */ | ||
1295 | if (HPAGE_SHIFT == 0) | ||
1296 | return 0; | ||
1297 | |||
1298 | if (!size_to_hstate(default_hstate_size)) { | ||
1299 | default_hstate_size = HPAGE_SIZE; | ||
1300 | if (!size_to_hstate(default_hstate_size)) | ||
1301 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | ||
1302 | } | ||
1303 | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; | ||
1304 | if (default_hstate_max_huge_pages) | ||
1305 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | ||
1306 | |||
1307 | hugetlb_init_hstates(); | ||
1308 | |||
1309 | gather_bootmem_prealloc(); | ||
1310 | |||
1311 | report_hugepages(); | ||
1312 | |||
1313 | hugetlb_sysfs_init(); | ||
1314 | |||
1315 | return 0; | ||
1316 | } | ||
1317 | module_init(hugetlb_init); | ||
1318 | |||
1319 | /* Should be called on processing a hugepagesz=... option */ | ||
1320 | void __init hugetlb_add_hstate(unsigned order) | ||
1321 | { | ||
1322 | struct hstate *h; | ||
1323 | unsigned long i; | ||
1324 | |||
1325 | if (size_to_hstate(PAGE_SIZE << order)) { | ||
1326 | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | ||
1327 | return; | ||
1328 | } | ||
1329 | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | ||
1330 | BUG_ON(order == 0); | ||
1331 | h = &hstates[max_hstate++]; | ||
1332 | h->order = order; | ||
1333 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | ||
1334 | h->nr_huge_pages = 0; | ||
1335 | h->free_huge_pages = 0; | ||
1336 | for (i = 0; i < MAX_NUMNODES; ++i) | ||
1337 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | ||
1338 | h->hugetlb_next_nid = first_node(node_online_map); | ||
1339 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | ||
1340 | huge_page_size(h)/1024); | ||
1341 | |||
1342 | parsed_hstate = h; | ||
1343 | } | ||
1344 | |||
1345 | static int __init hugetlb_nrpages_setup(char *s) | ||
1346 | { | ||
1347 | unsigned long *mhp; | ||
1348 | static unsigned long *last_mhp; | ||
1349 | |||
1350 | /* | ||
1351 | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | ||
1352 | * so this hugepages= parameter goes to the "default hstate". | ||
1353 | */ | ||
1354 | if (!max_hstate) | ||
1355 | mhp = &default_hstate_max_huge_pages; | ||
1356 | else | ||
1357 | mhp = &parsed_hstate->max_huge_pages; | ||
1358 | |||
1359 | if (mhp == last_mhp) { | ||
1360 | printk(KERN_WARNING "hugepages= specified twice without " | ||
1361 | "interleaving hugepagesz=, ignoring\n"); | ||
1362 | return 1; | ||
1363 | } | ||
1364 | |||
1365 | if (sscanf(s, "%lu", mhp) <= 0) | ||
1366 | *mhp = 0; | ||
1367 | |||
1368 | /* | ||
1369 | * Global state is always initialized later in hugetlb_init. | ||
1370 | * But we need to allocate >= MAX_ORDER hstates here early to still | ||
1371 | * use the bootmem allocator. | ||
1372 | */ | ||
1373 | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | ||
1374 | hugetlb_hstate_alloc_pages(parsed_hstate); | ||
1375 | |||
1376 | last_mhp = mhp; | ||
1377 | |||
1378 | return 1; | ||
1379 | } | ||
1380 | __setup("hugepages=", hugetlb_nrpages_setup); | ||
1381 | |||
1382 | static int __init hugetlb_default_setup(char *s) | ||
1383 | { | ||
1384 | default_hstate_size = memparse(s, &s); | ||
1385 | return 1; | ||
1386 | } | ||
1387 | __setup("default_hugepagesz=", hugetlb_default_setup); | ||
1388 | |||
1389 | static unsigned int cpuset_mems_nr(unsigned int *array) | ||
1390 | { | ||
1391 | int node; | ||
1392 | unsigned int nr = 0; | ||
1393 | |||
1394 | for_each_node_mask(node, cpuset_current_mems_allowed) | ||
1395 | nr += array[node]; | ||
1396 | |||
1397 | return nr; | ||
1398 | } | ||
1399 | |||
1400 | #ifdef CONFIG_SYSCTL | ||
654 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 1401 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
655 | struct file *file, void __user *buffer, | 1402 | struct file *file, void __user *buffer, |
656 | size_t *length, loff_t *ppos) | 1403 | size_t *length, loff_t *ppos) |
657 | { | 1404 | { |
1405 | struct hstate *h = &default_hstate; | ||
1406 | unsigned long tmp; | ||
1407 | |||
1408 | if (!write) | ||
1409 | tmp = h->max_huge_pages; | ||
1410 | |||
1411 | table->data = &tmp; | ||
1412 | table->maxlen = sizeof(unsigned long); | ||
658 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1413 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
659 | max_huge_pages = set_max_huge_pages(max_huge_pages); | 1414 | |
1415 | if (write) | ||
1416 | h->max_huge_pages = set_max_huge_pages(h, tmp); | ||
1417 | |||
660 | return 0; | 1418 | return 0; |
661 | } | 1419 | } |
662 | 1420 | ||
@@ -676,10 +1434,22 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
676 | struct file *file, void __user *buffer, | 1434 | struct file *file, void __user *buffer, |
677 | size_t *length, loff_t *ppos) | 1435 | size_t *length, loff_t *ppos) |
678 | { | 1436 | { |
1437 | struct hstate *h = &default_hstate; | ||
1438 | unsigned long tmp; | ||
1439 | |||
1440 | if (!write) | ||
1441 | tmp = h->nr_overcommit_huge_pages; | ||
1442 | |||
1443 | table->data = &tmp; | ||
1444 | table->maxlen = sizeof(unsigned long); | ||
679 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | 1445 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
680 | spin_lock(&hugetlb_lock); | 1446 | |
681 | nr_overcommit_huge_pages = sysctl_overcommit_huge_pages; | 1447 | if (write) { |
682 | spin_unlock(&hugetlb_lock); | 1448 | spin_lock(&hugetlb_lock); |
1449 | h->nr_overcommit_huge_pages = tmp; | ||
1450 | spin_unlock(&hugetlb_lock); | ||
1451 | } | ||
1452 | |||
683 | return 0; | 1453 | return 0; |
684 | } | 1454 | } |
685 | 1455 | ||
@@ -687,34 +1457,118 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, | |||
687 | 1457 | ||
688 | int hugetlb_report_meminfo(char *buf) | 1458 | int hugetlb_report_meminfo(char *buf) |
689 | { | 1459 | { |
1460 | struct hstate *h = &default_hstate; | ||
690 | return sprintf(buf, | 1461 | return sprintf(buf, |
691 | "HugePages_Total: %5lu\n" | 1462 | "HugePages_Total: %5lu\n" |
692 | "HugePages_Free: %5lu\n" | 1463 | "HugePages_Free: %5lu\n" |
693 | "HugePages_Rsvd: %5lu\n" | 1464 | "HugePages_Rsvd: %5lu\n" |
694 | "HugePages_Surp: %5lu\n" | 1465 | "HugePages_Surp: %5lu\n" |
695 | "Hugepagesize: %5lu kB\n", | 1466 | "Hugepagesize: %5lu kB\n", |
696 | nr_huge_pages, | 1467 | h->nr_huge_pages, |
697 | free_huge_pages, | 1468 | h->free_huge_pages, |
698 | resv_huge_pages, | 1469 | h->resv_huge_pages, |
699 | surplus_huge_pages, | 1470 | h->surplus_huge_pages, |
700 | HPAGE_SIZE/1024); | 1471 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); |
701 | } | 1472 | } |
702 | 1473 | ||
703 | int hugetlb_report_node_meminfo(int nid, char *buf) | 1474 | int hugetlb_report_node_meminfo(int nid, char *buf) |
704 | { | 1475 | { |
1476 | struct hstate *h = &default_hstate; | ||
705 | return sprintf(buf, | 1477 | return sprintf(buf, |
706 | "Node %d HugePages_Total: %5u\n" | 1478 | "Node %d HugePages_Total: %5u\n" |
707 | "Node %d HugePages_Free: %5u\n" | 1479 | "Node %d HugePages_Free: %5u\n" |
708 | "Node %d HugePages_Surp: %5u\n", | 1480 | "Node %d HugePages_Surp: %5u\n", |
709 | nid, nr_huge_pages_node[nid], | 1481 | nid, h->nr_huge_pages_node[nid], |
710 | nid, free_huge_pages_node[nid], | 1482 | nid, h->free_huge_pages_node[nid], |
711 | nid, surplus_huge_pages_node[nid]); | 1483 | nid, h->surplus_huge_pages_node[nid]); |
712 | } | 1484 | } |
713 | 1485 | ||
714 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 1486 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
715 | unsigned long hugetlb_total_pages(void) | 1487 | unsigned long hugetlb_total_pages(void) |
716 | { | 1488 | { |
717 | return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | 1489 | struct hstate *h = &default_hstate; |
1490 | return h->nr_huge_pages * pages_per_huge_page(h); | ||
1491 | } | ||
1492 | |||
1493 | static int hugetlb_acct_memory(struct hstate *h, long delta) | ||
1494 | { | ||
1495 | int ret = -ENOMEM; | ||
1496 | |||
1497 | spin_lock(&hugetlb_lock); | ||
1498 | /* | ||
1499 | * When cpuset is configured, it breaks the strict hugetlb page | ||
1500 | * reservation as the accounting is done on a global variable. Such | ||
1501 | * reservation is completely rubbish in the presence of cpuset because | ||
1502 | * the reservation is not checked against page availability for the | ||
1503 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1504 | * with lack of free htlb page in cpuset that the task is in. | ||
1505 | * Attempt to enforce strict accounting with cpuset is almost | ||
1506 | * impossible (or too ugly) because cpuset is too fluid that | ||
1507 | * task or memory node can be dynamically moved between cpusets. | ||
1508 | * | ||
1509 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1510 | * undesirable. However, in order to preserve some of the semantics, | ||
1511 | * we fall back to check against current free page availability as | ||
1512 | * a best attempt and hopefully to minimize the impact of changing | ||
1513 | * semantics that cpuset has. | ||
1514 | */ | ||
1515 | if (delta > 0) { | ||
1516 | if (gather_surplus_pages(h, delta) < 0) | ||
1517 | goto out; | ||
1518 | |||
1519 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | ||
1520 | return_unused_surplus_pages(h, delta); | ||
1521 | goto out; | ||
1522 | } | ||
1523 | } | ||
1524 | |||
1525 | ret = 0; | ||
1526 | if (delta < 0) | ||
1527 | return_unused_surplus_pages(h, (unsigned long) -delta); | ||
1528 | |||
1529 | out: | ||
1530 | spin_unlock(&hugetlb_lock); | ||
1531 | return ret; | ||
1532 | } | ||
1533 | |||
1534 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | ||
1535 | { | ||
1536 | struct resv_map *reservations = vma_resv_map(vma); | ||
1537 | |||
1538 | /* | ||
1539 | * This new VMA should share its siblings reservation map if present. | ||
1540 | * The VMA will only ever have a valid reservation map pointer where | ||
1541 | * it is being copied for another still existing VMA. As that VMA | ||
1542 | * has a reference to the reservation map it cannot dissappear until | ||
1543 | * after this open call completes. It is therefore safe to take a | ||
1544 | * new reference here without additional locking. | ||
1545 | */ | ||
1546 | if (reservations) | ||
1547 | kref_get(&reservations->refs); | ||
1548 | } | ||
1549 | |||
1550 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | ||
1551 | { | ||
1552 | struct hstate *h = hstate_vma(vma); | ||
1553 | struct resv_map *reservations = vma_resv_map(vma); | ||
1554 | unsigned long reserve; | ||
1555 | unsigned long start; | ||
1556 | unsigned long end; | ||
1557 | |||
1558 | if (reservations) { | ||
1559 | start = vma_hugecache_offset(h, vma, vma->vm_start); | ||
1560 | end = vma_hugecache_offset(h, vma, vma->vm_end); | ||
1561 | |||
1562 | reserve = (end - start) - | ||
1563 | region_count(&reservations->regions, start, end); | ||
1564 | |||
1565 | kref_put(&reservations->refs, resv_map_release); | ||
1566 | |||
1567 | if (reserve) { | ||
1568 | hugetlb_acct_memory(h, -reserve); | ||
1569 | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); | ||
1570 | } | ||
1571 | } | ||
718 | } | 1572 | } |
719 | 1573 | ||
720 | /* | 1574 | /* |
@@ -731,6 +1585,8 @@ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
731 | 1585 | ||
732 | struct vm_operations_struct hugetlb_vm_ops = { | 1586 | struct vm_operations_struct hugetlb_vm_ops = { |
733 | .fault = hugetlb_vm_op_fault, | 1587 | .fault = hugetlb_vm_op_fault, |
1588 | .open = hugetlb_vm_op_open, | ||
1589 | .close = hugetlb_vm_op_close, | ||
734 | }; | 1590 | }; |
735 | 1591 | ||
736 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 1592 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
@@ -769,14 +1625,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | |||
769 | struct page *ptepage; | 1625 | struct page *ptepage; |
770 | unsigned long addr; | 1626 | unsigned long addr; |
771 | int cow; | 1627 | int cow; |
1628 | struct hstate *h = hstate_vma(vma); | ||
1629 | unsigned long sz = huge_page_size(h); | ||
772 | 1630 | ||
773 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 1631 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
774 | 1632 | ||
775 | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { | 1633 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
776 | src_pte = huge_pte_offset(src, addr); | 1634 | src_pte = huge_pte_offset(src, addr); |
777 | if (!src_pte) | 1635 | if (!src_pte) |
778 | continue; | 1636 | continue; |
779 | dst_pte = huge_pte_alloc(dst, addr); | 1637 | dst_pte = huge_pte_alloc(dst, addr, sz); |
780 | if (!dst_pte) | 1638 | if (!dst_pte) |
781 | goto nomem; | 1639 | goto nomem; |
782 | 1640 | ||
@@ -804,7 +1662,7 @@ nomem: | |||
804 | } | 1662 | } |
805 | 1663 | ||
806 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1664 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
807 | unsigned long end) | 1665 | unsigned long end, struct page *ref_page) |
808 | { | 1666 | { |
809 | struct mm_struct *mm = vma->vm_mm; | 1667 | struct mm_struct *mm = vma->vm_mm; |
810 | unsigned long address; | 1668 | unsigned long address; |
@@ -812,6 +1670,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
812 | pte_t pte; | 1670 | pte_t pte; |
813 | struct page *page; | 1671 | struct page *page; |
814 | struct page *tmp; | 1672 | struct page *tmp; |
1673 | struct hstate *h = hstate_vma(vma); | ||
1674 | unsigned long sz = huge_page_size(h); | ||
1675 | |||
815 | /* | 1676 | /* |
816 | * A page gathering list, protected by per file i_mmap_lock. The | 1677 | * A page gathering list, protected by per file i_mmap_lock. The |
817 | * lock is used to avoid list corruption from multiple unmapping | 1678 | * lock is used to avoid list corruption from multiple unmapping |
@@ -820,11 +1681,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
820 | LIST_HEAD(page_list); | 1681 | LIST_HEAD(page_list); |
821 | 1682 | ||
822 | WARN_ON(!is_vm_hugetlb_page(vma)); | 1683 | WARN_ON(!is_vm_hugetlb_page(vma)); |
823 | BUG_ON(start & ~HPAGE_MASK); | 1684 | BUG_ON(start & ~huge_page_mask(h)); |
824 | BUG_ON(end & ~HPAGE_MASK); | 1685 | BUG_ON(end & ~huge_page_mask(h)); |
825 | 1686 | ||
1687 | mmu_notifier_invalidate_range_start(mm, start, end); | ||
826 | spin_lock(&mm->page_table_lock); | 1688 | spin_lock(&mm->page_table_lock); |
827 | for (address = start; address < end; address += HPAGE_SIZE) { | 1689 | for (address = start; address < end; address += sz) { |
828 | ptep = huge_pte_offset(mm, address); | 1690 | ptep = huge_pte_offset(mm, address); |
829 | if (!ptep) | 1691 | if (!ptep) |
830 | continue; | 1692 | continue; |
@@ -832,6 +1694,27 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
832 | if (huge_pmd_unshare(mm, &address, ptep)) | 1694 | if (huge_pmd_unshare(mm, &address, ptep)) |
833 | continue; | 1695 | continue; |
834 | 1696 | ||
1697 | /* | ||
1698 | * If a reference page is supplied, it is because a specific | ||
1699 | * page is being unmapped, not a range. Ensure the page we | ||
1700 | * are about to unmap is the actual page of interest. | ||
1701 | */ | ||
1702 | if (ref_page) { | ||
1703 | pte = huge_ptep_get(ptep); | ||
1704 | if (huge_pte_none(pte)) | ||
1705 | continue; | ||
1706 | page = pte_page(pte); | ||
1707 | if (page != ref_page) | ||
1708 | continue; | ||
1709 | |||
1710 | /* | ||
1711 | * Mark the VMA as having unmapped its page so that | ||
1712 | * future faults in this VMA will fail rather than | ||
1713 | * looking like data was lost | ||
1714 | */ | ||
1715 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | ||
1716 | } | ||
1717 | |||
835 | pte = huge_ptep_get_and_clear(mm, address, ptep); | 1718 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
836 | if (huge_pte_none(pte)) | 1719 | if (huge_pte_none(pte)) |
837 | continue; | 1720 | continue; |
@@ -843,6 +1726,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
843 | } | 1726 | } |
844 | spin_unlock(&mm->page_table_lock); | 1727 | spin_unlock(&mm->page_table_lock); |
845 | flush_tlb_range(vma, start, end); | 1728 | flush_tlb_range(vma, start, end); |
1729 | mmu_notifier_invalidate_range_end(mm, start, end); | ||
846 | list_for_each_entry_safe(page, tmp, &page_list, lru) { | 1730 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
847 | list_del(&page->lru); | 1731 | list_del(&page->lru); |
848 | put_page(page); | 1732 | put_page(page); |
@@ -850,31 +1734,71 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
850 | } | 1734 | } |
851 | 1735 | ||
852 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 1736 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
853 | unsigned long end) | 1737 | unsigned long end, struct page *ref_page) |
854 | { | 1738 | { |
1739 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1740 | __unmap_hugepage_range(vma, start, end, ref_page); | ||
1741 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | ||
1742 | } | ||
1743 | |||
1744 | /* | ||
1745 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | ||
1746 | * mappping it owns the reserve page for. The intention is to unmap the page | ||
1747 | * from other VMAs and let the children be SIGKILLed if they are faulting the | ||
1748 | * same region. | ||
1749 | */ | ||
1750 | int unmap_ref_private(struct mm_struct *mm, | ||
1751 | struct vm_area_struct *vma, | ||
1752 | struct page *page, | ||
1753 | unsigned long address) | ||
1754 | { | ||
1755 | struct vm_area_struct *iter_vma; | ||
1756 | struct address_space *mapping; | ||
1757 | struct prio_tree_iter iter; | ||
1758 | pgoff_t pgoff; | ||
1759 | |||
855 | /* | 1760 | /* |
856 | * It is undesirable to test vma->vm_file as it should be non-null | 1761 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation |
857 | * for valid hugetlb area. However, vm_file will be NULL in the error | 1762 | * from page cache lookup which is in HPAGE_SIZE units. |
858 | * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, | ||
859 | * do_mmap_pgoff() nullifies vma->vm_file before calling this function | ||
860 | * to clean up. Since no pte has actually been setup, it is safe to | ||
861 | * do nothing in this case. | ||
862 | */ | 1763 | */ |
863 | if (vma->vm_file) { | 1764 | address = address & huge_page_mask(hstate_vma(vma)); |
864 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 1765 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) |
865 | __unmap_hugepage_range(vma, start, end); | 1766 | + (vma->vm_pgoff >> PAGE_SHIFT); |
866 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | 1767 | mapping = (struct address_space *)page_private(page); |
1768 | |||
1769 | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | ||
1770 | /* Do not unmap the current VMA */ | ||
1771 | if (iter_vma == vma) | ||
1772 | continue; | ||
1773 | |||
1774 | /* | ||
1775 | * Unmap the page from other VMAs without their own reserves. | ||
1776 | * They get marked to be SIGKILLed if they fault in these | ||
1777 | * areas. This is because a future no-page fault on this VMA | ||
1778 | * could insert a zeroed page instead of the data existing | ||
1779 | * from the time of fork. This would look like data corruption | ||
1780 | */ | ||
1781 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | ||
1782 | unmap_hugepage_range(iter_vma, | ||
1783 | address, address + HPAGE_SIZE, | ||
1784 | page); | ||
867 | } | 1785 | } |
1786 | |||
1787 | return 1; | ||
868 | } | 1788 | } |
869 | 1789 | ||
870 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 1790 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
871 | unsigned long address, pte_t *ptep, pte_t pte) | 1791 | unsigned long address, pte_t *ptep, pte_t pte, |
1792 | struct page *pagecache_page) | ||
872 | { | 1793 | { |
1794 | struct hstate *h = hstate_vma(vma); | ||
873 | struct page *old_page, *new_page; | 1795 | struct page *old_page, *new_page; |
874 | int avoidcopy; | 1796 | int avoidcopy; |
1797 | int outside_reserve = 0; | ||
875 | 1798 | ||
876 | old_page = pte_page(pte); | 1799 | old_page = pte_page(pte); |
877 | 1800 | ||
1801 | retry_avoidcopy: | ||
878 | /* If no-one else is actually using this page, avoid the copy | 1802 | /* If no-one else is actually using this page, avoid the copy |
879 | * and just make the page writable */ | 1803 | * and just make the page writable */ |
880 | avoidcopy = (page_count(old_page) == 1); | 1804 | avoidcopy = (page_count(old_page) == 1); |
@@ -883,11 +1807,43 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
883 | return 0; | 1807 | return 0; |
884 | } | 1808 | } |
885 | 1809 | ||
1810 | /* | ||
1811 | * If the process that created a MAP_PRIVATE mapping is about to | ||
1812 | * perform a COW due to a shared page count, attempt to satisfy | ||
1813 | * the allocation without using the existing reserves. The pagecache | ||
1814 | * page is used to determine if the reserve at this address was | ||
1815 | * consumed or not. If reserves were used, a partial faulted mapping | ||
1816 | * at the time of fork() could consume its reserves on COW instead | ||
1817 | * of the full address range. | ||
1818 | */ | ||
1819 | if (!(vma->vm_flags & VM_SHARED) && | ||
1820 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | ||
1821 | old_page != pagecache_page) | ||
1822 | outside_reserve = 1; | ||
1823 | |||
886 | page_cache_get(old_page); | 1824 | page_cache_get(old_page); |
887 | new_page = alloc_huge_page(vma, address); | 1825 | new_page = alloc_huge_page(vma, address, outside_reserve); |
888 | 1826 | ||
889 | if (IS_ERR(new_page)) { | 1827 | if (IS_ERR(new_page)) { |
890 | page_cache_release(old_page); | 1828 | page_cache_release(old_page); |
1829 | |||
1830 | /* | ||
1831 | * If a process owning a MAP_PRIVATE mapping fails to COW, | ||
1832 | * it is due to references held by a child and an insufficient | ||
1833 | * huge page pool. To guarantee the original mappers | ||
1834 | * reliability, unmap the page from child processes. The child | ||
1835 | * may get SIGKILLed if it later faults. | ||
1836 | */ | ||
1837 | if (outside_reserve) { | ||
1838 | BUG_ON(huge_pte_none(pte)); | ||
1839 | if (unmap_ref_private(mm, vma, old_page, address)) { | ||
1840 | BUG_ON(page_count(old_page) != 1); | ||
1841 | BUG_ON(huge_pte_none(pte)); | ||
1842 | goto retry_avoidcopy; | ||
1843 | } | ||
1844 | WARN_ON_ONCE(1); | ||
1845 | } | ||
1846 | |||
891 | return -PTR_ERR(new_page); | 1847 | return -PTR_ERR(new_page); |
892 | } | 1848 | } |
893 | 1849 | ||
@@ -896,7 +1852,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
896 | __SetPageUptodate(new_page); | 1852 | __SetPageUptodate(new_page); |
897 | spin_lock(&mm->page_table_lock); | 1853 | spin_lock(&mm->page_table_lock); |
898 | 1854 | ||
899 | ptep = huge_pte_offset(mm, address & HPAGE_MASK); | 1855 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
900 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 1856 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
901 | /* Break COW */ | 1857 | /* Break COW */ |
902 | huge_ptep_clear_flush(vma, address, ptep); | 1858 | huge_ptep_clear_flush(vma, address, ptep); |
@@ -910,19 +1866,44 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
910 | return 0; | 1866 | return 0; |
911 | } | 1867 | } |
912 | 1868 | ||
1869 | /* Return the pagecache page at a given address within a VMA */ | ||
1870 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | ||
1871 | struct vm_area_struct *vma, unsigned long address) | ||
1872 | { | ||
1873 | struct address_space *mapping; | ||
1874 | pgoff_t idx; | ||
1875 | |||
1876 | mapping = vma->vm_file->f_mapping; | ||
1877 | idx = vma_hugecache_offset(h, vma, address); | ||
1878 | |||
1879 | return find_lock_page(mapping, idx); | ||
1880 | } | ||
1881 | |||
913 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 1882 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
914 | unsigned long address, pte_t *ptep, int write_access) | 1883 | unsigned long address, pte_t *ptep, int write_access) |
915 | { | 1884 | { |
1885 | struct hstate *h = hstate_vma(vma); | ||
916 | int ret = VM_FAULT_SIGBUS; | 1886 | int ret = VM_FAULT_SIGBUS; |
917 | unsigned long idx; | 1887 | pgoff_t idx; |
918 | unsigned long size; | 1888 | unsigned long size; |
919 | struct page *page; | 1889 | struct page *page; |
920 | struct address_space *mapping; | 1890 | struct address_space *mapping; |
921 | pte_t new_pte; | 1891 | pte_t new_pte; |
922 | 1892 | ||
1893 | /* | ||
1894 | * Currently, we are forced to kill the process in the event the | ||
1895 | * original mapper has unmapped pages from the child due to a failed | ||
1896 | * COW. Warn that such a situation has occured as it may not be obvious | ||
1897 | */ | ||
1898 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | ||
1899 | printk(KERN_WARNING | ||
1900 | "PID %d killed due to inadequate hugepage pool\n", | ||
1901 | current->pid); | ||
1902 | return ret; | ||
1903 | } | ||
1904 | |||
923 | mapping = vma->vm_file->f_mapping; | 1905 | mapping = vma->vm_file->f_mapping; |
924 | idx = ((address - vma->vm_start) >> HPAGE_SHIFT) | 1906 | idx = vma_hugecache_offset(h, vma, address); |
925 | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | ||
926 | 1907 | ||
927 | /* | 1908 | /* |
928 | * Use page lock to guard against racing truncation | 1909 | * Use page lock to guard against racing truncation |
@@ -931,15 +1912,15 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
931 | retry: | 1912 | retry: |
932 | page = find_lock_page(mapping, idx); | 1913 | page = find_lock_page(mapping, idx); |
933 | if (!page) { | 1914 | if (!page) { |
934 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1915 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
935 | if (idx >= size) | 1916 | if (idx >= size) |
936 | goto out; | 1917 | goto out; |
937 | page = alloc_huge_page(vma, address); | 1918 | page = alloc_huge_page(vma, address, 0); |
938 | if (IS_ERR(page)) { | 1919 | if (IS_ERR(page)) { |
939 | ret = -PTR_ERR(page); | 1920 | ret = -PTR_ERR(page); |
940 | goto out; | 1921 | goto out; |
941 | } | 1922 | } |
942 | clear_huge_page(page, address); | 1923 | clear_huge_page(page, address, huge_page_size(h)); |
943 | __SetPageUptodate(page); | 1924 | __SetPageUptodate(page); |
944 | 1925 | ||
945 | if (vma->vm_flags & VM_SHARED) { | 1926 | if (vma->vm_flags & VM_SHARED) { |
@@ -955,14 +1936,26 @@ retry: | |||
955 | } | 1936 | } |
956 | 1937 | ||
957 | spin_lock(&inode->i_lock); | 1938 | spin_lock(&inode->i_lock); |
958 | inode->i_blocks += BLOCKS_PER_HUGEPAGE; | 1939 | inode->i_blocks += blocks_per_huge_page(h); |
959 | spin_unlock(&inode->i_lock); | 1940 | spin_unlock(&inode->i_lock); |
960 | } else | 1941 | } else |
961 | lock_page(page); | 1942 | lock_page(page); |
962 | } | 1943 | } |
963 | 1944 | ||
1945 | /* | ||
1946 | * If we are going to COW a private mapping later, we examine the | ||
1947 | * pending reservations for this page now. This will ensure that | ||
1948 | * any allocations necessary to record that reservation occur outside | ||
1949 | * the spinlock. | ||
1950 | */ | ||
1951 | if (write_access && !(vma->vm_flags & VM_SHARED)) | ||
1952 | if (vma_needs_reservation(h, vma, address) < 0) { | ||
1953 | ret = VM_FAULT_OOM; | ||
1954 | goto backout_unlocked; | ||
1955 | } | ||
1956 | |||
964 | spin_lock(&mm->page_table_lock); | 1957 | spin_lock(&mm->page_table_lock); |
965 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; | 1958 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
966 | if (idx >= size) | 1959 | if (idx >= size) |
967 | goto backout; | 1960 | goto backout; |
968 | 1961 | ||
@@ -976,7 +1969,7 @@ retry: | |||
976 | 1969 | ||
977 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | 1970 | if (write_access && !(vma->vm_flags & VM_SHARED)) { |
978 | /* Optimization, do the COW without a second fault */ | 1971 | /* Optimization, do the COW without a second fault */ |
979 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte); | 1972 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
980 | } | 1973 | } |
981 | 1974 | ||
982 | spin_unlock(&mm->page_table_lock); | 1975 | spin_unlock(&mm->page_table_lock); |
@@ -986,6 +1979,7 @@ out: | |||
986 | 1979 | ||
987 | backout: | 1980 | backout: |
988 | spin_unlock(&mm->page_table_lock); | 1981 | spin_unlock(&mm->page_table_lock); |
1982 | backout_unlocked: | ||
989 | unlock_page(page); | 1983 | unlock_page(page); |
990 | put_page(page); | 1984 | put_page(page); |
991 | goto out; | 1985 | goto out; |
@@ -997,9 +1991,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
997 | pte_t *ptep; | 1991 | pte_t *ptep; |
998 | pte_t entry; | 1992 | pte_t entry; |
999 | int ret; | 1993 | int ret; |
1994 | struct page *pagecache_page = NULL; | ||
1000 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 1995 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
1996 | struct hstate *h = hstate_vma(vma); | ||
1001 | 1997 | ||
1002 | ptep = huge_pte_alloc(mm, address); | 1998 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
1003 | if (!ptep) | 1999 | if (!ptep) |
1004 | return VM_FAULT_OOM; | 2000 | return VM_FAULT_OOM; |
1005 | 2001 | ||
@@ -1012,23 +2008,58 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1012 | entry = huge_ptep_get(ptep); | 2008 | entry = huge_ptep_get(ptep); |
1013 | if (huge_pte_none(entry)) { | 2009 | if (huge_pte_none(entry)) { |
1014 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); | 2010 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); |
1015 | mutex_unlock(&hugetlb_instantiation_mutex); | 2011 | goto out_unlock; |
1016 | return ret; | ||
1017 | } | 2012 | } |
1018 | 2013 | ||
1019 | ret = 0; | 2014 | ret = 0; |
1020 | 2015 | ||
2016 | /* | ||
2017 | * If we are going to COW the mapping later, we examine the pending | ||
2018 | * reservations for this page now. This will ensure that any | ||
2019 | * allocations necessary to record that reservation occur outside the | ||
2020 | * spinlock. For private mappings, we also lookup the pagecache | ||
2021 | * page now as it is used to determine if a reservation has been | ||
2022 | * consumed. | ||
2023 | */ | ||
2024 | if (write_access && !pte_write(entry)) { | ||
2025 | if (vma_needs_reservation(h, vma, address) < 0) { | ||
2026 | ret = VM_FAULT_OOM; | ||
2027 | goto out_unlock; | ||
2028 | } | ||
2029 | |||
2030 | if (!(vma->vm_flags & VM_SHARED)) | ||
2031 | pagecache_page = hugetlbfs_pagecache_page(h, | ||
2032 | vma, address); | ||
2033 | } | ||
2034 | |||
1021 | spin_lock(&mm->page_table_lock); | 2035 | spin_lock(&mm->page_table_lock); |
1022 | /* Check for a racing update before calling hugetlb_cow */ | 2036 | /* Check for a racing update before calling hugetlb_cow */ |
1023 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) | 2037 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) |
1024 | if (write_access && !pte_write(entry)) | 2038 | if (write_access && !pte_write(entry)) |
1025 | ret = hugetlb_cow(mm, vma, address, ptep, entry); | 2039 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2040 | pagecache_page); | ||
1026 | spin_unlock(&mm->page_table_lock); | 2041 | spin_unlock(&mm->page_table_lock); |
2042 | |||
2043 | if (pagecache_page) { | ||
2044 | unlock_page(pagecache_page); | ||
2045 | put_page(pagecache_page); | ||
2046 | } | ||
2047 | |||
2048 | out_unlock: | ||
1027 | mutex_unlock(&hugetlb_instantiation_mutex); | 2049 | mutex_unlock(&hugetlb_instantiation_mutex); |
1028 | 2050 | ||
1029 | return ret; | 2051 | return ret; |
1030 | } | 2052 | } |
1031 | 2053 | ||
2054 | /* Can be overriden by architectures */ | ||
2055 | __attribute__((weak)) struct page * | ||
2056 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | ||
2057 | pud_t *pud, int write) | ||
2058 | { | ||
2059 | BUG(); | ||
2060 | return NULL; | ||
2061 | } | ||
2062 | |||
1032 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2063 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1033 | struct page **pages, struct vm_area_struct **vmas, | 2064 | struct page **pages, struct vm_area_struct **vmas, |
1034 | unsigned long *position, int *length, int i, | 2065 | unsigned long *position, int *length, int i, |
@@ -1037,6 +2068,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1037 | unsigned long pfn_offset; | 2068 | unsigned long pfn_offset; |
1038 | unsigned long vaddr = *position; | 2069 | unsigned long vaddr = *position; |
1039 | int remainder = *length; | 2070 | int remainder = *length; |
2071 | struct hstate *h = hstate_vma(vma); | ||
1040 | 2072 | ||
1041 | spin_lock(&mm->page_table_lock); | 2073 | spin_lock(&mm->page_table_lock); |
1042 | while (vaddr < vma->vm_end && remainder) { | 2074 | while (vaddr < vma->vm_end && remainder) { |
@@ -1048,7 +2080,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1048 | * each hugepage. We have to make * sure we get the | 2080 | * each hugepage. We have to make * sure we get the |
1049 | * first, for the page indexing below to work. | 2081 | * first, for the page indexing below to work. |
1050 | */ | 2082 | */ |
1051 | pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | 2083 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
1052 | 2084 | ||
1053 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || | 2085 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || |
1054 | (write && !pte_write(huge_ptep_get(pte)))) { | 2086 | (write && !pte_write(huge_ptep_get(pte)))) { |
@@ -1066,7 +2098,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1066 | break; | 2098 | break; |
1067 | } | 2099 | } |
1068 | 2100 | ||
1069 | pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; | 2101 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
1070 | page = pte_page(huge_ptep_get(pte)); | 2102 | page = pte_page(huge_ptep_get(pte)); |
1071 | same_page: | 2103 | same_page: |
1072 | if (pages) { | 2104 | if (pages) { |
@@ -1082,7 +2114,7 @@ same_page: | |||
1082 | --remainder; | 2114 | --remainder; |
1083 | ++i; | 2115 | ++i; |
1084 | if (vaddr < vma->vm_end && remainder && | 2116 | if (vaddr < vma->vm_end && remainder && |
1085 | pfn_offset < HPAGE_SIZE/PAGE_SIZE) { | 2117 | pfn_offset < pages_per_huge_page(h)) { |
1086 | /* | 2118 | /* |
1087 | * We use pfn_offset to avoid touching the pageframes | 2119 | * We use pfn_offset to avoid touching the pageframes |
1088 | * of this compound page. | 2120 | * of this compound page. |
@@ -1104,13 +2136,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1104 | unsigned long start = address; | 2136 | unsigned long start = address; |
1105 | pte_t *ptep; | 2137 | pte_t *ptep; |
1106 | pte_t pte; | 2138 | pte_t pte; |
2139 | struct hstate *h = hstate_vma(vma); | ||
1107 | 2140 | ||
1108 | BUG_ON(address >= end); | 2141 | BUG_ON(address >= end); |
1109 | flush_cache_range(vma, address, end); | 2142 | flush_cache_range(vma, address, end); |
1110 | 2143 | ||
1111 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | 2144 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
1112 | spin_lock(&mm->page_table_lock); | 2145 | spin_lock(&mm->page_table_lock); |
1113 | for (; address < end; address += HPAGE_SIZE) { | 2146 | for (; address < end; address += huge_page_size(h)) { |
1114 | ptep = huge_pte_offset(mm, address); | 2147 | ptep = huge_pte_offset(mm, address); |
1115 | if (!ptep) | 2148 | if (!ptep) |
1116 | continue; | 2149 | continue; |
@@ -1128,195 +2161,59 @@ void hugetlb_change_protection(struct vm_area_struct *vma, | |||
1128 | flush_tlb_range(vma, start, end); | 2161 | flush_tlb_range(vma, start, end); |
1129 | } | 2162 | } |
1130 | 2163 | ||
1131 | struct file_region { | 2164 | int hugetlb_reserve_pages(struct inode *inode, |
1132 | struct list_head link; | 2165 | long from, long to, |
1133 | long from; | 2166 | struct vm_area_struct *vma) |
1134 | long to; | ||
1135 | }; | ||
1136 | |||
1137 | static long region_add(struct list_head *head, long f, long t) | ||
1138 | { | ||
1139 | struct file_region *rg, *nrg, *trg; | ||
1140 | |||
1141 | /* Locate the region we are either in or before. */ | ||
1142 | list_for_each_entry(rg, head, link) | ||
1143 | if (f <= rg->to) | ||
1144 | break; | ||
1145 | |||
1146 | /* Round our left edge to the current segment if it encloses us. */ | ||
1147 | if (f > rg->from) | ||
1148 | f = rg->from; | ||
1149 | |||
1150 | /* Check for and consume any regions we now overlap with. */ | ||
1151 | nrg = rg; | ||
1152 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1153 | if (&rg->link == head) | ||
1154 | break; | ||
1155 | if (rg->from > t) | ||
1156 | break; | ||
1157 | |||
1158 | /* If this area reaches higher then extend our area to | ||
1159 | * include it completely. If this is not the first area | ||
1160 | * which we intend to reuse, free it. */ | ||
1161 | if (rg->to > t) | ||
1162 | t = rg->to; | ||
1163 | if (rg != nrg) { | ||
1164 | list_del(&rg->link); | ||
1165 | kfree(rg); | ||
1166 | } | ||
1167 | } | ||
1168 | nrg->from = f; | ||
1169 | nrg->to = t; | ||
1170 | return 0; | ||
1171 | } | ||
1172 | |||
1173 | static long region_chg(struct list_head *head, long f, long t) | ||
1174 | { | 2167 | { |
1175 | struct file_region *rg, *nrg; | 2168 | long ret, chg; |
1176 | long chg = 0; | 2169 | struct hstate *h = hstate_inode(inode); |
1177 | |||
1178 | /* Locate the region we are before or in. */ | ||
1179 | list_for_each_entry(rg, head, link) | ||
1180 | if (f <= rg->to) | ||
1181 | break; | ||
1182 | |||
1183 | /* If we are below the current region then a new region is required. | ||
1184 | * Subtle, allocate a new region at the position but make it zero | ||
1185 | * size such that we can guarantee to record the reservation. */ | ||
1186 | if (&rg->link == head || t < rg->from) { | ||
1187 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | ||
1188 | if (!nrg) | ||
1189 | return -ENOMEM; | ||
1190 | nrg->from = f; | ||
1191 | nrg->to = f; | ||
1192 | INIT_LIST_HEAD(&nrg->link); | ||
1193 | list_add(&nrg->link, rg->link.prev); | ||
1194 | |||
1195 | return t - f; | ||
1196 | } | ||
1197 | |||
1198 | /* Round our left edge to the current segment if it encloses us. */ | ||
1199 | if (f > rg->from) | ||
1200 | f = rg->from; | ||
1201 | chg = t - f; | ||
1202 | |||
1203 | /* Check for and consume any regions we now overlap with. */ | ||
1204 | list_for_each_entry(rg, rg->link.prev, link) { | ||
1205 | if (&rg->link == head) | ||
1206 | break; | ||
1207 | if (rg->from > t) | ||
1208 | return chg; | ||
1209 | |||
1210 | /* We overlap with this area, if it extends futher than | ||
1211 | * us then we must extend ourselves. Account for its | ||
1212 | * existing reservation. */ | ||
1213 | if (rg->to > t) { | ||
1214 | chg += rg->to - t; | ||
1215 | t = rg->to; | ||
1216 | } | ||
1217 | chg -= rg->to - rg->from; | ||
1218 | } | ||
1219 | return chg; | ||
1220 | } | ||
1221 | |||
1222 | static long region_truncate(struct list_head *head, long end) | ||
1223 | { | ||
1224 | struct file_region *rg, *trg; | ||
1225 | long chg = 0; | ||
1226 | 2170 | ||
1227 | /* Locate the region we are either in or before. */ | 2171 | if (vma && vma->vm_flags & VM_NORESERVE) |
1228 | list_for_each_entry(rg, head, link) | ||
1229 | if (end <= rg->to) | ||
1230 | break; | ||
1231 | if (&rg->link == head) | ||
1232 | return 0; | 2172 | return 0; |
1233 | 2173 | ||
1234 | /* If we are in the middle of a region then adjust it. */ | ||
