diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Makefile | 4 | ||||
-rw-r--r-- | mm/allocpercpu.c | 32 | ||||
-rw-r--r-- | mm/bootmem.c | 35 | ||||
-rw-r--r-- | mm/filemap.c | 7 | ||||
-rw-r--r-- | mm/memory.c | 10 | ||||
-rw-r--r-- | mm/percpu.c | 1226 | ||||
-rw-r--r-- | mm/slab.c | 71 | ||||
-rw-r--r-- | mm/slob.c | 37 | ||||
-rw-r--r-- | mm/slub.c | 97 | ||||
-rw-r--r-- | mm/vmalloc.c | 97 |
10 files changed, 1562 insertions, 54 deletions
diff --git a/mm/Makefile b/mm/Makefile index 72255be57f89..818569b68f46 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -30,6 +30,10 @@ obj-$(CONFIG_FAILSLAB) += failslab.o | |||
30 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 30 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
31 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 31 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
32 | obj-$(CONFIG_MIGRATION) += migrate.o | 32 | obj-$(CONFIG_MIGRATION) += migrate.o |
33 | ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
34 | obj-$(CONFIG_SMP) += percpu.o | ||
35 | else | ||
33 | obj-$(CONFIG_SMP) += allocpercpu.o | 36 | obj-$(CONFIG_SMP) += allocpercpu.o |
37 | endif | ||
34 | obj-$(CONFIG_QUICKLIST) += quicklist.o | 38 | obj-$(CONFIG_QUICKLIST) += quicklist.o |
35 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o | 39 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o |
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index 4297bc41bfd2..3653c570232b 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c | |||
@@ -99,45 +99,51 @@ static int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, | |||
99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) | 99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) |
100 | 100 | ||
101 | /** | 101 | /** |
102 | * percpu_alloc_mask - initial setup of per-cpu data | 102 | * alloc_percpu - initial setup of per-cpu data |
103 | * @size: size of per-cpu object | 103 | * @size: size of per-cpu object |
104 | * @gfp: may sleep or not etc. | 104 | * @align: alignment |
105 | * @mask: populate per-data for cpu's selected through mask bits | ||
106 | * | 105 | * |
107 | * Populating per-cpu data for all online cpu's would be a typical use case, | 106 | * Allocate dynamic percpu area. Percpu objects are populated with |
108 | * which is simplified by the percpu_alloc() wrapper. | 107 | * zeroed buffers. |
109 | * Per-cpu objects are populated with zeroed buffers. | ||
110 | */ | 108 | */ |
111 | void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask) | 109 | void *__alloc_percpu(size_t size, size_t align) |
112 | { | 110 | { |
113 | /* | 111 | /* |
114 | * We allocate whole cache lines to avoid false sharing | 112 | * We allocate whole cache lines to avoid false sharing |
115 | */ | 113 | */ |
116 | size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size()); | 114 | size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size()); |
117 | void *pdata = kzalloc(sz, gfp); | 115 | void *pdata = kzalloc(sz, GFP_KERNEL); |
118 | void *__pdata = __percpu_disguise(pdata); | 116 | void *__pdata = __percpu_disguise(pdata); |
119 | 117 | ||
118 | /* | ||
119 | * Can't easily make larger alignment work with kmalloc. WARN | ||
120 | * on it. Larger alignment should only be used for module | ||
121 | * percpu sections on SMP for which this path isn't used. | ||
122 | */ | ||
123 | WARN_ON_ONCE(align > __alignof__(unsigned long long)); | ||
124 | |||
120 | if (unlikely(!pdata)) | 125 | if (unlikely(!pdata)) |
121 | return NULL; | 126 | return NULL; |
122 | if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask))) | 127 | if (likely(!__percpu_populate_mask(__pdata, size, GFP_KERNEL, |
128 | &cpu_possible_map))) | ||
123 | return __pdata; | 129 | return __pdata; |
124 | kfree(pdata); | 130 | kfree(pdata); |
125 | return NULL; | 131 | return NULL; |
126 | } | 132 | } |
127 | EXPORT_SYMBOL_GPL(__percpu_alloc_mask); | 133 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
128 | 134 | ||
129 | /** | 135 | /** |
130 | * percpu_free - final cleanup of per-cpu data | 136 | * free_percpu - final cleanup of per-cpu data |
131 | * @__pdata: object to clean up | 137 | * @__pdata: object to clean up |
132 | * | 138 | * |
133 | * We simply clean up any per-cpu object left. No need for the client to | 139 | * We simply clean up any per-cpu object left. No need for the client to |
134 | * track and specify through a bis mask which per-cpu objects are to free. | 140 | * track and specify through a bis mask which per-cpu objects are to free. |
135 | */ | 141 | */ |
136 | void percpu_free(void *__pdata) | 142 | void free_percpu(void *__pdata) |
137 | { | 143 | { |
138 | if (unlikely(!__pdata)) | 144 | if (unlikely(!__pdata)) |
139 | return; | 145 | return; |
140 | __percpu_depopulate_mask(__pdata, &cpu_possible_map); | 146 | __percpu_depopulate_mask(__pdata, &cpu_possible_map); |
141 | kfree(__percpu_disguise(__pdata)); | 147 | kfree(__percpu_disguise(__pdata)); |
142 | } | 148 | } |
143 | EXPORT_SYMBOL_GPL(percpu_free); | 149 | EXPORT_SYMBOL_GPL(free_percpu); |
diff --git a/mm/bootmem.c b/mm/bootmem.c index 51a0ccf61e0e..daf92713f7de 100644 --- a/mm/bootmem.c +++ b/mm/bootmem.c | |||
@@ -382,7 +382,6 @@ int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | |||
382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); | 382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); |
383 | } | 383 | } |
384 | 384 | ||
385 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | ||
386 | /** | 385 | /** |
387 | * reserve_bootmem - mark a page range as usable | 386 | * reserve_bootmem - mark a page range as usable |
388 | * @addr: starting address of the range | 387 | * @addr: starting address of the range |
@@ -403,7 +402,6 @@ int __init reserve_bootmem(unsigned long addr, unsigned long size, | |||
403 | 402 | ||
404 | return mark_bootmem(start, end, 1, flags); | 403 | return mark_bootmem(start, end, 1, flags); |
405 | } | 404 | } |
406 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | ||
407 | 405 | ||
408 | static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx, | 406 | static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx, |
409 | unsigned long step) | 407 | unsigned long step) |
@@ -429,8 +427,8 @@ static unsigned long align_off(struct bootmem_data *bdata, unsigned long off, | |||
429 | } | 427 | } |
430 | 428 | ||
431 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, | 429 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, |
432 | unsigned long size, unsigned long align, | 430 | unsigned long size, unsigned long align, |
433 | unsigned long goal, unsigned long limit) | 431 | unsigned long goal, unsigned long limit) |
434 | { | 432 | { |
435 | unsigned long fallback = 0; | 433 | unsigned long fallback = 0; |
436 | unsigned long min, max, start, sidx, midx, step; | 434 | unsigned long min, max, start, sidx, midx, step; |
@@ -530,17 +528,34 @@ find_block: | |||
530 | return NULL; | 528 | return NULL; |
531 | } | 529 | } |
532 | 530 | ||
531 | static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata, | ||
532 | unsigned long size, unsigned long align, | ||
533 | unsigned long goal, unsigned long limit) | ||
534 | { | ||
535 | #ifdef CONFIG_HAVE_ARCH_BOOTMEM | ||
536 | bootmem_data_t *p_bdata; | ||
537 | |||
538 | p_bdata = bootmem_arch_preferred_node(bdata, size, align, goal, limit); | ||
539 | if (p_bdata) | ||
540 | return alloc_bootmem_core(p_bdata, size, align, goal, limit); | ||
541 | #endif | ||
542 | return NULL; | ||
543 | } | ||
544 | |||
533 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, | 545 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, |
534 | unsigned long align, | 546 | unsigned long align, |
535 | unsigned long goal, | 547 | unsigned long goal, |
536 | unsigned long limit) | 548 | unsigned long limit) |
537 | { | 549 | { |
538 | bootmem_data_t *bdata; | 550 | bootmem_data_t *bdata; |
551 | void *region; | ||
539 | 552 | ||
540 | restart: | 553 | restart: |
541 | list_for_each_entry(bdata, &bdata_list, list) { | 554 | region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit); |
542 | void *region; | 555 | if (region) |
556 | return region; | ||
543 | 557 | ||
558 | list_for_each_entry(bdata, &bdata_list, list) { | ||
544 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) | 559 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) |
545 | continue; | 560 | continue; |
546 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) | 561 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) |
@@ -618,6 +633,10 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata, | |||
618 | { | 633 | { |
619 | void *ptr; | 634 | void *ptr; |
620 | 635 | ||
636 | ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit); | ||
637 | if (ptr) | ||
638 | return ptr; | ||
639 | |||
621 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); | 640 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); |
622 | if (ptr) | 641 | if (ptr) |
623 | return ptr; | 642 | return ptr; |
@@ -674,6 +693,10 @@ void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, | |||
674 | { | 693 | { |
675 | void *ptr; | 694 | void *ptr; |
676 | 695 | ||
696 | ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0); | ||
697 | if (ptr) | ||
698 | return ptr; | ||
699 | |||
677 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); | 700 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); |
678 | if (ptr) | 701 | if (ptr) |
679 | return ptr; | 702 | return ptr; |
diff --git a/mm/filemap.c b/mm/filemap.c index 23acefe51808..126d3973b3d1 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -1823,7 +1823,7 @@ static size_t __iovec_copy_from_user_inatomic(char *vaddr, | |||
1823 | int copy = min(bytes, iov->iov_len - base); | 1823 | int copy = min(bytes, iov->iov_len - base); |
1824 | 1824 | ||
1825 | base = 0; | 1825 | base = 0; |
1826 | left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); | 1826 | left = __copy_from_user_inatomic(vaddr, buf, copy); |
1827 | copied += copy; | 1827 | copied += copy; |
1828 | bytes -= copy; | 1828 | bytes -= copy; |
1829 | vaddr += copy; | 1829 | vaddr += copy; |
@@ -1851,8 +1851,7 @@ size_t iov_iter_copy_from_user_atomic(struct page *page, | |||
1851 | if (likely(i->nr_segs == 1)) { | 1851 | if (likely(i->nr_segs == 1)) { |
1852 | int left; | 1852 | int left; |
1853 | char __user *buf = i->iov->iov_base + i->iov_offset; | 1853 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1854 | left = __copy_from_user_inatomic_nocache(kaddr + offset, | 1854 | left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); |
1855 | buf, bytes); | ||
1856 | copied = bytes - left; | 1855 | copied = bytes - left; |
1857 | } else { | 1856 | } else { |
1858 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 1857 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
