diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 18 | ||||
-rw-r--r-- | mm/Makefile | 3 | ||||
-rw-r--r-- | mm/bootmem.c | 2 | ||||
-rw-r--r-- | mm/fadvise.c | 2 | ||||
-rw-r--r-- | mm/filemap.c | 55 | ||||
-rw-r--r-- | mm/fremap.c | 27 | ||||
-rw-r--r-- | mm/hugetlb.c | 67 | ||||
-rw-r--r-- | mm/internal.h | 131 | ||||
-rw-r--r-- | mm/memcontrol.c | 466 | ||||
-rw-r--r-- | mm/memory.c | 127 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 19 | ||||
-rw-r--r-- | mm/mempolicy.c | 11 | ||||
-rw-r--r-- | mm/migrate.c | 274 | ||||
-rw-r--r-- | mm/mlock.c | 443 | ||||
-rw-r--r-- | mm/mmap.c | 81 | ||||
-rw-r--r-- | mm/mremap.c | 8 | ||||
-rw-r--r-- | mm/nommu.c | 44 | ||||
-rw-r--r-- | mm/page-writeback.c | 22 | ||||
-rw-r--r-- | mm/page_alloc.c | 123 | ||||
-rw-r--r-- | mm/page_cgroup.c | 237 | ||||
-rw-r--r-- | mm/pdflush.c | 2 | ||||
-rw-r--r-- | mm/readahead.c | 4 | ||||
-rw-r--r-- | mm/rmap.c | 319 | ||||
-rw-r--r-- | mm/shmem.c | 12 | ||||
-rw-r--r-- | mm/swap.c | 172 | ||||
-rw-r--r-- | mm/swap_state.c | 11 | ||||
-rw-r--r-- | mm/swapfile.c | 27 | ||||
-rw-r--r-- | mm/truncate.c | 6 | ||||
-rw-r--r-- | mm/vmalloc.c | 975 | ||||
-rw-r--r-- | mm/vmscan.c | 1026 | ||||
-rw-r--r-- | mm/vmstat.c | 33 |
31 files changed, 3629 insertions, 1118 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index 0bd9c2dbb2a0..5b5790f8a816 100644 --- a/mm/Kconfig +++ b/mm/Kconfig | |||
@@ -101,7 +101,7 @@ config HAVE_MEMORY_PRESENT | |||
101 | # with gcc 3.4 and later. | 101 | # with gcc 3.4 and later. |
102 | # | 102 | # |
103 | config SPARSEMEM_STATIC | 103 | config SPARSEMEM_STATIC |
104 | def_bool n | 104 | bool |
105 | 105 | ||
106 | # | 106 | # |
107 | # Architecture platforms which require a two level mem_section in SPARSEMEM | 107 | # Architecture platforms which require a two level mem_section in SPARSEMEM |
@@ -113,7 +113,7 @@ config SPARSEMEM_EXTREME | |||
113 | depends on SPARSEMEM && !SPARSEMEM_STATIC | 113 | depends on SPARSEMEM && !SPARSEMEM_STATIC |
114 | 114 | ||
115 | config SPARSEMEM_VMEMMAP_ENABLE | 115 | config SPARSEMEM_VMEMMAP_ENABLE |
116 | def_bool n | 116 | bool |
117 | 117 | ||
118 | config SPARSEMEM_VMEMMAP | 118 | config SPARSEMEM_VMEMMAP |
119 | bool "Sparse Memory virtual memmap" | 119 | bool "Sparse Memory virtual memmap" |
@@ -187,6 +187,9 @@ config RESOURCES_64BIT | |||
187 | help | 187 | help |
188 | This option allows memory and IO resources to be 64 bit. | 188 | This option allows memory and IO resources to be 64 bit. |
189 | 189 | ||
190 | config PHYS_ADDR_T_64BIT | ||
191 | def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT | ||
192 | |||
190 | config ZONE_DMA_FLAG | 193 | config ZONE_DMA_FLAG |
191 | int | 194 | int |
192 | default "0" if !ZONE_DMA | 195 | default "0" if !ZONE_DMA |
@@ -206,5 +209,16 @@ config VIRT_TO_BUS | |||
206 | def_bool y | 209 | def_bool y |
207 | depends on !ARCH_NO_VIRT_TO_BUS | 210 | depends on !ARCH_NO_VIRT_TO_BUS |
208 | 211 | ||
212 | config UNEVICTABLE_LRU | ||
213 | bool "Add LRU list to track non-evictable pages" | ||
214 | default y | ||
215 | depends on MMU | ||
216 | help | ||
217 | Keeps unevictable pages off of the active and inactive pageout | ||
218 | lists, so kswapd will not waste CPU time or have its balancing | ||
219 | algorithms thrown off by scanning these pages. Selecting this | ||
220 | will use one page flag and increase the code size a little, | ||
221 | say Y unless you know what you are doing. | ||
222 | |||
209 | config MMU_NOTIFIER | 223 | config MMU_NOTIFIER |
210 | bool | 224 | bool |
diff --git a/mm/Makefile b/mm/Makefile index da4ccf015aea..c06b45a1ff5f 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -33,5 +33,4 @@ obj-$(CONFIG_FS_XIP) += filemap_xip.o | |||
33 | obj-$(CONFIG_MIGRATION) += migrate.o | 33 | obj-$(CONFIG_MIGRATION) += migrate.o |
34 | obj-$(CONFIG_SMP) += allocpercpu.o | 34 | obj-$(CONFIG_SMP) += allocpercpu.o |
35 | obj-$(CONFIG_QUICKLIST) += quicklist.o | 35 | obj-$(CONFIG_QUICKLIST) += quicklist.o |
36 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o | 36 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o |
37 | |||
diff --git a/mm/bootmem.c b/mm/bootmem.c index ad8eec6e44a8..ac5a891f142a 100644 --- a/mm/bootmem.c +++ b/mm/bootmem.c | |||
@@ -48,7 +48,7 @@ early_param("bootmem_debug", bootmem_debug_setup); | |||
48 | if (unlikely(bootmem_debug)) \ | 48 | if (unlikely(bootmem_debug)) \ |
49 | printk(KERN_INFO \ | 49 | printk(KERN_INFO \ |
50 | "bootmem::%s " fmt, \ | 50 | "bootmem::%s " fmt, \ |
51 | __FUNCTION__, ## args); \ | 51 | __func__, ## args); \ |
52 | }) | 52 | }) |
53 | 53 | ||
54 | static unsigned long __init bootmap_bytes(unsigned long pages) | 54 | static unsigned long __init bootmap_bytes(unsigned long pages) |
diff --git a/mm/fadvise.c b/mm/fadvise.c index 343cfdfebd9e..a1da969bd980 100644 --- a/mm/fadvise.c +++ b/mm/fadvise.c | |||
@@ -3,7 +3,7 @@ | |||
3 | * | 3 | * |
4 | * Copyright (C) 2002, Linus Torvalds | 4 | * Copyright (C) 2002, Linus Torvalds |
5 | * | 5 | * |
6 | * 11Jan2003 akpm@digeo.com | 6 | * 11Jan2003 Andrew Morton |
7 | * Initial version. | 7 | * Initial version. |
8 | */ | 8 | */ |
9 | 9 | ||
diff --git a/mm/filemap.c b/mm/filemap.c index 876bc595d0f8..ab8553658af3 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -33,6 +33,7 @@ | |||
33 | #include <linux/cpuset.h> | 33 | #include <linux/cpuset.h> |
34 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ | 34 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
35 | #include <linux/memcontrol.h> | 35 | #include <linux/memcontrol.h> |
36 | #include <linux/mm_inline.h> /* for page_is_file_cache() */ | ||
36 | #include "internal.h" | 37 | #include "internal.h" |
37 | 38 | ||
38 | /* | 39 | /* |
@@ -115,12 +116,12 @@ void __remove_from_page_cache(struct page *page) | |||
115 | { | 116 | { |
116 | struct address_space *mapping = page->mapping; | 117 | struct address_space *mapping = page->mapping; |
117 | 118 | ||
118 | mem_cgroup_uncharge_cache_page(page); | ||
119 | radix_tree_delete(&mapping->page_tree, page->index); | 119 | radix_tree_delete(&mapping->page_tree, page->index); |
120 | page->mapping = NULL; | 120 | page->mapping = NULL; |
121 | mapping->nrpages--; | 121 | mapping->nrpages--; |
122 | __dec_zone_page_state(page, NR_FILE_PAGES); | 122 | __dec_zone_page_state(page, NR_FILE_PAGES); |
123 | BUG_ON(page_mapped(page)); | 123 | BUG_ON(page_mapped(page)); |
124 | mem_cgroup_uncharge_cache_page(page); | ||
124 | 125 | ||
125 | /* | 126 | /* |
126 | * Some filesystems seem to re-dirty the page even after | 127 | * Some filesystems seem to re-dirty the page even after |
@@ -492,9 +493,24 @@ EXPORT_SYMBOL(add_to_page_cache_locked); | |||
492 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | 493 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, |
493 | pgoff_t offset, gfp_t gfp_mask) | 494 | pgoff_t offset, gfp_t gfp_mask) |
494 | { | 495 | { |
495 | int ret = add_to_page_cache(page, mapping, offset, gfp_mask); | 496 | int ret; |
496 | if (ret == 0) | 497 | |
497 | lru_cache_add(page); | 498 | /* |
499 | * Splice_read and readahead add shmem/tmpfs pages into the page cache | ||
500 | * before shmem_readpage has a chance to mark them as SwapBacked: they | ||
501 | * need to go on the active_anon lru below, and mem_cgroup_cache_charge | ||
502 | * (called in add_to_page_cache) needs to know where they're going too. | ||
503 | */ | ||
504 | if (mapping_cap_swap_backed(mapping)) | ||
505 | SetPageSwapBacked(page); | ||
506 | |||
507 | ret = add_to_page_cache(page, mapping, offset, gfp_mask); | ||
508 | if (ret == 0) { | ||
509 | if (page_is_file_cache(page)) | ||
510 | lru_cache_add_file(page); | ||
511 | else | ||
512 | lru_cache_add_active_anon(page); | ||
513 | } | ||
498 | return ret; | 514 | return ret; |
499 | } | 515 | } |
500 | 516 | ||
@@ -557,17 +573,14 @@ EXPORT_SYMBOL(wait_on_page_bit); | |||
557 | * mechananism between PageLocked pages and PageWriteback pages is shared. | 573 | * mechananism between PageLocked pages and PageWriteback pages is shared. |
558 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | 574 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
559 | * | 575 | * |
560 | * The first mb is necessary to safely close the critical section opened by the | 576 | * The mb is necessary to enforce ordering between the clear_bit and the read |
561 | * test_and_set_bit() to lock the page; the second mb is necessary to enforce | 577 | * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). |
562 | * ordering between the clear_bit and the read of the waitqueue (to avoid SMP | ||
563 | * races with a parallel wait_on_page_locked()). | ||
564 | */ | 578 | */ |
565 | void unlock_page(struct page *page) | 579 | void unlock_page(struct page *page) |
566 | { | 580 | { |
567 | smp_mb__before_clear_bit(); | 581 | VM_BUG_ON(!PageLocked(page)); |
568 | if (!test_and_clear_bit(PG_locked, &page->flags)) | 582 | clear_bit_unlock(PG_locked, &page->flags); |
569 | BUG(); | 583 | smp_mb__after_clear_bit(); |
570 | smp_mb__after_clear_bit(); | ||
571 | wake_up_page(page, PG_locked); | 584 | wake_up_page(page, PG_locked); |
572 | } | 585 | } |
573 | EXPORT_SYMBOL(unlock_page); | 586 | EXPORT_SYMBOL(unlock_page); |
@@ -1100,8 +1113,9 @@ page_ok: | |||
1100 | 1113 | ||
1101 | page_not_up_to_date: | 1114 | page_not_up_to_date: |
1102 | /* Get exclusive access to the page ... */ | 1115 | /* Get exclusive access to the page ... */ |
1103 | if (lock_page_killable(page)) | 1116 | error = lock_page_killable(page); |
1104 | goto readpage_eio; | 1117 | if (unlikely(error)) |
1118 | goto readpage_error; | ||
1105 | 1119 | ||
1106 | page_not_up_to_date_locked: | 1120 | page_not_up_to_date_locked: |
1107 | /* Did it get truncated before we got the lock? */ | 1121 | /* Did it get truncated before we got the lock? */ |
@@ -1130,8 +1144,9 @@ readpage: | |||
1130 | } | 1144 | } |
1131 | 1145 | ||
1132 | if (!PageUptodate(page)) { | 1146 | if (!PageUptodate(page)) { |
1133 | if (lock_page_killable(page)) | 1147 | error = lock_page_killable(page); |
1134 | goto readpage_eio; | 1148 | if (unlikely(error)) |
1149 | goto readpage_error; | ||
1135 | if (!PageUptodate(page)) { | 1150 | if (!PageUptodate(page)) { |
1136 | if (page->mapping == NULL) { | 1151 | if (page->mapping == NULL) { |
1137 | /* | 1152 | /* |
@@ -1143,15 +1158,14 @@ readpage: | |||
1143 | } | 1158 | } |
1144 | unlock_page(page); | 1159 | unlock_page(page); |
1145 | shrink_readahead_size_eio(filp, ra); | 1160 | shrink_readahead_size_eio(filp, ra); |
1146 | goto readpage_eio; | 1161 | error = -EIO; |
1162 | goto readpage_error; | ||
1147 | } | 1163 | } |
1148 | unlock_page(page); | 1164 | unlock_page(page); |
1149 | } | 1165 | } |
1150 | 1166 | ||
1151 | goto page_ok; | 1167 | goto page_ok; |
1152 | 1168 | ||
1153 | readpage_eio: | ||
1154 | error = -EIO; | ||
1155 | readpage_error: | 1169 | readpage_error: |
1156 | /* UHHUH! A synchronous read error occurred. Report it */ | 1170 | /* UHHUH! A synchronous read error occurred. Report it */ |
1157 | desc->error = error; | 1171 | desc->error = error; |
@@ -1186,8 +1200,7 @@ out: | |||
1186 | ra->prev_pos |= prev_offset; | 1200 | ra->prev_pos |= prev_offset; |
1187 | 1201 | ||
1188 | *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; | 1202 | *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; |
1189 | if (filp) | 1203 | file_accessed(filp); |
1190 | file_accessed(filp); | ||
1191 | } | 1204 | } |
1192 | 1205 | ||
1193 | int file_read_actor(read_descriptor_t *desc, struct page *page, | 1206 | int file_read_actor(read_descriptor_t *desc, struct page *page, |
diff --git a/mm/fremap.c b/mm/fremap.c index 7881638e4a12..7d12ca70ef7b 100644 --- a/mm/fremap.c +++ b/mm/fremap.c | |||
@@ -21,6 +21,8 @@ | |||
21 | #include <asm/cacheflush.h> | 21 | #include <asm/cacheflush.h> |
22 | #include <asm/tlbflush.h> | 22 | #include <asm/tlbflush.h> |
23 | 23 | ||
24 | #include "internal.h" | ||
25 | |||
24 | static void zap_pte(struct mm_struct *mm, struct vm_area_struct *vma, | 26 | static void zap_pte(struct mm_struct *mm, struct vm_area_struct *vma, |
25 | unsigned long addr, pte_t *ptep) | 27 | unsigned long addr, pte_t *ptep) |
26 | { | 28 | { |
@@ -215,15 +217,31 @@ asmlinkage long sys_remap_file_pages(unsigned long start, unsigned long size, | |||
215 | spin_unlock(&mapping->i_mmap_lock); | 217 | spin_unlock(&mapping->i_mmap_lock); |
216 | } | 218 | } |
217 | 219 | ||
220 | if (vma->vm_flags & VM_LOCKED) { | ||
221 | /* | ||
222 | * drop PG_Mlocked flag for over-mapped range | ||
223 | */ | ||
224 | unsigned int saved_flags = vma->vm_flags; | ||
225 | munlock_vma_pages_range(vma, start, start + size); | ||
226 | vma->vm_flags = saved_flags; | ||
227 | } | ||
228 | |||
218 | mmu_notifier_invalidate_range_start(mm, start, start + size); | 229 | mmu_notifier_invalidate_range_start(mm, start, start + size); |
219 | err = populate_range(mm, vma, start, size, pgoff); | 230 | err = populate_range(mm, vma, start, size, pgoff); |
220 | mmu_notifier_invalidate_range_end(mm, start, start + size); | 231 | mmu_notifier_invalidate_range_end(mm, start, start + size); |
221 | if (!err && !(flags & MAP_NONBLOCK)) { | 232 | if (!err && !(flags & MAP_NONBLOCK)) { |
222 | if (unlikely(has_write_lock)) { | 233 | if (vma->vm_flags & VM_LOCKED) { |
223 | downgrade_write(&mm->mmap_sem); | 234 | /* |
224 | has_write_lock = 0; | 235 | * might be mapping previously unmapped range of file |
236 | */ | ||
237 | mlock_vma_pages_range(vma, start, start + size); | ||
238 | } else { | ||
239 | if (unlikely(has_write_lock)) { | ||
240 | downgrade_write(&mm->mmap_sem); | ||
241 | has_write_lock = 0; | ||
242 | } | ||
243 | make_pages_present(start, start+size); | ||
225 | } | 244 | } |
226 | make_pages_present(start, start+size); | ||
227 | } | 245 | } |
228 | 246 | ||
229 | /* | 247 | /* |
@@ -240,4 +258,3 @@ out: | |||
240 | 258 | ||
241 | return err; | 259 | return err; |
242 | } | 260 | } |
243 | |||
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 67a71191136e..ce8cbb29860b 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -262,7 +262,7 @@ struct resv_map { | |||
262 | struct list_head regions; | 262 | struct list_head regions; |
263 | }; | 263 | }; |
264 | 264 | ||
265 | struct resv_map *resv_map_alloc(void) | 265 | static struct resv_map *resv_map_alloc(void) |
266 | { | 266 | { |
267 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 267 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); |
268 | if (!resv_map) | 268 | if (!resv_map) |
@@ -274,7 +274,7 @@ struct resv_map *resv_map_alloc(void) | |||
274 | return resv_map; | 274 | return resv_map; |
275 | } | 275 | } |
276 | 276 | ||
277 | void resv_map_release(struct kref *ref) | 277 | static void resv_map_release(struct kref *ref) |
278 | { | 278 | { |
279 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 279 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); |
280 | 280 | ||
@@ -289,7 +289,7 @@ static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | |||
289 | if (!(vma->vm_flags & VM_SHARED)) | 289 | if (!(vma->vm_flags & VM_SHARED)) |
290 | return (struct resv_map *)(get_vma_private_data(vma) & | 290 | return (struct resv_map *)(get_vma_private_data(vma) & |
291 | ~HPAGE_RESV_MASK); | 291 | ~HPAGE_RESV_MASK); |
292 | return 0; | 292 | return NULL; |
293 | } | 293 | } |
294 | 294 | ||
295 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 295 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
@@ -1459,11 +1459,11 @@ int hugetlb_report_meminfo(char *buf) | |||
1459 | { | 1459 | { |
1460 | struct hstate *h = &default_hstate; | 1460 | struct hstate *h = &default_hstate; |
1461 | return sprintf(buf, | 1461 | return sprintf(buf, |
1462 | "HugePages_Total: %5lu\n" | 1462 | "HugePages_Total: %5lu\n" |
1463 | "HugePages_Free: %5lu\n" | 1463 | "HugePages_Free: %5lu\n" |
1464 | "HugePages_Rsvd: %5lu\n" | 1464 | "HugePages_Rsvd: %5lu\n" |
1465 | "HugePages_Surp: %5lu\n" | 1465 | "HugePages_Surp: %5lu\n" |
1466 | "Hugepagesize: %5lu kB\n", | 1466 | "Hugepagesize: %8lu kB\n", |
1467 | h->nr_huge_pages, | 1467 | h->nr_huge_pages, |
1468 | h->free_huge_pages, | 1468 | h->free_huge_pages, |
1469 | h->resv_huge_pages, | 1469 | h->resv_huge_pages, |
@@ -1747,10 +1747,8 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
1747 | * from other VMAs and let the children be SIGKILLed if they are faulting the | 1747 | * from other VMAs and let the children be SIGKILLed if they are faulting the |
1748 | * same region. | 1748 | * same region. |
1749 | */ | 1749 | */ |
1750 | int unmap_ref_private(struct mm_struct *mm, | 1750 | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
1751 | struct vm_area_struct *vma, | 1751 | struct page *page, unsigned long address) |
1752 | struct page *page, | ||
1753 | unsigned long address) | ||
1754 | { | 1752 | { |
1755 | struct vm_area_struct *iter_vma; | 1753 | struct vm_area_struct *iter_vma; |
1756 | struct address_space *mapping; | 1754 | struct address_space *mapping; |
@@ -2008,7 +2006,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2008 | entry = huge_ptep_get(ptep); | 2006 | entry = huge_ptep_get(ptep); |
2009 | if (huge_pte_none(entry)) { | 2007 | if (huge_pte_none(entry)) { |
2010 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); | 2008 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); |
2011 | goto out_unlock; | 2009 | goto out_mutex; |
2012 | } | 2010 | } |
2013 | 2011 | ||
2014 | ret = 0; | 2012 | ret = 0; |
@@ -2024,7 +2022,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2024 | if (write_access && !pte_write(entry)) { | 2022 | if (write_access && !pte_write(entry)) { |
2025 | if (vma_needs_reservation(h, vma, address) < 0) { | 2023 | if (vma_needs_reservation(h, vma, address) < 0) { |
2026 | ret = VM_FAULT_OOM; | 2024 | ret = VM_FAULT_OOM; |
2027 | goto out_unlock; | 2025 | goto out_mutex; |
2028 | } | 2026 | } |
2029 | 2027 | ||
2030 | if (!(vma->vm_flags & VM_SHARED)) | 2028 | if (!(vma->vm_flags & VM_SHARED)) |
@@ -2034,10 +2032,23 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2034 | 2032 | ||
2035 | spin_lock(&mm->page_table_lock); | 2033 | spin_lock(&mm->page_table_lock); |
2036 | /* Check for a racing update before calling hugetlb_cow */ | 2034 | /* Check for a racing update before calling hugetlb_cow */ |
2037 | if (likely(pte_same(entry, huge_ptep_get(ptep)))) | 2035 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
2038 | if (write_access && !pte_write(entry)) | 2036 | goto out_page_table_lock; |
2037 | |||
2038 | |||
2039 | if (write_access) { | ||
2040 | if (!pte_write(entry)) { | ||
2039 | ret = hugetlb_cow(mm, vma, address, ptep, entry, | 2041 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2040 | pagecache_page); | 2042 | pagecache_page); |
2043 | goto out_page_table_lock; | ||
2044 | } | ||
2045 | entry = pte_mkdirty(entry); | ||
2046 | } | ||
2047 | entry = pte_mkyoung(entry); | ||
2048 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access)) | ||
2049 | update_mmu_cache(vma, address, entry); | ||
2050 | |||
2051 | out_page_table_lock: | ||
2041 | spin_unlock(&mm->page_table_lock); | 2052 | spin_unlock(&mm->page_table_lock); |
2042 | 2053 | ||
2043 | if (pagecache_page) { | 2054 | if (pagecache_page) { |
@@ -2045,7 +2056,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2045 | put_page(pagecache_page); | 2056 | put_page(pagecache_page); |
2046 | } | 2057 | } |
2047 | 2058 | ||
2048 | out_unlock: | 2059 | out_mutex: |
2049 | mutex_unlock(&hugetlb_instantiation_mutex); | 2060 | mutex_unlock(&hugetlb_instantiation_mutex); |
2050 | 2061 | ||
2051 | return ret; | 2062 | return ret; |
@@ -2060,6 +2071,14 @@ follow_huge_pud(struct mm_struct *mm, unsigned long address, | |||
2060 | return NULL; | 2071 | return NULL; |
2061 | } | 2072 | } |
2062 | 2073 | ||
2074 | static int huge_zeropage_ok(pte_t *ptep, int write, int shared) | ||
2075 | { | ||
2076 | if (!ptep || write || shared) | ||
2077 | return 0; | ||
2078 | else | ||
2079 | return huge_pte_none(huge_ptep_get(ptep)); | ||
2080 | } | ||
2081 | |||
2063 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2082 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2064 | struct page **pages, struct vm_area_struct **vmas, | 2083 | struct page **pages, struct vm_area_struct **vmas, |
2065 | unsigned long *position, int *length, int i, | 2084 | unsigned long *position, int *length, int i, |
@@ -2069,6 +2088,8 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2069 | unsigned long vaddr = *position; | 2088 | unsigned long vaddr = *position; |
2070 | int remainder = *length; | 2089 | int remainder = *length; |
2071 | struct hstate *h = hstate_vma(vma); | 2090 | struct hstate *h = hstate_vma(vma); |
2091 | int zeropage_ok = 0; | ||
2092 | int shared = vma->vm_flags & VM_SHARED; | ||
2072 | 2093 | ||
2073 | spin_lock(&mm->page_table_lock); | 2094 | spin_lock(&mm->page_table_lock); |
2074 | while (vaddr < vma->vm_end && remainder) { | 2095 | while (vaddr < vma->vm_end && remainder) { |
@@ -2081,8 +2102,11 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2081 | * first, for the page indexing below to work. | 2102 | * first, for the page indexing below to work. |
2082 | */ | 2103 | */ |
2083 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); | 2104 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
2105 | if (huge_zeropage_ok(pte, write, shared)) | ||
2106 | zeropage_ok = 1; | ||
2084 | 2107 | ||
2085 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || | 2108 | if (!pte || |
2109 | (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) || | ||
2086 | (write && !pte_write(huge_ptep_get(pte)))) { | 2110 | (write && !pte_write(huge_ptep_get(pte)))) { |
2087 | int ret; | 2111 | int ret; |
2088 | 2112 | ||
@@ -2102,8 +2126,11 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2102 | page = pte_page(huge_ptep_get(pte)); | 2126 | page = pte_page(huge_ptep_get(pte)); |
2103 | same_page: | 2127 | same_page: |
2104 | if (pages) { | 2128 | if (pages) { |
2105 | get_page(page); | 2129 | if (zeropage_ok) |
2106 | pages[i] = page + pfn_offset; | 2130 | pages[i] = ZERO_PAGE(0); |
2131 | else | ||
2132 | pages[i] = page + pfn_offset; | ||
2133 | get_page(pages[i]); | ||
2107 | } | 2134 | } |
2108 | 2135 | ||
2109 | if (vmas) | 2136 | if (vmas) |
diff --git a/mm/internal.h b/mm/internal.h index 1f43f7416972..e4e728bdf324 100644 --- a/mm/internal.h +++ b/mm/internal.h | |||
@@ -39,6 +39,15 @@ static inline void __put_page(struct page *page) | |||
39 | atomic_dec(&page->_count); | 39 | atomic_dec(&page->_count); |
40 | } | 40 | } |
41 | 41 | ||
42 | /* | ||
43 | * in mm/vmscan.c: | ||
44 | */ | ||
45 | extern int isolate_lru_page(struct page *page); | ||
46 | extern void putback_lru_page(struct page *page); | ||
47 | |||
48 | /* | ||
49 | * in mm/page_alloc.c | ||
50 | */ | ||
42 | extern void __free_pages_bootmem(struct page *page, unsigned int order); | 51 | extern void __free_pages_bootmem(struct page *page, unsigned int order); |
43 | 52 | ||
44 | /* | 53 | /* |
@@ -52,6 +61,120 @@ static inline unsigned long page_order(struct page *page) | |||
52 | return page_private(page); | 61 | return page_private(page); |
53 | } | 62 | } |
54 | 63 | ||
64 | extern long mlock_vma_pages_range(struct vm_area_struct *vma, | ||
65 | unsigned long start, unsigned long end); | ||
66 | extern void munlock_vma_pages_range(struct vm_area_struct *vma, | ||
67 | unsigned long start, unsigned long end); | ||
68 | static inline void munlock_vma_pages_all(struct vm_area_struct *vma) | ||
69 | { | ||
70 | munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); | ||
71 | } | ||
72 | |||
73 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
74 | /* | ||
75 | * unevictable_migrate_page() called only from migrate_page_copy() to | ||
76 | * migrate unevictable flag to new page. | ||
77 | * Note that the old page has been isolated from the LRU lists at this | ||
78 | * point so we don't need to worry about LRU statistics. | ||
79 | */ | ||
80 | static inline void unevictable_migrate_page(struct page *new, struct page *old) | ||
81 | { | ||
82 | if (TestClearPageUnevictable(old)) | ||
83 | SetPageUnevictable(new); | ||
84 | } | ||
85 | #else | ||
86 | static inline void unevictable_migrate_page(struct page *new, struct page *old) | ||
87 | { | ||
88 | } | ||
89 | #endif | ||
90 | |||
91 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
92 | /* | ||
93 | * Called only in fault path via page_evictable() for a new page | ||
94 | * to determine if it's being mapped into a LOCKED vma. | ||
95 | * If so, mark page as mlocked. | ||
96 | */ | ||
97 | static inline int is_mlocked_vma(struct vm_area_struct *vma, struct page *page) | ||
98 | { | ||
99 | VM_BUG_ON(PageLRU(page)); | ||
100 | |||
101 | if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) | ||
102 | return 0; | ||
103 | |||
104 | if (!TestSetPageMlocked(page)) { | ||
105 | inc_zone_page_state(page, NR_MLOCK); | ||
106 | count_vm_event(UNEVICTABLE_PGMLOCKED); | ||
107 | } | ||
108 | return 1; | ||
109 | } | ||
110 | |||
111 | /* | ||
112 | * must be called with vma's mmap_sem held for read, and page locked. | ||
113 | */ | ||
114 | extern void mlock_vma_page(struct page *page); | ||
115 | |||
116 | /* | ||
117 | * Clear the page's PageMlocked(). This can be useful in a situation where | ||
118 | * we want to unconditionally remove a page from the pagecache -- e.g., | ||
119 | * on truncation or freeing. | ||
120 | * | ||
121 | * It is legal to call this function for any page, mlocked or not. | ||
122 | * If called for a page that is still mapped by mlocked vmas, all we do | ||
123 | * is revert to lazy LRU behaviour -- semantics are not broken. | ||
124 | */ | ||
125 | extern void __clear_page_mlock(struct page *page); | ||
126 | static inline void clear_page_mlock(struct page *page) | ||
127 | { | ||
128 | if (unlikely(TestClearPageMlocked(page))) | ||
129 | __clear_page_mlock(page); | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * mlock_migrate_page - called only from migrate_page_copy() to | ||
134 | * migrate the Mlocked page flag; update statistics. | ||
135 | */ | ||
136 | static inline void mlock_migrate_page(struct page *newpage, struct page *page) | ||
137 | { | ||
138 | if (TestClearPageMlocked(page)) { | ||
139 | unsigned long flags; | ||
140 | |||
141 | local_irq_save(flags); | ||
142 | __dec_zone_page_state(page, NR_MLOCK); | ||
143 | SetPageMlocked(newpage); | ||
144 | __inc_zone_page_state(newpage, NR_MLOCK); | ||
145 | local_irq_restore(flags); | ||
146 | } | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | * free_page_mlock() -- clean up attempts to free and mlocked() page. | ||
151 | * Page should not be on lru, so no need to fix that up. | ||
152 | * free_pages_check() will verify... | ||
153 | */ | ||
154 | static inline void free_page_mlock(struct page *page) | ||
155 | { | ||
156 | if (unlikely(TestClearPageMlocked(page))) { | ||
157 | unsigned long flags; | ||
158 | |||
159 | local_irq_save(flags); | ||
160 | __dec_zone_page_state(page, NR_MLOCK); | ||
161 | __count_vm_event(UNEVICTABLE_MLOCKFREED); | ||
162 | local_irq_restore(flags); | ||
163 | } | ||
164 | } | ||
165 | |||
166 | #else /* CONFIG_UNEVICTABLE_LRU */ | ||