1235 | if (end > rg->from) { | ||
1236 | chg = rg->to - end; | ||
1237 | rg->to = end; | ||
1238 | rg = list_entry(rg->link.next, typeof(*rg), link); | ||
1239 | } | ||
1240 | |||
1241 | /* Drop any remaining regions. */ | ||
1242 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | ||
1243 | if (&rg->link == head) | ||
1244 | break; | ||
1245 | chg += rg->to - rg->from; | ||
1246 | list_del(&rg->link); | ||
1247 | kfree(rg); | ||
1248 | } | ||
1249 | return chg; | ||
1250 | } | ||
1251 | |||
1252 | static int hugetlb_acct_memory(long delta) | ||
1253 | { | ||
1254 | int ret = -ENOMEM; | ||
1255 | |||
1256 | spin_lock(&hugetlb_lock); | ||
1257 | /* | 2174 | /* |
1258 | * When cpuset is configured, it breaks the strict hugetlb page | 2175 | * Shared mappings base their reservation on the number of pages that |
1259 | * reservation as the accounting is done on a global variable. Such | 2176 | * are already allocated on behalf of the file. Private mappings need |
1260 | * reservation is completely rubbish in the presence of cpuset because | 2177 | * to reserve the full area even if read-only as mprotect() may be |
1261 | * the reservation is not checked against page availability for the | 2178 | * called to make the mapping read-write. Assume !vma is a shm mapping |
1262 | * current cpuset. Application can still potentially OOM'ed by kernel | ||
1263 | * with lack of free htlb page in cpuset that the task is in. | ||
1264 | * Attempt to enforce strict accounting with cpuset is almost | ||
1265 | * impossible (or too ugly) because cpuset is too fluid that | ||
1266 | * task or memory node can be dynamically moved between cpusets. | ||
1267 | * | ||
1268 | * The change of semantics for shared hugetlb mapping with cpuset is | ||
1269 | * undesirable. However, in order to preserve some of the semantics, | ||
1270 | * we fall back to check against current free page availability as | ||
1271 | * a best attempt and hopefully to minimize the impact of changing | ||
1272 | * semantics that cpuset has. | ||
1273 | */ | 2179 | */ |
1274 | if (delta > 0) { | 2180 | if (!vma || vma->vm_flags & VM_SHARED) |
1275 | if (gather_surplus_pages(delta) < 0) | 2181 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
1276 | goto out; | 2182 | else { |
1277 | 2183 | struct resv_map *resv_map = resv_map_alloc(); | |
1278 | if (delta > cpuset_mems_nr(free_huge_pages_node)) { | 2184 | if (!resv_map) |
1279 | return_unused_surplus_pages(delta); | 2185 | return -ENOMEM; |
1280 | goto out; | ||
1281 | } | ||
1282 | } | ||
1283 | |||
1284 | ret = 0; | ||
1285 | if (delta < 0) | ||
1286 | return_unused_surplus_pages((unsigned long) -delta); | ||
1287 | 2186 | ||
1288 | out: | 2187 | chg = to - from; |
1289 | spin_unlock(&hugetlb_lock); | ||
1290 | return ret; | ||
1291 | } | ||
1292 | 2188 | ||
1293 | int hugetlb_reserve_pages(struct inode *inode, long from, long to) | 2189 | set_vma_resv_map(vma, resv_map); |
1294 | { | 2190 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); |
1295 | long ret, chg; | 2191 | } |
1296 | 2192 | ||
1297 | chg = region_chg(&inode->i_mapping->private_list, from, to); | ||
1298 | if (chg < 0) | 2193 | if (chg < 0) |
1299 | return chg; | 2194 | return chg; |
1300 | 2195 | ||
1301 | if (hugetlb_get_quota(inode->i_mapping, chg)) | 2196 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
1302 | return -ENOSPC; | 2197 | return -ENOSPC; |
1303 | ret = hugetlb_acct_memory(chg); | 2198 | ret = hugetlb_acct_memory(h, chg); |
1304 | if (ret < 0) { | 2199 | if (ret < 0) { |
1305 | hugetlb_put_quota(inode->i_mapping, chg); | 2200 | hugetlb_put_quota(inode->i_mapping, chg); |
1306 | return ret; | 2201 | return ret; |
1307 | } | 2202 | } |
1308 | region_add(&inode->i_mapping->private_list, from, to); | 2203 | if (!vma || vma->vm_flags & VM_SHARED) |
2204 | region_add(&inode->i_mapping->private_list, from, to); | ||
1309 | return 0; | 2205 | return 0; |
1310 | } | 2206 | } |
1311 | 2207 | ||
1312 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 2208 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) |
1313 | { | 2209 | { |
2210 | struct hstate *h = hstate_inode(inode); | ||
1314 | long chg = region_truncate(&inode->i_mapping->private_list, offset); | 2211 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
1315 | 2212 | ||
1316 | spin_lock(&inode->i_lock); | 2213 | spin_lock(&inode->i_lock); |
1317 | inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; | 2214 | inode->i_blocks -= blocks_per_huge_page(h); |
1318 | spin_unlock(&inode->i_lock); | 2215 | spin_unlock(&inode->i_lock); |
1319 | 2216 | ||
1320 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 2217 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
1321 | hugetlb_acct_memory(-(chg - freed)); | 2218 | hugetlb_acct_memory(h, -(chg - freed)); |
1322 | } | 2219 | } |
diff --git a/mm/internal.h b/mm/internal.h index 0034e947e4bc..1f43f7416972 100644 --- a/mm/internal.h +++ b/mm/internal.h | |||
@@ -13,6 +13,11 @@ | |||
13 | 13 | ||
14 | #include <linux/mm.h> | 14 | #include <linux/mm.h> |
15 | 15 | ||
16 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, | ||
17 | unsigned long floor, unsigned long ceiling); | ||
18 | |||
19 | extern void prep_compound_page(struct page *page, unsigned long order); | ||
20 | |||
16 | static inline void set_page_count(struct page *page, int v) | 21 | static inline void set_page_count(struct page *page, int v) |
17 | { | 22 | { |
18 | atomic_set(&page->_count, v); | 23 | atomic_set(&page->_count, v); |
@@ -59,4 +64,60 @@ static inline unsigned long page_order(struct page *page) | |||
59 | #define __paginginit __init | 64 | #define __paginginit __init |
60 | #endif | 65 | #endif |
61 | 66 | ||
67 | /* Memory initialisation debug and verification */ | ||
68 | enum mminit_level { | ||
69 | MMINIT_WARNING, | ||
70 | MMINIT_VERIFY, | ||
71 | MMINIT_TRACE | ||
72 | }; | ||
73 | |||
74 | #ifdef CONFIG_DEBUG_MEMORY_INIT | ||
75 | |||
76 | extern int mminit_loglevel; | ||
77 | |||
78 | #define mminit_dprintk(level, prefix, fmt, arg...) \ | ||
79 | do { \ | ||
80 | if (level < mminit_loglevel) { \ | ||
81 | printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \ | ||
82 | printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \ | ||
83 | } \ | ||
84 | } while (0) | ||
85 | |||
86 | extern void mminit_verify_pageflags_layout(void); | ||
87 | extern void mminit_verify_page_links(struct page *page, | ||
88 | enum zone_type zone, unsigned long nid, unsigned long pfn); | ||
89 | extern void mminit_verify_zonelist(void); | ||
90 | |||
91 | #else | ||
92 | |||
93 | static inline void mminit_dprintk(enum mminit_level level, | ||
94 | const char *prefix, const char *fmt, ...) | ||
95 | { | ||
96 | } | ||
97 | |||
98 | static inline void mminit_verify_pageflags_layout(void) | ||
99 | { | ||
100 | } | ||
101 | |||
102 | static inline void mminit_verify_page_links(struct page *page, | ||
103 | enum zone_type zone, unsigned long nid, unsigned long pfn) | ||
104 | { | ||
105 | } | ||
106 | |||
107 | static inline void mminit_verify_zonelist(void) | ||
108 | { | ||
109 | } | ||
110 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ | ||
111 | |||
112 | /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ | ||
113 | #if defined(CONFIG_SPARSEMEM) | ||
114 | extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, | ||
115 | unsigned long *end_pfn); | ||
116 | #else | ||
117 | static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, | ||
118 | unsigned long *end_pfn) | ||
119 | { | ||
120 | } | ||
121 | #endif /* CONFIG_SPARSEMEM */ | ||
122 | |||
62 | #endif | 123 | #endif |
diff --git a/mm/madvise.c b/mm/madvise.c index 23a0ec3e0ea0..f9349c18a1b5 100644 --- a/mm/madvise.c +++ b/mm/madvise.c | |||
@@ -132,10 +132,10 @@ static long madvise_willneed(struct vm_area_struct * vma, | |||
132 | * Application no longer needs these pages. If the pages are dirty, | 132 | * Application no longer needs these pages. If the pages are dirty, |
133 | * it's OK to just throw them away. The app will be more careful about | 133 | * it's OK to just throw them away. The app will be more careful about |
134 | * data it wants to keep. Be sure to free swap resources too. The | 134 | * data it wants to keep. Be sure to free swap resources too. The |
135 | * zap_page_range call sets things up for refill_inactive to actually free | 135 | * zap_page_range call sets things up for shrink_active_list to actually free |
136 | * these pages later if no one else has touched them in the meantime, | 136 | * these pages later if no one else has touched them in the meantime, |
137 | * although we could add these pages to a global reuse list for | 137 | * although we could add these pages to a global reuse list for |
138 | * refill_inactive to pick up before reclaiming other pages. | 138 | * shrink_active_list to pick up before reclaiming other pages. |
139 | * | 139 | * |
140 | * NB: This interface discards data rather than pushes it out to swap, | 140 | * NB: This interface discards data rather than pushes it out to swap, |
141 | * as some implementations do. This has performance implications for | 141 | * as some implementations do. This has performance implications for |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index e46451e1d9b7..36896f3eb7f5 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -35,9 +35,9 @@ | |||
35 | 35 | ||
36 | #include <asm/uaccess.h> | 36 | #include <asm/uaccess.h> |
37 | 37 | ||
38 | struct cgroup_subsys mem_cgroup_subsys; | 38 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
39 | static const int MEM_CGROUP_RECLAIM_RETRIES = 5; | 39 | static struct kmem_cache *page_cgroup_cache __read_mostly; |
40 | static struct kmem_cache *page_cgroup_cache; | 40 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
41 | 41 | ||
42 | /* | 42 | /* |
43 | * Statistics for memory cgroup. | 43 | * Statistics for memory cgroup. |
@@ -166,7 +166,6 @@ struct page_cgroup { | |||
166 | struct list_head lru; /* per cgroup LRU list */ | 166 | struct list_head lru; /* per cgroup LRU list */ |
167 | struct page *page; | 167 | struct page *page; |
168 | struct mem_cgroup *mem_cgroup; | 168 | struct mem_cgroup *mem_cgroup; |
169 | int ref_cnt; /* cached, mapped, migrating */ | ||
170 | int flags; | 169 | int flags; |
171 | }; | 170 | }; |
172 | #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ | 171 | #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ |
@@ -185,6 +184,7 @@ static enum zone_type page_cgroup_zid(struct page_cgroup *pc) | |||
185 | enum charge_type { | 184 | enum charge_type { |
186 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 185 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
187 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 186 | MEM_CGROUP_CHARGE_TYPE_MAPPED, |
187 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ | ||
188 | }; | 188 | }; |
189 | 189 | ||
190 | /* | 190 | /* |
@@ -250,6 +250,14 @@ static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) | |||
250 | 250 | ||
251 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 251 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
252 | { | 252 | { |
253 | /* | ||
254 | * mm_update_next_owner() may clear mm->owner to NULL | ||
255 | * if it races with swapoff, page migration, etc. | ||
256 | * So this can be called with p == NULL. | ||
257 | */ | ||
258 | if (unlikely(!p)) | ||
259 | return NULL; | ||
260 | |||
253 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), | 261 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
254 | struct mem_cgroup, css); | 262 | struct mem_cgroup, css); |
255 | } | 263 | } |
@@ -296,7 +304,7 @@ static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, | |||
296 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | 304 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; |
297 | 305 | ||
298 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); | 306 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); |
299 | list_del_init(&pc->lru); | 307 | list_del(&pc->lru); |
300 | } | 308 | } |
301 | 309 | ||
302 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, | 310 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, |
@@ -354,6 +362,9 @@ void mem_cgroup_move_lists(struct page *page, bool active) | |||
354 | struct mem_cgroup_per_zone *mz; | 362 | struct mem_cgroup_per_zone *mz; |
355 | unsigned long flags; | 363 | unsigned long flags; |
356 | 364 | ||
365 | if (mem_cgroup_subsys.disabled) | ||
366 | return; | ||
367 | |||
357 | /* | 368 | /* |
358 | * We cannot lock_page_cgroup while holding zone's lru_lock, | 369 | * We cannot lock_page_cgroup while holding zone's lru_lock, |
359 | * because other holders of lock_page_cgroup can be interrupted | 370 | * because other holders of lock_page_cgroup can be interrupted |
@@ -524,7 +535,8 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
524 | * < 0 if the cgroup is over its limit | 535 | * < 0 if the cgroup is over its limit |
525 | */ | 536 | */ |
526 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 537 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
527 | gfp_t gfp_mask, enum charge_type ctype) | 538 | gfp_t gfp_mask, enum charge_type ctype, |
539 | struct mem_cgroup *memcg) | ||
528 | { | 540 | { |
529 | struct mem_cgroup *mem; | 541 | struct mem_cgroup *mem; |
530 | struct page_cgroup *pc; | 542 | struct page_cgroup *pc; |
@@ -532,35 +544,8 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
532 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 544 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
533 | struct mem_cgroup_per_zone *mz; | 545 | struct mem_cgroup_per_zone *mz; |
534 | 546 | ||
535 | if (mem_cgroup_subsys.disabled) | 547 | pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask); |
536 | return 0; | 548 | if (unlikely(pc == NULL)) |
537 | |||
538 | /* | ||
539 | * Should page_cgroup's go to their own slab? | ||
540 | * One could optimize the performance of the charging routine | ||
541 | * by saving a bit in the page_flags and using it as a lock | ||
542 | * to see if the cgroup page already has a page_cgroup associated | ||
543 | * with it | ||
544 | */ | ||
545 | retry: | ||
546 | lock_page_cgroup(page); | ||
547 | pc = page_get_page_cgroup(page); | ||
548 | /* | ||
549 | * The page_cgroup exists and | ||
550 | * the page has already been accounted. | ||
551 | */ | ||
552 | if (pc) { | ||
553 | VM_BUG_ON(pc->page != page); | ||
554 | VM_BUG_ON(pc->ref_cnt <= 0); | ||
555 | |||
556 | pc->ref_cnt++; | ||
557 | unlock_page_cgroup(page); | ||
558 | goto done; | ||
559 | } | ||
560 | unlock_page_cgroup(page); | ||
561 | |||
562 | pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask); | ||
563 | if (pc == NULL) | ||
564 | goto err; | 549 | goto err; |
565 | 550 | ||
566 | /* | 551 | /* |
@@ -569,16 +554,23 @@ retry: | |||
569 | * thread group leader migrates. It's possible that mm is not | 554 | * thread group leader migrates. It's possible that mm is not |
570 | * set, if so charge the init_mm (happens for pagecache usage). | 555 | * set, if so charge the init_mm (happens for pagecache usage). |
571 | */ | 556 | */ |
572 | if (!mm) | 557 | if (likely(!memcg)) { |
573 | mm = &init_mm; | 558 | rcu_read_lock(); |
574 | 559 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
575 | rcu_read_lock(); | 560 | if (unlikely(!mem)) { |
576 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 561 | rcu_read_unlock(); |
577 | /* | 562 | kmem_cache_free(page_cgroup_cache, pc); |
578 | * For every charge from the cgroup, increment reference count | 563 | return 0; |
579 | */ | 564 | } |
580 | css_get(&mem->css); | 565 | /* |
581 | rcu_read_unlock(); | 566 | * For every charge from the cgroup, increment reference count |
567 | */ | ||
568 | css_get(&mem->css); | ||
569 | rcu_read_unlock(); | ||
570 | } else { | ||
571 | mem = memcg; | ||
572 | css_get(&memcg->css); | ||
573 | } | ||
582 | 574 | ||
583 | while (res_counter_charge(&mem->res, PAGE_SIZE)) { | 575 | while (res_counter_charge(&mem->res, PAGE_SIZE)) { |
584 | if (!(gfp_mask & __GFP_WAIT)) | 576 | if (!(gfp_mask & __GFP_WAIT)) |
@@ -603,25 +595,24 @@ retry: | |||
603 | } | 595 | } |
604 | } | 596 | } |
605 | 597 | ||
606 | pc->ref_cnt = 1; | ||
607 | pc->mem_cgroup = mem; | 598 | pc->mem_cgroup = mem; |
608 | pc->page = page; | 599 | pc->page = page; |
609 | pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | 600 | /* |
601 | * If a page is accounted as a page cache, insert to inactive list. | ||
602 | * If anon, insert to active list. | ||
603 | */ | ||
610 | if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) | 604 | if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) |
611 | pc->flags = PAGE_CGROUP_FLAG_CACHE; | 605 | pc->flags = PAGE_CGROUP_FLAG_CACHE; |
606 | else | ||
607 | pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | ||
612 | 608 | ||
613 | lock_page_cgroup(page); | 609 | lock_page_cgroup(page); |
614 | if (page_get_page_cgroup(page)) { | 610 | if (unlikely(page_get_page_cgroup(page))) { |
615 | unlock_page_cgroup(page); | 611 | unlock_page_cgroup(page); |
616 | /* | ||
617 | * Another charge has been added to this page already. | ||
618 | * We take lock_page_cgroup(page) again and read | ||
619 | * page->cgroup, increment refcnt.... just retry is OK. | ||
620 | */ | ||
621 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 612 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
622 | css_put(&mem->css); | 613 | css_put(&mem->css); |
623 | kmem_cache_free(page_cgroup_cache, pc); | 614 | kmem_cache_free(page_cgroup_cache, pc); |
624 | goto retry; | 615 | goto done; |
625 | } | 616 | } |
626 | page_assign_page_cgroup(page, pc); | 617 | page_assign_page_cgroup(page, pc); |
627 | 618 | ||
@@ -642,24 +633,65 @@ err: | |||
642 | 633 | ||
643 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | 634 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) |
644 | { | 635 | { |
636 | if (mem_cgroup_subsys.disabled) | ||
637 | return 0; | ||
638 | |||
639 | /* | ||
640 | * If already mapped, we don't have to account. | ||
641 | * If page cache, page->mapping has address_space. | ||
642 | * But page->mapping may have out-of-use anon_vma pointer, | ||
643 | * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | ||
644 | * is NULL. | ||
645 | */ | ||
646 | if (page_mapped(page) || (page->mapping && !PageAnon(page))) | ||
647 | return 0; | ||
648 | if (unlikely(!mm)) | ||
649 | mm = &init_mm; | ||
645 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 650 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
646 | MEM_CGROUP_CHARGE_TYPE_MAPPED); | 651 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); |
647 | } | 652 | } |
648 | 653 | ||
649 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 654 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
650 | gfp_t gfp_mask) | 655 | gfp_t gfp_mask) |
651 | { | 656 | { |
652 | if (!mm) | 657 | if (mem_cgroup_subsys.disabled) |
658 | return 0; | ||
659 | |||
660 | /* | ||
661 | * Corner case handling. This is called from add_to_page_cache() | ||
662 | * in usual. But some FS (shmem) precharges this page before calling it | ||
663 | * and call add_to_page_cache() with GFP_NOWAIT. | ||
664 | * | ||
665 | * For GFP_NOWAIT case, the page may be pre-charged before calling | ||
666 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | ||
667 | * charge twice. (It works but has to pay a bit larger cost.) | ||
668 | */ | ||
669 | if (!(gfp_mask & __GFP_WAIT)) { | ||
670 | struct page_cgroup *pc; | ||
671 | |||
672 | lock_page_cgroup(page); | ||
673 | pc = page_get_page_cgroup(page); | ||
674 | if (pc) { | ||
675 | VM_BUG_ON(pc->page != page); | ||
676 | VM_BUG_ON(!pc->mem_cgroup); | ||
677 | unlock_page_cgroup(page); | ||
678 | return 0; | ||
679 | } | ||
680 | unlock_page_cgroup(page); | ||
681 | } | ||
682 | |||
683 | if (unlikely(!mm)) | ||
653 | mm = &init_mm; | 684 | mm = &init_mm; |
685 | |||
654 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 686 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
655 | MEM_CGROUP_CHARGE_TYPE_CACHE); | 687 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
656 | } | 688 | } |
657 | 689 | ||
658 | /* | 690 | /* |
659 | * Uncharging is always a welcome operation, we never complain, simply | 691 | * uncharge if !page_mapped(page) |
660 | * uncharge. | ||
661 | */ | 692 | */ |
662 | void mem_cgroup_uncharge_page(struct page *page) | 693 | static void |
694 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | ||
663 | { | 695 | { |
664 | struct page_cgroup *pc; | 696 | struct page_cgroup *pc; |
665 | struct mem_cgroup *mem; | 697 | struct mem_cgroup *mem; |
@@ -674,98 +706,158 @@ void mem_cgroup_uncharge_page(struct page *page) | |||
674 | */ | 706 | */ |
675 | lock_page_cgroup(page); | 707 | lock_page_cgroup(page); |
676 | pc = page_get_page_cgroup(page); | 708 | pc = page_get_page_cgroup(page); |
677 | if (!pc) | 709 | if (unlikely(!pc)) |
678 | goto unlock; | 710 | goto unlock; |
679 | 711 | ||
680 | VM_BUG_ON(pc->page != page); | 712 | VM_BUG_ON(pc->page != page); |
681 | VM_BUG_ON(pc->ref_cnt <= 0); | ||
682 | 713 | ||
683 | if (--(pc->ref_cnt) == 0) { | 714 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) |
684 | mz = page_cgroup_zoneinfo(pc); | 715 | && ((pc->flags & PAGE_CGROUP_FLAG_CACHE) |
685 | spin_lock_irqsave(&mz->lru_lock, flags); | 716 | || page_mapped(page))) |
686 | __mem_cgroup_remove_list(mz, pc); | 717 | goto unlock; |
687 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
688 | 718 | ||
689 | page_assign_page_cgroup(page, NULL); | 719 | mz = page_cgroup_zoneinfo(pc); |
690 | unlock_page_cgroup(page); | 720 | spin_lock_irqsave(&mz->lru_lock, flags); |
721 | __mem_cgroup_remove_list(mz, pc); | ||
722 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
691 | 723 | ||
692 | mem = pc->mem_cgroup; | 724 | page_assign_page_cgroup(page, NULL); |
693 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 725 | unlock_page_cgroup(page); |
694 | css_put(&mem->css); | ||
695 | 726 | ||
696 | kmem_cache_free(page_cgroup_cache, pc); | 727 | mem = pc->mem_cgroup; |
697 | return; | 728 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
698 | } | 729 | css_put(&mem->css); |
699 | 730 | ||
731 | kmem_cache_free(page_cgroup_cache, pc); | ||
732 | return; | ||
700 | unlock: | 733 | unlock: |
701 | unlock_page_cgroup(page); | 734 | unlock_page_cgroup(page); |
702 | } | 735 | } |
703 | 736 | ||
737 | void mem_cgroup_uncharge_page(struct page *page) | ||
738 | { | ||
739 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); | ||
740 | } | ||
741 | |||
742 | void mem_cgroup_uncharge_cache_page(struct page *page) | ||
743 | { | ||
744 | VM_BUG_ON(page_mapped(page)); | ||
745 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); | ||
746 | } | ||
747 | |||
704 | /* | 748 | /* |
705 | * Returns non-zero if a page (under migration) has valid page_cgroup member. | 749 | * Before starting migration, account against new page. |
706 | * Refcnt of page_cgroup is incremented. | ||
707 | */ | 750 | */ |
708 | int mem_cgroup_prepare_migration(struct page *page) | 751 | int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) |
709 | { | 752 | { |
710 | struct page_cgroup *pc; | 753 | struct page_cgroup *pc; |
754 | struct mem_cgroup *mem = NULL; | ||
755 | enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | ||
756 | int ret = 0; | ||
711 | 757 | ||
712 | if (mem_cgroup_subsys.disabled) | 758 | if (mem_cgroup_subsys.disabled) |
713 | return 0; | 759 | return 0; |
714 | 760 | ||
715 | lock_page_cgroup(page); | 761 | lock_page_cgroup(page); |
716 | pc = page_get_page_cgroup(page); | 762 | pc = page_get_page_cgroup(page); |
717 | if (pc) | 763 | if (pc) { |
718 | pc->ref_cnt++; | 764 | mem = pc->mem_cgroup; |
765 | css_get(&mem->css); | ||
766 | if (pc->flags & PAGE_CGROUP_FLAG_CACHE) | ||
767 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
768 | } | ||
719 | unlock_page_cgroup(page); | 769 | unlock_page_cgroup(page); |
720 | return pc != NULL; | 770 | if (mem) { |
771 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, | ||
772 | ctype, mem); | ||
773 | css_put(&mem->css); | ||
774 | } | ||
775 | return ret; | ||
721 | } | 776 | } |
722 | 777 | ||
723 | void mem_cgroup_end_migration(struct page *page) | 778 | /* remove redundant charge if migration failed*/ |
779 | void mem_cgroup_end_migration(struct page *newpage) | ||
724 | { | 780 | { |
725 | mem_cgroup_uncharge_page(page); | 781 | /* |
782 | * At success, page->mapping is not NULL. | ||
783 | * special rollback care is necessary when | ||
784 | * 1. at migration failure. (newpage->mapping is cleared in this case) | ||
785 | * 2. the newpage was moved but not remapped again because the task | ||
786 | * exits and the newpage is obsolete. In this case, the new page | ||
787 | * may be a swapcache. So, we just call mem_cgroup_uncharge_page() | ||
788 | * always for avoiding mess. The page_cgroup will be removed if | ||
789 | * unnecessary. File cache pages is still on radix-tree. Don't | ||
790 | * care it. | ||
791 | */ | ||
792 | if (!newpage->mapping) | ||
793 | __mem_cgroup_uncharge_common(newpage, | ||
794 | MEM_CGROUP_CHARGE_TYPE_FORCE); | ||
795 | else if (PageAnon(newpage)) | ||
796 | mem_cgroup_uncharge_page(newpage); | ||
726 | } | 797 | } |
727 | 798 | ||
728 | /* | 799 | /* |
729 | * We know both *page* and *newpage* are now not-on-LRU and PG_locked. | 800 | * A call to try to shrink memory usage under specified resource controller. |
730 | * And no race with uncharge() routines because page_cgroup for *page* | 801 | * This is typically used for page reclaiming for shmem for reducing side |
731 | * has extra one reference by mem_cgroup_prepare_migration. | 802 | * effect of page allocation from shmem, which is used by some mem_cgroup. |
732 | */ | 803 | */ |
733 | void mem_cgroup_page_migration(struct page *page, struct page *newpage) | 804 | int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) |
734 | { | 805 | { |
735 | struct page_cgroup *pc; | 806 | struct mem_cgroup *mem; |
736 | struct mem_cgroup_per_zone *mz; | 807 | int progress = 0; |
737 | unsigned long flags; | 808 | int retry = MEM_CGROUP_RECLAIM_RETRIES; |
738 | 809 | ||
739 | lock_page_cgroup(page); | 810 | if (mem_cgroup_subsys.disabled) |
740 | pc = page_get_page_cgroup(page); | 811 | return 0; |
741 | if (!pc) { | 812 | if (!mm) |
742 | unlock_page_cgroup(page); | 813 | return 0; |
743 | return; | 814 | |
815 | rcu_read_lock(); | ||
816 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | ||
817 | if (unlikely(!mem)) { | ||
818 | rcu_read_unlock(); | ||
819 | return 0; | ||
744 | } | 820 | } |
821 | css_get(&mem->css); | ||
822 | rcu_read_unlock(); | ||
745 | 823 | ||
746 | mz = page_cgroup_zoneinfo(pc); | 824 | do { |
747 | spin_lock_irqsave(&mz->lru_lock, flags); | 825 | progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); |
748 | __mem_cgroup_remove_list(mz, pc); | 826 | progress += res_counter_check_under_limit(&mem->res); |
749 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 827 | } while (!progress && --retry); |
750 | 828 | ||
751 | page_assign_page_cgroup(page, NULL); | 829 | css_put(&mem->css); |
752 | unlock_page_cgroup(page); | 830 | if (!retry) |
831 | return -ENOMEM; | ||
832 | return 0; | ||
833 | } | ||
753 | 834 | ||
754 | pc->page = newpage; | 835 | int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) |
755 | lock_page_cgroup(newpage); | 836 | { |
756 | page_assign_page_cgroup(newpage, pc); | ||
757 | 837 | ||
758 | mz = page_cgroup_zoneinfo(pc); | 838 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; |
759 | spin_lock_irqsave(&mz->lru_lock, flags); | 839 | int progress; |
760 | __mem_cgroup_add_list(mz, pc); | 840 | int ret = 0; |
761 | spin_unlock_irqrestore(&mz->lru_lock, flags); | ||
762 | 841 | ||
763 | unlock_page_cgroup(newpage); | 842 | while (res_counter_set_limit(&memcg->res, val)) { |
843 | if (signal_pending(current)) { | ||
844 | ret = -EINTR; | ||
845 | break; | ||
846 | } | ||
847 | if (!retry_count) { | ||
848 | ret = -EBUSY; | ||
849 | break; | ||
850 | } | ||
851 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL); | ||
852 | if (!progress) | ||
853 | retry_count--; | ||
854 | } | ||
855 | return ret; | ||
764 | } | 856 | } |
765 | 857 | ||
858 | |||
766 | /* | 859 | /* |
767 | * This routine traverse page_cgroup in given list and drop them all. | 860 | * This routine traverse page_cgroup in given list and drop them all. |
768 | * This routine ignores page_cgroup->ref_cnt. | ||
769 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 861 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
770 | */ | 862 | */ |
771 | #define FORCE_UNCHARGE_BATCH (128) | 863 | #define FORCE_UNCHARGE_BATCH (128) |
@@ -790,12 +882,20 @@ static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | |||
790 | page = pc->page; | 882 | page = pc->page; |
791 | get_page(page); | 883 | get_page(page); |
792 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 884 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
793 | mem_cgroup_uncharge_page(page); | 885 | /* |
794 | put_page(page); | 886 | * Check if this page is on LRU. !LRU page can be found |
795 | if (--count <= 0) { | 887 | * if it's under page migration. |
796 | count = FORCE_UNCHARGE_BATCH; | 888 | */ |
889 | if (PageLRU(page)) { | ||
890 | __mem_cgroup_uncharge_common(page, | ||
891 | MEM_CGROUP_CHARGE_TYPE_FORCE); | ||
892 | put_page(page); | ||
893 | if (--count <= 0) { | ||
894 | count = FORCE_UNCHARGE_BATCH; | ||
895 | cond_resched(); | ||
896 | } | ||
897 | } else | ||
797 | cond_resched(); | 898 | cond_resched(); |
798 | } | ||
799 | spin_lock_irqsave(&mz->lru_lock, flags); | 899 | spin_lock_irqsave(&mz->lru_lock, flags); |
800 | } | 900 | } |
801 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 901 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
@@ -810,9 +910,6 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem) | |||
810 | int ret = -EBUSY; | 910 | int ret = -EBUSY; |
811 | int node, zid; | 911 | int node, zid; |
812 | 912 | ||
813 | if (mem_cgroup_subsys.disabled) | ||
814 | return 0; | ||
815 | |||
816 | css_get(&mem->css); | 913 | css_get(&mem->css); |
817 | /* | 914 | /* |
818 | * page reclaim code (kswapd etc..) will move pages between | 915 | * page reclaim code (kswapd etc..) will move pages between |
@@ -838,32 +935,34 @@ out: | |||
838 | return ret; | 935 | return ret; |
839 | } | 936 | } |
840 | 937 | ||
841 | static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp) | ||
842 | { | ||
843 | *tmp = memparse(buf, &buf); | ||
844 | if (*buf != '\0') | ||
845 | return -EINVAL; | ||
846 | |||
847 | /* | ||
848 | * Round up the value to the closest page size | ||
849 | */ | ||
850 | *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT; | ||
851 | return 0; | ||
852 | } | ||
853 | |||
854 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 938 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
855 | { | 939 | { |
856 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, | 940 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, |
857 | cft->private); | 941 | cft->private); |
858 | } | 942 | } |
859 | 943 | /* | |
860 | static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 944 | * The user of this function is... |
861 | struct file *file, const char __user *userbuf, | 945 | * RES_LIMIT. |
862 | size_t nbytes, loff_t *ppos) | 946 | */ |
947 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | ||
948 | const char *buffer) | ||
863 | { | 949 | { |
864 | return res_counter_write(&mem_cgroup_from_cont(cont)->res, | 950 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
865 | cft->private, userbuf, nbytes, ppos, | 951 | unsigned long long val; |
866 | mem_cgroup_write_strategy); | 952 | int ret; |
953 | |||
954 | switch (cft->private) { | ||
955 | case RES_LIMIT: | ||
956 | /* This function does all necessary parse...reuse it */ | ||
957 | ret = res_counter_memparse_write_strategy(buffer, &val); | ||
958 | if (!ret) | ||
959 | ret = mem_cgroup_resize_limit(memcg, val); | ||
960 | break; | ||
961 | default: | ||
962 | ret = -EINVAL; /* should be BUG() ? */ | ||
963 | break; | ||
964 | } | ||
965 | return ret; | ||
867 | } | 966 | } |
868 | 967 | ||
869 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 968 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
@@ -940,7 +1039,7 @@ static struct cftype mem_cgroup_files[] = { | |||
940 | { | 1039 | { |
941 | .name = "limit_in_bytes", | 1040 | .name = "limit_in_bytes", |
942 | .private = RES_LIMIT, | 1041 | .private = RES_LIMIT, |
943 | .write = mem_cgroup_write, | 1042 | .write_string = mem_cgroup_write, |
944 | .read_u64 = mem_cgroup_read, | 1043 | .read_u64 = mem_cgroup_read, |
945 | }, | 1044 | }, |
946 | { | 1045 | { |
@@ -1070,8 +1169,6 @@ static void mem_cgroup_destroy(struct cgroup_subsys *ss, | |||
1070 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 1169 | static int mem_cgroup_populate(struct cgroup_subsys *ss, |
1071 | struct cgroup *cont) | 1170 | struct cgroup *cont) |
1072 | { | 1171 | { |
1073 | if (mem_cgroup_subsys.disabled) | ||
1074 | return 0; | ||
1075 | return cgroup_add_files(cont, ss, mem_cgroup_files, | 1172 | return cgroup_add_files(cont, ss, mem_cgroup_files, |
1076 | ARRAY_SIZE(mem_cgroup_files)); | 1173 | ARRAY_SIZE(mem_cgroup_files)); |
1077 | } | 1174 | } |
@@ -1084,9 +1181,6 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |||
1084 | struct mm_struct *mm; | 1181 | struct mm_struct *mm; |
1085 | struct mem_cgroup *mem, *old_mem; | 1182 | struct mem_cgroup *mem, *old_mem; |
1086 | 1183 | ||
1087 | if (mem_cgroup_subsys.disabled) | ||
1088 | return; | ||
1089 | |||
1090 | mm = get_task_mm(p); | 1184 | mm = get_task_mm(p); |
1091 | if (mm == NULL) | 1185 | if (mm == NULL) |
1092 | return; | 1186 | return; |
@@ -1094,9 +1188,6 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |||
1094 | mem = mem_cgroup_from_cont(cont); | 1188 | mem = mem_cgroup_from_cont(cont); |
1095 | old_mem = mem_cgroup_from_cont(old_cont); | 1189 | old_mem = mem_cgroup_from_cont(old_cont); |
1096 | 1190 | ||
1097 | if (mem == old_mem) | ||
1098 | goto out; | ||
1099 | |||
1100 | /* | 1191 | /* |
1101 | * Only thread group leaders are allowed to migrate, the mm_struct is | 1192 | * Only thread group leaders are allowed to migrate, the mm_struct is |
1102 | * in effect owned by the leader | 1193 | * in effect owned by the leader |
diff --git a/mm/memory.c b/mm/memory.c index 19e0ae9beecb..1002f473f497 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -51,6 +51,7 @@ | |||
51 | #include <linux/init.h> | 51 | #include <linux/init.h> |
52 | #include <linux/writeback.h> | 52 | #include <linux/writeback.h> |
53 | #include <linux/memcontrol.h> | 53 | #include <linux/memcontrol.h> |
54 | #include <linux/mmu_notifier.h> | ||
54 | 55 | ||
55 | #include <asm/pgalloc.h> | 56 | #include <asm/pgalloc.h> |
56 | #include <asm/uaccess.h> | 57 | #include <asm/uaccess.h> |
@@ -61,6 +62,8 @@ | |||
61 | #include <linux/swapops.h> | 62 | #include <linux/swapops.h> |
62 | #include <linux/elf.h> | 63 | #include <linux/elf.h> |
63 | 64 | ||
65 | #include "internal.h" | ||
66 | |||
64 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 67 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
65 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 68 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
66 | unsigned long max_mapnr; | 69 | unsigned long max_mapnr; |
@@ -211,7 +214,7 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | |||
211 | * | 214 | * |
212 | * Must be called with pagetable lock held. | 215 | * Must be called with pagetable lock held. |
213 | */ | 216 | */ |
214 | void free_pgd_range(struct mmu_gather **tlb, | 217 | void free_pgd_range(struct mmu_gather *tlb, |
215 | unsigned long addr, unsigned long end, | 218 | unsigned long addr, unsigned long end, |
216 | unsigned long floor, unsigned long ceiling) | 219 | unsigned long floor, unsigned long ceiling) |
217 | { | 220 | { |
@@ -262,16 +265,16 @@ void free_pgd_range(struct mmu_gather **tlb, | |||
262 | return; | 265 | return; |
263 | 266 | ||
264 | start = addr; | 267 | start = addr; |
265 | pgd = pgd_offset((*tlb)->mm, addr); | 268 | pgd = pgd_offset(tlb->mm, addr); |
266 | do { | 269 | do { |
267 | next = pgd_addr_end(addr, end); | 270 | next = pgd_addr_end(addr, end); |
268 | if (pgd_none_or_clear_bad(pgd)) | 271 | if (pgd_none_or_clear_bad(pgd)) |
269 | continue; | 272 | continue; |
270 | free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 273 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
271 | } while (pgd++, addr = next, addr != end); | 274 | } while (pgd++, addr = next, addr != end); |
272 | } | 275 | } |
273 | 276 | ||
274 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | 277 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
275 | unsigned long floor, unsigned long ceiling) | 278 | unsigned long floor, unsigned long ceiling) |
276 | { | 279 | { |
277 | while (vma) { | 280 | while (vma) { |
@@ -372,7 +375,8 @@ static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) | |||
372 | * | 375 | * |
373 | * The calling function must still handle the error. | 376 | * The calling function must still handle the error. |
374 | */ | 377 | */ |
375 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | 378 | static void print_bad_pte(struct vm_area_struct *vma, pte_t pte, |
379 | unsigned long vaddr) | ||
376 | { | 380 | { |
377 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | 381 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " |
378 | "vm_flags = %lx, vaddr = %lx\n", | 382 | "vm_flags = %lx, vaddr = %lx\n", |
@@ -649,6 +653,7 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |||
649 | unsigned long next; | 653 | unsigned long next; |
650 | unsigned long addr = vma->vm_start; | 654 | unsigned long addr = vma->vm_start; |
651 | unsigned long end = vma->vm_end; | 655 | unsigned long end = vma->vm_end; |
656 | int ret; | ||
652 | 657 | ||
653 | /* | 658 | /* |
654 | * Don't copy ptes where a page fault will fill them correctly. | 659 | * Don't copy ptes where a page fault will fill them correctly. |
@@ -664,17 +669,33 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |||
664 | if (is_vm_hugetlb_page(vma)) | 669 | if (is_vm_hugetlb_page(vma)) |
665 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 670 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); |
666 | 671 | ||
672 | /* | ||
673 | * We need to invalidate the secondary MMU mappings only when | ||
674 | * there could be a permission downgrade on the ptes of the | ||
675 | * parent mm. And a permission downgrade will only happen if | ||
676 | * is_cow_mapping() returns true. | ||
677 | */ | ||
678 | if (is_cow_mapping(vma->vm_flags)) | ||
679 | mmu_notifier_invalidate_range_start(src_mm, addr, end); | ||
680 | |||
681 | ret = 0; | ||
667 | dst_pgd = pgd_offset(dst_mm, addr); | 682 | dst_pgd = pgd_offset(dst_mm, addr); |
668 | src_pgd = pgd_offset(src_mm, addr); | 683 | src_pgd = pgd_offset(src_mm, addr); |