@@ -1880,7 +1879,7 @@ size_t iov_iter_copy_from_user(struct page *page, | |||
1880 | if (likely(i->nr_segs == 1)) { | 1879 | if (likely(i->nr_segs == 1)) { |
1881 | int left; | 1880 | int left; |
1882 | char __user *buf = i->iov->iov_base + i->iov_offset; | 1881 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1883 | left = __copy_from_user_nocache(kaddr + offset, buf, bytes); | 1882 | left = __copy_from_user(kaddr + offset, buf, bytes); |
1884 | copied = bytes - left; | 1883 | copied = bytes - left; |
1885 | } else { | 1884 | } else { |
1886 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 1885 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
diff --git a/mm/memory.c b/mm/memory.c index baa999e87cd2..05fab3bc5b4b 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -48,6 +48,8 @@ | |||
48 | #include <linux/rmap.h> | 48 | #include <linux/rmap.h> |
49 | #include <linux/module.h> | 49 | #include <linux/module.h> |
50 | #include <linux/delayacct.h> | 50 | #include <linux/delayacct.h> |
51 | #include <linux/kprobes.h> | ||
52 | #include <linux/mutex.h> | ||
51 | #include <linux/init.h> | 53 | #include <linux/init.h> |
52 | #include <linux/writeback.h> | 54 | #include <linux/writeback.h> |
53 | #include <linux/memcontrol.h> | 55 | #include <linux/memcontrol.h> |
@@ -99,6 +101,14 @@ int randomize_va_space __read_mostly = | |||
99 | 2; | 101 | 2; |
100 | #endif | 102 | #endif |
101 | 103 | ||
104 | /* | ||
105 | * mutex protecting text section modification (dynamic code patching). | ||
106 | * some users need to sleep (allocating memory...) while they hold this lock. | ||
107 | * | ||
108 | * NOT exported to modules - patching kernel text is a really delicate matter. | ||
109 | */ | ||
110 | DEFINE_MUTEX(text_mutex); | ||
111 | |||
102 | static int __init disable_randmaps(char *s) | 112 | static int __init disable_randmaps(char *s) |
103 | { | 113 | { |
104 | randomize_va_space = 0; | 114 | randomize_va_space = 0; |
diff --git a/mm/percpu.c b/mm/percpu.c new file mode 100644 index 000000000000..bfe6a3afaf45 --- /dev/null +++ b/mm/percpu.c | |||
@@ -0,0 +1,1226 @@ | |||
1 | /* | ||
2 | * linux/mm/percpu.c - percpu memory allocator | ||
3 | * | ||
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | ||
5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | ||
6 | * | ||
7 | * This file is released under the GPLv2. | ||
8 | * | ||
9 | * This is percpu allocator which can handle both static and dynamic | ||
10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | ||
11 | * chunk is consisted of num_possible_cpus() units and the first chunk | ||
12 | * is used for static percpu variables in the kernel image (special | ||
13 | * boot time alloc/init handling necessary as these areas need to be | ||
14 | * brought up before allocation services are running). Unit grows as | ||
15 | * necessary and all units grow or shrink in unison. When a chunk is | ||
16 | * filled up, another chunk is allocated. ie. in vmalloc area | ||
17 | * | ||
18 | * c0 c1 c2 | ||
19 | * ------------------- ------------------- ------------ | ||
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | ||
21 | * ------------------- ...... ------------------- .... ------------ | ||
22 | * | ||
23 | * Allocation is done in offset-size areas of single unit space. Ie, | ||
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | ||
25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | ||
26 | * percpu base registers UNIT_SIZE apart. | ||
27 | * | ||
28 | * There are usually many small percpu allocations many of them as | ||
29 | * small as 4 bytes. The allocator organizes chunks into lists | ||
30 | * according to free size and tries to allocate from the fullest one. | ||
31 | * Each chunk keeps the maximum contiguous area size hint which is | ||
32 | * guaranteed to be eqaul to or larger than the maximum contiguous | ||
33 | * area in the chunk. This helps the allocator not to iterate the | ||
34 | * chunk maps unnecessarily. | ||
35 | * | ||
36 | * Allocation state in each chunk is kept using an array of integers | ||
37 | * on chunk->map. A positive value in the map represents a free | ||
38 | * region and negative allocated. Allocation inside a chunk is done | ||
39 | * by scanning this map sequentially and serving the first matching | ||
40 | * entry. This is mostly copied from the percpu_modalloc() allocator. | ||
41 | * Chunks are also linked into a rb tree to ease address to chunk | ||
42 | * mapping during free. | ||
43 | * | ||
44 | * To use this allocator, arch code should do the followings. | ||
45 | * | ||
46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
47 | * | ||
48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | ||
49 | * regular address to percpu pointer and back | ||
50 | * | ||
51 | * - use pcpu_setup_first_chunk() during percpu area initialization to | ||
52 | * setup the first chunk containing the kernel static percpu area | ||
53 | */ | ||
54 | |||
55 | #include <linux/bitmap.h> | ||
56 | #include <linux/bootmem.h> | ||
57 | #include <linux/list.h> | ||
58 | #include <linux/mm.h> | ||
59 | #include <linux/module.h> | ||
60 | #include <linux/mutex.h> | ||
61 | #include <linux/percpu.h> | ||
62 | #include <linux/pfn.h> | ||
63 | #include <linux/rbtree.h> | ||
64 | #include <linux/slab.h> | ||
65 | #include <linux/spinlock.h> | ||
66 | #include <linux/vmalloc.h> | ||
67 | #include <linux/workqueue.h> | ||
68 | |||
69 | #include <asm/cacheflush.h> | ||
70 | #include <asm/tlbflush.h> | ||
71 | |||
72 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ | ||
73 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | ||
74 | |||
75 | struct pcpu_chunk { | ||
76 | struct list_head list; /* linked to pcpu_slot lists */ | ||
77 | struct rb_node rb_node; /* key is chunk->vm->addr */ | ||
78 | int free_size; /* free bytes in the chunk */ | ||
79 | int contig_hint; /* max contiguous size hint */ | ||
80 | struct vm_struct *vm; /* mapped vmalloc region */ | ||
81 | int map_used; /* # of map entries used */ | ||
82 | int map_alloc; /* # of map entries allocated */ | ||
83 | int *map; /* allocation map */ | ||
84 | bool immutable; /* no [de]population allowed */ | ||
85 | struct page **page; /* points to page array */ | ||
86 | struct page *page_ar[]; /* #cpus * UNIT_PAGES */ | ||
87 | }; | ||
88 | |||
89 | static int pcpu_unit_pages __read_mostly; | ||
90 | static int pcpu_unit_size __read_mostly; | ||
91 | static int pcpu_chunk_size __read_mostly; | ||
92 | static int pcpu_nr_slots __read_mostly; | ||
93 | static size_t pcpu_chunk_struct_size __read_mostly; | ||
94 | |||
95 | /* the address of the first chunk which starts with the kernel static area */ | ||
96 | void *pcpu_base_addr __read_mostly; | ||
97 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | ||
98 | |||
99 | /* optional reserved chunk, only accessible for reserved allocations */ | ||
100 | static struct pcpu_chunk *pcpu_reserved_chunk; | ||
101 | /* offset limit of the reserved chunk */ | ||
102 | static int pcpu_reserved_chunk_limit; | ||
103 | |||
104 | /* | ||
105 | * Synchronization rules. | ||
106 | * | ||
107 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | ||
108 | * protects allocation/reclaim paths, chunks and chunk->page arrays. | ||
109 | * The latter is a spinlock and protects the index data structures - | ||
110 | * chunk slots, rbtree, chunks and area maps in chunks. | ||
111 | * | ||
112 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | ||
113 | * pcpu_lock is grabbed and released as necessary. All actual memory | ||
114 | * allocations are done using GFP_KERNEL with pcpu_lock released. | ||
115 | * | ||
116 | * Free path accesses and alters only the index data structures, so it | ||
117 | * can be safely called from atomic context. When memory needs to be | ||
118 | * returned to the system, free path schedules reclaim_work which | ||
119 | * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | ||
120 | * reclaimed, release both locks and frees the chunks. Note that it's | ||
121 | * necessary to grab both locks to remove a chunk from circulation as | ||
122 | * allocation path might be referencing the chunk with only | ||
123 | * pcpu_alloc_mutex locked. | ||
124 | */ | ||
125 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ | ||
126 | static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ | ||
127 | |||
128 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | ||
129 | static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */ | ||
130 | |||
131 | /* reclaim work to release fully free chunks, scheduled from free path */ | ||
132 | static void pcpu_reclaim(struct work_struct *work); | ||
133 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | ||
134 | |||
135 | static int __pcpu_size_to_slot(int size) | ||
136 | { | ||
137 | int highbit = fls(size); /* size is in bytes */ | ||
138 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | ||
139 | } | ||
140 | |||
141 | static int pcpu_size_to_slot(int size) | ||
142 | { | ||
143 | if (size == pcpu_unit_size) | ||
144 | return pcpu_nr_slots - 1; | ||
145 | return __pcpu_size_to_slot(size); | ||
146 | } | ||
147 | |||
148 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | ||
149 | { | ||
150 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | ||
151 | return 0; | ||
152 | |||
153 | return pcpu_size_to_slot(chunk->free_size); | ||
154 | } | ||
155 | |||
156 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
157 | { | ||
158 | return cpu * pcpu_unit_pages + page_idx; | ||
159 | } | ||
160 | |||
161 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | ||
162 | unsigned int cpu, int page_idx) | ||
163 | { | ||
164 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | ||
165 | } | ||
166 | |||
167 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
168 | unsigned int cpu, int page_idx) | ||
169 | { | ||
170 | return (unsigned long)chunk->vm->addr + | ||
171 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | ||
172 | } | ||
173 | |||
174 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | ||
175 | int page_idx) | ||
176 | { | ||
177 | return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | ||
178 | } | ||
179 | |||
180 | /** | ||
181 | * pcpu_mem_alloc - allocate memory | ||
182 | * @size: bytes to allocate | ||
183 | * | ||
184 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, | ||
185 | * kzalloc() is used; otherwise, vmalloc() is used. The returned | ||
186 | * memory is always zeroed. | ||
187 | * | ||
188 | * CONTEXT: | ||
189 | * Does GFP_KERNEL allocation. | ||
190 | * | ||
191 | * RETURNS: | ||
192 | * Pointer to the allocated area on success, NULL on failure. | ||
193 | */ | ||
194 | static void *pcpu_mem_alloc(size_t size) | ||
195 | { | ||
196 | if (size <= PAGE_SIZE) | ||
197 | return kzalloc(size, GFP_KERNEL); | ||
198 | else { | ||
199 | void *ptr = vmalloc(size); | ||
200 | if (ptr) | ||
