diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Makefile | 1 | ||||
-rw-r--r-- | mm/huge_memory.c | 901 | ||||
-rw-r--r-- | mm/internal.h | 4 | ||||
-rw-r--r-- | mm/memory.c | 84 | ||||
-rw-r--r-- | mm/rmap.c | 62 | ||||
-rw-r--r-- | mm/swap.c | 37 |
6 files changed, 1056 insertions, 33 deletions
diff --git a/mm/Makefile b/mm/Makefile index 380772a9ccb8..2b1b575ae712 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -37,6 +37,7 @@ obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | |||
37 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 37 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
38 | obj-$(CONFIG_MIGRATION) += migrate.o | 38 | obj-$(CONFIG_MIGRATION) += migrate.o |
39 | obj-$(CONFIG_QUICKLIST) += quicklist.o | 39 | obj-$(CONFIG_QUICKLIST) += quicklist.o |
40 | obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o | ||
40 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o | 41 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o |
41 | obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o | 42 | obj-$(CONFIG_MEMORY_FAILURE) += memory-failure.o |
42 | obj-$(CONFIG_HWPOISON_INJECT) += hwpoison-inject.o | 43 | obj-$(CONFIG_HWPOISON_INJECT) += hwpoison-inject.o |
diff --git a/mm/huge_memory.c b/mm/huge_memory.c new file mode 100644 index 000000000000..0c1e8f939f7c --- /dev/null +++ b/mm/huge_memory.c | |||
@@ -0,0 +1,901 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2009 Red Hat, Inc. | ||
3 | * | ||
4 | * This work is licensed under the terms of the GNU GPL, version 2. See | ||
5 | * the COPYING file in the top-level directory. | ||
6 | */ | ||
7 | |||
8 | #include <linux/mm.h> | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/highmem.h> | ||
11 | #include <linux/hugetlb.h> | ||
12 | #include <linux/mmu_notifier.h> | ||
13 | #include <linux/rmap.h> | ||
14 | #include <linux/swap.h> | ||
15 | #include <asm/tlb.h> | ||
16 | #include <asm/pgalloc.h> | ||
17 | #include "internal.h" | ||
18 | |||
19 | unsigned long transparent_hugepage_flags __read_mostly = | ||
20 | (1<<TRANSPARENT_HUGEPAGE_FLAG); | ||
21 | |||
22 | #ifdef CONFIG_SYSFS | ||
23 | static ssize_t double_flag_show(struct kobject *kobj, | ||
24 | struct kobj_attribute *attr, char *buf, | ||
25 | enum transparent_hugepage_flag enabled, | ||
26 | enum transparent_hugepage_flag req_madv) | ||
27 | { | ||
28 | if (test_bit(enabled, &transparent_hugepage_flags)) { | ||
29 | VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); | ||
30 | return sprintf(buf, "[always] madvise never\n"); | ||
31 | } else if (test_bit(req_madv, &transparent_hugepage_flags)) | ||
32 | return sprintf(buf, "always [madvise] never\n"); | ||
33 | else | ||
34 | return sprintf(buf, "always madvise [never]\n"); | ||
35 | } | ||
36 | static ssize_t double_flag_store(struct kobject *kobj, | ||
37 | struct kobj_attribute *attr, | ||
38 | const char *buf, size_t count, | ||
39 | enum transparent_hugepage_flag enabled, | ||
40 | enum transparent_hugepage_flag req_madv) | ||
41 | { | ||
42 | if (!memcmp("always", buf, | ||
43 | min(sizeof("always")-1, count))) { | ||
44 | set_bit(enabled, &transparent_hugepage_flags); | ||
45 | clear_bit(req_madv, &transparent_hugepage_flags); | ||
46 | } else if (!memcmp("madvise", buf, | ||
47 | min(sizeof("madvise")-1, count))) { | ||
48 | clear_bit(enabled, &transparent_hugepage_flags); | ||
49 | set_bit(req_madv, &transparent_hugepage_flags); | ||
50 | } else if (!memcmp("never", buf, | ||
51 | min(sizeof("never")-1, count))) { | ||
52 | clear_bit(enabled, &transparent_hugepage_flags); | ||
53 | clear_bit(req_madv, &transparent_hugepage_flags); | ||
54 | } else | ||
55 | return -EINVAL; | ||
56 | |||
57 | return count; | ||
58 | } | ||
59 | |||
60 | static ssize_t enabled_show(struct kobject *kobj, | ||
61 | struct kobj_attribute *attr, char *buf) | ||
62 | { | ||
63 | return double_flag_show(kobj, attr, buf, | ||
64 | TRANSPARENT_HUGEPAGE_FLAG, | ||
65 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | ||
66 | } | ||
67 | static ssize_t enabled_store(struct kobject *kobj, | ||
68 | struct kobj_attribute *attr, | ||
69 | const char *buf, size_t count) | ||
70 | { | ||
71 | return double_flag_store(kobj, attr, buf, count, | ||
72 | TRANSPARENT_HUGEPAGE_FLAG, | ||
73 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | ||
74 | } | ||
75 | static struct kobj_attribute enabled_attr = | ||
76 | __ATTR(enabled, 0644, enabled_show, enabled_store); | ||
77 | |||
78 | static ssize_t single_flag_show(struct kobject *kobj, | ||
79 | struct kobj_attribute *attr, char *buf, | ||
80 | enum transparent_hugepage_flag flag) | ||
81 | { | ||
82 | if (test_bit(flag, &transparent_hugepage_flags)) | ||
83 | return sprintf(buf, "[yes] no\n"); | ||
84 | else | ||
85 | return sprintf(buf, "yes [no]\n"); | ||
86 | } | ||
87 | static ssize_t single_flag_store(struct kobject *kobj, | ||
88 | struct kobj_attribute *attr, | ||
89 | const char *buf, size_t count, | ||
90 | enum transparent_hugepage_flag flag) | ||
91 | { | ||
92 | if (!memcmp("yes", buf, | ||
93 | min(sizeof("yes")-1, count))) { | ||
94 | set_bit(flag, &transparent_hugepage_flags); | ||
95 | } else if (!memcmp("no", buf, | ||
96 | min(sizeof("no")-1, count))) { | ||
97 | clear_bit(flag, &transparent_hugepage_flags); | ||
98 | } else | ||
99 | return -EINVAL; | ||
100 | |||
101 | return count; | ||
102 | } | ||
103 | |||
104 | /* | ||
105 | * Currently defrag only disables __GFP_NOWAIT for allocation. A blind | ||
106 | * __GFP_REPEAT is too aggressive, it's never worth swapping tons of | ||
107 | * memory just to allocate one more hugepage. | ||
108 | */ | ||
109 | static ssize_t defrag_show(struct kobject *kobj, | ||
110 | struct kobj_attribute *attr, char *buf) | ||
111 | { | ||
112 | return double_flag_show(kobj, attr, buf, | ||
113 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | ||
114 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | ||
115 | } | ||
116 | static ssize_t defrag_store(struct kobject *kobj, | ||