167 | static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p) | ||
168 | { | ||
169 | return 0; | ||
170 | } | ||
171 | static inline void clear_page_mlock(struct page *page) { } | ||
172 | static inline void mlock_vma_page(struct page *page) { } | ||
173 | static inline void mlock_migrate_page(struct page *new, struct page *old) { } | ||
174 | static inline void free_page_mlock(struct page *page) { } | ||
175 | |||
176 | #endif /* CONFIG_UNEVICTABLE_LRU */ | ||
177 | |||
55 | /* | 178 | /* |
56 | * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node, | 179 | * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node, |
57 | * so all functions starting at paging_init should be marked __init | 180 | * so all functions starting at paging_init should be marked __init |
@@ -120,4 +243,12 @@ static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, | |||
120 | } | 243 | } |
121 | #endif /* CONFIG_SPARSEMEM */ | 244 | #endif /* CONFIG_SPARSEMEM */ |
122 | 245 | ||
246 | #define GUP_FLAGS_WRITE 0x1 | ||
247 | #define GUP_FLAGS_FORCE 0x2 | ||
248 | #define GUP_FLAGS_IGNORE_VMA_PERMISSIONS 0x4 | ||
249 | |||
250 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | ||
251 | unsigned long start, int len, int flags, | ||
252 | struct page **pages, struct vm_area_struct **vmas); | ||
253 | |||
123 | #endif | 254 | #endif |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 36896f3eb7f5..d4a92b63e98e 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -32,11 +32,12 @@ | |||
32 | #include <linux/fs.h> | 32 | #include <linux/fs.h> |
33 | #include <linux/seq_file.h> | 33 | #include <linux/seq_file.h> |
34 | #include <linux/vmalloc.h> | 34 | #include <linux/vmalloc.h> |
35 | #include <linux/mm_inline.h> | ||
36 | #include <linux/page_cgroup.h> | ||
35 | 37 | ||
36 | #include <asm/uaccess.h> | 38 | #include <asm/uaccess.h> |
37 | 39 | ||
38 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 40 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
39 | static struct kmem_cache *page_cgroup_cache __read_mostly; | ||
40 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | 41 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
41 | 42 | ||
42 | /* | 43 | /* |
@@ -65,11 +66,10 @@ struct mem_cgroup_stat { | |||
65 | /* | 66 | /* |
66 | * For accounting under irq disable, no need for increment preempt count. | 67 | * For accounting under irq disable, no need for increment preempt count. |
67 | */ | 68 | */ |
68 | static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat, | 69 | static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, |
69 | enum mem_cgroup_stat_index idx, int val) | 70 | enum mem_cgroup_stat_index idx, int val) |
70 | { | 71 | { |
71 | int cpu = smp_processor_id(); | 72 | stat->count[idx] += val; |
72 | stat->cpustat[cpu].count[idx] += val; | ||
73 | } | 73 | } |
74 | 74 | ||
75 | static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | 75 | static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, |
@@ -85,22 +85,13 @@ static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | |||
85 | /* | 85 | /* |
86 | * per-zone information in memory controller. | 86 | * per-zone information in memory controller. |
87 | */ | 87 | */ |
88 | |||
89 | enum mem_cgroup_zstat_index { | ||
90 | MEM_CGROUP_ZSTAT_ACTIVE, | ||
91 | MEM_CGROUP_ZSTAT_INACTIVE, | ||
92 | |||
93 | NR_MEM_CGROUP_ZSTAT, | ||
94 | }; | ||
95 | |||
96 | struct mem_cgroup_per_zone { | 88 | struct mem_cgroup_per_zone { |
97 | /* | 89 | /* |
98 | * spin_lock to protect the per cgroup LRU | 90 | * spin_lock to protect the per cgroup LRU |
99 | */ | 91 | */ |
100 | spinlock_t lru_lock; | 92 | spinlock_t lru_lock; |
101 | struct list_head active_list; | 93 | struct list_head lists[NR_LRU_LISTS]; |
102 | struct list_head inactive_list; | 94 | unsigned long count[NR_LRU_LISTS]; |
103 | unsigned long count[NR_MEM_CGROUP_ZSTAT]; | ||
104 | }; | 95 | }; |
105 | /* Macro for accessing counter */ | 96 | /* Macro for accessing counter */ |
106 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | 97 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) |
@@ -144,69 +135,52 @@ struct mem_cgroup { | |||
144 | }; | 135 | }; |
145 | static struct mem_cgroup init_mem_cgroup; | 136 | static struct mem_cgroup init_mem_cgroup; |
146 | 137 | ||
147 | /* | ||
148 | * We use the lower bit of the page->page_cgroup pointer as a bit spin | ||
149 | * lock. We need to ensure that page->page_cgroup is at least two | ||
150 | * byte aligned (based on comments from Nick Piggin). But since | ||
151 | * bit_spin_lock doesn't actually set that lock bit in a non-debug | ||
152 | * uniprocessor kernel, we should avoid setting it here too. | ||
153 | */ | ||
154 | #define PAGE_CGROUP_LOCK_BIT 0x0 | ||
155 | #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) | ||
156 | #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT) | ||
157 | #else | ||
158 | #define PAGE_CGROUP_LOCK 0x0 | ||
159 | #endif | ||
160 | |||
161 | /* | ||
162 | * A page_cgroup page is associated with every page descriptor. The | ||
163 | * page_cgroup helps us identify information about the cgroup | ||
164 | */ | ||
165 | struct page_cgroup { | ||
166 | struct list_head lru; /* per cgroup LRU list */ | ||
167 | struct page *page; | ||
168 | struct mem_cgroup *mem_cgroup; | ||
169 | int flags; | ||
170 | }; | ||
171 | #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ | ||
172 | #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */ | ||
173 | |||
174 | static int page_cgroup_nid(struct page_cgroup *pc) | ||
175 | { | ||
176 | return page_to_nid(pc->page); | ||
177 | } | ||
178 | |||
179 | static enum zone_type page_cgroup_zid(struct page_cgroup *pc) | ||
180 | { | ||
181 | return page_zonenum(pc->page); | ||
182 | } | ||
183 | |||
184 | enum charge_type { | 138 | enum charge_type { |
185 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 139 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
186 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 140 | MEM_CGROUP_CHARGE_TYPE_MAPPED, |
141 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ | ||
187 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ | 142 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
143 | NR_CHARGE_TYPE, | ||
144 | }; | ||
145 | |||
146 | /* only for here (for easy reading.) */ | ||
147 | #define PCGF_CACHE (1UL << PCG_CACHE) | ||
148 | #define PCGF_USED (1UL << PCG_USED) | ||
149 | #define PCGF_ACTIVE (1UL << PCG_ACTIVE) | ||
150 | #define PCGF_LOCK (1UL << PCG_LOCK) | ||
151 | #define PCGF_FILE (1UL << PCG_FILE) | ||
152 | static const unsigned long | ||
153 | pcg_default_flags[NR_CHARGE_TYPE] = { | ||
154 | PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */ | ||
155 | PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */ | ||
156 | PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ | ||
157 | 0, /* FORCE */ | ||
188 | }; | 158 | }; |
189 | 159 | ||
190 | /* | 160 | /* |
191 | * Always modified under lru lock. Then, not necessary to preempt_disable() | 161 | * Always modified under lru lock. Then, not necessary to preempt_disable() |
192 | */ | 162 | */ |
193 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags, | 163 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, |
194 | bool charge) | 164 | struct page_cgroup *pc, |
165 | bool charge) | ||
195 | { | 166 | { |
196 | int val = (charge)? 1 : -1; | 167 | int val = (charge)? 1 : -1; |
197 | struct mem_cgroup_stat *stat = &mem->stat; | 168 | struct mem_cgroup_stat *stat = &mem->stat; |
169 | struct mem_cgroup_stat_cpu *cpustat; | ||
198 | 170 | ||
199 | VM_BUG_ON(!irqs_disabled()); | 171 | VM_BUG_ON(!irqs_disabled()); |
200 | if (flags & PAGE_CGROUP_FLAG_CACHE) | 172 | |
201 | __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val); | 173 | cpustat = &stat->cpustat[smp_processor_id()]; |
174 | if (PageCgroupCache(pc)) | ||
175 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); | ||
202 | else | 176 | else |
203 | __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val); | 177 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); |
204 | 178 | ||
205 | if (charge) | 179 | if (charge) |
206 | __mem_cgroup_stat_add_safe(stat, | 180 | __mem_cgroup_stat_add_safe(cpustat, |
207 | MEM_CGROUP_STAT_PGPGIN_COUNT, 1); | 181 | MEM_CGROUP_STAT_PGPGIN_COUNT, 1); |
208 | else | 182 | else |
209 | __mem_cgroup_stat_add_safe(stat, | 183 | __mem_cgroup_stat_add_safe(cpustat, |
210 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); | 184 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); |
211 | } | 185 | } |
212 | 186 | ||
@@ -227,7 +201,7 @@ page_cgroup_zoneinfo(struct page_cgroup *pc) | |||
227 | } | 201 | } |
228 | 202 | ||
229 | static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, | 203 | static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, |
230 | enum mem_cgroup_zstat_index idx) | 204 | enum lru_list idx) |
231 | { | 205 | { |
232 | int nid, zid; | 206 | int nid, zid; |
233 | struct mem_cgroup_per_zone *mz; | 207 | struct mem_cgroup_per_zone *mz; |
@@ -262,85 +236,77 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |||
262 | struct mem_cgroup, css); | 236 | struct mem_cgroup, css); |
263 | } | 237 | } |
264 | 238 | ||
265 | static inline int page_cgroup_locked(struct page *page) | ||
266 | { | ||
267 | return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | ||
268 | } | ||
269 | |||
270 | static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) | ||
271 | { | ||
272 | VM_BUG_ON(!page_cgroup_locked(page)); | ||
273 | page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK); | ||
274 | } | ||
275 | |||
276 | struct page_cgroup *page_get_page_cgroup(struct page *page) | ||
277 | { | ||
278 | return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK); | ||
279 | } | ||
280 | |||
281 | static void lock_page_cgroup(struct page *page) | ||
282 | { | ||
283 | bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | ||
284 | } | ||
285 | |||
286 | static int try_lock_page_cgroup(struct page *page) | ||
287 | { | ||
288 | return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | ||
289 | } | ||
290 | |||
291 | static void unlock_page_cgroup(struct page *page) | ||
292 | { | ||
293 | bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | ||
294 | } | ||
295 | |||
296 | static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, | 239 | static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, |
297 | struct page_cgroup *pc) | 240 | struct page_cgroup *pc) |
298 | { | 241 | { |
299 | int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 242 | int lru = LRU_BASE; |
243 | |||
244 | if (PageCgroupUnevictable(pc)) | ||
245 | lru = LRU_UNEVICTABLE; | ||
246 | else { | ||
247 | if (PageCgroupActive(pc)) | ||
248 | lru += LRU_ACTIVE; | ||
249 | if (PageCgroupFile(pc)) | ||
250 | lru += LRU_FILE; | ||
251 | } | ||
300 | 252 | ||
301 | if (from) | 253 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; |
302 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; | ||
303 | else | ||
304 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | ||
305 | 254 | ||
306 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); | 255 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false); |
307 | list_del(&pc->lru); | 256 | list_del(&pc->lru); |
308 | } | 257 | } |
309 | 258 | ||
310 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, | 259 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, |
311 | struct page_cgroup *pc) | 260 | struct page_cgroup *pc) |
312 | { | 261 | { |
313 | int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | 262 | int lru = LRU_BASE; |
314 | 263 | ||
315 | if (!to) { | 264 | if (PageCgroupUnevictable(pc)) |
316 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; | 265 | lru = LRU_UNEVICTABLE; |
317 | list_add(&pc->lru, &mz->inactive_list); | 266 | else { |
318 | } else { | 267 | if (PageCgroupActive(pc)) |
319 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; | 268 | lru += LRU_ACTIVE; |
320 | list_add(&pc->lru, &mz->active_list); | 269 | if (PageCgroupFile(pc)) |
270 | lru += LRU_FILE; | ||
321 | } | 271 | } |
322 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true); | 272 | |
273 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | ||
274 | list_add(&pc->lru, &mz->lists[lru]); | ||
275 | |||
276 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true); | ||
323 | } | 277 | } |
324 | 278 | ||
325 | static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) | 279 | static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru) |
326 | { | 280 | { |
327 | int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | ||
328 | struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); | 281 | struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); |
282 | int active = PageCgroupActive(pc); | ||
283 | int file = PageCgroupFile(pc); | ||
284 | int unevictable = PageCgroupUnevictable(pc); | ||
285 | enum lru_list from = unevictable ? LRU_UNEVICTABLE : | ||
286 | (LRU_FILE * !!file + !!active); | ||
329 | 287 | ||
330 | if (from) | 288 | if (lru == from) |
331 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; | 289 | return; |
332 | else | ||
333 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; | ||
334 | 290 | ||
335 | if (active) { | 291 | MEM_CGROUP_ZSTAT(mz, from) -= 1; |
336 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; | 292 | /* |
337 | pc->flags |= PAGE_CGROUP_FLAG_ACTIVE; | 293 | * However this is done under mz->lru_lock, another flags, which |
338 | list_move(&pc->lru, &mz->active_list); | 294 | * are not related to LRU, will be modified from out-of-lock. |
295 | * We have to use atomic set/clear flags. | ||
296 | */ | ||
297 | if (is_unevictable_lru(lru)) { | ||
298 | ClearPageCgroupActive(pc); | ||
299 | SetPageCgroupUnevictable(pc); | ||
339 | } else { | 300 | } else { |
340 | MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; | 301 | if (is_active_lru(lru)) |
341 | pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE; | 302 | SetPageCgroupActive(pc); |
342 | list_move(&pc->lru, &mz->inactive_list); | 303 | else |
304 | ClearPageCgroupActive(pc); | ||
305 | ClearPageCgroupUnevictable(pc); | ||
343 | } | 306 | } |
307 | |||
308 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | ||
309 | list_move(&pc->lru, &mz->lists[lru]); | ||
344 | } | 310 | } |
345 | 311 | ||
346 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 312 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
@@ -356,7 +322,7 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
356 | /* | 322 | /* |
357 | * This routine assumes that the appropriate zone's lru lock is already held | 323 | * This routine assumes that the appropriate zone's lru lock is already held |
358 | */ | 324 | */ |
359 | void mem_cgroup_move_lists(struct page *page, bool active) | 325 | void mem_cgroup_move_lists(struct page *page, enum lru_list lru) |
360 | { | 326 | { |
361 | struct page_cgroup *pc; | 327 | struct page_cgroup *pc; |
362 | struct mem_cgroup_per_zone *mz; | 328 | struct mem_cgroup_per_zone *mz; |
@@ -372,17 +338,16 @@ void mem_cgroup_move_lists(struct page *page, bool active) | |||
372 | * safely get to page_cgroup without it, so just try_lock it: | 338 | * safely get to page_cgroup without it, so just try_lock it: |
373 | * mem_cgroup_isolate_pages allows for page left on wrong list. | 339 | * mem_cgroup_isolate_pages allows for page left on wrong list. |
374 | */ | 340 | */ |
375 | if (!try_lock_page_cgroup(page)) | 341 | pc = lookup_page_cgroup(page); |
342 | if (!trylock_page_cgroup(pc)) | ||
376 | return; | 343 | return; |
377 | 344 | if (pc && PageCgroupUsed(pc)) { | |
378 | pc = page_get_page_cgroup(page); | ||
379 | if (pc) { | ||
380 | mz = page_cgroup_zoneinfo(pc); | 345 | mz = page_cgroup_zoneinfo(pc); |
381 | spin_lock_irqsave(&mz->lru_lock, flags); | 346 | spin_lock_irqsave(&mz->lru_lock, flags); |
382 | __mem_cgroup_move_lists(pc, active); | 347 | __mem_cgroup_move_lists(pc, lru); |
383 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 348 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
384 | } | 349 | } |
385 | unlock_page_cgroup(page); | 350 | unlock_page_cgroup(pc); |
386 | } | 351 | } |
387 | 352 | ||
388 | /* | 353 | /* |
@@ -403,21 +368,6 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | |||
403 | } | 368 | } |
404 | 369 | ||
405 | /* | 370 | /* |
406 | * This function is called from vmscan.c. In page reclaiming loop. balance | ||
407 | * between active and inactive list is calculated. For memory controller | ||
408 | * page reclaiming, we should use using mem_cgroup's imbalance rather than | ||
409 | * zone's global lru imbalance. | ||
410 | */ | ||
411 | long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem) | ||
412 | { | ||
413 | unsigned long active, inactive; | ||
414 | /* active and inactive are the number of pages. 'long' is ok.*/ | ||
415 | active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE); | ||
416 | inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE); | ||
417 | return (long) (active / (inactive + 1)); | ||
418 | } | ||
419 | |||
420 | /* | ||
421 | * prev_priority control...this will be used in memory reclaim path. | 371 | * prev_priority control...this will be used in memory reclaim path. |
422 | */ | 372 | */ |
423 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 373 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) |
@@ -444,28 +394,17 @@ void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | |||
444 | * (see include/linux/mmzone.h) | 394 | * (see include/linux/mmzone.h) |
445 | */ | 395 | */ |
446 | 396 | ||
447 | long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem, | 397 | long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone, |
448 | struct zone *zone, int priority) | 398 | int priority, enum lru_list lru) |
449 | { | 399 | { |
450 | long nr_active; | 400 | long nr_pages; |
451 | int nid = zone->zone_pgdat->node_id; | 401 | int nid = zone->zone_pgdat->node_id; |
452 | int zid = zone_idx(zone); | 402 | int zid = zone_idx(zone); |
453 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | 403 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); |
454 | 404 | ||
455 | nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE); | 405 | nr_pages = MEM_CGROUP_ZSTAT(mz, lru); |
456 | return (nr_active >> priority); | ||
457 | } | ||
458 | 406 | ||
459 | long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem, | 407 | return (nr_pages >> priority); |
460 | struct zone *zone, int priority) | ||
461 | { | ||
462 | long nr_inactive; | ||
463 | int nid = zone->zone_pgdat->node_id; | ||
464 | int zid = zone_idx(zone); | ||
465 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | ||
466 | |||
467 | nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE); | ||
468 | return (nr_inactive >> priority); | ||
469 | } | 408 | } |
470 | 409 | ||
471 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 410 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
@@ -473,7 +412,7 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
473 | unsigned long *scanned, int order, | 412 | unsigned long *scanned, int order, |
474 | int mode, struct zone *z, | 413 | int mode, struct zone *z, |
475 | struct mem_cgroup *mem_cont, | 414 | struct mem_cgroup *mem_cont, |
476 | int active) | 415 | int active, int file) |
477 | { | 416 | { |
478 | unsigned long nr_taken = 0; | 417 | unsigned long nr_taken = 0; |
479 | struct page *page; | 418 | struct page *page; |
@@ -484,38 +423,38 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
484 | int nid = z->zone_pgdat->node_id; | 423 | int nid = z->zone_pgdat->node_id; |
485 | int zid = zone_idx(z); | 424 | int zid = zone_idx(z); |
486 | struct mem_cgroup_per_zone *mz; | 425 | struct mem_cgroup_per_zone *mz; |
426 | int lru = LRU_FILE * !!file + !!active; | ||
487 | 427 | ||
488 | BUG_ON(!mem_cont); | 428 | BUG_ON(!mem_cont); |
489 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 429 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
490 | if (active) | 430 | src = &mz->lists[lru]; |
491 | src = &mz->active_list; | ||
492 | else | ||
493 | src = &mz->inactive_list; | ||
494 | |||
495 | 431 | ||
496 | spin_lock(&mz->lru_lock); | 432 | spin_lock(&mz->lru_lock); |
497 | scan = 0; | 433 | scan = 0; |
498 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 434 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { |
499 | if (scan >= nr_to_scan) | 435 | if (scan >= nr_to_scan) |
500 | break; | 436 | break; |
437 | if (unlikely(!PageCgroupUsed(pc))) | ||
438 | continue; | ||
501 | page = pc->page; | 439 | page = pc->page; |
502 | 440 | ||
503 | if (unlikely(!PageLRU(page))) | 441 | if (unlikely(!PageLRU(page))) |
504 | continue; | 442 | continue; |
505 | 443 | ||
506 | if (PageActive(page) && !active) { | 444 | /* |
507 | __mem_cgroup_move_lists(pc, true); | 445 | * TODO: play better with lumpy reclaim, grabbing anything. |
508 | continue; | 446 | */ |
509 | } | 447 | if (PageUnevictable(page) || |
510 | if (!PageActive(page) && active) { | 448 | (PageActive(page) && !active) || |
511 | __mem_cgroup_move_lists(pc, false); | 449 | (!PageActive(page) && active)) { |
450 | __mem_cgroup_move_lists(pc, page_lru(page)); | ||
512 | continue; | 451 | continue; |
513 | } | 452 | } |
514 | 453 | ||
515 | scan++; | 454 | scan++; |
516 | list_move(&pc->lru, &pc_list); | 455 | list_move(&pc->lru, &pc_list); |
517 | 456 | ||
518 | if (__isolate_lru_page(page, mode) == 0) { | 457 | if (__isolate_lru_page(page, mode, file) == 0) { |
519 | list_move(&page->lru, dst); | 458 | list_move(&page->lru, dst); |
520 | nr_taken++; | 459 | nr_taken++; |
521 | } | 460 | } |
@@ -540,26 +479,27 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
540 | { | 479 | { |
541 | struct mem_cgroup *mem; | 480 | struct mem_cgroup *mem; |
542 | struct page_cgroup *pc; | 481 | struct page_cgroup *pc; |
543 | unsigned long flags; | ||
544 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 482 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
545 | struct mem_cgroup_per_zone *mz; | 483 | struct mem_cgroup_per_zone *mz; |
484 | unsigned long flags; | ||
546 | 485 | ||
547 | pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask); | 486 | pc = lookup_page_cgroup(page); |
548 | if (unlikely(pc == NULL)) | 487 | /* can happen at boot */ |
549 | goto err; | 488 | if (unlikely(!pc)) |
550 | 489 | return 0; | |
490 | prefetchw(pc); | ||
551 | /* | 491 | /* |
552 | * We always charge the cgroup the mm_struct belongs to. | 492 | * We always charge the cgroup the mm_struct belongs to. |
553 | * The mm_struct's mem_cgroup changes on task migration if the | 493 | * The mm_struct's mem_cgroup changes on task migration if the |
554 | * thread group leader migrates. It's possible that mm is not | 494 | * thread group leader migrates. It's possible that mm is not |
555 | * set, if so charge the init_mm (happens for pagecache usage). | 495 | * set, if so charge the init_mm (happens for pagecache usage). |
556 | */ | 496 | */ |
497 | |||
557 | if (likely(!memcg)) { | 498 | if (likely(!memcg)) { |
558 | rcu_read_lock(); | 499 | rcu_read_lock(); |
559 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 500 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
560 | if (unlikely(!mem)) { | 501 | if (unlikely(!mem)) { |
561 | rcu_read_unlock(); | 502 | rcu_read_unlock(); |
562 | kmem_cache_free(page_cgroup_cache, pc); | ||
563 | return 0; | 503 | return 0; |
564 | } | 504 | } |
565 | /* | 505 | /* |
@@ -572,7 +512,7 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
572 | css_get(&memcg->css); | 512 | css_get(&memcg->css); |
573 | } | 513 | } |
574 | 514 | ||
575 | while (res_counter_charge(&mem->res, PAGE_SIZE)) { | 515 | while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) { |
576 | if (!(gfp_mask & __GFP_WAIT)) | 516 | if (!(gfp_mask & __GFP_WAIT)) |
577 | goto out; | 517 | goto out; |
578 | 518 | ||
@@ -595,39 +535,33 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
595 | } | 535 | } |
596 | } | 536 | } |
597 | 537 | ||
598 | pc->mem_cgroup = mem; | ||
599 | pc->page = page; | ||
600 | /* | ||
601 | * If a page is accounted as a page cache, insert to inactive list. | ||
602 | * If anon, insert to active list. | ||
603 | */ | ||
604 | if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) | ||
605 | pc->flags = PAGE_CGROUP_FLAG_CACHE; | ||
606 | else | ||
607 | pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | ||
608 | 538 | ||
609 | lock_page_cgroup(page); | 539 | lock_page_cgroup(pc); |
610 | if (unlikely(page_get_page_cgroup(page))) { | 540 | if (unlikely(PageCgroupUsed(pc))) { |
611 | unlock_page_cgroup(page); | 541 | unlock_page_cgroup(pc); |
612 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 542 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
613 | css_put(&mem->css); | 543 | css_put(&mem->css); |
614 | kmem_cache_free(page_cgroup_cache, pc); | 544 | |
615 | goto done; | 545 | goto done; |
616 | } | 546 | } |
617 | page_assign_page_cgroup(page, pc); | 547 | pc->mem_cgroup = mem; |
548 | /* | ||
549 | * If a page is accounted as a page cache, insert to inactive list. | ||
550 | * If anon, insert to active list. | ||
551 | */ | ||
552 | pc->flags = pcg_default_flags[ctype]; | ||
618 | 553 | ||
619 | mz = page_cgroup_zoneinfo(pc); | 554 | mz = page_cgroup_zoneinfo(pc); |
555 | |||
620 | spin_lock_irqsave(&mz->lru_lock, flags); | 556 | spin_lock_irqsave(&mz->lru_lock, flags); |
621 | __mem_cgroup_add_list(mz, pc); | 557 | __mem_cgroup_add_list(mz, pc); |
622 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 558 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
559 | unlock_page_cgroup(pc); | ||
623 | 560 | ||
624 | unlock_page_cgroup(page); | ||
625 | done: | 561 | done: |
626 | return 0; | 562 | return 0; |
627 | out: | 563 | out: |
628 | css_put(&mem->css); | 564 | css_put(&mem->css); |
629 | kmem_cache_free(page_cgroup_cache, pc); | ||
630 | err: | ||
631 | return -ENOMEM; | 565 | return -ENOMEM; |
632 | } | 566 | } |
633 | 567 | ||
@@ -635,7 +569,8 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) | |||
635 | { | 569 | { |
636 | if (mem_cgroup_subsys.disabled) | 570 | if (mem_cgroup_subsys.disabled) |
637 | return 0; | 571 | return 0; |
638 | 572 | if (PageCompound(page)) | |
573 | return 0; | ||
639 | /* | 574 | /* |
640 | * If already mapped, we don't have to account. | 575 | * If already mapped, we don't have to account. |
641 | * If page cache, page->mapping has address_space. | 576 | * If page cache, page->mapping has address_space. |
@@ -656,7 +591,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
656 | { | 591 | { |
657 | if (mem_cgroup_subsys.disabled) | 592 | if (mem_cgroup_subsys.disabled) |
658 | return 0; | 593 | return 0; |
659 | 594 | if (PageCompound(page)) | |
595 | return 0; | ||
660 | /* | 596 | /* |
661 | * Corner case handling. This is called from add_to_page_cache() | 597 | * Corner case handling. This is called from add_to_page_cache() |
662 | * in usual. But some FS (shmem) precharges this page before calling it | 598 | * in usual. But some FS (shmem) precharges this page before calling it |