201 | memset(ptr, 0, size); | ||
202 | return ptr; | ||
203 | } | ||
204 | } | ||
205 | |||
206 | /** | ||
207 | * pcpu_mem_free - free memory | ||
208 | * @ptr: memory to free | ||
209 | * @size: size of the area | ||
210 | * | ||
211 | * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). | ||
212 | */ | ||
213 | static void pcpu_mem_free(void *ptr, size_t size) | ||
214 | { | ||
215 | if (size <= PAGE_SIZE) | ||
216 | kfree(ptr); | ||
217 | else | ||
218 | vfree(ptr); | ||
219 | } | ||
220 | |||
221 | /** | ||
222 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | ||
223 | * @chunk: chunk of interest | ||
224 | * @oslot: the previous slot it was on | ||
225 | * | ||
226 | * This function is called after an allocation or free changed @chunk. | ||
227 | * New slot according to the changed state is determined and @chunk is | ||
228 | * moved to the slot. Note that the reserved chunk is never put on | ||
229 | * chunk slots. | ||
230 | * | ||
231 | * CONTEXT: | ||
232 | * pcpu_lock. | ||
233 | */ | ||
234 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | ||
235 | { | ||
236 | int nslot = pcpu_chunk_slot(chunk); | ||
237 | |||
238 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { | ||
239 | if (oslot < nslot) | ||
240 | list_move(&chunk->list, &pcpu_slot[nslot]); | ||
241 | else | ||
242 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | ||
243 | } | ||
244 | } | ||
245 | |||
246 | static struct rb_node **pcpu_chunk_rb_search(void *addr, | ||
247 | struct rb_node **parentp) | ||
248 | { | ||
249 | struct rb_node **p = &pcpu_addr_root.rb_node; | ||
250 | struct rb_node *parent = NULL; | ||
251 | struct pcpu_chunk *chunk; | ||
252 | |||
253 | while (*p) { | ||
254 | parent = *p; | ||
255 | chunk = rb_entry(parent, struct pcpu_chunk, rb_node); | ||
256 | |||
257 | if (addr < chunk->vm->addr) | ||
258 | p = &(*p)->rb_left; | ||
259 | else if (addr > chunk->vm->addr) | ||
260 | p = &(*p)->rb_right; | ||
261 | else | ||
262 | break; | ||
263 | } | ||
264 | |||
265 | if (parentp) | ||
266 | *parentp = parent; | ||
267 | return p; | ||
268 | } | ||
269 | |||
270 | /** | ||
271 | * pcpu_chunk_addr_search - search for chunk containing specified address | ||
272 | * @addr: address to search for | ||
273 | * | ||
274 | * Look for chunk which might contain @addr. More specifically, it | ||
275 | * searchs for the chunk with the highest start address which isn't | ||
276 | * beyond @addr. | ||
277 | * | ||
278 | * CONTEXT: | ||
279 | * pcpu_lock. | ||
280 | * | ||
281 | * RETURNS: | ||
282 | * The address of the found chunk. | ||
283 | */ | ||
284 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
285 | { | ||
286 | struct rb_node *n, *parent; | ||
287 | struct pcpu_chunk *chunk; | ||
288 | |||
289 | /* is it in the reserved chunk? */ | ||
290 | if (pcpu_reserved_chunk) { | ||
291 | void *start = pcpu_reserved_chunk->vm->addr; | ||
292 | |||
293 | if (addr >= start && addr < start + pcpu_reserved_chunk_limit) | ||
294 | return pcpu_reserved_chunk; | ||
295 | } | ||
296 | |||
297 | /* nah... search the regular ones */ | ||
298 | n = *pcpu_chunk_rb_search(addr, &parent); | ||
299 | if (!n) { | ||
300 | /* no exactly matching chunk, the parent is the closest */ | ||
301 | n = parent; | ||
302 | BUG_ON(!n); | ||
303 | } | ||
304 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
305 | |||
306 | if (addr < chunk->vm->addr) { | ||
307 | /* the parent was the next one, look for the previous one */ | ||
308 | n = rb_prev(n); | ||
309 | BUG_ON(!n); | ||
310 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
311 | } | ||
312 | |||
313 | return chunk; | ||
314 | } | ||
315 | |||
316 | /** | ||
317 | * pcpu_chunk_addr_insert - insert chunk into address rb tree | ||
318 | * @new: chunk to insert | ||
319 | * | ||
320 | * Insert @new into address rb tree. | ||
321 | * | ||
322 | * CONTEXT: | ||
323 | * pcpu_lock. | ||
324 | */ | ||
325 | static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) | ||
326 | { | ||
327 | struct rb_node **p, *parent; | ||
328 | |||
329 | p = pcpu_chunk_rb_search(new->vm->addr, &parent); | ||
330 | BUG_ON(*p); | ||
331 | rb_link_node(&new->rb_node, parent, p); | ||
332 | rb_insert_color(&new->rb_node, &pcpu_addr_root); | ||
333 | } | ||
334 | |||
335 | /** | ||
336 | * pcpu_extend_area_map - extend area map for allocation | ||
337 | * @chunk: target chunk | ||
338 | * | ||
339 | * Extend area map of @chunk so that it can accomodate an allocation. | ||
340 | * A single allocation can split an area into three areas, so this | ||
341 | * function makes sure that @chunk->map has at least two extra slots. | ||
342 | * | ||
343 | * CONTEXT: | ||
344 | * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired | ||
345 | * if area map is extended. | ||
346 | * | ||
347 | * RETURNS: | ||
348 | * 0 if noop, 1 if successfully extended, -errno on failure. | ||
349 | */ | ||
350 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk) | ||
351 | { | ||
352 | int new_alloc; | ||
353 | int *new; | ||
354 | size_t size; | ||
355 | |||
356 | /* has enough? */ | ||
357 | if (chunk->map_alloc >= chunk->map_used + 2) | ||
358 | return 0; | ||
359 | |||
360 | spin_unlock_irq(&pcpu_lock); | ||
361 | |||
362 | new_alloc = PCPU_DFL_MAP_ALLOC; | ||
363 | while (new_alloc < chunk->map_used + 2) | ||
364 | new_alloc *= 2; | ||
365 | |||
366 | new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); | ||
367 | if (!new) { | ||
368 | spin_lock_irq(&pcpu_lock); | ||
369 | return -ENOMEM; | ||
370 | } | ||
371 | |||
372 | /* | ||
373 | * Acquire pcpu_lock and switch to new area map. Only free | ||
374 | * could have happened inbetween, so map_used couldn't have | ||
375 | * grown. | ||
376 | */ | ||
377 | spin_lock_irq(&pcpu_lock); | ||
378 | BUG_ON(new_alloc < chunk->map_used + 2); | ||
379 | |||
380 | size = chunk->map_alloc * sizeof(chunk->map[0]); | ||
381 | memcpy(new, chunk->map, size); | ||
382 | |||
383 | /* | ||
384 | * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is | ||
385 | * one of the first chunks and still using static map. | ||
386 | */ | ||
387 | if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) | ||
388 | pcpu_mem_free(chunk->map, size); | ||
389 | |||
390 | chunk->map_alloc = new_alloc; | ||
391 | chunk->map = new; | ||
392 | return 0; | ||
393 | } | ||
394 | |||
395 | /** | ||
396 | * pcpu_split_block - split a map block | ||
397 | * @chunk: chunk of interest | ||
398 | * @i: index of map block to split | ||
399 | * @head: head size in bytes (can be 0) | ||
400 | * @tail: tail size in bytes (can be 0) | ||
401 | * | ||
402 | * Split the @i'th map block into two or three blocks. If @head is | ||
403 | * non-zero, @head bytes block is inserted before block @i moving it | ||
404 | * to @i+1 and reducing its size by @head bytes. | ||
405 | * | ||
406 | * If @tail is non-zero, the target block, which can be @i or @i+1 | ||
407 | * depending on @head, is reduced by @tail bytes and @tail byte block | ||
408 | * is inserted after the target block. | ||
409 | * | ||
410 | * @chunk->map must have enough free slots to accomodate the split. | ||
411 | * | ||
412 | * CONTEXT: | ||
413 | * pcpu_lock. | ||
414 | */ | ||
415 | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, | ||
416 | int head, int tail) | ||
417 | { | ||
418 | int nr_extra = !!head + !!tail; | ||
419 | |||
420 | BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); | ||
421 | |||
422 | /* insert new subblocks */ | ||
423 | memmove(&chunk->map[i + nr_extra], &chunk->map[i], | ||
424 | sizeof(chunk->map[0]) * (chunk->map_used - i)); | ||
425 | chunk->map_used += nr_extra; | ||
426 | |||
427 | if (head) { | ||
428 | chunk->map[i + 1] = chunk->map[i] - head; | ||
429 | chunk->map[i++] = head; | ||
430 | } | ||
431 | if (tail) { | ||
432 | chunk->map[i++] -= tail; | ||
433 | chunk->map[i] = tail; | ||
434 | } | ||
435 | } | ||
436 | |||
437 | /** | ||
438 | * pcpu_alloc_area - allocate area from a pcpu_chunk | ||
439 | * @chunk: chunk of interest | ||
440 | * @size: wanted size in bytes | ||
441 | * @align: wanted align | ||
442 | * | ||
443 | * Try to allocate @size bytes area aligned at @align from @chunk. | ||
444 | * Note that this function only allocates the offset. It doesn't | ||
445 | * populate or map the area. | ||
446 | * | ||
447 | * @chunk->map must have at least two free slots. | ||
448 | * | ||
449 | * CONTEXT: | ||
450 | * pcpu_lock. | ||
451 | * | ||
452 | * RETURNS: | ||
453 | * Allocated offset in @chunk on success, -1 if no matching area is | ||
454 | * found. | ||
455 | */ | ||
456 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | ||
457 | { | ||
458 | int oslot = pcpu_chunk_slot(chunk); | ||
459 | int max_contig = 0; | ||
460 | int i, off; | ||
461 | |||
462 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { | ||
463 | bool is_last = i + 1 == chunk->map_used; | ||
464 | int head, tail; | ||
465 | |||
466 | /* extra for alignment requirement */ | ||
467 | head = ALIGN(off, align) - off; | ||
468 | BUG_ON(i == 0 && head != 0); | ||
469 | |||
470 | if (chunk->map[i] < 0) | ||
471 | continue; | ||
472 | if (chunk->map[i] < head + size) { | ||
473 | max_contig = max(chunk->map[i], max_contig); | ||
474 | continue; | ||
475 | } | ||
476 | |||
477 | /* | ||
478 | * If head is small or the previous block is free, | ||
479 | * merge'em. Note that 'small' is defined as smaller | ||
480 | * than sizeof(int), which is very small but isn't too | ||
481 | * uncommon for percpu allocations. | ||
482 | */ | ||
483 | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | ||
484 | if (chunk->map[i - 1] > 0) | ||
485 | chunk->map[i - 1] += head; | ||
486 | else { | ||
487 | chunk->map[i - 1] -= head; | ||
488 | chunk->free_size -= head; | ||
489 | } | ||
490 | chunk->map[i] -= head; | ||
491 | off += head; | ||
492 | head = 0; | ||
493 | } | ||
494 | |||
495 | /* if tail is small, just keep it around */ | ||
496 | tail = chunk->map[i] - head - size; | ||
497 | if (tail < sizeof(int)) | ||
498 | tail = 0; | ||
499 | |||
500 | /* split if warranted */ | ||
501 | if (head || tail) { | ||
502 | pcpu_split_block(chunk, i, head, tail); | ||
503 | if (head) { | ||
504 | i++; | ||
505 | off += head; | ||
506 | max_contig = max(chunk->map[i - 1], max_contig); | ||
507 | } | ||
508 | if (tail) | ||
509 | max_contig = max(chunk->map[i + 1], max_contig); | ||
510 | } | ||
511 | |||
512 | /* update hint and mark allocated */ | ||
513 | if (is_last) | ||
514 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
515 | else | ||
516 | chunk->contig_hint = max(chunk->contig_hint, | ||
517 | max_contig); | ||
518 | |||
519 | chunk->free_size -= chunk->map[i]; | ||
520 | chunk->map[i] = -chunk->map[i]; | ||
521 | |||
522 | pcpu_chunk_relocate(chunk, oslot); | ||
523 | return off; | ||
524 | } | ||
525 | |||
526 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