117 | struct kobj_attribute *attr, | ||
118 | const char *buf, size_t count) | ||
119 | { | ||
120 | return double_flag_store(kobj, attr, buf, count, | ||
121 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | ||
122 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | ||
123 | } | ||
124 | static struct kobj_attribute defrag_attr = | ||
125 | __ATTR(defrag, 0644, defrag_show, defrag_store); | ||
126 | |||
127 | #ifdef CONFIG_DEBUG_VM | ||
128 | static ssize_t debug_cow_show(struct kobject *kobj, | ||
129 | struct kobj_attribute *attr, char *buf) | ||
130 | { | ||
131 | return single_flag_show(kobj, attr, buf, | ||
132 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | ||
133 | } | ||
134 | static ssize_t debug_cow_store(struct kobject *kobj, | ||
135 | struct kobj_attribute *attr, | ||
136 | const char *buf, size_t count) | ||
137 | { | ||
138 | return single_flag_store(kobj, attr, buf, count, | ||
139 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | ||
140 | } | ||
141 | static struct kobj_attribute debug_cow_attr = | ||
142 | __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); | ||
143 | #endif /* CONFIG_DEBUG_VM */ | ||
144 | |||
145 | static struct attribute *hugepage_attr[] = { | ||
146 | &enabled_attr.attr, | ||
147 | &defrag_attr.attr, | ||
148 | #ifdef CONFIG_DEBUG_VM | ||
149 | &debug_cow_attr.attr, | ||
150 | #endif | ||
151 | NULL, | ||
152 | }; | ||
153 | |||
154 | static struct attribute_group hugepage_attr_group = { | ||
155 | .attrs = hugepage_attr, | ||
156 | .name = "transparent_hugepage", | ||
157 | }; | ||
158 | #endif /* CONFIG_SYSFS */ | ||
159 | |||
160 | static int __init hugepage_init(void) | ||
161 | { | ||
162 | #ifdef CONFIG_SYSFS | ||
163 | int err; | ||
164 | |||
165 | err = sysfs_create_group(mm_kobj, &hugepage_attr_group); | ||
166 | if (err) | ||
167 | printk(KERN_ERR "hugepage: register sysfs failed\n"); | ||
168 | #endif | ||
169 | return 0; | ||
170 | } | ||
171 | module_init(hugepage_init) | ||
172 | |||
173 | static int __init setup_transparent_hugepage(char *str) | ||
174 | { | ||
175 | int ret = 0; | ||
176 | if (!str) | ||
177 | goto out; | ||
178 | if (!strcmp(str, "always")) { | ||
179 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, | ||
180 | &transparent_hugepage_flags); | ||
181 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | ||
182 | &transparent_hugepage_flags); | ||
183 | ret = 1; | ||
184 | } else if (!strcmp(str, "madvise")) { | ||
185 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | ||
186 | &transparent_hugepage_flags); | ||
187 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | ||
188 | &transparent_hugepage_flags); | ||
189 | ret = 1; | ||
190 | } else if (!strcmp(str, "never")) { | ||
191 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | ||
192 | &transparent_hugepage_flags); | ||
193 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | ||
194 | &transparent_hugepage_flags); | ||
195 | ret = 1; | ||
196 | } | ||
197 | out: | ||
198 | if (!ret) | ||
199 | printk(KERN_WARNING | ||
200 | "transparent_hugepage= cannot parse, ignored\n"); | ||
201 | return ret; | ||
202 | } | ||
203 | __setup("transparent_hugepage=", setup_transparent_hugepage); | ||
204 | |||
205 | static void prepare_pmd_huge_pte(pgtable_t pgtable, | ||
206 | struct mm_struct *mm) | ||
207 | { | ||
208 | assert_spin_locked(&mm->page_table_lock); | ||
209 | |||
210 | /* FIFO */ | ||
211 | if (!mm->pmd_huge_pte) | ||
212 | INIT_LIST_HEAD(&pgtable->lru); | ||
213 | else | ||
214 | list_add(&pgtable->lru, &mm->pmd_huge_pte->lru); | ||
215 | mm->pmd_huge_pte = pgtable; | ||
216 | } | ||
217 | |||
218 | static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) | ||
219 | { | ||
220 | if (likely(vma->vm_flags & VM_WRITE)) | ||
221 | pmd = pmd_mkwrite(pmd); | ||
222 | return pmd; | ||
223 | } | ||
224 | |||
225 | static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, | ||
226 | struct vm_area_struct *vma, | ||
227 | unsigned long haddr, pmd_t *pmd, | ||
228 | struct page *page) | ||
229 | { | ||
230 | int ret = 0; | ||
231 | pgtable_t pgtable; | ||
232 | |||
233 | VM_BUG_ON(!PageCompound(page)); | ||
234 | pgtable = pte_alloc_one(mm, haddr); | ||
235 | if (unlikely(!pgtable)) { | ||
236 | put_page(page); | ||
237 | return VM_FAULT_OOM; | ||
238 | } | ||
239 | |||
240 | clear_huge_page(page, haddr, HPAGE_PMD_NR); | ||
241 | __SetPageUptodate(page); | ||
242 | |||
243 | spin_lock(&mm->page_table_lock); | ||
244 | if (unlikely(!pmd_none(*pmd))) { | ||
245 | spin_unlock(&mm->page_table_lock); | ||
246 | put_page(page); | ||
247 | pte_free(mm, pgtable); | ||
248 | } else { | ||
249 | pmd_t entry; | ||
250 | entry = mk_pmd(page, vma->vm_page_prot); | ||
251 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | ||
252 | entry = pmd_mkhuge(entry); | ||
253 | /* | ||
254 | * The spinlocking to take the lru_lock inside | ||
255 | * page_add_new_anon_rmap() acts as a full memory | ||
256 | * barrier to be sure clear_huge_page writes become | ||
257 | * visible after the set_pmd_at() write. | ||
258 | */ | ||
259 | page_add_new_anon_rmap(page, vma, haddr); | ||
260 | set_pmd_at(mm, haddr, pmd, entry); | ||
261 | prepare_pmd_huge_pte(pgtable, mm); | ||
262 | add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); | ||
263 | spin_unlock(&mm->page_table_lock); | ||
264 | } | ||
265 | |||
266 | return ret; | ||
267 | } | ||
268 | |||
269 | static inline struct page *alloc_hugepage(int defrag) | ||
270 | { | ||
271 | return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT), | ||
272 | HPAGE_PMD_ORDER); | ||
273 | } | ||
274 | |||
275 | int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | ||
276 | unsigned long address, pmd_t *pmd, | ||
277 | unsigned int flags) | ||
278 | { | ||
279 | struct page *page; | ||
280 | unsigned long haddr = address & HPAGE_PMD_MASK; | ||
281 | pte_t *pte; | ||
282 | |||
283 | if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { | ||
284 | if (unlikely(anon_vma_prepare(vma))) | ||
285 | return VM_FAULT_OOM; | ||