669 | do { | 684 | do { |
670 | next = pgd_addr_end(addr, end); | 685 | next = pgd_addr_end(addr, end); |
671 | if (pgd_none_or_clear_bad(src_pgd)) | 686 | if (pgd_none_or_clear_bad(src_pgd)) |
672 | continue; | 687 | continue; |
673 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 688 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
674 | vma, addr, next)) | 689 | vma, addr, next))) { |
675 | return -ENOMEM; | 690 | ret = -ENOMEM; |
691 | break; | ||
692 | } | ||
676 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | 693 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
677 | return 0; | 694 | |
695 | if (is_cow_mapping(vma->vm_flags)) | ||
696 | mmu_notifier_invalidate_range_end(src_mm, | ||
697 | vma->vm_start, end); | ||
698 | return ret; | ||
678 | } | 699 | } |
679 | 700 | ||
680 | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 701 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
@@ -878,7 +899,9 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp, | |||
878 | unsigned long start = start_addr; | 899 | unsigned long start = start_addr; |
879 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 900 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
880 | int fullmm = (*tlbp)->fullmm; | 901 | int fullmm = (*tlbp)->fullmm; |
902 | struct mm_struct *mm = vma->vm_mm; | ||
881 | 903 | ||
904 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); | ||
882 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 905 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
883 | unsigned long end; | 906 | unsigned long end; |
884 | 907 | ||
@@ -899,9 +922,23 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp, | |||
899 | } | 922 | } |
900 | 923 | ||
901 | if (unlikely(is_vm_hugetlb_page(vma))) { | 924 | if (unlikely(is_vm_hugetlb_page(vma))) { |
902 | unmap_hugepage_range(vma, start, end); | 925 | /* |
903 | zap_work -= (end - start) / | 926 | * It is undesirable to test vma->vm_file as it |
904 | (HPAGE_SIZE / PAGE_SIZE); | 927 | * should be non-null for valid hugetlb area. |
928 | * However, vm_file will be NULL in the error | ||
929 | * cleanup path of do_mmap_pgoff. When | ||
930 | * hugetlbfs ->mmap method fails, | ||
931 | * do_mmap_pgoff() nullifies vma->vm_file | ||
932 | * before calling this function to clean up. | ||
933 | * Since no pte has actually been setup, it is | ||
934 | * safe to do nothing in this case. | ||
935 | */ | ||
936 | if (vma->vm_file) { | ||
937 | unmap_hugepage_range(vma, start, end, NULL); | ||
938 | zap_work -= (end - start) / | ||
939 | pages_per_huge_page(hstate_vma(vma)); | ||
940 | } | ||
941 | |||
905 | start = end; | 942 | start = end; |
906 | } else | 943 | } else |
907 | start = unmap_page_range(*tlbp, vma, | 944 | start = unmap_page_range(*tlbp, vma, |
@@ -929,6 +966,7 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp, | |||
929 | } | 966 | } |
930 | } | 967 | } |
931 | out: | 968 | out: |
969 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); | ||
932 | return start; /* which is now the end (or restart) address */ | 970 | return start; /* which is now the end (or restart) address */ |
933 | } | 971 | } |
934 | 972 | ||
@@ -956,6 +994,29 @@ unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | |||
956 | return end; | 994 | return end; |
957 | } | 995 | } |
958 | 996 | ||
997 | /** | ||
998 | * zap_vma_ptes - remove ptes mapping the vma | ||
999 | * @vma: vm_area_struct holding ptes to be zapped | ||
1000 | * @address: starting address of pages to zap | ||
1001 | * @size: number of bytes to zap | ||
1002 | * | ||
1003 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | ||
1004 | * | ||
1005 | * The entire address range must be fully contained within the vma. | ||
1006 | * | ||
1007 | * Returns 0 if successful. | ||
1008 | */ | ||
1009 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | ||
1010 | unsigned long size) | ||
1011 | { | ||
1012 | if (address < vma->vm_start || address + size > vma->vm_end || | ||
1013 | !(vma->vm_flags & VM_PFNMAP)) | ||
1014 | return -1; | ||
1015 | zap_page_range(vma, address, size, NULL); | ||
1016 | return 0; | ||
1017 | } | ||
1018 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | ||
1019 | |||
959 | /* | 1020 | /* |
960 | * Do a quick page-table lookup for a single page. | 1021 | * Do a quick page-table lookup for a single page. |
961 | */ | 1022 | */ |
@@ -982,34 +1043,37 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |||
982 | goto no_page_table; | 1043 | goto no_page_table; |
983 | 1044 | ||
984 | pud = pud_offset(pgd, address); | 1045 | pud = pud_offset(pgd, address); |
985 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 1046 | if (pud_none(*pud)) |
1047 | goto no_page_table; | ||
1048 | if (pud_huge(*pud)) { | ||
1049 | BUG_ON(flags & FOLL_GET); | ||
1050 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | ||
1051 | goto out; | ||
1052 | } | ||
1053 | if (unlikely(pud_bad(*pud))) | ||
986 | goto no_page_table; | 1054 | goto no_page_table; |
987 | 1055 | ||
988 | pmd = pmd_offset(pud, address); | 1056 | pmd = pmd_offset(pud, address); |
989 | if (pmd_none(*pmd)) | 1057 | if (pmd_none(*pmd)) |
990 | goto no_page_table; | 1058 | goto no_page_table; |
991 | |||
992 | if (pmd_huge(*pmd)) { | 1059 | if (pmd_huge(*pmd)) { |
993 | BUG_ON(flags & FOLL_GET); | 1060 | BUG_ON(flags & FOLL_GET); |
994 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 1061 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
995 | goto out; | 1062 | goto out; |
996 | } | 1063 | } |
997 | |||
998 | if (unlikely(pmd_bad(*pmd))) | 1064 | if (unlikely(pmd_bad(*pmd))) |
999 | goto no_page_table; | 1065 | goto no_page_table; |
1000 | 1066 | ||
1001 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 1067 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1002 | if (!ptep) | ||
1003 | goto out; | ||
1004 | 1068 | ||
1005 | pte = *ptep; | 1069 | pte = *ptep; |
1006 | if (!pte_present(pte)) | 1070 | if (!pte_present(pte)) |
1007 | goto unlock; | 1071 | goto no_page; |
1008 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 1072 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1009 | goto unlock; | 1073 | goto unlock; |
1010 | page = vm_normal_page(vma, address, pte); | 1074 | page = vm_normal_page(vma, address, pte); |
1011 | if (unlikely(!page)) | 1075 | if (unlikely(!page)) |
1012 | goto unlock; | 1076 | goto bad_page; |
1013 | 1077 | ||
1014 | if (flags & FOLL_GET) | 1078 | if (flags & FOLL_GET) |
1015 | get_page(page); | 1079 | get_page(page); |
@@ -1024,6 +1088,15 @@ unlock: | |||
1024 | out: | 1088 | out: |
1025 | return page; | 1089 | return page; |
1026 | 1090 | ||
1091 | bad_page: | ||
1092 | pte_unmap_unlock(ptep, ptl); | ||
1093 | return ERR_PTR(-EFAULT); | ||
1094 | |||
1095 | no_page: | ||
1096 | pte_unmap_unlock(ptep, ptl); | ||
1097 | if (!pte_none(pte)) | ||
1098 | return page; | ||
1099 | /* Fall through to ZERO_PAGE handling */ | ||
1027 | no_page_table: | 1100 | no_page_table: |
1028 | /* | 1101 | /* |
1029 | * When core dumping an enormous anonymous area that nobody | 1102 | * When core dumping an enormous anonymous area that nobody |
@@ -1038,6 +1111,24 @@ no_page_table: | |||
1038 | return page; | 1111 | return page; |
1039 | } | 1112 | } |
1040 | 1113 | ||
1114 | /* Can we do the FOLL_ANON optimization? */ | ||
1115 | static inline int use_zero_page(struct vm_area_struct *vma) | ||
1116 | { | ||
1117 | /* | ||
1118 | * We don't want to optimize FOLL_ANON for make_pages_present() | ||
1119 | * when it tries to page in a VM_LOCKED region. As to VM_SHARED, | ||
1120 | * we want to get the page from the page tables to make sure | ||
1121 | * that we serialize and update with any other user of that | ||
1122 | * mapping. | ||
1123 | */ | ||
1124 | if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) | ||
1125 | return 0; | ||
1126 | /* | ||
1127 | * And if we have a fault routine, it's not an anonymous region. | ||
1128 | */ | ||
1129 | return !vma->vm_ops || !vma->vm_ops->fault; | ||
1130 | } | ||
1131 | |||
1041 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 1132 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
1042 | unsigned long start, int len, int write, int force, | 1133 | unsigned long start, int len, int write, int force, |
1043 | struct page **pages, struct vm_area_struct **vmas) | 1134 | struct page **pages, struct vm_area_struct **vmas) |
@@ -1112,8 +1203,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1112 | foll_flags = FOLL_TOUCH; | 1203 | foll_flags = FOLL_TOUCH; |
1113 | if (pages) | 1204 | if (pages) |
1114 | foll_flags |= FOLL_GET; | 1205 | foll_flags |= FOLL_GET; |
1115 | if (!write && !(vma->vm_flags & VM_LOCKED) && | 1206 | if (!write && use_zero_page(vma)) |
1116 | (!vma->vm_ops || !vma->vm_ops->fault)) | ||
1117 | foll_flags |= FOLL_ANON; | 1207 | foll_flags |= FOLL_ANON; |
1118 | 1208 | ||
1119 | do { | 1209 | do { |
@@ -1125,7 +1215,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1125 | * be processed until returning to user space. | 1215 | * be processed until returning to user space. |
1126 | */ | 1216 | */ |
1127 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) | 1217 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) |
1128 | return -ENOMEM; | 1218 | return i ? i : -ENOMEM; |
1129 | 1219 | ||
1130 | if (write) | 1220 | if (write) |
1131 | foll_flags |= FOLL_WRITE; | 1221 | foll_flags |= FOLL_WRITE; |
@@ -1159,6 +1249,8 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1159 | 1249 | ||
1160 | cond_resched(); | 1250 | cond_resched(); |
1161 | } | 1251 | } |
1252 | if (IS_ERR(page)) | ||
1253 | return i ? i : PTR_ERR(page); | ||
1162 | if (pages) { | 1254 | if (pages) { |
1163 | pages[i] = page; | 1255 | pages[i] = page; |
1164 | 1256 | ||
@@ -1310,6 +1402,11 @@ out: | |||
1310 | * | 1402 | * |
1311 | * This function should only be called from a vm_ops->fault handler, and | 1403 | * This function should only be called from a vm_ops->fault handler, and |
1312 | * in that case the handler should return NULL. | 1404 | * in that case the handler should return NULL. |
1405 | * | ||
1406 | * vma cannot be a COW mapping. | ||
1407 | * | ||
1408 | * As this is called only for pages that do not currently exist, we | ||
1409 | * do not need to flush old virtual caches or the TLB. | ||
1313 | */ | 1410 | */ |
1314 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 1411 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1315 | unsigned long pfn) | 1412 | unsigned long pfn) |
@@ -1520,6 +1617,8 @@ static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |||
1520 | unsigned long next; | 1617 | unsigned long next; |
1521 | int err; | 1618 | int err; |
1522 | 1619 | ||
1620 | BUG_ON(pud_huge(*pud)); | ||
1621 | |||
1523 | pmd = pmd_alloc(mm, pud, addr); | 1622 | pmd = pmd_alloc(mm, pud, addr); |
1524 | if (!pmd) | 1623 | if (!pmd) |
1525 | return -ENOMEM; | 1624 | return -ENOMEM; |
@@ -1561,10 +1660,11 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |||
1561 | { | 1660 | { |
1562 | pgd_t *pgd; | 1661 | pgd_t *pgd; |
1563 | unsigned long next; | 1662 | unsigned long next; |
1564 | unsigned long end = addr + size; | 1663 | unsigned long start = addr, end = addr + size; |
1565 | int err; | 1664 | int err; |
1566 | 1665 | ||
1567 | BUG_ON(addr >= end); | 1666 | BUG_ON(addr >= end); |
1667 | mmu_notifier_invalidate_range_start(mm, start, end); | ||
1568 | pgd = pgd_offset(mm, addr); | 1668 | pgd = pgd_offset(mm, addr); |
1569 | do { | 1669 | do { |
1570 | next = pgd_addr_end(addr, end); | 1670 | next = pgd_addr_end(addr, end); |
@@ -1572,6 +1672,7 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |||
1572 | if (err) | 1672 | if (err) |
1573 | break; | 1673 | break; |
1574 | } while (pgd++, addr = next, addr != end); | 1674 | } while (pgd++, addr = next, addr != end); |
1675 | mmu_notifier_invalidate_range_end(mm, start, end); | ||
1575 | return err; | 1676 | return err; |
1576 | } | 1677 | } |
1577 | EXPORT_SYMBOL_GPL(apply_to_page_range); | 1678 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
@@ -1669,15 +1770,26 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1669 | struct page *dirty_page = NULL; | 1770 | struct page *dirty_page = NULL; |
1670 | 1771 | ||
1671 | old_page = vm_normal_page(vma, address, orig_pte); | 1772 | old_page = vm_normal_page(vma, address, orig_pte); |
1672 | if (!old_page) | 1773 | if (!old_page) { |
1774 | /* | ||
1775 | * VM_MIXEDMAP !pfn_valid() case | ||
1776 | * | ||
1777 | * We should not cow pages in a shared writeable mapping. | ||
1778 | * Just mark the pages writable as we can't do any dirty | ||
1779 | * accounting on raw pfn maps. | ||
1780 | */ | ||
1781 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | ||
1782 | (VM_WRITE|VM_SHARED)) | ||
1783 | goto reuse; | ||
1673 | goto gotten; | 1784 | goto gotten; |
1785 | } | ||
1674 | 1786 | ||
1675 | /* | 1787 | /* |
1676 | * Take out anonymous pages first, anonymous shared vmas are | 1788 | * Take out anonymous pages first, anonymous shared vmas are |
1677 | * not dirty accountable. | 1789 | * not dirty accountable. |
1678 | */ | 1790 | */ |
1679 | if (PageAnon(old_page)) { | 1791 | if (PageAnon(old_page)) { |
1680 | if (!TestSetPageLocked(old_page)) { | 1792 | if (trylock_page(old_page)) { |
1681 | reuse = can_share_swap_page(old_page); | 1793 | reuse = can_share_swap_page(old_page); |
1682 | unlock_page(old_page); | 1794 | unlock_page(old_page); |
1683 | } | 1795 | } |
@@ -1723,6 +1835,7 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1723 | } | 1835 | } |
1724 | 1836 | ||
1725 | if (reuse) { | 1837 | if (reuse) { |
1838 | reuse: | ||
1726 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | 1839 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
1727 | entry = pte_mkyoung(orig_pte); | 1840 | entry = pte_mkyoung(orig_pte); |
1728 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 1841 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
@@ -1757,7 +1870,6 @@ gotten: | |||
1757 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 1870 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1758 | if (likely(pte_same(*page_table, orig_pte))) { | 1871 | if (likely(pte_same(*page_table, orig_pte))) { |
1759 | if (old_page) { | 1872 | if (old_page) { |
1760 | page_remove_rmap(old_page, vma); | ||
1761 | if (!PageAnon(old_page)) { | 1873 | if (!PageAnon(old_page)) { |
1762 | dec_mm_counter(mm, file_rss); | 1874 | dec_mm_counter(mm, file_rss); |
1763 | inc_mm_counter(mm, anon_rss); | 1875 | inc_mm_counter(mm, anon_rss); |
@@ -1773,12 +1885,38 @@ gotten: | |||
1773 | * seen in the presence of one thread doing SMC and another | 1885 | * seen in the presence of one thread doing SMC and another |
1774 | * thread doing COW. | 1886 | * thread doing COW. |
1775 | */ | 1887 | */ |
1776 | ptep_clear_flush(vma, address, page_table); | 1888 | ptep_clear_flush_notify(vma, address, page_table); |
1777 | set_pte_at(mm, address, page_table, entry); | 1889 | set_pte_at(mm, address, page_table, entry); |
1778 | update_mmu_cache(vma, address, entry); | 1890 | update_mmu_cache(vma, address, entry); |
1779 | lru_cache_add_active(new_page); | 1891 | lru_cache_add_active(new_page); |
1780 | page_add_new_anon_rmap(new_page, vma, address); | 1892 | page_add_new_anon_rmap(new_page, vma, address); |
1781 | 1893 | ||
1894 | if (old_page) { | ||
1895 | /* | ||
1896 | * Only after switching the pte to the new page may | ||
1897 | * we remove the mapcount here. Otherwise another | ||
1898 | * process may come and find the rmap count decremented | ||
1899 | * before the pte is switched to the new page, and | ||
1900 | * "reuse" the old page writing into it while our pte | ||
1901 | * here still points into it and can be read by other | ||
1902 | * threads. | ||
1903 | * | ||
1904 | * The critical issue is to order this | ||
1905 | * page_remove_rmap with the ptp_clear_flush above. | ||
1906 | * Those stores are ordered by (if nothing else,) | ||
1907 | * the barrier present in the atomic_add_negative | ||
1908 | * in page_remove_rmap. | ||
1909 | * | ||
1910 | * Then the TLB flush in ptep_clear_flush ensures that | ||
1911 | * no process can access the old page before the | ||
1912 | * decremented mapcount is visible. And the old page | ||
1913 | * cannot be reused until after the decremented | ||
1914 | * mapcount is visible. So transitively, TLBs to | ||
1915 | * old page will be flushed before it can be reused. | ||
1916 | */ | ||
1917 | page_remove_rmap(old_page, vma); | ||
1918 | } | ||
1919 | |||
1782 | /* Free the old page.. */ | 1920 | /* Free the old page.. */ |
1783 | new_page = old_page; | 1921 | new_page = old_page; |
1784 | ret |= VM_FAULT_WRITE; | 1922 | ret |= VM_FAULT_WRITE; |
@@ -2436,59 +2574,6 @@ static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2436 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | 2574 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
2437 | } | 2575 | } |
2438 | 2576 | ||
2439 | |||
2440 | /* | ||
2441 | * do_no_pfn() tries to create a new page mapping for a page without | ||
2442 | * a struct_page backing it | ||
2443 | * | ||
2444 | * As this is called only for pages that do not currently exist, we | ||
2445 | * do not need to flush old virtual caches or the TLB. | ||
2446 | * | ||
2447 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | ||
2448 | * but allow concurrent faults), and pte mapped but not yet locked. | ||
2449 | * We return with mmap_sem still held, but pte unmapped and unlocked. | ||
2450 | * | ||
2451 | * It is expected that the ->nopfn handler always returns the same pfn | ||
2452 | * for a given virtual mapping. | ||
2453 | * | ||
2454 | * Mark this `noinline' to prevent it from bloating the main pagefault code. | ||
2455 | */ | ||
2456 | static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma, | ||
2457 | unsigned long address, pte_t *page_table, pmd_t *pmd, | ||
2458 | int write_access) | ||
2459 | { | ||
2460 | spinlock_t *ptl; | ||
2461 | pte_t entry; | ||
2462 | unsigned long pfn; | ||
2463 | |||
2464 | pte_unmap(page_table); | ||
2465 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | ||
2466 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | ||
2467 | |||
2468 | pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK); | ||
2469 | |||
2470 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | ||
2471 | |||
2472 | if (unlikely(pfn == NOPFN_OOM)) | ||
2473 | return VM_FAULT_OOM; | ||
2474 | else if (unlikely(pfn == NOPFN_SIGBUS)) | ||
2475 | return VM_FAULT_SIGBUS; | ||
2476 | else if (unlikely(pfn == NOPFN_REFAULT)) | ||
2477 | return 0; | ||
2478 | |||
2479 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | ||
2480 | |||
2481 | /* Only go through if we didn't race with anybody else... */ | ||
2482 | if (pte_none(*page_table)) { | ||
2483 | entry = pfn_pte(pfn, vma->vm_page_prot); | ||
2484 | if (write_access) | ||
2485 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | ||
2486 | set_pte_at(mm, address, page_table, entry); | ||
2487 | } | ||
2488 | pte_unmap_unlock(page_table, ptl); | ||
2489 | return 0; | ||
2490 | } | ||
2491 | |||
2492 | /* | 2577 | /* |
2493 | * Fault of a previously existing named mapping. Repopulate the pte | 2578 | * Fault of a previously existing named mapping. Repopulate the pte |
2494 | * from the encoded file_pte if possible. This enables swappable | 2579 | * from the encoded file_pte if possible. This enables swappable |
@@ -2549,9 +2634,6 @@ static inline int handle_pte_fault(struct mm_struct *mm, | |||
2549 | if (likely(vma->vm_ops->fault)) | 2634 | if (likely(vma->vm_ops->fault)) |
2550 | return do_linear_fault(mm, vma, address, | 2635 | return do_linear_fault(mm, vma, address, |
2551 | pte, pmd, write_access, entry); | 2636 | pte, pmd, write_access, entry); |
2552 | if (unlikely(vma->vm_ops->nopfn)) | ||
2553 | return do_no_pfn(mm, vma, address, pte, | ||
2554 | pmd, write_access); | ||
2555 | } | 2637 | } |
2556 | return do_anonymous_page(mm, vma, address, | 2638 | return do_anonymous_page(mm, vma, address, |
2557 | pte, pmd, write_access); | 2639 | pte, pmd, write_access); |
@@ -2683,16 +2765,26 @@ int make_pages_present(unsigned long addr, unsigned long end) | |||
2683 | 2765 | ||
2684 | vma = find_vma(current->mm, addr); | 2766 | vma = find_vma(current->mm, addr); |
2685 | if (!vma) | 2767 | if (!vma) |
2686 | return -1; | 2768 | return -ENOMEM; |
2687 | write = (vma->vm_flags & VM_WRITE) != 0; | 2769 | write = (vma->vm_flags & VM_WRITE) != 0; |
2688 | BUG_ON(addr >= end); | 2770 | BUG_ON(addr >= end); |
2689 | BUG_ON(end > vma->vm_end); | 2771 | BUG_ON(end > vma->vm_end); |
2690 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; | 2772 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
2691 | ret = get_user_pages(current, current->mm, addr, | 2773 | ret = get_user_pages(current, current->mm, addr, |
2692 | len, write, 0, NULL, NULL); | 2774 | len, write, 0, NULL, NULL); |
2693 | if (ret < 0) | 2775 | if (ret < 0) { |
2776 | /* | ||
2777 | SUS require strange return value to mlock | ||
2778 | - invalid addr generate to ENOMEM. | ||
2779 | - out of memory should generate EAGAIN. | ||
2780 | */ | ||
2781 | if (ret == -EFAULT) | ||
2782 | ret = -ENOMEM; | ||
2783 | else if (ret == -ENOMEM) | ||
2784 | ret = -EAGAIN; | ||
2694 | return ret; | 2785 | return ret; |
2695 | return ret == len ? 0 : -1; | 2786 | } |
2787 | return ret == len ? 0 : -ENOMEM; | ||
2696 | } | 2788 | } |
2697 | 2789 | ||
2698 | #if !defined(__HAVE_ARCH_GATE_AREA) | 2790 | #if !defined(__HAVE_ARCH_GATE_AREA) |
@@ -2739,6 +2831,86 @@ int in_gate_area_no_task(unsigned long addr) | |||
2739 | 2831 | ||
2740 | #endif /* __HAVE_ARCH_GATE_AREA */ | 2832 | #endif /* __HAVE_ARCH_GATE_AREA */ |
2741 | 2833 | ||
2834 | #ifdef CONFIG_HAVE_IOREMAP_PROT | ||
2835 | static resource_size_t follow_phys(struct vm_area_struct *vma, | ||
2836 | unsigned long address, unsigned int flags, | ||
2837 | unsigned long *prot) | ||
2838 | { | ||
2839 | pgd_t *pgd; | ||
2840 | pud_t *pud; | ||
2841 | pmd_t *pmd; | ||
2842 | pte_t *ptep, pte; | ||
2843 | spinlock_t *ptl; | ||
2844 | resource_size_t phys_addr = 0; | ||
2845 | struct mm_struct *mm = vma->vm_mm; | ||
2846 | |||
2847 | VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP))); | ||
2848 | |||
2849 | pgd = pgd_offset(mm, address); | ||
2850 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | ||
2851 | goto no_page_table; | ||
2852 | |||
2853 | pud = pud_offset(pgd, address); | ||
2854 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | ||
2855 | goto no_page_table; | ||
2856 | |||
2857 | pmd = pmd_offset(pud, address); | ||
2858 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | ||
2859 | goto no_page_table; | ||
2860 | |||
2861 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | ||
2862 | if (pmd_huge(*pmd)) | ||
2863 | goto no_page_table; | ||
2864 | |||
2865 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | ||
2866 | if (!ptep) | ||
2867 | goto out; | ||
2868 | |||
2869 | pte = *ptep; | ||
2870 | if (!pte_present(pte)) | ||
2871 | goto unlock; | ||
2872 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | ||
2873 | goto unlock; | ||
2874 | phys_addr = pte_pfn(pte); | ||
2875 | phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ | ||
2876 | |||
2877 | *prot = pgprot_val(pte_pgprot(pte)); | ||
2878 | |||
2879 | unlock: | ||
2880 | pte_unmap_unlock(ptep, ptl); | ||
2881 | out: | ||
2882 | return phys_addr; | ||
2883 | no_page_table: | ||
2884 | return 0; | ||
2885 | } | ||
2886 | |||
2887 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | ||
2888 | void *buf, int len, int write) | ||
2889 | { | ||
2890 | resource_size_t phys_addr; | ||
2891 | unsigned long prot = 0; | ||
2892 | void *maddr; | ||
2893 | int offset = addr & (PAGE_SIZE-1); | ||
2894 | |||
2895 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | ||
2896 | return -EINVAL; | ||
2897 | |||
2898 | phys_addr = follow_phys(vma, addr, write, &prot); | ||
2899 | |||
2900 | if (!phys_addr) | ||
2901 | return -EINVAL; | ||
2902 | |||
2903 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | ||
2904 | if (write) | ||
2905 | memcpy_toio(maddr + offset, buf, len); | ||
2906 | else | ||
2907 | memcpy_fromio(buf, maddr + offset, len); | ||
2908 | iounmap(maddr); | ||
2909 | |||
2910 | return len; | ||
2911 | } | ||
2912 | #endif | ||
2913 | |||
2742 | /* | 2914 | /* |
2743 | * Access another process' address space. | 2915 | * Access another process' address space. |
2744 | * Source/target buffer must be kernel space, | 2916 | * Source/target buffer must be kernel space, |
@@ -2748,7 +2920,6 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in | |||
2748 | { | 2920 | { |
2749 | struct mm_struct *mm; | 2921 | struct mm_struct *mm; |
2750 | struct vm_area_struct *vma; | 2922 | struct vm_area_struct *vma; |
2751 | struct page *page; | ||
2752 | void *old_buf = buf; | 2923 | void *old_buf = buf; |
2753 | 2924 | ||
2754 | mm = get_task_mm(tsk); | 2925 | mm = get_task_mm(tsk); |
@@ -2760,28 +2931,44 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in | |||
2760 | while (len) { | 2931 | while (len) { |
2761 | int bytes, ret, offset; | 2932 | int bytes, ret, offset; |
2762 | void *maddr; | 2933 | void *maddr; |
2934 | struct page *page = NULL; | ||
2763 | 2935 | ||
2764 | ret = get_user_pages(tsk, mm, addr, 1, | 2936 | ret = get_user_pages(tsk, mm, addr, 1, |
2765 | write, 1, &page, &vma); | 2937 | write, 1, &page, &vma); |
2766 | if (ret <= 0) | 2938 | if (ret <= 0) { |
2767 | break; | 2939 | /* |
2768 | 2940 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
2769 | bytes = len; | 2941 | * we can access using slightly different code. |
2770 | offset = addr & (PAGE_SIZE-1); | 2942 | */ |
2771 | if (bytes > PAGE_SIZE-offset) | 2943 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
2772 | bytes = PAGE_SIZE-offset; | 2944 | vma = find_vma(mm, addr); |
2773 | 2945 | if (!vma) | |
2774 | maddr = kmap(page); | 2946 | break; |
2775 | if (write) { | 2947 | if (vma->vm_ops && vma->vm_ops->access) |
2776 | copy_to_user_page(vma, page, addr, | 2948 | ret = vma->vm_ops->access(vma, addr, buf, |
2777 | maddr + offset, buf, bytes); | 2949 | len, write); |
2778 | set_page_dirty_lock(page); | 2950 | if (ret <= 0) |
2951 | #endif | ||
2952 | break; | ||
2953 | bytes = ret; | ||
2779 | } else { | 2954 | } else { |
2780 | copy_from_user_page(vma, page, addr, | 2955 | bytes = len; |
2781 | buf, maddr + offset, bytes); | 2956 | offset = addr & (PAGE_SIZE-1); |
2957 | if (bytes > PAGE_SIZE-offset) | ||
2958 | bytes = PAGE_SIZE-offset; | ||
2959 | |||
2960 | maddr = kmap(page); | ||
2961 | if (write) { | ||
2962 | copy_to_user_page(vma, page, addr, | ||
2963 | maddr + offset, buf, bytes); | ||
2964 | set_page_dirty_lock(page); | ||
2965 | } else { | ||
2966 | copy_from_user_page(vma, page, addr, | ||
2967 | buf, maddr + offset, bytes); | ||
2968 | } | ||
2969 | kunmap(page); | ||
2970 | page_cache_release(page); | ||
2782 | } | 2971 | } |
2783 | kunmap(page); | ||
2784 | page_cache_release(page); | ||
2785 | len -= bytes; | 2972 | len -= bytes; |
2786 | buf += bytes; | 2973 | buf += bytes; |
2787 | addr += bytes; | 2974 | addr += bytes; |
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index 833f854eabe5..89fee2dcb039 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c | |||
@@ -62,9 +62,9 @@ static void release_memory_resource(struct resource *res) | |||
62 | 62 | ||
63 | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE | 63 | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE |
64 | #ifndef CONFIG_SPARSEMEM_VMEMMAP | 64 | #ifndef CONFIG_SPARSEMEM_VMEMMAP |
65 | static void get_page_bootmem(unsigned long info, struct page *page, int magic) | 65 | static void get_page_bootmem(unsigned long info, struct page *page, int type) |
66 | { | 66 | { |
67 | atomic_set(&page->_mapcount, magic); | 67 | atomic_set(&page->_mapcount, type); |
68 | SetPagePrivate(page); | 68 | SetPagePrivate(page); |
69 | set_page_private(page, info); | 69 | set_page_private(page, info); |
70 | atomic_inc(&page->_count); | 70 | atomic_inc(&page->_count); |
@@ -72,10 +72,10 @@ static void get_page_bootmem(unsigned long info, struct page *page, int magic) | |||
72 | 72 | ||
73 | void put_page_bootmem(struct page *page) | 73 | void put_page_bootmem(struct page *page) |
74 | { | 74 | { |
75 | int magic; | 75 | int type; |
76 | 76 | ||
77 | magic = atomic_read(&page->_mapcount); | 77 | type = atomic_read(&page->_mapcount); |
78 | BUG_ON(magic >= -1); | 78 | BUG_ON(type >= -1); |
79 | 79 | ||
80 | if (atomic_dec_return(&page->_count) == 1) { | 80 | if (atomic_dec_return(&page->_count) == 1) { |
81 | ClearPagePrivate(page); | 81 | ClearPagePrivate(page); |
@@ -86,7 +86,7 @@ void put_page_bootmem(struct page *page) | |||
86 | 86 | ||
87 | } | 87 | } |
88 | 88 | ||
89 | void register_page_bootmem_info_section(unsigned long start_pfn) | 89 | static void register_page_bootmem_info_section(unsigned long start_pfn) |
90 | { | 90 | { |
91 | unsigned long *usemap, mapsize, section_nr, i; | 91 | unsigned long *usemap, mapsize, section_nr, i; |
92 | struct mem_section *ms; | 92 | struct mem_section *ms; |
@@ -119,7 +119,7 @@ void register_page_bootmem_info_section(unsigned long start_pfn) | |||
119 | mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; | 119 | mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; |
120 | 120 | ||
121 | for (i = 0; i < mapsize; i++, page++) | 121 | for (i = 0; i < mapsize; i++, page++) |
122 | get_page_bootmem(section_nr, page, MIX_INFO); | 122 | get_page_bootmem(section_nr, page, MIX_SECTION_INFO); |
123 | 123 | ||
124 | } | 124 | } |
125 | 125 | ||
@@ -429,7 +429,9 @@ int online_pages(unsigned long pfn, unsigned long nr_pages) | |||
429 | 429 | ||
430 | if (need_zonelists_rebuild) | 430 | if (need_zonelists_rebuild) |
431 | build_all_zonelists(); | 431 | build_all_zonelists(); |
432 | vm_total_pages = nr_free_pagecache_pages(); | 432 | else |
433 | vm_total_pages = nr_free_pagecache_pages(); | ||
434 | |||
433 | writeback_set_ratelimit(); | 435 | writeback_set_ratelimit(); |
434 | 436 | ||
435 | if (onlined_pages) | 437 | if (onlined_pages) |
@@ -455,7 +457,7 @@ static pg_data_t *hotadd_new_pgdat(int nid, u64 start) | |||
455 | /* we can use NODE_DATA(nid) from here */ | 457 | /* we can use NODE_DATA(nid) from here */ |
456 | 458 | ||
457 | /* init node's zones as empty zones, we don't have any present pages.*/ | 459 | /* init node's zones as empty zones, we don't have any present pages.*/ |
458 | free_area_init_node(nid, pgdat, zones_size, start_pfn, zholes_size); | 460 | free_area_init_node(nid, zones_size, start_pfn, zholes_size); |
459 | 461 | ||
460 | return pgdat; | 462 | return pgdat; |
461 | } | 463 | } |
@@ -521,6 +523,66 @@ EXPORT_SYMBOL_GPL(add_memory); | |||
521 | 523 | ||
522 | #ifdef CONFIG_MEMORY_HOTREMOVE | 524 | #ifdef CONFIG_MEMORY_HOTREMOVE |
523 | /* | 525 | /* |
526 | * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy | ||
527 | * set and the size of the free page is given by page_order(). Using this, | ||
528 | * the function determines if the pageblock contains only free pages. | ||
529 | * Due to buddy contraints, a free page at least the size of a pageblock will | ||
530 | * be located at the start of the pageblock | ||
531 | */ | ||
532 | static inline int pageblock_free(struct page *page) | ||
533 | { | ||
534 | return PageBuddy(page) && page_order(page) >= pageblock_order; | ||
535 | } | ||
536 | |||
537 | /* Return the start of the next active pageblock after a given page */ | ||
538 | static struct page *next_active_pageblock(struct page *page) | ||
539 | { | ||
540 | int pageblocks_stride; | ||
541 | |||
542 | /* Ensure the starting page is pageblock-aligned */ | ||
543 | BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); | ||
544 | |||
545 | /* Move forward by at least 1 * pageblock_nr_pages */ | ||
546 | pageblocks_stride = 1; | ||
547 | |||
548 | /* If the entire pageblock is free, move to the end of free page */ | ||
549 | if (pageblock_free(page)) | ||
550 | pageblocks_stride += page_order(page) - pageblock_order; | ||
551 | |||
552 | return page + (pageblocks_stride * pageblock_nr_pages); | ||
553 | } | ||
554 | |||
555 | /* Checks if this range of memory is likely to be hot-removable. */ | ||
556 | int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) | ||
557 | { | ||
558 | int type; | ||
559 | struct page *page = pfn_to_page(start_pfn); | ||
560 | struct page *end_page = page + nr_pages; | ||
561 | |||
562 | /* Check the starting page of each pageblock within the range */ | ||
563 | for (; page < end_page; page = next_active_pageblock(page)) { | ||
564 | type = get_pageblock_migratetype(page); | ||
565 | |||
566 | /* | ||
567 | * A pageblock containing MOVABLE or free pages is considered | ||
568 | * removable | ||
569 | */ | ||
570 | if (type != MIGRATE_MOVABLE && !pageblock_free(page)) | ||
571 | return 0; | ||
572 | |||
573 | /* | ||
574 | * A pageblock starting with a PageReserved page is not | ||
575 | * considered removable. | ||
576 | */ | ||
577 | if (PageReserved(page)) | ||
578 | return 0; | ||
579 | } | ||
580 | |||
581 | /* All pageblocks in the memory block are likely to be hot-removable */ | ||
582 | return 1; | ||
583 | } | ||
584 | |||
585 | /* | ||
524 | * Confirm all pages in a range [start, end) is belongs to the same zone. | 586 | * Confirm all pages in a range [start, end) is belongs to the same zone. |
525 | */ | 587 | */ |
526 | static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) | 588 | static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) |
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index a37a5034f63d..83369058ec13 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -729,7 +729,11 @@ static long do_get_mempolicy(int *policy, nodemask_t *nmask, | |||
729 | } else { | 729 | } else { |
730 | *policy = pol == &default_policy ? MPOL_DEFAULT : | 730 | *policy = pol == &default_policy ? MPOL_DEFAULT : |
731 | pol->mode; | 731 | pol->mode; |
732 | *policy |= pol->flags; | 732 | /* |
733 | * Internal mempolicy flags must be masked off before exposing | ||
734 | * the policy to userspace. | ||
735 | */ | ||
736 | *policy |= (pol->flags & MPOL_MODE_FLAGS); | ||
733 | } | 737 | } |
734 | 738 | ||
735 | if (vma) { | 739 | if (vma) { |
@@ -799,7 +803,6 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest, | |||
799 | int do_migrate_pages(struct mm_struct *mm, | 803 | int do_migrate_pages(struct mm_struct *mm, |
800 | const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) | 804 | const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) |
801 | { | 805 | { |
802 | LIST_HEAD(pagelist); | ||
803 | int busy = 0; | 806 | int busy = 0; |
804 | int err = 0; | 807 | int err = 0; |
805 | nodemask_t tmp; | 808 | nodemask_t tmp; |
@@ -1477,7 +1480,7 @@ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, | |||
1477 | 1480 | ||
1478 | if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { | 1481 | if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { |
1479 | zl = node_zonelist(interleave_nid(*mpol, vma, addr, | 1482 | zl = node_zonelist(interleave_nid(*mpol, vma, addr, |
1480 | HPAGE_SHIFT), gfp_flags); | 1483 | huge_page_shift(hstate_vma(vma))), gfp_flags); |
1481 | } else { | 1484 | } else { |
1482 | zl = policy_zonelist(gfp_flags, *mpol); | 1485 | zl = policy_zonelist(gfp_flags, *mpol); |
1483 | if ((*mpol)->mode == MPOL_BIND) | 1486 | if ((*mpol)->mode == MPOL_BIND) |
@@ -2216,9 +2219,12 @@ static void check_huge_range(struct vm_area_struct *vma, | |||
2216 | { | 2219 | { |
2217 | unsigned long addr; | 2220 | unsigned long addr; |
2218 | struct page *page; | 2221 | struct page *page; |
2222 | struct hstate *h = hstate_vma(vma); | ||
2223 | unsigned long sz = huge_page_size(h); | ||
2219 | 2224 | ||
2220 | for (addr = start; addr < end; addr += HPAGE_SIZE) { | 2225 | for (addr = start; addr < end; addr += sz) { |
2221 | pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK); | 2226 | pte_t *ptep = huge_pte_offset(vma->vm_mm, |
2227 | addr & huge_page_mask(h)); | ||
2222 | pte_t pte; | 2228 | pte_t pte; |
2223 | 2229 | ||
2224 | if (!ptep) | 2230 | if (!ptep) |
diff --git a/mm/migrate.c b/mm/migrate.c index 449d77d409f5..2a80136b23bb 100644 --- a/mm/migrate.c +++ b/mm/migrate.c | |||
@@ -9,7 +9,7 @@ | |||
9 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 9 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> |
10 | * Hirokazu Takahashi <taka@valinux.co.jp> | 10 | * Hirokazu Takahashi <taka@valinux.co.jp> |
11 | * Dave Hansen <haveblue@us.ibm.com> | 11 | * Dave Hansen <haveblue@us.ibm.com> |
12 | * Christoph Lameter <clameter@sgi.com> | 12 | * Christoph Lameter |
13 | */ | 13 | */ |
14 | 14 | ||
15 | #include <linux/migrate.h> | 15 | #include <linux/migrate.h> |
@@ -30,6 +30,7 @@ | |||
30 | #include <linux/vmalloc.h> | 30 | #include <linux/vmalloc.h> |
31 | #include <linux/security.h> | 31 | #include <linux/security.h> |
32 | #include <linux/memcontrol.h> | 32 | #include <linux/memcontrol.h> |
33 | #include <linux/syscalls.h> | ||
33 | 34 | ||
34 | #include "internal.h" | 35 | #include "internal.h" |
35 | 36 | ||
@@ -284,7 +285,15 @@ void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | |||
284 | 285 | ||
285 | page = migration_entry_to_page(entry); | 286 | page = migration_entry_to_page(entry); |
286 | 287 | ||
287 | get_page(page); | 288 | /* |
289 | * Once radix-tree replacement of page migration started, page_count | ||
290 | * *must* be zero. And, we don't want to call wait_on_page_locked() | ||
291 | * against a page without get_page(). | ||
292 | * So, we use get_page_unless_zero(), here. Even failed, page fault | ||
293 | * will occur again. | ||
294 | */ | ||
295 | if (!get_page_unless_zero(page)) | ||
296 | goto out; | ||
288 | pte_unmap_unlock(ptep, ptl); | 297 | pte_unmap_unlock(ptep, ptl); |
289 | wait_on_page_locked(page); | 298 | wait_on_page_locked(page); |
290 | put_page(page); | 299 | put_page(page); |
@@ -304,6 +313,7 @@ out: | |||
304 | static int migrate_page_move_mapping(struct address_space *mapping, | 313 | static int migrate_page_move_mapping(struct address_space *mapping, |
305 | struct page *newpage, struct page *page) | 314 | struct page *newpage, struct page *page) |
306 | { | 315 | { |
316 | int expected_count; | ||
307 | void **pslot; | 317 | void **pslot; |
308 | 318 | ||
309 | if (!mapping) { | 319 | if (!mapping) { |
@@ -313,14 +323,20 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
313 | return 0; | 323 | return 0; |
314 | } | 324 | } |
315 | 325 | ||
316 | write_lock_irq(&mapping->tree_lock); | 326 | spin_lock_irq(&mapping->tree_lock); |
317 | 327 | ||
318 | pslot = radix_tree_lookup_slot(&mapping->page_tree, | 328 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
319 | page_index(page)); | 329 | page_index(page)); |
320 | 330 | ||
321 | if (page_count(page) != 2 + !!PagePrivate(page) || | 331 | expected_count = 2 + !!PagePrivate(page); |
332 | if (page_count(page) != expected_count || | ||
322 | (struct page *)radix_tree_deref_slot(pslot) != page) { | 333 | (struct page *)radix_tree_deref_slot(pslot) != page) { |