527 | pcpu_chunk_relocate(chunk, oslot); | ||
528 | |||
529 | /* tell the upper layer that this chunk has no matching area */ | ||
530 | return -1; | ||
531 | } | ||
532 | |||
533 | /** | ||
534 | * pcpu_free_area - free area to a pcpu_chunk | ||
535 | * @chunk: chunk of interest | ||
536 | * @freeme: offset of area to free | ||
537 | * | ||
538 | * Free area starting from @freeme to @chunk. Note that this function | ||
539 | * only modifies the allocation map. It doesn't depopulate or unmap | ||
540 | * the area. | ||
541 | * | ||
542 | * CONTEXT: | ||
543 | * pcpu_lock. | ||
544 | */ | ||
545 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | ||
546 | { | ||
547 | int oslot = pcpu_chunk_slot(chunk); | ||
548 | int i, off; | ||
549 | |||
550 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | ||
551 | if (off == freeme) | ||
552 | break; | ||
553 | BUG_ON(off != freeme); | ||
554 | BUG_ON(chunk->map[i] > 0); | ||
555 | |||
556 | chunk->map[i] = -chunk->map[i]; | ||
557 | chunk->free_size += chunk->map[i]; | ||
558 | |||
559 | /* merge with previous? */ | ||
560 | if (i > 0 && chunk->map[i - 1] >= 0) { | ||
561 | chunk->map[i - 1] += chunk->map[i]; | ||
562 | chunk->map_used--; | ||
563 | memmove(&chunk->map[i], &chunk->map[i + 1], | ||
564 | (chunk->map_used - i) * sizeof(chunk->map[0])); | ||
565 | i--; | ||
566 | } | ||
567 | /* merge with next? */ | ||
568 | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | ||
569 | chunk->map[i] += chunk->map[i + 1]; | ||
570 | chunk->map_used--; | ||
571 | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | ||
572 | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | ||
573 | } | ||
574 | |||
575 | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | ||
576 | pcpu_chunk_relocate(chunk, oslot); | ||
577 | } | ||
578 | |||
579 | /** | ||
580 | * pcpu_unmap - unmap pages out of a pcpu_chunk | ||
581 | * @chunk: chunk of interest | ||
582 | * @page_start: page index of the first page to unmap | ||
583 | * @page_end: page index of the last page to unmap + 1 | ||
584 | * @flush: whether to flush cache and tlb or not | ||
585 | * | ||
586 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
587 | * If @flush is true, vcache is flushed before unmapping and tlb | ||
588 | * after. | ||
589 | */ | ||
590 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | ||
591 | bool flush) | ||
592 | { | ||
593 | unsigned int last = num_possible_cpus() - 1; | ||
594 | unsigned int cpu; | ||
595 | |||
596 | /* unmap must not be done on immutable chunk */ | ||
597 | WARN_ON(chunk->immutable); | ||
598 | |||
599 | /* | ||
600 | * Each flushing trial can be very expensive, issue flush on | ||
601 | * the whole region at once rather than doing it for each cpu. | ||
602 | * This could be an overkill but is more scalable. | ||
603 | */ | ||
604 | if (flush) | ||
605 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
606 | pcpu_chunk_addr(chunk, last, page_end)); | ||
607 | |||
608 | for_each_possible_cpu(cpu) | ||
609 | unmap_kernel_range_noflush( | ||
610 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
611 | (page_end - page_start) << PAGE_SHIFT); | ||
612 | |||
613 | /* ditto as flush_cache_vunmap() */ | ||
614 | if (flush) | ||
615 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | ||
616 | pcpu_chunk_addr(chunk, last, page_end)); | ||
617 | } | ||
618 | |||
619 | /** | ||
620 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
621 | * @chunk: chunk to depopulate | ||
622 | * @off: offset to the area to depopulate | ||
623 | * @size: size of the area to depopulate in bytes | ||
624 | * @flush: whether to flush cache and tlb or not | ||
625 | * | ||
626 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
627 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
628 | * and tlb after. | ||
629 | * | ||
630 | * CONTEXT: | ||
631 | * pcpu_alloc_mutex. | ||
632 | */ | ||
633 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | ||
634 | bool flush) | ||
635 | { | ||
636 | int page_start = PFN_DOWN(off); | ||
637 | int page_end = PFN_UP(off + size); | ||
638 | int unmap_start = -1; | ||
639 | int uninitialized_var(unmap_end); | ||
640 | unsigned int cpu; | ||
641 | int i; | ||
642 | |||
643 | for (i = page_start; i < page_end; i++) { | ||
644 | for_each_possible_cpu(cpu) { | ||
645 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
646 | |||
647 | if (!*pagep) | ||
648 | continue; | ||
649 | |||
650 | __free_page(*pagep); | ||
651 | |||
652 | /* | ||
653 | * If it's partial depopulation, it might get | ||
654 | * populated or depopulated again. Mark the | ||
655 | * page gone. | ||
656 | */ | ||
657 | *pagep = NULL; | ||
658 | |||
659 | unmap_start = unmap_start < 0 ? i : unmap_start; | ||
660 | unmap_end = i + 1; | ||
661 | } | ||
662 | } | ||
663 | |||
664 | if (unmap_start >= 0) | ||
665 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | ||
666 | } | ||
667 | |||
668 | /** | ||
669 | * pcpu_map - map pages into a pcpu_chunk | ||
670 | * @chunk: chunk of interest | ||
671 | * @page_start: page index of the first page to map | ||
672 | * @page_end: page index of the last page to map + 1 | ||
673 | * | ||
674 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | ||
675 | * vcache is flushed afterwards. | ||
676 | */ | ||
677 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | ||
678 | { | ||
679 | unsigned int last = num_possible_cpus() - 1; | ||
680 | unsigned int cpu; | ||
681 | int err; | ||
682 | |||
683 | /* map must not be done on immutable chunk */ | ||
684 | WARN_ON(chunk->immutable); | ||
685 | |||
686 | for_each_possible_cpu(cpu) { | ||
687 | err = map_kernel_range_noflush( | ||
688 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
689 | (page_end - page_start) << PAGE_SHIFT, | ||
690 | PAGE_KERNEL, | ||
691 | pcpu_chunk_pagep(chunk, cpu, page_start)); | ||
692 | if (err < 0) | ||
693 | return err; | ||
694 | } | ||
695 | |||
696 | /* flush at once, please read comments in pcpu_unmap() */ | ||
697 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
698 | pcpu_chunk_addr(chunk, last, page_end)); | ||
699 | return 0; | ||
700 | } | ||
701 | |||
702 | /** | ||
703 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
704 | * @chunk: chunk of interest | ||
705 | * @off: offset to the area to populate | ||
706 | * @size: size of the area to populate in bytes | ||
707 | * | ||
708 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
709 | * @chunk. The area is cleared on return. | ||
710 | * | ||
711 | * CONTEXT: | ||
712 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
713 | */ | ||
714 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
715 | { | ||
716 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
717 | int page_start = PFN_DOWN(off); | ||
718 | int page_end = PFN_UP(off + size); | ||
719 | int map_start = -1; | ||
720 | int uninitialized_var(map_end); | ||
721 | unsigned int cpu; | ||
722 | int i; | ||
723 | |||
724 | for (i = page_start; i < page_end; i++) { | ||
725 | if (pcpu_chunk_page_occupied(chunk, i)) { | ||
726 | if (map_start >= 0) { | ||
727 | if (pcpu_map(chunk, map_start, map_end)) | ||
728 | goto err; | ||
729 | map_start = -1; | ||
730 | } | ||
731 | continue; | ||
732 | } | ||
733 | |||
734 | map_start = map_start < 0 ? i : map_start; | ||
735 | map_end = i + 1; | ||
736 | |||
737 | for_each_possible_cpu(cpu) { | ||
738 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
739 | |||
740 | *pagep = alloc_pages_node(cpu_to_node(cpu), | ||
741 | alloc_mask, 0); | ||
742 | if (!*pagep) | ||
743 | goto err; | ||
744 | } | ||
745 | } | ||
746 | |||
747 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | ||
748 | goto err; | ||
749 | |||
750 | for_each_possible_cpu(cpu) | ||
751 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | ||
752 | size); | ||
753 | |||
754 | return 0; | ||
755 | err: | ||
756 | /* likely under heavy memory pressure, give memory back */ | ||
757 | pcpu_depopulate_chunk(chunk, off, size, true); | ||
758 | return -ENOMEM; | ||
759 | } | ||
760 | |||
761 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
762 | { | ||
763 | if (!chunk) | ||
764 | return; | ||
765 | if (chunk->vm) | ||
766 | free_vm_area(chunk->vm); | ||
767 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
768 | kfree(chunk); | ||
769 | } | ||
770 | |||
771 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
772 | { | ||
773 | struct pcpu_chunk *chunk; | ||
774 | |||
775 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
776 | if (!chunk) | ||
777 | return NULL; | ||
778 | |||
779 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
780 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
781 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
782 | chunk->page = chunk->page_ar; | ||
783 | |||
784 | chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); | ||
785 | if (!chunk->vm) { | ||
786 | free_pcpu_chunk(chunk); | ||
787 | return NULL; | ||
788 | } | ||
789 | |||
790 | INIT_LIST_HEAD(&chunk->list); | ||
791 | chunk->free_size = pcpu_unit_size; | ||
792 | chunk->contig_hint = pcpu_unit_size; | ||
793 | |||
794 | return chunk; | ||
795 | } | ||
796 | |||
797 | /** | ||
798 | * pcpu_alloc - the percpu allocator | ||
799 | * @size: size of area to allocate in bytes | ||
800 | * @align: alignment of area (max PAGE_SIZE) | ||
801 | * @reserved: allocate from the reserved chunk if available | ||
802 | * | ||
803 | * Allocate percpu area of @size bytes aligned at @align. | ||
804 | * | ||
805 | * CONTEXT: | ||
806 | * Does GFP_KERNEL allocation. | ||
807 | * | ||
808 | * RETURNS: | ||
809 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
810 | */ | ||
811 | static void *pcpu_alloc(size_t size, size_t align, bool reserved) | ||
812 | { | ||
813 | struct pcpu_chunk *chunk; | ||
814 | int slot, off; | ||
815 | |||
816 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { | ||
817 | WARN(true, "illegal size (%zu) or align (%zu) for " | ||
818 | "percpu allocation\n", size, align); | ||
819 | return NULL; | ||
820 | } | ||
821 | |||
822 | mutex_lock(&pcpu_alloc_mutex); | ||
823 | spin_lock_irq(&pcpu_lock); | ||
824 | |||
825 | /* serve reserved allocations from the reserved chunk if available */ | ||
826 | if (reserved && pcpu_reserved_chunk) { | ||
827 | chunk = pcpu_reserved_chunk; | ||
828 | if (size > chunk->contig_hint || | ||
829 | pcpu_extend_area_map(chunk) < 0) | ||
830 | goto fail_unlock; | ||
831 | off = pcpu_alloc_area(chunk, size, align); | ||
832 | if (off >= 0) | ||
833 | goto area_found; | ||
834 | goto fail_unlock; | ||
835 | } | ||
836 | |||
837 | restart: | ||
838 | /* search through normal chunks */ | ||
839 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | ||
840 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | ||
841 | if (size > chunk->contig_hint) | ||
842 | continue; | ||
843 | |||
844 | switch (pcpu_extend_area_map(chunk)) { | ||