@@ -669,22 +605,27 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
669 | if (!(gfp_mask & __GFP_WAIT)) { | 605 | if (!(gfp_mask & __GFP_WAIT)) { |
670 | struct page_cgroup *pc; | 606 | struct page_cgroup *pc; |
671 | 607 | ||
672 | lock_page_cgroup(page); | 608 | |
673 | pc = page_get_page_cgroup(page); | 609 | pc = lookup_page_cgroup(page); |
674 | if (pc) { | 610 | if (!pc) |
675 | VM_BUG_ON(pc->page != page); | 611 | return 0; |
676 | VM_BUG_ON(!pc->mem_cgroup); | 612 | lock_page_cgroup(pc); |
677 | unlock_page_cgroup(page); | 613 | if (PageCgroupUsed(pc)) { |
614 | unlock_page_cgroup(pc); | ||
678 | return 0; | 615 | return 0; |
679 | } | 616 | } |
680 | unlock_page_cgroup(page); | 617 | unlock_page_cgroup(pc); |
681 | } | 618 | } |
682 | 619 | ||
683 | if (unlikely(!mm)) | 620 | if (unlikely(!mm)) |
684 | mm = &init_mm; | 621 | mm = &init_mm; |
685 | 622 | ||
686 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 623 | if (page_is_file_cache(page)) |
624 | return mem_cgroup_charge_common(page, mm, gfp_mask, | ||
687 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 625 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
626 | else | ||
627 | return mem_cgroup_charge_common(page, mm, gfp_mask, | ||
628 | MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL); | ||
688 | } | 629 | } |
689 | 630 | ||
690 | /* | 631 | /* |
@@ -704,44 +645,46 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
704 | /* | 645 | /* |
705 | * Check if our page_cgroup is valid | 646 | * Check if our page_cgroup is valid |
706 | */ | 647 | */ |
707 | lock_page_cgroup(page); | 648 | pc = lookup_page_cgroup(page); |
708 | pc = page_get_page_cgroup(page); | 649 | if (unlikely(!pc || !PageCgroupUsed(pc))) |
709 | if (unlikely(!pc)) | 650 | return; |
710 | goto unlock; | ||
711 | |||
712 | VM_BUG_ON(pc->page != page); | ||
713 | 651 | ||
714 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) | 652 | lock_page_cgroup(pc); |
715 | && ((pc->flags & PAGE_CGROUP_FLAG_CACHE) | 653 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page)) |
716 | || page_mapped(page))) | 654 | || !PageCgroupUsed(pc)) { |
717 | goto unlock; | 655 | /* This happens at race in zap_pte_range() and do_swap_page()*/ |
656 | unlock_page_cgroup(pc); | ||
657 | return; | ||
658 | } | ||
659 | ClearPageCgroupUsed(pc); | ||
660 | mem = pc->mem_cgroup; | ||
718 | 661 | ||
719 | mz = page_cgroup_zoneinfo(pc); | 662 | mz = page_cgroup_zoneinfo(pc); |
720 | spin_lock_irqsave(&mz->lru_lock, flags); | 663 | spin_lock_irqsave(&mz->lru_lock, flags); |
721 | __mem_cgroup_remove_list(mz, pc); | 664 | __mem_cgroup_remove_list(mz, pc); |
722 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 665 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
666 | unlock_page_cgroup(pc); | ||
723 | 667 | ||
724 | page_assign_page_cgroup(page, NULL); | ||
725 | unlock_page_cgroup(page); | ||
726 | |||
727 | mem = pc->mem_cgroup; | ||
728 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 668 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
729 | css_put(&mem->css); | 669 | css_put(&mem->css); |
730 | 670 | ||
731 | kmem_cache_free(page_cgroup_cache, pc); | ||
732 | return; | 671 | return; |
733 | unlock: | ||
734 | unlock_page_cgroup(page); | ||
735 | } | 672 | } |
736 | 673 | ||
737 | void mem_cgroup_uncharge_page(struct page *page) | 674 | void mem_cgroup_uncharge_page(struct page *page) |
738 | { | 675 | { |
676 | /* early check. */ | ||
677 | if (page_mapped(page)) | ||
678 | return; | ||
679 | if (page->mapping && !PageAnon(page)) | ||
680 | return; | ||
739 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); | 681 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); |
740 | } | 682 | } |
741 | 683 | ||
742 | void mem_cgroup_uncharge_cache_page(struct page *page) | 684 | void mem_cgroup_uncharge_cache_page(struct page *page) |
743 | { | 685 | { |
744 | VM_BUG_ON(page_mapped(page)); | 686 | VM_BUG_ON(page_mapped(page)); |
687 | VM_BUG_ON(page->mapping); | ||
745 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); | 688 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); |
746 | } | 689 | } |
747 | 690 | ||
@@ -758,15 +701,19 @@ int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) | |||
758 | if (mem_cgroup_subsys.disabled) | 701 | if (mem_cgroup_subsys.disabled) |
759 | return 0; | 702 | return 0; |
760 | 703 | ||
761 | lock_page_cgroup(page); | 704 | pc = lookup_page_cgroup(page); |
762 | pc = page_get_page_cgroup(page); | 705 | lock_page_cgroup(pc); |
763 | if (pc) { | 706 | if (PageCgroupUsed(pc)) { |
764 | mem = pc->mem_cgroup; | 707 | mem = pc->mem_cgroup; |
765 | css_get(&mem->css); | 708 | css_get(&mem->css); |
766 | if (pc->flags & PAGE_CGROUP_FLAG_CACHE) | 709 | if (PageCgroupCache(pc)) { |
767 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | 710 | if (page_is_file_cache(page)) |
711 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | ||
712 | else | ||
713 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | ||
714 | } | ||
768 | } | 715 | } |
769 | unlock_page_cgroup(page); | 716 | unlock_page_cgroup(pc); |
770 | if (mem) { | 717 | if (mem) { |
771 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, | 718 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, |
772 | ctype, mem); | 719 | ctype, mem); |
@@ -791,7 +738,7 @@ void mem_cgroup_end_migration(struct page *newpage) | |||
791 | */ | 738 | */ |
792 | if (!newpage->mapping) | 739 | if (!newpage->mapping) |
793 | __mem_cgroup_uncharge_common(newpage, | 740 | __mem_cgroup_uncharge_common(newpage, |
794 | MEM_CGROUP_CHARGE_TYPE_FORCE); | 741 | MEM_CGROUP_CHARGE_TYPE_FORCE); |
795 | else if (PageAnon(newpage)) | 742 | else if (PageAnon(newpage)) |
796 | mem_cgroup_uncharge_page(newpage); | 743 | mem_cgroup_uncharge_page(newpage); |
797 | } | 744 | } |
@@ -863,7 +810,7 @@ int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) | |||
863 | #define FORCE_UNCHARGE_BATCH (128) | 810 | #define FORCE_UNCHARGE_BATCH (128) |
864 | static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 811 | static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
865 | struct mem_cgroup_per_zone *mz, | 812 | struct mem_cgroup_per_zone *mz, |
866 | int active) | 813 | enum lru_list lru) |
867 | { | 814 | { |
868 | struct page_cgroup *pc; | 815 | struct page_cgroup *pc; |
869 | struct page *page; | 816 | struct page *page; |
@@ -871,15 +818,14 @@ static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | |||
871 | unsigned long flags; | 818 | unsigned long flags; |
872 | struct list_head *list; | 819 | struct list_head *list; |
873 | 820 | ||
874 | if (active) | 821 | list = &mz->lists[lru]; |
875 | list = &mz->active_list; | ||
876 | else | ||
877 | list = &mz->inactive_list; | ||
878 | 822 | ||
879 | spin_lock_irqsave(&mz->lru_lock, flags); | 823 | spin_lock_irqsave(&mz->lru_lock, flags); |
880 | while (!list_empty(list)) { | 824 | while (!list_empty(list)) { |
881 | pc = list_entry(list->prev, struct page_cgroup, lru); | 825 | pc = list_entry(list->prev, struct page_cgroup, lru); |
882 | page = pc->page; | 826 | page = pc->page; |
827 | if (!PageCgroupUsed(pc)) | ||
828 | break; | ||
883 | get_page(page); | 829 | get_page(page); |
884 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 830 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
885 | /* | 831 | /* |
@@ -894,8 +840,10 @@ static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, | |||
894 | count = FORCE_UNCHARGE_BATCH; | 840 | count = FORCE_UNCHARGE_BATCH; |
895 | cond_resched(); | 841 | cond_resched(); |
896 | } | 842 | } |
897 | } else | 843 | } else { |
898 | cond_resched(); | 844 | spin_lock_irqsave(&mz->lru_lock, flags); |
845 | break; | ||
846 | } | ||
899 | spin_lock_irqsave(&mz->lru_lock, flags); | 847 | spin_lock_irqsave(&mz->lru_lock, flags); |
900 | } | 848 | } |
901 | spin_unlock_irqrestore(&mz->lru_lock, flags); | 849 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
@@ -919,15 +867,17 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem) | |||
919 | while (mem->res.usage > 0) { | 867 | while (mem->res.usage > 0) { |
920 | if (atomic_read(&mem->css.cgroup->count) > 0) | 868 | if (atomic_read(&mem->css.cgroup->count) > 0) |
921 | goto out; | 869 | goto out; |
870 | /* This is for making all *used* pages to be on LRU. */ | ||
871 | lru_add_drain_all(); | ||
922 | for_each_node_state(node, N_POSSIBLE) | 872 | for_each_node_state(node, N_POSSIBLE) |
923 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 873 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
924 | struct mem_cgroup_per_zone *mz; | 874 | struct mem_cgroup_per_zone *mz; |
875 | enum lru_list l; | ||
925 | mz = mem_cgroup_zoneinfo(mem, node, zid); | 876 | mz = mem_cgroup_zoneinfo(mem, node, zid); |
926 | /* drop all page_cgroup in active_list */ | 877 | for_each_lru(l) |
927 | mem_cgroup_force_empty_list(mem, mz, 1); | 878 | mem_cgroup_force_empty_list(mem, mz, l); |
928 | /* drop all page_cgroup in inactive_list */ | ||
929 | mem_cgroup_force_empty_list(mem, mz, 0); | ||
930 | } | 879 | } |
880 | cond_resched(); | ||
931 | } | 881 | } |
932 | ret = 0; | 882 | ret = 0; |
933 | out: | 883 | out: |
@@ -1012,14 +962,27 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | |||
1012 | } | 962 | } |
1013 | /* showing # of active pages */ | 963 | /* showing # of active pages */ |
1014 | { | 964 | { |
1015 | unsigned long active, inactive; | 965 | unsigned long active_anon, inactive_anon; |
1016 | 966 | unsigned long active_file, inactive_file; | |
1017 | inactive = mem_cgroup_get_all_zonestat(mem_cont, | 967 | unsigned long unevictable; |
1018 | MEM_CGROUP_ZSTAT_INACTIVE); | 968 | |
1019 | active = mem_cgroup_get_all_zonestat(mem_cont, | 969 | inactive_anon = mem_cgroup_get_all_zonestat(mem_cont, |
1020 | MEM_CGROUP_ZSTAT_ACTIVE); | 970 | LRU_INACTIVE_ANON); |
1021 | cb->fill(cb, "active", (active) * PAGE_SIZE); | 971 | active_anon = mem_cgroup_get_all_zonestat(mem_cont, |
1022 | cb->fill(cb, "inactive", (inactive) * PAGE_SIZE); | 972 | LRU_ACTIVE_ANON); |
973 | inactive_file = mem_cgroup_get_all_zonestat(mem_cont, | ||
974 | LRU_INACTIVE_FILE); | ||
975 | active_file = mem_cgroup_get_all_zonestat(mem_cont, | ||
976 | LRU_ACTIVE_FILE); | ||
977 | unevictable = mem_cgroup_get_all_zonestat(mem_cont, | ||
978 | LRU_UNEVICTABLE); | ||
979 | |||
980 | cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE); | ||
981 | cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE); | ||
982 | cb->fill(cb, "active_file", (active_file) * PAGE_SIZE); | ||
983 | cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE); | ||
984 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); | ||
985 | |||
1023 | } | 986 | } |
1024 | return 0; | 987 | return 0; |
1025 | } | 988 | } |
@@ -1062,6 +1025,7 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
1062 | { | 1025 | { |
1063 | struct mem_cgroup_per_node *pn; | 1026 | struct mem_cgroup_per_node *pn; |
1064 | struct mem_cgroup_per_zone *mz; | 1027 | struct mem_cgroup_per_zone *mz; |
1028 | enum lru_list l; | ||
1065 | int zone, tmp = node; | 1029 | int zone, tmp = node; |
1066 | /* | 1030 | /* |
1067 | * This routine is called against possible nodes. | 1031 | * This routine is called against possible nodes. |
@@ -1082,9 +1046,9 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | |||
1082 | 1046 | ||
1083 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 1047 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
1084 | mz = &pn->zoneinfo[zone]; | 1048 | mz = &pn->zoneinfo[zone]; |
1085 | INIT_LIST_HEAD(&mz->active_list); | ||
1086 | INIT_LIST_HEAD(&mz->inactive_list); | ||
1087 | spin_lock_init(&mz->lru_lock); | 1049 | spin_lock_init(&mz->lru_lock); |
1050 | for_each_lru(l) | ||
1051 | INIT_LIST_HEAD(&mz->lists[l]); | ||
1088 | } | 1052 | } |
1089 | return 0; | 1053 | return 0; |
1090 | } | 1054 | } |
@@ -1124,8 +1088,8 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | |||
1124 | int node; | 1088 | int node; |
1125 | 1089 | ||
1126 | if (unlikely((cont->parent) == NULL)) { | 1090 | if (unlikely((cont->parent) == NULL)) { |
1091 | page_cgroup_init(); | ||
1127 | mem = &init_mem_cgroup; | 1092 | mem = &init_mem_cgroup; |
1128 | page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC); | ||
1129 | } else { | 1093 | } else { |
1130 | mem = mem_cgroup_alloc(); | 1094 | mem = mem_cgroup_alloc(); |
1131 | if (!mem) | 1095 | if (!mem) |
diff --git a/mm/memory.c b/mm/memory.c index 1002f473f497..3a6c4a658325 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -64,6 +64,8 @@ | |||
64 | 64 | ||
65 | #include "internal.h" | 65 | #include "internal.h" |
66 | 66 | ||
67 | #include "internal.h" | ||
68 | |||
67 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 69 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
68 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 70 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
69 | unsigned long max_mapnr; | 71 | unsigned long max_mapnr; |
@@ -1129,12 +1131,17 @@ static inline int use_zero_page(struct vm_area_struct *vma) | |||
1129 | return !vma->vm_ops || !vma->vm_ops->fault; | 1131 | return !vma->vm_ops || !vma->vm_ops->fault; |
1130 | } | 1132 | } |
1131 | 1133 | ||
1132 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 1134 | |
1133 | unsigned long start, int len, int write, int force, | 1135 | |
1136 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | ||
1137 | unsigned long start, int len, int flags, | ||
1134 | struct page **pages, struct vm_area_struct **vmas) | 1138 | struct page **pages, struct vm_area_struct **vmas) |
1135 | { | 1139 | { |
1136 | int i; | 1140 | int i; |
1137 | unsigned int vm_flags; | 1141 | unsigned int vm_flags = 0; |
1142 | int write = !!(flags & GUP_FLAGS_WRITE); | ||
1143 | int force = !!(flags & GUP_FLAGS_FORCE); | ||
1144 | int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); | ||
1138 | 1145 | ||
1139 | if (len <= 0) | 1146 | if (len <= 0) |
1140 | return 0; | 1147 | return 0; |
@@ -1158,7 +1165,9 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1158 | pud_t *pud; | 1165 | pud_t *pud; |
1159 | pmd_t *pmd; | 1166 | pmd_t *pmd; |
1160 | pte_t *pte; | 1167 | pte_t *pte; |
1161 | if (write) /* user gate pages are read-only */ | 1168 | |
1169 | /* user gate pages are read-only */ | ||
1170 | if (!ignore && write) | ||
1162 | return i ? : -EFAULT; | 1171 | return i ? : -EFAULT; |
1163 | if (pg > TASK_SIZE) | 1172 | if (pg > TASK_SIZE) |
1164 | pgd = pgd_offset_k(pg); | 1173 | pgd = pgd_offset_k(pg); |
@@ -1190,8 +1199,9 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1190 | continue; | 1199 | continue; |
1191 | } | 1200 | } |
1192 | 1201 | ||
1193 | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 1202 | if (!vma || |
1194 | || !(vm_flags & vma->vm_flags)) | 1203 | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || |
1204 | (!ignore && !(vm_flags & vma->vm_flags))) | ||
1195 | return i ? : -EFAULT; | 1205 | return i ? : -EFAULT; |
1196 | 1206 | ||
1197 | if (is_vm_hugetlb_page(vma)) { | 1207 | if (is_vm_hugetlb_page(vma)) { |
@@ -1266,6 +1276,23 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1266 | } while (len); | 1276 | } while (len); |
1267 | return i; | 1277 | return i; |
1268 | } | 1278 | } |
1279 | |||
1280 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | ||
1281 | unsigned long start, int len, int write, int force, | ||
1282 | struct page **pages, struct vm_area_struct **vmas) | ||
1283 | { | ||
1284 | int flags = 0; | ||
1285 | |||
1286 | if (write) | ||
1287 | flags |= GUP_FLAGS_WRITE; | ||
1288 | if (force) | ||
1289 | flags |= GUP_FLAGS_FORCE; | ||
1290 | |||
1291 | return __get_user_pages(tsk, mm, | ||
1292 | start, len, flags, | ||
1293 | pages, vmas); | ||
1294 | } | ||
1295 | |||
1269 | EXPORT_SYMBOL(get_user_pages); | 1296 | EXPORT_SYMBOL(get_user_pages); |
1270 | 1297 | ||
1271 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, | 1298 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
@@ -1296,18 +1323,14 @@ static int insert_page(struct vm_area_struct *vma, unsigned long addr, | |||
1296 | pte_t *pte; | 1323 | pte_t *pte; |
1297 | spinlock_t *ptl; | 1324 | spinlock_t *ptl; |
1298 | 1325 | ||
1299 | retval = mem_cgroup_charge(page, mm, GFP_KERNEL); | ||
1300 | if (retval) | ||
1301 | goto out; | ||
1302 | |||
1303 | retval = -EINVAL; | 1326 | retval = -EINVAL; |
1304 | if (PageAnon(page)) | 1327 | if (PageAnon(page)) |
1305 | goto out_uncharge; | 1328 | goto out; |
1306 | retval = -ENOMEM; | 1329 | retval = -ENOMEM; |
1307 | flush_dcache_page(page); | 1330 | flush_dcache_page(page); |
1308 | pte = get_locked_pte(mm, addr, &ptl); | 1331 | pte = get_locked_pte(mm, addr, &ptl); |
1309 | if (!pte) | 1332 | if (!pte) |
1310 | goto out_uncharge; | 1333 | goto out; |
1311 | retval = -EBUSY; | 1334 | retval = -EBUSY; |
1312 | if (!pte_none(*pte)) | 1335 | if (!pte_none(*pte)) |
1313 | goto out_unlock; | 1336 | goto out_unlock; |
@@ -1323,8 +1346,6 @@ static int insert_page(struct vm_area_struct *vma, unsigned long addr, | |||
1323 | return retval; | 1346 | return retval; |
1324 | out_unlock: | 1347 | out_unlock: |
1325 | pte_unmap_unlock(pte, ptl); | 1348 | pte_unmap_unlock(pte, ptl); |
1326 | out_uncharge: | ||
1327 | mem_cgroup_uncharge_page(page); | ||
1328 | out: | 1349 | out: |
1329 | return retval; | 1350 | return retval; |
1330 | } | 1351 | } |
@@ -1858,6 +1879,15 @@ gotten: | |||
1858 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | 1879 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); |
1859 | if (!new_page) | 1880 | if (!new_page) |
1860 | goto oom; | 1881 | goto oom; |
1882 | /* | ||
1883 | * Don't let another task, with possibly unlocked vma, | ||
1884 | * keep the mlocked page. | ||
1885 | */ | ||
1886 | if (vma->vm_flags & VM_LOCKED) { | ||
1887 | lock_page(old_page); /* for LRU manipulation */ | ||
1888 | clear_page_mlock(old_page); | ||
1889 | unlock_page(old_page); | ||
1890 | } | ||
1861 | cow_user_page(new_page, old_page, address, vma); | 1891 | cow_user_page(new_page, old_page, address, vma); |
1862 | __SetPageUptodate(new_page); | 1892 | __SetPageUptodate(new_page); |
1863 | 1893 | ||
@@ -1886,11 +1916,13 @@ gotten: | |||
1886 | * thread doing COW. | 1916 | * thread doing COW. |
1887 | */ | 1917 | */ |
1888 | ptep_clear_flush_notify(vma, address, page_table); | 1918 | ptep_clear_flush_notify(vma, address, page_table); |
1889 | set_pte_at(mm, address, page_table, entry); | 1919 | SetPageSwapBacked(new_page); |
1890 | update_mmu_cache(vma, address, entry); | 1920 | lru_cache_add_active_or_unevictable(new_page, vma); |
1891 | lru_cache_add_active(new_page); | ||
1892 | page_add_new_anon_rmap(new_page, vma, address); | 1921 | page_add_new_anon_rmap(new_page, vma, address); |
1893 | 1922 | ||
1923 | //TODO: is this safe? do_anonymous_page() does it this way. | ||
1924 | set_pte_at(mm, address, page_table, entry); | ||
1925 | update_mmu_cache(vma, address, entry); | ||
1894 | if (old_page) { | 1926 | if (old_page) { |
1895 | /* | 1927 | /* |
1896 | * Only after switching the pte to the new page may | 1928 | * Only after switching the pte to the new page may |
@@ -2288,16 +2320,17 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2288 | count_vm_event(PGMAJFAULT); | 2320 | count_vm_event(PGMAJFAULT); |
2289 | } | 2321 | } |
2290 | 2322 | ||
2323 | mark_page_accessed(page); | ||
2324 | |||
2325 | lock_page(page); | ||
2326 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | ||
2327 | |||
2291 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { | 2328 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
2292 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | ||
2293 | ret = VM_FAULT_OOM; | 2329 | ret = VM_FAULT_OOM; |
2330 | unlock_page(page); | ||
2294 | goto out; | 2331 | goto out; |
2295 | } | 2332 | } |
2296 | 2333 | ||
2297 | mark_page_accessed(page); | ||
2298 | lock_page(page); | ||
2299 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | ||
2300 | |||
2301 | /* | 2334 | /* |
2302 | * Back out if somebody else already faulted in this pte. | 2335 | * Back out if somebody else already faulted in this pte. |
2303 | */ | 2336 | */ |
@@ -2324,7 +2357,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2324 | page_add_anon_rmap(page, vma, address); | 2357 | page_add_anon_rmap(page, vma, address); |
2325 | 2358 | ||
2326 | swap_free(entry); | 2359 | swap_free(entry); |
2327 | if (vm_swap_full()) | 2360 | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) |
2328 | remove_exclusive_swap_page(page); | 2361 | remove_exclusive_swap_page(page); |
2329 | unlock_page(page); | 2362 | unlock_page(page); |
2330 | 2363 | ||
@@ -2382,7 +2415,8 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2382 | if (!pte_none(*page_table)) | 2415 | if (!pte_none(*page_table)) |
2383 | goto release; | 2416 | goto release; |
2384 | inc_mm_counter(mm, anon_rss); | 2417 | inc_mm_counter(mm, anon_rss); |
2385 | lru_cache_add_active(page); | 2418 | SetPageSwapBacked(page); |
2419 | lru_cache_add_active_or_unevictable(page, vma); | ||
2386 | page_add_new_anon_rmap(page, vma, address); | 2420 | page_add_new_anon_rmap(page, vma, address); |
2387 | set_pte_at(mm, address, page_table, entry); | 2421 | set_pte_at(mm, address, page_table, entry); |
2388 | 2422 | ||
@@ -2423,6 +2457,7 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2423 | struct page *page; | 2457 | struct page *page; |
2424 | pte_t entry; | 2458 | pte_t entry; |
2425 | int anon = 0; | 2459 | int anon = 0; |
2460 | int charged = 0; | ||
2426 | struct page *dirty_page = NULL; | 2461 | struct page *dirty_page = NULL; |
2427 | struct vm_fault vmf; | 2462 | struct vm_fault vmf; |
2428 | int ret; | 2463 | int ret; |
@@ -2463,6 +2498,18 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2463 | ret = VM_FAULT_OOM; | 2498 | ret = VM_FAULT_OOM; |
2464 | goto out; | 2499 | goto out; |
2465 | } | 2500 | } |
2501 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { | ||
2502 | ret = VM_FAULT_OOM; | ||
2503 | page_cache_release(page); | ||
2504 | goto out; | ||
2505 | } | ||
2506 | charged = 1; | ||
2507 | /* | ||
2508 | * Don't let another task, with possibly unlocked vma, | ||
2509 | * keep the mlocked page. | ||
2510 | */ | ||
2511 | if (vma->vm_flags & VM_LOCKED) | ||
2512 | clear_page_mlock(vmf.page); | ||
2466 | copy_user_highpage(page, vmf.page, address, vma); | 2513 | copy_user_highpage(page, vmf.page, address, vma); |
2467 | __SetPageUptodate(page); | 2514 | __SetPageUptodate(page); |
2468 | } else { | 2515 | } else { |
@@ -2497,11 +2544,6 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2497 | 2544 | ||
2498 | } | 2545 | } |
2499 | 2546 | ||
2500 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { | ||
2501 | ret = VM_FAULT_OOM; | ||
2502 | goto out; | ||
2503 | } | ||
2504 | |||
2505 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | 2547 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2506 | 2548 | ||
2507 | /* | 2549 | /* |
@@ -2520,11 +2562,11 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2520 | entry = mk_pte(page, vma->vm_page_prot); | 2562 | entry = mk_pte(page, vma->vm_page_prot); |
2521 | if (flags & FAULT_FLAG_WRITE) | 2563 | if (flags & FAULT_FLAG_WRITE) |
2522 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 2564 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2523 | set_pte_at(mm, address, page_table, entry); | ||
2524 | if (anon) { | 2565 | if (anon) { |
2525 | inc_mm_counter(mm, anon_rss); | 2566 | inc_mm_counter(mm, anon_rss); |
2526 | lru_cache_add_active(page); | 2567 | SetPageSwapBacked(page); |
2527 | page_add_new_anon_rmap(page, vma, address); | 2568 | lru_cache_add_active_or_unevictable(page, vma); |
2569 | page_add_new_anon_rmap(page, vma, address); | ||
2528 | } else { | 2570 | } else { |
2529 | inc_mm_counter(mm, file_rss); | 2571 | inc_mm_counter(mm, file_rss); |
2530 | page_add_file_rmap(page); | 2572 | page_add_file_rmap(page); |
@@ -2533,11 +2575,14 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2533 | get_page(dirty_page); | 2575 | get_page(dirty_page); |
2534 | } | 2576 | } |
2535 | } | 2577 | } |
2578 | //TODO: is this safe? do_anonymous_page() does it this way. | ||
2579 | set_pte_at(mm, address, page_table, entry); | ||
2536 | 2580 | ||
2537 | /* no need to invalidate: a not-present page won't be cached */ | 2581 | /* no need to invalidate: a not-present page won't be cached */ |
2538 | update_mmu_cache(vma, address, entry); | 2582 | update_mmu_cache(vma, address, entry); |
2539 | } else { | 2583 | } else { |
2540 | mem_cgroup_uncharge_page(page); | 2584 | if (charged) |
2585 | mem_cgroup_uncharge_page(page); | ||
2541 | if (anon) | 2586 | if (anon) |
2542 | page_cache_release(page); | 2587 | page_cache_release(page); |
2543 | else | 2588 | else |
@@ -2772,19 +2817,9 @@ int make_pages_present(unsigned long addr, unsigned long end) | |||
2772 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; | 2817 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
2773 | ret = get_user_pages(current, current->mm, addr, | 2818 | ret = get_user_pages(current, current->mm, addr, |
2774 | len, write, 0, NULL, NULL); | 2819 | len, write, 0, NULL, NULL); |
2775 | if (ret < 0) { | 2820 | if (ret < 0) |
2776 | /* | ||
2777 | SUS require strange return value to mlock | ||
2778 | - invalid addr generate to ENOMEM. | ||
2779 | - out of memory should generate EAGAIN. | ||
2780 | */ | ||
2781 | if (ret == -EFAULT) | ||
2782 | ret = -ENOMEM; | ||
2783 | else if (ret == -ENOMEM) | ||
2784 | ret = -EAGAIN; | ||
2785 | return ret; | 2821 | return ret; |
2786 | } | 2822 | return ret == len ? 0 : -EFAULT; |
2787 | return ret == len ? 0 : -ENOMEM; | ||
2788 | } | 2823 | } |
2789 | 2824 | ||
2790 | #if !defined(__HAVE_ARCH_GATE_AREA) | 2825 | #if !defined(__HAVE_ARCH_GATE_AREA) |
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index 89fee2dcb039..6837a1014372 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c | |||
@@ -26,6 +26,7 @@ | |||
26 | #include <linux/delay.h> | 26 | #include <linux/delay.h> |
27 | #include <linux/migrate.h> | 27 | #include <linux/migrate.h> |
28 | #include <linux/page-isolation.h> | 28 | #include <linux/page-isolation.h> |
29 | #include <linux/pfn.h> | ||
29 | 30 | ||
30 | #include <asm/tlbflush.h> | 31 | #include <asm/tlbflush.h> |
31 | 32 | ||
@@ -323,11 +324,11 @@ int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, | |||
323 | BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); | 324 | BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); |
324 | BUG_ON(nr_pages % PAGES_PER_SECTION); | 325 | BUG_ON(nr_pages % PAGES_PER_SECTION); |
325 | 326 | ||
326 | release_mem_region(phys_start_pfn << PAGE_SHIFT, nr_pages * PAGE_SIZE); | ||
327 | |||
328 | sections_to_remove = nr_pages / PAGES_PER_SECTION; | 327 | sections_to_remove = nr_pages / PAGES_PER_SECTION; |
329 | for (i = 0; i < sections_to_remove; i++) { | 328 | for (i = 0; i < sections_to_remove; i++) { |
330 | unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; | 329 | unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; |
330 | release_mem_region(pfn << PAGE_SHIFT, | ||
331 | PAGES_PER_SECTION << PAGE_SHIFT); | ||
331 | ret = __remove_section(zone, __pfn_to_section(pfn)); | 332 | ret = __remove_section(zone, __pfn_to_section(pfn)); |