323 | write_unlock_irq(&mapping->tree_lock); | 334 | spin_unlock_irq(&mapping->tree_lock); |
335 | return -EAGAIN; | ||
336 | } | ||
337 | |||
338 | if (!page_freeze_refs(page, expected_count)) { | ||
339 | spin_unlock_irq(&mapping->tree_lock); | ||
324 | return -EAGAIN; | 340 | return -EAGAIN; |
325 | } | 341 | } |
326 | 342 | ||
@@ -337,6 +353,7 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
337 | 353 | ||
338 | radix_tree_replace_slot(pslot, newpage); | 354 | radix_tree_replace_slot(pslot, newpage); |
339 | 355 | ||
356 | page_unfreeze_refs(page, expected_count); | ||
340 | /* | 357 | /* |
341 | * Drop cache reference from old page. | 358 | * Drop cache reference from old page. |
342 | * We know this isn't the last reference. | 359 | * We know this isn't the last reference. |
@@ -356,7 +373,9 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
356 | __dec_zone_page_state(page, NR_FILE_PAGES); | 373 | __dec_zone_page_state(page, NR_FILE_PAGES); |
357 | __inc_zone_page_state(newpage, NR_FILE_PAGES); | 374 | __inc_zone_page_state(newpage, NR_FILE_PAGES); |
358 | 375 | ||
359 | write_unlock_irq(&mapping->tree_lock); | 376 | spin_unlock_irq(&mapping->tree_lock); |
377 | if (!PageSwapCache(newpage)) | ||
378 | mem_cgroup_uncharge_cache_page(page); | ||
360 | 379 | ||
361 | return 0; | 380 | return 0; |
362 | } | 381 | } |
@@ -586,7 +605,7 @@ static int move_to_new_page(struct page *newpage, struct page *page) | |||
586 | * establishing additional references. We are the only one | 605 | * establishing additional references. We are the only one |
587 | * holding a reference to the new page at this point. | 606 | * holding a reference to the new page at this point. |
588 | */ | 607 | */ |
589 | if (TestSetPageLocked(newpage)) | 608 | if (!trylock_page(newpage)) |
590 | BUG(); | 609 | BUG(); |
591 | 610 | ||
592 | /* Prepare mapping for the new page.*/ | 611 | /* Prepare mapping for the new page.*/ |
@@ -610,7 +629,6 @@ static int move_to_new_page(struct page *newpage, struct page *page) | |||
610 | rc = fallback_migrate_page(mapping, newpage, page); | 629 | rc = fallback_migrate_page(mapping, newpage, page); |
611 | 630 | ||
612 | if (!rc) { | 631 | if (!rc) { |
613 | mem_cgroup_page_migration(page, newpage); | ||
614 | remove_migration_ptes(page, newpage); | 632 | remove_migration_ptes(page, newpage); |
615 | } else | 633 | } else |
616 | newpage->mapping = NULL; | 634 | newpage->mapping = NULL; |
@@ -640,8 +658,16 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
640 | /* page was freed from under us. So we are done. */ | 658 | /* page was freed from under us. So we are done. */ |
641 | goto move_newpage; | 659 | goto move_newpage; |
642 | 660 | ||
661 | charge = mem_cgroup_prepare_migration(page, newpage); | ||
662 | if (charge == -ENOMEM) { | ||
663 | rc = -ENOMEM; | ||
664 | goto move_newpage; | ||
665 | } | ||
666 | /* prepare cgroup just returns 0 or -ENOMEM */ | ||
667 | BUG_ON(charge); | ||
668 | |||
643 | rc = -EAGAIN; | 669 | rc = -EAGAIN; |
644 | if (TestSetPageLocked(page)) { | 670 | if (!trylock_page(page)) { |
645 | if (!force) | 671 | if (!force) |
646 | goto move_newpage; | 672 | goto move_newpage; |
647 | lock_page(page); | 673 | lock_page(page); |
@@ -691,19 +717,14 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
691 | goto rcu_unlock; | 717 | goto rcu_unlock; |
692 | } | 718 | } |
693 | 719 | ||
694 | charge = mem_cgroup_prepare_migration(page); | ||
695 | /* Establish migration ptes or remove ptes */ | 720 | /* Establish migration ptes or remove ptes */ |
696 | try_to_unmap(page, 1); | 721 | try_to_unmap(page, 1); |
697 | 722 | ||
698 | if (!page_mapped(page)) | 723 | if (!page_mapped(page)) |
699 | rc = move_to_new_page(newpage, page); | 724 | rc = move_to_new_page(newpage, page); |
700 | 725 | ||
701 | if (rc) { | 726 | if (rc) |
702 | remove_migration_ptes(page, page); | 727 | remove_migration_ptes(page, page); |
703 | if (charge) | ||
704 | mem_cgroup_end_migration(page); | ||
705 | } else if (charge) | ||
706 | mem_cgroup_end_migration(newpage); | ||
707 | rcu_unlock: | 728 | rcu_unlock: |
708 | if (rcu_locked) | 729 | if (rcu_locked) |
709 | rcu_read_unlock(); | 730 | rcu_read_unlock(); |
@@ -724,6 +745,8 @@ unlock: | |||
724 | } | 745 | } |
725 | 746 | ||
726 | move_newpage: | 747 | move_newpage: |
748 | if (!charge) | ||
749 | mem_cgroup_end_migration(newpage); | ||
727 | /* | 750 | /* |
728 | * Move the new page to the LRU. If migration was not successful | 751 | * Move the new page to the LRU. If migration was not successful |
729 | * then this will free the page. | 752 | * then this will free the page. |
@@ -865,6 +888,11 @@ static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, | |||
865 | goto set_status; | 888 | goto set_status; |
866 | 889 | ||
867 | page = follow_page(vma, pp->addr, FOLL_GET); | 890 | page = follow_page(vma, pp->addr, FOLL_GET); |
891 | |||
892 | err = PTR_ERR(page); | ||
893 | if (IS_ERR(page)) | ||
894 | goto set_status; | ||
895 | |||
868 | err = -ENOENT; | 896 | err = -ENOENT; |
869 | if (!page) | 897 | if (!page) |
870 | goto set_status; | 898 | goto set_status; |
@@ -928,6 +956,11 @@ static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) | |||
928 | goto set_status; | 956 | goto set_status; |
929 | 957 | ||
930 | page = follow_page(vma, pm->addr, 0); | 958 | page = follow_page(vma, pm->addr, 0); |
959 | |||
960 | err = PTR_ERR(page); | ||
961 | if (IS_ERR(page)) | ||
962 | goto set_status; | ||
963 | |||
931 | err = -ENOENT; | 964 | err = -ENOENT; |
932 | /* Use PageReserved to check for zero page */ | 965 | /* Use PageReserved to check for zero page */ |
933 | if (!page || PageReserved(page)) | 966 | if (!page || PageReserved(page)) |
@@ -1060,7 +1093,6 @@ out2: | |||
1060 | mmput(mm); | 1093 | mmput(mm); |
1061 | return err; | 1094 | return err; |
1062 | } | 1095 | } |
1063 | #endif | ||
1064 | 1096 | ||
1065 | /* | 1097 | /* |
1066 | * Call migration functions in the vma_ops that may prepare | 1098 | * Call migration functions in the vma_ops that may prepare |
@@ -1082,3 +1114,4 @@ int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | |||
1082 | } | 1114 | } |
1083 | return err; | 1115 | return err; |
1084 | } | 1116 | } |
1117 | #endif | ||
diff --git a/mm/mlock.c b/mm/mlock.c index 7b2656055d6a..01fbe93eff5c 100644 --- a/mm/mlock.c +++ b/mm/mlock.c | |||
@@ -78,8 +78,6 @@ success: | |||
78 | 78 | ||
79 | mm->locked_vm -= pages; | 79 | mm->locked_vm -= pages; |
80 | out: | 80 | out: |
81 | if (ret == -ENOMEM) | ||
82 | ret = -EAGAIN; | ||
83 | return ret; | 81 | return ret; |
84 | } | 82 | } |
85 | 83 | ||
diff --git a/mm/mm_init.c b/mm/mm_init.c new file mode 100644 index 000000000000..4e0e26591dfa --- /dev/null +++ b/mm/mm_init.c | |||
@@ -0,0 +1,152 @@ | |||
1 | /* | ||
2 | * mm_init.c - Memory initialisation verification and debugging | ||
3 | * | ||
4 | * Copyright 2008 IBM Corporation, 2008 | ||
5 | * Author Mel Gorman <mel@csn.ul.ie> | ||
6 | * | ||
7 | */ | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/init.h> | ||
10 | #include <linux/kobject.h> | ||
11 | #include <linux/module.h> | ||
12 | #include "internal.h" | ||
13 | |||
14 | #ifdef CONFIG_DEBUG_MEMORY_INIT | ||
15 | int mminit_loglevel; | ||
16 | |||
17 | #ifndef SECTIONS_SHIFT | ||
18 | #define SECTIONS_SHIFT 0 | ||
19 | #endif | ||
20 | |||
21 | /* The zonelists are simply reported, validation is manual. */ | ||
22 | void mminit_verify_zonelist(void) | ||
23 | { | ||
24 | int nid; | ||
25 | |||
26 | if (mminit_loglevel < MMINIT_VERIFY) | ||
27 | return; | ||
28 | |||
29 | for_each_online_node(nid) { | ||
30 | pg_data_t *pgdat = NODE_DATA(nid); | ||
31 | struct zone *zone; | ||
32 | struct zoneref *z; | ||
33 | struct zonelist *zonelist; | ||
34 | int i, listid, zoneid; | ||
35 | |||
36 | BUG_ON(MAX_ZONELISTS > 2); | ||
37 | for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { | ||
38 | |||
39 | /* Identify the zone and nodelist */ | ||
40 | zoneid = i % MAX_NR_ZONES; | ||
41 | listid = i / MAX_NR_ZONES; | ||
42 | zonelist = &pgdat->node_zonelists[listid]; | ||
43 | zone = &pgdat->node_zones[zoneid]; | ||
44 | if (!populated_zone(zone)) | ||
45 | continue; | ||
46 | |||
47 | /* Print information about the zonelist */ | ||
48 | printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", | ||
49 | listid > 0 ? "thisnode" : "general", nid, | ||
50 | zone->name); | ||
51 | |||
52 | /* Iterate the zonelist */ | ||
53 | for_each_zone_zonelist(zone, z, zonelist, zoneid) { | ||
54 | #ifdef CONFIG_NUMA | ||
55 | printk(KERN_CONT "%d:%s ", | ||
56 | zone->node, zone->name); | ||
57 | #else | ||
58 | printk(KERN_CONT "0:%s ", zone->name); | ||
59 | #endif /* CONFIG_NUMA */ | ||
60 | } | ||
61 | printk(KERN_CONT "\n"); | ||
62 | } | ||
63 | } | ||
64 | } | ||
65 | |||
66 | void __init mminit_verify_pageflags_layout(void) | ||
67 | { | ||
68 | int shift, width; | ||
69 | unsigned long or_mask, add_mask; | ||
70 | |||
71 | shift = 8 * sizeof(unsigned long); | ||
72 | width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH; | ||
73 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", | ||
74 | "Section %d Node %d Zone %d Flags %d\n", | ||
75 | SECTIONS_WIDTH, | ||
76 | NODES_WIDTH, | ||
77 | ZONES_WIDTH, | ||
78 | NR_PAGEFLAGS); | ||
79 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", | ||
80 | "Section %d Node %d Zone %d\n", | ||
81 | SECTIONS_SHIFT, | ||
82 | NODES_SHIFT, | ||
83 | ZONES_SHIFT); | ||
84 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_offsets", | ||
85 | "Section %lu Node %lu Zone %lu\n", | ||
86 | (unsigned long)SECTIONS_PGSHIFT, | ||
87 | (unsigned long)NODES_PGSHIFT, | ||
88 | (unsigned long)ZONES_PGSHIFT); | ||
89 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_zoneid", | ||
90 | "Zone ID: %lu -> %lu\n", | ||
91 | (unsigned long)ZONEID_PGOFF, | ||
92 | (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT)); | ||
93 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", | ||
94 | "location: %d -> %d unused %d -> %d flags %d -> %d\n", | ||
95 | shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); | ||
96 | #ifdef NODE_NOT_IN_PAGE_FLAGS | ||
97 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", | ||
98 | "Node not in page flags"); | ||
99 | #endif | ||
100 | |||
101 | if (SECTIONS_WIDTH) { | ||
102 | shift -= SECTIONS_WIDTH; | ||
103 | BUG_ON(shift != SECTIONS_PGSHIFT); | ||
104 | } | ||
105 | if (NODES_WIDTH) { | ||
106 | shift -= NODES_WIDTH; | ||
107 | BUG_ON(shift != NODES_PGSHIFT); | ||
108 | } | ||
109 | if (ZONES_WIDTH) { | ||
110 | shift -= ZONES_WIDTH; | ||
111 | BUG_ON(shift != ZONES_PGSHIFT); | ||
112 | } | ||
113 | |||
114 | /* Check for bitmask overlaps */ | ||
115 | or_mask = (ZONES_MASK << ZONES_PGSHIFT) | | ||
116 | (NODES_MASK << NODES_PGSHIFT) | | ||
117 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | ||
118 | add_mask = (ZONES_MASK << ZONES_PGSHIFT) + | ||
119 | (NODES_MASK << NODES_PGSHIFT) + | ||
120 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | ||
121 | BUG_ON(or_mask != add_mask); | ||
122 | } | ||
123 | |||
124 | void __meminit mminit_verify_page_links(struct page *page, enum zone_type zone, | ||
125 | unsigned long nid, unsigned long pfn) | ||
126 | { | ||
127 | BUG_ON(page_to_nid(page) != nid); | ||
128 | BUG_ON(page_zonenum(page) != zone); | ||
129 | BUG_ON(page_to_pfn(page) != pfn); | ||
130 | } | ||
131 | |||
132 | static __init int set_mminit_loglevel(char *str) | ||
133 | { | ||
134 | get_option(&str, &mminit_loglevel); | ||
135 | return 0; | ||
136 | } | ||
137 | early_param("mminit_loglevel", set_mminit_loglevel); | ||
138 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ | ||
139 | |||
140 | struct kobject *mm_kobj; | ||
141 | EXPORT_SYMBOL_GPL(mm_kobj); | ||
142 | |||
143 | static int __init mm_sysfs_init(void) | ||
144 | { | ||
145 | mm_kobj = kobject_create_and_add("mm", kernel_kobj); | ||
146 | if (!mm_kobj) | ||
147 | return -ENOMEM; | ||
148 | |||
149 | return 0; | ||
150 | } | ||
151 | |||
152 | __initcall(mm_sysfs_init); | ||
@@ -26,12 +26,15 @@ | |||
26 | #include <linux/mount.h> | 26 | #include <linux/mount.h> |
27 | #include <linux/mempolicy.h> | 27 | #include <linux/mempolicy.h> |
28 | #include <linux/rmap.h> | 28 | #include <linux/rmap.h> |
29 | #include <linux/mmu_notifier.h> | ||
29 | 30 | ||
30 | #include <asm/uaccess.h> | 31 | #include <asm/uaccess.h> |
31 | #include <asm/cacheflush.h> | 32 | #include <asm/cacheflush.h> |
32 | #include <asm/tlb.h> | 33 | #include <asm/tlb.h> |
33 | #include <asm/mmu_context.h> | 34 | #include <asm/mmu_context.h> |
34 | 35 | ||
36 | #include "internal.h" | ||
37 | |||
35 | #ifndef arch_mmap_check | 38 | #ifndef arch_mmap_check |
36 | #define arch_mmap_check(addr, len, flags) (0) | 39 | #define arch_mmap_check(addr, len, flags) (0) |
37 | #endif | 40 | #endif |
@@ -72,8 +75,9 @@ pgprot_t protection_map[16] = { | |||
72 | 75 | ||
73 | pgprot_t vm_get_page_prot(unsigned long vm_flags) | 76 | pgprot_t vm_get_page_prot(unsigned long vm_flags) |
74 | { | 77 | { |
75 | return protection_map[vm_flags & | 78 | return __pgprot(pgprot_val(protection_map[vm_flags & |
76 | (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]; | 79 | (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | |
80 | pgprot_val(arch_vm_get_page_prot(vm_flags))); | ||
77 | } | 81 | } |
78 | EXPORT_SYMBOL(vm_get_page_prot); | 82 | EXPORT_SYMBOL(vm_get_page_prot); |
79 | 83 | ||
@@ -366,7 +370,7 @@ find_vma_prepare(struct mm_struct *mm, unsigned long addr, | |||
366 | if (vma_tmp->vm_end > addr) { | 370 | if (vma_tmp->vm_end > addr) { |
367 | vma = vma_tmp; | 371 | vma = vma_tmp; |
368 | if (vma_tmp->vm_start <= addr) | 372 | if (vma_tmp->vm_start <= addr) |
369 | return vma; | 373 | break; |
370 | __rb_link = &__rb_parent->rb_left; | 374 | __rb_link = &__rb_parent->rb_left; |
371 | } else { | 375 | } else { |
372 | rb_prev = __rb_parent; | 376 | rb_prev = __rb_parent; |
@@ -1026,6 +1030,10 @@ unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, | |||
1026 | } else { | 1030 | } else { |
1027 | switch (flags & MAP_TYPE) { | 1031 | switch (flags & MAP_TYPE) { |
1028 | case MAP_SHARED: | 1032 | case MAP_SHARED: |
1033 | /* | ||
1034 | * Ignore pgoff. | ||
1035 | */ | ||
1036 | pgoff = 0; | ||
1029 | vm_flags |= VM_SHARED | VM_MAYSHARE; | 1037 | vm_flags |= VM_SHARED | VM_MAYSHARE; |
1030 | break; | 1038 | break; |
1031 | case MAP_PRIVATE: | 1039 | case MAP_PRIVATE: |
@@ -1107,6 +1115,9 @@ munmap_back: | |||
1107 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) | 1115 | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) |
1108 | return -ENOMEM; | 1116 | return -ENOMEM; |
1109 | 1117 | ||
1118 | if (flags & MAP_NORESERVE) | ||
1119 | vm_flags |= VM_NORESERVE; | ||
1120 | |||
1110 | if (accountable && (!(flags & MAP_NORESERVE) || | 1121 | if (accountable && (!(flags & MAP_NORESERVE) || |
1111 | sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { | 1122 | sysctl_overcommit_memory == OVERCOMMIT_NEVER)) { |
1112 | if (vm_flags & VM_SHARED) { | 1123 | if (vm_flags & VM_SHARED) { |
@@ -1762,7 +1773,7 @@ static void unmap_region(struct mm_struct *mm, | |||
1762 | update_hiwater_rss(mm); | 1773 | update_hiwater_rss(mm); |
1763 | unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); | 1774 | unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); |
1764 | vm_unacct_memory(nr_accounted); | 1775 | vm_unacct_memory(nr_accounted); |
1765 | free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, | 1776 | free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, |
1766 | next? next->vm_start: 0); | 1777 | next? next->vm_start: 0); |
1767 | tlb_finish_mmu(tlb, start, end); | 1778 | tlb_finish_mmu(tlb, start, end); |
1768 | } | 1779 | } |
@@ -1806,7 +1817,8 @@ int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, | |||
1806 | struct mempolicy *pol; | 1817 | struct mempolicy *pol; |
1807 | struct vm_area_struct *new; | 1818 | struct vm_area_struct *new; |
1808 | 1819 | ||
1809 | if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK)) | 1820 | if (is_vm_hugetlb_page(vma) && (addr & |
1821 | ~(huge_page_mask(hstate_vma(vma))))) | ||
1810 | return -EINVAL; | 1822 | return -EINVAL; |
1811 | 1823 | ||
1812 | if (mm->map_count >= sysctl_max_map_count) | 1824 | if (mm->map_count >= sysctl_max_map_count) |
@@ -2054,6 +2066,7 @@ void exit_mmap(struct mm_struct *mm) | |||
2054 | 2066 | ||
2055 | /* mm's last user has gone, and its about to be pulled down */ | 2067 | /* mm's last user has gone, and its about to be pulled down */ |
2056 | arch_exit_mmap(mm); | 2068 | arch_exit_mmap(mm); |
2069 | mmu_notifier_release(mm); | ||
2057 | 2070 | ||
2058 | lru_add_drain(); | 2071 | lru_add_drain(); |
2059 | flush_cache_mm(mm); | 2072 | flush_cache_mm(mm); |
@@ -2062,7 +2075,7 @@ void exit_mmap(struct mm_struct *mm) | |||
2062 | /* Use -1 here to ensure all VMAs in the mm are unmapped */ | 2075 | /* Use -1 here to ensure all VMAs in the mm are unmapped */ |
2063 | end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); | 2076 | end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); |
2064 | vm_unacct_memory(nr_accounted); | 2077 | vm_unacct_memory(nr_accounted); |
2065 | free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0); | 2078 | free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); |
2066 | tlb_finish_mmu(tlb, 0, end); | 2079 | tlb_finish_mmu(tlb, 0, end); |
2067 | 2080 | ||
2068 | /* | 2081 | /* |
@@ -2261,3 +2274,167 @@ int install_special_mapping(struct mm_struct *mm, | |||
2261 | 2274 | ||
2262 | return 0; | 2275 | return 0; |
2263 | } | 2276 | } |
2277 | |||
2278 | static DEFINE_MUTEX(mm_all_locks_mutex); | ||
2279 | |||
2280 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) | ||
2281 | { | ||
2282 | if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { | ||
2283 | /* | ||
2284 | * The LSB of head.next can't change from under us | ||
2285 | * because we hold the mm_all_locks_mutex. | ||
2286 | */ | ||
2287 | spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); | ||
2288 | /* | ||
2289 | * We can safely modify head.next after taking the | ||
2290 | * anon_vma->lock. If some other vma in this mm shares | ||
2291 | * the same anon_vma we won't take it again. | ||
2292 | * | ||
2293 | * No need of atomic instructions here, head.next | ||
2294 | * can't change from under us thanks to the | ||
2295 | * anon_vma->lock. | ||
2296 | */ | ||
2297 | if (__test_and_set_bit(0, (unsigned long *) | ||
2298 | &anon_vma->head.next)) | ||
2299 | BUG(); | ||
2300 | } | ||
2301 | } | ||
2302 | |||
2303 | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) | ||
2304 | { | ||
2305 | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | ||
2306 | /* | ||
2307 | * AS_MM_ALL_LOCKS can't change from under us because | ||
2308 | * we hold the mm_all_locks_mutex. | ||
2309 | * | ||
2310 | * Operations on ->flags have to be atomic because | ||
2311 | * even if AS_MM_ALL_LOCKS is stable thanks to the | ||
2312 | * mm_all_locks_mutex, there may be other cpus | ||
2313 | * changing other bitflags in parallel to us. | ||
2314 | */ | ||
2315 | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) | ||
2316 | BUG(); | ||
2317 | spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); | ||
2318 | } | ||
2319 | } | ||
2320 | |||
2321 | /* | ||
2322 | * This operation locks against the VM for all pte/vma/mm related | ||
2323 | * operations that could ever happen on a certain mm. This includes | ||
2324 | * vmtruncate, try_to_unmap, and all page faults. | ||
2325 | * | ||
2326 | * The caller must take the mmap_sem in write mode before calling | ||
2327 | * mm_take_all_locks(). The caller isn't allowed to release the | ||
2328 | * mmap_sem until mm_drop_all_locks() returns. | ||
2329 | * | ||
2330 | * mmap_sem in write mode is required in order to block all operations | ||
2331 | * that could modify pagetables and free pages without need of | ||
2332 | * altering the vma layout (for example populate_range() with | ||
2333 | * nonlinear vmas). It's also needed in write mode to avoid new | ||
2334 | * anon_vmas to be associated with existing vmas. | ||
2335 | * | ||
2336 | * A single task can't take more than one mm_take_all_locks() in a row | ||
2337 | * or it would deadlock. | ||
2338 | * | ||
2339 | * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in | ||
2340 | * mapping->flags avoid to take the same lock twice, if more than one | ||
2341 | * vma in this mm is backed by the same anon_vma or address_space. | ||
2342 | * | ||
2343 | * We can take all the locks in random order because the VM code | ||
2344 | * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never | ||
2345 | * takes more than one of them in a row. Secondly we're protected | ||
2346 | * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. | ||
2347 | * | ||
2348 | * mm_take_all_locks() and mm_drop_all_locks are expensive operations | ||
2349 | * that may have to take thousand of locks. | ||
2350 | * | ||
2351 | * mm_take_all_locks() can fail if it's interrupted by signals. | ||
2352 | */ | ||
2353 | int mm_take_all_locks(struct mm_struct *mm) | ||
2354 | { | ||
2355 | struct vm_area_struct *vma; | ||
2356 | int ret = -EINTR; | ||
2357 | |||
2358 | BUG_ON(down_read_trylock(&mm->mmap_sem)); | ||
2359 | |||
2360 | mutex_lock(&mm_all_locks_mutex); | ||
2361 | |||
2362 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | ||
2363 | if (signal_pending(current)) | ||
2364 | goto out_unlock; | ||
2365 | if (vma->vm_file && vma->vm_file->f_mapping) | ||
2366 | vm_lock_mapping(mm, vma->vm_file->f_mapping); | ||
2367 | } | ||
2368 | |||
2369 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | ||
2370 | if (signal_pending(current)) | ||
2371 | goto out_unlock; | ||
2372 | if (vma->anon_vma) | ||
2373 | vm_lock_anon_vma(mm, vma->anon_vma); | ||
2374 | } | ||
2375 | |||
2376 | ret = 0; | ||
2377 | |||
2378 | out_unlock: | ||
2379 | if (ret) | ||
2380 | mm_drop_all_locks(mm); | ||
2381 | |||
2382 | return ret; | ||
2383 | } | ||
2384 | |||
2385 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | ||
2386 | { | ||
2387 | if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { | ||
2388 | /* | ||
2389 | * The LSB of head.next can't change to 0 from under | ||
2390 | * us because we hold the mm_all_locks_mutex. | ||
2391 | * | ||
2392 | * We must however clear the bitflag before unlocking | ||
2393 | * the vma so the users using the anon_vma->head will | ||
2394 | * never see our bitflag. | ||
2395 | * | ||
2396 | * No need of atomic instructions here, head.next | ||
2397 | * can't change from under us until we release the | ||
2398 | * anon_vma->lock. | ||
2399 | */ | ||
2400 | if (!__test_and_clear_bit(0, (unsigned long *) | ||
2401 | &anon_vma->head.next)) | ||
2402 | BUG(); | ||
2403 | spin_unlock(&anon_vma->lock); | ||
2404 | } | ||
2405 | } | ||
2406 | |||
2407 | static void vm_unlock_mapping(struct address_space *mapping) | ||
2408 | { | ||
2409 | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | ||
2410 | /* | ||
2411 | * AS_MM_ALL_LOCKS can't change to 0 from under us | ||
2412 | * because we hold the mm_all_locks_mutex. | ||
2413 | */ | ||
2414 | spin_unlock(&mapping->i_mmap_lock); | ||
2415 | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, | ||
2416 | &mapping->flags)) | ||
2417 | BUG(); | ||
2418 | } | ||
2419 | } | ||
2420 | |||
2421 | /* | ||
2422 | * The mmap_sem cannot be released by the caller until | ||
2423 | * mm_drop_all_locks() returns. | ||
2424 | */ | ||
2425 | void mm_drop_all_locks(struct mm_struct *mm) | ||
2426 | { | ||
2427 | struct vm_area_struct *vma; | ||
2428 | |||
2429 | BUG_ON(down_read_trylock(&mm->mmap_sem)); | ||
2430 | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); | ||
2431 | |||
2432 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | ||
2433 | if (vma->anon_vma) | ||
2434 | vm_unlock_anon_vma(vma->anon_vma); | ||
2435 | if (vma->vm_file && vma->vm_file->f_mapping) | ||
2436 | vm_unlock_mapping(vma->vm_file->f_mapping); | ||
2437 | } | ||
2438 | |||
2439 | mutex_unlock(&mm_all_locks_mutex); | ||
2440 | } | ||
diff --git a/mm/mmu_notifier.c b/mm/mmu_notifier.c new file mode 100644 index 000000000000..5f4ef0250bee --- /dev/null +++ b/mm/mmu_notifier.c | |||
@@ -0,0 +1,277 @@ | |||
1 | /* | ||
2 | * linux/mm/mmu_notifier.c | ||
3 | * | ||
4 | * Copyright (C) 2008 Qumranet, Inc. | ||
5 | * Copyright (C) 2008 SGI | ||
6 | * Christoph Lameter <clameter@sgi.com> | ||
7 | * | ||
8 | * This work is licensed under the terms of the GNU GPL, version 2. See | ||
9 | * the COPYING file in the top-level directory. | ||
10 | */ | ||
11 | |||
12 | #include <linux/rculist.h> | ||
13 | #include <linux/mmu_notifier.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/err.h> | ||
17 | #include <linux/rcupdate.h> | ||
18 | #include <linux/sched.h> | ||
19 | |||
20 | /* | ||
21 | * This function can't run concurrently against mmu_notifier_register | ||
22 | * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap | ||
23 | * runs with mm_users == 0. Other tasks may still invoke mmu notifiers | ||
24 | * in parallel despite there being no task using this mm any more, | ||
25 | * through the vmas outside of the exit_mmap context, such as with | ||
26 | * vmtruncate. This serializes against mmu_notifier_unregister with | ||
27 | * the mmu_notifier_mm->lock in addition to RCU and it serializes | ||
28 | * against the other mmu notifiers with RCU. struct mmu_notifier_mm | ||
29 | * can't go away from under us as exit_mmap holds an mm_count pin | ||
30 | * itself. | ||
31 | */ | ||
32 | void __mmu_notifier_release(struct mm_struct *mm) | ||
33 | { | ||
34 | struct mmu_notifier *mn; | ||
35 | |||
36 | spin_lock(&mm->mmu_notifier_mm->lock); | ||
37 | while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) { | ||
38 | mn = hlist_entry(mm->mmu_notifier_mm->list.first, | ||
39 | struct mmu_notifier, | ||
40 | hlist); | ||
41 | /* | ||
42 | * We arrived before mmu_notifier_unregister so | ||
43 | * mmu_notifier_unregister will do nothing other than | ||
44 | * to wait ->release to finish and | ||
45 | * mmu_notifier_unregister to return. | ||
46 | */ | ||
47 | hlist_del_init_rcu(&mn->hlist); | ||
48 | /* | ||
49 | * RCU here will block mmu_notifier_unregister until | ||
50 | * ->release returns. | ||
51 | */ | ||
52 | rcu_read_lock(); | ||
53 | spin_unlock(&mm->mmu_notifier_mm->lock); | ||
54 | /* | ||
55 | * if ->release runs before mmu_notifier_unregister it | ||
56 | * must be handled as it's the only way for the driver | ||
57 | * to flush all existing sptes and stop the driver | ||
58 | * from establishing any more sptes before all the | ||
59 | * pages in the mm are freed. | ||
60 | */ | ||
61 | if (mn->ops->release) | ||
62 | mn->ops->release(mn, mm); | ||
63 | rcu_read_unlock(); | ||
64 | spin_lock(&mm->mmu_notifier_mm->lock); | ||
65 | } | ||
66 | spin_unlock(&mm->mmu_notifier_mm->lock); | ||
67 | |||
68 | /* | ||
69 | * synchronize_rcu here prevents mmu_notifier_release to | ||
70 | * return to exit_mmap (which would proceed freeing all pages | ||
71 | * in the mm) until the ->release method returns, if it was | ||
72 | * invoked by mmu_notifier_unregister. | ||
73 | * | ||
74 | * The mmu_notifier_mm can't go away from under us because one | ||
75 | * mm_count is hold by exit_mmap. | ||
76 | */ | ||
77 | synchronize_rcu(); | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * If no young bitflag is supported by the hardware, ->clear_flush_young can | ||
82 | * unmap the address and return 1 or 0 depending if the mapping previously | ||
83 | * existed or not. | ||
84 | */ | ||
85 | int __mmu_notifier_clear_flush_young(struct mm_struct *mm, | ||
86 | unsigned long address) | ||
87 | { | ||
88 | struct mmu_notifier *mn; | ||
89 | struct hlist_node *n; | ||
90 | int young = 0; | ||
91 | |||
92 | rcu_read_lock(); | ||
93 | hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) { | ||
94 | if (mn->ops->clear_flush_young) | ||
95 | young |= mn->ops->clear_flush_young(mn, mm, address); | ||
96 | } | ||
97 | rcu_read_unlock(); | ||
98 | |||
99 | return young; | ||
100 | } | ||
101 | |||
102 | void __mmu_notifier_invalidate_page(struct mm_struct *mm, | ||
103 | unsigned long address) | ||
104 | { | ||
105 | struct mmu_notifier *mn; | ||
106 | struct hlist_node *n; | ||
107 | |||
108 | rcu_read_lock(); | ||
109 | hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) { | ||
110 | if (mn->ops->invalidate_page) | ||
111 | mn->ops->invalidate_page(mn, mm, address); | ||
112 | } | ||
113 | rcu_read_unlock(); | ||
114 | } | ||
115 | |||
116 | void __mmu_notifier_invalidate_range_start(struct mm_struct *mm, | ||
117 | unsigned long start, unsigned long end) | ||
118 | { | ||
119 | struct mmu_notifier *mn; | ||
120 | struct hlist_node *n; | ||
121 | |||
122 | rcu_read_lock(); | ||
123 | hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) { | ||
124 | if (mn->ops->invalidate_range_start) | ||
125 | mn->ops->invalidate_range_start(mn, mm, start, end); | ||
126 | } | ||
127 | rcu_read_unlock(); | ||
128 | } | ||
129 | |||
130 | void __mmu_notifier_invalidate_range_end(struct mm_struct *mm, | ||
131 | unsigned long start, unsigned long end) | ||
132 | { | ||
133 | struct mmu_notifier *mn; | ||
134 | struct hlist_node *n; | ||
135 | |||
136 | rcu_read_lock(); | ||
137 | hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) { | ||
138 | if (mn->ops->invalidate_range_end) | ||
139 | mn->ops->invalidate_range_end(mn, mm, start, end); | ||
140 | } | ||
141 | rcu_read_unlock(); | ||
142 | } | ||
143 | |||
144 | static int do_mmu_notifier_register(struct mmu_notifier *mn, | ||
145 | struct mm_struct *mm, | ||
146 | int take_mmap_sem) | ||
147 | { | ||
148 | struct mmu_notifier_mm *mmu_notifier_mm; | ||
149 | int ret; | ||
150 | |||
151 | BUG_ON(atomic_read(&mm->mm_users) <= 0); | ||
152 | |||
153 | ret = -ENOMEM; | ||
154 | mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL); | ||
155 | if (unlikely(!mmu_notifier_mm)) | ||
156 | goto out; | ||
157 | |||
158 | if (take_mmap_sem) | ||
159 | down_write(&mm->mmap_sem); | ||
160 | ret = mm_take_all_locks(mm); | ||
161 | if (unlikely(ret)) | ||
162 | goto out_cleanup; | ||
163 | |||
164 | if (!mm_has_notifiers(mm)) { | ||
165 | INIT_HLIST_HEAD(&mmu_notifier_mm->list); | ||
166 | spin_lock_init(&mmu_notifier_mm->lock); | ||
167 | mm->mmu_notifier_mm = mmu_notifier_mm; | ||
168 | mmu_notifier_mm = NULL; | ||
169 | } | ||
170 | atomic_inc(&mm->mm_count); | ||
171 | |||
172 | /* | ||
173 | * Serialize the update against mmu_notifier_unregister. A | ||
174 | * side note: mmu_notifier_release can't run concurrently with | ||
175 | * us because we hold the mm_users pin (either implicitly as | ||
176 | * current->mm or explicitly with get_task_mm() or similar). | ||
177 | * We can't race against any other mmu notifier method either | ||
178 | * thanks to mm_take_all_locks(). | ||
179 | */ | ||
180 | spin_lock(&mm->mmu_notifier_mm->lock); | ||
181 | hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list); | ||
182 | spin_unlock(&mm->mmu_notifier_mm->lock); | ||
183 | |||
184 | mm_drop_all_locks(mm); | ||
185 | out_cleanup: | ||
186 | if (take_mmap_sem) | ||
187 | up_write(&mm->mmap_sem); | ||
188 | /* kfree() does nothing if mmu_notifier_mm is NULL */ | ||
189 | kfree(mmu_notifier_mm); | ||
190 | out: | ||
191 | BUG_ON(atomic_read(&mm->mm_users) <= 0); | ||
192 | return ret; | ||
193 | } | ||
194 | |||
195 | /* | ||
196 | * Must not hold mmap_sem nor any other VM related lock when calling | ||
197 | * this registration function. Must also ensure mm_users can't go down | ||
198 | * to zero while this runs to avoid races with mmu_notifier_release, | ||
199 | * so mm has to be current->mm or the mm should be pinned safely such | ||
200 | * as with get_task_mm(). If the mm is not current->mm, the mm_users | ||
201 | * pin should be released by calling mmput after mmu_notifier_register | ||
202 | * returns. mmu_notifier_unregister must be always called to | ||
203 | * unregister the notifier. mm_count is automatically pinned to allow | ||
204 | * mmu_notifier_unregister to safely run at any time later, before or | ||
205 | * after exit_mmap. ->release will always be called before exit_mmap | ||
206 | * frees the pages. | ||
207 | */ | ||
208 | int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) | ||
209 | { | ||
210 | return do_mmu_notifier_register(mn, mm, 1); | ||
211 | } | ||
212 | EXPORT_SYMBOL_GPL(mmu_notifier_register); | ||
213 | |||
214 | /* | ||
215 | * Same as mmu_notifier_register but here the caller must hold the | ||
216 | * mmap_sem in write mode. | ||
217 | */ | ||
218 | int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) | ||
219 | { | ||
220 | return do_mmu_notifier_register(mn, mm, 0); | ||
221 | } | ||
222 | EXPORT_SYMBOL_GPL(__mmu_notifier_register); | ||
223 | |||
224 | /* this is called after the last mmu_notifier_unregister() returned */ | ||
225 | void __mmu_notifier_mm_destroy(struct mm_struct *mm) | ||
226 | { | ||
227 | BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list)); | ||
228 | kfree(mm->mmu_notifier_mm); | ||
229 | mm->mmu_notifier_mm = LIST_POISON1; /* debug */ | ||
230 | } | ||
231 | |||
232 | /* | ||
233 | * This releases the mm_count pin automatically and frees the mm | ||
234 | * structure if it was the last user of it. It serializes against | ||
235 | * running mmu notifiers with RCU and against mmu_notifier_unregister | ||
236 | * with the unregister lock + RCU. All sptes must be dropped before | ||
237 | * calling mmu_notifier_unregister. ->release or any other notifier | ||
238 | * method may be invoked concurrently with mmu_notifier_unregister, | ||
239 | * and only after mmu_notifier_unregister returned we're guaranteed | ||
240 | * that ->release or any other method can't run anymore. | ||
241 | */ | ||
242 | void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm) | ||
243 | { | ||
244 | BUG_ON(atomic_read(&mm->mm_count) <= 0); | ||
245 | |||
246 | spin_lock(&mm->mmu_notifier_mm->lock); | ||
247 | if (!hlist_unhashed(&mn->hlist)) { | ||
248 | hlist_del_rcu(&mn->hlist); | ||
249 | |||
250 | /* | ||
251 | * RCU here will force exit_mmap to wait ->release to finish | ||
252 | * before freeing the pages. | ||
253 | */ | ||
254 | rcu_read_lock(); | ||
255 | spin_unlock(&mm->mmu_notifier_mm->lock); | ||
256 | /* | ||
257 | * exit_mmap will block in mmu_notifier_release to | ||
258 | * guarantee ->release is called before freeing the | ||
259 | * pages. | ||
260 | */ | ||
261 | if (mn->ops->release) | ||
262 | mn->ops->release(mn, mm); | ||
263 | rcu_read_unlock(); | ||
264 | } else | ||
265 | spin_unlock(&mm->mmu_notifier_mm->lock); | ||
266 | |||
267 | /* | ||
268 | * Wait any running method to finish, of course including | ||
269 | * ->release if it was run by mmu_notifier_relase instead of us. | ||
270 | */ | ||
271 | synchronize_rcu(); | ||
272 | |||
273 | BUG_ON(atomic_read(&mm->mm_count) <= 0); | ||
274 | |||
275 | mmdrop(mm); | ||
276 | } | ||
277 | EXPORT_SYMBOL_GPL(mmu_notifier_unregister); | ||
diff --git a/mm/mmzone.c b/mm/mmzone.c index 486ed595ee6f..16ce8b955dcf 100644 --- a/mm/mmzone.c +++ b/mm/mmzone.c | |||
@@ -69,6 +69,6 @@ struct zoneref *next_zones_zonelist(struct zoneref *z, | |||
69 | (z->zone && !zref_in_nodemask(z, nodes))) | 69 | (z->zone && !zref_in_nodemask(z, nodes))) |
70 | z++; | 70 | z++; |
71 | 71 | ||
72 | *zone = zonelist_zone(z++); | 72 | *zone = zonelist_zone(z); |
73 | return z; | 73 | return z; |
74 | } | 74 | } |
diff --git a/mm/mprotect.c b/mm/mprotect.c index a5bf31c27375..fded06f923f4 100644 --- a/mm/mprotect.c +++ b/mm/mprotect.c | |||
@@ -21,6 +21,7 @@ | |||
21 | #include <linux/syscalls.h> | 21 | #include <linux/syscalls.h> |
22 | #include <linux/swap.h> | 22 | #include <linux/swap.h> |
23 | #include <linux/swapops.h> | 23 | #include <linux/swapops.h> |
24 | #include <linux/mmu_notifier.h> | ||
24 | #include <asm/uaccess.h> | 25 | #include <asm/uaccess.h> |
25 | #include <asm/pgtable.h> | 26 | #include <asm/pgtable.h> |
26 | #include <asm/cacheflush.h> | 27 | #include <asm/cacheflush.h> |
@@ -47,19 +48,17 @@ static void change_pte_range(struct mm_struct *mm, pmd_t *pmd, | |||
47 | if (pte_present(oldpte)) { | 48 | if (pte_present(oldpte)) { |
48 | pte_t ptent; | 49 | pte_t ptent; |
49 | 50 | ||
50 | /* Avoid an SMP race with hardware updated dirty/clean | 51 | ptent = ptep_modify_prot_start(mm, addr, pte); |
51 | * bits by wiping the pte and then setting the new pte | ||
52 | * into place. | ||
53 | */ | ||
54 | ptent = ptep_get_and_clear(mm, addr, pte); | ||
55 | ptent = pte_modify(ptent, newprot); | 52 | ptent = pte_modify(ptent, newprot); |
53 | |||
56 | /* | 54 | /* |
57 | * Avoid taking write faults for pages we know to be | 55 | * Avoid taking write faults for pages we know to be |
58 | * dirty. | 56 | * dirty. |
59 | */ | 57 | */ |
60 | if (dirty_accountable && pte_dirty(ptent)) | 58 | if (dirty_accountable && pte_dirty(ptent)) |
61 | ptent = pte_mkwrite(ptent); | 59 | ptent = pte_mkwrite(ptent); |
62 | set_pte_at(mm, addr, pte, ptent); | 60 | |
61 | ptep_modify_prot_commit(mm, addr, pte, ptent); | ||
63 | #ifdef CONFIG_MIGRATION | 62 | #ifdef CONFIG_MIGRATION |
64 | } else if (!pte_file(oldpte)) { | 63 | } else if (!pte_file(oldpte)) { |
65 | swp_entry_t entry = pte_to_swp_entry(oldpte); | 64 | swp_entry_t entry = pte_to_swp_entry(oldpte); |
@@ -155,12 +154,10 @@ mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, | |||
155 | * If we make a private mapping writable we increase our commit; | 154 | * If we make a private mapping writable we increase our commit; |
156 | * but (without finer accounting) cannot reduce our commit if we | 155 | * but (without finer accounting) cannot reduce our commit if we |
157 | * make it unwritable again. | 156 | * make it unwritable again. |
158 | * | ||
159 | * FIXME? We haven't defined a VM_NORESERVE flag, so mprotecting | ||
160 | * a MAP_NORESERVE private mapping to writable will now reserve. | ||
161 | */ | 157 | */ |
162 | if (newflags & VM_WRITE) { | 158 | if (newflags & VM_WRITE) { |
163 | if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_SHARED))) { | 159 | if (!(oldflags & (VM_ACCOUNT|VM_WRITE| |
160 | VM_SHARED|VM_NORESERVE))) { | ||
164 | charged = nrpages; | 161 | charged = nrpages; |
165 | if (security_vm_enough_memory(charged)) | 162 | if (security_vm_enough_memory(charged)) |
166 | return -ENOMEM; | 163 | return -ENOMEM; |
@@ -207,10 +204,12 @@ success: | |||
207 | dirty_accountable = 1; | 204 | dirty_accountable = 1; |
208 | } | 205 | } |
209 | 206 | ||
207 | mmu_notifier_invalidate_range_start(mm, start, end); | ||
210 | if (is_vm_hugetlb_page(vma)) | 208 | if (is_vm_hugetlb_page(vma)) |
211 | hugetlb_change_protection(vma, start, end, vma->vm_page_prot); | 209 | hugetlb_change_protection(vma, start, end, vma->vm_page_prot); |
212 | else | 210 | else |
213 | change_protection(vma, start, end, vma->vm_page_prot, dirty_accountable); | 211 | change_protection(vma, start, end, vma->vm_page_prot, dirty_accountable); |
212 | mmu_notifier_invalidate_range_end(mm, start, end); | ||