845 | case 0: | ||
846 | break; | ||
847 | case 1: | ||
848 | goto restart; /* pcpu_lock dropped, restart */ | ||
849 | default: | ||
850 | goto fail_unlock; | ||
851 | } | ||
852 | |||
853 | off = pcpu_alloc_area(chunk, size, align); | ||
854 | if (off >= 0) | ||
855 | goto area_found; | ||
856 | } | ||
857 | } | ||
858 | |||
859 | /* hmmm... no space left, create a new chunk */ | ||
860 | spin_unlock_irq(&pcpu_lock); | ||
861 | |||
862 | chunk = alloc_pcpu_chunk(); | ||
863 | if (!chunk) | ||
864 | goto fail_unlock_mutex; | ||
865 | |||
866 | spin_lock_irq(&pcpu_lock); | ||
867 | pcpu_chunk_relocate(chunk, -1); | ||
868 | pcpu_chunk_addr_insert(chunk); | ||
869 | goto restart; | ||
870 | |||
871 | area_found: | ||
872 | spin_unlock_irq(&pcpu_lock); | ||
873 | |||
874 | /* populate, map and clear the area */ | ||
875 | if (pcpu_populate_chunk(chunk, off, size)) { | ||
876 | spin_lock_irq(&pcpu_lock); | ||
877 | pcpu_free_area(chunk, off); | ||
878 | goto fail_unlock; | ||
879 | } | ||
880 | |||
881 | mutex_unlock(&pcpu_alloc_mutex); | ||
882 | |||
883 | return __addr_to_pcpu_ptr(chunk->vm->addr + off); | ||
884 | |||
885 | fail_unlock: | ||
886 | spin_unlock_irq(&pcpu_lock); | ||
887 | fail_unlock_mutex: | ||
888 | mutex_unlock(&pcpu_alloc_mutex); | ||
889 | return NULL; | ||
890 | } | ||
891 | |||
892 | /** | ||
893 | * __alloc_percpu - allocate dynamic percpu area | ||
894 | * @size: size of area to allocate in bytes | ||
895 | * @align: alignment of area (max PAGE_SIZE) | ||
896 | * | ||
897 | * Allocate percpu area of @size bytes aligned at @align. Might | ||
898 | * sleep. Might trigger writeouts. | ||
899 | * | ||
900 | * CONTEXT: | ||
901 | * Does GFP_KERNEL allocation. | ||
902 | * | ||
903 | * RETURNS: | ||
904 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
905 | */ | ||
906 | void *__alloc_percpu(size_t size, size_t align) | ||
907 | { | ||
908 | return pcpu_alloc(size, align, false); | ||
909 | } | ||
910 | EXPORT_SYMBOL_GPL(__alloc_percpu); | ||
911 | |||
912 | /** | ||
913 | * __alloc_reserved_percpu - allocate reserved percpu area | ||
914 | * @size: size of area to allocate in bytes | ||
915 | * @align: alignment of area (max PAGE_SIZE) | ||
916 | * | ||
917 | * Allocate percpu area of @size bytes aligned at @align from reserved | ||
918 | * percpu area if arch has set it up; otherwise, allocation is served | ||
919 | * from the same dynamic area. Might sleep. Might trigger writeouts. | ||
920 | * | ||
921 | * CONTEXT: | ||
922 | * Does GFP_KERNEL allocation. | ||
923 | * | ||
924 | * RETURNS: | ||
925 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
926 | */ | ||
927 | void *__alloc_reserved_percpu(size_t size, size_t align) | ||
928 | { | ||
929 | return pcpu_alloc(size, align, true); | ||
930 | } | ||
931 | |||
932 | /** | ||
933 | * pcpu_reclaim - reclaim fully free chunks, workqueue function | ||
934 | * @work: unused | ||
935 | * | ||
936 | * Reclaim all fully free chunks except for the first one. | ||
937 | * | ||
938 | * CONTEXT: | ||
939 | * workqueue context. | ||
940 | */ | ||
941 | static void pcpu_reclaim(struct work_struct *work) | ||
942 | { | ||
943 | LIST_HEAD(todo); | ||
944 | struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | ||
945 | struct pcpu_chunk *chunk, *next; | ||
946 | |||
947 | mutex_lock(&pcpu_alloc_mutex); | ||
948 | spin_lock_irq(&pcpu_lock); | ||
949 | |||
950 | list_for_each_entry_safe(chunk, next, head, list) { | ||
951 | WARN_ON(chunk->immutable); | ||
952 | |||
953 | /* spare the first one */ | ||
954 | if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | ||
955 | continue; | ||
956 | |||
957 | rb_erase(&chunk->rb_node, &pcpu_addr_root); | ||
958 | list_move(&chunk->list, &todo); | ||
959 | } | ||
960 | |||
961 | spin_unlock_irq(&pcpu_lock); | ||
962 | mutex_unlock(&pcpu_alloc_mutex); | ||
963 | |||
964 | list_for_each_entry_safe(chunk, next, &todo, list) { | ||
965 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | ||
966 | free_pcpu_chunk(chunk); | ||
967 | } | ||
968 | } | ||
969 | |||
970 | /** | ||
971 | * free_percpu - free percpu area | ||
972 | * @ptr: pointer to area to free | ||
973 | * | ||
974 | * Free percpu area @ptr. | ||
975 | * | ||
976 | * CONTEXT: | ||
977 | * Can be called from atomic context. | ||
978 | */ | ||
979 | void free_percpu(void *ptr) | ||
980 | { | ||
981 | void *addr = __pcpu_ptr_to_addr(ptr); | ||
982 | struct pcpu_chunk *chunk; | ||
983 | unsigned long flags; | ||
984 | int off; | ||
985 | |||
986 | if (!ptr) | ||
987 | return; | ||
988 | |||
989 | spin_lock_irqsave(&pcpu_lock, flags); | ||
990 | |||
991 | chunk = pcpu_chunk_addr_search(addr); | ||
992 | off = addr - chunk->vm->addr; | ||
993 | |||
994 | pcpu_free_area(chunk, off); | ||
995 | |||
996 | /* if there are more than one fully free chunks, wake up grim reaper */ | ||
997 | if (chunk->free_size == pcpu_unit_size) { | ||
998 | struct pcpu_chunk *pos; | ||
999 | |||
1000 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) | ||
1001 | if (pos != chunk) { | ||
1002 | schedule_work(&pcpu_reclaim_work); | ||
1003 | break; | ||
1004 | } | ||
1005 | } | ||
1006 | |||
1007 | spin_unlock_irqrestore(&pcpu_lock, flags); | ||
1008 | } | ||
1009 | EXPORT_SYMBOL_GPL(free_percpu); | ||
1010 | |||
1011 | /** | ||
1012 | * pcpu_setup_first_chunk - initialize the first percpu chunk | ||
1013 | * @get_page_fn: callback to fetch page pointer | ||
1014 | * @static_size: the size of static percpu area in bytes | ||
1015 | * @reserved_size: the size of reserved percpu area in bytes | ||
1016 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | ||
1017 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | ||
1018 | * @base_addr: mapped address, NULL for auto | ||
1019 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | ||
1020 | * | ||
1021 | * Initialize the first percpu chunk which contains the kernel static | ||
1022 | * perpcu area. This function is to be called from arch percpu area | ||
1023 | * setup path. The first two parameters are mandatory. The rest are | ||
1024 | * optional. | ||
1025 | * | ||
1026 | * @get_page_fn() should return pointer to percpu page given cpu | ||
1027 | * number and page number. It should at least return enough pages to | ||
1028 | * cover the static area. The returned pages for static area should | ||
1029 | * have been initialized with valid data. If @unit_size is specified, | ||
1030 | * it can also return pages after the static area. NULL return | ||
1031 | * indicates end of pages for the cpu. Note that @get_page_fn() must | ||
1032 | * return the same number of pages for all cpus. | ||
1033 | * | ||
1034 | * @reserved_size, if non-zero, specifies the amount of bytes to | ||
1035 | * reserve after the static area in the first chunk. This reserves | ||
1036 | * the first chunk such that it's available only through reserved | ||
1037 | * percpu allocation. This is primarily used to serve module percpu | ||
1038 | * static areas on architectures where the addressing model has | ||
1039 | * limited offset range for symbol relocations to guarantee module | ||
1040 | * percpu symbols fall inside the relocatable range. | ||
1041 | * | ||
1042 | * @unit_size, if non-negative, specifies unit size and must be | ||
1043 | * aligned to PAGE_SIZE and equal to or larger than @static_size + | ||
1044 | * @reserved_size + @dyn_size. | ||
1045 | * | ||
1046 | * @dyn_size, if non-negative, limits the number of bytes available | ||
1047 | * for dynamic allocation in the first chunk. Specifying non-negative | ||
1048 | * value make percpu leave alone the area beyond @static_size + | ||
1049 | * @reserved_size + @dyn_size. | ||
1050 | * | ||
1051 | * Non-null @base_addr means that the caller already allocated virtual | ||
1052 | * region for the first chunk and mapped it. percpu must not mess | ||
1053 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | ||
1054 | * @populate_pte_fn doesn't make any sense. | ||
1055 | * | ||
1056 | * @populate_pte_fn is used to populate the pagetable. NULL means the | ||
1057 | * caller already populated the pagetable. | ||
1058 | * | ||
1059 | * If the first chunk ends up with both reserved and dynamic areas, it | ||
1060 | * is served by two chunks - one to serve the core static and reserved | ||
1061 | * areas and the other for the dynamic area. They share the same vm | ||
1062 | * and page map but uses different area allocation map to stay away | ||
1063 | * from each other. The latter chunk is circulated in the chunk slots | ||
1064 | * and available for dynamic allocation like any other chunks. | ||
1065 | * | ||
1066 | * RETURNS: | ||
1067 | * The determined pcpu_unit_size which can be used to initialize | ||
1068 | * percpu access. | ||
1069 | */ | ||
1070 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | ||
1071 | size_t static_size, size_t reserved_size, | ||
1072 | ssize_t unit_size, ssize_t dyn_size, | ||
1073 | void *base_addr, | ||
1074 | pcpu_populate_pte_fn_t populate_pte_fn) | ||
1075 | { | ||
1076 | static struct vm_struct first_vm; | ||
1077 | static int smap[2], dmap[2]; | ||
1078 | struct pcpu_chunk *schunk, *dchunk = NULL; | ||
1079 | unsigned int cpu; | ||
1080 | int nr_pages; | ||
1081 | int err, i; | ||
1082 | |||
1083 | /* santiy checks */ | ||
1084 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | ||
1085 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | ||
1086 | BUG_ON(!static_size); | ||
1087 | if (unit_size >= 0) { | ||
1088 | BUG_ON(unit_size < static_size + reserved_size + | ||
1089 | (dyn_size >= 0 ? dyn_size : 0)); | ||
1090 | BUG_ON(unit_size & ~PAGE_MASK); | ||
1091 | } else { | ||
1092 | BUG_ON(dyn_size >= 0); | ||
1093 | BUG_ON(base_addr); | ||
1094 | } | ||
1095 | BUG_ON(base_addr && populate_pte_fn); | ||
1096 | |||
1097 | if (unit_size >= 0) | ||
1098 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; | ||
1099 | else | ||
1100 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | ||
1101 | PFN_UP(static_size + reserved_size)); | ||
1102 | |||
1103 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | ||
1104 | pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; | ||
1105 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | ||
1106 | + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); | ||
1107 | |||
1108 | if (dyn_size < 0) | ||
1109 | dyn_size = pcpu_unit_size - static_size - reserved_size; | ||
1110 | |||
1111 | /* | ||
1112 | * Allocate chunk slots. The additional last slot is for | ||
1113 | * empty chunks. | ||
1114 | */ | ||
1115 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | ||
1116 | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); | ||
1117 | for (i = 0; i < pcpu_nr_slots; i++) | ||
1118 | INIT_LIST_HEAD(&pcpu_slot[i]); | ||
1119 | |||
1120 | /* | ||
1121 | * Initialize static chunk. If reserved_size is zero, the | ||