332 | if (ret) | 333 | if (ret) |
333 | break; | 334 | break; |
@@ -657,8 +658,9 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) | |||
657 | * We can skip free pages. And we can only deal with pages on | 658 | * We can skip free pages. And we can only deal with pages on |
658 | * LRU. | 659 | * LRU. |
659 | */ | 660 | */ |
660 | ret = isolate_lru_page(page, &source); | 661 | ret = isolate_lru_page(page); |
661 | if (!ret) { /* Success */ | 662 | if (!ret) { /* Success */ |
663 | list_add_tail(&page->lru, &source); | ||
662 | move_pages--; | 664 | move_pages--; |
663 | } else { | 665 | } else { |
664 | /* Becasue we don't have big zone->lock. we should | 666 | /* Becasue we don't have big zone->lock. we should |
@@ -849,10 +851,19 @@ failed_removal: | |||
849 | 851 | ||
850 | return ret; | 852 | return ret; |
851 | } | 853 | } |
854 | |||
855 | int remove_memory(u64 start, u64 size) | ||
856 | { | ||
857 | unsigned long start_pfn, end_pfn; | ||
858 | |||
859 | start_pfn = PFN_DOWN(start); | ||
860 | end_pfn = start_pfn + PFN_DOWN(size); | ||
861 | return offline_pages(start_pfn, end_pfn, 120 * HZ); | ||
862 | } | ||
852 | #else | 863 | #else |
853 | int remove_memory(u64 start, u64 size) | 864 | int remove_memory(u64 start, u64 size) |
854 | { | 865 | { |
855 | return -EINVAL; | 866 | return -EINVAL; |
856 | } | 867 | } |
857 | EXPORT_SYMBOL_GPL(remove_memory); | ||
858 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | 868 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
869 | EXPORT_SYMBOL_GPL(remove_memory); | ||
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 83369058ec13..36f42573a335 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -93,6 +93,8 @@ | |||
93 | #include <asm/tlbflush.h> | 93 | #include <asm/tlbflush.h> |
94 | #include <asm/uaccess.h> | 94 | #include <asm/uaccess.h> |
95 | 95 | ||
96 | #include "internal.h" | ||
97 | |||
96 | /* Internal flags */ | 98 | /* Internal flags */ |
97 | #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ | 99 | #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ |
98 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ | 100 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ |
@@ -762,8 +764,11 @@ static void migrate_page_add(struct page *page, struct list_head *pagelist, | |||
762 | /* | 764 | /* |
763 | * Avoid migrating a page that is shared with others. | 765 | * Avoid migrating a page that is shared with others. |
764 | */ | 766 | */ |
765 | if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) | 767 | if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { |
766 | isolate_lru_page(page, pagelist); | 768 | if (!isolate_lru_page(page)) { |
769 | list_add_tail(&page->lru, pagelist); | ||
770 | } | ||
771 | } | ||
767 | } | 772 | } |
768 | 773 | ||
769 | static struct page *new_node_page(struct page *page, unsigned long node, int **x) | 774 | static struct page *new_node_page(struct page *page, unsigned long node, int **x) |
@@ -2197,7 +2202,7 @@ static void gather_stats(struct page *page, void *private, int pte_dirty) | |||
2197 | if (PageSwapCache(page)) | 2202 | if (PageSwapCache(page)) |
2198 | md->swapcache++; | 2203 | md->swapcache++; |
2199 | 2204 | ||
2200 | if (PageActive(page)) | 2205 | if (PageActive(page) || PageUnevictable(page)) |
2201 | md->active++; | 2206 | md->active++; |
2202 | 2207 | ||
2203 | if (PageWriteback(page)) | 2208 | if (PageWriteback(page)) |
diff --git a/mm/migrate.c b/mm/migrate.c index 2a80136b23bb..6602941bfab0 100644 --- a/mm/migrate.c +++ b/mm/migrate.c | |||
@@ -37,36 +37,6 @@ | |||
37 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | 37 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
38 | 38 | ||
39 | /* | 39 | /* |
40 | * Isolate one page from the LRU lists. If successful put it onto | ||
41 | * the indicated list with elevated page count. | ||
42 | * | ||
43 | * Result: | ||
44 | * -EBUSY: page not on LRU list | ||
45 | * 0: page removed from LRU list and added to the specified list. | ||
46 | */ | ||
47 | int isolate_lru_page(struct page *page, struct list_head *pagelist) | ||
48 | { | ||
49 | int ret = -EBUSY; | ||
50 | |||
51 | if (PageLRU(page)) { | ||
52 | struct zone *zone = page_zone(page); | ||
53 | |||
54 | spin_lock_irq(&zone->lru_lock); | ||
55 | if (PageLRU(page) && get_page_unless_zero(page)) { | ||
56 | ret = 0; | ||
57 | ClearPageLRU(page); | ||
58 | if (PageActive(page)) | ||
59 | del_page_from_active_list(zone, page); | ||
60 | else | ||
61 | del_page_from_inactive_list(zone, page); | ||
62 | list_add_tail(&page->lru, pagelist); | ||
63 | } | ||
64 | spin_unlock_irq(&zone->lru_lock); | ||
65 | } | ||
66 | return ret; | ||
67 | } | ||
68 | |||
69 | /* | ||
70 | * migrate_prep() needs to be called before we start compiling a list of pages | 40 | * migrate_prep() needs to be called before we start compiling a list of pages |
71 | * to be migrated using isolate_lru_page(). | 41 | * to be migrated using isolate_lru_page(). |
72 | */ | 42 | */ |
@@ -83,23 +53,9 @@ int migrate_prep(void) | |||
83 | return 0; | 53 | return 0; |
84 | } | 54 | } |
85 | 55 | ||
86 | static inline void move_to_lru(struct page *page) | ||
87 | { | ||
88 | if (PageActive(page)) { | ||
89 | /* | ||
90 | * lru_cache_add_active checks that | ||
91 | * the PG_active bit is off. | ||
92 | */ | ||
93 | ClearPageActive(page); | ||
94 | lru_cache_add_active(page); | ||
95 | } else { | ||
96 | lru_cache_add(page); | ||
97 | } | ||
98 | put_page(page); | ||
99 | } | ||
100 | |||
101 | /* | 56 | /* |
102 | * Add isolated pages on the list back to the LRU. | 57 | * Add isolated pages on the list back to the LRU under page lock |
58 | * to avoid leaking evictable pages back onto unevictable list. | ||
103 | * | 59 | * |
104 | * returns the number of pages put back. | 60 | * returns the number of pages put back. |
105 | */ | 61 | */ |
@@ -111,7 +67,7 @@ int putback_lru_pages(struct list_head *l) | |||
111 | 67 | ||
112 | list_for_each_entry_safe(page, page2, l, lru) { | 68 | list_for_each_entry_safe(page, page2, l, lru) { |
113 | list_del(&page->lru); | 69 | list_del(&page->lru); |
114 | move_to_lru(page); | 70 | putback_lru_page(page); |
115 | count++; | 71 | count++; |
116 | } | 72 | } |
117 | return count; | 73 | return count; |
@@ -374,8 +330,6 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
374 | __inc_zone_page_state(newpage, NR_FILE_PAGES); | 330 | __inc_zone_page_state(newpage, NR_FILE_PAGES); |
375 | 331 | ||
376 | spin_unlock_irq(&mapping->tree_lock); | 332 | spin_unlock_irq(&mapping->tree_lock); |
377 | if (!PageSwapCache(newpage)) | ||
378 | mem_cgroup_uncharge_cache_page(page); | ||
379 | 333 | ||
380 | return 0; | 334 | return 0; |
381 | } | 335 | } |
@@ -385,6 +339,8 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
385 | */ | 339 | */ |
386 | static void migrate_page_copy(struct page *newpage, struct page *page) | 340 | static void migrate_page_copy(struct page *newpage, struct page *page) |
387 | { | 341 | { |
342 | int anon; | ||
343 | |||
388 | copy_highpage(newpage, page); | 344 | copy_highpage(newpage, page); |
389 | 345 | ||
390 | if (PageError(page)) | 346 | if (PageError(page)) |
@@ -393,8 +349,11 @@ static void migrate_page_copy(struct page *newpage, struct page *page) | |||
393 | SetPageReferenced(newpage); | 349 | SetPageReferenced(newpage); |
394 | if (PageUptodate(page)) | 350 | if (PageUptodate(page)) |
395 | SetPageUptodate(newpage); | 351 | SetPageUptodate(newpage); |
396 | if (PageActive(page)) | 352 | if (TestClearPageActive(page)) { |
353 | VM_BUG_ON(PageUnevictable(page)); | ||
397 | SetPageActive(newpage); | 354 | SetPageActive(newpage); |
355 | } else | ||
356 | unevictable_migrate_page(newpage, page); | ||
398 | if (PageChecked(page)) | 357 | if (PageChecked(page)) |
399 | SetPageChecked(newpage); | 358 | SetPageChecked(newpage); |
400 | if (PageMappedToDisk(page)) | 359 | if (PageMappedToDisk(page)) |
@@ -412,14 +371,20 @@ static void migrate_page_copy(struct page *newpage, struct page *page) | |||
412 | __set_page_dirty_nobuffers(newpage); | 371 | __set_page_dirty_nobuffers(newpage); |
413 | } | 372 | } |
414 | 373 | ||
374 | mlock_migrate_page(newpage, page); | ||
375 | |||
415 | #ifdef CONFIG_SWAP | 376 | #ifdef CONFIG_SWAP |
416 | ClearPageSwapCache(page); | 377 | ClearPageSwapCache(page); |
417 | #endif | 378 | #endif |
418 | ClearPageActive(page); | ||
419 | ClearPagePrivate(page); | 379 | ClearPagePrivate(page); |
420 | set_page_private(page, 0); | 380 | set_page_private(page, 0); |
381 | /* page->mapping contains a flag for PageAnon() */ | ||
382 | anon = PageAnon(page); | ||
421 | page->mapping = NULL; | 383 | page->mapping = NULL; |
422 | 384 | ||
385 | if (!anon) /* This page was removed from radix-tree. */ | ||
386 | mem_cgroup_uncharge_cache_page(page); | ||
387 | |||
423 | /* | 388 | /* |
424 | * If any waiters have accumulated on the new page then | 389 | * If any waiters have accumulated on the new page then |
425 | * wake them up. | 390 | * wake them up. |
@@ -594,6 +559,10 @@ static int fallback_migrate_page(struct address_space *mapping, | |||
594 | * | 559 | * |
595 | * The new page will have replaced the old page if this function | 560 | * The new page will have replaced the old page if this function |
596 | * is successful. | 561 | * is successful. |
562 | * | ||
563 | * Return value: | ||
564 | * < 0 - error code | ||
565 | * == 0 - success | ||
597 | */ | 566 | */ |
598 | static int move_to_new_page(struct page *newpage, struct page *page) | 567 | static int move_to_new_page(struct page *newpage, struct page *page) |
599 | { | 568 | { |
@@ -611,6 +580,8 @@ static int move_to_new_page(struct page *newpage, struct page *page) | |||
611 | /* Prepare mapping for the new page.*/ | 580 | /* Prepare mapping for the new page.*/ |
612 | newpage->index = page->index; | 581 | newpage->index = page->index; |
613 | newpage->mapping = page->mapping; | 582 | newpage->mapping = page->mapping; |
583 | if (PageSwapBacked(page)) | ||
584 | SetPageSwapBacked(newpage); | ||
614 | 585 | ||
615 | mapping = page_mapping(page); | 586 | mapping = page_mapping(page); |
616 | if (!mapping) | 587 | if (!mapping) |
@@ -654,9 +625,10 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
654 | if (!newpage) | 625 | if (!newpage) |
655 | return -ENOMEM; | 626 | return -ENOMEM; |
656 | 627 | ||
657 | if (page_count(page) == 1) | 628 | if (page_count(page) == 1) { |
658 | /* page was freed from under us. So we are done. */ | 629 | /* page was freed from under us. So we are done. */ |
659 | goto move_newpage; | 630 | goto move_newpage; |
631 | } | ||
660 | 632 | ||
661 | charge = mem_cgroup_prepare_migration(page, newpage); | 633 | charge = mem_cgroup_prepare_migration(page, newpage); |
662 | if (charge == -ENOMEM) { | 634 | if (charge == -ENOMEM) { |
@@ -730,7 +702,6 @@ rcu_unlock: | |||
730 | rcu_read_unlock(); | 702 | rcu_read_unlock(); |
731 | 703 | ||
732 | unlock: | 704 | unlock: |
733 | |||
734 | unlock_page(page); | 705 | unlock_page(page); |
735 | 706 | ||
736 | if (rc != -EAGAIN) { | 707 | if (rc != -EAGAIN) { |
@@ -741,17 +712,19 @@ unlock: | |||
741 | * restored. | 712 | * restored. |
742 | */ | 713 | */ |
743 | list_del(&page->lru); | 714 | list_del(&page->lru); |
744 | move_to_lru(page); | 715 | putback_lru_page(page); |
745 | } | 716 | } |
746 | 717 | ||
747 | move_newpage: | 718 | move_newpage: |
748 | if (!charge) | 719 | if (!charge) |
749 | mem_cgroup_end_migration(newpage); | 720 | mem_cgroup_end_migration(newpage); |
721 | |||
750 | /* | 722 | /* |
751 | * Move the new page to the LRU. If migration was not successful | 723 | * Move the new page to the LRU. If migration was not successful |
752 | * then this will free the page. | 724 | * then this will free the page. |
753 | */ | 725 | */ |
754 | move_to_lru(newpage); | 726 | putback_lru_page(newpage); |
727 | |||
755 | if (result) { | 728 | if (result) { |
756 | if (rc) | 729 | if (rc) |
757 | *result = rc; | 730 | *result = rc; |
@@ -858,9 +831,11 @@ static struct page *new_page_node(struct page *p, unsigned long private, | |||
858 | * Move a set of pages as indicated in the pm array. The addr | 831 | * Move a set of pages as indicated in the pm array. The addr |
859 | * field must be set to the virtual address of the page to be moved | 832 | * field must be set to the virtual address of the page to be moved |
860 | * and the node number must contain a valid target node. | 833 | * and the node number must contain a valid target node. |
834 | * The pm array ends with node = MAX_NUMNODES. | ||
861 | */ | 835 | */ |
862 | static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, | 836 | static int do_move_page_to_node_array(struct mm_struct *mm, |
863 | int migrate_all) | 837 | struct page_to_node *pm, |
838 | int migrate_all) | ||
864 | { | 839 | { |
865 | int err; | 840 | int err; |
866 | struct page_to_node *pp; | 841 | struct page_to_node *pp; |
@@ -914,7 +889,9 @@ static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, | |||
914 | !migrate_all) | 889 | !migrate_all) |
915 | goto put_and_set; | 890 | goto put_and_set; |
916 | 891 | ||
917 | err = isolate_lru_page(page, &pagelist); | 892 | err = isolate_lru_page(page); |
893 | if (!err) | ||
894 | list_add_tail(&page->lru, &pagelist); | ||
918 | put_and_set: | 895 | put_and_set: |
919 | /* | 896 | /* |
920 | * Either remove the duplicate refcount from | 897 | * Either remove the duplicate refcount from |
@@ -926,36 +903,118 @@ set_status: | |||
926 | pp->status = err; | 903 | pp->status = err; |
927 | } | 904 | } |
928 | 905 | ||
906 | err = 0; | ||
929 | if (!list_empty(&pagelist)) | 907 | if (!list_empty(&pagelist)) |
930 | err = migrate_pages(&pagelist, new_page_node, | 908 | err = migrate_pages(&pagelist, new_page_node, |
931 | (unsigned long)pm); | 909 | (unsigned long)pm); |
932 | else | ||
933 | err = -ENOENT; | ||
934 | 910 | ||
935 | up_read(&mm->mmap_sem); | 911 | up_read(&mm->mmap_sem); |
936 | return err; | 912 | return err; |
937 | } | 913 | } |
938 | 914 | ||
939 | /* | 915 | /* |
940 | * Determine the nodes of a list of pages. The addr in the pm array | 916 | * Migrate an array of page address onto an array of nodes and fill |
941 | * must have been set to the virtual address of which we want to determine | 917 | * the corresponding array of status. |
942 | * the node number. | ||
943 | */ | 918 | */ |
944 | static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) | 919 | static int do_pages_move(struct mm_struct *mm, struct task_struct *task, |
920 | unsigned long nr_pages, | ||
921 | const void __user * __user *pages, | ||
922 | const int __user *nodes, | ||
923 | int __user *status, int flags) | ||
945 | { | 924 | { |
925 | struct page_to_node *pm = NULL; | ||
926 | nodemask_t task_nodes; | ||
927 | int err = 0; | ||
928 | int i; | ||
929 | |||
930 | task_nodes = cpuset_mems_allowed(task); | ||
931 | |||
932 | /* Limit nr_pages so that the multiplication may not overflow */ | ||
933 | if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { | ||
934 | err = -E2BIG; | ||
935 | goto out; | ||
936 | } | ||
937 | |||
938 | pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); | ||
939 | if (!pm) { | ||
940 | err = -ENOMEM; | ||
941 | goto out; | ||
942 | } | ||
943 | |||
944 | /* | ||
945 | * Get parameters from user space and initialize the pm | ||
946 | * array. Return various errors if the user did something wrong. | ||
947 | */ | ||
948 | for (i = 0; i < nr_pages; i++) { | ||
949 | const void __user *p; | ||
950 | |||
951 | err = -EFAULT; | ||
952 | if (get_user(p, pages + i)) | ||
953 | goto out_pm; | ||
954 | |||
955 | pm[i].addr = (unsigned long)p; | ||
956 | if (nodes) { | ||
957 | int node; | ||
958 | |||
959 | if (get_user(node, nodes + i)) | ||
960 | goto out_pm; | ||
961 | |||
962 | err = -ENODEV; | ||
963 | if (!node_state(node, N_HIGH_MEMORY)) | ||
964 | goto out_pm; | ||
965 | |||
966 | err = -EACCES; | ||
967 | if (!node_isset(node, task_nodes)) | ||
968 | goto out_pm; | ||
969 | |||
970 | pm[i].node = node; | ||
971 | } else | ||
972 | pm[i].node = 0; /* anything to not match MAX_NUMNODES */ | ||
973 | } | ||
974 | /* End marker */ | ||
975 | pm[nr_pages].node = MAX_NUMNODES; | ||
976 | |||
977 | err = do_move_page_to_node_array(mm, pm, flags & MPOL_MF_MOVE_ALL); | ||
978 | if (err >= 0) | ||
979 | /* Return status information */ | ||
980 | for (i = 0; i < nr_pages; i++) | ||
981 | if (put_user(pm[i].status, status + i)) | ||
982 | err = -EFAULT; | ||
983 | |||
984 | out_pm: | ||
985 | vfree(pm); | ||
986 | out: | ||
987 | return err; | ||
988 | } | ||
989 | |||
990 | /* | ||
991 | * Determine the nodes of an array of pages and store it in an array of status. | ||
992 | */ | ||
993 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | ||
994 | const void __user * __user *pages, | ||
995 | int __user *status) | ||
996 | { | ||
997 | unsigned long i; | ||
998 | int err; | ||
999 | |||
946 | down_read(&mm->mmap_sem); | 1000 | down_read(&mm->mmap_sem); |
947 | 1001 | ||
948 | for ( ; pm->node != MAX_NUMNODES; pm++) { | 1002 | for (i = 0; i < nr_pages; i++) { |
1003 | const void __user *p; | ||
1004 | unsigned long addr; | ||
949 | struct vm_area_struct *vma; | 1005 | struct vm_area_struct *vma; |
950 | struct page *page; | 1006 | struct page *page; |
951 | int err; | ||
952 | 1007 | ||
953 | err = -EFAULT; | 1008 | err = -EFAULT; |
954 | vma = find_vma(mm, pm->addr); | 1009 | if (get_user(p, pages+i)) |
1010 | goto out; | ||
1011 | addr = (unsigned long) p; | ||
1012 | |||
1013 | vma = find_vma(mm, addr); | ||
955 | if (!vma) | 1014 | if (!vma) |
956 | goto set_status; | 1015 | goto set_status; |
957 | 1016 | ||
958 | page = follow_page(vma, pm->addr, 0); | 1017 | page = follow_page(vma, addr, 0); |
959 | 1018 | ||
960 | err = PTR_ERR(page); | 1019 | err = PTR_ERR(page); |
961 | if (IS_ERR(page)) | 1020 | if (IS_ERR(page)) |
@@ -968,11 +1027,13 @@ static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) | |||
968 | 1027 | ||
969 | err = page_to_nid(page); | 1028 | err = page_to_nid(page); |
970 | set_status: | 1029 | set_status: |
971 | pm->status = err; | 1030 | put_user(err, status+i); |
972 | } | 1031 | } |
1032 | err = 0; | ||
973 | 1033 | ||
1034 | out: | ||
974 | up_read(&mm->mmap_sem); | 1035 | up_read(&mm->mmap_sem); |
975 | return 0; | 1036 | return err; |
976 | } | 1037 | } |
977 | 1038 | ||
978 | /* | 1039 | /* |
@@ -984,12 +1045,9 @@ asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, | |||
984 | const int __user *nodes, | 1045 | const int __user *nodes, |
985 | int __user *status, int flags) | 1046 | int __user *status, int flags) |
986 | { | 1047 | { |
987 | int err = 0; | ||
988 | int i; | ||
989 | struct task_struct *task; | 1048 | struct task_struct *task; |
990 | nodemask_t task_nodes; | ||
991 | struct mm_struct *mm; | 1049 | struct mm_struct *mm; |
992 | struct page_to_node *pm = NULL; | 1050 | int err; |
993 | 1051 | ||
994 | /* Check flags */ | 1052 | /* Check flags */ |
995 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | 1053 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) |
@@ -1021,75 +1079,21 @@ asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, | |||
1021 | (current->uid != task->suid) && (current->uid != task->uid) && | 1079 | (current->uid != task->suid) && (current->uid != task->uid) && |
1022 | !capable(CAP_SYS_NICE)) { | 1080 | !capable(CAP_SYS_NICE)) { |
1023 | err = -EPERM; | 1081 | err = -EPERM; |
1024 | goto out2; | 1082 | goto out; |
1025 | } | 1083 | } |
1026 | 1084 | ||
1027 | err = security_task_movememory(task); | 1085 | err = security_task_movememory(task); |
1028 | if (err) | 1086 | if (err) |
1029 | goto out2; | 1087 | goto out; |
1030 | |||
1031 | |||
1032 | task_nodes = cpuset_mems_allowed(task); | ||
1033 | |||
1034 | /* Limit nr_pages so that the multiplication may not overflow */ | ||
1035 | if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { | ||
1036 | err = -E2BIG; | ||
1037 | goto out2; | ||
1038 | } | ||
1039 | |||
1040 | pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); | ||
1041 | if (!pm) { | ||
1042 | err = -ENOMEM; | ||
1043 | goto out2; | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * Get parameters from user space and initialize the pm | ||
1048 | * array. Return various errors if the user did something wrong. | ||
1049 | */ | ||
1050 | for (i = 0; i < nr_pages; i++) { | ||
1051 | const void __user *p; | ||
1052 | |||
1053 | err = -EFAULT; | ||
1054 | if (get_user(p, pages + i)) | ||
1055 | goto out; | ||
1056 | |||
1057 | pm[i].addr = (unsigned long)p; | ||
1058 | if (nodes) { | ||
1059 | int node; | ||
1060 | |||
1061 | if (get_user(node, nodes + i)) | ||
1062 | goto out; | ||
1063 | |||
1064 | err = -ENODEV; | ||
1065 | if (!node_state(node, N_HIGH_MEMORY)) | ||
1066 | goto out; | ||
1067 | |||
1068 | err = -EACCES; | ||
1069 | if (!node_isset(node, task_nodes)) | ||
1070 | goto out; | ||
1071 | 1088 | ||
1072 | pm[i].node = node; | 1089 | if (nodes) { |
1073 | } else | 1090 | err = do_pages_move(mm, task, nr_pages, pages, nodes, status, |
1074 | pm[i].node = 0; /* anything to not match MAX_NUMNODES */ | 1091 | flags); |
1092 | } else { | ||
1093 | err = do_pages_stat(mm, nr_pages, pages, status); | ||
1075 | } | 1094 | } |
1076 | /* End marker */ | ||
1077 | pm[nr_pages].node = MAX_NUMNODES; | ||
1078 | |||
1079 | if (nodes) | ||
1080 | err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); | ||
1081 | else | ||
1082 | err = do_pages_stat(mm, pm); | ||
1083 | |||
1084 | if (err >= 0) | ||
1085 | /* Return status information */ | ||
1086 | for (i = 0; i < nr_pages; i++) | ||
1087 | if (put_user(pm[i].status, status + i)) | ||
1088 | err = -EFAULT; | ||
1089 | 1095 | ||
1090 | out: | 1096 | out: |
1091 | vfree(pm); | ||
1092 | out2: | ||
1093 | mmput(mm); | 1097 | mmput(mm); |
1094 | return err; | 1098 | return err; |
1095 | } | 1099 | } |
diff --git a/mm/mlock.c b/mm/mlock.c index 01fbe93eff5c..008ea70b7afa 100644 --- a/mm/mlock.c +++ b/mm/mlock.c | |||
@@ -8,10 +8,18 @@ | |||
8 | #include <linux/capability.h> | 8 | #include <linux/capability.h> |
9 | #include <linux/mman.h> | 9 | #include <linux/mman.h> |
10 | #include <linux/mm.h> | 10 | #include <linux/mm.h> |
11 | #include <linux/swap.h> | ||
12 | #include <linux/swapops.h> | ||
13 | #include <linux/pagemap.h> | ||
11 | #include <linux/mempolicy.h> | 14 | #include <linux/mempolicy.h> |
12 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
13 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
14 | #include <linux/module.h> | 17 | #include <linux/module.h> |
18 | #include <linux/rmap.h> | ||
19 | #include <linux/mmzone.h> | ||
20 | #include <linux/hugetlb.h> | ||
21 | |||
22 | #include "internal.h" | ||
15 | 23 | ||
16 | int can_do_mlock(void) | 24 | int can_do_mlock(void) |
17 | { | 25 | { |
@@ -23,17 +31,381 @@ int can_do_mlock(void) | |||
23 | } | 31 | } |
24 | EXPORT_SYMBOL(can_do_mlock); | 32 | EXPORT_SYMBOL(can_do_mlock); |
25 | 33 | ||
34 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
35 | /* | ||
36 | * Mlocked pages are marked with PageMlocked() flag for efficient testing | ||
37 | * in vmscan and, possibly, the fault path; and to support semi-accurate | ||
38 | * statistics. | ||
39 | * | ||
40 | * An mlocked page [PageMlocked(page)] is unevictable. As such, it will | ||
41 | * be placed on the LRU "unevictable" list, rather than the [in]active lists. | ||
42 | * The unevictable list is an LRU sibling list to the [in]active lists. | ||
43 | * PageUnevictable is set to indicate the unevictable state. | ||
44 | * | ||
45 | * When lazy mlocking via vmscan, it is important to ensure that the | ||
46 | * vma's VM_LOCKED status is not concurrently being modified, otherwise we | ||
47 | * may have mlocked a page that is being munlocked. So lazy mlock must take | ||
48 | * the mmap_sem for read, and verify that the vma really is locked | ||
49 | * (see mm/rmap.c). | ||
50 | */ | ||
51 | |||
52 | /* | ||
53 | * LRU accounting for clear_page_mlock() | ||
54 | */ | ||
55 | void __clear_page_mlock(struct page *page) | ||
56 | { | ||
57 | VM_BUG_ON(!PageLocked(page)); | ||
58 | |||
59 | if (!page->mapping) { /* truncated ? */ | ||
60 | return; | ||
61 | } | ||
62 | |||
63 | dec_zone_page_state(page, NR_MLOCK); | ||
64 | count_vm_event(UNEVICTABLE_PGCLEARED); | ||
65 | if (!isolate_lru_page(page)) { | ||
66 | putback_lru_page(page); | ||
67 | } else { | ||
68 | /* | ||
69 | * Page not on the LRU yet. Flush all pagevecs and retry. | ||
70 | */ | ||
71 | lru_add_drain_all(); | ||
72 | if (!isolate_lru_page(page)) | ||
73 | putback_lru_page(page); | ||
74 | else if (PageUnevictable(page)) | ||
75 | count_vm_event(UNEVICTABLE_PGSTRANDED); | ||
76 | |||
77 | } | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * Mark page as mlocked if not already. | ||
82 | * If page on LRU, isolate and putback to move to unevictable list. | ||
83 | */ | ||
84 | void mlock_vma_page(struct page *page) | ||
85 | { | ||
86 | BUG_ON(!PageLocked(page)); | ||
87 | |||
88 | if (!TestSetPageMlocked(page)) { | ||
89 | inc_zone_page_state(page, NR_MLOCK); | ||
90 | count_vm_event(UNEVICTABLE_PGMLOCKED); | ||
91 | if (!isolate_lru_page(page)) | ||
92 | putback_lru_page(page); | ||
93 | } | ||
94 | } | ||
95 | |||
96 | /* | ||
97 | * called from munlock()/munmap() path with page supposedly on the LRU. | ||
98 | * | ||
99 | * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked | ||
100 | * [in try_to_munlock()] and then attempt to isolate the page. We must | ||
101 | * isolate the page to keep others from messing with its unevictable | ||
102 | * and mlocked state while trying to munlock. However, we pre-clear the | ||
103 | * mlocked state anyway as we might lose the isolation race and we might | ||
104 | * not get another chance to clear PageMlocked. If we successfully | ||
105 | * isolate the page and try_to_munlock() detects other VM_LOCKED vmas | ||
106 | * mapping the page, it will restore the PageMlocked state, unless the page | ||
107 | * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(), | ||
108 | * perhaps redundantly. | ||
109 | * If we lose the isolation race, and the page is mapped by other VM_LOCKED | ||
110 | * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap() | ||
111 | * either of which will restore the PageMlocked state by calling | ||
112 | * mlock_vma_page() above, if it can grab the vma's mmap sem. | ||
113 | */ | ||
114 | static void munlock_vma_page(struct page *page) | ||
115 | { | ||
116 | BUG_ON(!PageLocked(page)); | ||
117 | |||
118 | if (TestClearPageMlocked(page)) { | ||
119 | dec_zone_page_state(page, NR_MLOCK); | ||
120 | if (!isolate_lru_page(page)) { | ||
121 | int ret = try_to_munlock(page); | ||
122 | /* | ||
123 | * did try_to_unlock() succeed or punt? | ||
124 | */ | ||
125 | if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN) | ||
126 | count_vm_event(UNEVICTABLE_PGMUNLOCKED); | ||
127 | |||
128 | putback_lru_page(page); | ||
129 | } else { | ||
130 | /* | ||
131 | * We lost the race. let try_to_unmap() deal | ||
132 | * with it. At least we get the page state and | ||
133 | * mlock stats right. However, page is still on | ||