214 | vm_stat_account(mm, oldflags, vma->vm_file, -nrpages); | 213 | vm_stat_account(mm, oldflags, vma->vm_file, -nrpages); |
215 | vm_stat_account(mm, newflags, vma->vm_file, nrpages); | 214 | vm_stat_account(mm, newflags, vma->vm_file, nrpages); |
216 | return 0; | 215 | return 0; |
@@ -239,7 +238,7 @@ sys_mprotect(unsigned long start, size_t len, unsigned long prot) | |||
239 | end = start + len; | 238 | end = start + len; |
240 | if (end <= start) | 239 | if (end <= start) |
241 | return -ENOMEM; | 240 | return -ENOMEM; |
242 | if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM)) | 241 | if (!arch_validate_prot(prot)) |
243 | return -EINVAL; | 242 | return -EINVAL; |
244 | 243 | ||
245 | reqprot = prot; | 244 | reqprot = prot; |
diff --git a/mm/mremap.c b/mm/mremap.c index 08e3c7f2bd15..1a7743923c8c 100644 --- a/mm/mremap.c +++ b/mm/mremap.c | |||
@@ -18,6 +18,7 @@ | |||
18 | #include <linux/highmem.h> | 18 | #include <linux/highmem.h> |
19 | #include <linux/security.h> | 19 | #include <linux/security.h> |
20 | #include <linux/syscalls.h> | 20 | #include <linux/syscalls.h> |
21 | #include <linux/mmu_notifier.h> | ||
21 | 22 | ||
22 | #include <asm/uaccess.h> | 23 | #include <asm/uaccess.h> |
23 | #include <asm/cacheflush.h> | 24 | #include <asm/cacheflush.h> |
@@ -74,7 +75,11 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, | |||
74 | struct mm_struct *mm = vma->vm_mm; | 75 | struct mm_struct *mm = vma->vm_mm; |
75 | pte_t *old_pte, *new_pte, pte; | 76 | pte_t *old_pte, *new_pte, pte; |
76 | spinlock_t *old_ptl, *new_ptl; | 77 | spinlock_t *old_ptl, *new_ptl; |
78 | unsigned long old_start; | ||
77 | 79 | ||
80 | old_start = old_addr; | ||
81 | mmu_notifier_invalidate_range_start(vma->vm_mm, | ||
82 | old_start, old_end); | ||
78 | if (vma->vm_file) { | 83 | if (vma->vm_file) { |
79 | /* | 84 | /* |
80 | * Subtle point from Rajesh Venkatasubramanian: before | 85 | * Subtle point from Rajesh Venkatasubramanian: before |
@@ -116,6 +121,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, | |||
116 | pte_unmap_unlock(old_pte - 1, old_ptl); | 121 | pte_unmap_unlock(old_pte - 1, old_ptl); |
117 | if (mapping) | 122 | if (mapping) |
118 | spin_unlock(&mapping->i_mmap_lock); | 123 | spin_unlock(&mapping->i_mmap_lock); |
124 | mmu_notifier_invalidate_range_end(vma->vm_mm, old_start, old_end); | ||
119 | } | 125 | } |
120 | 126 | ||
121 | #define LATENCY_LIMIT (64 * PAGE_SIZE) | 127 | #define LATENCY_LIMIT (64 * PAGE_SIZE) |
diff --git a/mm/nommu.c b/mm/nommu.c index 4462b6a3fcb9..ed75bc962fbe 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -22,7 +22,7 @@ | |||
22 | #include <linux/pagemap.h> | 22 | #include <linux/pagemap.h> |
23 | #include <linux/slab.h> | 23 | #include <linux/slab.h> |
24 | #include <linux/vmalloc.h> | 24 | #include <linux/vmalloc.h> |
25 | #include <linux/ptrace.h> | 25 | #include <linux/tracehook.h> |
26 | #include <linux/blkdev.h> | 26 | #include <linux/blkdev.h> |
27 | #include <linux/backing-dev.h> | 27 | #include <linux/backing-dev.h> |
28 | #include <linux/mount.h> | 28 | #include <linux/mount.h> |
@@ -266,6 +266,27 @@ void *vmalloc_node(unsigned long size, int node) | |||
266 | } | 266 | } |
267 | EXPORT_SYMBOL(vmalloc_node); | 267 | EXPORT_SYMBOL(vmalloc_node); |
268 | 268 | ||
269 | #ifndef PAGE_KERNEL_EXEC | ||
270 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | ||
271 | #endif | ||
272 | |||
273 | /** | ||
274 | * vmalloc_exec - allocate virtually contiguous, executable memory | ||
275 | * @size: allocation size | ||
276 | * | ||
277 | * Kernel-internal function to allocate enough pages to cover @size | ||
278 | * the page level allocator and map them into contiguous and | ||
279 | * executable kernel virtual space. | ||
280 | * | ||
281 | * For tight control over page level allocator and protection flags | ||
282 | * use __vmalloc() instead. | ||
283 | */ | ||
284 | |||
285 | void *vmalloc_exec(unsigned long size) | ||
286 | { | ||
287 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); | ||
288 | } | ||
289 | |||
269 | /** | 290 | /** |
270 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | 291 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) |
271 | * @size: allocation size | 292 | * @size: allocation size |
@@ -745,7 +766,7 @@ static unsigned long determine_vm_flags(struct file *file, | |||
745 | * it's being traced - otherwise breakpoints set in it may interfere | 766 | * it's being traced - otherwise breakpoints set in it may interfere |
746 | * with another untraced process | 767 | * with another untraced process |
747 | */ | 768 | */ |
748 | if ((flags & MAP_PRIVATE) && (current->ptrace & PT_PTRACED)) | 769 | if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current)) |
749 | vm_flags &= ~VM_MAYSHARE; | 770 | vm_flags &= ~VM_MAYSHARE; |
750 | 771 | ||
751 | return vm_flags; | 772 | return vm_flags; |
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 8a5467ee6265..64e5b4bcd964 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
@@ -26,6 +26,7 @@ | |||
26 | #include <linux/module.h> | 26 | #include <linux/module.h> |
27 | #include <linux/notifier.h> | 27 | #include <linux/notifier.h> |
28 | #include <linux/memcontrol.h> | 28 | #include <linux/memcontrol.h> |
29 | #include <linux/security.h> | ||
29 | 30 | ||
30 | int sysctl_panic_on_oom; | 31 | int sysctl_panic_on_oom; |
31 | int sysctl_oom_kill_allocating_task; | 32 | int sysctl_oom_kill_allocating_task; |
@@ -128,7 +129,8 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
128 | * Superuser processes are usually more important, so we make it | 129 | * Superuser processes are usually more important, so we make it |
129 | * less likely that we kill those. | 130 | * less likely that we kill those. |
130 | */ | 131 | */ |
131 | if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE)) | 132 | if (has_capability(p, CAP_SYS_ADMIN) || |
133 | has_capability(p, CAP_SYS_RESOURCE)) | ||
132 | points /= 4; | 134 | points /= 4; |
133 | 135 | ||
134 | /* | 136 | /* |
@@ -137,7 +139,7 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
137 | * tend to only have this flag set on applications they think | 139 | * tend to only have this flag set on applications they think |
138 | * of as important. | 140 | * of as important. |
139 | */ | 141 | */ |
140 | if (__capable(p, CAP_SYS_RAWIO)) | 142 | if (has_capability(p, CAP_SYS_RAWIO)) |
141 | points /= 4; | 143 | points /= 4; |
142 | 144 | ||
143 | /* | 145 | /* |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 789b6adbef37..24de8b65fdbd 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -126,8 +126,6 @@ static void background_writeout(unsigned long _min_pages); | |||
126 | static struct prop_descriptor vm_completions; | 126 | static struct prop_descriptor vm_completions; |
127 | static struct prop_descriptor vm_dirties; | 127 | static struct prop_descriptor vm_dirties; |
128 | 128 | ||
129 | static unsigned long determine_dirtyable_memory(void); | ||
130 | |||
131 | /* | 129 | /* |
132 | * couple the period to the dirty_ratio: | 130 | * couple the period to the dirty_ratio: |
133 | * | 131 | * |
@@ -347,7 +345,13 @@ static unsigned long highmem_dirtyable_memory(unsigned long total) | |||
347 | #endif | 345 | #endif |
348 | } | 346 | } |
349 | 347 | ||
350 | static unsigned long determine_dirtyable_memory(void) | 348 | /** |
349 | * determine_dirtyable_memory - amount of memory that may be used | ||
350 | * | ||
351 | * Returns the numebr of pages that can currently be freed and used | ||
352 | * by the kernel for direct mappings. | ||
353 | */ | ||
354 | unsigned long determine_dirtyable_memory(void) | ||
351 | { | 355 | { |
352 | unsigned long x; | 356 | unsigned long x; |
353 | 357 | ||
@@ -956,6 +960,9 @@ retry: | |||
956 | } | 960 | } |
957 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 961 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
958 | mapping->writeback_index = index; | 962 | mapping->writeback_index = index; |
963 | |||
964 | if (wbc->range_cont) | ||
965 | wbc->range_start = index << PAGE_CACHE_SHIFT; | ||
959 | return ret; | 966 | return ret; |
960 | } | 967 | } |
961 | EXPORT_SYMBOL(write_cache_pages); | 968 | EXPORT_SYMBOL(write_cache_pages); |
@@ -1081,7 +1088,7 @@ int __set_page_dirty_nobuffers(struct page *page) | |||
1081 | if (!mapping) | 1088 | if (!mapping) |
1082 | return 1; | 1089 | return 1; |
1083 | 1090 | ||
1084 | write_lock_irq(&mapping->tree_lock); | 1091 | spin_lock_irq(&mapping->tree_lock); |
1085 | mapping2 = page_mapping(page); | 1092 | mapping2 = page_mapping(page); |
1086 | if (mapping2) { /* Race with truncate? */ | 1093 | if (mapping2) { /* Race with truncate? */ |
1087 | BUG_ON(mapping2 != mapping); | 1094 | BUG_ON(mapping2 != mapping); |
@@ -1095,7 +1102,7 @@ int __set_page_dirty_nobuffers(struct page *page) | |||
1095 | radix_tree_tag_set(&mapping->page_tree, | 1102 | radix_tree_tag_set(&mapping->page_tree, |
1096 | page_index(page), PAGECACHE_TAG_DIRTY); | 1103 | page_index(page), PAGECACHE_TAG_DIRTY); |
1097 | } | 1104 | } |
1098 | write_unlock_irq(&mapping->tree_lock); | 1105 | spin_unlock_irq(&mapping->tree_lock); |
1099 | if (mapping->host) { | 1106 | if (mapping->host) { |
1100 | /* !PageAnon && !swapper_space */ | 1107 | /* !PageAnon && !swapper_space */ |
1101 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 1108 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
@@ -1251,7 +1258,7 @@ int test_clear_page_writeback(struct page *page) | |||
1251 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1258 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
1252 | unsigned long flags; | 1259 | unsigned long flags; |
1253 | 1260 | ||
1254 | write_lock_irqsave(&mapping->tree_lock, flags); | 1261 | spin_lock_irqsave(&mapping->tree_lock, flags); |
1255 | ret = TestClearPageWriteback(page); | 1262 | ret = TestClearPageWriteback(page); |
1256 | if (ret) { | 1263 | if (ret) { |
1257 | radix_tree_tag_clear(&mapping->page_tree, | 1264 | radix_tree_tag_clear(&mapping->page_tree, |
@@ -1262,7 +1269,7 @@ int test_clear_page_writeback(struct page *page) | |||
1262 | __bdi_writeout_inc(bdi); | 1269 | __bdi_writeout_inc(bdi); |
1263 | } | 1270 | } |
1264 | } | 1271 | } |
1265 | write_unlock_irqrestore(&mapping->tree_lock, flags); | 1272 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
1266 | } else { | 1273 | } else { |
1267 | ret = TestClearPageWriteback(page); | 1274 | ret = TestClearPageWriteback(page); |
1268 | } | 1275 | } |
@@ -1280,7 +1287,7 @@ int test_set_page_writeback(struct page *page) | |||
1280 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1287 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
1281 | unsigned long flags; | 1288 | unsigned long flags; |
1282 | 1289 | ||
1283 | write_lock_irqsave(&mapping->tree_lock, flags); | 1290 | spin_lock_irqsave(&mapping->tree_lock, flags); |
1284 | ret = TestSetPageWriteback(page); | 1291 | ret = TestSetPageWriteback(page); |
1285 | if (!ret) { | 1292 | if (!ret) { |
1286 | radix_tree_tag_set(&mapping->page_tree, | 1293 | radix_tree_tag_set(&mapping->page_tree, |
@@ -1293,7 +1300,7 @@ int test_set_page_writeback(struct page *page) | |||
1293 | radix_tree_tag_clear(&mapping->page_tree, | 1300 | radix_tree_tag_clear(&mapping->page_tree, |
1294 | page_index(page), | 1301 | page_index(page), |
1295 | PAGECACHE_TAG_DIRTY); | 1302 | PAGECACHE_TAG_DIRTY); |
1296 | write_unlock_irqrestore(&mapping->tree_lock, flags); | 1303 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
1297 | } else { | 1304 | } else { |
1298 | ret = TestSetPageWriteback(page); | 1305 | ret = TestSetPageWriteback(page); |
1299 | } | 1306 | } |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 2f552955a02f..27b8681139fd 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -153,9 +153,9 @@ static unsigned long __meminitdata dma_reserve; | |||
153 | static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; | 153 | static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; |
154 | static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; | 154 | static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; |
155 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ | 155 | #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ |
156 | unsigned long __initdata required_kernelcore; | 156 | static unsigned long __initdata required_kernelcore; |
157 | static unsigned long __initdata required_movablecore; | 157 | static unsigned long __initdata required_movablecore; |
158 | unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | 158 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; |
159 | 159 | ||
160 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | 160 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ |
161 | int movable_zone; | 161 | int movable_zone; |
@@ -264,17 +264,18 @@ static void free_compound_page(struct page *page) | |||
264 | __free_pages_ok(page, compound_order(page)); | 264 | __free_pages_ok(page, compound_order(page)); |
265 | } | 265 | } |
266 | 266 | ||
267 | static void prep_compound_page(struct page *page, unsigned long order) | 267 | void prep_compound_page(struct page *page, unsigned long order) |
268 | { | 268 | { |
269 | int i; | 269 | int i; |
270 | int nr_pages = 1 << order; | 270 | int nr_pages = 1 << order; |
271 | struct page *p = page + 1; | ||
271 | 272 | ||
272 | set_compound_page_dtor(page, free_compound_page); | 273 | set_compound_page_dtor(page, free_compound_page); |
273 | set_compound_order(page, order); | 274 | set_compound_order(page, order); |
274 | __SetPageHead(page); | 275 | __SetPageHead(page); |
275 | for (i = 1; i < nr_pages; i++) { | 276 | for (i = 1; i < nr_pages; i++, p++) { |
276 | struct page *p = page + i; | 277 | if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0)) |
277 | 278 | p = pfn_to_page(page_to_pfn(page) + i); | |
278 | __SetPageTail(p); | 279 | __SetPageTail(p); |
279 | p->first_page = page; | 280 | p->first_page = page; |
280 | } | 281 | } |
@@ -284,6 +285,7 @@ static void destroy_compound_page(struct page *page, unsigned long order) | |||
284 | { | 285 | { |
285 | int i; | 286 | int i; |
286 | int nr_pages = 1 << order; | 287 | int nr_pages = 1 << order; |
288 | struct page *p = page + 1; | ||
287 | 289 | ||
288 | if (unlikely(compound_order(page) != order)) | 290 | if (unlikely(compound_order(page) != order)) |
289 | bad_page(page); | 291 | bad_page(page); |
@@ -291,8 +293,9 @@ static void destroy_compound_page(struct page *page, unsigned long order) | |||
291 | if (unlikely(!PageHead(page))) | 293 | if (unlikely(!PageHead(page))) |
292 | bad_page(page); | 294 | bad_page(page); |
293 | __ClearPageHead(page); | 295 | __ClearPageHead(page); |
294 | for (i = 1; i < nr_pages; i++) { | 296 | for (i = 1; i < nr_pages; i++, p++) { |
295 | struct page *p = page + i; | 297 | if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0)) |
298 | p = pfn_to_page(page_to_pfn(page) + i); | ||
296 | 299 | ||
297 | if (unlikely(!PageTail(p) | | 300 | if (unlikely(!PageTail(p) | |
298 | (p->first_page != page))) | 301 | (p->first_page != page))) |
@@ -432,8 +435,9 @@ static inline void __free_one_page(struct page *page, | |||
432 | 435 | ||
433 | buddy = __page_find_buddy(page, page_idx, order); | 436 | buddy = __page_find_buddy(page, page_idx, order); |
434 | if (!page_is_buddy(page, buddy, order)) | 437 | if (!page_is_buddy(page, buddy, order)) |
435 | break; /* Move the buddy up one level. */ | 438 | break; |
436 | 439 | ||
440 | /* Our buddy is free, merge with it and move up one order. */ | ||
437 | list_del(&buddy->lru); | 441 | list_del(&buddy->lru); |
438 | zone->free_area[order].nr_free--; | 442 | zone->free_area[order].nr_free--; |
439 | rmv_page_order(buddy); | 443 | rmv_page_order(buddy); |
@@ -532,7 +536,7 @@ static void __free_pages_ok(struct page *page, unsigned int order) | |||
532 | /* | 536 | /* |
533 | * permit the bootmem allocator to evade page validation on high-order frees | 537 | * permit the bootmem allocator to evade page validation on high-order frees |
534 | */ | 538 | */ |
535 | void __free_pages_bootmem(struct page *page, unsigned int order) | 539 | void __meminit __free_pages_bootmem(struct page *page, unsigned int order) |
536 | { | 540 | { |
537 | if (order == 0) { | 541 | if (order == 0) { |
538 | __ClearPageReserved(page); | 542 | __ClearPageReserved(page); |
@@ -673,9 +677,9 @@ static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { | |||
673 | * Note that start_page and end_pages are not aligned on a pageblock | 677 | * Note that start_page and end_pages are not aligned on a pageblock |
674 | * boundary. If alignment is required, use move_freepages_block() | 678 | * boundary. If alignment is required, use move_freepages_block() |
675 | */ | 679 | */ |
676 | int move_freepages(struct zone *zone, | 680 | static int move_freepages(struct zone *zone, |
677 | struct page *start_page, struct page *end_page, | 681 | struct page *start_page, struct page *end_page, |
678 | int migratetype) | 682 | int migratetype) |
679 | { | 683 | { |
680 | struct page *page; | 684 | struct page *page; |
681 | unsigned long order; | 685 | unsigned long order; |
@@ -693,6 +697,9 @@ int move_freepages(struct zone *zone, | |||
693 | #endif | 697 | #endif |
694 | 698 | ||
695 | for (page = start_page; page <= end_page;) { | 699 | for (page = start_page; page <= end_page;) { |
700 | /* Make sure we are not inadvertently changing nodes */ | ||
701 | VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); | ||
702 | |||
696 | if (!pfn_valid_within(page_to_pfn(page))) { | 703 | if (!pfn_valid_within(page_to_pfn(page))) { |
697 | page++; | 704 | page++; |
698 | continue; | 705 | continue; |
@@ -714,7 +721,8 @@ int move_freepages(struct zone *zone, | |||
714 | return pages_moved; | 721 | return pages_moved; |
715 | } | 722 | } |
716 | 723 | ||
717 | int move_freepages_block(struct zone *zone, struct page *page, int migratetype) | 724 | static int move_freepages_block(struct zone *zone, struct page *page, |
725 | int migratetype) | ||
718 | { | 726 | { |
719 | unsigned long start_pfn, end_pfn; | 727 | unsigned long start_pfn, end_pfn; |
720 | struct page *start_page, *end_page; | 728 | struct page *start_page, *end_page; |
@@ -918,7 +926,7 @@ void drain_local_pages(void *arg) | |||
918 | */ | 926 | */ |
919 | void drain_all_pages(void) | 927 | void drain_all_pages(void) |
920 | { | 928 | { |
921 | on_each_cpu(drain_local_pages, NULL, 0, 1); | 929 | on_each_cpu(drain_local_pages, NULL, 1); |
922 | } | 930 | } |
923 | 931 | ||
924 | #ifdef CONFIG_HIBERNATION | 932 | #ifdef CONFIG_HIBERNATION |
@@ -1429,7 +1437,7 @@ try_next_zone: | |||
1429 | /* | 1437 | /* |
1430 | * This is the 'heart' of the zoned buddy allocator. | 1438 | * This is the 'heart' of the zoned buddy allocator. |
1431 | */ | 1439 | */ |
1432 | static struct page * | 1440 | struct page * |
1433 | __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, | 1441 | __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, |
1434 | struct zonelist *zonelist, nodemask_t *nodemask) | 1442 | struct zonelist *zonelist, nodemask_t *nodemask) |
1435 | { | 1443 | { |
@@ -1632,22 +1640,7 @@ nopage: | |||
1632 | got_pg: | 1640 | got_pg: |
1633 | return page; | 1641 | return page; |
1634 | } | 1642 | } |
1635 | 1643 | EXPORT_SYMBOL(__alloc_pages_internal); | |
1636 | struct page * | ||
1637 | __alloc_pages(gfp_t gfp_mask, unsigned int order, | ||
1638 | struct zonelist *zonelist) | ||
1639 | { | ||
1640 | return __alloc_pages_internal(gfp_mask, order, zonelist, NULL); | ||
1641 | } | ||
1642 | |||
1643 | struct page * | ||
1644 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | ||
1645 | struct zonelist *zonelist, nodemask_t *nodemask) | ||
1646 | { | ||
1647 | return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask); | ||
1648 | } | ||
1649 | |||
1650 | EXPORT_SYMBOL(__alloc_pages); | ||
1651 | 1644 | ||
1652 | /* | 1645 | /* |
1653 | * Common helper functions. | 1646 | * Common helper functions. |
@@ -1711,6 +1704,59 @@ void free_pages(unsigned long addr, unsigned int order) | |||
1711 | 1704 | ||
1712 | EXPORT_SYMBOL(free_pages); | 1705 | EXPORT_SYMBOL(free_pages); |
1713 | 1706 | ||
1707 | /** | ||
1708 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | ||
1709 | * @size: the number of bytes to allocate | ||
1710 | * @gfp_mask: GFP flags for the allocation | ||
1711 | * | ||
1712 | * This function is similar to alloc_pages(), except that it allocates the | ||
1713 | * minimum number of pages to satisfy the request. alloc_pages() can only | ||
1714 | * allocate memory in power-of-two pages. | ||
1715 | * | ||
1716 | * This function is also limited by MAX_ORDER. | ||
1717 | * | ||
1718 | * Memory allocated by this function must be released by free_pages_exact(). | ||
1719 | */ | ||
1720 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | ||
1721 | { | ||
1722 | unsigned int order = get_order(size); | ||
1723 | unsigned long addr; | ||
1724 | |||
1725 | addr = __get_free_pages(gfp_mask, order); | ||
1726 | if (addr) { | ||
1727 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | ||
1728 | unsigned long used = addr + PAGE_ALIGN(size); | ||
1729 | |||
1730 | split_page(virt_to_page(addr), order); | ||
1731 | while (used < alloc_end) { | ||
1732 | free_page(used); | ||
1733 | used += PAGE_SIZE; | ||
1734 | } | ||
1735 | } | ||
1736 | |||
1737 | return (void *)addr; | ||
1738 | } | ||
1739 | EXPORT_SYMBOL(alloc_pages_exact); | ||
1740 | |||
1741 | /** | ||
1742 | * free_pages_exact - release memory allocated via alloc_pages_exact() | ||
1743 | * @virt: the value returned by alloc_pages_exact. | ||
1744 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | ||
1745 | * | ||
1746 | * Release the memory allocated by a previous call to alloc_pages_exact. | ||
1747 | */ | ||
1748 | void free_pages_exact(void *virt, size_t size) | ||
1749 | { | ||
1750 | unsigned long addr = (unsigned long)virt; | ||
1751 | unsigned long end = addr + PAGE_ALIGN(size); | ||
1752 | |||
1753 | while (addr < end) { | ||
1754 | free_page(addr); | ||
1755 | addr += PAGE_SIZE; | ||
1756 | } | ||
1757 | } | ||
1758 | EXPORT_SYMBOL(free_pages_exact); | ||
1759 | |||
1714 | static unsigned int nr_free_zone_pages(int offset) | 1760 | static unsigned int nr_free_zone_pages(int offset) |
1715 | { | 1761 | { |
1716 | struct zoneref *z; | 1762 | struct zoneref *z; |
@@ -2328,12 +2374,11 @@ static void build_zonelists(pg_data_t *pgdat) | |||
2328 | static void build_zonelist_cache(pg_data_t *pgdat) | 2374 | static void build_zonelist_cache(pg_data_t *pgdat) |
2329 | { | 2375 | { |
2330 | pgdat->node_zonelists[0].zlcache_ptr = NULL; | 2376 | pgdat->node_zonelists[0].zlcache_ptr = NULL; |
2331 | pgdat->node_zonelists[1].zlcache_ptr = NULL; | ||
2332 | } | 2377 | } |
2333 | 2378 | ||
2334 | #endif /* CONFIG_NUMA */ | 2379 | #endif /* CONFIG_NUMA */ |
2335 | 2380 | ||
2336 | /* return values int ....just for stop_machine_run() */ | 2381 | /* return values int ....just for stop_machine() */ |
2337 | static int __build_all_zonelists(void *dummy) | 2382 | static int __build_all_zonelists(void *dummy) |
2338 | { | 2383 | { |
2339 | int nid; | 2384 | int nid; |
@@ -2353,11 +2398,12 @@ void build_all_zonelists(void) | |||
2353 | 2398 | ||
2354 | if (system_state == SYSTEM_BOOTING) { | 2399 | if (system_state == SYSTEM_BOOTING) { |
2355 | __build_all_zonelists(NULL); | 2400 | __build_all_zonelists(NULL); |
2401 | mminit_verify_zonelist(); | ||
2356 | cpuset_init_current_mems_allowed(); | 2402 | cpuset_init_current_mems_allowed(); |
2357 | } else { | 2403 | } else { |
2358 | /* we have to stop all cpus to guarantee there is no user | 2404 | /* we have to stop all cpus to guarantee there is no user |
2359 | of zonelist */ | 2405 | of zonelist */ |
2360 | stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); | 2406 | stop_machine(__build_all_zonelists, NULL, NULL); |
2361 | /* cpuset refresh routine should be here */ | 2407 | /* cpuset refresh routine should be here */ |
2362 | } | 2408 | } |
2363 | vm_total_pages = nr_free_pagecache_pages(); | 2409 | vm_total_pages = nr_free_pagecache_pages(); |
@@ -2476,6 +2522,10 @@ static void setup_zone_migrate_reserve(struct zone *zone) | |||
2476 | continue; | 2522 | continue; |
2477 | page = pfn_to_page(pfn); | 2523 | page = pfn_to_page(pfn); |
2478 | 2524 | ||
2525 | /* Watch out for overlapping nodes */ | ||
2526 | if (page_to_nid(page) != zone_to_nid(zone)) | ||
2527 | continue; | ||
2528 | |||
2479 | /* Blocks with reserved pages will never free, skip them. */ | 2529 | /* Blocks with reserved pages will never free, skip them. */ |
2480 | if (PageReserved(page)) | 2530 | if (PageReserved(page)) |
2481 | continue; | 2531 | continue; |
@@ -2535,6 +2585,7 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | |||
2535 | } | 2585 | } |
2536 | page = pfn_to_page(pfn); | 2586 | page = pfn_to_page(pfn); |
2537 | set_page_links(page, zone, nid, pfn); | 2587 | set_page_links(page, zone, nid, pfn); |
2588 | mminit_verify_page_links(page, zone, nid, pfn); | ||
2538 | init_page_count(page); | 2589 | init_page_count(page); |
2539 | reset_page_mapcount(page); | 2590 | reset_page_mapcount(page); |
2540 | SetPageReserved(page); | 2591 | SetPageReserved(page); |
@@ -2612,7 +2663,7 @@ static int zone_batchsize(struct zone *zone) | |||
2612 | return batch; | 2663 | return batch; |
2613 | } | 2664 | } |
2614 | 2665 | ||
2615 | inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 2666 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
2616 | { | 2667 | { |
2617 | struct per_cpu_pages *pcp; | 2668 | struct per_cpu_pages *pcp; |
2618 | 2669 | ||
@@ -2837,6 +2888,12 @@ __meminit int init_currently_empty_zone(struct zone *zone, | |||
2837 | 2888 | ||
2838 | zone->zone_start_pfn = zone_start_pfn; | 2889 | zone->zone_start_pfn = zone_start_pfn; |
2839 | 2890 | ||
2891 | mminit_dprintk(MMINIT_TRACE, "memmap_init", | ||
2892 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | ||
2893 | pgdat->node_id, | ||
2894 | (unsigned long)zone_idx(zone), | ||
2895 | zone_start_pfn, (zone_start_pfn + size)); | ||
2896 | |||
2840 | zone_init_free_lists(zone); | 2897 | zone_init_free_lists(zone); |
2841 | 2898 | ||
2842 | return 0; | 2899 | return 0; |
@@ -2930,6 +2987,18 @@ void __init free_bootmem_with_active_regions(int nid, | |||
2930 | } | 2987 | } |
2931 | } | 2988 | } |
2932 | 2989 | ||
2990 | void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) | ||
2991 | { | ||
2992 | int i; | ||
2993 | int ret; | ||
2994 | |||
2995 | for_each_active_range_index_in_nid(i, nid) { | ||
2996 | ret = work_fn(early_node_map[i].start_pfn, | ||
2997 | early_node_map[i].end_pfn, data); | ||
2998 | if (ret) | ||
2999 | break; | ||
3000 | } | ||
3001 | } | ||
2933 | /** | 3002 | /** |
2934 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | 3003 | * sparse_memory_present_with_active_regions - Call memory_present for each active range |
2935 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. | 3004 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
@@ -2964,7 +3033,8 @@ void __init sparse_memory_present_with_active_regions(int nid) | |||
2964 | void __init push_node_boundaries(unsigned int nid, | 3033 | void __init push_node_boundaries(unsigned int nid, |
2965 | unsigned long start_pfn, unsigned long end_pfn) | 3034 | unsigned long start_pfn, unsigned long end_pfn) |
2966 | { | 3035 | { |
2967 | printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", | 3036 | mminit_dprintk(MMINIT_TRACE, "zoneboundary", |
3037 | "Entering push_node_boundaries(%u, %lu, %lu)\n", | ||
2968 | nid, start_pfn, end_pfn); | 3038 | nid, start_pfn, end_pfn); |
2969 | 3039 | ||
2970 | /* Initialise the boundary for this node if necessary */ | 3040 | /* Initialise the boundary for this node if necessary */ |
@@ -2982,7 +3052,8 @@ void __init push_node_boundaries(unsigned int nid, | |||
2982 | static void __meminit account_node_boundary(unsigned int nid, | 3052 | static void __meminit account_node_boundary(unsigned int nid, |
2983 | unsigned long *start_pfn, unsigned long *end_pfn) | 3053 | unsigned long *start_pfn, unsigned long *end_pfn) |
2984 | { | 3054 | { |
2985 | printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", | 3055 | mminit_dprintk(MMINIT_TRACE, "zoneboundary", |
3056 | "Entering account_node_boundary(%u, %lu, %lu)\n", | ||
2986 | nid, *start_pfn, *end_pfn); | 3057 | nid, *start_pfn, *end_pfn); |
2987 | 3058 | ||
2988 | /* Return if boundary information has not been provided */ | 3059 | /* Return if boundary information has not been provided */ |
@@ -3039,7 +3110,7 @@ void __meminit get_pfn_range_for_nid(unsigned int nid, | |||
3039 | * assumption is made that zones within a node are ordered in monotonic | 3110 | * assumption is made that zones within a node are ordered in monotonic |
3040 | * increasing memory addresses so that the "highest" populated zone is used | 3111 | * increasing memory addresses so that the "highest" populated zone is used |
3041 | */ | 3112 | */ |
3042 | void __init find_usable_zone_for_movable(void) | 3113 | static void __init find_usable_zone_for_movable(void) |
3043 | { | 3114 | { |
3044 | int zone_index; | 3115 | int zone_index; |
3045 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 3116 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { |
@@ -3065,7 +3136,7 @@ void __init find_usable_zone_for_movable(void) | |||
3065 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 3136 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that |
3066 | * zones within a node are in order of monotonic increases memory addresses | 3137 | * zones within a node are in order of monotonic increases memory addresses |
3067 | */ | 3138 | */ |
3068 | void __meminit adjust_zone_range_for_zone_movable(int nid, | 3139 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
3069 | unsigned long zone_type, | 3140 | unsigned long zone_type, |
3070 | unsigned long node_start_pfn, | 3141 | unsigned long node_start_pfn, |
3071 | unsigned long node_end_pfn, | 3142 | unsigned long node_end_pfn, |
@@ -3126,7 +3197,7 @@ static unsigned long __meminit zone_spanned_pages_in_node(int nid, | |||
3126 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 3197 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, |
3127 | * then all holes in the requested range will be accounted for. | 3198 | * then all holes in the requested range will be accounted for. |
3128 | */ | 3199 | */ |
3129 | unsigned long __meminit __absent_pages_in_range(int nid, | 3200 | static unsigned long __meminit __absent_pages_in_range(int nid, |
3130 | unsigned long range_start_pfn, | 3201 | unsigned long range_start_pfn, |
3131 | unsigned long range_end_pfn) | 3202 | unsigned long range_end_pfn) |
3132 | { | 3203 | { |
@@ -3357,8 +3428,8 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3357 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; | 3428 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; |
3358 | if (realsize >= memmap_pages) { | 3429 | if (realsize >= memmap_pages) { |
3359 | realsize -= memmap_pages; | 3430 | realsize -= memmap_pages; |
3360 | printk(KERN_DEBUG | 3431 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3361 | " %s zone: %lu pages used for memmap\n", | 3432 | "%s zone: %lu pages used for memmap\n", |
3362 | zone_names[j], memmap_pages); | 3433 | zone_names[j], memmap_pages); |
3363 | } else | 3434 | } else |
3364 | printk(KERN_WARNING | 3435 | printk(KERN_WARNING |
@@ -3368,7 +3439,8 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3368 | /* Account for reserved pages */ | 3439 | /* Account for reserved pages */ |
3369 | if (j == 0 && realsize > dma_reserve) { | 3440 | if (j == 0 && realsize > dma_reserve) { |
3370 | realsize -= dma_reserve; | 3441 | realsize -= dma_reserve; |
3371 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", | 3442 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
3443 | "%s zone: %lu pages reserved\n", | ||
3372 | zone_names[0], dma_reserve); | 3444 | zone_names[0], dma_reserve); |
3373 | } | 3445 | } |
3374 | 3446 | ||
@@ -3453,15 +3525,21 @@ static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) | |||
3453 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 3525 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
3454 | } | 3526 | } |
3455 | 3527 | ||
3456 | void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat, | 3528 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
3457 | unsigned long *zones_size, unsigned long node_start_pfn, | 3529 | unsigned long node_start_pfn, unsigned long *zholes_size) |
3458 | unsigned long *zholes_size) | ||
3459 | { | 3530 | { |
3531 | pg_data_t *pgdat = NODE_DATA(nid); | ||
3532 | |||
3460 | pgdat->node_id = nid; | 3533 | pgdat->node_id = nid; |
3461 | pgdat->node_start_pfn = node_start_pfn; | 3534 | pgdat->node_start_pfn = node_start_pfn; |
3462 | calculate_node_totalpages(pgdat, zones_size, zholes_size); | 3535 | calculate_node_totalpages(pgdat, zones_size, zholes_size); |
3463 | 3536 | ||
3464 | alloc_node_mem_map(pgdat); | 3537 | alloc_node_mem_map(pgdat); |
3538 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | ||
3539 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | ||
3540 | nid, (unsigned long)pgdat, | ||
3541 | (unsigned long)pgdat->node_mem_map); | ||
3542 | #endif | ||
3465 | 3543 | ||
3466 | free_area_init_core(pgdat, zones_size, zholes_size); | 3544 | free_area_init_core(pgdat, zones_size, zholes_size); |
3467 | } | 3545 | } |
@@ -3504,10 +3582,13 @@ void __init add_active_range(unsigned int nid, unsigned long start_pfn, | |||
3504 | { | 3582 | { |
3505 | int i; | 3583 | int i; |
3506 | 3584 | ||
3507 | printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) " | 3585 | mminit_dprintk(MMINIT_TRACE, "memory_register", |
3508 | "%d entries of %d used\n", | 3586 | "Entering add_active_range(%d, %#lx, %#lx) " |
3509 | nid, start_pfn, end_pfn, | 3587 | "%d entries of %d used\n", |
3510 | nr_nodemap_entries, MAX_ACTIVE_REGIONS); | 3588 | nid, start_pfn, end_pfn, |
3589 | nr_nodemap_entries, MAX_ACTIVE_REGIONS); | ||
3590 | |||
3591 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); | ||
3511 | 3592 | ||
3512 | /* Merge with existing active regions if possible */ | 3593 | /* Merge with existing active regions if possible */ |
3513 | for (i = 0; i < nr_nodemap_entries; i++) { | 3594 | for (i = 0; i < nr_nodemap_entries; i++) { |
@@ -3548,27 +3629,68 @@ void __init add_active_range(unsigned int nid, unsigned long start_pfn, | |||
3548 | } | 3629 | } |
3549 | 3630 | ||
3550 | /** | 3631 | /** |
3551 | * shrink_active_range - Shrink an existing registered range of PFNs | 3632 | * remove_active_range - Shrink an existing registered range of PFNs |
3552 | * @nid: The node id the range is on that should be shrunk | 3633 | * @nid: The node id the range is on that should be shrunk |
3553 | * @old_end_pfn: The old end PFN of the range | 3634 | * @start_pfn: The new PFN of the range |
3554 | * @new_end_pfn: The new PFN of the range | 3635 | * @end_pfn: The new PFN of the range |
3555 | * | 3636 | * |
3556 | * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. | 3637 | * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. |
3557 | * The map is kept at the end physical page range that has already been | 3638 | * The map is kept near the end physical page range that has already been |
3558 | * registered with add_active_range(). This function allows an arch to shrink | 3639 | * registered. This function allows an arch to shrink an existing registered |
3559 | * an existing registered range. | 3640 | * range. |
3560 | */ | 3641 | */ |
3561 | void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn, | 3642 | void __init remove_active_range(unsigned int nid, unsigned long start_pfn, |
3562 | unsigned long new_end_pfn) | 3643 | unsigned long end_pfn) |
3563 | { | 3644 | { |
3564 | int i; | 3645 | int i, j; |
3646 | int removed = 0; | ||
3647 | |||
3648 | printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", | ||
3649 | nid, start_pfn, end_pfn); | ||
3565 | 3650 | ||
3566 | /* Find the old active region end and shrink */ | 3651 | /* Find the old active region end and shrink */ |
3567 | for_each_active_range_index_in_nid(i, nid) | 3652 | for_each_active_range_index_in_nid(i, nid) { |
3568 | if (early_node_map[i].end_pfn == old_end_pfn) { | 3653 | if (early_node_map[i].start_pfn >= start_pfn && |
3569 | early_node_map[i].end_pfn = new_end_pfn; | 3654 | early_node_map[i].end_pfn <= end_pfn) { |
3570 | break; | 3655 | /* clear it */ |
3656 | early_node_map[i].start_pfn = 0; | ||
3657 | early_node_map[i].end_pfn = 0; | ||
3658 | removed = 1; | ||
3659 | continue; | ||
3660 | } | ||
3661 | if (early_node_map[i].start_pfn < start_pfn && | ||
3662 | early_node_map[i].end_pfn > start_pfn) { | ||
3663 | unsigned long temp_end_pfn = early_node_map[i].end_pfn; | ||
3664 | early_node_map[i].end_pfn = start_pfn; | ||
3665 | if (temp_end_pfn > end_pfn) | ||
3666 | add_active_range(nid, end_pfn, temp_end_pfn); | ||
3667 | continue; | ||
3668 | } | ||
3669 | if (early_node_map[i].start_pfn >= start_pfn && | ||
3670 | early_node_map[i].end_pfn > end_pfn && | ||
3671 | early_node_map[i].start_pfn < end_pfn) { | ||
3672 | early_node_map[i].start_pfn = end_pfn; | ||
3673 | continue; | ||
3571 | } | 3674 | } |
3675 | } | ||
3676 | |||
3677 | if (!removed) | ||
3678 | return; | ||
3679 | |||
3680 | /* remove the blank ones */ | ||
3681 | for (i = nr_nodemap_entries - 1; i > 0; i--) { | ||
3682 | if (early_node_map[i].nid != nid) | ||
3683 | continue; | ||
3684 | if (early_node_map[i].end_pfn) | ||
3685 | continue; | ||
3686 | /* we found it, get rid of it */ | ||
3687 | for (j = i; j < nr_nodemap_entries - 1; j++) | ||
3688 | memcpy(&early_node_map[j], &early_node_map[j+1], | ||
3689 | sizeof(early_node_map[j])); | ||
3690 | j = nr_nodemap_entries - 1; | ||
3691 | memset(&early_node_map[j], 0, sizeof(early_node_map[j])); | ||
3692 | nr_nodemap_entries--; | ||
3693 | } | ||
3572 | } | 3694 | } |
3573 | 3695 | ||
3574 | /** | 3696 | /** |
@@ -3612,7 +3734,7 @@ static void __init sort_node_map(void) | |||
3612 | } | 3734 | } |
3613 | 3735 | ||
3614 | /* Find the lowest pfn for a node */ | 3736 | /* Find the lowest pfn for a node */ |
3615 | unsigned long __init find_min_pfn_for_node(unsigned long nid) | 3737 | static unsigned long __init find_min_pfn_for_node(int nid) |
3616 | { | 3738 | { |
3617 | int i; | 3739 | int i; |
3618 | unsigned long min_pfn = ULONG_MAX; | 3740 | unsigned long min_pfn = ULONG_MAX; |
@@ -3623,7 +3745,7 @@ unsigned long __init find_min_pfn_for_node(unsigned long nid) | |||
3623 | 3745 | ||
3624 | if (min_pfn == ULONG_MAX) { | 3746 | if (min_pfn == ULONG_MAX) { |
3625 | printk(KERN_WARNING | 3747 | printk(KERN_WARNING |
3626 | "Could not find start_pfn for node %lu\n", nid); | 3748 | "Could not find start_pfn for node %d\n", nid); |
3627 | return 0; | 3749 | return 0; |
3628 | } | 3750 | } |
3629 | 3751 | ||
@@ -3641,23 +3763,6 @@ unsigned long __init find_min_pfn_with_active_regions(void) | |||