1122 | * static chunk covers static area + dynamic allocation area | ||
1123 | * in the first chunk. If reserved_size is not zero, it | ||
1124 | * covers static area + reserved area (mostly used for module | ||
1125 | * static percpu allocation). | ||
1126 | */ | ||
1127 | schunk = alloc_bootmem(pcpu_chunk_struct_size); | ||
1128 | INIT_LIST_HEAD(&schunk->list); | ||
1129 | schunk->vm = &first_vm; | ||
1130 | schunk->map = smap; | ||
1131 | schunk->map_alloc = ARRAY_SIZE(smap); | ||
1132 | schunk->page = schunk->page_ar; | ||
1133 | |||
1134 | if (reserved_size) { | ||
1135 | schunk->free_size = reserved_size; | ||
1136 | pcpu_reserved_chunk = schunk; /* not for dynamic alloc */ | ||
1137 | } else { | ||
1138 | schunk->free_size = dyn_size; | ||
1139 | dyn_size = 0; /* dynamic area covered */ | ||
1140 | } | ||
1141 | schunk->contig_hint = schunk->free_size; | ||
1142 | |||
1143 | schunk->map[schunk->map_used++] = -static_size; | ||
1144 | if (schunk->free_size) | ||
1145 | schunk->map[schunk->map_used++] = schunk->free_size; | ||
1146 | |||
1147 | pcpu_reserved_chunk_limit = static_size + schunk->free_size; | ||
1148 | |||
1149 | /* init dynamic chunk if necessary */ | ||
1150 | if (dyn_size) { | ||
1151 | dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | ||
1152 | INIT_LIST_HEAD(&dchunk->list); | ||
1153 | dchunk->vm = &first_vm; | ||
1154 | dchunk->map = dmap; | ||
1155 | dchunk->map_alloc = ARRAY_SIZE(dmap); | ||
1156 | dchunk->page = schunk->page_ar; /* share page map with schunk */ | ||
1157 | |||
1158 | dchunk->contig_hint = dchunk->free_size = dyn_size; | ||
1159 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | ||
1160 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | ||
1161 | } | ||
1162 | |||
1163 | /* allocate vm address */ | ||
1164 | first_vm.flags = VM_ALLOC; | ||
1165 | first_vm.size = pcpu_chunk_size; | ||
1166 | |||
1167 | if (!base_addr) | ||
1168 | vm_area_register_early(&first_vm, PAGE_SIZE); | ||
1169 | else { | ||
1170 | /* | ||
1171 | * Pages already mapped. No need to remap into | ||
1172 | * vmalloc area. In this case the first chunks can't | ||
1173 | * be mapped or unmapped by percpu and are marked | ||
1174 | * immutable. | ||
1175 | */ | ||
1176 | first_vm.addr = base_addr; | ||
1177 | schunk->immutable = true; | ||
1178 | if (dchunk) | ||
1179 | dchunk->immutable = true; | ||
1180 | } | ||
1181 | |||
1182 | /* assign pages */ | ||
1183 | nr_pages = -1; | ||
1184 | for_each_possible_cpu(cpu) { | ||
1185 | for (i = 0; i < pcpu_unit_pages; i++) { | ||
1186 | struct page *page = get_page_fn(cpu, i); | ||
1187 | |||
1188 | if (!page) | ||
1189 | break; | ||
1190 | *pcpu_chunk_pagep(schunk, cpu, i) = page; | ||
1191 | } | ||
1192 | |||
1193 | BUG_ON(i < PFN_UP(static_size)); | ||
1194 | |||
1195 | if (nr_pages < 0) | ||
1196 | nr_pages = i; | ||
1197 | else | ||
1198 | BUG_ON(nr_pages != i); | ||
1199 | } | ||
1200 | |||
1201 | /* map them */ | ||
1202 | if (populate_pte_fn) { | ||
1203 | for_each_possible_cpu(cpu) | ||
1204 | for (i = 0; i < nr_pages; i++) | ||
1205 | populate_pte_fn(pcpu_chunk_addr(schunk, | ||
1206 | cpu, i)); | ||
1207 | |||
1208 | err = pcpu_map(schunk, 0, nr_pages); | ||
1209 | if (err) | ||
1210 | panic("failed to setup static percpu area, err=%d\n", | ||
1211 | err); | ||
1212 | } | ||
1213 | |||
1214 | /* link the first chunk in */ | ||
1215 | if (!dchunk) { | ||
1216 | pcpu_chunk_relocate(schunk, -1); | ||
1217 | pcpu_chunk_addr_insert(schunk); | ||
1218 | } else { | ||
1219 | pcpu_chunk_relocate(dchunk, -1); | ||
1220 | pcpu_chunk_addr_insert(dchunk); | ||
1221 | } | ||
1222 | |||
1223 | /* we're done */ | ||
1224 | pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); | ||
1225 | return pcpu_unit_size; | ||
1226 | } | ||
@@ -102,6 +102,7 @@ | |||
102 | #include <linux/cpu.h> | 102 | #include <linux/cpu.h> |
103 | #include <linux/sysctl.h> | 103 | #include <linux/sysctl.h> |
104 | #include <linux/module.h> | 104 | #include <linux/module.h> |
105 | #include <trace/kmemtrace.h> | ||
105 | #include <linux/rcupdate.h> | 106 | #include <linux/rcupdate.h> |
106 | #include <linux/string.h> | 107 | #include <linux/string.h> |
107 | #include <linux/uaccess.h> | 108 | #include <linux/uaccess.h> |
@@ -568,6 +569,14 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp) | |||
568 | 569 | ||
569 | #endif | 570 | #endif |
570 | 571 | ||
572 | #ifdef CONFIG_KMEMTRACE | ||
573 | size_t slab_buffer_size(struct kmem_cache *cachep) | ||
574 | { | ||
575 | return cachep->buffer_size; | ||
576 | } | ||
577 | EXPORT_SYMBOL(slab_buffer_size); | ||
578 | #endif | ||
579 | |||
571 | /* | 580 | /* |
572 | * Do not go above this order unless 0 objects fit into the slab. | 581 | * Do not go above this order unless 0 objects fit into the slab. |
573 | */ | 582 | */ |
@@ -3554,10 +3563,23 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp) | |||
3554 | */ | 3563 | */ |
3555 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 3564 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
3556 | { | 3565 | { |
3557 | return __cache_alloc(cachep, flags, __builtin_return_address(0)); | 3566 | void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); |
3567 | |||
3568 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
3569 | obj_size(cachep), cachep->buffer_size, flags); | ||
3570 | |||
3571 | return ret; | ||
3558 | } | 3572 | } |
3559 | EXPORT_SYMBOL(kmem_cache_alloc); | 3573 | EXPORT_SYMBOL(kmem_cache_alloc); |
3560 | 3574 | ||
3575 | #ifdef CONFIG_KMEMTRACE | ||
3576 | void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags) | ||
3577 | { | ||
3578 | return __cache_alloc(cachep, flags, __builtin_return_address(0)); | ||
3579 | } | ||
3580 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | ||
3581 | #endif | ||
3582 | |||
3561 | /** | 3583 | /** |
3562 | * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. | 3584 | * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. |
3563 | * @cachep: the cache we're checking against | 3585 | * @cachep: the cache we're checking against |
@@ -3602,23 +3624,47 @@ out: | |||
3602 | #ifdef CONFIG_NUMA | 3624 | #ifdef CONFIG_NUMA |
3603 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) | 3625 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3604 | { | 3626 | { |
3605 | return __cache_alloc_node(cachep, flags, nodeid, | 3627 | void *ret = __cache_alloc_node(cachep, flags, nodeid, |
3606 | __builtin_return_address(0)); | 3628 | __builtin_return_address(0)); |
3629 | |||
3630 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
3631 | obj_size(cachep), cachep->buffer_size, | ||
3632 | flags, nodeid); | ||
3633 | |||
3634 | return ret; | ||
3607 | } | 3635 | } |
3608 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 3636 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3609 | 3637 | ||
3638 | #ifdef CONFIG_KMEMTRACE | ||
3639 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep, | ||
3640 | gfp_t flags, | ||
3641 | int nodeid) | ||
3642 | { | ||
3643 | return __cache_alloc_node(cachep, flags, nodeid, | ||
3644 | __builtin_return_address(0)); | ||
3645 | } | ||
3646 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); | ||
3647 | #endif | ||
3648 | |||
3610 | static __always_inline void * | 3649 | static __always_inline void * |
3611 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | 3650 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) |
3612 | { | 3651 | { |
3613 | struct kmem_cache *cachep; | 3652 | struct kmem_cache *cachep; |
3653 | void *ret; | ||
3614 | 3654 | ||
3615 | cachep = kmem_find_general_cachep(size, flags); | 3655 | cachep = kmem_find_general_cachep(size, flags); |
3616 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3656 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3617 | return cachep; | 3657 | return cachep; |
3618 | return kmem_cache_alloc_node(cachep, flags, node); | 3658 | ret = kmem_cache_alloc_node_notrace(cachep, flags, node); |
3659 | |||
3660 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, | ||
3661 | (unsigned long) caller, ret, | ||
3662 | size, cachep->buffer_size, flags, node); | ||
3663 | |||
3664 | return ret; | ||
3619 | } | 3665 | } |
3620 | 3666 | ||
3621 | #ifdef CONFIG_DEBUG_SLAB | 3667 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE) |
3622 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 3668 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3623 | { | 3669 | { |
3624 | return __do_kmalloc_node(size, flags, node, | 3670 | return __do_kmalloc_node(size, flags, node, |
@@ -3651,6 +3697,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | |||
3651 | void *caller) | 3697 | void *caller) |
3652 | { | 3698 | { |
3653 | struct kmem_cache *cachep; | 3699 | struct kmem_cache *cachep; |
3700 | void *ret; | ||
3654 | 3701 | ||
3655 | /* If you want to save a few bytes .text space: replace | 3702 | /* If you want to save a few bytes .text space: replace |
3656 | * __ with kmem_. | 3703 | * __ with kmem_. |
@@ -3660,11 +3707,17 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | |||
3660 | cachep = __find_general_cachep(size, flags); | 3707 | cachep = __find_general_cachep(size, flags); |
3661 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3708 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3662 | return cachep; | 3709 | return cachep; |
3663 | return __cache_alloc(cachep, flags, caller); | 3710 | ret = __cache_alloc(cachep, flags, caller); |
3711 | |||
3712 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, | ||
3713 | (unsigned long) caller, ret, | ||
3714 | size, cachep->buffer_size, flags); | ||
3715 | |||
3716 | return ret; | ||
3664 | } | 3717 | } |
3665 | 3718 | ||
3666 | 3719 | ||
3667 | #ifdef CONFIG_DEBUG_SLAB | 3720 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE) |
3668 | void *__kmalloc(size_t size, gfp_t flags) | 3721 | void *__kmalloc(size_t size, gfp_t flags) |
3669 | { | 3722 | { |
3670 | return __do_kmalloc(size, flags, __builtin_return_address(0)); | 3723 | return __do_kmalloc(size, flags, __builtin_return_address(0)); |
@@ -3703,6 +3756,8 @@ void kmem_cache_free(struct kmem_cache *cachep, void *objp) | |||
3703 | debug_check_no_obj_freed(objp, obj_size(cachep)); | 3756 | debug_check_no_obj_freed(objp, obj_size(cachep)); |
3704 | __cache_free(cachep, objp); | 3757 | __cache_free(cachep, objp); |
3705 | local_irq_restore(flags); | 3758 | local_irq_restore(flags); |
3759 | |||
3760 | kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, objp); | ||
3706 | } | 3761 | } |
3707 | EXPORT_SYMBOL(kmem_cache_free); | 3762 | EXPORT_SYMBOL(kmem_cache_free); |
3708 | 3763 | ||
@@ -3729,6 +3784,8 @@ void kfree(const void *objp) | |||
3729 | debug_check_no_obj_freed(objp, obj_size(c)); | 3784 | debug_check_no_obj_freed(objp, obj_size(c)); |
3730 | __cache_free(c, (void *)objp); | 3785 | __cache_free(c, (void *)objp); |