134 | * the noreclaim list. We'll fix that up when | ||
135 | * the page is eventually freed or we scan the | ||
136 | * noreclaim list. | ||
137 | */ | ||
138 | if (PageUnevictable(page)) | ||
139 | count_vm_event(UNEVICTABLE_PGSTRANDED); | ||
140 | else | ||
141 | count_vm_event(UNEVICTABLE_PGMUNLOCKED); | ||
142 | } | ||
143 | } | ||
144 | } | ||
145 | |||
146 | /** | ||
147 | * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma. | ||
148 | * @vma: target vma | ||
149 | * @start: start address | ||
150 | * @end: end address | ||
151 | * @mlock: 0 indicate munlock, otherwise mlock. | ||
152 | * | ||
153 | * If @mlock == 0, unlock an mlocked range; | ||
154 | * else mlock the range of pages. This takes care of making the pages present , | ||
155 | * too. | ||
156 | * | ||
157 | * return 0 on success, negative error code on error. | ||
158 | * | ||
159 | * vma->vm_mm->mmap_sem must be held for at least read. | ||
160 | */ | ||
161 | static long __mlock_vma_pages_range(struct vm_area_struct *vma, | ||
162 | unsigned long start, unsigned long end, | ||
163 | int mlock) | ||
164 | { | ||
165 | struct mm_struct *mm = vma->vm_mm; | ||
166 | unsigned long addr = start; | ||
167 | struct page *pages[16]; /* 16 gives a reasonable batch */ | ||
168 | int nr_pages = (end - start) / PAGE_SIZE; | ||
169 | int ret; | ||
170 | int gup_flags = 0; | ||
171 | |||
172 | VM_BUG_ON(start & ~PAGE_MASK); | ||
173 | VM_BUG_ON(end & ~PAGE_MASK); | ||
174 | VM_BUG_ON(start < vma->vm_start); | ||
175 | VM_BUG_ON(end > vma->vm_end); | ||
176 | VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) && | ||
177 | (atomic_read(&mm->mm_users) != 0)); | ||
178 | |||
179 | /* | ||
180 | * mlock: don't page populate if page has PROT_NONE permission. | ||
181 | * munlock: the pages always do munlock althrough | ||
182 | * its has PROT_NONE permission. | ||
183 | */ | ||
184 | if (!mlock) | ||
185 | gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS; | ||
186 | |||
187 | if (vma->vm_flags & VM_WRITE) | ||
188 | gup_flags |= GUP_FLAGS_WRITE; | ||
189 | |||
190 | lru_add_drain_all(); /* push cached pages to LRU */ | ||
191 | |||
192 | while (nr_pages > 0) { | ||
193 | int i; | ||
194 | |||
195 | cond_resched(); | ||
196 | |||
197 | /* | ||
198 | * get_user_pages makes pages present if we are | ||
199 | * setting mlock. and this extra reference count will | ||
200 | * disable migration of this page. However, page may | ||
201 | * still be truncated out from under us. | ||
202 | */ | ||
203 | ret = __get_user_pages(current, mm, addr, | ||
204 | min_t(int, nr_pages, ARRAY_SIZE(pages)), | ||
205 | gup_flags, pages, NULL); | ||
206 | /* | ||
207 | * This can happen for, e.g., VM_NONLINEAR regions before | ||
208 | * a page has been allocated and mapped at a given offset, | ||
209 | * or for addresses that map beyond end of a file. | ||
210 | * We'll mlock the the pages if/when they get faulted in. | ||
211 | */ | ||
212 | if (ret < 0) | ||
213 | break; | ||
214 | if (ret == 0) { | ||
215 | /* | ||
216 | * We know the vma is there, so the only time | ||
217 | * we cannot get a single page should be an | ||
218 | * error (ret < 0) case. | ||
219 | */ | ||
220 | WARN_ON(1); | ||
221 | break; | ||
222 | } | ||
223 | |||
224 | lru_add_drain(); /* push cached pages to LRU */ | ||
225 | |||
226 | for (i = 0; i < ret; i++) { | ||
227 | struct page *page = pages[i]; | ||
228 | |||
229 | lock_page(page); | ||
230 | /* | ||
231 | * Because we lock page here and migration is blocked | ||
232 | * by the elevated reference, we need only check for | ||
233 | * page truncation (file-cache only). | ||
234 | */ | ||
235 | if (page->mapping) { | ||
236 | if (mlock) | ||
237 | mlock_vma_page(page); | ||
238 | else | ||
239 | munlock_vma_page(page); | ||
240 | } | ||
241 | unlock_page(page); | ||
242 | put_page(page); /* ref from get_user_pages() */ | ||
243 | |||
244 | /* | ||
245 | * here we assume that get_user_pages() has given us | ||
246 | * a list of virtually contiguous pages. | ||
247 | */ | ||
248 | addr += PAGE_SIZE; /* for next get_user_pages() */ | ||
249 | nr_pages--; | ||
250 | } | ||
251 | ret = 0; | ||
252 | } | ||
253 | |||
254 | lru_add_drain_all(); /* to update stats */ | ||
255 | |||
256 | return ret; /* count entire vma as locked_vm */ | ||
257 | } | ||
258 | |||
259 | /* | ||
260 | * convert get_user_pages() return value to posix mlock() error | ||
261 | */ | ||
262 | static int __mlock_posix_error_return(long retval) | ||
263 | { | ||
264 | if (retval == -EFAULT) | ||
265 | retval = -ENOMEM; | ||
266 | else if (retval == -ENOMEM) | ||
267 | retval = -EAGAIN; | ||
268 | return retval; | ||
269 | } | ||
270 | |||
271 | #else /* CONFIG_UNEVICTABLE_LRU */ | ||
272 | |||
273 | /* | ||
274 | * Just make pages present if VM_LOCKED. No-op if unlocking. | ||
275 | */ | ||
276 | static long __mlock_vma_pages_range(struct vm_area_struct *vma, | ||
277 | unsigned long start, unsigned long end, | ||
278 | int mlock) | ||
279 | { | ||
280 | if (mlock && (vma->vm_flags & VM_LOCKED)) | ||
281 | return make_pages_present(start, end); | ||
282 | return 0; | ||
283 | } | ||
284 | |||
285 | static inline int __mlock_posix_error_return(long retval) | ||
286 | { | ||
287 | return 0; | ||
288 | } | ||
289 | |||
290 | #endif /* CONFIG_UNEVICTABLE_LRU */ | ||
291 | |||
292 | /** | ||
293 | * mlock_vma_pages_range() - mlock pages in specified vma range. | ||
294 | * @vma - the vma containing the specfied address range | ||
295 | * @start - starting address in @vma to mlock | ||
296 | * @end - end address [+1] in @vma to mlock | ||
297 | * | ||
298 | * For mmap()/mremap()/expansion of mlocked vma. | ||
299 | * | ||
300 | * return 0 on success for "normal" vmas. | ||
301 | * | ||
302 | * return number of pages [> 0] to be removed from locked_vm on success | ||
303 | * of "special" vmas. | ||
304 | * | ||
305 | * return negative error if vma spanning @start-@range disappears while | ||
306 | * mmap semaphore is dropped. Unlikely? | ||
307 | */ | ||
308 | long mlock_vma_pages_range(struct vm_area_struct *vma, | ||
309 | unsigned long start, unsigned long end) | ||
310 | { | ||
311 | struct mm_struct *mm = vma->vm_mm; | ||
312 | int nr_pages = (end - start) / PAGE_SIZE; | ||
313 | BUG_ON(!(vma->vm_flags & VM_LOCKED)); | ||
314 | |||
315 | /* | ||
316 | * filter unlockable vmas | ||
317 | */ | ||
318 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | ||
319 | goto no_mlock; | ||
320 | |||
321 | if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || | ||
322 | is_vm_hugetlb_page(vma) || | ||
323 | vma == get_gate_vma(current))) { | ||
324 | long error; | ||
325 | downgrade_write(&mm->mmap_sem); | ||
326 | |||
327 | error = __mlock_vma_pages_range(vma, start, end, 1); | ||
328 | |||
329 | up_read(&mm->mmap_sem); | ||
330 | /* vma can change or disappear */ | ||
331 | down_write(&mm->mmap_sem); | ||
332 | vma = find_vma(mm, start); | ||
333 | /* non-NULL vma must contain @start, but need to check @end */ | ||
334 | if (!vma || end > vma->vm_end) | ||
335 | return -ENOMEM; | ||
336 | |||
337 | return 0; /* hide other errors from mmap(), et al */ | ||
338 | } | ||
339 | |||
340 | /* | ||
341 | * User mapped kernel pages or huge pages: | ||
342 | * make these pages present to populate the ptes, but | ||
343 | * fall thru' to reset VM_LOCKED--no need to unlock, and | ||
344 | * return nr_pages so these don't get counted against task's | ||
345 | * locked limit. huge pages are already counted against | ||
346 | * locked vm limit. | ||
347 | */ | ||
348 | make_pages_present(start, end); | ||
349 | |||
350 | no_mlock: | ||
351 | vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */ | ||
352 | return nr_pages; /* error or pages NOT mlocked */ | ||
353 | } | ||
354 | |||
355 | |||
356 | /* | ||
357 | * munlock_vma_pages_range() - munlock all pages in the vma range.' | ||
358 | * @vma - vma containing range to be munlock()ed. | ||
359 | * @start - start address in @vma of the range | ||
360 | * @end - end of range in @vma. | ||
361 | * | ||
362 | * For mremap(), munmap() and exit(). | ||
363 | * | ||
364 | * Called with @vma VM_LOCKED. | ||
365 | * | ||
366 | * Returns with VM_LOCKED cleared. Callers must be prepared to | ||
367 | * deal with this. | ||
368 | * | ||
369 | * We don't save and restore VM_LOCKED here because pages are | ||
370 | * still on lru. In unmap path, pages might be scanned by reclaim | ||
371 | * and re-mlocked by try_to_{munlock|unmap} before we unmap and | ||
372 | * free them. This will result in freeing mlocked pages. | ||
373 | */ | ||
374 | void munlock_vma_pages_range(struct vm_area_struct *vma, | ||
375 | unsigned long start, unsigned long end) | ||
376 | { | ||
377 | vma->vm_flags &= ~VM_LOCKED; | ||
378 | __mlock_vma_pages_range(vma, start, end, 0); | ||
379 | } | ||
380 | |||
381 | /* | ||
382 | * mlock_fixup - handle mlock[all]/munlock[all] requests. | ||
383 | * | ||
384 | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and | ||
385 | * munlock is a no-op. However, for some special vmas, we go ahead and | ||
386 | * populate the ptes via make_pages_present(). | ||
387 | * | ||
388 | * For vmas that pass the filters, merge/split as appropriate. | ||
389 | */ | ||
26 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, | 390 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, |
27 | unsigned long start, unsigned long end, unsigned int newflags) | 391 | unsigned long start, unsigned long end, unsigned int newflags) |
28 | { | 392 | { |
29 | struct mm_struct * mm = vma->vm_mm; | 393 | struct mm_struct *mm = vma->vm_mm; |
30 | pgoff_t pgoff; | 394 | pgoff_t pgoff; |
31 | int pages; | 395 | int nr_pages; |
32 | int ret = 0; | 396 | int ret = 0; |
33 | 397 | int lock = newflags & VM_LOCKED; | |
34 | if (newflags == vma->vm_flags) { | 398 | |
35 | *prev = vma; | 399 | if (newflags == vma->vm_flags || |
36 | goto out; | 400 | (vma->vm_flags & (VM_IO | VM_PFNMAP))) |
401 | goto out; /* don't set VM_LOCKED, don't count */ | ||
402 | |||
403 | if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || | ||
404 | is_vm_hugetlb_page(vma) || | ||
405 | vma == get_gate_vma(current)) { | ||
406 | if (lock) | ||
407 | make_pages_present(start, end); | ||
408 | goto out; /* don't set VM_LOCKED, don't count */ | ||
37 | } | 409 | } |
38 | 410 | ||
39 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); | 411 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
@@ -44,8 +416,6 @@ static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, | |||
44 | goto success; | 416 | goto success; |
45 | } | 417 | } |
46 | 418 | ||
47 | *prev = vma; | ||
48 | |||
49 | if (start != vma->vm_start) { | 419 | if (start != vma->vm_start) { |
50 | ret = split_vma(mm, vma, start, 1); | 420 | ret = split_vma(mm, vma, start, 1); |
51 | if (ret) | 421 | if (ret) |
@@ -60,24 +430,61 @@ static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, | |||
60 | 430 | ||
61 | success: | 431 | success: |
62 | /* | 432 | /* |
433 | * Keep track of amount of locked VM. | ||
434 | */ | ||
435 | nr_pages = (end - start) >> PAGE_SHIFT; | ||
436 | if (!lock) | ||
437 | nr_pages = -nr_pages; | ||
438 | mm->locked_vm += nr_pages; | ||
439 | |||
440 | /* | ||
63 | * vm_flags is protected by the mmap_sem held in write mode. | 441 | * vm_flags is protected by the mmap_sem held in write mode. |
64 | * It's okay if try_to_unmap_one unmaps a page just after we | 442 | * It's okay if try_to_unmap_one unmaps a page just after we |
65 | * set VM_LOCKED, make_pages_present below will bring it back. | 443 | * set VM_LOCKED, __mlock_vma_pages_range will bring it back. |
66 | */ | 444 | */ |
67 | vma->vm_flags = newflags; | 445 | vma->vm_flags = newflags; |
68 | 446 | ||
69 | /* | 447 | if (lock) { |
70 | * Keep track of amount of locked VM. | 448 | /* |
71 | */ | 449 | * mmap_sem is currently held for write. Downgrade the write |
72 | pages = (end - start) >> PAGE_SHIFT; | 450 | * lock to a read lock so that other faults, mmap scans, ... |
73 | if (newflags & VM_LOCKED) { | 451 | * while we fault in all pages. |
74 | pages = -pages; | 452 | */ |
75 | if (!(newflags & VM_IO)) | 453 | downgrade_write(&mm->mmap_sem); |
76 | ret = make_pages_present(start, end); | 454 | |
455 | ret = __mlock_vma_pages_range(vma, start, end, 1); | ||
456 | |||
457 | /* | ||
458 | * Need to reacquire mmap sem in write mode, as our callers | ||
459 | * expect this. We have no support for atomically upgrading | ||
460 | * a sem to write, so we need to check for ranges while sem | ||
461 | * is unlocked. | ||
462 | */ | ||
463 | up_read(&mm->mmap_sem); | ||
464 | /* vma can change or disappear */ | ||
465 | down_write(&mm->mmap_sem); | ||
466 | *prev = find_vma(mm, start); | ||
467 | /* non-NULL *prev must contain @start, but need to check @end */ | ||
468 | if (!(*prev) || end > (*prev)->vm_end) | ||
469 | ret = -ENOMEM; | ||
470 | else if (ret > 0) { | ||
471 | mm->locked_vm -= ret; | ||
472 | ret = 0; | ||
473 | } else | ||
474 | ret = __mlock_posix_error_return(ret); /* translate if needed */ | ||
475 | } else { | ||
476 | /* | ||
477 | * TODO: for unlocking, pages will already be resident, so | ||
478 | * we don't need to wait for allocations/reclaim/pagein, ... | ||
479 | * However, unlocking a very large region can still take a | ||
480 | * while. Should we downgrade the semaphore for both lock | ||
481 | * AND unlock ? | ||
482 | */ | ||
483 | __mlock_vma_pages_range(vma, start, end, 0); | ||
77 | } | 484 | } |
78 | 485 | ||
79 | mm->locked_vm -= pages; | ||
80 | out: | 486 | out: |
487 | *prev = vma; | ||
81 | return ret; | 488 | return ret; |
82 | } | 489 | } |
83 | 490 | ||
@@ -410,7 +410,7 @@ void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, | |||
410 | rb_insert_color(&vma->vm_rb, &mm->mm_rb); | 410 | rb_insert_color(&vma->vm_rb, &mm->mm_rb); |
411 | } | 411 | } |
412 | 412 | ||
413 | static inline void __vma_link_file(struct vm_area_struct *vma) | 413 | static void __vma_link_file(struct vm_area_struct *vma) |
414 | { | 414 | { |
415 | struct file * file; | 415 | struct file * file; |
416 | 416 | ||
@@ -662,8 +662,6 @@ again: remove_next = 1 + (end > next->vm_end); | |||
662 | * If the vma has a ->close operation then the driver probably needs to release | 662 | * If the vma has a ->close operation then the driver probably needs to release |
663 | * per-vma resources, so we don't attempt to merge those. | 663 | * per-vma resources, so we don't attempt to merge those. |
664 | */ | 664 | */ |
665 | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) | ||
666 | |||
667 | static inline int is_mergeable_vma(struct vm_area_struct *vma, | 665 | static inline int is_mergeable_vma(struct vm_area_struct *vma, |
668 | struct file *file, unsigned long vm_flags) | 666 | struct file *file, unsigned long vm_flags) |
669 | { | 667 | { |
@@ -972,6 +970,7 @@ unsigned long do_mmap_pgoff(struct file * file, unsigned long addr, | |||
972 | return -EPERM; | 970 | return -EPERM; |
973 | vm_flags |= VM_LOCKED; | 971 | vm_flags |= VM_LOCKED; |
974 | } | 972 | } |
973 | |||
975 | /* mlock MCL_FUTURE? */ | 974 | /* mlock MCL_FUTURE? */ |
976 | if (vm_flags & VM_LOCKED) { | 975 | if (vm_flags & VM_LOCKED) { |
977 | unsigned long locked, lock_limit; | 976 | unsigned long locked, lock_limit; |
@@ -1139,10 +1138,12 @@ munmap_back: | |||
1139 | * The VM_SHARED test is necessary because shmem_zero_setup | 1138 | * The VM_SHARED test is necessary because shmem_zero_setup |
1140 | * will create the file object for a shared anonymous map below. | 1139 | * will create the file object for a shared anonymous map below. |
1141 | */ | 1140 | */ |
1142 | if (!file && !(vm_flags & VM_SHARED) && | 1141 | if (!file && !(vm_flags & VM_SHARED)) { |
1143 | vma_merge(mm, prev, addr, addr + len, vm_flags, | 1142 | vma = vma_merge(mm, prev, addr, addr + len, vm_flags, |
1144 | NULL, NULL, pgoff, NULL)) | 1143 | NULL, NULL, pgoff, NULL); |
1145 | goto out; | 1144 | if (vma) |
1145 | goto out; | ||
1146 | } | ||
1146 | 1147 | ||
1147 | /* | 1148 | /* |
1148 | * Determine the object being mapped and call the appropriate | 1149 | * Determine the object being mapped and call the appropriate |
@@ -1224,10 +1225,14 @@ out: | |||
1224 | mm->total_vm += len >> PAGE_SHIFT; | 1225 | mm->total_vm += len >> PAGE_SHIFT; |
1225 | vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); | 1226 | vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); |
1226 | if (vm_flags & VM_LOCKED) { | 1227 | if (vm_flags & VM_LOCKED) { |
1227 | mm->locked_vm += len >> PAGE_SHIFT; | 1228 | /* |
1228 | make_pages_present(addr, addr + len); | 1229 | * makes pages present; downgrades, drops, reacquires mmap_sem |
1229 | } | 1230 | */ |
1230 | if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) | 1231 | long nr_pages = mlock_vma_pages_range(vma, addr, addr + len); |
1232 | if (nr_pages < 0) | ||
1233 | return nr_pages; /* vma gone! */ | ||
1234 | mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages; | ||
1235 | } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) | ||
1231 | make_pages_present(addr, addr + len); | 1236 | make_pages_present(addr, addr + len); |
1232 | return addr; | 1237 | return addr; |
1233 | 1238 | ||
@@ -1586,7 +1591,7 @@ static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, un | |||
1586 | * vma is the last one with address > vma->vm_end. Have to extend vma. | 1591 | * vma is the last one with address > vma->vm_end. Have to extend vma. |
1587 | */ | 1592 | */ |
1588 | #ifndef CONFIG_IA64 | 1593 | #ifndef CONFIG_IA64 |
1589 | static inline | 1594 | static |
1590 | #endif | 1595 | #endif |
1591 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) | 1596 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) |
1592 | { | 1597 | { |
@@ -1636,7 +1641,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) | |||
1636 | /* | 1641 | /* |
1637 | * vma is the first one with address < vma->vm_start. Have to extend vma. | 1642 | * vma is the first one with address < vma->vm_start. Have to extend vma. |
1638 | */ | 1643 | */ |
1639 | static inline int expand_downwards(struct vm_area_struct *vma, | 1644 | static int expand_downwards(struct vm_area_struct *vma, |
1640 | unsigned long address) | 1645 | unsigned long address) |
1641 | { | 1646 | { |
1642 | int error; | 1647 | int error; |
@@ -1698,10 +1703,12 @@ find_extend_vma(struct mm_struct *mm, unsigned long addr) | |||
1698 | vma = find_vma_prev(mm, addr, &prev); | 1703 | vma = find_vma_prev(mm, addr, &prev); |
1699 | if (vma && (vma->vm_start <= addr)) | 1704 | if (vma && (vma->vm_start <= addr)) |
1700 | return vma; | 1705 | return vma; |
1701 | if (!prev || expand_stack(prev, addr)) | 1706 | if (expand_stack(prev, addr)) |
1702 | return NULL; | 1707 | return NULL; |
1703 | if (prev->vm_flags & VM_LOCKED) | 1708 | if (prev->vm_flags & VM_LOCKED) { |
1704 | make_pages_present(addr, prev->vm_end); | 1709 | if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0) |
1710 | return NULL; /* vma gone! */ | ||
1711 | } | ||
1705 | return prev; | 1712 | return prev; |
1706 | } | 1713 | } |
1707 | #else | 1714 | #else |
@@ -1727,8 +1734,10 @@ find_extend_vma(struct mm_struct * mm, unsigned long addr) | |||
1727 | start = vma->vm_start; | 1734 | start = vma->vm_start; |
1728 | if (expand_stack(vma, addr)) | 1735 | if (expand_stack(vma, addr)) |
1729 | return NULL; | 1736 | return NULL; |
1730 | if (vma->vm_flags & VM_LOCKED) | 1737 | if (vma->vm_flags & VM_LOCKED) { |
1731 | make_pages_present(addr, start); | 1738 | if (mlock_vma_pages_range(vma, addr, start) < 0) |
1739 | return NULL; /* vma gone! */ | ||
1740 | } | ||
1732 | return vma; | 1741 | return vma; |
1733 | } | 1742 | } |
1734 | #endif | 1743 | #endif |
@@ -1747,8 +1756,6 @@ static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) | |||
1747 | long nrpages = vma_pages(vma); | 1756 | long nrpages = vma_pages(vma); |
1748 | 1757 | ||
1749 | mm->total_vm -= nrpages; | 1758 | mm->total_vm -= nrpages; |
1750 | if (vma->vm_flags & VM_LOCKED) | ||
1751 | mm->locked_vm -= nrpages; | ||
1752 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); | 1759 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); |
1753 | vma = remove_vma(vma); | 1760 | vma = remove_vma(vma); |
1754 | } while (vma); | 1761 | } while (vma); |
@@ -1914,6 +1921,20 @@ int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) | |||
1914 | vma = prev? prev->vm_next: mm->mmap; | 1921 | vma = prev? prev->vm_next: mm->mmap; |
1915 | 1922 | ||
1916 | /* | 1923 | /* |
1924 | * unlock any mlock()ed ranges before detaching vmas | ||
1925 | */ | ||
1926 | if (mm->locked_vm) { | ||
1927 | struct vm_area_struct *tmp = vma; | ||
1928 | while (tmp && tmp->vm_start < end) { | ||
1929 | if (tmp->vm_flags & VM_LOCKED) { | ||
1930 | mm->locked_vm -= vma_pages(tmp); | ||
1931 | munlock_vma_pages_all(tmp); | ||
1932 | } | ||
1933 | tmp = tmp->vm_next; | ||
1934 | } | ||
1935 | } | ||
1936 | |||
1937 | /* | ||
1917 | * Remove the vma's, and unmap the actual pages | 1938 | * Remove the vma's, and unmap the actual pages |
1918 | */ | 1939 | */ |
1919 | detach_vmas_to_be_unmapped(mm, vma, prev, end); | 1940 | detach_vmas_to_be_unmapped(mm, vma, prev, end); |
@@ -2025,8 +2046,9 @@ unsigned long do_brk(unsigned long addr, unsigned long len) | |||
2025 | return -ENOMEM; | 2046 | return -ENOMEM; |
2026 | 2047 | ||
2027 | /* Can we just expand an old private anonymous mapping? */ | 2048 | /* Can we just expand an old private anonymous mapping? */ |
2028 | if (vma_merge(mm, prev, addr, addr + len, flags, | 2049 | vma = vma_merge(mm, prev, addr, addr + len, flags, |
2029 | NULL, NULL, pgoff, NULL)) | 2050 | NULL, NULL, pgoff, NULL); |
2051 | if (vma) | ||
2030 | goto out; | 2052 | goto out; |
2031 | 2053 | ||
2032 | /* | 2054 | /* |
@@ -2048,8 +2070,8 @@ unsigned long do_brk(unsigned long addr, unsigned long len) | |||
2048 | out: | 2070 | out: |
2049 | mm->total_vm += len >> PAGE_SHIFT; | 2071 | mm->total_vm += len >> PAGE_SHIFT; |
2050 | if (flags & VM_LOCKED) { | 2072 | if (flags & VM_LOCKED) { |
2051 | mm->locked_vm += len >> PAGE_SHIFT; | 2073 | if (!mlock_vma_pages_range(vma, addr, addr + len)) |
2052 | make_pages_present(addr, addr + len); | 2074 | mm->locked_vm += (len >> PAGE_SHIFT); |
2053 | } | 2075 | } |
2054 | return addr; | 2076 | return addr; |
2055 | } | 2077 | } |
@@ -2060,7 +2082,7 @@ EXPORT_SYMBOL(do_brk); | |||
2060 | void exit_mmap(struct mm_struct *mm) | 2082 | void exit_mmap(struct mm_struct *mm) |
2061 | { | 2083 | { |
2062 | struct mmu_gather *tlb; | 2084 | struct mmu_gather *tlb; |
2063 | struct vm_area_struct *vma = mm->mmap; | 2085 | struct vm_area_struct *vma; |
2064 | unsigned long nr_accounted = 0; | 2086 | unsigned long nr_accounted = 0; |
2065 | unsigned long end; | 2087 | unsigned long end; |
2066 | 2088 | ||
@@ -2068,6 +2090,15 @@ void exit_mmap(struct mm_struct *mm) | |||
2068 | arch_exit_mmap(mm); | 2090 | arch_exit_mmap(mm); |
2069 | mmu_notifier_release(mm); | 2091 | mmu_notifier_release(mm); |
2070 | 2092 | ||
2093 | if (mm->locked_vm) { | ||
2094 | vma = mm->mmap; | ||
2095 | while (vma) { | ||
2096 | if (vma->vm_flags & VM_LOCKED) | ||
2097 | munlock_vma_pages_all(vma); | ||
2098 | vma = vma->vm_next; | ||
2099 | } | ||
2100 | } | ||
2101 | vma = mm->mmap; | ||
2071 | lru_add_drain(); | 2102 | lru_add_drain(); |
2072 | flush_cache_mm(mm); | 2103 | flush_cache_mm(mm); |
2073 | tlb = tlb_gather_mmu(mm, 1); | 2104 | tlb = tlb_gather_mmu(mm, 1); |
diff --git a/mm/mremap.c b/mm/mremap.c index 1a7743923c8c..58a2908f42f5 100644 --- a/mm/mremap.c +++ b/mm/mremap.c | |||
@@ -24,6 +24,8 @@ | |||
24 | #include <asm/cacheflush.h> | 24 | #include <asm/cacheflush.h> |
25 | #include <asm/tlbflush.h> | 25 | #include <asm/tlbflush.h> |
26 | 26 | ||
27 | #include "internal.h" | ||
28 | |||
27 | static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) | 29 | static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) |
28 | { | 30 | { |
29 | pgd_t *pgd; | 31 | pgd_t *pgd; |
@@ -238,8 +240,8 @@ static unsigned long move_vma(struct vm_area_struct *vma, | |||
238 | if (vm_flags & VM_LOCKED) { | 240 | if (vm_flags & VM_LOCKED) { |
239 | mm->locked_vm += new_len >> PAGE_SHIFT; | 241 | mm->locked_vm += new_len >> PAGE_SHIFT; |
240 | if (new_len > old_len) | 242 | if (new_len > old_len) |
241 | make_pages_present(new_addr + old_len, | 243 | mlock_vma_pages_range(new_vma, new_addr + old_len, |
242 | new_addr + new_len); | 244 | new_addr + new_len); |
243 | } | 245 | } |
244 | 246 | ||
245 | return new_addr; | 247 | return new_addr; |
@@ -379,7 +381,7 @@ unsigned long do_mremap(unsigned long addr, | |||
379 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages); | 381 | vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages); |
380 | if (vma->vm_flags & VM_LOCKED) { | 382 | if (vma->vm_flags & VM_LOCKED) { |
381 | mm->locked_vm += pages; | 383 | mm->locked_vm += pages; |
382 | make_pages_present(addr + old_len, | 384 | mlock_vma_pages_range(vma, addr + old_len, |
383 | addr + new_len); | 385 | addr + new_len); |
384 | } | 386 | } |
385 | ret = addr; | 387 | ret = addr; |
diff --git a/mm/nommu.c b/mm/nommu.c index ed75bc962fbe..2696b24f2bb3 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -34,6 +34,8 @@ | |||
34 | #include <asm/tlb.h> | 34 | #include <asm/tlb.h> |
35 | #include <asm/tlbflush.h> | 35 | #include <asm/tlbflush.h> |
36 | 36 | ||
37 | #include "internal.h" | ||
38 | |||
37 | void *high_memory; | 39 | void *high_memory; |
38 | struct page *mem_map; | 40 | struct page *mem_map; |
39 | unsigned long max_mapnr; | 41 | unsigned long max_mapnr; |
@@ -128,20 +130,16 @@ unsigned int kobjsize(const void *objp) | |||
128 | return PAGE_SIZE << compound_order(page); | 130 | return PAGE_SIZE << compound_order(page); |
129 | } | 131 | } |
130 | 132 | ||
131 | /* | 133 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
132 | * get a list of pages in an address range belonging to the specified process | 134 | unsigned long start, int len, int flags, |
133 | * and indicate the VMA that covers each page | 135 | struct page **pages, struct vm_area_struct **vmas) |
134 | * - this is potentially dodgy as we may end incrementing the page count of a | ||
135 | * slab page or a secondary page from a compound page | ||
136 | * - don't permit access to VMAs that don't support it, such as I/O mappings | ||
137 | */ | ||
138 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | ||
139 | unsigned long start, int len, int write, int force, | ||
140 | struct page **pages, struct vm_area_struct **vmas) | ||
141 | { | 136 | { |
142 | struct vm_area_struct *vma; | 137 | struct vm_area_struct *vma; |
143 | unsigned long vm_flags; | 138 | unsigned long vm_flags; |
144 | int i; | 139 | int i; |
140 | int write = !!(flags & GUP_FLAGS_WRITE); | ||
141 | int force = !!(flags & GUP_FLAGS_FORCE); | ||
142 | int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); | ||
145 | 143 | ||
146 | /* calculate required read or write permissions. | 144 | /* calculate required read or write permissions. |
147 | * - if 'force' is set, we only require the "MAY" flags. | 145 | * - if 'force' is set, we only require the "MAY" flags. |
@@ -156,7 +154,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