3641 | return find_min_pfn_for_node(MAX_NUMNODES); | 3763 | return find_min_pfn_for_node(MAX_NUMNODES); |
3642 | } | 3764 | } |
3643 | 3765 | ||
3644 | /** | ||
3645 | * find_max_pfn_with_active_regions - Find the maximum PFN registered | ||
3646 | * | ||
3647 | * It returns the maximum PFN based on information provided via | ||
3648 | * add_active_range(). | ||
3649 | */ | ||
3650 | unsigned long __init find_max_pfn_with_active_regions(void) | ||
3651 | { | ||
3652 | int i; | ||
3653 | unsigned long max_pfn = 0; | ||
3654 | |||
3655 | for (i = 0; i < nr_nodemap_entries; i++) | ||
3656 | max_pfn = max(max_pfn, early_node_map[i].end_pfn); | ||
3657 | |||
3658 | return max_pfn; | ||
3659 | } | ||
3660 | |||
3661 | /* | 3766 | /* |
3662 | * early_calculate_totalpages() | 3767 | * early_calculate_totalpages() |
3663 | * Sum pages in active regions for movable zone. | 3768 | * Sum pages in active regions for movable zone. |
@@ -3684,7 +3789,7 @@ static unsigned long __init early_calculate_totalpages(void) | |||
3684 | * memory. When they don't, some nodes will have more kernelcore than | 3789 | * memory. When they don't, some nodes will have more kernelcore than |
3685 | * others | 3790 | * others |
3686 | */ | 3791 | */ |
3687 | void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) | 3792 | static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) |
3688 | { | 3793 | { |
3689 | int i, nid; | 3794 | int i, nid; |
3690 | unsigned long usable_startpfn; | 3795 | unsigned long usable_startpfn; |
@@ -3879,7 +3984,7 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |||
3879 | for (i = 0; i < MAX_NR_ZONES; i++) { | 3984 | for (i = 0; i < MAX_NR_ZONES; i++) { |
3880 | if (i == ZONE_MOVABLE) | 3985 | if (i == ZONE_MOVABLE) |
3881 | continue; | 3986 | continue; |
3882 | printk(" %-8s %8lu -> %8lu\n", | 3987 | printk(" %-8s %0#10lx -> %0#10lx\n", |
3883 | zone_names[i], | 3988 | zone_names[i], |
3884 | arch_zone_lowest_possible_pfn[i], | 3989 | arch_zone_lowest_possible_pfn[i], |
3885 | arch_zone_highest_possible_pfn[i]); | 3990 | arch_zone_highest_possible_pfn[i]); |
@@ -3895,15 +4000,16 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |||
3895 | /* Print out the early_node_map[] */ | 4000 | /* Print out the early_node_map[] */ |
3896 | printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); | 4001 | printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); |
3897 | for (i = 0; i < nr_nodemap_entries; i++) | 4002 | for (i = 0; i < nr_nodemap_entries; i++) |
3898 | printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid, | 4003 | printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, |
3899 | early_node_map[i].start_pfn, | 4004 | early_node_map[i].start_pfn, |
3900 | early_node_map[i].end_pfn); | 4005 | early_node_map[i].end_pfn); |
3901 | 4006 | ||
3902 | /* Initialise every node */ | 4007 | /* Initialise every node */ |
4008 | mminit_verify_pageflags_layout(); | ||
3903 | setup_nr_node_ids(); | 4009 | setup_nr_node_ids(); |
3904 | for_each_online_node(nid) { | 4010 | for_each_online_node(nid) { |
3905 | pg_data_t *pgdat = NODE_DATA(nid); | 4011 | pg_data_t *pgdat = NODE_DATA(nid); |
3906 | free_area_init_node(nid, pgdat, NULL, | 4012 | free_area_init_node(nid, NULL, |
3907 | find_min_pfn_for_node(nid), NULL); | 4013 | find_min_pfn_for_node(nid), NULL); |
3908 | 4014 | ||
3909 | /* Any memory on that node */ | 4015 | /* Any memory on that node */ |
@@ -3968,15 +4074,13 @@ void __init set_dma_reserve(unsigned long new_dma_reserve) | |||
3968 | } | 4074 | } |
3969 | 4075 | ||
3970 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 4076 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
3971 | static bootmem_data_t contig_bootmem_data; | 4077 | struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; |
3972 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | ||
3973 | |||
3974 | EXPORT_SYMBOL(contig_page_data); | 4078 | EXPORT_SYMBOL(contig_page_data); |
3975 | #endif | 4079 | #endif |
3976 | 4080 | ||
3977 | void __init free_area_init(unsigned long *zones_size) | 4081 | void __init free_area_init(unsigned long *zones_size) |
3978 | { | 4082 | { |
3979 | free_area_init_node(0, NODE_DATA(0), zones_size, | 4083 | free_area_init_node(0, zones_size, |
3980 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 4084 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
3981 | } | 4085 | } |
3982 | 4086 | ||
@@ -4343,7 +4447,7 @@ void *__init alloc_large_system_hash(const char *tablename, | |||
4343 | do { | 4447 | do { |
4344 | size = bucketsize << log2qty; | 4448 | size = bucketsize << log2qty; |
4345 | if (flags & HASH_EARLY) | 4449 | if (flags & HASH_EARLY) |
4346 | table = alloc_bootmem(size); | 4450 | table = alloc_bootmem_nopanic(size); |
4347 | else if (hashdist) | 4451 | else if (hashdist) |
4348 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | 4452 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); |
4349 | else { | 4453 | else { |
diff --git a/mm/page_isolation.c b/mm/page_isolation.c index 3444b58033c8..b70a7fec1ff6 100644 --- a/mm/page_isolation.c +++ b/mm/page_isolation.c | |||
@@ -2,7 +2,6 @@ | |||
2 | * linux/mm/page_isolation.c | 2 | * linux/mm/page_isolation.c |
3 | */ | 3 | */ |
4 | 4 | ||
5 | #include <stddef.h> | ||
6 | #include <linux/mm.h> | 5 | #include <linux/mm.h> |
7 | #include <linux/page-isolation.h> | 6 | #include <linux/page-isolation.h> |
8 | #include <linux/pageblock-flags.h> | 7 | #include <linux/pageblock-flags.h> |
@@ -115,8 +114,10 @@ __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn) | |||
115 | 114 | ||
116 | int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) | 115 | int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) |
117 | { | 116 | { |
118 | unsigned long pfn; | 117 | unsigned long pfn, flags; |
119 | struct page *page; | 118 | struct page *page; |
119 | struct zone *zone; | ||
120 | int ret; | ||
120 | 121 | ||
121 | pfn = start_pfn; | 122 | pfn = start_pfn; |
122 | /* | 123 | /* |
@@ -132,7 +133,9 @@ int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) | |||
132 | if (pfn < end_pfn) | 133 | if (pfn < end_pfn) |
133 | return -EBUSY; | 134 | return -EBUSY; |
134 | /* Check all pages are free or Marked as ISOLATED */ | 135 | /* Check all pages are free or Marked as ISOLATED */ |
135 | if (__test_page_isolated_in_pageblock(start_pfn, end_pfn)) | 136 | zone = page_zone(pfn_to_page(pfn)); |
136 | return 0; | 137 | spin_lock_irqsave(&zone->lock, flags); |
137 | return -EBUSY; | 138 | ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn); |
139 | spin_unlock_irqrestore(&zone->lock, flags); | ||
140 | return ret ? 0 : -EBUSY; | ||
138 | } | 141 | } |
diff --git a/mm/pdflush.c b/mm/pdflush.c index 9d834aa4b979..0cbe0c60c6bf 100644 --- a/mm/pdflush.c +++ b/mm/pdflush.c | |||
@@ -130,7 +130,7 @@ static int __pdflush(struct pdflush_work *my_work) | |||
130 | * Thread creation: For how long have there been zero | 130 | * Thread creation: For how long have there been zero |
131 | * available threads? | 131 | * available threads? |
132 | */ | 132 | */ |
133 | if (jiffies - last_empty_jifs > 1 * HZ) { | 133 | if (time_after(jiffies, last_empty_jifs + 1 * HZ)) { |
134 | /* unlocked list_empty() test is OK here */ | 134 | /* unlocked list_empty() test is OK here */ |
135 | if (list_empty(&pdflush_list)) { | 135 | if (list_empty(&pdflush_list)) { |
136 | /* unlocked test is OK here */ | 136 | /* unlocked test is OK here */ |
@@ -151,7 +151,7 @@ static int __pdflush(struct pdflush_work *my_work) | |||
151 | if (nr_pdflush_threads <= MIN_PDFLUSH_THREADS) | 151 | if (nr_pdflush_threads <= MIN_PDFLUSH_THREADS) |
152 | continue; | 152 | continue; |
153 | pdf = list_entry(pdflush_list.prev, struct pdflush_work, list); | 153 | pdf = list_entry(pdflush_list.prev, struct pdflush_work, list); |
154 | if (jiffies - pdf->when_i_went_to_sleep > 1 * HZ) { | 154 | if (time_after(jiffies, pdf->when_i_went_to_sleep + 1 * HZ)) { |
155 | /* Limit exit rate */ | 155 | /* Limit exit rate */ |
156 | pdf->when_i_went_to_sleep = jiffies; | 156 | pdf->when_i_went_to_sleep = jiffies; |
157 | break; /* exeunt */ | 157 | break; /* exeunt */ |
diff --git a/mm/quicklist.c b/mm/quicklist.c index 3f703f7cb398..8dbb6805ef35 100644 --- a/mm/quicklist.c +++ b/mm/quicklist.c | |||
@@ -26,7 +26,10 @@ DEFINE_PER_CPU(struct quicklist, quicklist)[CONFIG_NR_QUICK]; | |||
26 | static unsigned long max_pages(unsigned long min_pages) | 26 | static unsigned long max_pages(unsigned long min_pages) |
27 | { | 27 | { |
28 | unsigned long node_free_pages, max; | 28 | unsigned long node_free_pages, max; |
29 | struct zone *zones = NODE_DATA(numa_node_id())->node_zones; | 29 | int node = numa_node_id(); |
30 | struct zone *zones = NODE_DATA(node)->node_zones; | ||
31 | int num_cpus_on_node; | ||
32 | node_to_cpumask_ptr(cpumask_on_node, node); | ||
30 | 33 | ||
31 | node_free_pages = | 34 | node_free_pages = |
32 | #ifdef CONFIG_ZONE_DMA | 35 | #ifdef CONFIG_ZONE_DMA |
@@ -38,6 +41,10 @@ static unsigned long max_pages(unsigned long min_pages) | |||
38 | zone_page_state(&zones[ZONE_NORMAL], NR_FREE_PAGES); | 41 | zone_page_state(&zones[ZONE_NORMAL], NR_FREE_PAGES); |
39 | 42 | ||
40 | max = node_free_pages / FRACTION_OF_NODE_MEM; | 43 | max = node_free_pages / FRACTION_OF_NODE_MEM; |
44 | |||
45 | num_cpus_on_node = cpus_weight_nr(*cpumask_on_node); | ||
46 | max /= num_cpus_on_node; | ||
47 | |||
41 | return max(max, min_pages); | 48 | return max(max, min_pages); |
42 | } | 49 | } |
43 | 50 | ||
diff --git a/mm/readahead.c b/mm/readahead.c index d8723a5f6496..77e8ddf945e9 100644 --- a/mm/readahead.c +++ b/mm/readahead.c | |||
@@ -382,9 +382,9 @@ ondemand_readahead(struct address_space *mapping, | |||
382 | if (hit_readahead_marker) { | 382 | if (hit_readahead_marker) { |
383 | pgoff_t start; | 383 | pgoff_t start; |
384 | 384 | ||
385 | read_lock_irq(&mapping->tree_lock); | 385 | rcu_read_lock(); |
386 | start = radix_tree_next_hole(&mapping->page_tree, offset, max+1); | 386 | start = radix_tree_next_hole(&mapping->page_tree, offset,max+1); |
387 | read_unlock_irq(&mapping->tree_lock); | 387 | rcu_read_unlock(); |
388 | 388 | ||
389 | if (!start || start - offset > max) | 389 | if (!start || start - offset > max) |
390 | return 0; | 390 | return 0; |
@@ -49,6 +49,7 @@ | |||
49 | #include <linux/module.h> | 49 | #include <linux/module.h> |
50 | #include <linux/kallsyms.h> | 50 | #include <linux/kallsyms.h> |
51 | #include <linux/memcontrol.h> | 51 | #include <linux/memcontrol.h> |
52 | #include <linux/mmu_notifier.h> | ||
52 | 53 | ||
53 | #include <asm/tlbflush.h> | 54 | #include <asm/tlbflush.h> |
54 | 55 | ||
@@ -138,7 +139,7 @@ void anon_vma_unlink(struct vm_area_struct *vma) | |||
138 | anon_vma_free(anon_vma); | 139 | anon_vma_free(anon_vma); |
139 | } | 140 | } |
140 | 141 | ||
141 | static void anon_vma_ctor(struct kmem_cache *cachep, void *data) | 142 | static void anon_vma_ctor(void *data) |
142 | { | 143 | { |
143 | struct anon_vma *anon_vma = data; | 144 | struct anon_vma *anon_vma = data; |
144 | 145 | ||
@@ -223,10 +224,14 @@ unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |||
223 | /* | 224 | /* |
224 | * Check that @page is mapped at @address into @mm. | 225 | * Check that @page is mapped at @address into @mm. |
225 | * | 226 | * |
227 | * If @sync is false, page_check_address may perform a racy check to avoid | ||
228 | * the page table lock when the pte is not present (helpful when reclaiming | ||
229 | * highly shared pages). | ||
230 | * | ||
226 | * On success returns with pte mapped and locked. | 231 | * On success returns with pte mapped and locked. |
227 | */ | 232 | */ |
228 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, | 233 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
229 | unsigned long address, spinlock_t **ptlp) | 234 | unsigned long address, spinlock_t **ptlp, int sync) |
230 | { | 235 | { |
231 | pgd_t *pgd; | 236 | pgd_t *pgd; |
232 | pud_t *pud; | 237 | pud_t *pud; |
@@ -248,7 +253,7 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm, | |||
248 | 253 | ||
249 | pte = pte_offset_map(pmd, address); | 254 | pte = pte_offset_map(pmd, address); |
250 | /* Make a quick check before getting the lock */ | 255 | /* Make a quick check before getting the lock */ |
251 | if (!pte_present(*pte)) { | 256 | if (!sync && !pte_present(*pte)) { |
252 | pte_unmap(pte); | 257 | pte_unmap(pte); |
253 | return NULL; | 258 | return NULL; |
254 | } | 259 | } |
@@ -280,14 +285,14 @@ static int page_referenced_one(struct page *page, | |||
280 | if (address == -EFAULT) | 285 | if (address == -EFAULT) |
281 | goto out; | 286 | goto out; |
282 | 287 | ||
283 | pte = page_check_address(page, mm, address, &ptl); | 288 | pte = page_check_address(page, mm, address, &ptl, 0); |
284 | if (!pte) | 289 | if (!pte) |
285 | goto out; | 290 | goto out; |
286 | 291 | ||
287 | if (vma->vm_flags & VM_LOCKED) { | 292 | if (vma->vm_flags & VM_LOCKED) { |
288 | referenced++; | 293 | referenced++; |
289 | *mapcount = 1; /* break early from loop */ | 294 | *mapcount = 1; /* break early from loop */ |
290 | } else if (ptep_clear_flush_young(vma, address, pte)) | 295 | } else if (ptep_clear_flush_young_notify(vma, address, pte)) |
291 | referenced++; | 296 | referenced++; |
292 | 297 | ||
293 | /* Pretend the page is referenced if the task has the | 298 | /* Pretend the page is referenced if the task has the |
@@ -421,7 +426,7 @@ int page_referenced(struct page *page, int is_locked, | |||
421 | referenced += page_referenced_anon(page, mem_cont); | 426 | referenced += page_referenced_anon(page, mem_cont); |
422 | else if (is_locked) | 427 | else if (is_locked) |
423 | referenced += page_referenced_file(page, mem_cont); | 428 | referenced += page_referenced_file(page, mem_cont); |
424 | else if (TestSetPageLocked(page)) | 429 | else if (!trylock_page(page)) |
425 | referenced++; | 430 | referenced++; |
426 | else { | 431 | else { |
427 | if (page->mapping) | 432 | if (page->mapping) |
@@ -449,7 +454,7 @@ static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) | |||
449 | if (address == -EFAULT) | 454 | if (address == -EFAULT) |
450 | goto out; | 455 | goto out; |
451 | 456 | ||
452 | pte = page_check_address(page, mm, address, &ptl); | 457 | pte = page_check_address(page, mm, address, &ptl, 1); |
453 | if (!pte) | 458 | if (!pte) |
454 | goto out; | 459 | goto out; |
455 | 460 | ||
@@ -457,7 +462,7 @@ static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) | |||
457 | pte_t entry; | 462 | pte_t entry; |
458 | 463 | ||
459 | flush_cache_page(vma, address, pte_pfn(*pte)); | 464 | flush_cache_page(vma, address, pte_pfn(*pte)); |
460 | entry = ptep_clear_flush(vma, address, pte); | 465 | entry = ptep_clear_flush_notify(vma, address, pte); |
461 | entry = pte_wrprotect(entry); | 466 | entry = pte_wrprotect(entry); |
462 | entry = pte_mkclean(entry); | 467 | entry = pte_mkclean(entry); |
463 | set_pte_at(mm, address, pte, entry); | 468 | set_pte_at(mm, address, pte, entry); |
@@ -576,14 +581,8 @@ void page_add_anon_rmap(struct page *page, | |||
576 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 581 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
577 | if (atomic_inc_and_test(&page->_mapcount)) | 582 | if (atomic_inc_and_test(&page->_mapcount)) |
578 | __page_set_anon_rmap(page, vma, address); | 583 | __page_set_anon_rmap(page, vma, address); |
579 | else { | 584 | else |
580 | __page_check_anon_rmap(page, vma, address); | 585 | __page_check_anon_rmap(page, vma, address); |
581 | /* | ||
582 | * We unconditionally charged during prepare, we uncharge here | ||
583 | * This takes care of balancing the reference counts | ||
584 | */ | ||
585 | mem_cgroup_uncharge_page(page); | ||
586 | } | ||
587 | } | 586 | } |
588 | 587 | ||
589 | /** | 588 | /** |
@@ -614,12 +613,6 @@ void page_add_file_rmap(struct page *page) | |||
614 | { | 613 | { |
615 | if (atomic_inc_and_test(&page->_mapcount)) | 614 | if (atomic_inc_and_test(&page->_mapcount)) |
616 | __inc_zone_page_state(page, NR_FILE_MAPPED); | 615 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
617 | else | ||
618 | /* | ||
619 | * We unconditionally charged during prepare, we uncharge here | ||
620 | * This takes care of balancing the reference counts | ||
621 | */ | ||
622 | mem_cgroup_uncharge_page(page); | ||
623 | } | 616 | } |
624 | 617 | ||
625 | #ifdef CONFIG_DEBUG_VM | 618 | #ifdef CONFIG_DEBUG_VM |
@@ -670,6 +663,22 @@ void page_remove_rmap(struct page *page, struct vm_area_struct *vma) | |||
670 | } | 663 | } |
671 | 664 | ||
672 | /* | 665 | /* |
666 | * Now that the last pte has gone, s390 must transfer dirty | ||
667 | * flag from storage key to struct page. We can usually skip | ||
668 | * this if the page is anon, so about to be freed; but perhaps | ||
669 | * not if it's in swapcache - there might be another pte slot | ||
670 | * containing the swap entry, but page not yet written to swap. | ||
671 | */ | ||
672 | if ((!PageAnon(page) || PageSwapCache(page)) && | ||
673 | page_test_dirty(page)) { | ||
674 | page_clear_dirty(page); | ||
675 | set_page_dirty(page); | ||
676 | } | ||
677 | |||
678 | mem_cgroup_uncharge_page(page); | ||
679 | __dec_zone_page_state(page, | ||
680 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); | ||
681 | /* | ||
673 | * It would be tidy to reset the PageAnon mapping here, | 682 | * It would be tidy to reset the PageAnon mapping here, |
674 | * but that might overwrite a racing page_add_anon_rmap | 683 | * but that might overwrite a racing page_add_anon_rmap |
675 | * which increments mapcount after us but sets mapping | 684 | * which increments mapcount after us but sets mapping |
@@ -678,14 +687,6 @@ void page_remove_rmap(struct page *page, struct vm_area_struct *vma) | |||
678 | * Leaving it set also helps swapoff to reinstate ptes | 687 | * Leaving it set also helps swapoff to reinstate ptes |
679 | * faster for those pages still in swapcache. | 688 | * faster for those pages still in swapcache. |
680 | */ | 689 | */ |
681 | if (page_test_dirty(page)) { | ||
682 | page_clear_dirty(page); | ||
683 | set_page_dirty(page); | ||
684 | } | ||
685 | mem_cgroup_uncharge_page(page); | ||
686 | |||
687 | __dec_zone_page_state(page, | ||
688 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); | ||
689 | } | 690 | } |
690 | } | 691 | } |
691 | 692 | ||
@@ -707,7 +708,7 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | |||
707 | if (address == -EFAULT) | 708 | if (address == -EFAULT) |
708 | goto out; | 709 | goto out; |
709 | 710 | ||
710 | pte = page_check_address(page, mm, address, &ptl); | 711 | pte = page_check_address(page, mm, address, &ptl, 0); |
711 | if (!pte) | 712 | if (!pte) |
712 | goto out; | 713 | goto out; |
713 | 714 | ||
@@ -717,14 +718,14 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | |||
717 | * skipped over this mm) then we should reactivate it. | 718 | * skipped over this mm) then we should reactivate it. |
718 | */ | 719 | */ |
719 | if (!migration && ((vma->vm_flags & VM_LOCKED) || | 720 | if (!migration && ((vma->vm_flags & VM_LOCKED) || |
720 | (ptep_clear_flush_young(vma, address, pte)))) { | 721 | (ptep_clear_flush_young_notify(vma, address, pte)))) { |
721 | ret = SWAP_FAIL; | 722 | ret = SWAP_FAIL; |
722 | goto out_unmap; | 723 | goto out_unmap; |
723 | } | 724 | } |
724 | 725 | ||
725 | /* Nuke the page table entry. */ | 726 | /* Nuke the page table entry. */ |
726 | flush_cache_page(vma, address, page_to_pfn(page)); | 727 | flush_cache_page(vma, address, page_to_pfn(page)); |
727 | pteval = ptep_clear_flush(vma, address, pte); | 728 | pteval = ptep_clear_flush_notify(vma, address, pte); |
728 | 729 | ||
729 | /* Move the dirty bit to the physical page now the pte is gone. */ | 730 | /* Move the dirty bit to the physical page now the pte is gone. */ |
730 | if (pte_dirty(pteval)) | 731 | if (pte_dirty(pteval)) |
@@ -849,12 +850,12 @@ static void try_to_unmap_cluster(unsigned long cursor, | |||
849 | page = vm_normal_page(vma, address, *pte); | 850 | page = vm_normal_page(vma, address, *pte); |
850 | BUG_ON(!page || PageAnon(page)); | 851 | BUG_ON(!page || PageAnon(page)); |
851 | 852 | ||
852 | if (ptep_clear_flush_young(vma, address, pte)) | 853 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
853 | continue; | 854 | continue; |
854 | 855 | ||
855 | /* Nuke the page table entry. */ | 856 | /* Nuke the page table entry. */ |
856 | flush_cache_page(vma, address, pte_pfn(*pte)); | 857 | flush_cache_page(vma, address, pte_pfn(*pte)); |
857 | pteval = ptep_clear_flush(vma, address, pte); | 858 | pteval = ptep_clear_flush_notify(vma, address, pte); |
858 | 859 | ||
859 | /* If nonlinear, store the file page offset in the pte. */ | 860 | /* If nonlinear, store the file page offset in the pte. */ |
860 | if (page->index != linear_page_index(vma, address)) | 861 | if (page->index != linear_page_index(vma, address)) |
diff --git a/mm/shmem.c b/mm/shmem.c index e2a6ae1a44e9..04fb4f1ab88e 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -922,20 +922,26 @@ found: | |||
922 | error = 1; | 922 | error = 1; |
923 | if (!inode) | 923 | if (!inode) |
924 | goto out; | 924 | goto out; |
925 | /* Precharge page while we can wait, compensate afterwards */ | 925 | /* Precharge page using GFP_KERNEL while we can wait */ |
926 | error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); | 926 | error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); |
927 | if (error) | 927 | if (error) |
928 | goto out; | 928 | goto out; |
929 | error = radix_tree_preload(GFP_KERNEL); | 929 | error = radix_tree_preload(GFP_KERNEL); |
930 | if (error) | 930 | if (error) { |
931 | goto uncharge; | 931 | mem_cgroup_uncharge_cache_page(page); |
932 | goto out; | ||
933 | } | ||
932 | error = 1; | 934 | error = 1; |
933 | 935 | ||
934 | spin_lock(&info->lock); | 936 | spin_lock(&info->lock); |
935 | ptr = shmem_swp_entry(info, idx, NULL); | 937 | ptr = shmem_swp_entry(info, idx, NULL); |
936 | if (ptr && ptr->val == entry.val) | 938 | if (ptr && ptr->val == entry.val) { |
937 | error = add_to_page_cache(page, inode->i_mapping, | 939 | error = add_to_page_cache_locked(page, inode->i_mapping, |
938 | idx, GFP_NOWAIT); | 940 | idx, GFP_NOWAIT); |
941 | /* does mem_cgroup_uncharge_cache_page on error */ | ||
942 | } else /* we must compensate for our precharge above */ | ||
943 | mem_cgroup_uncharge_cache_page(page); | ||
944 | |||
939 | if (error == -EEXIST) { | 945 | if (error == -EEXIST) { |
940 | struct page *filepage = find_get_page(inode->i_mapping, idx); | 946 | struct page *filepage = find_get_page(inode->i_mapping, idx); |
941 | error = 1; | 947 | error = 1; |
@@ -961,8 +967,6 @@ found: | |||
961 | shmem_swp_unmap(ptr); | 967 | shmem_swp_unmap(ptr); |
962 | spin_unlock(&info->lock); | 968 | spin_unlock(&info->lock); |
963 | radix_tree_preload_end(); | 969 | radix_tree_preload_end(); |
964 | uncharge: | ||
965 | mem_cgroup_uncharge_page(page); | ||
966 | out: | 970 | out: |
967 | unlock_page(page); | 971 | unlock_page(page); |
968 | page_cache_release(page); | 972 | page_cache_release(page); |
@@ -1261,7 +1265,7 @@ repeat: | |||
1261 | } | 1265 | } |
1262 | 1266 | ||
1263 | /* We have to do this with page locked to prevent races */ | 1267 | /* We have to do this with page locked to prevent races */ |
1264 | if (TestSetPageLocked(swappage)) { | 1268 | if (!trylock_page(swappage)) { |
1265 | shmem_swp_unmap(entry); | 1269 | shmem_swp_unmap(entry); |
1266 | spin_unlock(&info->lock); | 1270 | spin_unlock(&info->lock); |
1267 | wait_on_page_locked(swappage); | 1271 | wait_on_page_locked(swappage); |
@@ -1297,8 +1301,8 @@ repeat: | |||
1297 | SetPageUptodate(filepage); | 1301 | SetPageUptodate(filepage); |
1298 | set_page_dirty(filepage); | 1302 | set_page_dirty(filepage); |
1299 | swap_free(swap); | 1303 | swap_free(swap); |
1300 | } else if (!(error = add_to_page_cache( | 1304 | } else if (!(error = add_to_page_cache_locked(swappage, mapping, |
1301 | swappage, mapping, idx, GFP_NOWAIT))) { | 1305 | idx, GFP_NOWAIT))) { |
1302 | info->flags |= SHMEM_PAGEIN; | 1306 | info->flags |= SHMEM_PAGEIN; |
1303 | shmem_swp_set(info, entry, 0); | 1307 | shmem_swp_set(info, entry, 0); |
1304 | shmem_swp_unmap(entry); | 1308 | shmem_swp_unmap(entry); |
@@ -1311,24 +1315,21 @@ repeat: | |||
1311 | shmem_swp_unmap(entry); | 1315 | shmem_swp_unmap(entry); |
1312 | spin_unlock(&info->lock); | 1316 | spin_unlock(&info->lock); |
1313 | unlock_page(swappage); | 1317 | unlock_page(swappage); |
1318 | page_cache_release(swappage); | ||
1314 | if (error == -ENOMEM) { | 1319 | if (error == -ENOMEM) { |
1315 | /* allow reclaim from this memory cgroup */ | 1320 | /* allow reclaim from this memory cgroup */ |
1316 | error = mem_cgroup_cache_charge(swappage, | 1321 | error = mem_cgroup_shrink_usage(current->mm, |
1317 | current->mm, gfp & ~__GFP_HIGHMEM); | 1322 | gfp); |
1318 | if (error) { | 1323 | if (error) |
1319 | page_cache_release(swappage); | ||
1320 | goto failed; | 1324 | goto failed; |
1321 | } | ||
1322 | mem_cgroup_uncharge_page(swappage); | ||
1323 | } | 1325 | } |
1324 | page_cache_release(swappage); | ||
1325 | goto repeat; | 1326 | goto repeat; |
1326 | } | 1327 | } |
1327 | } else if (sgp == SGP_READ && !filepage) { | 1328 | } else if (sgp == SGP_READ && !filepage) { |
1328 | shmem_swp_unmap(entry); | 1329 | shmem_swp_unmap(entry); |
1329 | filepage = find_get_page(mapping, idx); | 1330 | filepage = find_get_page(mapping, idx); |
1330 | if (filepage && | 1331 | if (filepage && |
1331 | (!PageUptodate(filepage) || TestSetPageLocked(filepage))) { | 1332 | (!PageUptodate(filepage) || !trylock_page(filepage))) { |
1332 | spin_unlock(&info->lock); | 1333 | spin_unlock(&info->lock); |
1333 | wait_on_page_locked(filepage); | 1334 | wait_on_page_locked(filepage); |
1334 | page_cache_release(filepage); | 1335 | page_cache_release(filepage); |
@@ -1358,6 +1359,8 @@ repeat: | |||
1358 | } | 1359 | } |
1359 | 1360 | ||
1360 | if (!filepage) { | 1361 | if (!filepage) { |
1362 | int ret; | ||
1363 | |||
1361 | spin_unlock(&info->lock); | 1364 | spin_unlock(&info->lock); |
1362 | filepage = shmem_alloc_page(gfp, info, idx); | 1365 | filepage = shmem_alloc_page(gfp, info, idx); |
1363 | if (!filepage) { | 1366 | if (!filepage) { |
@@ -1386,10 +1389,18 @@ repeat: | |||
1386 | swap = *entry; | 1389 | swap = *entry; |
1387 | shmem_swp_unmap(entry); | 1390 | shmem_swp_unmap(entry); |
1388 | } | 1391 | } |
1389 | if (error || swap.val || 0 != add_to_page_cache_lru( | 1392 | ret = error || swap.val; |
1390 | filepage, mapping, idx, GFP_NOWAIT)) { | 1393 | if (ret) |
1394 | mem_cgroup_uncharge_cache_page(filepage); | ||
1395 | else | ||
1396 | ret = add_to_page_cache_lru(filepage, mapping, | ||
1397 | idx, GFP_NOWAIT); | ||
1398 | /* | ||
1399 | * At add_to_page_cache_lru() failure, uncharge will | ||
1400 | * be done automatically. | ||
1401 | */ | ||
1402 | if (ret) { | ||
1391 | spin_unlock(&info->lock); | 1403 | spin_unlock(&info->lock); |
1392 | mem_cgroup_uncharge_page(filepage); | ||
1393 | page_cache_release(filepage); | 1404 | page_cache_release(filepage); |
1394 | shmem_unacct_blocks(info->flags, 1); | 1405 | shmem_unacct_blocks(info->flags, 1); |
1395 | shmem_free_blocks(inode, 1); | 1406 | shmem_free_blocks(inode, 1); |
@@ -1398,7 +1409,6 @@ repeat: | |||
1398 | goto failed; | 1409 | goto failed; |
1399 | goto repeat; | 1410 | goto repeat; |
1400 | } | 1411 | } |
1401 | mem_cgroup_uncharge_page(filepage); | ||
1402 | info->flags |= SHMEM_PAGEIN; | 1412 | info->flags |= SHMEM_PAGEIN; |
1403 | } | 1413 | } |
1404 | 1414 | ||
@@ -1503,7 +1513,6 @@ shmem_get_inode(struct super_block *sb, int mode, dev_t dev) | |||
1503 | inode->i_uid = current->fsuid; | 1513 | inode->i_uid = current->fsuid; |
1504 | inode->i_gid = current->fsgid; | 1514 | inode->i_gid = current->fsgid; |
1505 | inode->i_blocks = 0; | 1515 | inode->i_blocks = 0; |
1506 | inode->i_mapping->a_ops = &shmem_aops; | ||
1507 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; | 1516 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; |
1508 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 1517 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
1509 | inode->i_generation = get_seconds(); | 1518 | inode->i_generation = get_seconds(); |
@@ -1518,6 +1527,7 @@ shmem_get_inode(struct super_block *sb, int mode, dev_t dev) | |||
1518 | init_special_inode(inode, mode, dev); | 1527 | init_special_inode(inode, mode, dev); |
1519 | break; | 1528 | break; |
1520 | case S_IFREG: | 1529 | case S_IFREG: |
1530 | inode->i_mapping->a_ops = &shmem_aops; | ||
1521 | inode->i_op = &shmem_inode_operations; | 1531 | inode->i_op = &shmem_inode_operations; |
1522 | inode->i_fop = &shmem_file_operations; | 1532 | inode->i_fop = &shmem_file_operations; |
1523 | mpol_shared_policy_init(&info->policy, | 1533 | mpol_shared_policy_init(&info->policy, |
@@ -1690,26 +1700,38 @@ static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_ | |||
1690 | file_accessed(filp); | 1700 | file_accessed(filp); |
1691 | } | 1701 | } |
1692 | 1702 | ||
1693 | static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) | 1703 | static ssize_t shmem_file_aio_read(struct kiocb *iocb, |
1704 | const struct iovec *iov, unsigned long nr_segs, loff_t pos) | ||
1694 | { | 1705 | { |
1695 | read_descriptor_t desc; | 1706 | struct file *filp = iocb->ki_filp; |
1707 | ssize_t retval; | ||
1708 | unsigned long seg; | ||
1709 | size_t count; | ||
1710 | loff_t *ppos = &iocb->ki_pos; | ||
1696 | 1711 | ||
1697 | if ((ssize_t) count < 0) | 1712 | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
1698 | return -EINVAL; | 1713 | if (retval) |
1699 | if (!access_ok(VERIFY_WRITE, buf, count)) | 1714 | return retval; |
1700 | return -EFAULT; | ||
1701 | if (!count) | ||
1702 | return 0; | ||
1703 | 1715 | ||
1704 | desc.written = 0; | 1716 | for (seg = 0; seg < nr_segs; seg++) { |
1705 | desc.count = count; | 1717 | read_descriptor_t desc; |
1706 | desc.arg.buf = buf; | ||
1707 | desc.error = 0; | ||
1708 | 1718 | ||
1709 | do_shmem_file_read(filp, ppos, &desc, file_read_actor); | 1719 | desc.written = 0; |
1710 | if (desc.written) | 1720 | desc.arg.buf = iov[seg].iov_base; |
1711 | return desc.written; | 1721 | desc.count = iov[seg].iov_len; |
1712 | return desc.error; | 1722 | if (desc.count == 0) |
1723 | continue; | ||
1724 | desc.error = 0; | ||
1725 | do_shmem_file_read(filp, ppos, &desc, file_read_actor); | ||
1726 | retval += desc.written; | ||
1727 | if (desc.error) { | ||
1728 | retval = retval ?: desc.error; | ||
1729 | break; | ||
1730 | } | ||
1731 | if (desc.count > 0) | ||
1732 | break; | ||
1733 | } | ||
1734 | return retval; | ||
1713 | } | 1735 | } |
1714 | 1736 | ||
1715 | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | 1737 | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) |
@@ -1907,6 +1929,7 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s | |||
1907 | return error; | 1929 | return error; |
1908 | } | 1930 | } |
1909 | unlock_page(page); | 1931 | unlock_page(page); |
1932 | inode->i_mapping->a_ops = &shmem_aops; | ||
1910 | inode->i_op = &shmem_symlink_inode_operations; | 1933 | inode->i_op = &shmem_symlink_inode_operations; |
1911 | kaddr = kmap_atomic(page, KM_USER0); | 1934 | kaddr = kmap_atomic(page, KM_USER0); |
1912 | memcpy(kaddr, symname, len); | 1935 | memcpy(kaddr, symname, len); |
@@ -2330,7 +2353,7 @@ static void shmem_destroy_inode(struct inode *inode) | |||
2330 | kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); | 2353 | kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); |
2331 | } | 2354 | } |
2332 | 2355 | ||
2333 | static void init_once(struct kmem_cache *cachep, void *foo) | 2356 | static void init_once(void *foo) |
2334 | { | 2357 | { |
2335 | struct shmem_inode_info *p = (struct shmem_inode_info *) foo; | 2358 | struct shmem_inode_info *p = (struct shmem_inode_info *) foo; |
2336 | 2359 | ||
@@ -2369,8 +2392,9 @@ static const struct file_operations shmem_file_operations = { | |||
2369 | .mmap = shmem_mmap, | 2392 | .mmap = shmem_mmap, |
2370 | #ifdef CONFIG_TMPFS | 2393 | #ifdef CONFIG_TMPFS |
2371 | .llseek = generic_file_llseek, | 2394 | .llseek = generic_file_llseek, |
2372 | .read = shmem_file_read, | 2395 | .read = do_sync_read, |
2373 | .write = do_sync_write, | 2396 | .write = do_sync_write, |
2397 | .aio_read = shmem_file_aio_read, | ||
2374 | .aio_write = generic_file_aio_write, | 2398 | .aio_write = generic_file_aio_write, |
2375 | .fsync = simple_sync_file, | 2399 | .fsync = simple_sync_file, |
2376 | .splice_read = generic_file_splice_read, | 2400 | .splice_read = generic_file_splice_read, |
diff --git a/mm/shmem_acl.c b/mm/shmem_acl.c index f5664c5b9eb1..8e5aadd7dcd6 100644 --- a/mm/shmem_acl.c +++ b/mm/shmem_acl.c | |||
@@ -191,7 +191,7 @@ shmem_check_acl(struct inode *inode, int mask) | |||
191 | * shmem_permission - permission() inode operation | 191 | * shmem_permission - permission() inode operation |
192 | */ | 192 | */ |
193 | int | 193 | int |
194 | shmem_permission(struct inode *inode, int mask, struct nameidata *nd) | 194 | shmem_permission(struct inode *inode, int mask) |
195 | { | 195 | { |
196 | return generic_permission(inode, mask, shmem_check_acl); | 196 | return generic_permission(inode, mask, shmem_check_acl); |
197 | } | 197 | } |
@@ -406,7 +406,7 @@ struct kmem_cache { | |||
406 | unsigned int dflags; /* dynamic flags */ | 406 | unsigned int dflags; /* dynamic flags */ |
407 | 407 | ||
408 | /* constructor func */ | 408 | /* constructor func */ |
409 | void (*ctor)(struct kmem_cache *, void *); | 409 | void (*ctor)(void *obj); |
410 | 410 | ||
411 | /* 5) cache creation/removal */ | 411 | /* 5) cache creation/removal */ |
412 | const char *name; | 412 | const char *name; |
@@ -1901,15 +1901,7 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp) | |||
1901 | #endif | 1901 | #endif |
1902 | 1902 | ||
1903 | #if DEBUG | 1903 | #if DEBUG |
1904 | /** | 1904 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
1905 | * slab_destroy_objs - destroy a slab and its objects | ||
1906 | * @cachep: cache pointer being destroyed | ||
1907 | * @slabp: slab pointer being destroyed | ||
1908 | * | ||
1909 | * Call the registered destructor for each object in a slab that is being | ||
1910 | * destroyed. | ||
1911 | */ | ||
1912 | static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) | ||
1913 | { | 1905 | { |
1914 | int i; | 1906 | int i; |
1915 | for (i = 0; i < cachep->num; i++) { | 1907 | for (i = 0; i < cachep->num; i++) { |
@@ -1938,7 +1930,7 @@ static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) | |||
1938 | } | 1930 | } |
1939 | } | 1931 | } |
1940 | #else | 1932 | #else |
1941 | static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp) | 1933 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
1942 | { | 1934 | { |
1943 | } | 1935 | } |
1944 | #endif | 1936 | #endif |
@@ -1956,7 +1948,7 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) | |||
1956 | { | 1948 | { |
1957 | void *addr = slabp->s_mem - slabp->colouroff; | 1949 | void *addr = slabp->s_mem - slabp->colouroff; |
1958 | 1950 | ||
1959 | slab_destroy_objs(cachep, slabp); | 1951 | slab_destroy_debugcheck(cachep, slabp); |
1960 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | 1952 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
1961 | struct slab_rcu *slab_rcu; | 1953 | struct slab_rcu *slab_rcu; |
1962 | 1954 | ||
@@ -2145,8 +2137,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep) | |||
2145 | */ | 2137 | */ |
2146 | struct kmem_cache * | 2138 | struct kmem_cache * |
2147 | kmem_cache_create (const char *name, size_t size, size_t align, | 2139 | kmem_cache_create (const char *name, size_t size, size_t align, |
2148 | unsigned long flags, | 2140 | unsigned long flags, void (*ctor)(void *)) |
2149 | void (*ctor)(struct kmem_cache *, void *)) | ||
2150 | { | 2141 | { |
2151 | size_t left_over, slab_size, ralign; | 2142 | size_t left_over, slab_size, ralign; |
2152 | struct kmem_cache *cachep = NULL, *pc; | 2143 | struct kmem_cache *cachep = NULL, *pc; |
@@ -2454,7 +2445,7 @@ static void drain_cpu_caches(struct kmem_cache *cachep) | |||
2454 | struct kmem_list3 *l3; | 2445 | struct kmem_list3 *l3; |
2455 | int node; | 2446 | int node; |
2456 | 2447 | ||
2457 | on_each_cpu(do_drain, cachep, 1, 1); | 2448 | on_each_cpu(do_drain, cachep, 1); |
2458 | check_irq_on(); | 2449 | check_irq_on(); |
2459 | for_each_online_node(node) { | 2450 | for_each_online_node(node) { |
2460 | l3 = cachep->nodelists[node]; | 2451 | l3 = cachep->nodelists[node]; |
@@ -2661,7 +2652,7 @@ static void cache_init_objs(struct kmem_cache *cachep, | |||
2661 | * They must also be threaded. | 2652 | * They must also be threaded. |
2662 | */ | 2653 | */ |
2663 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 2654 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) |
2664 | cachep->ctor(cachep, objp + obj_offset(cachep)); | 2655 | cachep->ctor(objp + obj_offset(cachep)); |
2665 | 2656 | ||
2666 | if (cachep->flags & SLAB_RED_ZONE) { | 2657 | if (cachep->flags & SLAB_RED_ZONE) { |
2667 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 2658 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
@@ -2677,7 +2668,7 @@ static void cache_init_objs(struct kmem_cache *cachep, | |||
2677 | cachep->buffer_size / PAGE_SIZE, 0); | 2668 | cachep->buffer_size / PAGE_SIZE, 0); |
2678 | #else | 2669 | #else |
2679 | if (cachep->ctor) | 2670 | if (cachep->ctor) |
2680 | cachep->ctor(cachep, objp); | 2671 | cachep->ctor(objp); |
2681 | #endif | 2672 | #endif |
2682 | slab_bufctl(slabp)[i] = i + 1; | 2673 | slab_bufctl(slabp)[i] = i + 1; |
2683 | } | 2674 | } |
@@ -3101,7 +3092,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, | |||
3101 | #endif | 3092 | #endif |
3102 | objp += obj_offset(cachep); | 3093 | objp += obj_offset(cachep); |
3103 | if (cachep->ctor && cachep->flags & SLAB_POISON) | 3094 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
3104 | cachep->ctor(cachep, objp); | 3095 | cachep->ctor(objp); |
3105 | #if ARCH_SLAB_MINALIGN | 3096 | #if ARCH_SLAB_MINALIGN |
3106 | if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { | 3097 | if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { |
3107 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", | 3098 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
@@ -3263,9 +3254,12 @@ retry: | |||
3263 | 3254 | ||
3264 | if (cpuset_zone_allowed_hardwall(zone, flags) && | 3255 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3265 | cache->nodelists[nid] && | 3256 | cache->nodelists[nid] && |
3266 | cache->nodelists[nid]->free_objects) | 3257 | cache->nodelists[nid]->free_objects) { |
3267 | obj = ____cache_alloc_node(cache, | 3258 | obj = ____cache_alloc_node(cache, |
3268 | flags | GFP_THISNODE, nid); | 3259 | flags | GFP_THISNODE, nid); |
3260 | if (obj) | ||
3261 | break; | ||
3262 | } | ||
3269 | } | 3263 | } |
3270 | 3264 | ||
3271 | if (!obj) { | 3265 | if (!obj) { |
@@ -3936,7 +3930,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, | |||
3936 | } | 3930 | } |
3937 | new->cachep = cachep; | 3931 | new->cachep = cachep; |