286 | page = alloc_hugepage(transparent_hugepage_defrag(vma)); | ||
287 | if (unlikely(!page)) | ||
288 | goto out; | ||
289 | |||
290 | return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page); | ||
291 | } | ||
292 | out: | ||
293 | /* | ||
294 | * Use __pte_alloc instead of pte_alloc_map, because we can't | ||
295 | * run pte_offset_map on the pmd, if an huge pmd could | ||
296 | * materialize from under us from a different thread. | ||
297 | */ | ||
298 | if (unlikely(__pte_alloc(mm, vma, pmd, address))) | ||
299 | return VM_FAULT_OOM; | ||
300 | /* if an huge pmd materialized from under us just retry later */ | ||
301 | if (unlikely(pmd_trans_huge(*pmd))) | ||
302 | return 0; | ||
303 | /* | ||
304 | * A regular pmd is established and it can't morph into a huge pmd | ||
305 | * from under us anymore at this point because we hold the mmap_sem | ||
306 | * read mode and khugepaged takes it in write mode. So now it's | ||
307 | * safe to run pte_offset_map(). | ||
308 | */ | ||
309 | pte = pte_offset_map(pmd, address); | ||
310 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); | ||
311 | } | ||
312 | |||
313 | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, | ||
314 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | ||
315 | struct vm_area_struct *vma) | ||
316 | { | ||
317 | struct page *src_page; | ||
318 | pmd_t pmd; | ||
319 | pgtable_t pgtable; | ||
320 | int ret; | ||
321 | |||
322 | ret = -ENOMEM; | ||
323 | pgtable = pte_alloc_one(dst_mm, addr); | ||
324 | if (unlikely(!pgtable)) | ||
325 | goto out; | ||
326 | |||
327 | spin_lock(&dst_mm->page_table_lock); | ||
328 | spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); | ||
329 | |||
330 | ret = -EAGAIN; | ||
331 | pmd = *src_pmd; | ||
332 | if (unlikely(!pmd_trans_huge(pmd))) { | ||
333 | pte_free(dst_mm, pgtable); | ||
334 | goto out_unlock; | ||
335 | } | ||
336 | if (unlikely(pmd_trans_splitting(pmd))) { | ||
337 | /* split huge page running from under us */ | ||
338 | spin_unlock(&src_mm->page_table_lock); | ||
339 | spin_unlock(&dst_mm->page_table_lock); | ||
340 | pte_free(dst_mm, pgtable); | ||
341 | |||
342 | wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ | ||
343 | goto out; | ||
344 | } | ||
345 | src_page = pmd_page(pmd); | ||
346 | VM_BUG_ON(!PageHead(src_page)); | ||
347 | get_page(src_page); | ||
348 | page_dup_rmap(src_page); | ||
349 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); | ||
350 | |||
351 | pmdp_set_wrprotect(src_mm, addr, src_pmd); | ||
352 | pmd = pmd_mkold(pmd_wrprotect(pmd)); | ||
353 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); | ||
354 | prepare_pmd_huge_pte(pgtable, dst_mm); | ||
355 | |||
356 | ret = 0; | ||
357 | out_unlock: | ||
358 | spin_unlock(&src_mm->page_table_lock); | ||
359 | spin_unlock(&dst_mm->page_table_lock); | ||
360 | out: | ||
361 | return ret; | ||
362 | } | ||
363 | |||
364 | /* no "address" argument so destroys page coloring of some arch */ | ||
365 | pgtable_t get_pmd_huge_pte(struct mm_struct *mm) | ||
366 | { | ||
367 | pgtable_t pgtable; | ||
368 | |||
369 | assert_spin_locked(&mm->page_table_lock); | ||
370 | |||
371 | /* FIFO */ | ||
372 | pgtable = mm->pmd_huge_pte; | ||
373 | if (list_empty(&pgtable->lru)) | ||
374 | mm->pmd_huge_pte = NULL; | ||
375 | else { | ||
376 | mm->pmd_huge_pte = list_entry(pgtable->lru.next, | ||
377 | struct page, lru); | ||
378 | list_del(&pgtable->lru); | ||
379 | } | ||
380 | return pgtable; | ||
381 | } | ||
382 | |||
383 | static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, | ||
384 | struct vm_area_struct *vma, | ||
385 | unsigned long address, | ||
386 | pmd_t *pmd, pmd_t orig_pmd, | ||
387 | struct page *page, | ||
388 | unsigned long haddr) | ||
389 | { | ||
390 | pgtable_t pgtable; | ||
391 | pmd_t _pmd; | ||
392 | int ret = 0, i; | ||
393 | struct page **pages; | ||
394 | |||
395 | pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, | ||
396 | GFP_KERNEL); | ||
397 | if (unlikely(!pages)) { | ||
398 | ret |= VM_FAULT_OOM; | ||
399 | goto out; | ||
400 | } | ||
401 | |||
402 | for (i = 0; i < HPAGE_PMD_NR; i++) { | ||
403 | pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE, | ||
404 | vma, address); | ||
405 | if (unlikely(!pages[i])) { | ||
406 | while (--i >= 0) | ||
407 | put_page(pages[i]); | ||
408 | kfree(pages); | ||
409 | ret |= VM_FAULT_OOM; | ||
410 | goto out; | ||
411 | } | ||
412 | } | ||
413 | |||
414 | for (i = 0; i < HPAGE_PMD_NR; i++) { | ||
415 | copy_user_highpage(pages[i], page + i, | ||
416 | haddr + PAGE_SHIFT*i, vma); | ||
417 | __SetPageUptodate(pages[i]); | ||
418 | cond_resched(); | ||
419 | } | ||
420 | |||
421 | spin_lock(&mm->page_table_lock); | ||
422 | if (unlikely(!pmd_same(*pmd, orig_pmd))) | ||
423 | goto out_free_pages; | ||
424 | VM_BUG_ON(!PageHead(page)); | ||
425 | |||
426 | pmdp_clear_flush_notify(vma, haddr, pmd); | ||
427 | /* leave pmd empty until pte is filled */ | ||
428 | |||
429 | pgtable = get_pmd_huge_pte(mm); | ||
430 | pmd_populate(mm, &_pmd, pgtable); | ||
431 | |||
432 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | ||
433 | pte_t *pte, entry; | ||
434 | entry = mk_pte(pages[i], vma->vm_page_prot); | ||
435 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | ||
436 | page_add_new_anon_rmap(pages[i], vma, haddr); | ||
437 | pte = pte_offset_map(&_pmd, haddr); | ||
438 | VM_BUG_ON(!pte_none(*pte)); | ||
439 | set_pte_at(mm, haddr, pte, entry); | ||
440 | pte_unmap(pte); | ||
441 | } | ||
442 | kfree(pages); | ||
443 | |||
444 | mm->nr_ptes++; | ||
445 | smp_wmb(); /* make pte visible before pmd */ | ||
446 | pmd_populate(mm, pmd, pgtable); | ||
447 | page_remove_rmap(page); | ||
448 | spin_unlock(&mm->page_table_lock); | ||
449 | |||
450 | ret |= VM_FAULT_WRITE; | ||
451 | put_page(page); | ||
452 | |||
453 | out: | ||
454 | return ret; | ||
455 | |||
456 | out_free_pages: | ||
457 | spin_unlock(&mm->page_table_lock); | ||
458 | for (i = 0; i < HPAGE_PMD_NR; i++) | ||
459 | put_page(pages[i]); | ||