3731 | local_irq_restore(flags); | 3786 | local_irq_restore(flags); |
3787 | |||
3788 | kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, objp); | ||
3732 | } | 3789 | } |
3733 | EXPORT_SYMBOL(kfree); | 3790 | EXPORT_SYMBOL(kfree); |
3734 | 3791 | ||
@@ -65,6 +65,7 @@ | |||
65 | #include <linux/module.h> | 65 | #include <linux/module.h> |
66 | #include <linux/rcupdate.h> | 66 | #include <linux/rcupdate.h> |
67 | #include <linux/list.h> | 67 | #include <linux/list.h> |
68 | #include <trace/kmemtrace.h> | ||
68 | #include <asm/atomic.h> | 69 | #include <asm/atomic.h> |
69 | 70 | ||
70 | /* | 71 | /* |
@@ -463,6 +464,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node) | |||
463 | { | 464 | { |
464 | unsigned int *m; | 465 | unsigned int *m; |
465 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 466 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
467 | void *ret; | ||
466 | 468 | ||
467 | lockdep_trace_alloc(flags); | 469 | lockdep_trace_alloc(flags); |
468 | 470 | ||
@@ -471,21 +473,31 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node) | |||
471 | return ZERO_SIZE_PTR; | 473 | return ZERO_SIZE_PTR; |
472 | 474 | ||
473 | m = slob_alloc(size + align, gfp, align, node); | 475 | m = slob_alloc(size + align, gfp, align, node); |
476 | |||
474 | if (!m) | 477 | if (!m) |
475 | return NULL; | 478 | return NULL; |
476 | *m = size; | 479 | *m = size; |
477 | return (void *)m + align; | 480 | ret = (void *)m + align; |
481 | |||
482 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, | ||
483 | _RET_IP_, ret, | ||
484 | size, size + align, gfp, node); | ||
478 | } else { | 485 | } else { |
479 | void *ret; | 486 | unsigned int order = get_order(size); |
480 | 487 | ||
481 | ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node); | 488 | ret = slob_new_page(gfp | __GFP_COMP, order, node); |
482 | if (ret) { | 489 | if (ret) { |
483 | struct page *page; | 490 | struct page *page; |
484 | page = virt_to_page(ret); | 491 | page = virt_to_page(ret); |
485 | page->private = size; | 492 | page->private = size; |
486 | } | 493 | } |
487 | return ret; | 494 | |
495 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, | ||
496 | _RET_IP_, ret, | ||
497 | size, PAGE_SIZE << order, gfp, node); | ||
488 | } | 498 | } |
499 | |||
500 | return ret; | ||
489 | } | 501 | } |
490 | EXPORT_SYMBOL(__kmalloc_node); | 502 | EXPORT_SYMBOL(__kmalloc_node); |
491 | 503 | ||
@@ -503,6 +515,8 @@ void kfree(const void *block) | |||
503 | slob_free(m, *m + align); | 515 | slob_free(m, *m + align); |
504 | } else | 516 | } else |
505 | put_page(&sp->page); | 517 | put_page(&sp->page); |
518 | |||
519 | kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, block); | ||
506 | } | 520 | } |
507 | EXPORT_SYMBOL(kfree); | 521 | EXPORT_SYMBOL(kfree); |
508 | 522 | ||
@@ -572,10 +586,19 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | |||
572 | { | 586 | { |
573 | void *b; | 587 | void *b; |
574 | 588 | ||
575 | if (c->size < PAGE_SIZE) | 589 | if (c->size < PAGE_SIZE) { |
576 | b = slob_alloc(c->size, flags, c->align, node); | 590 | b = slob_alloc(c->size, flags, c->align, node); |
577 | else | 591 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, |
592 | _RET_IP_, b, c->size, | ||
593 | SLOB_UNITS(c->size) * SLOB_UNIT, | ||
594 | flags, node); | ||
595 | } else { | ||
578 | b = slob_new_page(flags, get_order(c->size), node); | 596 | b = slob_new_page(flags, get_order(c->size), node); |
597 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, | ||
598 | _RET_IP_, b, c->size, | ||
599 | PAGE_SIZE << get_order(c->size), | ||
600 | flags, node); | ||
601 | } | ||
579 | 602 | ||
580 | if (c->ctor) | 603 | if (c->ctor) |
581 | c->ctor(b); | 604 | c->ctor(b); |
@@ -611,6 +634,8 @@ void kmem_cache_free(struct kmem_cache *c, void *b) | |||
611 | } else { | 634 | } else { |
612 | __kmem_cache_free(b, c->size); | 635 | __kmem_cache_free(b, c->size); |
613 | } | 636 | } |
637 | |||
638 | kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, b); | ||
614 | } | 639 | } |
615 | EXPORT_SYMBOL(kmem_cache_free); | 640 | EXPORT_SYMBOL(kmem_cache_free); |
616 | 641 | ||
@@ -16,6 +16,7 @@ | |||
16 | #include <linux/slab.h> | 16 | #include <linux/slab.h> |
17 | #include <linux/proc_fs.h> | 17 | #include <linux/proc_fs.h> |
18 | #include <linux/seq_file.h> | 18 | #include <linux/seq_file.h> |
19 | #include <trace/kmemtrace.h> | ||
19 | #include <linux/cpu.h> | 20 | #include <linux/cpu.h> |
20 | #include <linux/cpuset.h> | 21 | #include <linux/cpuset.h> |
21 | #include <linux/mempolicy.h> | 22 | #include <linux/mempolicy.h> |
@@ -1624,18 +1625,46 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, | |||
1624 | 1625 | ||
1625 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 1626 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
1626 | { | 1627 | { |
1627 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | 1628 | void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); |
1629 | |||
1630 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
1631 | s->objsize, s->size, gfpflags); | ||
1632 | |||
1633 | return ret; | ||
1628 | } | 1634 | } |
1629 | EXPORT_SYMBOL(kmem_cache_alloc); | 1635 | EXPORT_SYMBOL(kmem_cache_alloc); |
1630 | 1636 | ||
1637 | #ifdef CONFIG_KMEMTRACE | ||
1638 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) | ||
1639 | { | ||
1640 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | ||
1641 | } | ||
1642 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | ||
1643 | #endif | ||
1644 | |||
1631 | #ifdef CONFIG_NUMA | 1645 | #ifdef CONFIG_NUMA |
1632 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 1646 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
1633 | { | 1647 | { |
1634 | return slab_alloc(s, gfpflags, node, _RET_IP_); | 1648 | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); |
1649 | |||
1650 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
1651 | s->objsize, s->size, gfpflags, node); | ||
1652 | |||
1653 | return ret; | ||
1635 | } | 1654 | } |
1636 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 1655 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
1637 | #endif | 1656 | #endif |
1638 | 1657 | ||
1658 | #ifdef CONFIG_KMEMTRACE | ||
1659 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, | ||
1660 | gfp_t gfpflags, | ||
1661 | int node) | ||
1662 | { | ||
1663 | return slab_alloc(s, gfpflags, node, _RET_IP_); | ||
1664 | } | ||
1665 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); | ||
1666 | #endif | ||
1667 | |||
1639 | /* | 1668 | /* |
1640 | * Slow patch handling. This may still be called frequently since objects | 1669 | * Slow patch handling. This may still be called frequently since objects |
1641 | * have a longer lifetime than the cpu slabs in most processing loads. | 1670 | * have a longer lifetime than the cpu slabs in most processing loads. |
@@ -1743,6 +1772,8 @@ void kmem_cache_free(struct kmem_cache *s, void *x) | |||
1743 | page = virt_to_head_page(x); | 1772 | page = virt_to_head_page(x); |
1744 | 1773 | ||
1745 | slab_free(s, page, x, _RET_IP_); | 1774 | slab_free(s, page, x, _RET_IP_); |
1775 | |||
1776 | kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, x); | ||
1746 | } | 1777 | } |
1747 | EXPORT_SYMBOL(kmem_cache_free); | 1778 | EXPORT_SYMBOL(kmem_cache_free); |
1748 | 1779 | ||
@@ -2476,7 +2507,7 @@ EXPORT_SYMBOL(kmem_cache_destroy); | |||
2476 | * Kmalloc subsystem | 2507 | * Kmalloc subsystem |
2477 | *******************************************************************/ | 2508 | *******************************************************************/ |
2478 | 2509 | ||
2479 | struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; | 2510 | struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; |
2480 | EXPORT_SYMBOL(kmalloc_caches); | 2511 | EXPORT_SYMBOL(kmalloc_caches); |
2481 | 2512 | ||
2482 | static int __init setup_slub_min_order(char *str) | 2513 | static int __init setup_slub_min_order(char *str) |
@@ -2538,7 +2569,7 @@ panic: | |||
2538 | } | 2569 | } |
2539 | 2570 | ||
2540 | #ifdef CONFIG_ZONE_DMA | 2571 | #ifdef CONFIG_ZONE_DMA |
2541 | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; | 2572 | static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; |
2542 | 2573 | ||
2543 | static void sysfs_add_func(struct work_struct *w) | 2574 | static void sysfs_add_func(struct work_struct *w) |
2544 | { | 2575 | { |
@@ -2658,8 +2689,9 @@ static struct kmem_cache *get_slab(size_t size, gfp_t flags) | |||
2658 | void *__kmalloc(size_t size, gfp_t flags) | 2689 | void *__kmalloc(size_t size, gfp_t flags) |
2659 | { | 2690 | { |
2660 | struct kmem_cache *s; | 2691 | struct kmem_cache *s; |
2692 | void *ret; | ||
2661 | 2693 | ||
2662 | if (unlikely(size > PAGE_SIZE)) | 2694 | if (unlikely(size > SLUB_MAX_SIZE)) |
2663 | return kmalloc_large(size, flags); | 2695 | return kmalloc_large(size, flags); |
2664 | 2696 | ||
2665 | s = get_slab(size, flags); | 2697 | s = get_slab(size, flags); |
@@ -2667,7 +2699,12 @@ void *__kmalloc(size_t size, gfp_t flags) | |||
2667 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2699 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
2668 | return s; | 2700 | return s; |
2669 | 2701 | ||
2670 | return slab_alloc(s, flags, -1, _RET_IP_); | 2702 | ret = slab_alloc(s, flags, -1, _RET_IP_); |
2703 | |||
2704 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret, | ||
2705 | size, s->size, flags); | ||
2706 | |||
2707 | return ret; | ||
2671 | } | 2708 | } |
2672 | EXPORT_SYMBOL(__kmalloc); | 2709 | EXPORT_SYMBOL(__kmalloc); |
2673 | 2710 | ||
@@ -2686,16 +2723,30 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | |||
2686 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 2723 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
2687 | { | 2724 | { |
2688 | struct kmem_cache *s; | 2725 | struct kmem_cache *s; |
2726 | void *ret; | ||
2727 | |||
2728 | if (unlikely(size > SLUB_MAX_SIZE)) { | ||
2729 | ret = kmalloc_large_node(size, flags, node); | ||
2689 | 2730 | ||
2690 | if (unlikely(size > PAGE_SIZE)) | 2731 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, |
2691 | return kmalloc_large_node(size, flags, node); | 2732 | _RET_IP_, ret, |
2733 | size, PAGE_SIZE << get_order(size), | ||
2734 | flags, node); | ||
2735 | |||
2736 | return ret; | ||
2737 | } | ||
2692 | 2738 | ||
2693 | s = get_slab(size, flags); | 2739 | s = get_slab(size, flags); |
2694 | 2740 | ||
2695 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2741 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
2696 | return s; | 2742 | return s; |
2697 | 2743 | ||
2698 | return slab_alloc(s, flags, node, _RET_IP_); | 2744 | ret = slab_alloc(s, flags, node, _RET_IP_); |
2745 | |||
2746 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret, | ||
2747 | size, s->size, flags, node); | ||
2748 | |||
2749 | return ret; | ||