3938 | 3932 | ||
3939 | on_each_cpu(do_ccupdate_local, (void *)new, 1, 1); | 3933 | on_each_cpu(do_ccupdate_local, (void *)new, 1); |
3940 | 3934 | ||
3941 | check_irq_on(); | 3935 | check_irq_on(); |
3942 | cachep->batchcount = batchcount; | 3936 | cachep->batchcount = batchcount; |
@@ -4478,4 +4472,3 @@ size_t ksize(const void *objp) | |||
4478 | 4472 | ||
4479 | return obj_size(virt_to_cache(objp)); | 4473 | return obj_size(virt_to_cache(objp)); |
4480 | } | 4474 | } |
4481 | EXPORT_SYMBOL(ksize); | ||
@@ -130,17 +130,17 @@ static LIST_HEAD(free_slob_large); | |||
130 | */ | 130 | */ |
131 | static inline int slob_page(struct slob_page *sp) | 131 | static inline int slob_page(struct slob_page *sp) |
132 | { | 132 | { |
133 | return test_bit(PG_active, &sp->flags); | 133 | return PageSlobPage((struct page *)sp); |
134 | } | 134 | } |
135 | 135 | ||
136 | static inline void set_slob_page(struct slob_page *sp) | 136 | static inline void set_slob_page(struct slob_page *sp) |
137 | { | 137 | { |
138 | __set_bit(PG_active, &sp->flags); | 138 | __SetPageSlobPage((struct page *)sp); |
139 | } | 139 | } |
140 | 140 | ||
141 | static inline void clear_slob_page(struct slob_page *sp) | 141 | static inline void clear_slob_page(struct slob_page *sp) |
142 | { | 142 | { |
143 | __clear_bit(PG_active, &sp->flags); | 143 | __ClearPageSlobPage((struct page *)sp); |
144 | } | 144 | } |
145 | 145 | ||
146 | /* | 146 | /* |
@@ -148,19 +148,19 @@ static inline void clear_slob_page(struct slob_page *sp) | |||
148 | */ | 148 | */ |
149 | static inline int slob_page_free(struct slob_page *sp) | 149 | static inline int slob_page_free(struct slob_page *sp) |
150 | { | 150 | { |
151 | return test_bit(PG_private, &sp->flags); | 151 | return PageSlobFree((struct page *)sp); |
152 | } | 152 | } |
153 | 153 | ||
154 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) | 154 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) |
155 | { | 155 | { |
156 | list_add(&sp->list, list); | 156 | list_add(&sp->list, list); |
157 | __set_bit(PG_private, &sp->flags); | 157 | __SetPageSlobFree((struct page *)sp); |
158 | } | 158 | } |
159 | 159 | ||
160 | static inline void clear_slob_page_free(struct slob_page *sp) | 160 | static inline void clear_slob_page_free(struct slob_page *sp) |
161 | { | 161 | { |
162 | list_del(&sp->list); | 162 | list_del(&sp->list); |
163 | __clear_bit(PG_private, &sp->flags); | 163 | __ClearPageSlobFree((struct page *)sp); |
164 | } | 164 | } |
165 | 165 | ||
166 | #define SLOB_UNIT sizeof(slob_t) | 166 | #define SLOB_UNIT sizeof(slob_t) |
@@ -514,23 +514,23 @@ size_t ksize(const void *block) | |||
514 | return 0; | 514 | return 0; |
515 | 515 | ||
516 | sp = (struct slob_page *)virt_to_page(block); | 516 | sp = (struct slob_page *)virt_to_page(block); |
517 | if (slob_page(sp)) | 517 | if (slob_page(sp)) { |
518 | return ((slob_t *)block - 1)->units + SLOB_UNIT; | 518 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
519 | else | 519 | unsigned int *m = (unsigned int *)(block - align); |
520 | return SLOB_UNITS(*m) * SLOB_UNIT; | ||
521 | } else | ||
520 | return sp->page.private; | 522 | return sp->page.private; |
521 | } | 523 | } |
522 | EXPORT_SYMBOL(ksize); | ||
523 | 524 | ||
524 | struct kmem_cache { | 525 | struct kmem_cache { |
525 | unsigned int size, align; | 526 | unsigned int size, align; |
526 | unsigned long flags; | 527 | unsigned long flags; |
527 | const char *name; | 528 | const char *name; |
528 | void (*ctor)(struct kmem_cache *, void *); | 529 | void (*ctor)(void *); |
529 | }; | 530 | }; |
530 | 531 | ||
531 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 532 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
532 | size_t align, unsigned long flags, | 533 | size_t align, unsigned long flags, void (*ctor)(void *)) |
533 | void (*ctor)(struct kmem_cache *, void *)) | ||
534 | { | 534 | { |
535 | struct kmem_cache *c; | 535 | struct kmem_cache *c; |
536 | 536 | ||
@@ -575,7 +575,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | |||
575 | b = slob_new_page(flags, get_order(c->size), node); | 575 | b = slob_new_page(flags, get_order(c->size), node); |
576 | 576 | ||
577 | if (c->ctor) | 577 | if (c->ctor) |
578 | c->ctor(c, b); | 578 | c->ctor(b); |
579 | 579 | ||
580 | return b; | 580 | return b; |
581 | } | 581 | } |
@@ -5,7 +5,7 @@ | |||
5 | * The allocator synchronizes using per slab locks and only | 5 | * The allocator synchronizes using per slab locks and only |
6 | * uses a centralized lock to manage a pool of partial slabs. | 6 | * uses a centralized lock to manage a pool of partial slabs. |
7 | * | 7 | * |
8 | * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> | 8 | * (C) 2007 SGI, Christoph Lameter |
9 | */ | 9 | */ |
10 | 10 | ||
11 | #include <linux/mm.h> | 11 | #include <linux/mm.h> |
@@ -102,44 +102,12 @@ | |||
102 | * the fast path and disables lockless freelists. | 102 | * the fast path and disables lockless freelists. |
103 | */ | 103 | */ |
104 | 104 | ||
105 | #define FROZEN (1 << PG_active) | ||
106 | |||
107 | #ifdef CONFIG_SLUB_DEBUG | 105 | #ifdef CONFIG_SLUB_DEBUG |
108 | #define SLABDEBUG (1 << PG_error) | 106 | #define SLABDEBUG 1 |
109 | #else | 107 | #else |
110 | #define SLABDEBUG 0 | 108 | #define SLABDEBUG 0 |
111 | #endif | 109 | #endif |
112 | 110 | ||
113 | static inline int SlabFrozen(struct page *page) | ||
114 | { | ||
115 | return page->flags & FROZEN; | ||
116 | } | ||
117 | |||
118 | static inline void SetSlabFrozen(struct page *page) | ||
119 | { | ||
120 | page->flags |= FROZEN; | ||
121 | } | ||
122 | |||
123 | static inline void ClearSlabFrozen(struct page *page) | ||
124 | { | ||
125 | page->flags &= ~FROZEN; | ||
126 | } | ||
127 | |||
128 | static inline int SlabDebug(struct page *page) | ||
129 | { | ||
130 | return page->flags & SLABDEBUG; | ||
131 | } | ||
132 | |||
133 | static inline void SetSlabDebug(struct page *page) | ||
134 | { | ||
135 | page->flags |= SLABDEBUG; | ||
136 | } | ||
137 | |||
138 | static inline void ClearSlabDebug(struct page *page) | ||
139 | { | ||
140 | page->flags &= ~SLABDEBUG; | ||
141 | } | ||
142 | |||
143 | /* | 111 | /* |
144 | * Issues still to be resolved: | 112 | * Issues still to be resolved: |
145 | * | 113 | * |
@@ -411,7 +379,7 @@ static void set_track(struct kmem_cache *s, void *object, | |||
411 | if (addr) { | 379 | if (addr) { |
412 | p->addr = addr; | 380 | p->addr = addr; |
413 | p->cpu = smp_processor_id(); | 381 | p->cpu = smp_processor_id(); |
414 | p->pid = current ? current->pid : -1; | 382 | p->pid = current->pid; |
415 | p->when = jiffies; | 383 | p->when = jiffies; |
416 | } else | 384 | } else |
417 | memset(p, 0, sizeof(struct track)); | 385 | memset(p, 0, sizeof(struct track)); |
@@ -431,9 +399,8 @@ static void print_track(const char *s, struct track *t) | |||
431 | if (!t->addr) | 399 | if (!t->addr) |
432 | return; | 400 | return; |
433 | 401 | ||
434 | printk(KERN_ERR "INFO: %s in ", s); | 402 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
435 | __print_symbol("%s", (unsigned long)t->addr); | 403 | s, t->addr, jiffies - t->when, t->cpu, t->pid); |
436 | printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); | ||
437 | } | 404 | } |
438 | 405 | ||
439 | static void print_tracking(struct kmem_cache *s, void *object) | 406 | static void print_tracking(struct kmem_cache *s, void *object) |
@@ -493,7 +460,7 @@ static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |||
493 | if (p > addr + 16) | 460 | if (p > addr + 16) |
494 | print_section("Bytes b4", p - 16, 16); | 461 | print_section("Bytes b4", p - 16, 16); |
495 | 462 | ||
496 | print_section("Object", p, min(s->objsize, 128)); | 463 | print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); |
497 | 464 | ||
498 | if (s->flags & SLAB_RED_ZONE) | 465 | if (s->flags & SLAB_RED_ZONE) |
499 | print_section("Redzone", p + s->objsize, | 466 | print_section("Redzone", p + s->objsize, |
@@ -972,7 +939,7 @@ static int free_debug_processing(struct kmem_cache *s, struct page *page, | |||
972 | } | 939 | } |
973 | 940 | ||
974 | /* Special debug activities for freeing objects */ | 941 | /* Special debug activities for freeing objects */ |
975 | if (!SlabFrozen(page) && !page->freelist) | 942 | if (!PageSlubFrozen(page) && !page->freelist) |
976 | remove_full(s, page); | 943 | remove_full(s, page); |
977 | if (s->flags & SLAB_STORE_USER) | 944 | if (s->flags & SLAB_STORE_USER) |
978 | set_track(s, object, TRACK_FREE, addr); | 945 | set_track(s, object, TRACK_FREE, addr); |
@@ -1045,7 +1012,7 @@ __setup("slub_debug", setup_slub_debug); | |||
1045 | 1012 | ||
1046 | static unsigned long kmem_cache_flags(unsigned long objsize, | 1013 | static unsigned long kmem_cache_flags(unsigned long objsize, |
1047 | unsigned long flags, const char *name, | 1014 | unsigned long flags, const char *name, |
1048 | void (*ctor)(struct kmem_cache *, void *)) | 1015 | void (*ctor)(void *)) |
1049 | { | 1016 | { |
1050 | /* | 1017 | /* |
1051 | * Enable debugging if selected on the kernel commandline. | 1018 | * Enable debugging if selected on the kernel commandline. |
@@ -1073,7 +1040,7 @@ static inline int check_object(struct kmem_cache *s, struct page *page, | |||
1073 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} | 1040 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
1074 | static inline unsigned long kmem_cache_flags(unsigned long objsize, | 1041 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1075 | unsigned long flags, const char *name, | 1042 | unsigned long flags, const char *name, |
1076 | void (*ctor)(struct kmem_cache *, void *)) | 1043 | void (*ctor)(void *)) |
1077 | { | 1044 | { |
1078 | return flags; | 1045 | return flags; |
1079 | } | 1046 | } |
@@ -1136,7 +1103,7 @@ static void setup_object(struct kmem_cache *s, struct page *page, | |||
1136 | { | 1103 | { |
1137 | setup_object_debug(s, page, object); | 1104 | setup_object_debug(s, page, object); |
1138 | if (unlikely(s->ctor)) | 1105 | if (unlikely(s->ctor)) |
1139 | s->ctor(s, object); | 1106 | s->ctor(object); |
1140 | } | 1107 | } |
1141 | 1108 | ||
1142 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 1109 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
@@ -1158,7 +1125,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |||
1158 | page->flags |= 1 << PG_slab; | 1125 | page->flags |= 1 << PG_slab; |
1159 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | 1126 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | |
1160 | SLAB_STORE_USER | SLAB_TRACE)) | 1127 | SLAB_STORE_USER | SLAB_TRACE)) |
1161 | SetSlabDebug(page); | 1128 | __SetPageSlubDebug(page); |
1162 | 1129 | ||
1163 | start = page_address(page); | 1130 | start = page_address(page); |
1164 | 1131 | ||
@@ -1185,14 +1152,14 @@ static void __free_slab(struct kmem_cache *s, struct page *page) | |||
1185 | int order = compound_order(page); | 1152 | int order = compound_order(page); |
1186 | int pages = 1 << order; | 1153 | int pages = 1 << order; |
1187 | 1154 | ||
1188 | if (unlikely(SlabDebug(page))) { | 1155 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { |
1189 | void *p; | 1156 | void *p; |
1190 | 1157 | ||
1191 | slab_pad_check(s, page); | 1158 | slab_pad_check(s, page); |
1192 | for_each_object(p, s, page_address(page), | 1159 | for_each_object(p, s, page_address(page), |
1193 | page->objects) | 1160 | page->objects) |
1194 | check_object(s, page, p, 0); | 1161 | check_object(s, page, p, 0); |
1195 | ClearSlabDebug(page); | 1162 | __ClearPageSlubDebug(page); |
1196 | } | 1163 | } |
1197 | 1164 | ||
1198 | mod_zone_page_state(page_zone(page), | 1165 | mod_zone_page_state(page_zone(page), |
@@ -1289,7 +1256,7 @@ static inline int lock_and_freeze_slab(struct kmem_cache_node *n, | |||
1289 | if (slab_trylock(page)) { | 1256 | if (slab_trylock(page)) { |
1290 | list_del(&page->lru); | 1257 | list_del(&page->lru); |
1291 | n->nr_partial--; | 1258 | n->nr_partial--; |
1292 | SetSlabFrozen(page); | 1259 | __SetPageSlubFrozen(page); |
1293 | return 1; | 1260 | return 1; |
1294 | } | 1261 | } |
1295 | return 0; | 1262 | return 0; |
@@ -1362,7 +1329,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |||
1362 | n = get_node(s, zone_to_nid(zone)); | 1329 | n = get_node(s, zone_to_nid(zone)); |
1363 | 1330 | ||
1364 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && | 1331 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
1365 | n->nr_partial > MIN_PARTIAL) { | 1332 | n->nr_partial > n->min_partial) { |
1366 | page = get_partial_node(n); | 1333 | page = get_partial_node(n); |
1367 | if (page) | 1334 | if (page) |
1368 | return page; | 1335 | return page; |
@@ -1399,7 +1366,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
1399 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 1366 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1400 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); | 1367 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); |
1401 | 1368 | ||
1402 | ClearSlabFrozen(page); | 1369 | __ClearPageSlubFrozen(page); |
1403 | if (page->inuse) { | 1370 | if (page->inuse) { |
1404 | 1371 | ||
1405 | if (page->freelist) { | 1372 | if (page->freelist) { |
@@ -1407,13 +1374,14 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
1407 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | 1374 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
1408 | } else { | 1375 | } else { |
1409 | stat(c, DEACTIVATE_FULL); | 1376 | stat(c, DEACTIVATE_FULL); |
1410 | if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) | 1377 | if (SLABDEBUG && PageSlubDebug(page) && |
1378 | (s->flags & SLAB_STORE_USER)) | ||
1411 | add_full(n, page); | 1379 | add_full(n, page); |
1412 | } | 1380 | } |
1413 | slab_unlock(page); | 1381 | slab_unlock(page); |
1414 | } else { | 1382 | } else { |
1415 | stat(c, DEACTIVATE_EMPTY); | 1383 | stat(c, DEACTIVATE_EMPTY); |
1416 | if (n->nr_partial < MIN_PARTIAL) { | 1384 | if (n->nr_partial < n->min_partial) { |
1417 | /* | 1385 | /* |
1418 | * Adding an empty slab to the partial slabs in order | 1386 | * Adding an empty slab to the partial slabs in order |
1419 | * to avoid page allocator overhead. This slab needs | 1387 | * to avoid page allocator overhead. This slab needs |
@@ -1496,15 +1464,7 @@ static void flush_cpu_slab(void *d) | |||
1496 | 1464 | ||
1497 | static void flush_all(struct kmem_cache *s) | 1465 | static void flush_all(struct kmem_cache *s) |
1498 | { | 1466 | { |
1499 | #ifdef CONFIG_SMP | 1467 | on_each_cpu(flush_cpu_slab, s, 1); |
1500 | on_each_cpu(flush_cpu_slab, s, 1, 1); | ||
1501 | #else | ||
1502 | unsigned long flags; | ||
1503 | |||
1504 | local_irq_save(flags); | ||
1505 | flush_cpu_slab(s); | ||
1506 | local_irq_restore(flags); | ||
1507 | #endif | ||
1508 | } | 1468 | } |
1509 | 1469 | ||
1510 | /* | 1470 | /* |
@@ -1560,7 +1520,7 @@ load_freelist: | |||
1560 | object = c->page->freelist; | 1520 | object = c->page->freelist; |
1561 | if (unlikely(!object)) | 1521 | if (unlikely(!object)) |
1562 | goto another_slab; | 1522 | goto another_slab; |
1563 | if (unlikely(SlabDebug(c->page))) | 1523 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) |
1564 | goto debug; | 1524 | goto debug; |
1565 | 1525 | ||
1566 | c->freelist = object[c->offset]; | 1526 | c->freelist = object[c->offset]; |
@@ -1597,7 +1557,7 @@ new_slab: | |||
1597 | if (c->page) | 1557 | if (c->page) |
1598 | flush_slab(s, c); | 1558 | flush_slab(s, c); |
1599 | slab_lock(new); | 1559 | slab_lock(new); |
1600 | SetSlabFrozen(new); | 1560 | __SetPageSlubFrozen(new); |
1601 | c->page = new; | 1561 | c->page = new; |
1602 | goto load_freelist; | 1562 | goto load_freelist; |
1603 | } | 1563 | } |
@@ -1628,9 +1588,11 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, | |||
1628 | void **object; | 1588 | void **object; |
1629 | struct kmem_cache_cpu *c; | 1589 | struct kmem_cache_cpu *c; |
1630 | unsigned long flags; | 1590 | unsigned long flags; |
1591 | unsigned int objsize; | ||
1631 | 1592 | ||
1632 | local_irq_save(flags); | 1593 | local_irq_save(flags); |
1633 | c = get_cpu_slab(s, smp_processor_id()); | 1594 | c = get_cpu_slab(s, smp_processor_id()); |
1595 | objsize = c->objsize; | ||
1634 | if (unlikely(!c->freelist || !node_match(c, node))) | 1596 | if (unlikely(!c->freelist || !node_match(c, node))) |
1635 | 1597 | ||
1636 | object = __slab_alloc(s, gfpflags, node, addr, c); | 1598 | object = __slab_alloc(s, gfpflags, node, addr, c); |
@@ -1643,7 +1605,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, | |||
1643 | local_irq_restore(flags); | 1605 | local_irq_restore(flags); |
1644 | 1606 | ||
1645 | if (unlikely((gfpflags & __GFP_ZERO) && object)) | 1607 | if (unlikely((gfpflags & __GFP_ZERO) && object)) |
1646 | memset(object, 0, c->objsize); | 1608 | memset(object, 0, objsize); |
1647 | 1609 | ||
1648 | return object; | 1610 | return object; |
1649 | } | 1611 | } |
@@ -1681,7 +1643,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, | |||
1681 | stat(c, FREE_SLOWPATH); | 1643 | stat(c, FREE_SLOWPATH); |
1682 | slab_lock(page); | 1644 | slab_lock(page); |
1683 | 1645 | ||
1684 | if (unlikely(SlabDebug(page))) | 1646 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) |
1685 | goto debug; | 1647 | goto debug; |
1686 | 1648 | ||
1687 | checks_ok: | 1649 | checks_ok: |
@@ -1689,7 +1651,7 @@ checks_ok: | |||
1689 | page->freelist = object; | 1651 | page->freelist = object; |
1690 | page->inuse--; | 1652 | page->inuse--; |
1691 | 1653 | ||
1692 | if (unlikely(SlabFrozen(page))) { | 1654 | if (unlikely(PageSlubFrozen(page))) { |
1693 | stat(c, FREE_FROZEN); | 1655 | stat(c, FREE_FROZEN); |
1694 | goto out_unlock; | 1656 | goto out_unlock; |
1695 | } | 1657 | } |
@@ -1951,13 +1913,26 @@ static void init_kmem_cache_cpu(struct kmem_cache *s, | |||
1951 | #endif | 1913 | #endif |
1952 | } | 1914 | } |
1953 | 1915 | ||
1954 | static void init_kmem_cache_node(struct kmem_cache_node *n) | 1916 | static void |
1917 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | ||
1955 | { | 1918 | { |
1956 | n->nr_partial = 0; | 1919 | n->nr_partial = 0; |
1920 | |||
1921 | /* | ||
1922 | * The larger the object size is, the more pages we want on the partial | ||
1923 | * list to avoid pounding the page allocator excessively. | ||
1924 | */ | ||
1925 | n->min_partial = ilog2(s->size); | ||
1926 | if (n->min_partial < MIN_PARTIAL) | ||
1927 | n->min_partial = MIN_PARTIAL; | ||
1928 | else if (n->min_partial > MAX_PARTIAL) | ||
1929 | n->min_partial = MAX_PARTIAL; | ||
1930 | |||
1957 | spin_lock_init(&n->list_lock); | 1931 | spin_lock_init(&n->list_lock); |
1958 | INIT_LIST_HEAD(&n->partial); | 1932 | INIT_LIST_HEAD(&n->partial); |
1959 | #ifdef CONFIG_SLUB_DEBUG | 1933 | #ifdef CONFIG_SLUB_DEBUG |
1960 | atomic_long_set(&n->nr_slabs, 0); | 1934 | atomic_long_set(&n->nr_slabs, 0); |
1935 | atomic_long_set(&n->total_objects, 0); | ||
1961 | INIT_LIST_HEAD(&n->full); | 1936 | INIT_LIST_HEAD(&n->full); |
1962 | #endif | 1937 | #endif |
1963 | } | 1938 | } |
@@ -2125,7 +2100,7 @@ static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, | |||
2125 | init_object(kmalloc_caches, n, 1); | 2100 | init_object(kmalloc_caches, n, 1); |
2126 | init_tracking(kmalloc_caches, n); | 2101 | init_tracking(kmalloc_caches, n); |
2127 | #endif | 2102 | #endif |
2128 | init_kmem_cache_node(n); | 2103 | init_kmem_cache_node(n, kmalloc_caches); |
2129 | inc_slabs_node(kmalloc_caches, node, page->objects); | 2104 | inc_slabs_node(kmalloc_caches, node, page->objects); |
2130 | 2105 | ||
2131 | /* | 2106 | /* |
@@ -2182,7 +2157,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |||
2182 | 2157 | ||
2183 | } | 2158 | } |
2184 | s->node[node] = n; | 2159 | s->node[node] = n; |
2185 | init_kmem_cache_node(n); | 2160 | init_kmem_cache_node(n, s); |
2186 | } | 2161 | } |
2187 | return 1; | 2162 | return 1; |
2188 | } | 2163 | } |
@@ -2193,7 +2168,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s) | |||
2193 | 2168 | ||
2194 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 2169 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) |
2195 | { | 2170 | { |
2196 | init_kmem_cache_node(&s->local_node); | 2171 | init_kmem_cache_node(&s->local_node, s); |
2197 | return 1; | 2172 | return 1; |
2198 | } | 2173 | } |
2199 | #endif | 2174 | #endif |
@@ -2324,7 +2299,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) | |||
2324 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | 2299 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2325 | const char *name, size_t size, | 2300 | const char *name, size_t size, |
2326 | size_t align, unsigned long flags, | 2301 | size_t align, unsigned long flags, |
2327 | void (*ctor)(struct kmem_cache *, void *)) | 2302 | void (*ctor)(void *)) |
2328 | { | 2303 | { |
2329 | memset(s, 0, kmem_size); | 2304 | memset(s, 0, kmem_size); |
2330 | s->name = name; | 2305 | s->name = name; |
@@ -2338,7 +2313,7 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | |||
2338 | 2313 | ||
2339 | s->refcount = 1; | 2314 | s->refcount = 1; |
2340 | #ifdef CONFIG_NUMA | 2315 | #ifdef CONFIG_NUMA |
2341 | s->remote_node_defrag_ratio = 100; | 2316 | s->remote_node_defrag_ratio = 1000; |
2342 | #endif | 2317 | #endif |
2343 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) | 2318 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) |
2344 | goto error; | 2319 | goto error; |
@@ -2753,7 +2728,6 @@ size_t ksize(const void *object) | |||
2753 | */ | 2728 | */ |
2754 | return s->size; | 2729 | return s->size; |
2755 | } | 2730 | } |
2756 | EXPORT_SYMBOL(ksize); | ||
2757 | 2731 | ||
2758 | void kfree(const void *x) | 2732 | void kfree(const void *x) |
2759 | { | 2733 | { |
@@ -2765,6 +2739,7 @@ void kfree(const void *x) | |||
2765 | 2739 | ||
2766 | page = virt_to_head_page(x); | 2740 | page = virt_to_head_page(x); |
2767 | if (unlikely(!PageSlab(page))) { | 2741 | if (unlikely(!PageSlab(page))) { |
2742 | BUG_ON(!PageCompound(page)); | ||
2768 | put_page(page); | 2743 | put_page(page); |
2769 | return; | 2744 | return; |
2770 | } | 2745 | } |
@@ -2927,7 +2902,7 @@ static int slab_mem_going_online_callback(void *arg) | |||
2927 | ret = -ENOMEM; | 2902 | ret = -ENOMEM; |
2928 | goto out; | 2903 | goto out; |
2929 | } | 2904 | } |
2930 | init_kmem_cache_node(n); | 2905 | init_kmem_cache_node(n, s); |
2931 | s->node[nid] = n; | 2906 | s->node[nid] = n; |
2932 | } | 2907 | } |
2933 | out: | 2908 | out: |
@@ -2995,8 +2970,6 @@ void __init kmem_cache_init(void) | |||
2995 | create_kmalloc_cache(&kmalloc_caches[1], | 2970 | create_kmalloc_cache(&kmalloc_caches[1], |
2996 | "kmalloc-96", 96, GFP_KERNEL); | 2971 | "kmalloc-96", 96, GFP_KERNEL); |
2997 | caches++; | 2972 | caches++; |
2998 | } | ||
2999 | if (KMALLOC_MIN_SIZE <= 128) { | ||
3000 | create_kmalloc_cache(&kmalloc_caches[2], | 2973 | create_kmalloc_cache(&kmalloc_caches[2], |
3001 | "kmalloc-192", 192, GFP_KERNEL); | 2974 | "kmalloc-192", 192, GFP_KERNEL); |
3002 | caches++; | 2975 | caches++; |
@@ -3026,6 +2999,16 @@ void __init kmem_cache_init(void) | |||
3026 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) | 2999 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) |
3027 | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; | 3000 | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; |
3028 | 3001 | ||
3002 | if (KMALLOC_MIN_SIZE == 128) { | ||
3003 | /* | ||
3004 | * The 192 byte sized cache is not used if the alignment | ||
3005 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | ||
3006 | * instead. | ||
3007 | */ | ||
3008 | for (i = 128 + 8; i <= 192; i += 8) | ||
3009 | size_index[(i - 1) / 8] = 8; | ||
3010 | } | ||
3011 | |||
3029 | slab_state = UP; | 3012 | slab_state = UP; |
3030 | 3013 | ||
3031 | /* Provide the correct kmalloc names now that the caches are up */ | 3014 | /* Provide the correct kmalloc names now that the caches are up */ |
@@ -3071,7 +3054,7 @@ static int slab_unmergeable(struct kmem_cache *s) | |||
3071 | 3054 | ||
3072 | static struct kmem_cache *find_mergeable(size_t size, | 3055 | static struct kmem_cache *find_mergeable(size_t size, |
3073 | size_t align, unsigned long flags, const char *name, | 3056 | size_t align, unsigned long flags, const char *name, |
3074 | void (*ctor)(struct kmem_cache *, void *)) | 3057 | void (*ctor)(void *)) |
3075 | { | 3058 | { |
3076 | struct kmem_cache *s; | 3059 | struct kmem_cache *s; |
3077 | 3060 | ||
@@ -3111,8 +3094,7 @@ static struct kmem_cache *find_mergeable(size_t size, | |||
3111 | } | 3094 | } |
3112 | 3095 | ||
3113 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 3096 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
3114 | size_t align, unsigned long flags, | 3097 | size_t align, unsigned long flags, void (*ctor)(void *)) |
3115 | void (*ctor)(struct kmem_cache *, void *)) | ||
3116 | { | 3098 | { |
3117 | struct kmem_cache *s; | 3099 | struct kmem_cache *s; |
3118 | 3100 | ||
@@ -3315,12 +3297,12 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page, | |||
3315 | s->name, page); | 3297 | s->name, page); |
3316 | 3298 | ||
3317 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | 3299 | if (s->flags & DEBUG_DEFAULT_FLAGS) { |
3318 | if (!SlabDebug(page)) | 3300 | if (!PageSlubDebug(page)) |
3319 | printk(KERN_ERR "SLUB %s: SlabDebug not set " | 3301 | printk(KERN_ERR "SLUB %s: SlubDebug not set " |
3320 | "on slab 0x%p\n", s->name, page); | 3302 | "on slab 0x%p\n", s->name, page); |
3321 | } else { | 3303 | } else { |
3322 | if (SlabDebug(page)) | 3304 | if (PageSlubDebug(page)) |
3323 | printk(KERN_ERR "SLUB %s: SlabDebug set on " | 3305 | printk(KERN_ERR "SLUB %s: SlubDebug set on " |
3324 | "slab 0x%p\n", s->name, page); | 3306 | "slab 0x%p\n", s->name, page); |
3325 | } | 3307 | } |
3326 | } | 3308 | } |
@@ -4077,7 +4059,7 @@ static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | |||
4077 | if (err) | 4059 | if (err) |
4078 | return err; | 4060 | return err; |
4079 | 4061 | ||
4080 | if (ratio < 100) | 4062 | if (ratio <= 100) |
4081 | s->remote_node_defrag_ratio = ratio * 10; | 4063 | s->remote_node_defrag_ratio = ratio * 10; |
4082 | 4064 | ||
4083 | return length; | 4065 | return length; |
diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c index 99c4f36eb8a3..a91b5f8fcaf6 100644 --- a/mm/sparse-vmemmap.c +++ b/mm/sparse-vmemmap.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /* | 1 | /* |
2 | * Virtual Memory Map support | 2 | * Virtual Memory Map support |
3 | * | 3 | * |
4 | * (C) 2007 sgi. Christoph Lameter <clameter@sgi.com>. | 4 | * (C) 2007 sgi. Christoph Lameter. |
5 | * | 5 | * |
6 | * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, | 6 | * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, |
7 | * virt_to_page, page_address() to be implemented as a base offset | 7 | * virt_to_page, page_address() to be implemented as a base offset |
diff --git a/mm/sparse.c b/mm/sparse.c index 36511c7b5e2c..39db301b920d 100644 --- a/mm/sparse.c +++ b/mm/sparse.c | |||
@@ -147,22 +147,41 @@ static inline int sparse_early_nid(struct mem_section *section) | |||
147 | return (section->section_mem_map >> SECTION_NID_SHIFT); | 147 | return (section->section_mem_map >> SECTION_NID_SHIFT); |
148 | } | 148 | } |
149 | 149 | ||
150 | /* Record a memory area against a node. */ | 150 | /* Validate the physical addressing limitations of the model */ |
151 | void __init memory_present(int nid, unsigned long start, unsigned long end) | 151 | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, |
152 | unsigned long *end_pfn) | ||
152 | { | 153 | { |
153 | unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); | 154 | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); |
154 | unsigned long pfn; | ||
155 | 155 | ||
156 | /* | 156 | /* |
157 | * Sanity checks - do not allow an architecture to pass | 157 | * Sanity checks - do not allow an architecture to pass |
158 | * in larger pfns than the maximum scope of sparsemem: | 158 | * in larger pfns than the maximum scope of sparsemem: |
159 | */ | 159 | */ |
160 | if (start >= max_arch_pfn) | 160 | if (*start_pfn > max_sparsemem_pfn) { |
161 | return; | 161 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
162 | if (end >= max_arch_pfn) | 162 | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
163 | end = max_arch_pfn; | 163 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
164 | WARN_ON_ONCE(1); | ||
165 | *start_pfn = max_sparsemem_pfn; | ||
166 | *end_pfn = max_sparsemem_pfn; | ||
167 | } | ||
168 | |||
169 | if (*end_pfn > max_sparsemem_pfn) { | ||
170 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | ||
171 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | ||
172 | *start_pfn, *end_pfn, max_sparsemem_pfn); | ||
173 | WARN_ON_ONCE(1); | ||
174 | *end_pfn = max_sparsemem_pfn; | ||
175 | } | ||
176 | } | ||
177 | |||
178 | /* Record a memory area against a node. */ | ||
179 | void __init memory_present(int nid, unsigned long start, unsigned long end) | ||
180 | { | ||
181 | unsigned long pfn; | ||
164 | 182 | ||
165 | start &= PAGE_SECTION_MASK; | 183 | start &= PAGE_SECTION_MASK; |
184 | mminit_validate_memmodel_limits(&start, &end); | ||
166 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { | 185 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
167 | unsigned long section = pfn_to_section_nr(pfn); | 186 | unsigned long section = pfn_to_section_nr(pfn); |
168 | struct mem_section *ms; | 187 | struct mem_section *ms; |
@@ -187,6 +206,7 @@ unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, | |||
187 | unsigned long pfn; | 206 | unsigned long pfn; |
188 | unsigned long nr_pages = 0; | 207 | unsigned long nr_pages = 0; |
189 | 208 | ||
209 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); | ||
190 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { | 210 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
191 | if (nid != early_pfn_to_nid(pfn)) | 211 | if (nid != early_pfn_to_nid(pfn)) |
192 | continue; | 212 | continue; |
@@ -248,16 +268,92 @@ static unsigned long *__kmalloc_section_usemap(void) | |||
248 | } | 268 | } |
249 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 269 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
250 | 270 | ||
271 | #ifdef CONFIG_MEMORY_HOTREMOVE | ||
272 | static unsigned long * __init | ||
273 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | ||
274 | { | ||
275 | unsigned long section_nr; | ||
276 | |||
277 | /* | ||
278 | * A page may contain usemaps for other sections preventing the | ||
279 | * page being freed and making a section unremovable while | ||
280 | * other sections referencing the usemap retmain active. Similarly, | ||
281 | * a pgdat can prevent a section being removed. If section A | ||
282 | * contains a pgdat and section B contains the usemap, both | ||
283 | * sections become inter-dependent. This allocates usemaps | ||
284 | * from the same section as the pgdat where possible to avoid | ||
285 | * this problem. | ||
286 | */ | ||
287 | section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | ||
288 | return alloc_bootmem_section(usemap_size(), section_nr); | ||
289 | } | ||
290 | |||
291 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | ||
292 | { | ||
293 | unsigned long usemap_snr, pgdat_snr; | ||
294 | static unsigned long old_usemap_snr = NR_MEM_SECTIONS; | ||
295 | static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; | ||
296 | struct pglist_data *pgdat = NODE_DATA(nid); | ||
297 | int usemap_nid; | ||
298 | |||
299 | usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); | ||
300 | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | ||
301 | if (usemap_snr == pgdat_snr) | ||
302 | return; | ||
303 | |||
304 | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) | ||
305 | /* skip redundant message */ | ||
306 | return; | ||
307 | |||
308 | old_usemap_snr = usemap_snr; | ||
309 | old_pgdat_snr = pgdat_snr; | ||
310 | |||
311 | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); | ||
312 | if (usemap_nid != nid) { | ||
313 | printk(KERN_INFO | ||
314 | "node %d must be removed before remove section %ld\n", | ||
315 | nid, usemap_snr); | ||
316 | return; | ||
317 | } | ||
318 | /* | ||
319 | * There is a circular dependency. | ||
320 | * Some platforms allow un-removable section because they will just | ||
321 | * gather other removable sections for dynamic partitioning. | ||
322 | * Just notify un-removable section's number here. | ||
323 | */ | ||
324 | printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, | ||
325 | pgdat_snr, nid); | ||
326 | printk(KERN_CONT | ||
327 | " have a circular dependency on usemap and pgdat allocations\n"); | ||
328 | } | ||
329 | #else | ||
330 | static unsigned long * __init | ||
331 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | ||
332 | { | ||
333 | return NULL; | ||
334 | } | ||
335 | |||
336 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | ||
337 | { | ||
338 | } | ||
339 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | ||
340 | |||
251 | static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) | 341 | static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) |
252 | { | 342 | { |
253 | unsigned long *usemap; | 343 | unsigned long *usemap; |
254 | struct mem_section *ms = __nr_to_section(pnum); | 344 | struct mem_section *ms = __nr_to_section(pnum); |
255 | int nid = sparse_early_nid(ms); | 345 | int nid = sparse_early_nid(ms); |
256 | 346 | ||
257 | usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); | 347 | usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid)); |
258 | if (usemap) | 348 | if (usemap) |
259 | return usemap; | 349 | return usemap; |
260 | 350 | ||
351 | usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); | ||
352 | if (usemap) { | ||
353 | check_usemap_section_nr(nid, usemap); | ||
354 | return usemap; | ||
355 | } | ||
356 | |||
261 | /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ | 357 | /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ |
262 | nid = 0; | 358 | nid = 0; |
263 | 359 | ||
@@ -280,7 +376,7 @@ struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) | |||
280 | } | 376 | } |
281 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ | 377 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ |
282 | 378 | ||
283 | struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) | 379 | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) |
284 | { | 380 | { |
285 | struct page *map; | 381 | struct page *map; |
286 | struct mem_section *ms = __nr_to_section(pnum); | 382 | struct mem_section *ms = __nr_to_section(pnum); |
@@ -34,9 +34,9 @@ | |||
34 | /* How many pages do we try to swap or page in/out together? */ | 34 | /* How many pages do we try to swap or page in/out together? */ |
35 | int page_cluster; | 35 | int page_cluster; |
36 | 36 | ||
37 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, }; | 37 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs); |
38 | static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, }; | 38 | static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs); |
39 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, }; | 39 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); |
40 | 40 | ||
41 | /* | 41 | /* |
42 | * This path almost never happens for VM activity - pages are normally | 42 | * This path almost never happens for VM activity - pages are normally |
@@ -278,9 +278,10 @@ int lru_add_drain_all(void) | |||
278 | * Avoid taking zone->lru_lock if possible, but if it is taken, retain it | 278 | * Avoid taking zone->lru_lock if possible, but if it is taken, retain it |
279 | * for the remainder of the operation. | 279 | * for the remainder of the operation. |
280 | * | 280 | * |
281 | * The locking in this function is against shrink_cache(): we recheck the | 281 | * The locking in this function is against shrink_inactive_list(): we recheck |
282 | * page count inside the lock to see whether shrink_cache grabbed the page | 282 | * the page count inside the lock to see whether shrink_inactive_list() |
283 | * via the LRU. If it did, give up: shrink_cache will free it. | 283 | * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() |
284 | * will free it. | ||
284 | */ | 285 | */ |
285 | void release_pages(struct page **pages, int nr, int cold) | 286 | void release_pages(struct page **pages, int nr, int cold) |
286 | { | 287 | { |
@@ -443,7 +444,7 @@ void pagevec_strip(struct pagevec *pvec) | |||
443 | for (i = 0; i < pagevec_count(pvec); i++) { | 444 | for (i = 0; i < pagevec_count(pvec); i++) { |
444 | struct page *page = pvec->pages[i]; | 445 | struct page *page = pvec->pages[i]; |
445 | 446 | ||
446 | if (PagePrivate(page) && !TestSetPageLocked(page)) { | 447 | if (PagePrivate(page) && trylock_page(page)) { |
447 | if (PagePrivate(page)) | 448 | if (PagePrivate(page)) |
448 | try_to_release_page(page, 0); | 449 | try_to_release_page(page, 0); |
449 | unlock_page(page); | 450 | unlock_page(page); |
@@ -493,7 +494,7 @@ EXPORT_SYMBOL(pagevec_lookup_tag); | |||
493 | */ | 494 | */ |
494 | #define ACCT_THRESHOLD max(16, NR_CPUS * 2) | 495 | #define ACCT_THRESHOLD max(16, NR_CPUS * 2) |
495 | 496 | ||
496 | static DEFINE_PER_CPU(long, committed_space) = 0; | 497 | static DEFINE_PER_CPU(long, committed_space); |
497 | 498 | ||
498 | void vm_acct_memory(long pages) | 499 | void vm_acct_memory(long pages) |
499 | { | 500 | { |
diff --git a/mm/swap_state.c b/mm/swap_state.c index d8aadaf2a0ba..797c3831cbec 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c | |||
@@ -39,7 +39,7 @@ static struct backing_dev_info swap_backing_dev_info = { | |||
39 | 39 | ||
40 | struct address_space swapper_space = { | 40 | struct address_space swapper_space = { |
41 | .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), | 41 | .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), |
42 | .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock), | 42 | .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), |
43 | .a_ops = &swap_aops, | 43 | .a_ops = &swap_aops, |
44 | .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), | 44 | .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), |
45 | .backing_dev_info = &swap_backing_dev_info, | 45 | .backing_dev_info = &swap_backing_dev_info, |
@@ -56,15 +56,16 @@ static struct { | |||
56 | 56 | ||
57 | void show_swap_cache_info(void) | 57 | void show_swap_cache_info(void) |
58 | { | 58 | { |
59 | printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n", | 59 | printk("%lu pages in swap cache\n", total_swapcache_pages); |
60 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | ||
60 | swap_cache_info.add_total, swap_cache_info.del_total, | 61 | swap_cache_info.add_total, swap_cache_info.del_total, |
61 | swap_cache_info.find_success, swap_cache_info.find_total); | 62 | swap_cache_info.find_success, swap_cache_info.find_total); |
62 | printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10)); | 63 | printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); |
63 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 64 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