460 | kfree(pages); | ||
461 | goto out; | ||
462 | } | ||
463 | |||
464 | int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | ||
465 | unsigned long address, pmd_t *pmd, pmd_t orig_pmd) | ||
466 | { | ||
467 | int ret = 0; | ||
468 | struct page *page, *new_page; | ||
469 | unsigned long haddr; | ||
470 | |||
471 | VM_BUG_ON(!vma->anon_vma); | ||
472 | spin_lock(&mm->page_table_lock); | ||
473 | if (unlikely(!pmd_same(*pmd, orig_pmd))) | ||
474 | goto out_unlock; | ||
475 | |||
476 | page = pmd_page(orig_pmd); | ||
477 | VM_BUG_ON(!PageCompound(page) || !PageHead(page)); | ||
478 | haddr = address & HPAGE_PMD_MASK; | ||
479 | if (page_mapcount(page) == 1) { | ||
480 | pmd_t entry; | ||
481 | entry = pmd_mkyoung(orig_pmd); | ||
482 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | ||
483 | if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) | ||
484 | update_mmu_cache(vma, address, entry); | ||
485 | ret |= VM_FAULT_WRITE; | ||
486 | goto out_unlock; | ||
487 | } | ||
488 | get_page(page); | ||
489 | spin_unlock(&mm->page_table_lock); | ||
490 | |||
491 | if (transparent_hugepage_enabled(vma) && | ||
492 | !transparent_hugepage_debug_cow()) | ||
493 | new_page = alloc_hugepage(transparent_hugepage_defrag(vma)); | ||
494 | else | ||
495 | new_page = NULL; | ||
496 | |||
497 | if (unlikely(!new_page)) { | ||
498 | ret = do_huge_pmd_wp_page_fallback(mm, vma, address, | ||
499 | pmd, orig_pmd, page, haddr); | ||
500 | put_page(page); | ||
501 | goto out; | ||
502 | } | ||
503 | |||
504 | copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); | ||
505 | __SetPageUptodate(new_page); | ||
506 | |||
507 | spin_lock(&mm->page_table_lock); | ||
508 | put_page(page); | ||
509 | if (unlikely(!pmd_same(*pmd, orig_pmd))) | ||
510 | put_page(new_page); | ||
511 | else { | ||
512 | pmd_t entry; | ||
513 | VM_BUG_ON(!PageHead(page)); | ||
514 | entry = mk_pmd(new_page, vma->vm_page_prot); | ||
515 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | ||
516 | entry = pmd_mkhuge(entry); | ||
517 | pmdp_clear_flush_notify(vma, haddr, pmd); | ||
518 | page_add_new_anon_rmap(new_page, vma, haddr); | ||
519 | set_pmd_at(mm, haddr, pmd, entry); | ||
520 | update_mmu_cache(vma, address, entry); | ||
521 | page_remove_rmap(page); | ||
522 | put_page(page); | ||
523 | ret |= VM_FAULT_WRITE; | ||
524 | } | ||
525 | out_unlock: | ||
526 | spin_unlock(&mm->page_table_lock); | ||
527 | out: | ||
528 | return ret; | ||
529 | } | ||
530 | |||
531 | struct page *follow_trans_huge_pmd(struct mm_struct *mm, | ||
532 | unsigned long addr, | ||
533 | pmd_t *pmd, | ||
534 | unsigned int flags) | ||
535 | { | ||
536 | struct page *page = NULL; | ||
537 | |||
538 | assert_spin_locked(&mm->page_table_lock); | ||
539 | |||
540 | if (flags & FOLL_WRITE && !pmd_write(*pmd)) | ||
541 | goto out; | ||
542 | |||
543 | page = pmd_page(*pmd); | ||
544 | VM_BUG_ON(!PageHead(page)); | ||
545 | if (flags & FOLL_TOUCH) { | ||
546 | pmd_t _pmd; | ||
547 | /* | ||
548 | * We should set the dirty bit only for FOLL_WRITE but | ||
549 | * for now the dirty bit in the pmd is meaningless. | ||
550 | * And if the dirty bit will become meaningful and | ||
551 | * we'll only set it with FOLL_WRITE, an atomic | ||
552 | * set_bit will be required on the pmd to set the | ||
553 | * young bit, instead of the current set_pmd_at. | ||
554 | */ | ||
555 | _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); | ||
556 | set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); | ||
557 | } | ||
558 | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; | ||
559 | VM_BUG_ON(!PageCompound(page)); | ||
560 | if (flags & FOLL_GET) | ||
561 | get_page(page); | ||
562 | |||
563 | out: | ||
564 | return page; | ||
565 | } | ||
566 | |||
567 | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, | ||
568 | pmd_t *pmd) | ||
569 | { | ||
570 | int ret = 0; | ||
571 | |||
572 | spin_lock(&tlb->mm->page_table_lock); | ||
573 | if (likely(pmd_trans_huge(*pmd))) { | ||
574 | if (unlikely(pmd_trans_splitting(*pmd))) { | ||
575 | spin_unlock(&tlb->mm->page_table_lock); | ||
576 | wait_split_huge_page(vma->anon_vma, | ||
577 | pmd); | ||
578 | } else { | ||
579 | struct page *page; | ||
580 | pgtable_t pgtable; | ||
581 | pgtable = get_pmd_huge_pte(tlb->mm); | ||
582 | page = pmd_page(*pmd); | ||
583 | pmd_clear(pmd); | ||
584 | page_remove_rmap(page); | ||
585 | VM_BUG_ON(page_mapcount(page) < 0); | ||
586 | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); | ||
587 | VM_BUG_ON(!PageHead(page)); | ||
588 | spin_unlock(&tlb->mm->page_table_lock); | ||
589 | tlb_remove_page(tlb, page); | ||
590 | pte_free(tlb->mm, pgtable); | ||
591 | ret = 1; | ||
592 | } | ||
593 | } else | ||
594 | spin_unlock(&tlb->mm->page_table_lock); | ||
595 | |||
596 | return ret; | ||
597 | } | ||
598 | |||
599 | pmd_t *page_check_address_pmd(struct page *page, | ||
600 | struct mm_struct *mm, | ||
601 | unsigned long address, | ||
602 | enum page_check_address_pmd_flag flag) | ||
603 | { | ||
604 | pgd_t *pgd; | ||
605 | pud_t *pud; | ||
606 | pmd_t *pmd, *ret = NULL; | ||
607 | |||
608 | if (address & ~HPAGE_PMD_MASK) | ||
609 | goto out; | ||
610 | |||
611 | pgd = pgd_offset(mm, address); | ||
612 | if (!pgd_present(*pgd)) | ||
613 | goto out; | ||
614 | |||
615 | pud = pud_offset(pgd, address); | ||
616 | if (!pud_present(*pud)) | ||
617 | goto out; | ||
618 | |||
619 | pmd = pmd_offset(pud, address); | ||
620 | if (pmd_none(*pmd)) | ||
621 | goto out; | ||
622 | if (pmd_page(*pmd) != page) | ||
623 | goto out; | ||
624 | VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && | ||
625 | pmd_trans_splitting(*pmd)); | ||
626 | if (pmd_trans_huge(*pmd)) { | ||
627 | VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && | ||
628 | !pmd_trans_splitting(*pmd)); | ||
629 | ret = pmd; | ||
630 | } | ||
631 | out: | ||
632 | return ret; | ||
633 | } | ||
634 | |||
635 | static int __split_huge_page_splitting(struct page *page, | ||
636 | struct vm_area_struct *vma, | ||