156 | 154 | ||
157 | /* protect what we can, including chardevs */ | 155 | /* protect what we can, including chardevs */ |
158 | if (vma->vm_flags & (VM_IO | VM_PFNMAP) || | 156 | if (vma->vm_flags & (VM_IO | VM_PFNMAP) || |
159 | !(vm_flags & vma->vm_flags)) | 157 | (!ignore && !(vm_flags & vma->vm_flags))) |
160 | goto finish_or_fault; | 158 | goto finish_or_fault; |
161 | 159 | ||
162 | if (pages) { | 160 | if (pages) { |
@@ -174,6 +172,30 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
174 | finish_or_fault: | 172 | finish_or_fault: |
175 | return i ? : -EFAULT; | 173 | return i ? : -EFAULT; |
176 | } | 174 | } |
175 | |||
176 | |||
177 | /* | ||
178 | * get a list of pages in an address range belonging to the specified process | ||
179 | * and indicate the VMA that covers each page | ||
180 | * - this is potentially dodgy as we may end incrementing the page count of a | ||
181 | * slab page or a secondary page from a compound page | ||
182 | * - don't permit access to VMAs that don't support it, such as I/O mappings | ||
183 | */ | ||
184 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | ||
185 | unsigned long start, int len, int write, int force, | ||
186 | struct page **pages, struct vm_area_struct **vmas) | ||
187 | { | ||
188 | int flags = 0; | ||
189 | |||
190 | if (write) | ||
191 | flags |= GUP_FLAGS_WRITE; | ||
192 | if (force) | ||
193 | flags |= GUP_FLAGS_FORCE; | ||
194 | |||
195 | return __get_user_pages(tsk, mm, | ||
196 | start, len, flags, | ||
197 | pages, vmas); | ||
198 | } | ||
177 | EXPORT_SYMBOL(get_user_pages); | 199 | EXPORT_SYMBOL(get_user_pages); |
178 | 200 | ||
179 | DEFINE_RWLOCK(vmlist_lock); | 201 | DEFINE_RWLOCK(vmlist_lock); |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 24de8b65fdbd..2970e35fd03f 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -7,7 +7,7 @@ | |||
7 | * Contains functions related to writing back dirty pages at the | 7 | * Contains functions related to writing back dirty pages at the |
8 | * address_space level. | 8 | * address_space level. |
9 | * | 9 | * |
10 | * 10Apr2002 akpm@zip.com.au | 10 | * 10Apr2002 Andrew Morton |
11 | * Initial version | 11 | * Initial version |
12 | */ | 12 | */ |
13 | 13 | ||
@@ -329,9 +329,7 @@ static unsigned long highmem_dirtyable_memory(unsigned long total) | |||
329 | struct zone *z = | 329 | struct zone *z = |
330 | &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; | 330 | &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; |
331 | 331 | ||
332 | x += zone_page_state(z, NR_FREE_PAGES) | 332 | x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z); |
333 | + zone_page_state(z, NR_INACTIVE) | ||
334 | + zone_page_state(z, NR_ACTIVE); | ||
335 | } | 333 | } |
336 | /* | 334 | /* |
337 | * Make sure that the number of highmem pages is never larger | 335 | * Make sure that the number of highmem pages is never larger |
@@ -355,9 +353,7 @@ unsigned long determine_dirtyable_memory(void) | |||
355 | { | 353 | { |
356 | unsigned long x; | 354 | unsigned long x; |
357 | 355 | ||
358 | x = global_page_state(NR_FREE_PAGES) | 356 | x = global_page_state(NR_FREE_PAGES) + global_lru_pages(); |
359 | + global_page_state(NR_INACTIVE) | ||
360 | + global_page_state(NR_ACTIVE); | ||
361 | 357 | ||
362 | if (!vm_highmem_is_dirtyable) | 358 | if (!vm_highmem_is_dirtyable) |
363 | x -= highmem_dirtyable_memory(x); | 359 | x -= highmem_dirtyable_memory(x); |
@@ -876,6 +872,7 @@ int write_cache_pages(struct address_space *mapping, | |||
876 | pgoff_t end; /* Inclusive */ | 872 | pgoff_t end; /* Inclusive */ |
877 | int scanned = 0; | 873 | int scanned = 0; |
878 | int range_whole = 0; | 874 | int range_whole = 0; |
875 | long nr_to_write = wbc->nr_to_write; | ||
879 | 876 | ||
880 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | 877 | if (wbc->nonblocking && bdi_write_congested(bdi)) { |
881 | wbc->encountered_congestion = 1; | 878 | wbc->encountered_congestion = 1; |
@@ -939,7 +936,7 @@ retry: | |||
939 | unlock_page(page); | 936 | unlock_page(page); |
940 | ret = 0; | 937 | ret = 0; |
941 | } | 938 | } |
942 | if (ret || (--(wbc->nr_to_write) <= 0)) | 939 | if (ret || (--nr_to_write <= 0)) |
943 | done = 1; | 940 | done = 1; |
944 | if (wbc->nonblocking && bdi_write_congested(bdi)) { | 941 | if (wbc->nonblocking && bdi_write_congested(bdi)) { |
945 | wbc->encountered_congestion = 1; | 942 | wbc->encountered_congestion = 1; |
@@ -958,11 +955,12 @@ retry: | |||
958 | index = 0; | 955 | index = 0; |
959 | goto retry; | 956 | goto retry; |
960 | } | 957 | } |
961 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 958 | if (!wbc->no_nrwrite_index_update) { |
962 | mapping->writeback_index = index; | 959 | if (wbc->range_cyclic || (range_whole && nr_to_write > 0)) |
960 | mapping->writeback_index = index; | ||
961 | wbc->nr_to_write = nr_to_write; | ||
962 | } | ||
963 | 963 | ||
964 | if (wbc->range_cont) | ||
965 | wbc->range_start = index << PAGE_CACHE_SHIFT; | ||
966 | return ret; | 964 | return ret; |
967 | } | 965 | } |
968 | EXPORT_SYMBOL(write_cache_pages); | 966 | EXPORT_SYMBOL(write_cache_pages); |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 27b8681139fd..d0a240fbb8bf 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -44,7 +44,7 @@ | |||
44 | #include <linux/backing-dev.h> | 44 | #include <linux/backing-dev.h> |
45 | #include <linux/fault-inject.h> | 45 | #include <linux/fault-inject.h> |
46 | #include <linux/page-isolation.h> | 46 | #include <linux/page-isolation.h> |
47 | #include <linux/memcontrol.h> | 47 | #include <linux/page_cgroup.h> |
48 | #include <linux/debugobjects.h> | 48 | #include <linux/debugobjects.h> |
49 | 49 | ||
50 | #include <asm/tlbflush.h> | 50 | #include <asm/tlbflush.h> |
@@ -223,17 +223,12 @@ static inline int bad_range(struct zone *zone, struct page *page) | |||
223 | 223 | ||
224 | static void bad_page(struct page *page) | 224 | static void bad_page(struct page *page) |
225 | { | 225 | { |
226 | void *pc = page_get_page_cgroup(page); | ||
227 | |||
228 | printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG | 226 | printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG |
229 | "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", | 227 | "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", |
230 | current->comm, page, (int)(2*sizeof(unsigned long)), | 228 | current->comm, page, (int)(2*sizeof(unsigned long)), |
231 | (unsigned long)page->flags, page->mapping, | 229 | (unsigned long)page->flags, page->mapping, |
232 | page_mapcount(page), page_count(page)); | 230 | page_mapcount(page), page_count(page)); |
233 | if (pc) { | 231 | |
234 | printk(KERN_EMERG "cgroup:%p\n", pc); | ||
235 | page_reset_bad_cgroup(page); | ||
236 | } | ||
237 | printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" | 232 | printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" |
238 | KERN_EMERG "Backtrace:\n"); | 233 | KERN_EMERG "Backtrace:\n"); |
239 | dump_stack(); | 234 | dump_stack(); |
@@ -454,14 +449,16 @@ static inline void __free_one_page(struct page *page, | |||
454 | 449 | ||
455 | static inline int free_pages_check(struct page *page) | 450 | static inline int free_pages_check(struct page *page) |
456 | { | 451 | { |
452 | free_page_mlock(page); | ||
457 | if (unlikely(page_mapcount(page) | | 453 | if (unlikely(page_mapcount(page) | |
458 | (page->mapping != NULL) | | 454 | (page->mapping != NULL) | |
459 | (page_get_page_cgroup(page) != NULL) | | ||
460 | (page_count(page) != 0) | | 455 | (page_count(page) != 0) | |
461 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) | 456 | (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) |
462 | bad_page(page); | 457 | bad_page(page); |
463 | if (PageDirty(page)) | 458 | if (PageDirty(page)) |
464 | __ClearPageDirty(page); | 459 | __ClearPageDirty(page); |
460 | if (PageSwapBacked(page)) | ||
461 | __ClearPageSwapBacked(page); | ||
465 | /* | 462 | /* |
466 | * For now, we report if PG_reserved was found set, but do not | 463 | * For now, we report if PG_reserved was found set, but do not |
467 | * clear it, and do not free the page. But we shall soon need | 464 | * clear it, and do not free the page. But we shall soon need |
@@ -600,7 +597,6 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | |||
600 | { | 597 | { |
601 | if (unlikely(page_mapcount(page) | | 598 | if (unlikely(page_mapcount(page) | |
602 | (page->mapping != NULL) | | 599 | (page->mapping != NULL) | |
603 | (page_get_page_cgroup(page) != NULL) | | ||
604 | (page_count(page) != 0) | | 600 | (page_count(page) != 0) | |
605 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) | 601 | (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) |
606 | bad_page(page); | 602 | bad_page(page); |
@@ -614,7 +610,11 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) | |||
614 | 610 | ||
615 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | | 611 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | |
616 | 1 << PG_referenced | 1 << PG_arch_1 | | 612 | 1 << PG_referenced | 1 << PG_arch_1 | |
617 | 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); | 613 | 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk |
614 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
615 | | 1 << PG_mlocked | ||
616 | #endif | ||
617 | ); | ||
618 | set_page_private(page, 0); | 618 | set_page_private(page, 0); |
619 | set_page_refcounted(page); | 619 | set_page_refcounted(page); |
620 | 620 | ||
@@ -1862,10 +1862,21 @@ void show_free_areas(void) | |||
1862 | } | 1862 | } |
1863 | } | 1863 | } |
1864 | 1864 | ||
1865 | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" | 1865 | printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" |
1866 | " inactive_file:%lu" | ||
1867 | //TODO: check/adjust line lengths | ||
1868 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
1869 | " unevictable:%lu" | ||
1870 | #endif | ||
1871 | " dirty:%lu writeback:%lu unstable:%lu\n" | ||
1866 | " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", | 1872 | " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", |
1867 | global_page_state(NR_ACTIVE), | 1873 | global_page_state(NR_ACTIVE_ANON), |
1868 | global_page_state(NR_INACTIVE), | 1874 | global_page_state(NR_ACTIVE_FILE), |
1875 | global_page_state(NR_INACTIVE_ANON), | ||
1876 | global_page_state(NR_INACTIVE_FILE), | ||
1877 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
1878 | global_page_state(NR_UNEVICTABLE), | ||
1879 | #endif | ||
1869 | global_page_state(NR_FILE_DIRTY), | 1880 | global_page_state(NR_FILE_DIRTY), |
1870 | global_page_state(NR_WRITEBACK), | 1881 | global_page_state(NR_WRITEBACK), |
1871 | global_page_state(NR_UNSTABLE_NFS), | 1882 | global_page_state(NR_UNSTABLE_NFS), |
@@ -1888,8 +1899,13 @@ void show_free_areas(void) | |||
1888 | " min:%lukB" | 1899 | " min:%lukB" |
1889 | " low:%lukB" | 1900 | " low:%lukB" |
1890 | " high:%lukB" | 1901 | " high:%lukB" |
1891 | " active:%lukB" | 1902 | " active_anon:%lukB" |
1892 | " inactive:%lukB" | 1903 | " inactive_anon:%lukB" |
1904 | " active_file:%lukB" | ||
1905 | " inactive_file:%lukB" | ||
1906 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
1907 | " unevictable:%lukB" | ||
1908 | #endif | ||
1893 | " present:%lukB" | 1909 | " present:%lukB" |
1894 | " pages_scanned:%lu" | 1910 | " pages_scanned:%lu" |
1895 | " all_unreclaimable? %s" | 1911 | " all_unreclaimable? %s" |
@@ -1899,8 +1915,13 @@ void show_free_areas(void) | |||
1899 | K(zone->pages_min), | 1915 | K(zone->pages_min), |
1900 | K(zone->pages_low), | 1916 | K(zone->pages_low), |
1901 | K(zone->pages_high), | 1917 | K(zone->pages_high), |
1902 | K(zone_page_state(zone, NR_ACTIVE)), | 1918 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
1903 | K(zone_page_state(zone, NR_INACTIVE)), | 1919 | K(zone_page_state(zone, NR_INACTIVE_ANON)), |
1920 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | ||
1921 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | ||
1922 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
1923 | K(zone_page_state(zone, NR_UNEVICTABLE)), | ||
1924 | #endif | ||
1904 | K(zone->present_pages), | 1925 | K(zone->present_pages), |
1905 | zone->pages_scanned, | 1926 | zone->pages_scanned, |
1906 | (zone_is_all_unreclaimable(zone) ? "yes" : "no") | 1927 | (zone_is_all_unreclaimable(zone) ? "yes" : "no") |
@@ -3410,10 +3431,12 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3410 | pgdat->nr_zones = 0; | 3431 | pgdat->nr_zones = 0; |
3411 | init_waitqueue_head(&pgdat->kswapd_wait); | 3432 | init_waitqueue_head(&pgdat->kswapd_wait); |
3412 | pgdat->kswapd_max_order = 0; | 3433 | pgdat->kswapd_max_order = 0; |
3434 | pgdat_page_cgroup_init(pgdat); | ||
3413 | 3435 | ||
3414 | for (j = 0; j < MAX_NR_ZONES; j++) { | 3436 | for (j = 0; j < MAX_NR_ZONES; j++) { |
3415 | struct zone *zone = pgdat->node_zones + j; | 3437 | struct zone *zone = pgdat->node_zones + j; |
3416 | unsigned long size, realsize, memmap_pages; | 3438 | unsigned long size, realsize, memmap_pages; |
3439 | enum lru_list l; | ||
3417 | 3440 | ||
3418 | size = zone_spanned_pages_in_node(nid, j, zones_size); | 3441 | size = zone_spanned_pages_in_node(nid, j, zones_size); |
3419 | realsize = size - zone_absent_pages_in_node(nid, j, | 3442 | realsize = size - zone_absent_pages_in_node(nid, j, |
@@ -3428,8 +3451,8 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3428 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; | 3451 | PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; |
3429 | if (realsize >= memmap_pages) { | 3452 | if (realsize >= memmap_pages) { |
3430 | realsize -= memmap_pages; | 3453 | realsize -= memmap_pages; |
3431 | mminit_dprintk(MMINIT_TRACE, "memmap_init", | 3454 | printk(KERN_DEBUG |
3432 | "%s zone: %lu pages used for memmap\n", | 3455 | " %s zone: %lu pages used for memmap\n", |
3433 | zone_names[j], memmap_pages); | 3456 | zone_names[j], memmap_pages); |
3434 | } else | 3457 | } else |
3435 | printk(KERN_WARNING | 3458 | printk(KERN_WARNING |
@@ -3439,8 +3462,7 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3439 | /* Account for reserved pages */ | 3462 | /* Account for reserved pages */ |
3440 | if (j == 0 && realsize > dma_reserve) { | 3463 | if (j == 0 && realsize > dma_reserve) { |
3441 | realsize -= dma_reserve; | 3464 | realsize -= dma_reserve; |
3442 | mminit_dprintk(MMINIT_TRACE, "memmap_init", | 3465 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
3443 | "%s zone: %lu pages reserved\n", | ||
3444 | zone_names[0], dma_reserve); | 3466 | zone_names[0], dma_reserve); |
3445 | } | 3467 | } |
3446 | 3468 | ||
@@ -3465,10 +3487,14 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
3465 | zone->prev_priority = DEF_PRIORITY; | 3487 | zone->prev_priority = DEF_PRIORITY; |
3466 | 3488 | ||
3467 | zone_pcp_init(zone); | 3489 | zone_pcp_init(zone); |
3468 | INIT_LIST_HEAD(&zone->active_list); | 3490 | for_each_lru(l) { |
3469 | INIT_LIST_HEAD(&zone->inactive_list); | 3491 | INIT_LIST_HEAD(&zone->lru[l].list); |
3470 | zone->nr_scan_active = 0; | 3492 | zone->lru[l].nr_scan = 0; |
3471 | zone->nr_scan_inactive = 0; | 3493 | } |
3494 | zone->recent_rotated[0] = 0; | ||
3495 | zone->recent_rotated[1] = 0; | ||
3496 | zone->recent_scanned[0] = 0; | ||
3497 | zone->recent_scanned[1] = 0; | ||
3472 | zap_zone_vm_stats(zone); | 3498 | zap_zone_vm_stats(zone); |
3473 | zone->flags = 0; | 3499 | zone->flags = 0; |
3474 | if (!size) | 3500 | if (!size) |
@@ -3952,7 +3978,7 @@ static void check_for_regular_memory(pg_data_t *pgdat) | |||
3952 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | 3978 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) |
3953 | { | 3979 | { |
3954 | unsigned long nid; | 3980 | unsigned long nid; |
3955 | enum zone_type i; | 3981 | int i; |
3956 | 3982 | ||
3957 | /* Sort early_node_map as initialisation assumes it is sorted */ | 3983 | /* Sort early_node_map as initialisation assumes it is sorted */ |
3958 | sort_node_map(); | 3984 | sort_node_map(); |
@@ -4210,7 +4236,7 @@ void setup_per_zone_pages_min(void) | |||
4210 | for_each_zone(zone) { | 4236 | for_each_zone(zone) { |
4211 | u64 tmp; | 4237 | u64 tmp; |
4212 | 4238 | ||
4213 | spin_lock_irqsave(&zone->lru_lock, flags); | 4239 | spin_lock_irqsave(&zone->lock, flags); |
4214 | tmp = (u64)pages_min * zone->present_pages; | 4240 | tmp = (u64)pages_min * zone->present_pages; |
4215 | do_div(tmp, lowmem_pages); | 4241 | do_div(tmp, lowmem_pages); |
4216 | if (is_highmem(zone)) { | 4242 | if (is_highmem(zone)) { |
@@ -4242,13 +4268,53 @@ void setup_per_zone_pages_min(void) | |||
4242 | zone->pages_low = zone->pages_min + (tmp >> 2); | 4268 | zone->pages_low = zone->pages_min + (tmp >> 2); |
4243 | zone->pages_high = zone->pages_min + (tmp >> 1); | 4269 | zone->pages_high = zone->pages_min + (tmp >> 1); |
4244 | setup_zone_migrate_reserve(zone); | 4270 | setup_zone_migrate_reserve(zone); |
4245 | spin_unlock_irqrestore(&zone->lru_lock, flags); | 4271 | spin_unlock_irqrestore(&zone->lock, flags); |
4246 | } | 4272 | } |
4247 | 4273 | ||
4248 | /* update totalreserve_pages */ | 4274 | /* update totalreserve_pages */ |
4249 | calculate_totalreserve_pages(); | 4275 | calculate_totalreserve_pages(); |
4250 | } | 4276 | } |
4251 | 4277 | ||
4278 | /** | ||
4279 | * setup_per_zone_inactive_ratio - called when min_free_kbytes changes. | ||
4280 | * | ||
4281 | * The inactive anon list should be small enough that the VM never has to | ||
4282 | * do too much work, but large enough that each inactive page has a chance | ||
4283 | * to be referenced again before it is swapped out. | ||
4284 | * | ||
4285 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | ||
4286 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | ||
4287 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | ||
4288 | * the anonymous pages are kept on the inactive list. | ||
4289 | * | ||
4290 | * total target max | ||
4291 | * memory ratio inactive anon | ||
4292 | * ------------------------------------- | ||
4293 | * 10MB 1 5MB | ||
4294 | * 100MB 1 50MB | ||
4295 | * 1GB 3 250MB | ||
4296 | * 10GB 10 0.9GB | ||
4297 | * 100GB 31 3GB | ||
4298 | * 1TB 101 10GB | ||
4299 | * 10TB 320 32GB | ||
4300 | */ | ||
4301 | void setup_per_zone_inactive_ratio(void) | ||
4302 | { | ||
4303 | struct zone *zone; | ||
4304 | |||
4305 | for_each_zone(zone) { | ||
4306 | unsigned int gb, ratio; | ||
4307 | |||
4308 | /* Zone size in gigabytes */ | ||
4309 | gb = zone->present_pages >> (30 - PAGE_SHIFT); | ||
4310 | ratio = int_sqrt(10 * gb); | ||
4311 | if (!ratio) | ||
4312 | ratio = 1; | ||
4313 | |||
4314 | zone->inactive_ratio = ratio; | ||
4315 | } | ||
4316 | } | ||
4317 | |||
4252 | /* | 4318 | /* |
4253 | * Initialise min_free_kbytes. | 4319 | * Initialise min_free_kbytes. |
4254 | * | 4320 | * |
@@ -4286,6 +4352,7 @@ static int __init init_per_zone_pages_min(void) | |||
4286 | min_free_kbytes = 65536; | 4352 | min_free_kbytes = 65536; |
4287 | setup_per_zone_pages_min(); | 4353 | setup_per_zone_pages_min(); |
4288 | setup_per_zone_lowmem_reserve(); | 4354 | setup_per_zone_lowmem_reserve(); |
4355 | setup_per_zone_inactive_ratio(); | ||
4289 | return 0; | 4356 | return 0; |
4290 | } | 4357 | } |
4291 | module_init(init_per_zone_pages_min) | 4358 | module_init(init_per_zone_pages_min) |
diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c new file mode 100644 index 000000000000..5d86550701f2 --- /dev/null +++ b/mm/page_cgroup.c | |||
@@ -0,0 +1,237 @@ | |||
1 | #include <linux/mm.h> | ||
2 | #include <linux/mmzone.h> | ||
3 | #include <linux/bootmem.h> | ||
4 | #include <linux/bit_spinlock.h> | ||
5 | #include <linux/page_cgroup.h> | ||
6 | #include <linux/hash.h> | ||
7 | #include <linux/memory.h> | ||
8 | |||
9 | static void __meminit | ||
10 | __init_page_cgroup(struct page_cgroup *pc, unsigned long pfn) | ||
11 | { | ||
12 | pc->flags = 0; | ||
13 | pc->mem_cgroup = NULL; | ||
14 | pc->page = pfn_to_page(pfn); | ||
15 | } | ||
16 | static unsigned long total_usage; | ||
17 | |||
18 | #if !defined(CONFIG_SPARSEMEM) | ||
19 | |||
20 | |||
21 | void __init pgdat_page_cgroup_init(struct pglist_data *pgdat) | ||
22 | { | ||
23 | pgdat->node_page_cgroup = NULL; | ||
24 | } | ||
25 | |||
26 | struct page_cgroup *lookup_page_cgroup(struct page *page) | ||
27 | { | ||
28 | unsigned long pfn = page_to_pfn(page); | ||
29 | unsigned long offset; | ||
30 | struct page_cgroup *base; | ||
31 | |||
32 | base = NODE_DATA(page_to_nid(page))->node_page_cgroup; | ||
33 | if (unlikely(!base)) | ||
34 | return NULL; | ||
35 | |||
36 | offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn; | ||
37 | return base + offset; | ||
38 | } | ||
39 | |||
40 | static int __init alloc_node_page_cgroup(int nid) | ||
41 | { | ||
42 | struct page_cgroup *base, *pc; | ||
43 | unsigned long table_size; | ||
44 | unsigned long start_pfn, nr_pages, index; | ||
45 | |||
46 | start_pfn = NODE_DATA(nid)->node_start_pfn; | ||
47 | nr_pages = NODE_DATA(nid)->node_spanned_pages; | ||
48 | |||
49 | table_size = sizeof(struct page_cgroup) * nr_pages; | ||
50 | |||
51 | base = __alloc_bootmem_node_nopanic(NODE_DATA(nid), | ||
52 | table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | ||
53 | if (!base) | ||
54 | return -ENOMEM; | ||
55 | for (index = 0; index < nr_pages; index++) { | ||
56 | pc = base + index; | ||
57 | __init_page_cgroup(pc, start_pfn + index); | ||
58 | } | ||
59 | NODE_DATA(nid)->node_page_cgroup = base; | ||
60 | total_usage += table_size; | ||
61 | return 0; | ||
62 | } | ||
63 | |||
64 | void __init page_cgroup_init(void) | ||
65 | { | ||
66 | |||
67 | int nid, fail; | ||
68 | |||
69 | for_each_online_node(nid) { | ||
70 | fail = alloc_node_page_cgroup(nid); | ||
71 | if (fail) | ||
72 | goto fail; | ||
73 | } | ||
74 | printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); | ||
75 | printk(KERN_INFO "please try cgroup_disable=memory option if you" | ||
76 | " don't want\n"); | ||
77 | return; | ||
78 | fail: | ||
79 | printk(KERN_CRIT "allocation of page_cgroup was failed.\n"); | ||
80 | printk(KERN_CRIT "please try cgroup_disable=memory boot option\n"); | ||
81 | panic("Out of memory"); | ||
82 | } | ||
83 | |||
84 | #else /* CONFIG_FLAT_NODE_MEM_MAP */ | ||
85 | |||
86 | struct page_cgroup *lookup_page_cgroup(struct page *page) | ||
87 | { | ||
88 | unsigned long pfn = page_to_pfn(page); | ||
89 | struct mem_section *section = __pfn_to_section(pfn); | ||
90 | |||
91 | return section->page_cgroup + pfn; | ||
92 | } | ||
93 | |||
94 | int __meminit init_section_page_cgroup(unsigned long pfn) | ||
95 | { | ||
96 | struct mem_section *section; | ||
97 | struct page_cgroup *base, *pc; | ||
98 | unsigned long table_size; | ||
99 | int nid, index; | ||
100 | |||
101 | section = __pfn_to_section(pfn); | ||
102 | |||
103 | if (section->page_cgroup) | ||
104 | return 0; | ||
105 | |||
106 | nid = page_to_nid(pfn_to_page(pfn)); | ||
107 | |||
108 | table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION; | ||
109 | base = kmalloc_node(table_size, GFP_KERNEL, nid); | ||
110 | if (!base) | ||
111 | base = vmalloc_node(table_size, nid); | ||
112 | |||
113 | if (!base) { | ||
114 | printk(KERN_ERR "page cgroup allocation failure\n"); | ||
115 | return -ENOMEM; | ||
116 | } | ||
117 | |||
118 | for (index = 0; index < PAGES_PER_SECTION; index++) { | ||
119 | pc = base + index; | ||
120 | __init_page_cgroup(pc, pfn + index); | ||
121 | } | ||
122 | |||
123 | section = __pfn_to_section(pfn); | ||
124 | section->page_cgroup = base - pfn; | ||
125 | total_usage += table_size; | ||
126 | return 0; | ||
127 | } | ||
128 | #ifdef CONFIG_MEMORY_HOTPLUG | ||
129 | void __free_page_cgroup(unsigned long pfn) | ||
130 | { | ||
131 | struct mem_section *ms; | ||
132 | struct page_cgroup *base; | ||
133 | |||
134 | ms = __pfn_to_section(pfn); | ||
135 | if (!ms || !ms->page_cgroup) | ||
136 | return; | ||
137 | base = ms->page_cgroup + pfn; | ||
138 | ms->page_cgroup = NULL; | ||
139 | if (is_vmalloc_addr(base)) | ||
140 | vfree(base); | ||
141 | else | ||
142 | kfree(base); | ||
143 | } | ||
144 | |||
145 | int online_page_cgroup(unsigned long start_pfn, | ||
146 | unsigned long nr_pages, | ||
147 | int nid) | ||
148 | { | ||
149 | unsigned long start, end, pfn; | ||
150 | int fail = 0; | ||
151 | |||
152 | start = start_pfn & (PAGES_PER_SECTION - 1); | ||
153 | end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION); | ||
154 | |||
155 | for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { | ||
156 | if (!pfn_present(pfn)) | ||
157 | continue; | ||
158 | fail = init_section_page_cgroup(pfn); | ||
159 | } | ||
160 | if (!fail) | ||
161 | return 0; | ||
162 | |||
163 | /* rollback */ | ||
164 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | ||
165 | __free_page_cgroup(pfn); | ||
166 | |||
167 | return -ENOMEM; | ||
168 | } | ||
169 | |||
170 | int offline_page_cgroup(unsigned long start_pfn, | ||
171 | unsigned long nr_pages, int nid) | ||
172 | { | ||
173 | unsigned long start, end, pfn; | ||
174 | |||
175 | start = start_pfn & (PAGES_PER_SECTION - 1); | ||
176 | end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION); | ||
177 | |||
178 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | ||
179 | __free_page_cgroup(pfn); | ||
180 | return 0; | ||
181 | |||
182 | } | ||
183 | |||
184 | static int page_cgroup_callback(struct notifier_block *self, | ||
185 | unsigned long action, void *arg) | ||
186 | { | ||
187 | struct memory_notify *mn = arg; | ||
188 | int ret = 0; | ||
189 | switch (action) { | ||
190 | case MEM_GOING_ONLINE: | ||
191 | ret = online_page_cgroup(mn->start_pfn, | ||
192 | mn->nr_pages, mn->status_change_nid); | ||
193 | break; | ||
194 | case MEM_CANCEL_ONLINE: | ||
195 | case MEM_OFFLINE: | ||
196 | offline_page_cgroup(mn->start_pfn, | ||
197 | mn->nr_pages, mn->status_change_nid); | ||
198 | break; | ||
199 | case MEM_GOING_OFFLINE: | ||
200 | break; | ||
201 | case MEM_ONLINE: | ||
202 | case MEM_CANCEL_OFFLINE: | ||
203 | break; | ||
204 | } | ||
205 | ret = notifier_from_errno(ret); | ||
206 | return ret; | ||
207 | } | ||
208 | |||
209 | #endif | ||
210 | |||
211 | void __init page_cgroup_init(void) | ||
212 | { | ||
213 | unsigned long pfn; | ||
214 | int fail = 0; | ||
215 | |||
216 | for (pfn = 0; !fail && pfn < max_pfn; pfn += PAGES_PER_SECTION) { | ||
217 | if (!pfn_present(pfn)) | ||
218 | continue; | ||
219 | fail = init_section_page_cgroup(pfn); | ||
220 | } | ||
221 | if (fail) { | ||
222 | printk(KERN_CRIT "try cgroup_disable=memory boot option\n"); | ||
223 | panic("Out of memory"); | ||
224 | } else { | ||
225 | hotplug_memory_notifier(page_cgroup_callback, 0); | ||
226 | } | ||
227 | printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); | ||
228 | printk(KERN_INFO "please try cgroup_disable=memory option if you don't" | ||
229 | " want\n"); | ||
230 | } | ||
231 | |||
232 | void __init pgdat_page_cgroup_init(struct pglist_data *pgdat) | ||
233 | { | ||
234 | return; | ||
235 | } | ||
236 | |||
237 | #endif | ||
diff --git a/mm/pdflush.c b/mm/pdflush.c index 0cbe0c60c6bf..a0a14c4d5072 100644 --- a/mm/pdflush.c +++ b/mm/pdflush.c | |||
@@ -3,7 +3,7 @@ | |||
3 | * | 3 | * |