64 | } | 65 | } |
65 | 66 | ||
66 | /* | 67 | /* |
67 | * add_to_swap_cache resembles add_to_page_cache on swapper_space, | 68 | * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
68 | * but sets SwapCache flag and private instead of mapping and index. | 69 | * but sets SwapCache flag and private instead of mapping and index. |
69 | */ | 70 | */ |
70 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 71 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) |
@@ -76,19 +77,26 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | |||
76 | BUG_ON(PagePrivate(page)); | 77 | BUG_ON(PagePrivate(page)); |
77 | error = radix_tree_preload(gfp_mask); | 78 | error = radix_tree_preload(gfp_mask); |
78 | if (!error) { | 79 | if (!error) { |
79 | write_lock_irq(&swapper_space.tree_lock); | 80 | page_cache_get(page); |
81 | SetPageSwapCache(page); | ||
82 | set_page_private(page, entry.val); | ||
83 | |||
84 | spin_lock_irq(&swapper_space.tree_lock); | ||
80 | error = radix_tree_insert(&swapper_space.page_tree, | 85 | error = radix_tree_insert(&swapper_space.page_tree, |
81 | entry.val, page); | 86 | entry.val, page); |
82 | if (!error) { | 87 | if (likely(!error)) { |
83 | page_cache_get(page); | ||
84 | SetPageSwapCache(page); | ||
85 | set_page_private(page, entry.val); | ||
86 | total_swapcache_pages++; | 88 | total_swapcache_pages++; |
87 | __inc_zone_page_state(page, NR_FILE_PAGES); | 89 | __inc_zone_page_state(page, NR_FILE_PAGES); |
88 | INC_CACHE_INFO(add_total); | 90 | INC_CACHE_INFO(add_total); |
89 | } | 91 | } |
90 | write_unlock_irq(&swapper_space.tree_lock); | 92 | spin_unlock_irq(&swapper_space.tree_lock); |
91 | radix_tree_preload_end(); | 93 | radix_tree_preload_end(); |
94 | |||
95 | if (unlikely(error)) { | ||
96 | set_page_private(page, 0UL); | ||
97 | ClearPageSwapCache(page); | ||
98 | page_cache_release(page); | ||
99 | } | ||
92 | } | 100 | } |
93 | return error; | 101 | return error; |
94 | } | 102 | } |
@@ -175,9 +183,9 @@ void delete_from_swap_cache(struct page *page) | |||
175 | 183 | ||
176 | entry.val = page_private(page); | 184 | entry.val = page_private(page); |
177 | 185 | ||
178 | write_lock_irq(&swapper_space.tree_lock); | 186 | spin_lock_irq(&swapper_space.tree_lock); |
179 | __delete_from_swap_cache(page); | 187 | __delete_from_swap_cache(page); |
180 | write_unlock_irq(&swapper_space.tree_lock); | 188 | spin_unlock_irq(&swapper_space.tree_lock); |
181 | 189 | ||
182 | swap_free(entry); | 190 | swap_free(entry); |
183 | page_cache_release(page); | 191 | page_cache_release(page); |
@@ -193,7 +201,7 @@ void delete_from_swap_cache(struct page *page) | |||
193 | */ | 201 | */ |
194 | static inline void free_swap_cache(struct page *page) | 202 | static inline void free_swap_cache(struct page *page) |
195 | { | 203 | { |
196 | if (PageSwapCache(page) && !TestSetPageLocked(page)) { | 204 | if (PageSwapCache(page) && trylock_page(page)) { |
197 | remove_exclusive_swap_page(page); | 205 | remove_exclusive_swap_page(page); |
198 | unlock_page(page); | 206 | unlock_page(page); |
199 | } | 207 | } |
@@ -294,9 +302,9 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |||
294 | * re-using the just freed swap entry for an existing page. | 302 | * re-using the just freed swap entry for an existing page. |
295 | * May fail (-ENOMEM) if radix-tree node allocation failed. | 303 | * May fail (-ENOMEM) if radix-tree node allocation failed. |
296 | */ | 304 | */ |
297 | SetPageLocked(new_page); | 305 | set_page_locked(new_page); |
298 | err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); | 306 | err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); |
299 | if (!err) { | 307 | if (likely(!err)) { |
300 | /* | 308 | /* |
301 | * Initiate read into locked page and return. | 309 | * Initiate read into locked page and return. |
302 | */ | 310 | */ |
@@ -304,7 +312,7 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |||
304 | swap_readpage(NULL, new_page); | 312 | swap_readpage(NULL, new_page); |
305 | return new_page; | 313 | return new_page; |
306 | } | 314 | } |
307 | ClearPageLocked(new_page); | 315 | clear_page_locked(new_page); |
308 | swap_free(entry); | 316 | swap_free(entry); |
309 | } while (err != -ENOMEM); | 317 | } while (err != -ENOMEM); |
310 | 318 | ||
diff --git a/mm/swapfile.c b/mm/swapfile.c index bd1bb5920306..1e330f2998fa 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
@@ -33,17 +33,18 @@ | |||
33 | #include <asm/tlbflush.h> | 33 | #include <asm/tlbflush.h> |
34 | #include <linux/swapops.h> | 34 | #include <linux/swapops.h> |
35 | 35 | ||
36 | DEFINE_SPINLOCK(swap_lock); | 36 | static DEFINE_SPINLOCK(swap_lock); |
37 | unsigned int nr_swapfiles; | 37 | static unsigned int nr_swapfiles; |
38 | long total_swap_pages; | 38 | long total_swap_pages; |
39 | static int swap_overflow; | 39 | static int swap_overflow; |
40 | static int least_priority; | ||
40 | 41 | ||
41 | static const char Bad_file[] = "Bad swap file entry "; | 42 | static const char Bad_file[] = "Bad swap file entry "; |
42 | static const char Unused_file[] = "Unused swap file entry "; | 43 | static const char Unused_file[] = "Unused swap file entry "; |
43 | static const char Bad_offset[] = "Bad swap offset entry "; | 44 | static const char Bad_offset[] = "Bad swap offset entry "; |
44 | static const char Unused_offset[] = "Unused swap offset entry "; | 45 | static const char Unused_offset[] = "Unused swap offset entry "; |
45 | 46 | ||
46 | struct swap_list_t swap_list = {-1, -1}; | 47 | static struct swap_list_t swap_list = {-1, -1}; |
47 | 48 | ||
48 | static struct swap_info_struct swap_info[MAX_SWAPFILES]; | 49 | static struct swap_info_struct swap_info[MAX_SWAPFILES]; |
49 | 50 | ||
@@ -368,13 +369,13 @@ int remove_exclusive_swap_page(struct page *page) | |||
368 | retval = 0; | 369 | retval = 0; |
369 | if (p->swap_map[swp_offset(entry)] == 1) { | 370 | if (p->swap_map[swp_offset(entry)] == 1) { |
370 | /* Recheck the page count with the swapcache lock held.. */ | 371 | /* Recheck the page count with the swapcache lock held.. */ |
371 | write_lock_irq(&swapper_space.tree_lock); | 372 | spin_lock_irq(&swapper_space.tree_lock); |
372 | if ((page_count(page) == 2) && !PageWriteback(page)) { | 373 | if ((page_count(page) == 2) && !PageWriteback(page)) { |
373 | __delete_from_swap_cache(page); | 374 | __delete_from_swap_cache(page); |
374 | SetPageDirty(page); | 375 | SetPageDirty(page); |
375 | retval = 1; | 376 | retval = 1; |
376 | } | 377 | } |
377 | write_unlock_irq(&swapper_space.tree_lock); | 378 | spin_unlock_irq(&swapper_space.tree_lock); |
378 | } | 379 | } |
379 | spin_unlock(&swap_lock); | 380 | spin_unlock(&swap_lock); |
380 | 381 | ||
@@ -402,7 +403,7 @@ void free_swap_and_cache(swp_entry_t entry) | |||
402 | if (p) { | 403 | if (p) { |
403 | if (swap_entry_free(p, swp_offset(entry)) == 1) { | 404 | if (swap_entry_free(p, swp_offset(entry)) == 1) { |
404 | page = find_get_page(&swapper_space, entry.val); | 405 | page = find_get_page(&swapper_space, entry.val); |
405 | if (page && unlikely(TestSetPageLocked(page))) { | 406 | if (page && unlikely(!trylock_page(page))) { |
406 | page_cache_release(page); | 407 | page_cache_release(page); |
407 | page = NULL; | 408 | page = NULL; |
408 | } | 409 | } |
@@ -655,8 +656,8 @@ static int unuse_mm(struct mm_struct *mm, | |||
655 | 656 | ||
656 | if (!down_read_trylock(&mm->mmap_sem)) { | 657 | if (!down_read_trylock(&mm->mmap_sem)) { |
657 | /* | 658 | /* |
658 | * Activate page so shrink_cache is unlikely to unmap its | 659 | * Activate page so shrink_inactive_list is unlikely to unmap |
659 | * ptes while lock is dropped, so swapoff can make progress. | 660 | * its ptes while lock is dropped, so swapoff can make progress. |
660 | */ | 661 | */ |
661 | activate_page(page); | 662 | activate_page(page); |
662 | unlock_page(page); | 663 | unlock_page(page); |
@@ -1260,6 +1261,11 @@ asmlinkage long sys_swapoff(const char __user * specialfile) | |||
1260 | /* just pick something that's safe... */ | 1261 | /* just pick something that's safe... */ |
1261 | swap_list.next = swap_list.head; | 1262 | swap_list.next = swap_list.head; |
1262 | } | 1263 | } |
1264 | if (p->prio < 0) { | ||
1265 | for (i = p->next; i >= 0; i = swap_info[i].next) | ||
1266 | swap_info[i].prio = p->prio--; | ||
1267 | least_priority++; | ||
1268 | } | ||
1263 | nr_swap_pages -= p->pages; | 1269 | nr_swap_pages -= p->pages; |
1264 | total_swap_pages -= p->pages; | 1270 | total_swap_pages -= p->pages; |
1265 | p->flags &= ~SWP_WRITEOK; | 1271 | p->flags &= ~SWP_WRITEOK; |
@@ -1272,9 +1278,14 @@ asmlinkage long sys_swapoff(const char __user * specialfile) | |||
1272 | if (err) { | 1278 | if (err) { |
1273 | /* re-insert swap space back into swap_list */ | 1279 | /* re-insert swap space back into swap_list */ |
1274 | spin_lock(&swap_lock); | 1280 | spin_lock(&swap_lock); |
1275 | for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) | 1281 | if (p->prio < 0) |
1282 | p->prio = --least_priority; | ||
1283 | prev = -1; | ||
1284 | for (i = swap_list.head; i >= 0; i = swap_info[i].next) { | ||
1276 | if (p->prio >= swap_info[i].prio) | 1285 | if (p->prio >= swap_info[i].prio) |
1277 | break; | 1286 | break; |
1287 | prev = i; | ||
1288 | } | ||
1278 | p->next = i; | 1289 | p->next = i; |
1279 | if (prev < 0) | 1290 | if (prev < 0) |
1280 | swap_list.head = swap_list.next = p - swap_info; | 1291 | swap_list.head = swap_list.next = p - swap_info; |
@@ -1447,7 +1458,6 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1447 | unsigned int type; | 1458 | unsigned int type; |
1448 | int i, prev; | 1459 | int i, prev; |
1449 | int error; | 1460 | int error; |
1450 | static int least_priority; | ||
1451 | union swap_header *swap_header = NULL; | 1461 | union swap_header *swap_header = NULL; |
1452 | int swap_header_version; | 1462 | int swap_header_version; |
1453 | unsigned int nr_good_pages = 0; | 1463 | unsigned int nr_good_pages = 0; |
@@ -1455,7 +1465,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1455 | sector_t span; | 1465 | sector_t span; |
1456 | unsigned long maxpages = 1; | 1466 | unsigned long maxpages = 1; |
1457 | int swapfilesize; | 1467 | int swapfilesize; |
1458 | unsigned short *swap_map; | 1468 | unsigned short *swap_map = NULL; |
1459 | struct page *page = NULL; | 1469 | struct page *page = NULL; |
1460 | struct inode *inode = NULL; | 1470 | struct inode *inode = NULL; |
1461 | int did_down = 0; | 1471 | int did_down = 0; |
@@ -1474,22 +1484,10 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1474 | } | 1484 | } |
1475 | if (type >= nr_swapfiles) | 1485 | if (type >= nr_swapfiles) |
1476 | nr_swapfiles = type+1; | 1486 | nr_swapfiles = type+1; |
1487 | memset(p, 0, sizeof(*p)); | ||
1477 | INIT_LIST_HEAD(&p->extent_list); | 1488 | INIT_LIST_HEAD(&p->extent_list); |
1478 | p->flags = SWP_USED; | 1489 | p->flags = SWP_USED; |
1479 | p->swap_file = NULL; | ||
1480 | p->old_block_size = 0; | ||
1481 | p->swap_map = NULL; | ||
1482 | p->lowest_bit = 0; | ||
1483 | p->highest_bit = 0; | ||
1484 | p->cluster_nr = 0; | ||
1485 | p->inuse_pages = 0; | ||
1486 | p->next = -1; | 1490 | p->next = -1; |
1487 | if (swap_flags & SWAP_FLAG_PREFER) { | ||
1488 | p->prio = | ||
1489 | (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; | ||
1490 | } else { | ||
1491 | p->prio = --least_priority; | ||
1492 | } | ||
1493 | spin_unlock(&swap_lock); | 1491 | spin_unlock(&swap_lock); |
1494 | name = getname(specialfile); | 1492 | name = getname(specialfile); |
1495 | error = PTR_ERR(name); | 1493 | error = PTR_ERR(name); |
@@ -1632,19 +1630,20 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1632 | goto bad_swap; | 1630 | goto bad_swap; |
1633 | 1631 | ||
1634 | /* OK, set up the swap map and apply the bad block list */ | 1632 | /* OK, set up the swap map and apply the bad block list */ |
1635 | if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { | 1633 | swap_map = vmalloc(maxpages * sizeof(short)); |
1634 | if (!swap_map) { | ||
1636 | error = -ENOMEM; | 1635 | error = -ENOMEM; |
1637 | goto bad_swap; | 1636 | goto bad_swap; |
1638 | } | 1637 | } |
1639 | 1638 | ||
1640 | error = 0; | 1639 | error = 0; |
1641 | memset(p->swap_map, 0, maxpages * sizeof(short)); | 1640 | memset(swap_map, 0, maxpages * sizeof(short)); |
1642 | for (i = 0; i < swap_header->info.nr_badpages; i++) { | 1641 | for (i = 0; i < swap_header->info.nr_badpages; i++) { |
1643 | int page_nr = swap_header->info.badpages[i]; | 1642 | int page_nr = swap_header->info.badpages[i]; |
1644 | if (page_nr <= 0 || page_nr >= swap_header->info.last_page) | 1643 | if (page_nr <= 0 || page_nr >= swap_header->info.last_page) |
1645 | error = -EINVAL; | 1644 | error = -EINVAL; |
1646 | else | 1645 | else |
1647 | p->swap_map[page_nr] = SWAP_MAP_BAD; | 1646 | swap_map[page_nr] = SWAP_MAP_BAD; |
1648 | } | 1647 | } |
1649 | nr_good_pages = swap_header->info.last_page - | 1648 | nr_good_pages = swap_header->info.last_page - |
1650 | swap_header->info.nr_badpages - | 1649 | swap_header->info.nr_badpages - |
@@ -1654,7 +1653,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1654 | } | 1653 | } |
1655 | 1654 | ||
1656 | if (nr_good_pages) { | 1655 | if (nr_good_pages) { |
1657 | p->swap_map[0] = SWAP_MAP_BAD; | 1656 | swap_map[0] = SWAP_MAP_BAD; |
1658 | p->max = maxpages; | 1657 | p->max = maxpages; |
1659 | p->pages = nr_good_pages; | 1658 | p->pages = nr_good_pages; |
1660 | nr_extents = setup_swap_extents(p, &span); | 1659 | nr_extents = setup_swap_extents(p, &span); |
@@ -1672,6 +1671,12 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) | |||
1672 | 1671 | ||
1673 | mutex_lock(&swapon_mutex); | 1672 | mutex_lock(&swapon_mutex); |
1674 | spin_lock(&swap_lock); | 1673 | spin_lock(&swap_lock); |
1674 | if (swap_flags & SWAP_FLAG_PREFER) | ||
1675 | p->prio = | ||
1676 | (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; | ||
1677 | else | ||
1678 | p->prio = --least_priority; | ||
1679 | p->swap_map = swap_map; | ||
1675 | p->flags = SWP_ACTIVE; | 1680 | p->flags = SWP_ACTIVE; |
1676 | nr_swap_pages += nr_good_pages; | 1681 | nr_swap_pages += nr_good_pages; |
1677 | total_swap_pages += nr_good_pages; | 1682 | total_swap_pages += nr_good_pages; |
@@ -1707,12 +1712,8 @@ bad_swap: | |||
1707 | destroy_swap_extents(p); | 1712 | destroy_swap_extents(p); |
1708 | bad_swap_2: | 1713 | bad_swap_2: |
1709 | spin_lock(&swap_lock); | 1714 | spin_lock(&swap_lock); |
1710 | swap_map = p->swap_map; | ||
1711 | p->swap_file = NULL; | 1715 | p->swap_file = NULL; |
1712 | p->swap_map = NULL; | ||
1713 | p->flags = 0; | 1716 | p->flags = 0; |
1714 | if (!(swap_flags & SWAP_FLAG_PREFER)) | ||
1715 | ++least_priority; | ||
1716 | spin_unlock(&swap_lock); | 1717 | spin_unlock(&swap_lock); |
1717 | vfree(swap_map); | 1718 | vfree(swap_map); |
1718 | if (swap_file) | 1719 | if (swap_file) |
diff --git a/mm/tiny-shmem.c b/mm/tiny-shmem.c index ae532f501943..8d7a27a6335c 100644 --- a/mm/tiny-shmem.c +++ b/mm/tiny-shmem.c | |||
@@ -65,31 +65,31 @@ struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) | |||
65 | if (!dentry) | 65 | if (!dentry) |
66 | goto put_memory; | 66 | goto put_memory; |
67 | 67 | ||
68 | error = -ENFILE; | ||
69 | file = get_empty_filp(); | ||
70 | if (!file) | ||
71 | goto put_dentry; | ||
72 | |||
68 | error = -ENOSPC; | 73 | error = -ENOSPC; |
69 | inode = ramfs_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0); | 74 | inode = ramfs_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0); |
70 | if (!inode) | 75 | if (!inode) |
71 | goto put_dentry; | 76 | goto close_file; |
72 | 77 | ||
73 | d_instantiate(dentry, inode); | 78 | d_instantiate(dentry, inode); |
74 | error = -ENFILE; | 79 | inode->i_size = size; |
75 | file = alloc_file(shm_mnt, dentry, FMODE_WRITE | FMODE_READ, | ||
76 | &ramfs_file_operations); | ||
77 | if (!file) | ||
78 | goto put_dentry; | ||
79 | |||
80 | inode->i_nlink = 0; /* It is unlinked */ | 80 | inode->i_nlink = 0; /* It is unlinked */ |
81 | init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ, | ||
82 | &ramfs_file_operations); | ||
81 | 83 | ||
82 | /* notify everyone as to the change of file size */ | 84 | #ifndef CONFIG_MMU |
83 | error = do_truncate(dentry, size, 0, file); | 85 | error = ramfs_nommu_expand_for_mapping(inode, size); |
84 | if (error < 0) | 86 | if (error) |
85 | goto close_file; | 87 | goto close_file; |
86 | 88 | #endif | |
87 | return file; | 89 | return file; |
88 | 90 | ||
89 | close_file: | 91 | close_file: |
90 | put_filp(file); | 92 | put_filp(file); |
91 | return ERR_PTR(error); | ||
92 | |||
93 | put_dentry: | 93 | put_dentry: |
94 | dput(dentry); | 94 | dput(dentry); |
95 | put_memory: | 95 | put_memory: |
diff --git a/mm/truncate.c b/mm/truncate.c index b8961cb63414..6650c1d878b4 100644 --- a/mm/truncate.c +++ b/mm/truncate.c | |||
@@ -104,7 +104,6 @@ truncate_complete_page(struct address_space *mapping, struct page *page) | |||
104 | cancel_dirty_page(page, PAGE_CACHE_SIZE); | 104 | cancel_dirty_page(page, PAGE_CACHE_SIZE); |
105 | 105 | ||
106 | remove_from_page_cache(page); | 106 | remove_from_page_cache(page); |
107 | ClearPageUptodate(page); | ||
108 | ClearPageMappedToDisk(page); | 107 | ClearPageMappedToDisk(page); |
109 | page_cache_release(page); /* pagecache ref */ | 108 | page_cache_release(page); /* pagecache ref */ |
110 | } | 109 | } |
@@ -188,7 +187,7 @@ void truncate_inode_pages_range(struct address_space *mapping, | |||
188 | if (page_index > next) | 187 | if (page_index > next) |
189 | next = page_index; | 188 | next = page_index; |
190 | next++; | 189 | next++; |
191 | if (TestSetPageLocked(page)) | 190 | if (!trylock_page(page)) |
192 | continue; | 191 | continue; |
193 | if (PageWriteback(page)) { | 192 | if (PageWriteback(page)) { |
194 | unlock_page(page); | 193 | unlock_page(page); |
@@ -281,7 +280,7 @@ unsigned long __invalidate_mapping_pages(struct address_space *mapping, | |||
281 | pgoff_t index; | 280 | pgoff_t index; |
282 | int lock_failed; | 281 | int lock_failed; |
283 | 282 | ||
284 | lock_failed = TestSetPageLocked(page); | 283 | lock_failed = !trylock_page(page); |
285 | 284 | ||
286 | /* | 285 | /* |
287 | * We really shouldn't be looking at the ->index of an | 286 | * We really shouldn't be looking at the ->index of an |
@@ -349,18 +348,17 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) | |||
349 | if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) | 348 | if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) |
350 | return 0; | 349 | return 0; |
351 | 350 | ||
352 | write_lock_irq(&mapping->tree_lock); | 351 | spin_lock_irq(&mapping->tree_lock); |
353 | if (PageDirty(page)) | 352 | if (PageDirty(page)) |
354 | goto failed; | 353 | goto failed; |
355 | 354 | ||
356 | BUG_ON(PagePrivate(page)); | 355 | BUG_ON(PagePrivate(page)); |
357 | __remove_from_page_cache(page); | 356 | __remove_from_page_cache(page); |
358 | write_unlock_irq(&mapping->tree_lock); | 357 | spin_unlock_irq(&mapping->tree_lock); |
359 | ClearPageUptodate(page); | ||
360 | page_cache_release(page); /* pagecache ref */ | 358 | page_cache_release(page); /* pagecache ref */ |
361 | return 1; | 359 | return 1; |
362 | failed: | 360 | failed: |
363 | write_unlock_irq(&mapping->tree_lock); | 361 | spin_unlock_irq(&mapping->tree_lock); |
364 | return 0; | 362 | return 0; |
365 | } | 363 | } |
366 | 364 | ||
@@ -382,7 +380,7 @@ static int do_launder_page(struct address_space *mapping, struct page *page) | |||
382 | * Any pages which are found to be mapped into pagetables are unmapped prior to | 380 | * Any pages which are found to be mapped into pagetables are unmapped prior to |
383 | * invalidation. | 381 | * invalidation. |
384 | * | 382 | * |
385 | * Returns -EIO if any pages could not be invalidated. | 383 | * Returns -EBUSY if any pages could not be invalidated. |
386 | */ | 384 | */ |
387 | int invalidate_inode_pages2_range(struct address_space *mapping, | 385 | int invalidate_inode_pages2_range(struct address_space *mapping, |
388 | pgoff_t start, pgoff_t end) | 386 | pgoff_t start, pgoff_t end) |
@@ -442,7 +440,7 @@ int invalidate_inode_pages2_range(struct address_space *mapping, | |||
442 | ret2 = do_launder_page(mapping, page); | 440 | ret2 = do_launder_page(mapping, page); |
443 | if (ret2 == 0) { | 441 | if (ret2 == 0) { |
444 | if (!invalidate_complete_page2(mapping, page)) | 442 | if (!invalidate_complete_page2(mapping, page)) |
445 | ret2 = -EIO; | 443 | ret2 = -EBUSY; |
446 | } | 444 | } |
447 | if (ret2 < 0) | 445 | if (ret2 < 0) |
448 | ret = ret2; | 446 | ret = ret2; |
@@ -1,7 +1,9 @@ | |||
1 | #include <linux/mm.h> | ||
1 | #include <linux/slab.h> | 2 | #include <linux/slab.h> |
2 | #include <linux/string.h> | 3 | #include <linux/string.h> |
3 | #include <linux/module.h> | 4 | #include <linux/module.h> |
4 | #include <linux/err.h> | 5 | #include <linux/err.h> |
6 | #include <linux/sched.h> | ||
5 | #include <asm/uaccess.h> | 7 | #include <asm/uaccess.h> |
6 | 8 | ||
7 | /** | 9 | /** |
@@ -68,25 +70,22 @@ void *kmemdup(const void *src, size_t len, gfp_t gfp) | |||
68 | EXPORT_SYMBOL(kmemdup); | 70 | EXPORT_SYMBOL(kmemdup); |
69 | 71 | ||
70 | /** | 72 | /** |
71 | * krealloc - reallocate memory. The contents will remain unchanged. | 73 | * __krealloc - like krealloc() but don't free @p. |
72 | * @p: object to reallocate memory for. | 74 | * @p: object to reallocate memory for. |
73 | * @new_size: how many bytes of memory are required. | 75 | * @new_size: how many bytes of memory are required. |
74 | * @flags: the type of memory to allocate. | 76 | * @flags: the type of memory to allocate. |
75 | * | 77 | * |
76 | * The contents of the object pointed to are preserved up to the | 78 | * This function is like krealloc() except it never frees the originally |
77 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | 79 | * allocated buffer. Use this if you don't want to free the buffer immediately |
78 | * behaves exactly like kmalloc(). If @size is 0 and @p is not a | 80 | * like, for example, with RCU. |
79 | * %NULL pointer, the object pointed to is freed. | ||
80 | */ | 81 | */ |
81 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | 82 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) |
82 | { | 83 | { |
83 | void *ret; | 84 | void *ret; |
84 | size_t ks = 0; | 85 | size_t ks = 0; |
85 | 86 | ||
86 | if (unlikely(!new_size)) { | 87 | if (unlikely(!new_size)) |
87 | kfree(p); | ||
88 | return ZERO_SIZE_PTR; | 88 | return ZERO_SIZE_PTR; |
89 | } | ||
90 | 89 | ||
91 | if (p) | 90 | if (p) |
92 | ks = ksize(p); | 91 | ks = ksize(p); |
@@ -95,10 +94,37 @@ void *krealloc(const void *p, size_t new_size, gfp_t flags) | |||
95 | return (void *)p; | 94 | return (void *)p; |
96 | 95 | ||
97 | ret = kmalloc_track_caller(new_size, flags); | 96 | ret = kmalloc_track_caller(new_size, flags); |
98 | if (ret && p) { | 97 | if (ret && p) |
99 | memcpy(ret, p, ks); | 98 | memcpy(ret, p, ks); |
99 | |||
100 | return ret; | ||
101 | } | ||
102 | EXPORT_SYMBOL(__krealloc); | ||
103 | |||
104 | /** | ||
105 | * krealloc - reallocate memory. The contents will remain unchanged. | ||
106 | * @p: object to reallocate memory for. | ||
107 | * @new_size: how many bytes of memory are required. | ||
108 | * @flags: the type of memory to allocate. | ||
109 | * | ||
110 | * The contents of the object pointed to are preserved up to the | ||
111 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | ||
112 | * behaves exactly like kmalloc(). If @size is 0 and @p is not a | ||
113 | * %NULL pointer, the object pointed to is freed. | ||
114 | */ | ||
115 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | ||
116 | { | ||
117 | void *ret; | ||
118 | |||
119 | if (unlikely(!new_size)) { | ||
100 | kfree(p); | 120 | kfree(p); |
121 | return ZERO_SIZE_PTR; | ||
101 | } | 122 | } |
123 | |||
124 | ret = __krealloc(p, new_size, flags); | ||
125 | if (ret && p != ret) | ||
126 | kfree(p); | ||
127 | |||
102 | return ret; | 128 | return ret; |
103 | } | 129 | } |
104 | EXPORT_SYMBOL(krealloc); | 130 | EXPORT_SYMBOL(krealloc); |
@@ -136,3 +162,27 @@ char *strndup_user(const char __user *s, long n) | |||
136 | return p; | 162 | return p; |
137 | } | 163 | } |
138 | EXPORT_SYMBOL(strndup_user); | 164 | EXPORT_SYMBOL(strndup_user); |
165 | |||
166 | #ifndef HAVE_ARCH_PICK_MMAP_LAYOUT | ||
167 | void arch_pick_mmap_layout(struct mm_struct *mm) | ||
168 | { | ||
169 | mm->mmap_base = TASK_UNMAPPED_BASE; | ||
170 | mm->get_unmapped_area = arch_get_unmapped_area; | ||
171 | mm->unmap_area = arch_unmap_area; | ||
172 | } | ||
173 | #endif | ||
174 | |||
175 | int __attribute__((weak)) get_user_pages_fast(unsigned long start, | ||
176 | int nr_pages, int write, struct page **pages) | ||
177 | { | ||
178 | struct mm_struct *mm = current->mm; | ||
179 | int ret; | ||
180 | |||
181 | down_read(&mm->mmap_sem); | ||
182 | ret = get_user_pages(current, mm, start, nr_pages, | ||
183 | write, 0, pages, NULL); | ||
184 | up_read(&mm->mmap_sem); | ||
185 | |||
186 | return ret; | ||
187 | } | ||
188 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | ||
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 830a5580c5d7..bba06c41fc59 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -388,16 +388,14 @@ static void __vunmap(const void *addr, int deallocate_pages) | |||
388 | return; | 388 | return; |
389 | 389 | ||
390 | if ((PAGE_SIZE-1) & (unsigned long)addr) { | 390 | if ((PAGE_SIZE-1) & (unsigned long)addr) { |
391 | printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); | 391 | WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); |
392 | WARN_ON(1); | ||
393 | return; | 392 | return; |
394 | } | 393 | } |
395 | 394 | ||
396 | area = remove_vm_area(addr); | 395 | area = remove_vm_area(addr); |
397 | if (unlikely(!area)) { | 396 | if (unlikely(!area)) { |
398 | printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | 397 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
399 | addr); | 398 | addr); |
400 | WARN_ON(1); | ||
401 | return; | 399 | return; |
402 | } | 400 | } |
403 | 401 | ||
@@ -938,6 +936,25 @@ static void s_stop(struct seq_file *m, void *p) | |||
938 | read_unlock(&vmlist_lock); | 936 | read_unlock(&vmlist_lock); |
939 | } | 937 | } |
940 | 938 | ||
939 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) | ||
940 | { | ||
941 | if (NUMA_BUILD) { | ||
942 | unsigned int nr, *counters = m->private; | ||
943 | |||
944 | if (!counters) | ||
945 | return; | ||
946 | |||
947 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | ||
948 | |||
949 | for (nr = 0; nr < v->nr_pages; nr++) | ||
950 | counters[page_to_nid(v->pages[nr])]++; | ||
951 | |||
952 | for_each_node_state(nr, N_HIGH_MEMORY) | ||
953 | if (counters[nr]) | ||
954 | seq_printf(m, " N%u=%u", nr, counters[nr]); | ||
955 | } | ||
956 | } | ||
957 | |||
941 | static int s_show(struct seq_file *m, void *p) | 958 | static int s_show(struct seq_file *m, void *p) |
942 | { | 959 | { |
943 | struct vm_struct *v = p; | 960 | struct vm_struct *v = p; |
@@ -974,6 +991,7 @@ static int s_show(struct seq_file *m, void *p) | |||
974 | if (v->flags & VM_VPAGES) | 991 | if (v->flags & VM_VPAGES) |
975 | seq_printf(m, " vpages"); | 992 | seq_printf(m, " vpages"); |
976 | 993 | ||
994 | show_numa_info(m, v); | ||
977 | seq_putc(m, '\n'); | 995 | seq_putc(m, '\n'); |
978 | return 0; | 996 | return 0; |
979 | } | 997 | } |
diff --git a/mm/vmscan.c b/mm/vmscan.c index 967d30ccd92b..1ff1a58e7c10 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -38,6 +38,7 @@ | |||
38 | #include <linux/kthread.h> | 38 | #include <linux/kthread.h> |
39 | #include <linux/freezer.h> | 39 | #include <linux/freezer.h> |
40 | #include <linux/memcontrol.h> | 40 | #include <linux/memcontrol.h> |
41 | #include <linux/delayacct.h> | ||
41 | 42 | ||
42 | #include <asm/tlbflush.h> | 43 | #include <asm/tlbflush.h> |
43 | #include <asm/div64.h> | 44 | #include <asm/div64.h> |
@@ -390,17 +391,15 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
390 | } | 391 | } |
391 | 392 | ||
392 | /* | 393 | /* |
393 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | 394 | * Same as remove_mapping, but if the page is removed from the mapping, it |
394 | * someone else has a ref on the page, abort and return 0. If it was | 395 | * gets returned with a refcount of 0. |
395 | * successfully detached, return 1. Assumes the caller has a single ref on | ||
396 | * this page. | ||
397 | */ | 396 | */ |
398 | int remove_mapping(struct address_space *mapping, struct page *page) | 397 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
399 | { | 398 | { |
400 | BUG_ON(!PageLocked(page)); | 399 | BUG_ON(!PageLocked(page)); |
401 | BUG_ON(mapping != page_mapping(page)); | 400 | BUG_ON(mapping != page_mapping(page)); |
402 | 401 | ||
403 | write_lock_irq(&mapping->tree_lock); | 402 | spin_lock_irq(&mapping->tree_lock); |
404 | /* | 403 | /* |
405 | * The non racy check for a busy page. | 404 | * The non racy check for a busy page. |
406 | * | 405 | * |
@@ -426,28 +425,48 @@ int remove_mapping(struct address_space *mapping, struct page *page) | |||
426 | * Note that if SetPageDirty is always performed via set_page_dirty, | 425 | * Note that if SetPageDirty is always performed via set_page_dirty, |
427 | * and thus under tree_lock, then this ordering is not required. | 426 | * and thus under tree_lock, then this ordering is not required. |
428 | */ | 427 | */ |
429 | if (unlikely(page_count(page) != 2)) | 428 | if (!page_freeze_refs(page, 2)) |
430 | goto cannot_free; | 429 | goto cannot_free; |
431 | smp_rmb(); | 430 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
432 | if (unlikely(PageDirty(page))) | 431 | if (unlikely(PageDirty(page))) { |
432 | page_unfreeze_refs(page, 2); | ||
433 | goto cannot_free; | 433 | goto cannot_free; |
434 | } | ||
434 | 435 | ||
435 | if (PageSwapCache(page)) { | 436 | if (PageSwapCache(page)) { |
436 | swp_entry_t swap = { .val = page_private(page) }; | 437 | swp_entry_t swap = { .val = page_private(page) }; |
437 | __delete_from_swap_cache(page); | 438 | __delete_from_swap_cache(page); |
438 | write_unlock_irq(&mapping->tree_lock); | 439 | spin_unlock_irq(&mapping->tree_lock); |
439 | swap_free(swap); | 440 | swap_free(swap); |
440 | __put_page(page); /* The pagecache ref */ | 441 | } else { |
441 | return 1; | 442 | __remove_from_page_cache(page); |
443 | spin_unlock_irq(&mapping->tree_lock); | ||
442 | } | 444 | } |
443 | 445 | ||
444 | __remove_from_page_cache(page); | ||
445 | write_unlock_irq(&mapping->tree_lock); | ||
446 | __put_page(page); | ||
447 | return 1; | 446 | return 1; |
448 | 447 | ||
449 | cannot_free: | 448 | cannot_free: |
450 | write_unlock_irq(&mapping->tree_lock); | 449 | spin_unlock_irq(&mapping->tree_lock); |
450 | return 0; | ||
451 | } | ||
452 | |||
453 | /* | ||
454 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | ||
455 | * someone else has a ref on the page, abort and return 0. If it was | ||
456 | * successfully detached, return 1. Assumes the caller has a single ref on | ||
457 | * this page. | ||
458 | */ | ||
459 | int remove_mapping(struct address_space *mapping, struct page *page) | ||
460 | { | ||
461 | if (__remove_mapping(mapping, page)) { | ||
462 | /* | ||
463 | * Unfreezing the refcount with 1 rather than 2 effectively | ||
464 | * drops the pagecache ref for us without requiring another | ||
465 | * atomic operation. | ||
466 | */ | ||
467 | page_unfreeze_refs(page, 1); | ||
468 | return 1; | ||
469 | } | ||
451 | return 0; | 470 | return 0; |
452 | } | 471 | } |
453 | 472 | ||
@@ -477,7 +496,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
477 | page = lru_to_page(page_list); | 496 | page = lru_to_page(page_list); |
478 | list_del(&page->lru); | 497 | list_del(&page->lru); |
479 | 498 | ||
480 | if (TestSetPageLocked(page)) | 499 | if (!trylock_page(page)) |
481 | goto keep; | 500 | goto keep; |
482 | 501 | ||
483 | VM_BUG_ON(PageActive(page)); | 502 | VM_BUG_ON(PageActive(page)); |
@@ -563,7 +582,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
563 | * A synchronous write - probably a ramdisk. Go | 582 | * A synchronous write - probably a ramdisk. Go |
564 | * ahead and try to reclaim the page. | 583 | * ahead and try to reclaim the page. |
565 | */ | 584 | */ |
566 | if (TestSetPageLocked(page)) | 585 | if (!trylock_page(page)) |
567 | goto keep; | 586 | goto keep; |
568 | if (PageDirty(page) || PageWriteback(page)) | 587 | if (PageDirty(page) || PageWriteback(page)) |
569 | goto keep_locked; | 588 | goto keep_locked; |
@@ -597,18 +616,34 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
597 | if (PagePrivate(page)) { | 616 | if (PagePrivate(page)) { |
598 | if (!try_to_release_page(page, sc->gfp_mask)) | 617 | if (!try_to_release_page(page, sc->gfp_mask)) |
599 | goto activate_locked; | 618 | goto activate_locked; |
600 | if (!mapping && page_count(page) == 1) | 619 | if (!mapping && page_count(page) == 1) { |
601 | goto free_it; | 620 | unlock_page(page); |
621 | if (put_page_testzero(page)) | ||
622 | goto free_it; | ||
623 | else { | ||
624 | /* | ||
625 | * rare race with speculative reference. | ||
626 | * the speculative reference will free | ||
627 | * this page shortly, so we may | ||
628 | * increment nr_reclaimed here (and | ||
629 | * leave it off the LRU). | ||
630 | */ | ||
631 | nr_reclaimed++; | ||
632 | continue; | ||
633 | } | ||
634 | } | ||
602 | } | 635 | } |
603 | 636 | ||
604 | if (!mapping || !remove_mapping(mapping, page)) | 637 | if (!mapping || !__remove_mapping(mapping, page)) |
605 | goto keep_locked; | 638 | goto keep_locked; |
606 | 639 | ||
607 | free_it: | ||
608 | unlock_page(page); | 640 | unlock_page(page); |
641 | free_it: | ||
609 | nr_reclaimed++; | 642 | nr_reclaimed++; |
610 | if (!pagevec_add(&freed_pvec, page)) | 643 | if (!pagevec_add(&freed_pvec, page)) { |
611 | __pagevec_release_nonlru(&freed_pvec); | 644 | __pagevec_free(&freed_pvec); |
645 | pagevec_reinit(&freed_pvec); | ||
646 | } | ||
612 | continue; | 647 | continue; |
613 | 648 | ||
614 | activate_locked: | 649 | activate_locked: |
@@ -622,7 +657,7 @@ keep: | |||
622 | } | 657 | } |
623 | list_splice(&ret_pages, page_list); | 658 | list_splice(&ret_pages, page_list); |
624 | if (pagevec_count(&freed_pvec)) | 659 | if (pagevec_count(&freed_pvec)) |
625 | __pagevec_release_nonlru(&freed_pvec); | 660 | __pagevec_free(&freed_pvec); |
626 | count_vm_events(PGACTIVATE, pgactivate); | 661 | count_vm_events(PGACTIVATE, pgactivate); |
627 | return nr_reclaimed; | 662 | return nr_reclaimed; |
628 | } | 663 | } |
@@ -1316,6 +1351,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1316 | struct zone *zone; | 1351 | struct zone *zone; |
1317 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); | 1352 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); |
1318 | 1353 | ||
1354 | delayacct_freepages_start(); | ||
1355 | |||
1319 | if (scan_global_lru(sc)) | 1356 | if (scan_global_lru(sc)) |
1320 | count_vm_event(ALLOCSTALL); | 1357 | count_vm_event(ALLOCSTALL); |
1321 | /* | 1358 | /* |
@@ -1371,7 +1408,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1371 | if (sc->nr_scanned && priority < DEF_PRIORITY - 2) | 1408 | if (sc->nr_scanned && priority < DEF_PRIORITY - 2) |
1372 | congestion_wait(WRITE, HZ/10); | 1409 | congestion_wait(WRITE, HZ/10); |
1373 | } | 1410 | } |
1374 | /* top priority shrink_caches still had more to do? don't OOM, then */ | 1411 | /* top priority shrink_zones still had more to do? don't OOM, then */ |
1375 | if (!sc->all_unreclaimable && scan_global_lru(sc)) | 1412 | if (!sc->all_unreclaimable && scan_global_lru(sc)) |
1376 | ret = nr_reclaimed; | 1413 | ret = nr_reclaimed; |
1377 | out: | 1414 | out: |
@@ -1396,6 +1433,8 @@ out: | |||
1396 | } else | 1433 | } else |
1397 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); | 1434 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); |
1398 | 1435 | ||
1436 | delayacct_freepages_end(); | ||
1437 | |||
1399 | return ret; | 1438 | return ret; |
1400 | } | 1439 | } |
1401 | 1440 | ||
@@ -1940,7 +1979,7 @@ module_init(kswapd_init) | |||
1940 | int zone_reclaim_mode __read_mostly; | 1979 | int zone_reclaim_mode __read_mostly; |
1941 | 1980 | ||
1942 | #define RECLAIM_OFF 0 | 1981 | #define RECLAIM_OFF 0 |
1943 | #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ | 1982 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1944 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ | 1983 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
1945 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | 1984 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ |
1946 | 1985 | ||
diff --git a/mm/vmstat.c b/mm/vmstat.c index db9eabb2c5b3..d7826af2fb07 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c | |||
@@ -13,6 +13,7 @@ | |||
13 | #include <linux/err.h> | 13 | #include <linux/err.h> |
14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
15 | #include <linux/cpu.h> | 15 | #include <linux/cpu.h> |
16 | #include <linux/vmstat.h> | ||
16 | #include <linux/sched.h> | 17 | #include <linux/sched.h> |
17 | 18 | ||
18 | #ifdef CONFIG_VM_EVENT_COUNTERS | 19 | #ifdef CONFIG_VM_EVENT_COUNTERS |
@@ -26,7 +27,7 @@ static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask) | |||
26 | 27 | ||
27 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 28 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
28 | 29 | ||
29 | for_each_cpu_mask(cpu, *cpumask) { | 30 | for_each_cpu_mask_nr(cpu, *cpumask) { |
30 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 31 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
31 | 32 | ||
32 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 33 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
@@ -515,9 +516,26 @@ static void pagetypeinfo_showblockcount_print(struct seq_file *m, | |||
515 | continue; | 516 | continue; |
516 | 517 | ||
517 | page = pfn_to_page(pfn); | 518 | page = pfn_to_page(pfn); |
519 | #ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES | ||
520 | /* | ||
521 | * Ordinarily, memory holes in flatmem still have a valid | ||
522 | * memmap for the PFN range. However, an architecture for | ||
523 | * embedded systems (e.g. ARM) can free up the memmap backing | ||
524 | * holes to save memory on the assumption the memmap is | ||
525 | * never used. The page_zone linkages are then broken even | ||
526 | * though pfn_valid() returns true. Skip the page if the | ||
527 | * linkages are broken. Even if this test passed, the impact | ||
528 | * is that the counters for the movable type are off but | ||
529 | * fragmentation monitoring is likely meaningless on small | ||
530 | * systems. | ||
531 | */ | ||
532 | if (page_zone(page) != zone) | ||
533 | continue; | ||
534 | #endif | ||
518 | mtype = get_pageblock_migratetype(page); | 535 | mtype = get_pageblock_migratetype(page); |
519 | 536 | ||
520 | count[mtype]++; | 537 | if (mtype < MIGRATE_TYPES) |
538 | count[mtype]++; | ||
521 | } | 539 | } |
522 | 540 | ||
523 | /* Print counts */ | 541 | /* Print counts */ |