637 | unsigned long address) | ||
638 | { | ||
639 | struct mm_struct *mm = vma->vm_mm; | ||
640 | pmd_t *pmd; | ||
641 | int ret = 0; | ||
642 | |||
643 | spin_lock(&mm->page_table_lock); | ||
644 | pmd = page_check_address_pmd(page, mm, address, | ||
645 | PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); | ||
646 | if (pmd) { | ||
647 | /* | ||
648 | * We can't temporarily set the pmd to null in order | ||
649 | * to split it, the pmd must remain marked huge at all | ||
650 | * times or the VM won't take the pmd_trans_huge paths | ||
651 | * and it won't wait on the anon_vma->root->lock to | ||
652 | * serialize against split_huge_page*. | ||
653 | */ | ||
654 | pmdp_splitting_flush_notify(vma, address, pmd); | ||
655 | ret = 1; | ||
656 | } | ||
657 | spin_unlock(&mm->page_table_lock); | ||
658 | |||
659 | return ret; | ||
660 | } | ||
661 | |||
662 | static void __split_huge_page_refcount(struct page *page) | ||
663 | { | ||
664 | int i; | ||
665 | unsigned long head_index = page->index; | ||
666 | struct zone *zone = page_zone(page); | ||
667 | |||
668 | /* prevent PageLRU to go away from under us, and freeze lru stats */ | ||
669 | spin_lock_irq(&zone->lru_lock); | ||
670 | compound_lock(page); | ||
671 | |||
672 | for (i = 1; i < HPAGE_PMD_NR; i++) { | ||
673 | struct page *page_tail = page + i; | ||
674 | |||
675 | /* tail_page->_count cannot change */ | ||
676 | atomic_sub(atomic_read(&page_tail->_count), &page->_count); | ||
677 | BUG_ON(page_count(page) <= 0); | ||
678 | atomic_add(page_mapcount(page) + 1, &page_tail->_count); | ||
679 | BUG_ON(atomic_read(&page_tail->_count) <= 0); | ||
680 | |||
681 | /* after clearing PageTail the gup refcount can be released */ | ||
682 | smp_mb(); | ||
683 | |||
684 | page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | ||
685 | page_tail->flags |= (page->flags & | ||
686 | ((1L << PG_referenced) | | ||
687 | (1L << PG_swapbacked) | | ||
688 | (1L << PG_mlocked) | | ||
689 | (1L << PG_uptodate))); | ||
690 | page_tail->flags |= (1L << PG_dirty); | ||
691 | |||
692 | /* | ||
693 | * 1) clear PageTail before overwriting first_page | ||
694 | * 2) clear PageTail before clearing PageHead for VM_BUG_ON | ||
695 | */ | ||
696 | smp_wmb(); | ||
697 | |||
698 | /* | ||
699 | * __split_huge_page_splitting() already set the | ||
700 | * splitting bit in all pmd that could map this | ||
701 | * hugepage, that will ensure no CPU can alter the | ||
702 | * mapcount on the head page. The mapcount is only | ||
703 | * accounted in the head page and it has to be | ||
704 | * transferred to all tail pages in the below code. So | ||
705 | * for this code to be safe, the split the mapcount | ||
706 | * can't change. But that doesn't mean userland can't | ||
707 | * keep changing and reading the page contents while | ||
708 | * we transfer the mapcount, so the pmd splitting | ||
709 | * status is achieved setting a reserved bit in the | ||
710 | * pmd, not by clearing the present bit. | ||
711 | */ | ||
712 | BUG_ON(page_mapcount(page_tail)); | ||
713 | page_tail->_mapcount = page->_mapcount; | ||
714 | |||
715 | BUG_ON(page_tail->mapping); | ||
716 | page_tail->mapping = page->mapping; | ||
717 | |||
718 | page_tail->index = ++head_index; | ||
719 | |||
720 | BUG_ON(!PageAnon(page_tail)); | ||
721 | BUG_ON(!PageUptodate(page_tail)); | ||
722 | BUG_ON(!PageDirty(page_tail)); | ||
723 | BUG_ON(!PageSwapBacked(page_tail)); | ||
724 | |||
725 | lru_add_page_tail(zone, page, page_tail); | ||
726 | } | ||
727 | |||
728 | ClearPageCompound(page); | ||
729 | compound_unlock(page); | ||
730 | spin_unlock_irq(&zone->lru_lock); | ||
731 | |||
732 | for (i = 1; i < HPAGE_PMD_NR; i++) { | ||
733 | struct page *page_tail = page + i; | ||
734 | BUG_ON(page_count(page_tail) <= 0); | ||
735 | /* | ||
736 | * Tail pages may be freed if there wasn't any mapping | ||
737 | * like if add_to_swap() is running on a lru page that | ||
738 | * had its mapping zapped. And freeing these pages | ||
739 | * requires taking the lru_lock so we do the put_page | ||
740 | * of the tail pages after the split is complete. | ||
741 | */ | ||
742 | put_page(page_tail); | ||
743 | } | ||
744 | |||
745 | /* | ||
746 | * Only the head page (now become a regular page) is required | ||
747 | * to be pinned by the caller. | ||
748 | */ | ||
749 | BUG_ON(page_count(page) <= 0); | ||
750 | } | ||
751 | |||
752 | static int __split_huge_page_map(struct page *page, | ||
753 | struct vm_area_struct *vma, | ||
754 | unsigned long address) | ||
755 | { | ||
756 | struct mm_struct *mm = vma->vm_mm; | ||
757 | pmd_t *pmd, _pmd; | ||
758 | int ret = 0, i; | ||
759 | pgtable_t pgtable; | ||
760 | unsigned long haddr; | ||
761 | |||
762 | spin_lock(&mm->page_table_lock); | ||
763 | pmd = page_check_address_pmd(page, mm, address, | ||
764 | PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); | ||
765 | if (pmd) { | ||
766 | pgtable = get_pmd_huge_pte(mm); | ||
767 | pmd_populate(mm, &_pmd, pgtable); | ||
768 | |||
769 | for (i = 0, haddr = address; i < HPAGE_PMD_NR; | ||
770 | i++, haddr += PAGE_SIZE) { | ||
771 | pte_t *pte, entry; | ||
772 | BUG_ON(PageCompound(page+i)); | ||
773 | entry = mk_pte(page + i, vma->vm_page_prot); | ||
774 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | ||
775 | if (!pmd_write(*pmd)) | ||
776 | entry = pte_wrprotect(entry); | ||
777 | else | ||
778 | BUG_ON(page_mapcount(page) != 1); | ||
779 | if (!pmd_young(*pmd)) | ||
780 | entry = pte_mkold(entry); | ||
781 | pte = pte_offset_map(&_pmd, haddr); | ||
782 | BUG_ON(!pte_none(*pte)); | ||
783 | set_pte_at(mm, haddr, pte, entry); | ||
784 | pte_unmap(pte); | ||
785 | } | ||
786 | |||
787 | mm->nr_ptes++; | ||
788 | smp_wmb(); /* make pte visible before pmd */ | ||
789 | /* | ||
790 | * Up to this point the pmd is present and huge and | ||
791 | * userland has the whole access to the hugepage | ||
792 | * during the split (which happens in place). If we | ||
793 | * overwrite the pmd with the not-huge version | ||