4 | * Copyright (C) 2002, Linus Torvalds. | 4 | * Copyright (C) 2002, Linus Torvalds. |
5 | * | 5 | * |
6 | * 09Apr2002 akpm@zip.com.au | 6 | * 09Apr2002 Andrew Morton |
7 | * Initial version | 7 | * Initial version |
8 | * 29Feb2004 kaos@sgi.com | 8 | * 29Feb2004 kaos@sgi.com |
9 | * Move worker thread creation to kthread to avoid chewing | 9 | * Move worker thread creation to kthread to avoid chewing |
diff --git a/mm/readahead.c b/mm/readahead.c index 77e8ddf945e9..bec83c15a78f 100644 --- a/mm/readahead.c +++ b/mm/readahead.c | |||
@@ -3,7 +3,7 @@ | |||
3 | * | 3 | * |
4 | * Copyright (C) 2002, Linus Torvalds | 4 | * Copyright (C) 2002, Linus Torvalds |
5 | * | 5 | * |
6 | * 09Apr2002 akpm@zip.com.au | 6 | * 09Apr2002 Andrew Morton |
7 | * Initial version. | 7 | * Initial version. |
8 | */ | 8 | */ |
9 | 9 | ||
@@ -229,7 +229,7 @@ int do_page_cache_readahead(struct address_space *mapping, struct file *filp, | |||
229 | */ | 229 | */ |
230 | unsigned long max_sane_readahead(unsigned long nr) | 230 | unsigned long max_sane_readahead(unsigned long nr) |
231 | { | 231 | { |
232 | return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE) | 232 | return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE) |
233 | + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); | 233 | + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); |
234 | } | 234 | } |
235 | 235 | ||
@@ -53,9 +53,47 @@ | |||
53 | 53 | ||
54 | #include <asm/tlbflush.h> | 54 | #include <asm/tlbflush.h> |
55 | 55 | ||
56 | struct kmem_cache *anon_vma_cachep; | 56 | #include "internal.h" |
57 | 57 | ||
58 | /* This must be called under the mmap_sem. */ | 58 | static struct kmem_cache *anon_vma_cachep; |
59 | |||
60 | static inline struct anon_vma *anon_vma_alloc(void) | ||
61 | { | ||
62 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | ||
63 | } | ||
64 | |||
65 | static inline void anon_vma_free(struct anon_vma *anon_vma) | ||
66 | { | ||
67 | kmem_cache_free(anon_vma_cachep, anon_vma); | ||
68 | } | ||
69 | |||
70 | /** | ||
71 | * anon_vma_prepare - attach an anon_vma to a memory region | ||
72 | * @vma: the memory region in question | ||
73 | * | ||
74 | * This makes sure the memory mapping described by 'vma' has | ||
75 | * an 'anon_vma' attached to it, so that we can associate the | ||
76 | * anonymous pages mapped into it with that anon_vma. | ||
77 | * | ||
78 | * The common case will be that we already have one, but if | ||
79 | * if not we either need to find an adjacent mapping that we | ||
80 | * can re-use the anon_vma from (very common when the only | ||
81 | * reason for splitting a vma has been mprotect()), or we | ||
82 | * allocate a new one. | ||
83 | * | ||
84 | * Anon-vma allocations are very subtle, because we may have | ||
85 | * optimistically looked up an anon_vma in page_lock_anon_vma() | ||
86 | * and that may actually touch the spinlock even in the newly | ||
87 | * allocated vma (it depends on RCU to make sure that the | ||
88 | * anon_vma isn't actually destroyed). | ||
89 | * | ||
90 | * As a result, we need to do proper anon_vma locking even | ||
91 | * for the new allocation. At the same time, we do not want | ||
92 | * to do any locking for the common case of already having | ||
93 | * an anon_vma. | ||
94 | * | ||
95 | * This must be called with the mmap_sem held for reading. | ||
96 | */ | ||
59 | int anon_vma_prepare(struct vm_area_struct *vma) | 97 | int anon_vma_prepare(struct vm_area_struct *vma) |
60 | { | 98 | { |
61 | struct anon_vma *anon_vma = vma->anon_vma; | 99 | struct anon_vma *anon_vma = vma->anon_vma; |
@@ -63,20 +101,17 @@ int anon_vma_prepare(struct vm_area_struct *vma) | |||
63 | might_sleep(); | 101 | might_sleep(); |
64 | if (unlikely(!anon_vma)) { | 102 | if (unlikely(!anon_vma)) { |
65 | struct mm_struct *mm = vma->vm_mm; | 103 | struct mm_struct *mm = vma->vm_mm; |
66 | struct anon_vma *allocated, *locked; | 104 | struct anon_vma *allocated; |
67 | 105 | ||
68 | anon_vma = find_mergeable_anon_vma(vma); | 106 | anon_vma = find_mergeable_anon_vma(vma); |
69 | if (anon_vma) { | 107 | allocated = NULL; |
70 | allocated = NULL; | 108 | if (!anon_vma) { |
71 | locked = anon_vma; | ||
72 | spin_lock(&locked->lock); | ||
73 | } else { | ||
74 | anon_vma = anon_vma_alloc(); | 109 | anon_vma = anon_vma_alloc(); |
75 | if (unlikely(!anon_vma)) | 110 | if (unlikely(!anon_vma)) |
76 | return -ENOMEM; | 111 | return -ENOMEM; |
77 | allocated = anon_vma; | 112 | allocated = anon_vma; |
78 | locked = NULL; | ||
79 | } | 113 | } |
114 | spin_lock(&anon_vma->lock); | ||
80 | 115 | ||
81 | /* page_table_lock to protect against threads */ | 116 | /* page_table_lock to protect against threads */ |
82 | spin_lock(&mm->page_table_lock); | 117 | spin_lock(&mm->page_table_lock); |
@@ -87,8 +122,7 @@ int anon_vma_prepare(struct vm_area_struct *vma) | |||
87 | } | 122 | } |
88 | spin_unlock(&mm->page_table_lock); | 123 | spin_unlock(&mm->page_table_lock); |
89 | 124 | ||
90 | if (locked) | 125 | spin_unlock(&anon_vma->lock); |
91 | spin_unlock(&locked->lock); | ||
92 | if (unlikely(allocated)) | 126 | if (unlikely(allocated)) |
93 | anon_vma_free(allocated); | 127 | anon_vma_free(allocated); |
94 | } | 128 | } |
@@ -157,7 +191,7 @@ void __init anon_vma_init(void) | |||
157 | * Getting a lock on a stable anon_vma from a page off the LRU is | 191 | * Getting a lock on a stable anon_vma from a page off the LRU is |
158 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | 192 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. |
159 | */ | 193 | */ |
160 | static struct anon_vma *page_lock_anon_vma(struct page *page) | 194 | struct anon_vma *page_lock_anon_vma(struct page *page) |
161 | { | 195 | { |
162 | struct anon_vma *anon_vma; | 196 | struct anon_vma *anon_vma; |
163 | unsigned long anon_mapping; | 197 | unsigned long anon_mapping; |
@@ -177,7 +211,7 @@ out: | |||
177 | return NULL; | 211 | return NULL; |
178 | } | 212 | } |
179 | 213 | ||
180 | static void page_unlock_anon_vma(struct anon_vma *anon_vma) | 214 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
181 | { | 215 | { |
182 | spin_unlock(&anon_vma->lock); | 216 | spin_unlock(&anon_vma->lock); |
183 | rcu_read_unlock(); | 217 | rcu_read_unlock(); |
@@ -268,6 +302,32 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm, | |||
268 | return NULL; | 302 | return NULL; |
269 | } | 303 | } |
270 | 304 | ||
305 | /** | ||
306 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | ||
307 | * @page: the page to test | ||
308 | * @vma: the VMA to test | ||
309 | * | ||
310 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | ||
311 | * if the page is not mapped into the page tables of this VMA. Only | ||
312 | * valid for normal file or anonymous VMAs. | ||
313 | */ | ||
314 | static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) | ||
315 | { | ||
316 | unsigned long address; | ||
317 | pte_t *pte; | ||
318 | spinlock_t *ptl; | ||
319 | |||
320 | address = vma_address(page, vma); | ||
321 | if (address == -EFAULT) /* out of vma range */ | ||
322 | return 0; | ||
323 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | ||
324 | if (!pte) /* the page is not in this mm */ | ||
325 | return 0; | ||
326 | pte_unmap_unlock(pte, ptl); | ||
327 | |||
328 | return 1; | ||
329 | } | ||
330 | |||
271 | /* | 331 | /* |
272 | * Subfunctions of page_referenced: page_referenced_one called | 332 | * Subfunctions of page_referenced: page_referenced_one called |
273 | * repeatedly from either page_referenced_anon or page_referenced_file. | 333 | * repeatedly from either page_referenced_anon or page_referenced_file. |
@@ -289,10 +349,17 @@ static int page_referenced_one(struct page *page, | |||
289 | if (!pte) | 349 | if (!pte) |
290 | goto out; | 350 | goto out; |
291 | 351 | ||
352 | /* | ||
353 | * Don't want to elevate referenced for mlocked page that gets this far, | ||
354 | * in order that it progresses to try_to_unmap and is moved to the | ||
355 | * unevictable list. | ||
356 | */ | ||
292 | if (vma->vm_flags & VM_LOCKED) { | 357 | if (vma->vm_flags & VM_LOCKED) { |
293 | referenced++; | ||
294 | *mapcount = 1; /* break early from loop */ | 358 | *mapcount = 1; /* break early from loop */ |
295 | } else if (ptep_clear_flush_young_notify(vma, address, pte)) | 359 | goto out_unmap; |
360 | } | ||
361 | |||
362 | if (ptep_clear_flush_young_notify(vma, address, pte)) | ||
296 | referenced++; | 363 | referenced++; |
297 | 364 | ||
298 | /* Pretend the page is referenced if the task has the | 365 | /* Pretend the page is referenced if the task has the |
@@ -301,6 +368,7 @@ static int page_referenced_one(struct page *page, | |||
301 | rwsem_is_locked(&mm->mmap_sem)) | 368 | rwsem_is_locked(&mm->mmap_sem)) |
302 | referenced++; | 369 | referenced++; |
303 | 370 | ||
371 | out_unmap: | ||
304 | (*mapcount)--; | 372 | (*mapcount)--; |
305 | pte_unmap_unlock(pte, ptl); | 373 | pte_unmap_unlock(pte, ptl); |
306 | out: | 374 | out: |
@@ -390,11 +458,6 @@ static int page_referenced_file(struct page *page, | |||
390 | */ | 458 | */ |
391 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) | 459 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
392 | continue; | 460 | continue; |
393 | if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) | ||
394 | == (VM_LOCKED|VM_MAYSHARE)) { | ||
395 | referenced++; | ||
396 | break; | ||
397 | } | ||
398 | referenced += page_referenced_one(page, vma, &mapcount); | 461 | referenced += page_referenced_one(page, vma, &mapcount); |
399 | if (!mapcount) | 462 | if (!mapcount) |
400 | break; | 463 | break; |
@@ -674,8 +737,8 @@ void page_remove_rmap(struct page *page, struct vm_area_struct *vma) | |||
674 | page_clear_dirty(page); | 737 | page_clear_dirty(page); |
675 | set_page_dirty(page); | 738 | set_page_dirty(page); |
676 | } | 739 | } |
677 | 740 | if (PageAnon(page)) | |
678 | mem_cgroup_uncharge_page(page); | 741 | mem_cgroup_uncharge_page(page); |
679 | __dec_zone_page_state(page, | 742 | __dec_zone_page_state(page, |
680 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); | 743 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); |
681 | /* | 744 | /* |
@@ -717,11 +780,16 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | |||
717 | * If it's recently referenced (perhaps page_referenced | 780 | * If it's recently referenced (perhaps page_referenced |
718 | * skipped over this mm) then we should reactivate it. | 781 | * skipped over this mm) then we should reactivate it. |
719 | */ | 782 | */ |
720 | if (!migration && ((vma->vm_flags & VM_LOCKED) || | 783 | if (!migration) { |
721 | (ptep_clear_flush_young_notify(vma, address, pte)))) { | 784 | if (vma->vm_flags & VM_LOCKED) { |
722 | ret = SWAP_FAIL; | 785 | ret = SWAP_MLOCK; |
723 | goto out_unmap; | 786 | goto out_unmap; |
724 | } | 787 | } |
788 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | ||
789 | ret = SWAP_FAIL; | ||
790 | goto out_unmap; | ||
791 | } | ||
792 | } | ||
725 | 793 | ||
726 | /* Nuke the page table entry. */ | 794 | /* Nuke the page table entry. */ |
727 | flush_cache_page(vma, address, page_to_pfn(page)); | 795 | flush_cache_page(vma, address, page_to_pfn(page)); |
@@ -802,12 +870,17 @@ out: | |||
802 | * For very sparsely populated VMAs this is a little inefficient - chances are | 870 | * For very sparsely populated VMAs this is a little inefficient - chances are |
803 | * there there won't be many ptes located within the scan cluster. In this case | 871 | * there there won't be many ptes located within the scan cluster. In this case |
804 | * maybe we could scan further - to the end of the pte page, perhaps. | 872 | * maybe we could scan further - to the end of the pte page, perhaps. |
873 | * | ||
874 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | ||
875 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | ||
876 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | ||
877 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | ||
805 | */ | 878 | */ |
806 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | 879 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) |
807 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | 880 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) |
808 | 881 | ||
809 | static void try_to_unmap_cluster(unsigned long cursor, | 882 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
810 | unsigned int *mapcount, struct vm_area_struct *vma) | 883 | struct vm_area_struct *vma, struct page *check_page) |
811 | { | 884 | { |
812 | struct mm_struct *mm = vma->vm_mm; | 885 | struct mm_struct *mm = vma->vm_mm; |
813 | pgd_t *pgd; | 886 | pgd_t *pgd; |
@@ -819,6 +892,8 @@ static void try_to_unmap_cluster(unsigned long cursor, | |||
819 | struct page *page; | 892 | struct page *page; |
820 | unsigned long address; | 893 | unsigned long address; |
821 | unsigned long end; | 894 | unsigned long end; |
895 | int ret = SWAP_AGAIN; | ||
896 | int locked_vma = 0; | ||
822 | 897 | ||
823 | address = (vma->vm_start + cursor) & CLUSTER_MASK; | 898 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
824 | end = address + CLUSTER_SIZE; | 899 | end = address + CLUSTER_SIZE; |
@@ -829,15 +904,26 @@ static void try_to_unmap_cluster(unsigned long cursor, | |||
829 | 904 | ||
830 | pgd = pgd_offset(mm, address); | 905 | pgd = pgd_offset(mm, address); |
831 | if (!pgd_present(*pgd)) | 906 | if (!pgd_present(*pgd)) |
832 | return; | 907 | return ret; |
833 | 908 | ||
834 | pud = pud_offset(pgd, address); | 909 | pud = pud_offset(pgd, address); |
835 | if (!pud_present(*pud)) | 910 | if (!pud_present(*pud)) |
836 | return; | 911 | return ret; |
837 | 912 | ||
838 | pmd = pmd_offset(pud, address); | 913 | pmd = pmd_offset(pud, address); |
839 | if (!pmd_present(*pmd)) | 914 | if (!pmd_present(*pmd)) |
840 | return; | 915 | return ret; |
916 | |||
917 | /* | ||
918 | * MLOCK_PAGES => feature is configured. | ||
919 | * if we can acquire the mmap_sem for read, and vma is VM_LOCKED, | ||
920 | * keep the sem while scanning the cluster for mlocking pages. | ||
921 | */ | ||
922 | if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) { | ||
923 | locked_vma = (vma->vm_flags & VM_LOCKED); | ||
924 | if (!locked_vma) | ||
925 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | ||
926 | } | ||
841 | 927 | ||
842 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 928 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); |
843 | 929 | ||
@@ -850,6 +936,13 @@ static void try_to_unmap_cluster(unsigned long cursor, | |||
850 | page = vm_normal_page(vma, address, *pte); | 936 | page = vm_normal_page(vma, address, *pte); |
851 | BUG_ON(!page || PageAnon(page)); | 937 | BUG_ON(!page || PageAnon(page)); |
852 | 938 | ||
939 | if (locked_vma) { | ||
940 | mlock_vma_page(page); /* no-op if already mlocked */ | ||
941 | if (page == check_page) | ||
942 | ret = SWAP_MLOCK; | ||
943 | continue; /* don't unmap */ | ||
944 | } | ||
945 | |||
853 | if (ptep_clear_flush_young_notify(vma, address, pte)) | 946 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
854 | continue; | 947 | continue; |
855 | 948 | ||
@@ -871,39 +964,104 @@ static void try_to_unmap_cluster(unsigned long cursor, | |||
871 | (*mapcount)--; | 964 | (*mapcount)--; |
872 | } | 965 | } |
873 | pte_unmap_unlock(pte - 1, ptl); | 966 | pte_unmap_unlock(pte - 1, ptl); |
967 | if (locked_vma) | ||
968 | up_read(&vma->vm_mm->mmap_sem); | ||
969 | return ret; | ||
874 | } | 970 | } |
875 | 971 | ||
876 | static int try_to_unmap_anon(struct page *page, int migration) | 972 | /* |
973 | * common handling for pages mapped in VM_LOCKED vmas | ||
974 | */ | ||
975 | static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma) | ||
976 | { | ||
977 | int mlocked = 0; | ||
978 | |||
979 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | ||
980 | if (vma->vm_flags & VM_LOCKED) { | ||
981 | mlock_vma_page(page); | ||
982 | mlocked++; /* really mlocked the page */ | ||
983 | } | ||
984 | up_read(&vma->vm_mm->mmap_sem); | ||
985 | } | ||
986 | return mlocked; | ||
987 | } | ||
988 | |||
989 | /** | ||
990 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | ||
991 | * rmap method | ||
992 | * @page: the page to unmap/unlock | ||
993 | * @unlock: request for unlock rather than unmap [unlikely] | ||
994 | * @migration: unmapping for migration - ignored if @unlock | ||
995 | * | ||
996 | * Find all the mappings of a page using the mapping pointer and the vma chains | ||
997 | * contained in the anon_vma struct it points to. | ||
998 | * | ||
999 | * This function is only called from try_to_unmap/try_to_munlock for | ||
1000 | * anonymous pages. | ||
1001 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | ||
1002 | * where the page was found will be held for write. So, we won't recheck | ||
1003 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | ||
1004 | * 'LOCKED. | ||
1005 | */ | ||
1006 | static int try_to_unmap_anon(struct page *page, int unlock, int migration) | ||
877 | { | 1007 | { |
878 | struct anon_vma *anon_vma; | 1008 | struct anon_vma *anon_vma; |
879 | struct vm_area_struct *vma; | 1009 | struct vm_area_struct *vma; |
1010 | unsigned int mlocked = 0; | ||
880 | int ret = SWAP_AGAIN; | 1011 | int ret = SWAP_AGAIN; |
881 | 1012 | ||
1013 | if (MLOCK_PAGES && unlikely(unlock)) | ||
1014 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | ||
1015 | |||
882 | anon_vma = page_lock_anon_vma(page); | 1016 | anon_vma = page_lock_anon_vma(page); |
883 | if (!anon_vma) | 1017 | if (!anon_vma) |
884 | return ret; | 1018 | return ret; |
885 | 1019 | ||
886 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | 1020 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
887 | ret = try_to_unmap_one(page, vma, migration); | 1021 | if (MLOCK_PAGES && unlikely(unlock)) { |
888 | if (ret == SWAP_FAIL || !page_mapped(page)) | 1022 | if (!((vma->vm_flags & VM_LOCKED) && |
889 | break; | 1023 | page_mapped_in_vma(page, vma))) |
1024 | continue; /* must visit all unlocked vmas */ | ||
1025 | ret = SWAP_MLOCK; /* saw at least one mlocked vma */ | ||
1026 | } else { | ||
1027 | ret = try_to_unmap_one(page, vma, migration); | ||
1028 | if (ret == SWAP_FAIL || !page_mapped(page)) | ||
1029 | break; | ||
1030 | } | ||
1031 | if (ret == SWAP_MLOCK) { | ||
1032 | mlocked = try_to_mlock_page(page, vma); | ||
1033 | if (mlocked) | ||
1034 | break; /* stop if actually mlocked page */ | ||
1035 | } | ||
890 | } | 1036 | } |
891 | 1037 | ||
892 | page_unlock_anon_vma(anon_vma); | 1038 | page_unlock_anon_vma(anon_vma); |
1039 | |||
1040 | if (mlocked) | ||
1041 | ret = SWAP_MLOCK; /* actually mlocked the page */ | ||
1042 | else if (ret == SWAP_MLOCK) | ||
1043 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | ||
1044 | |||
893 | return ret; | 1045 | return ret; |
894 | } | 1046 | } |
895 | 1047 | ||
896 | /** | 1048 | /** |
897 | * try_to_unmap_file - unmap file page using the object-based rmap method | 1049 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
898 | * @page: the page to unmap | 1050 | * @page: the page to unmap/unlock |
899 | * @migration: migration flag | 1051 | * @unlock: request for unlock rather than unmap [unlikely] |
1052 | * @migration: unmapping for migration - ignored if @unlock | ||
900 | * | 1053 | * |
901 | * Find all the mappings of a page using the mapping pointer and the vma chains | 1054 | * Find all the mappings of a page using the mapping pointer and the vma chains |
902 | * contained in the address_space struct it points to. | 1055 | * contained in the address_space struct it points to. |
903 | * | 1056 | * |
904 | * This function is only called from try_to_unmap for object-based pages. | 1057 | * This function is only called from try_to_unmap/try_to_munlock for |
1058 | * object-based pages. | ||
1059 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | ||
1060 | * where the page was found will be held for write. So, we won't recheck | ||
1061 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | ||
1062 | * 'LOCKED. | ||
905 | */ | 1063 | */ |
906 | static int try_to_unmap_file(struct page *page, int migration) | 1064 | static int try_to_unmap_file(struct page *page, int unlock, int migration) |
907 | { | 1065 | { |
908 | struct address_space *mapping = page->mapping; | 1066 | struct address_space *mapping = page->mapping; |
909 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 1067 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
@@ -914,20 +1072,44 @@ static int try_to_unmap_file(struct page *page, int migration) | |||
914 | unsigned long max_nl_cursor = 0; | 1072 | unsigned long max_nl_cursor = 0; |
915 | unsigned long max_nl_size = 0; | 1073 | unsigned long max_nl_size = 0; |
916 | unsigned int mapcount; | 1074 | unsigned int mapcount; |
1075 | unsigned int mlocked = 0; | ||
1076 | |||
1077 | if (MLOCK_PAGES && unlikely(unlock)) | ||
1078 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | ||
917 | 1079 | ||
918 | spin_lock(&mapping->i_mmap_lock); | 1080 | spin_lock(&mapping->i_mmap_lock); |
919 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 1081 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
920 | ret = try_to_unmap_one(page, vma, migration); | 1082 | if (MLOCK_PAGES && unlikely(unlock)) { |
921 | if (ret == SWAP_FAIL || !page_mapped(page)) | 1083 | if (!(vma->vm_flags & VM_LOCKED)) |
922 | goto out; | 1084 | continue; /* must visit all vmas */ |
1085 | ret = SWAP_MLOCK; | ||
1086 | } else { | ||
1087 | ret = try_to_unmap_one(page, vma, migration); | ||
1088 | if (ret == SWAP_FAIL || !page_mapped(page)) | ||
1089 | goto out; | ||
1090 | } | ||
1091 | if (ret == SWAP_MLOCK) { | ||
1092 | mlocked = try_to_mlock_page(page, vma); | ||
1093 | if (mlocked) | ||
1094 | break; /* stop if actually mlocked page */ | ||
1095 | } | ||
923 | } | 1096 | } |
924 | 1097 | ||
1098 | if (mlocked) | ||
1099 | goto out; | ||
1100 | |||
925 | if (list_empty(&mapping->i_mmap_nonlinear)) | 1101 | if (list_empty(&mapping->i_mmap_nonlinear)) |
926 | goto out; | 1102 | goto out; |
927 | 1103 | ||
928 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 1104 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
929 | shared.vm_set.list) { | 1105 | shared.vm_set.list) { |
930 | if ((vma->vm_flags & VM_LOCKED) && !migration) | 1106 | if (MLOCK_PAGES && unlikely(unlock)) { |
1107 | if (!(vma->vm_flags & VM_LOCKED)) | ||
1108 | continue; /* must visit all vmas */ | ||
1109 | ret = SWAP_MLOCK; /* leave mlocked == 0 */ | ||
1110 | goto out; /* no need to look further */ | ||
1111 | } | ||
1112 | if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) | ||
931 | continue; | 1113 | continue; |
932 | cursor = (unsigned long) vma->vm_private_data; | 1114 | cursor = (unsigned long) vma->vm_private_data; |
933 | if (cursor > max_nl_cursor) | 1115 | if (cursor > max_nl_cursor) |
@@ -937,7 +1119,7 @@ static int try_to_unmap_file(struct page *page, int migration) | |||
937 | max_nl_size = cursor; | 1119 | max_nl_size = cursor; |
938 | } | 1120 | } |
939 | 1121 | ||
940 | if (max_nl_size == 0) { /* any nonlinears locked or reserved */ | 1122 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
941 | ret = SWAP_FAIL; | 1123 | ret = SWAP_FAIL; |
942 | goto out; | 1124 | goto out; |
943 | } | 1125 | } |
@@ -961,12 +1143,16 @@ static int try_to_unmap_file(struct page *page, int migration) | |||
961 | do { | 1143 | do { |
962 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 1144 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
963 | shared.vm_set.list) { | 1145 | shared.vm_set.list) { |
964 | if ((vma->vm_flags & VM_LOCKED) && !migration) | 1146 | if (!MLOCK_PAGES && !migration && |
1147 | (vma->vm_flags & VM_LOCKED)) | ||
965 | continue; | 1148 | continue; |
966 | cursor = (unsigned long) vma->vm_private_data; | 1149 | cursor = (unsigned long) vma->vm_private_data; |
967 | while ( cursor < max_nl_cursor && | 1150 | while ( cursor < max_nl_cursor && |
968 | cursor < vma->vm_end - vma->vm_start) { | 1151 | cursor < vma->vm_end - vma->vm_start) { |
969 | try_to_unmap_cluster(cursor, &mapcount, vma); | 1152 | ret = try_to_unmap_cluster(cursor, &mapcount, |
1153 | vma, page); | ||
1154 | if (ret == SWAP_MLOCK) | ||
1155 | mlocked = 2; /* to return below */ | ||
970 | cursor += CLUSTER_SIZE; | 1156 | cursor += CLUSTER_SIZE; |
971 | vma->vm_private_data = (void *) cursor; | 1157 | vma->vm_private_data = (void *) cursor; |
972 | if ((int)mapcount <= 0) | 1158 | if ((int)mapcount <= 0) |
@@ -987,6 +1173,10 @@ static int try_to_unmap_file(struct page *page, int migration) | |||
987 | vma->vm_private_data = NULL; | 1173 | vma->vm_private_data = NULL; |
988 | out: | 1174 | out: |
989 | spin_unlock(&mapping->i_mmap_lock); | 1175 | spin_unlock(&mapping->i_mmap_lock); |
1176 | if (mlocked) | ||
1177 | ret = SWAP_MLOCK; /* actually mlocked the page */ | ||
1178 | else if (ret == SWAP_MLOCK) | ||
1179 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | ||
990 | return ret; | 1180 | return ret; |
991 | } | 1181 | } |
992 | 1182 | ||
@@ -1002,6 +1192,7 @@ out: | |||
1002 | * SWAP_SUCCESS - we succeeded in removing all mappings | 1192 | * SWAP_SUCCESS - we succeeded in removing all mappings |
1003 | * SWAP_AGAIN - we missed a mapping, try again later | 1193 | * SWAP_AGAIN - we missed a mapping, try again later |
1004 | * SWAP_FAIL - the page is unswappable | 1194 | * SWAP_FAIL - the page is unswappable |
1195 | * SWAP_MLOCK - page is mlocked. | ||
1005 | */ | 1196 | */ |
1006 | int try_to_unmap(struct page *page, int migration) | 1197 | int try_to_unmap(struct page *page, int migration) |
1007 | { | 1198 | { |
@@ -1010,12 +1201,36 @@ int try_to_unmap(struct page *page, int migration) | |||
1010 | BUG_ON(!PageLocked(page)); | 1201 | BUG_ON(!PageLocked(page)); |
1011 | 1202 | ||
1012 | if (PageAnon(page)) | 1203 | if (PageAnon(page)) |
1013 | ret = try_to_unmap_anon(page, migration); | 1204 | ret = try_to_unmap_anon(page, 0, migration); |
1014 | else | 1205 | else |
1015 | ret = try_to_unmap_file(page, migration); | 1206 | ret = try_to_unmap_file(page, 0, migration); |
1016 | 1207 | if (ret != SWAP_MLOCK && !page_mapped(page)) | |
1017 | if (!page_mapped(page)) | ||
1018 | ret = SWAP_SUCCESS; | 1208 | ret = SWAP_SUCCESS; |
1019 | return ret; | 1209 | return ret; |
1020 | } | 1210 | } |
1021 | 1211 | ||
1212 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
1213 | /** | ||
1214 | * try_to_munlock - try to munlock a page | ||
1215 | * @page: the page to be munlocked | ||
1216 | * | ||
1217 | * Called from munlock code. Checks all of the VMAs mapping the page | ||
1218 | * to make sure nobody else has this page mlocked. The page will be | ||
1219 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | ||
1220 | * | ||
1221 | * Return values are: | ||
1222 | * | ||
1223 | * SWAP_SUCCESS - no vma's holding page mlocked. | ||
1224 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem | ||
1225 | * SWAP_MLOCK - page is now mlocked. | ||
1226 | */ | ||
1227 | int try_to_munlock(struct page *page) | ||
1228 | { | ||
1229 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | ||
1230 | |||
1231 | if (PageAnon(page)) | ||
1232 | return try_to_unmap_anon(page, 1, 0); | ||
1233 | else | ||