2699 | } | 2750 | } |
2700 | EXPORT_SYMBOL(__kmalloc_node); | 2751 | EXPORT_SYMBOL(__kmalloc_node); |
2701 | #endif | 2752 | #endif |
@@ -2754,6 +2805,8 @@ void kfree(const void *x) | |||
2754 | return; | 2805 | return; |
2755 | } | 2806 | } |
2756 | slab_free(page->slab, page, object, _RET_IP_); | 2807 | slab_free(page->slab, page, object, _RET_IP_); |
2808 | |||
2809 | kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, x); | ||
2757 | } | 2810 | } |
2758 | EXPORT_SYMBOL(kfree); | 2811 | EXPORT_SYMBOL(kfree); |
2759 | 2812 | ||
@@ -2987,7 +3040,7 @@ void __init kmem_cache_init(void) | |||
2987 | caches++; | 3040 | caches++; |
2988 | } | 3041 | } |
2989 | 3042 | ||
2990 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { | 3043 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
2991 | create_kmalloc_cache(&kmalloc_caches[i], | 3044 | create_kmalloc_cache(&kmalloc_caches[i], |
2992 | "kmalloc", 1 << i, GFP_KERNEL); | 3045 | "kmalloc", 1 << i, GFP_KERNEL); |
2993 | caches++; | 3046 | caches++; |
@@ -3024,7 +3077,7 @@ void __init kmem_cache_init(void) | |||
3024 | slab_state = UP; | 3077 | slab_state = UP; |
3025 | 3078 | ||
3026 | /* Provide the correct kmalloc names now that the caches are up */ | 3079 | /* Provide the correct kmalloc names now that the caches are up */ |
3027 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) | 3080 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) |
3028 | kmalloc_caches[i]. name = | 3081 | kmalloc_caches[i]. name = |
3029 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | 3082 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); |
3030 | 3083 | ||
@@ -3223,8 +3276,9 @@ static struct notifier_block __cpuinitdata slab_notifier = { | |||
3223 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 3276 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
3224 | { | 3277 | { |
3225 | struct kmem_cache *s; | 3278 | struct kmem_cache *s; |
3279 | void *ret; | ||
3226 | 3280 | ||
3227 | if (unlikely(size > PAGE_SIZE)) | 3281 | if (unlikely(size > SLUB_MAX_SIZE)) |
3228 | return kmalloc_large(size, gfpflags); | 3282 | return kmalloc_large(size, gfpflags); |
3229 | 3283 | ||
3230 | s = get_slab(size, gfpflags); | 3284 | s = get_slab(size, gfpflags); |
@@ -3232,15 +3286,22 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | |||
3232 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3286 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3233 | return s; | 3287 | return s; |
3234 | 3288 | ||
3235 | return slab_alloc(s, gfpflags, -1, caller); | 3289 | ret = slab_alloc(s, gfpflags, -1, caller); |
3290 | |||
3291 | /* Honor the call site pointer we recieved. */ | ||
3292 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, caller, ret, size, | ||
3293 | s->size, gfpflags); | ||
3294 | |||
3295 | return ret; | ||
3236 | } | 3296 | } |
3237 | 3297 | ||
3238 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 3298 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
3239 | int node, unsigned long caller) | 3299 | int node, unsigned long caller) |
3240 | { | 3300 | { |
3241 | struct kmem_cache *s; | 3301 | struct kmem_cache *s; |
3302 | void *ret; | ||
3242 | 3303 | ||
3243 | if (unlikely(size > PAGE_SIZE)) | 3304 | if (unlikely(size > SLUB_MAX_SIZE)) |
3244 | return kmalloc_large_node(size, gfpflags, node); | 3305 | return kmalloc_large_node(size, gfpflags, node); |
3245 | 3306 | ||
3246 | s = get_slab(size, gfpflags); | 3307 | s = get_slab(size, gfpflags); |
@@ -3248,7 +3309,13 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |||
3248 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3309 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3249 | return s; | 3310 | return s; |
3250 | 3311 | ||
3251 | return slab_alloc(s, gfpflags, node, caller); | 3312 | ret = slab_alloc(s, gfpflags, node, caller); |
3313 | |||
3314 | /* Honor the call site pointer we recieved. */ | ||
3315 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, caller, ret, | ||
3316 | size, s->size, gfpflags, node); | ||
3317 | |||
3318 | return ret; | ||
3252 | } | 3319 | } |
3253 | 3320 | ||
3254 | #ifdef CONFIG_SLUB_DEBUG | 3321 | #ifdef CONFIG_SLUB_DEBUG |
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 520a75980269..af58324c361a 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -24,6 +24,7 @@ | |||
24 | #include <linux/radix-tree.h> | 24 | #include <linux/radix-tree.h> |
25 | #include <linux/rcupdate.h> | 25 | #include <linux/rcupdate.h> |
26 | #include <linux/bootmem.h> | 26 | #include <linux/bootmem.h> |
27 | #include <linux/pfn.h> | ||
27 | 28 | ||
28 | #include <asm/atomic.h> | 29 | #include <asm/atomic.h> |
29 | #include <asm/uaccess.h> | 30 | #include <asm/uaccess.h> |
@@ -152,8 +153,8 @@ static int vmap_pud_range(pgd_t *pgd, unsigned long addr, | |||
152 | * | 153 | * |
153 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | 154 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] |
154 | */ | 155 | */ |
155 | static int vmap_page_range(unsigned long start, unsigned long end, | 156 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
156 | pgprot_t prot, struct page **pages) | 157 | pgprot_t prot, struct page **pages) |
157 | { | 158 | { |
158 | pgd_t *pgd; | 159 | pgd_t *pgd; |
159 | unsigned long next; | 160 | unsigned long next; |
@@ -169,13 +170,22 @@ static int vmap_page_range(unsigned long start, unsigned long end, | |||
169 | if (err) | 170 | if (err) |
170 | break; | 171 | break; |
171 | } while (pgd++, addr = next, addr != end); | 172 | } while (pgd++, addr = next, addr != end); |
172 | flush_cache_vmap(start, end); | ||
173 | 173 | ||
174 | if (unlikely(err)) | 174 | if (unlikely(err)) |
175 | return err; | 175 | return err; |
176 | return nr; | 176 | return nr; |
177 | } | 177 | } |
178 | 178 | ||
179 | static int vmap_page_range(unsigned long start, unsigned long end, | ||
180 | pgprot_t prot, struct page **pages) | ||
181 | { | ||
182 | int ret; | ||
183 | |||
184 | ret = vmap_page_range_noflush(start, end, prot, pages); | ||
185 | flush_cache_vmap(start, end); | ||
186 | return ret; | ||
187 | } | ||
188 | |||
179 | static inline int is_vmalloc_or_module_addr(const void *x) | 189 | static inline int is_vmalloc_or_module_addr(const void *x) |
180 | { | 190 | { |
181 | /* | 191 | /* |
@@ -990,6 +1000,32 @@ void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t pro | |||
990 | } | 1000 | } |
991 | EXPORT_SYMBOL(vm_map_ram); | 1001 | EXPORT_SYMBOL(vm_map_ram); |
992 | 1002 | ||
1003 | /** | ||
1004 | * vm_area_register_early - register vmap area early during boot | ||
1005 | * @vm: vm_struct to register | ||
1006 | * @align: requested alignment | ||
1007 | * | ||
1008 | * This function is used to register kernel vm area before | ||
1009 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | ||
1010 | * proper values on entry and other fields should be zero. On return, | ||
1011 | * vm->addr contains the allocated address. | ||
1012 | * | ||
1013 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | ||
1014 | */ | ||
1015 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | ||
1016 | { | ||
1017 | static size_t vm_init_off __initdata; | ||
1018 | unsigned long addr; | ||
1019 | |||
1020 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | ||
1021 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | ||
1022 | |||
1023 | vm->addr = (void *)addr; | ||
1024 | |||
1025 | vm->next = vmlist; | ||
1026 | vmlist = vm; | ||
1027 | } | ||
1028 | |||
993 | void __init vmalloc_init(void) | 1029 | void __init vmalloc_init(void) |
994 | { | 1030 | { |
995 | struct vmap_area *va; | 1031 | struct vmap_area *va; |
@@ -1017,6 +1053,58 @@ void __init vmalloc_init(void) | |||
1017 | vmap_initialized = true; | 1053 | vmap_initialized = true; |
1018 | } | 1054 | } |
1019 | 1055 | ||
1056 | /** | ||
1057 | * map_kernel_range_noflush - map kernel VM area with the specified pages | ||
1058 | * @addr: start of the VM area to map | ||
1059 | * @size: size of the VM area to map | ||
1060 | * @prot: page protection flags to use | ||
1061 | * @pages: pages to map | ||
1062 | * | ||
1063 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | ||
1064 | * specify should have been allocated using get_vm_area() and its | ||
1065 | * friends. | ||
1066 | * | ||
1067 | * NOTE: | ||
1068 | * This function does NOT do any cache flushing. The caller is | ||
1069 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | ||
1070 | * before calling this function. | ||
1071 | * | ||
1072 | * RETURNS: | ||
1073 | * The number of pages mapped on success, -errno on failure. | ||
1074 | */ | ||
1075 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | ||
1076 | pgprot_t prot, struct page **pages) | ||
1077 | { | ||
1078 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | ||
1079 | } | ||
1080 | |||
1081 | /** | ||
1082 | * unmap_kernel_range_noflush - unmap kernel VM area | ||
1083 | * @addr: start of the VM area to unmap | ||
1084 | * @size: size of the VM area to unmap | ||
1085 | * | ||
1086 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | ||
1087 | * specify should have been allocated using get_vm_area() and its | ||
1088 | * friends. | ||
1089 | * | ||
1090 | * NOTE: | ||
1091 | * This function does NOT do any cache flushing. The caller is | ||
1092 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | ||
1093 | * before calling this function and flush_tlb_kernel_range() after. | ||
1094 | */ | ||
1095 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | ||
1096 | { | ||
1097 | vunmap_page_range(addr, addr + size); | ||
1098 | } | ||
1099 | |||
1100 | /** | ||
1101 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | ||
1102 | * @addr: start of the VM area to unmap | ||
1103 | * @size: size of the VM area to unmap | ||
1104 | * | ||
1105 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | ||
1106 | * the unmapping and tlb after. | ||
1107 | */ | ||
1020 | void unmap_kernel_range(unsigned long addr, unsigned long size) | 1108 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1021 | { | 1109 | { |
1022 | unsigned long end = addr + size; | 1110 | unsigned long end = addr + size; |
@@ -1267,6 +1355,7 @@ EXPORT_SYMBOL(vfree); | |||
1267 | void vunmap(const void *addr) | 1355 | void vunmap(const void *addr) |
1268 | { | 1356 | { |
1269 | BUG_ON(in_interrupt()); | 1357 | BUG_ON(in_interrupt()); |
1358 | might_sleep(); | ||
1270 | __vunmap(addr, 0); | 1359 | __vunmap(addr, 0); |
1271 | } | 1360 | } |
1272 | EXPORT_SYMBOL(vunmap); | 1361 | EXPORT_SYMBOL(vunmap); |
@@ -1286,6 +1375,8 @@ void *vmap(struct page **pages, unsigned int count, | |||
1286 | { | 1375 | { |
1287 | struct vm_struct *area; | 1376 | struct vm_struct *area; |
1288 | 1377 | ||
1378 | might_sleep(); | ||
1379 | |||
1289 | if (count > num_physpages) | 1380 | if (count > num_physpages) |
1290 | return NULL; | 1381 | return NULL; |
1291 | 1382 | ||