794 | * pointing to the pte here (which of course we could | ||
795 | * if all CPUs were bug free), userland could trigger | ||
796 | * a small page size TLB miss on the small sized TLB | ||
797 | * while the hugepage TLB entry is still established | ||
798 | * in the huge TLB. Some CPU doesn't like that. See | ||
799 | * http://support.amd.com/us/Processor_TechDocs/41322.pdf, | ||
800 | * Erratum 383 on page 93. Intel should be safe but is | ||
801 | * also warns that it's only safe if the permission | ||
802 | * and cache attributes of the two entries loaded in | ||
803 | * the two TLB is identical (which should be the case | ||
804 | * here). But it is generally safer to never allow | ||
805 | * small and huge TLB entries for the same virtual | ||
806 | * address to be loaded simultaneously. So instead of | ||
807 | * doing "pmd_populate(); flush_tlb_range();" we first | ||
808 | * mark the current pmd notpresent (atomically because | ||
809 | * here the pmd_trans_huge and pmd_trans_splitting | ||
810 | * must remain set at all times on the pmd until the | ||
811 | * split is complete for this pmd), then we flush the | ||
812 | * SMP TLB and finally we write the non-huge version | ||
813 | * of the pmd entry with pmd_populate. | ||
814 | */ | ||
815 | set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd)); | ||
816 | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | ||
817 | pmd_populate(mm, pmd, pgtable); | ||
818 | ret = 1; | ||
819 | } | ||
820 | spin_unlock(&mm->page_table_lock); | ||
821 | |||
822 | return ret; | ||
823 | } | ||
824 | |||
825 | /* must be called with anon_vma->root->lock hold */ | ||
826 | static void __split_huge_page(struct page *page, | ||
827 | struct anon_vma *anon_vma) | ||
828 | { | ||
829 | int mapcount, mapcount2; | ||
830 | struct anon_vma_chain *avc; | ||
831 | |||
832 | BUG_ON(!PageHead(page)); | ||
833 | BUG_ON(PageTail(page)); | ||
834 | |||
835 | mapcount = 0; | ||
836 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | ||
837 | struct vm_area_struct *vma = avc->vma; | ||
838 | unsigned long addr = vma_address(page, vma); | ||
839 | BUG_ON(is_vma_temporary_stack(vma)); | ||
840 | if (addr == -EFAULT) | ||
841 | continue; | ||
842 | mapcount += __split_huge_page_splitting(page, vma, addr); | ||
843 | } | ||
844 | BUG_ON(mapcount != page_mapcount(page)); | ||
845 | |||
846 | __split_huge_page_refcount(page); | ||
847 | |||
848 | mapcount2 = 0; | ||
849 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | ||
850 | struct vm_area_struct *vma = avc->vma; | ||
851 | unsigned long addr = vma_address(page, vma); | ||
852 | BUG_ON(is_vma_temporary_stack(vma)); | ||
853 | if (addr == -EFAULT) | ||
854 | continue; | ||
855 | mapcount2 += __split_huge_page_map(page, vma, addr); | ||
856 | } | ||
857 | BUG_ON(mapcount != mapcount2); | ||
858 | } | ||
859 | |||
860 | int split_huge_page(struct page *page) | ||
861 | { | ||
862 | struct anon_vma *anon_vma; | ||
863 | int ret = 1; | ||
864 | |||
865 | BUG_ON(!PageAnon(page)); | ||
866 | anon_vma = page_lock_anon_vma(page); | ||
867 | if (!anon_vma) | ||
868 | goto out; | ||
869 | ret = 0; | ||
870 | if (!PageCompound(page)) | ||
871 | goto out_unlock; | ||
872 | |||
873 | BUG_ON(!PageSwapBacked(page)); | ||
874 | __split_huge_page(page, anon_vma); | ||
875 | |||
876 | BUG_ON(PageCompound(page)); | ||
877 | out_unlock: | ||
878 | page_unlock_anon_vma(anon_vma); | ||
879 | out: | ||
880 | return ret; | ||
881 | } | ||
882 | |||
883 | void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd) | ||
884 | { | ||
885 | struct page *page; | ||
886 | |||
887 | spin_lock(&mm->page_table_lock); | ||
888 | if (unlikely(!pmd_trans_huge(*pmd))) { | ||
889 | spin_unlock(&mm->page_table_lock); | ||
890 | return; | ||
891 | } | ||
892 | page = pmd_page(*pmd); | ||
893 | VM_BUG_ON(!page_count(page)); | ||
894 | get_page(page); | ||
895 | spin_unlock(&mm->page_table_lock); | ||
896 | |||
897 | split_huge_page(page); | ||
898 | |||
899 | put_page(page); | ||
900 | BUG_ON(pmd_trans_huge(*pmd)); | ||
901 | } | ||
diff --git a/mm/internal.h b/mm/internal.h index bd4f581f624a..69488205723d 100644 --- a/mm/internal.h +++ b/mm/internal.h | |||
@@ -134,6 +134,10 @@ static inline void mlock_migrate_page(struct page *newpage, struct page *page) | |||
134 | } | 134 | } |
135 | } | 135 | } |
136 | 136 | ||
137 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | ||
138 | extern unsigned long vma_address(struct page *page, | ||
139 | struct vm_area_struct *vma); | ||
140 | #endif | ||
137 | #else /* !CONFIG_MMU */ | 141 | #else /* !CONFIG_MMU */ |
138 | static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p) | 142 | static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p) |
139 | { | 143 | { |
diff --git a/mm/memory.c b/mm/memory.c index 60e1c68d8218..c50a195041ec 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -726,9 +726,9 @@ out_set_pte: | |||
726 | return 0; | 726 | return 0; |
727 | } | 727 | } |
728 | 728 | ||
729 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 729 | int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
730 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 730 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
731 | unsigned long addr, unsigned long end) | 731 | unsigned long addr, unsigned long end) |
732 | { | 732 | { |
733 | pte_t *orig_src_pte, *orig_dst_pte; | 733 | pte_t *orig_src_pte, *orig_dst_pte; |
734 | pte_t *src_pte, *dst_pte; | 734 | pte_t *src_pte, *dst_pte; |
@@ -802,6 +802,16 @@ static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src | |||
802 | src_pmd = pmd_offset(src_pud, addr); | 802 | src_pmd = pmd_offset(src_pud, addr); |
803 | do { | 803 | do { |
804 | next = pmd_addr_end(addr, end); | 804 | next = pmd_addr_end(addr, end); |
805 | if (pmd_trans_huge(*src_pmd)) { | ||
806 | int err; | ||
807 | err = copy_huge_pmd(dst_mm, src_mm, | ||
808 | dst_pmd, src_pmd, addr, vma); | ||
809 | if (err == -ENOMEM) | ||
810 | return -ENOMEM; | ||
811 | if (!err) | ||
812 | continue; | ||
813 | /* fall through */ | ||
814 | } | ||
805 | if (pmd_none_or_clear_bad(src_pmd)) | 815 | if (pmd_none_or_clear_bad(src_pmd)) |
806 | continue; | 816 | continue; |
807 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 817 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, |
@@ -1004,6 +1014,15 @@ static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | |||
1004 | pmd = pmd_offset(pud, addr); | 1014 | pmd = pmd_offset(pud, addr); |
1005 | do { | 1015 | do { |
1006 | next = pmd_addr_end(addr, end); | 1016 | next = pmd_addr_end(addr, end); |
1017 | if (pmd_trans_huge(*pmd)) { | ||
1018 | if (next-addr != HPAGE_PMD_SIZE) | ||
1019 | split_huge_page_pmd(vma->vm_mm, pmd); | ||
1020 | else if (zap_huge_pmd(tlb, vma, pmd)) { | ||
1021 | (*zap_work)--; | ||
1022 | continue; | ||
1023 | } | ||
1024 | /* fall through */ | ||
1025 | } | ||
1007 | if (pmd_none_or_clear_bad(pmd)) { | 1026 | if (pmd_none_or_clear_bad(pmd)) { |
1008 | (*zap_work)--; | 1027 | (*zap_work)--; |
1009 | continue; | 1028 | continue; |
@@ -1280,11 +1299,27 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |||
1280 | pmd = pmd_offset(pud, address); | 1299 | pmd = pmd_offset(pud, address); |
1281 | if (pmd_none(*pmd)) | 1300 | if (pmd_none(*pmd)) |
1282 | goto no_page_table; | 1301 | goto no_page_table; |
1283 | if (pmd_huge(*pmd)) { | 1302 | if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { |
1284 | BUG_ON(flags & FOLL_GET); | 1303 | BUG_ON(flags & FOLL_GET); |
1285 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | 1304 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
1286 | goto out; | 1305 | goto out; |
1287 | } | 1306 | } |
1307 | if (pmd_trans_huge(*pmd)) { | ||
1308 | spin_lock(&mm->page_table_lock); | ||
1309 | if (likely(pmd_trans_huge(*pmd))) { | ||
1310 | if (unlikely(pmd_trans_splitting(*pmd))) { | ||
1311 | spin_unlock(&mm->page_table_lock); | ||
1312 | wait_split_huge_page(vma->anon_vma, pmd); | ||
1313 | } else { | ||
1314 | page = follow_trans_huge_pmd(mm, address, | ||
1315 | pmd, flags); | ||
1316 | spin_unlock(&mm->page_table_lock); | ||
1317 | goto out; | ||
1318 | } | ||
1319 | } else | ||
1320 | spin_unlock(&mm->page_table_lock); | ||
1321 | /* fall through */ | ||
1322 | } | ||
1288 | if (unlikely(pmd_bad(*pmd))) | 1323 | if (unlikely(pmd_bad(*pmd))) |
1289 | goto no_page_table; | 1324 | goto no_page_table; |
1290 | 1325 | ||
@@ -3179,9 +3214,9 @@ static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
3179 | * but allow concurrent faults), and pte mapped but not yet locked. | 3214 | * but allow concurrent faults), and pte mapped but not yet locked. |
3180 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 3215 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
3181 | */ | 3216 | */ |
3182 | static inline int handle_pte_fault(struct mm_struct *mm, | 3217 | int handle_pte_fault(struct mm_struct *mm, |
3183 | struct vm_area_struct *vma, unsigned long address, | 3218 | struct vm_area_struct *vma, unsigned long address, |
3184 | pte_t *pte, pmd_t *pmd, unsigned int flags) | 3219 | pte_t *pte, pmd_t *pmd, unsigned int flags) |
3185 | { | 3220 | { |
3186 | pte_t entry; | 3221 | pte_t entry; |
3187 | spinlock_t *ptl; | 3222 | spinlock_t *ptl; |
@@ -3260,9 +3295,40 @@ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
3260 | pmd = pmd_alloc(mm, pud, address); | 3295 | pmd = pmd_alloc(mm, pud, address); |
3261 | if (!pmd) | 3296 | if (!pmd) |
3262 | return VM_FAULT_OOM; | 3297 | return VM_FAULT_OOM; |
3263 | pte = pte_alloc_map(mm, vma, pmd, address); | 3298 | if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { |
3264 | if (!pte) | 3299 | if (!vma->vm_ops) |
3300 | return do_huge_pmd_anonymous_page(mm, vma, address, | ||
3301 | pmd, flags); | ||
3302 | } else { | ||
3303 | pmd_t orig_pmd = *pmd; | ||
3304 | barrier(); | ||
3305 | if (pmd_trans_huge(orig_pmd)) { | ||
3306 | if (flags & FAULT_FLAG_WRITE && | ||
3307 | !pmd_write(orig_pmd) && | ||
3308 | !pmd_trans_splitting(orig_pmd)) | ||
3309 | return do_huge_pmd_wp_page(mm, vma, address, | ||
3310 | pmd, orig_pmd); | ||
3311 | return 0; | ||
3312 | } | ||
3313 | } | ||
3314 | |||
3315 | /* | ||
3316 | * Use __pte_alloc instead of pte_alloc_map, because we can't | ||
3317 | * run pte_offset_map on the pmd, if an huge pmd could | ||
3318 | * materialize from under us from a different thread. | ||
3319 | */ | ||
3320 | if (unlikely(__pte_alloc(mm, vma, pmd, address))) | ||
3265 | return VM_FAULT_OOM; | 3321 | return VM_FAULT_OOM; |
3322 | /* if an huge pmd materialized from under us just retry later */ | ||
3323 | if (unlikely(pmd_trans_huge(*pmd))) | ||
3324 | return 0; | ||
3325 | /* | ||
3326 | * A regular pmd is established and it can't morph into a huge pmd | ||
3327 | * from under us anymore at this point because we hold the mmap_sem | ||
3328 | * read mode and khugepaged takes it in write mode. So now it's | ||
3329 | * safe to run pte_offset_map(). | ||
3330 | */ | ||
3331 | pte = pte_offset_map(pmd, address); | ||
3266 | 3332 | ||
3267 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); | 3333 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
3268 | } | 3334 | } |
@@ -360,7 +360,7 @@ void page_unlock_anon_vma(struct anon_vma *anon_vma) | |||
360 | * Returns virtual address or -EFAULT if page's index/offset is not | 360 | * Returns virtual address or -EFAULT if page's index/offset is not |
361 | * within the range mapped the @vma. | 361 | * within the range mapped the @vma. |
362 | */ | 362 | */ |
363 | static inline unsigned long | 363 | inline unsigned long |
364 | vma_address(struct page *page, struct vm_area_struct *vma) | 364 | vma_address(struct page *page, struct vm_area_struct *vma) |
365 | { | 365 | { |
366 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 366 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
@@ -435,6 +435,8 @@ pte_t *__page_check_address(struct page *page, struct mm_struct *mm, | |||
435 | pmd = pmd_offset(pud, address); | 435 | pmd = pmd_offset(pud, address); |
436 | if (!pmd_present(*pmd)) | 436 | if (!pmd_present(*pmd)) |
437 | return NULL; | 437 | return NULL; |
438 | if (pmd_trans_huge(*pmd)) | ||
439 | return NULL; | ||
438 | 440 | ||
439 | pte = pte_offset_map(pmd, address); | 441 | pte = pte_offset_map(pmd, address); |
440 | /* Make a quick check before getting the lock */ | 442 | /* Make a quick check before getting the lock */ |
@@ -489,35 +491,17 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma, | |||
489 | unsigned long *vm_flags) | 491 | unsigned long *vm_flags) |
490 | { | 492 | { |
491 | struct mm_struct *mm = vma->vm_mm; | 493 | struct mm_struct *mm = vma->vm_mm; |
492 | pte_t *pte; | ||
493 | spinlock_t *ptl; | ||
494 | int referenced = 0; | 494 | int referenced = 0; |
495 | 495 | ||
496 | pte = page_check_address(page, mm, address, &ptl, 0); | ||
497 | if (!pte) | ||
498 | goto out; | ||
499 | |||
500 | /* | 496 | /* |
501 | * Don't want to elevate referenced for mlocked page that gets this far, | 497 | * Don't want to elevate referenced for mlocked page that gets this far, |
502 | * in order that it progresses to try_to_unmap and is moved to the | 498 | * in order that it progresses to try_to_unmap and is moved to the |
503 | * unevictable list. | 499 | * unevictable list. |
504 | */ | 500 | */ |
505 | if (vma->vm_flags & VM_LOCKED) { | 501 | if (vma->vm_flags & VM_LOCKED) { |
506 | *mapcount = 1; /* break early from loop */ | 502 | *mapcount = 0; /* break early from loop */ |
507 | *vm_flags |= VM_LOCKED; | 503 | *vm_flags |= VM_LOCKED; |
508 | goto out_unmap; | 504 | goto out; |
509 | } | ||
510 | |||
511 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | ||
512 | /* | ||
513 | * Don't treat a reference through a sequentially read | ||
514 | * mapping as such. If the page has been used in | ||
515 | * another mapping, we will catch it; if this other | ||
516 | * mapping is already gone, the unmap path will have | ||
517 | * set PG_referenced or activated the page. | ||
518 | */ | ||
519 | if (likely(!VM_SequentialReadHint(vma))) | ||
520 | referenced++; | ||
521 | } | 505 | } |
522 | 506 | ||
523 | /* Pretend the page is referenced if the task has the | 507 | /* Pretend the page is referenced if the task has the |
@@ -526,9 +510,39 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma, | |||
526 | rwsem_is_locked(&mm->mmap_sem)) | 510 | rwsem_is_locked(&mm->mmap_sem)) |
527 | referenced++; | 511 | referenced++; |
528 | 512 | ||
529 | out_unmap: | 513 | if (unlikely(PageTransHuge(page))) { |
514 | pmd_t *pmd; | ||
515 | |||
516 | spin_lock(&mm->page_table_lock); | ||
517 | pmd = page_check_address_pmd(page, mm, address, | ||
518 | PAGE_CHECK_ADDRESS_PMD_FLAG); | ||
519 | if (pmd && !pmd_trans_splitting(*pmd) && | ||
520 | pmdp_clear_flush_young_notify(vma, address, pmd)) | ||
521 | referenced++; | ||
522 | spin_unlock(&mm->page_table_lock); | ||
523 | } else { | ||
524 | pte_t *pte; | ||
525 | spinlock_t *ptl; | ||
526 | |||
527 | pte = page_check_address(page, mm, address, &ptl, 0); | ||
528 | if (!pte) | ||
529 | goto out; | ||
530 | |||
531 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | ||
532 | /* | ||
533 | * Don't treat a reference through a sequentially read | ||
534 | * mapping as such. If the page has been used in | ||
535 | * another mapping, we will catch it; if this other | ||
536 | * mapping is already gone, the unmap path will have | ||
537 | * set PG_referenced or activated the page. | ||
538 | */ | ||
539 | if (likely(!VM_SequentialReadHint(vma))) | ||
540 | referenced++; | ||
541 | } | ||
542 | pte_unmap_unlock(pte, ptl); | ||
543 | } | ||
544 | |||
530 | (*mapcount)--; | 545 | (*mapcount)--; |
531 | pte_unmap_unlock(pte, ptl); | ||
532 | 546 | ||
533 | if (referenced) | 547 | if (referenced) |
534 | *vm_flags |= vma->vm_flags; | 548 | *vm_flags |= vma->vm_flags; |
@@ -1202,7 +1216,7 @@ static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, | |||
1202 | return ret; | 1216 | return ret; |
1203 | } | 1217 | } |
1204 | 1218 | ||
1205 | static bool is_vma_temporary_stack(struct vm_area_struct *vma) | 1219 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
1206 | { | 1220 | { |
1207 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | 1221 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); |
1208 | 1222 | ||
@@ -479,6 +479,43 @@ void __pagevec_release(struct pagevec *pvec) | |||
479 | 479 | ||
480 | EXPORT_SYMBOL(__pagevec_release); | 480 | EXPORT_SYMBOL(__pagevec_release); |
481 | 481 | ||
482 | /* used by __split_huge_page_refcount() */ | ||
483 | void lru_add_page_tail(struct zone* zone, | ||
484 | struct page *page, struct page *page_tail) | ||
485 | { | ||
486 | int active; | ||
487 | enum lru_list lru; | ||
488 | const int file = 0; | ||
489 | struct list_head *head; | ||
490 | |||
491 | VM_BUG_ON(!PageHead(page)); | ||
492 | VM_BUG_ON(PageCompound(page_tail)); | ||
493 | VM_BUG_ON(PageLRU(page_tail)); | ||
494 | VM_BUG_ON(!spin_is_locked(&zone->lru_lock)); | ||
495 | |||
496 | SetPageLRU(page_tail); | ||
497 | |||
498 | if (page_evictable(page_tail, NULL)) { | ||
499 | if (PageActive(page)) { | ||
500 | SetPageActive(page_tail); | ||
501 | active = 1; | ||
502 | lru = LRU_ACTIVE_ANON; | ||
503 | } else { | ||
504 | active = 0; | ||
505 | lru = LRU_INACTIVE_ANON; | ||
506 | } | ||
507 | update_page_reclaim_stat(zone, page_tail, file, active); | ||
508 | if (likely(PageLRU(page))) | ||
509 | head = page->lru.prev; | ||
510 | else | ||
511 | head = &zone->lru[lru].list; | ||
512 | __add_page_to_lru_list(zone, page_tail, lru, head); | ||
513 | } else { | ||
514 | SetPageUnevictable(page_tail); | ||
515 | add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE); | ||
516 | } | ||
517 | } | ||
518 | |||
482 | /* | 519 | /* |
483 | * Add the passed pages to the LRU, then drop the caller's refcount | 520 | * Add the passed pages to the LRU, then drop the caller's refcount |
484 | * on them. Reinitialises the caller's pagevec. | 521 | * on them. Reinitialises the caller's pagevec. |