1234 | return try_to_unmap_file(page, 1, 0); | ||
1235 | } | ||
1236 | #endif | ||
diff --git a/mm/shmem.c b/mm/shmem.c index 04fb4f1ab88e..d38d7e61fcd0 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -50,14 +50,12 @@ | |||
50 | #include <linux/migrate.h> | 50 | #include <linux/migrate.h> |
51 | #include <linux/highmem.h> | 51 | #include <linux/highmem.h> |
52 | #include <linux/seq_file.h> | 52 | #include <linux/seq_file.h> |
53 | #include <linux/magic.h> | ||
53 | 54 | ||
54 | #include <asm/uaccess.h> | 55 | #include <asm/uaccess.h> |
55 | #include <asm/div64.h> | 56 | #include <asm/div64.h> |
56 | #include <asm/pgtable.h> | 57 | #include <asm/pgtable.h> |
57 | 58 | ||
58 | /* This magic number is used in glibc for posix shared memory */ | ||
59 | #define TMPFS_MAGIC 0x01021994 | ||
60 | |||
61 | #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) | 59 | #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long)) |
62 | #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) | 60 | #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE) |
63 | #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) | 61 | #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) |
@@ -201,7 +199,7 @@ static struct vm_operations_struct shmem_vm_ops; | |||
201 | 199 | ||
202 | static struct backing_dev_info shmem_backing_dev_info __read_mostly = { | 200 | static struct backing_dev_info shmem_backing_dev_info __read_mostly = { |
203 | .ra_pages = 0, /* No readahead */ | 201 | .ra_pages = 0, /* No readahead */ |
204 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, | 202 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, |
205 | .unplug_io_fn = default_unplug_io_fn, | 203 | .unplug_io_fn = default_unplug_io_fn, |
206 | }; | 204 | }; |
207 | 205 | ||
@@ -1369,6 +1367,7 @@ repeat: | |||
1369 | error = -ENOMEM; | 1367 | error = -ENOMEM; |
1370 | goto failed; | 1368 | goto failed; |
1371 | } | 1369 | } |
1370 | SetPageSwapBacked(filepage); | ||
1372 | 1371 | ||
1373 | /* Precharge page while we can wait, compensate after */ | 1372 | /* Precharge page while we can wait, compensate after */ |
1374 | error = mem_cgroup_cache_charge(filepage, current->mm, | 1373 | error = mem_cgroup_cache_charge(filepage, current->mm, |
@@ -1478,12 +1477,16 @@ int shmem_lock(struct file *file, int lock, struct user_struct *user) | |||
1478 | if (!user_shm_lock(inode->i_size, user)) | 1477 | if (!user_shm_lock(inode->i_size, user)) |
1479 | goto out_nomem; | 1478 | goto out_nomem; |
1480 | info->flags |= VM_LOCKED; | 1479 | info->flags |= VM_LOCKED; |
1480 | mapping_set_unevictable(file->f_mapping); | ||
1481 | } | 1481 | } |
1482 | if (!lock && (info->flags & VM_LOCKED) && user) { | 1482 | if (!lock && (info->flags & VM_LOCKED) && user) { |
1483 | user_shm_unlock(inode->i_size, user); | 1483 | user_shm_unlock(inode->i_size, user); |
1484 | info->flags &= ~VM_LOCKED; | 1484 | info->flags &= ~VM_LOCKED; |
1485 | mapping_clear_unevictable(file->f_mapping); | ||
1486 | scan_mapping_unevictable_pages(file->f_mapping); | ||
1485 | } | 1487 | } |
1486 | retval = 0; | 1488 | retval = 0; |
1489 | |||
1487 | out_nomem: | 1490 | out_nomem: |
1488 | spin_unlock(&info->lock); | 1491 | spin_unlock(&info->lock); |
1489 | return retval; | 1492 | return retval; |
@@ -2582,6 +2585,7 @@ put_memory: | |||
2582 | shmem_unacct_size(flags, size); | 2585 | shmem_unacct_size(flags, size); |
2583 | return ERR_PTR(error); | 2586 | return ERR_PTR(error); |
2584 | } | 2587 | } |
2588 | EXPORT_SYMBOL_GPL(shmem_file_setup); | ||
2585 | 2589 | ||
2586 | /** | 2590 | /** |
2587 | * shmem_zero_setup - setup a shared anonymous mapping | 2591 | * shmem_zero_setup - setup a shared anonymous mapping |
@@ -31,11 +31,12 @@ | |||
31 | #include <linux/backing-dev.h> | 31 | #include <linux/backing-dev.h> |
32 | #include <linux/memcontrol.h> | 32 | #include <linux/memcontrol.h> |
33 | 33 | ||
34 | #include "internal.h" | ||
35 | |||
34 | /* How many pages do we try to swap or page in/out together? */ | 36 | /* How many pages do we try to swap or page in/out together? */ |
35 | int page_cluster; | 37 | int page_cluster; |
36 | 38 | ||
37 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs); | 39 | static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); |
38 | static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs); | ||
39 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); | 40 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); |
40 | 41 | ||
41 | /* | 42 | /* |
@@ -116,8 +117,9 @@ static void pagevec_move_tail(struct pagevec *pvec) | |||
116 | zone = pagezone; | 117 | zone = pagezone; |
117 | spin_lock(&zone->lru_lock); | 118 | spin_lock(&zone->lru_lock); |
118 | } | 119 | } |
119 | if (PageLRU(page) && !PageActive(page)) { | 120 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
120 | list_move_tail(&page->lru, &zone->inactive_list); | 121 | int lru = page_is_file_cache(page); |
122 | list_move_tail(&page->lru, &zone->lru[lru].list); | ||
121 | pgmoved++; | 123 | pgmoved++; |
122 | } | 124 | } |
123 | } | 125 | } |
@@ -136,7 +138,7 @@ static void pagevec_move_tail(struct pagevec *pvec) | |||
136 | void rotate_reclaimable_page(struct page *page) | 138 | void rotate_reclaimable_page(struct page *page) |
137 | { | 139 | { |
138 | if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && | 140 | if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && |
139 | PageLRU(page)) { | 141 | !PageUnevictable(page) && PageLRU(page)) { |
140 | struct pagevec *pvec; | 142 | struct pagevec *pvec; |
141 | unsigned long flags; | 143 | unsigned long flags; |
142 | 144 | ||
@@ -157,12 +159,19 @@ void activate_page(struct page *page) | |||
157 | struct zone *zone = page_zone(page); | 159 | struct zone *zone = page_zone(page); |
158 | 160 | ||
159 | spin_lock_irq(&zone->lru_lock); | 161 | spin_lock_irq(&zone->lru_lock); |
160 | if (PageLRU(page) && !PageActive(page)) { | 162 | if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { |
161 | del_page_from_inactive_list(zone, page); | 163 | int file = page_is_file_cache(page); |
164 | int lru = LRU_BASE + file; | ||
165 | del_page_from_lru_list(zone, page, lru); | ||
166 | |||
162 | SetPageActive(page); | 167 | SetPageActive(page); |
163 | add_page_to_active_list(zone, page); | 168 | lru += LRU_ACTIVE; |
169 | add_page_to_lru_list(zone, page, lru); | ||
164 | __count_vm_event(PGACTIVATE); | 170 | __count_vm_event(PGACTIVATE); |
165 | mem_cgroup_move_lists(page, true); | 171 | mem_cgroup_move_lists(page, lru); |
172 | |||
173 | zone->recent_rotated[!!file]++; | ||
174 | zone->recent_scanned[!!file]++; | ||
166 | } | 175 | } |
167 | spin_unlock_irq(&zone->lru_lock); | 176 | spin_unlock_irq(&zone->lru_lock); |
168 | } | 177 | } |
@@ -176,7 +185,8 @@ void activate_page(struct page *page) | |||
176 | */ | 185 | */ |
177 | void mark_page_accessed(struct page *page) | 186 | void mark_page_accessed(struct page *page) |
178 | { | 187 | { |
179 | if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) { | 188 | if (!PageActive(page) && !PageUnevictable(page) && |
189 | PageReferenced(page) && PageLRU(page)) { | ||
180 | activate_page(page); | 190 | activate_page(page); |
181 | ClearPageReferenced(page); | 191 | ClearPageReferenced(page); |
182 | } else if (!PageReferenced(page)) { | 192 | } else if (!PageReferenced(page)) { |
@@ -186,28 +196,73 @@ void mark_page_accessed(struct page *page) | |||
186 | 196 | ||
187 | EXPORT_SYMBOL(mark_page_accessed); | 197 | EXPORT_SYMBOL(mark_page_accessed); |
188 | 198 | ||
189 | /** | 199 | void __lru_cache_add(struct page *page, enum lru_list lru) |
190 | * lru_cache_add: add a page to the page lists | ||
191 | * @page: the page to add | ||
192 | */ | ||
193 | void lru_cache_add(struct page *page) | ||
194 | { | 200 | { |
195 | struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); | 201 | struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; |
196 | 202 | ||
197 | page_cache_get(page); | 203 | page_cache_get(page); |
198 | if (!pagevec_add(pvec, page)) | 204 | if (!pagevec_add(pvec, page)) |
199 | __pagevec_lru_add(pvec); | 205 | ____pagevec_lru_add(pvec, lru); |
200 | put_cpu_var(lru_add_pvecs); | 206 | put_cpu_var(lru_add_pvecs); |
201 | } | 207 | } |
202 | 208 | ||
203 | void lru_cache_add_active(struct page *page) | 209 | /** |
210 | * lru_cache_add_lru - add a page to a page list | ||
211 | * @page: the page to be added to the LRU. | ||
212 | * @lru: the LRU list to which the page is added. | ||
213 | */ | ||
214 | void lru_cache_add_lru(struct page *page, enum lru_list lru) | ||
204 | { | 215 | { |
205 | struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs); | 216 | if (PageActive(page)) { |
217 | VM_BUG_ON(PageUnevictable(page)); | ||
218 | ClearPageActive(page); | ||
219 | } else if (PageUnevictable(page)) { | ||
220 | VM_BUG_ON(PageActive(page)); | ||
221 | ClearPageUnevictable(page); | ||
222 | } | ||
206 | 223 | ||
207 | page_cache_get(page); | 224 | VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); |
208 | if (!pagevec_add(pvec, page)) | 225 | __lru_cache_add(page, lru); |
209 | __pagevec_lru_add_active(pvec); | 226 | } |
210 | put_cpu_var(lru_add_active_pvecs); | 227 | |
228 | /** | ||
229 | * add_page_to_unevictable_list - add a page to the unevictable list | ||
230 | * @page: the page to be added to the unevictable list | ||
231 | * | ||
232 | * Add page directly to its zone's unevictable list. To avoid races with | ||
233 | * tasks that might be making the page evictable, through eg. munlock, | ||
234 | * munmap or exit, while it's not on the lru, we want to add the page | ||
235 | * while it's locked or otherwise "invisible" to other tasks. This is | ||
236 | * difficult to do when using the pagevec cache, so bypass that. | ||
237 | */ | ||
238 | void add_page_to_unevictable_list(struct page *page) | ||
239 | { | ||
240 | struct zone *zone = page_zone(page); | ||
241 | |||
242 | spin_lock_irq(&zone->lru_lock); | ||
243 | SetPageUnevictable(page); | ||
244 | SetPageLRU(page); | ||
245 | add_page_to_lru_list(zone, page, LRU_UNEVICTABLE); | ||
246 | spin_unlock_irq(&zone->lru_lock); | ||
247 | } | ||
248 | |||
249 | /** | ||
250 | * lru_cache_add_active_or_unevictable | ||
251 | * @page: the page to be added to LRU | ||
252 | * @vma: vma in which page is mapped for determining reclaimability | ||
253 | * | ||
254 | * place @page on active or unevictable LRU list, depending on | ||
255 | * page_evictable(). Note that if the page is not evictable, | ||
256 | * it goes directly back onto it's zone's unevictable list. It does | ||
257 | * NOT use a per cpu pagevec. | ||
258 | */ | ||
259 | void lru_cache_add_active_or_unevictable(struct page *page, | ||
260 | struct vm_area_struct *vma) | ||
261 | { | ||
262 | if (page_evictable(page, vma)) | ||
263 | lru_cache_add_lru(page, LRU_ACTIVE + page_is_file_cache(page)); | ||
264 | else | ||
265 | add_page_to_unevictable_list(page); | ||
211 | } | 266 | } |
212 | 267 | ||
213 | /* | 268 | /* |
@@ -217,15 +272,15 @@ void lru_cache_add_active(struct page *page) | |||
217 | */ | 272 | */ |
218 | static void drain_cpu_pagevecs(int cpu) | 273 | static void drain_cpu_pagevecs(int cpu) |
219 | { | 274 | { |
275 | struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); | ||
220 | struct pagevec *pvec; | 276 | struct pagevec *pvec; |
277 | int lru; | ||
221 | 278 | ||
222 | pvec = &per_cpu(lru_add_pvecs, cpu); | 279 | for_each_lru(lru) { |
223 | if (pagevec_count(pvec)) | 280 | pvec = &pvecs[lru - LRU_BASE]; |
224 | __pagevec_lru_add(pvec); | 281 | if (pagevec_count(pvec)) |
225 | 282 | ____pagevec_lru_add(pvec, lru); | |
226 | pvec = &per_cpu(lru_add_active_pvecs, cpu); | 283 | } |
227 | if (pagevec_count(pvec)) | ||
228 | __pagevec_lru_add_active(pvec); | ||
229 | 284 | ||
230 | pvec = &per_cpu(lru_rotate_pvecs, cpu); | 285 | pvec = &per_cpu(lru_rotate_pvecs, cpu); |
231 | if (pagevec_count(pvec)) { | 286 | if (pagevec_count(pvec)) { |
@@ -244,7 +299,7 @@ void lru_add_drain(void) | |||
244 | put_cpu(); | 299 | put_cpu(); |
245 | } | 300 | } |
246 | 301 | ||
247 | #ifdef CONFIG_NUMA | 302 | #if defined(CONFIG_NUMA) || defined(CONFIG_UNEVICTABLE_LRU) |
248 | static void lru_add_drain_per_cpu(struct work_struct *dummy) | 303 | static void lru_add_drain_per_cpu(struct work_struct *dummy) |
249 | { | 304 | { |
250 | lru_add_drain(); | 305 | lru_add_drain(); |
@@ -308,6 +363,7 @@ void release_pages(struct page **pages, int nr, int cold) | |||
308 | 363 | ||
309 | if (PageLRU(page)) { | 364 | if (PageLRU(page)) { |
310 | struct zone *pagezone = page_zone(page); | 365 | struct zone *pagezone = page_zone(page); |
366 | |||
311 | if (pagezone != zone) { | 367 | if (pagezone != zone) { |
312 | if (zone) | 368 | if (zone) |
313 | spin_unlock_irqrestore(&zone->lru_lock, | 369 | spin_unlock_irqrestore(&zone->lru_lock, |
@@ -380,10 +436,11 @@ void __pagevec_release_nonlru(struct pagevec *pvec) | |||
380 | * Add the passed pages to the LRU, then drop the caller's refcount | 436 | * Add the passed pages to the LRU, then drop the caller's refcount |
381 | * on them. Reinitialises the caller's pagevec. | 437 | * on them. Reinitialises the caller's pagevec. |
382 | */ | 438 | */ |
383 | void __pagevec_lru_add(struct pagevec *pvec) | 439 | void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) |
384 | { | 440 | { |
385 | int i; | 441 | int i; |
386 | struct zone *zone = NULL; | 442 | struct zone *zone = NULL; |
443 | VM_BUG_ON(is_unevictable_lru(lru)); | ||
387 | 444 | ||
388 | for (i = 0; i < pagevec_count(pvec); i++) { | 445 | for (i = 0; i < pagevec_count(pvec); i++) { |
389 | struct page *page = pvec->pages[i]; | 446 | struct page *page = pvec->pages[i]; |
@@ -395,9 +452,13 @@ void __pagevec_lru_add(struct pagevec *pvec) | |||
395 | zone = pagezone; | 452 | zone = pagezone; |
396 | spin_lock_irq(&zone->lru_lock); | 453 | spin_lock_irq(&zone->lru_lock); |
397 | } | 454 | } |
455 | VM_BUG_ON(PageActive(page)); | ||
456 | VM_BUG_ON(PageUnevictable(page)); | ||
398 | VM_BUG_ON(PageLRU(page)); | 457 | VM_BUG_ON(PageLRU(page)); |
399 | SetPageLRU(page); | 458 | SetPageLRU(page); |
400 | add_page_to_inactive_list(zone, page); | 459 | if (is_active_lru(lru)) |
460 | SetPageActive(page); | ||
461 | add_page_to_lru_list(zone, page, lru); | ||
401 | } | 462 | } |
402 | if (zone) | 463 | if (zone) |
403 | spin_unlock_irq(&zone->lru_lock); | 464 | spin_unlock_irq(&zone->lru_lock); |
@@ -405,48 +466,45 @@ void __pagevec_lru_add(struct pagevec *pvec) | |||
405 | pagevec_reinit(pvec); | 466 | pagevec_reinit(pvec); |
406 | } | 467 | } |
407 | 468 | ||
408 | EXPORT_SYMBOL(__pagevec_lru_add); | 469 | EXPORT_SYMBOL(____pagevec_lru_add); |
409 | 470 | ||
410 | void __pagevec_lru_add_active(struct pagevec *pvec) | 471 | /* |
472 | * Try to drop buffers from the pages in a pagevec | ||
473 | */ | ||
474 | void pagevec_strip(struct pagevec *pvec) | ||
411 | { | 475 | { |
412 | int i; | 476 | int i; |
413 | struct zone *zone = NULL; | ||
414 | 477 | ||
415 | for (i = 0; i < pagevec_count(pvec); i++) { | 478 | for (i = 0; i < pagevec_count(pvec); i++) { |
416 | struct page *page = pvec->pages[i]; | 479 | struct page *page = pvec->pages[i]; |
417 | struct zone *pagezone = page_zone(page); | ||
418 | 480 | ||
419 | if (pagezone != zone) { | 481 | if (PagePrivate(page) && trylock_page(page)) { |
420 | if (zone) | 482 | if (PagePrivate(page)) |
421 | spin_unlock_irq(&zone->lru_lock); | 483 | try_to_release_page(page, 0); |
422 | zone = pagezone; | 484 | unlock_page(page); |
423 | spin_lock_irq(&zone->lru_lock); | ||
424 | } | 485 | } |
425 | VM_BUG_ON(PageLRU(page)); | ||
426 | SetPageLRU(page); | ||
427 | VM_BUG_ON(PageActive(page)); | ||
428 | SetPageActive(page); | ||
429 | add_page_to_active_list(zone, page); | ||
430 | } | 486 | } |
431 | if (zone) | ||
432 | spin_unlock_irq(&zone->lru_lock); | ||
433 | release_pages(pvec->pages, pvec->nr, pvec->cold); | ||
434 | pagevec_reinit(pvec); | ||
435 | } | 487 | } |
436 | 488 | ||
437 | /* | 489 | /** |
438 | * Try to drop buffers from the pages in a pagevec | 490 | * pagevec_swap_free - try to free swap space from the pages in a pagevec |
491 | * @pvec: pagevec with swapcache pages to free the swap space of | ||
492 | * | ||
493 | * The caller needs to hold an extra reference to each page and | ||
494 | * not hold the page lock on the pages. This function uses a | ||
495 | * trylock on the page lock so it may not always free the swap | ||
496 | * space associated with a page. | ||
439 | */ | 497 | */ |
440 | void pagevec_strip(struct pagevec *pvec) | 498 | void pagevec_swap_free(struct pagevec *pvec) |
441 | { | 499 | { |
442 | int i; | 500 | int i; |
443 | 501 | ||
444 | for (i = 0; i < pagevec_count(pvec); i++) { | 502 | for (i = 0; i < pagevec_count(pvec); i++) { |
445 | struct page *page = pvec->pages[i]; | 503 | struct page *page = pvec->pages[i]; |
446 | 504 | ||
447 | if (PagePrivate(page) && trylock_page(page)) { | 505 | if (PageSwapCache(page) && trylock_page(page)) { |
448 | if (PagePrivate(page)) | 506 | if (PageSwapCache(page)) |
449 | try_to_release_page(page, 0); | 507 | remove_exclusive_swap_page_ref(page); |
450 | unlock_page(page); | 508 | unlock_page(page); |
451 | } | 509 | } |
452 | } | 510 | } |
diff --git a/mm/swap_state.c b/mm/swap_state.c index 797c3831cbec..3353c9029cef 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c | |||
@@ -33,7 +33,7 @@ static const struct address_space_operations swap_aops = { | |||
33 | }; | 33 | }; |
34 | 34 | ||
35 | static struct backing_dev_info swap_backing_dev_info = { | 35 | static struct backing_dev_info swap_backing_dev_info = { |
36 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, | 36 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, |
37 | .unplug_io_fn = swap_unplug_io_fn, | 37 | .unplug_io_fn = swap_unplug_io_fn, |
38 | }; | 38 | }; |
39 | 39 | ||
@@ -75,6 +75,7 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | |||
75 | BUG_ON(!PageLocked(page)); | 75 | BUG_ON(!PageLocked(page)); |
76 | BUG_ON(PageSwapCache(page)); | 76 | BUG_ON(PageSwapCache(page)); |
77 | BUG_ON(PagePrivate(page)); | 77 | BUG_ON(PagePrivate(page)); |
78 | BUG_ON(!PageSwapBacked(page)); | ||
78 | error = radix_tree_preload(gfp_mask); | 79 | error = radix_tree_preload(gfp_mask); |
79 | if (!error) { | 80 | if (!error) { |
80 | page_cache_get(page); | 81 | page_cache_get(page); |
@@ -302,17 +303,19 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |||
302 | * re-using the just freed swap entry for an existing page. | 303 | * re-using the just freed swap entry for an existing page. |
303 | * May fail (-ENOMEM) if radix-tree node allocation failed. | 304 | * May fail (-ENOMEM) if radix-tree node allocation failed. |
304 | */ | 305 | */ |
305 | set_page_locked(new_page); | 306 | __set_page_locked(new_page); |
307 | SetPageSwapBacked(new_page); | ||
306 | err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); | 308 | err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); |
307 | if (likely(!err)) { | 309 | if (likely(!err)) { |
308 | /* | 310 | /* |
309 | * Initiate read into locked page and return. | 311 | * Initiate read into locked page and return. |
310 | */ | 312 | */ |
311 | lru_cache_add_active(new_page); | 313 | lru_cache_add_anon(new_page); |
312 | swap_readpage(NULL, new_page); | 314 | swap_readpage(NULL, new_page); |
313 | return new_page; | 315 | return new_page; |
314 | } | 316 | } |
315 | clear_page_locked(new_page); | 317 | ClearPageSwapBacked(new_page); |
318 | __clear_page_locked(new_page); | ||
316 | swap_free(entry); | 319 | swap_free(entry); |
317 | } while (err != -ENOMEM); | 320 | } while (err != -ENOMEM); |
318 | 321 | ||
diff --git a/mm/swapfile.c b/mm/swapfile.c index 1e330f2998fa..90cb67a5417c 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
@@ -344,7 +344,7 @@ int can_share_swap_page(struct page *page) | |||
344 | * Work out if there are any other processes sharing this | 344 | * Work out if there are any other processes sharing this |
345 | * swap cache page. Free it if you can. Return success. | 345 | * swap cache page. Free it if you can. Return success. |
346 | */ | 346 | */ |
347 | int remove_exclusive_swap_page(struct page *page) | 347 | static int remove_exclusive_swap_page_count(struct page *page, int count) |
348 | { | 348 | { |
349 | int retval; | 349 | int retval; |
350 | struct swap_info_struct * p; | 350 | struct swap_info_struct * p; |
@@ -357,7 +357,7 @@ int remove_exclusive_swap_page(struct page *page) | |||
357 | return 0; | 357 | return 0; |
358 | if (PageWriteback(page)) | 358 | if (PageWriteback(page)) |
359 | return 0; | 359 | return 0; |
360 | if (page_count(page) != 2) /* 2: us + cache */ | 360 | if (page_count(page) != count) /* us + cache + ptes */ |
361 | return 0; | 361 | return 0; |
362 | 362 | ||
363 | entry.val = page_private(page); | 363 | entry.val = page_private(page); |
@@ -370,7 +370,7 @@ int remove_exclusive_swap_page(struct page *page) | |||
370 | if (p->swap_map[swp_offset(entry)] == 1) { | 370 | if (p->swap_map[swp_offset(entry)] == 1) { |
371 | /* Recheck the page count with the swapcache lock held.. */ | 371 | /* Recheck the page count with the swapcache lock held.. */ |
372 | spin_lock_irq(&swapper_space.tree_lock); | 372 | spin_lock_irq(&swapper_space.tree_lock); |
373 | if ((page_count(page) == 2) && !PageWriteback(page)) { | 373 | if ((page_count(page) == count) && !PageWriteback(page)) { |
374 | __delete_from_swap_cache(page); | 374 | __delete_from_swap_cache(page); |
375 | SetPageDirty(page); | 375 | SetPageDirty(page); |
376 | retval = 1; | 376 | retval = 1; |
@@ -388,6 +388,25 @@ int remove_exclusive_swap_page(struct page *page) | |||
388 | } | 388 | } |
389 | 389 | ||
390 | /* | 390 | /* |
391 | * Most of the time the page should have two references: one for the | ||
392 | * process and one for the swap cache. | ||
393 | */ | ||
394 | int remove_exclusive_swap_page(struct page *page) | ||
395 | { | ||
396 | return remove_exclusive_swap_page_count(page, 2); | ||
397 | } | ||
398 | |||
399 | /* | ||
400 | * The pageout code holds an extra reference to the page. That raises | ||
401 | * the reference count to test for to 2 for a page that is only in the | ||
402 | * swap cache plus 1 for each process that maps the page. | ||
403 | */ | ||
404 | int remove_exclusive_swap_page_ref(struct page *page) | ||
405 | { | ||
406 | return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page)); | ||
407 | } | ||
408 | |||
409 | /* | ||
391 | * Free the swap entry like above, but also try to | 410 | * Free the swap entry like above, but also try to |
392 | * free the page cache entry if it is the last user. | 411 | * free the page cache entry if it is the last user. |
393 | */ | 412 | */ |
@@ -403,7 +422,7 @@ void free_swap_and_cache(swp_entry_t entry) | |||
403 | if (p) { | 422 | if (p) { |
404 | if (swap_entry_free(p, swp_offset(entry)) == 1) { | 423 | if (swap_entry_free(p, swp_offset(entry)) == 1) { |
405 | page = find_get_page(&swapper_space, entry.val); | 424 | page = find_get_page(&swapper_space, entry.val); |
406 | if (page && unlikely(!trylock_page(page))) { | 425 | if (page && !trylock_page(page)) { |
407 | page_cache_release(page); | 426 | page_cache_release(page); |
408 | page = NULL; | 427 | page = NULL; |
409 | } | 428 | } |
diff --git a/mm/truncate.c b/mm/truncate.c index 6650c1d878b4..1229211104f8 100644 --- a/mm/truncate.c +++ b/mm/truncate.c | |||
@@ -3,7 +3,7 @@ | |||
3 | * | 3 | * |
4 | * Copyright (C) 2002, Linus Torvalds | 4 | * Copyright (C) 2002, Linus Torvalds |
5 | * | 5 | * |
6 | * 10Sep2002 akpm@zip.com.au | 6 | * 10Sep2002 Andrew Morton |
7 | * Initial version. | 7 | * Initial version. |
8 | */ | 8 | */ |
9 | 9 | ||
@@ -18,6 +18,7 @@ | |||
18 | #include <linux/task_io_accounting_ops.h> | 18 | #include <linux/task_io_accounting_ops.h> |
19 | #include <linux/buffer_head.h> /* grr. try_to_release_page, | 19 | #include <linux/buffer_head.h> /* grr. try_to_release_page, |
20 | do_invalidatepage */ | 20 | do_invalidatepage */ |
21 | #include "internal.h" | ||
21 | 22 | ||
22 | 23 | ||
23 | /** | 24 | /** |
@@ -103,6 +104,7 @@ truncate_complete_page(struct address_space *mapping, struct page *page) | |||
103 | 104 | ||
104 | cancel_dirty_page(page, PAGE_CACHE_SIZE); | 105 | cancel_dirty_page(page, PAGE_CACHE_SIZE); |
105 | 106 | ||
107 | clear_page_mlock(page); | ||
106 | remove_from_page_cache(page); | 108 | remove_from_page_cache(page); |
107 | ClearPageMappedToDisk(page); | 109 | ClearPageMappedToDisk(page); |
108 | page_cache_release(page); /* pagecache ref */ | 110 | page_cache_release(page); /* pagecache ref */ |
@@ -127,6 +129,7 @@ invalidate_complete_page(struct address_space *mapping, struct page *page) | |||
127 | if (PagePrivate(page) && !try_to_release_page(page, 0)) | 129 | if (PagePrivate(page) && !try_to_release_page(page, 0)) |
128 | return 0; | 130 | return 0; |
129 | 131 | ||
132 | clear_page_mlock(page); | ||
130 | ret = remove_mapping(mapping, page); | 133 | ret = remove_mapping(mapping, page); |
131 | 134 | ||
132 | return ret; | 135 | return ret; |
@@ -352,6 +355,7 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) | |||
352 | if (PageDirty(page)) | 355 | if (PageDirty(page)) |
353 | goto failed; | 356 | goto failed; |
354 | 357 | ||
358 | clear_page_mlock(page); | ||
355 | BUG_ON(PagePrivate(page)); | 359 | BUG_ON(PagePrivate(page)); |
356 | __remove_from_page_cache(page); | 360 | __remove_from_page_cache(page); |
357 | spin_unlock_irq(&mapping->tree_lock); | 361 | spin_unlock_irq(&mapping->tree_lock); |
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index f018d7e0addb..0797589d51f8 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -8,6 +8,7 @@ | |||
8 | * Numa awareness, Christoph Lameter, SGI, June 2005 | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
9 | */ | 9 | */ |
10 | 10 | ||
11 | #include <linux/vmalloc.h> | ||
11 | #include <linux/mm.h> | 12 | #include <linux/mm.h> |
12 | #include <linux/module.h> | 13 | #include <linux/module.h> |
13 | #include <linux/highmem.h> | 14 | #include <linux/highmem.h> |
@@ -18,16 +19,17 @@ | |||
18 | #include <linux/debugobjects.h> | 19 | #include <linux/debugobjects.h> |
19 | #include <linux/vmalloc.h> | 20 | #include <linux/vmalloc.h> |
20 | #include <linux/kallsyms.h> | 21 | #include <linux/kallsyms.h> |
22 | #include <linux/list.h> | ||
23 | #include <linux/rbtree.h> | ||
24 | #include <linux/radix-tree.h> | ||
25 | #include <linux/rcupdate.h> | ||
21 | 26 | ||
27 | #include <asm/atomic.h> | ||
22 | #include <asm/uaccess.h> | 28 | #include <asm/uaccess.h> |
23 | #include <asm/tlbflush.h> | 29 | #include <asm/tlbflush.h> |
24 | 30 | ||
25 | 31 | ||
26 | DEFINE_RWLOCK(vmlist_lock); | 32 | /*** Page table manipulation functions ***/ |
27 | struct vm_struct *vmlist; | ||
28 | |||
29 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, | ||
30 | int node, void *caller); | ||
31 | 33 | ||
32 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) | 34 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
33 | { | 35 | { |
@@ -40,8 +42,7 @@ static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) | |||
40 | } while (pte++, addr += PAGE_SIZE, addr != end); | 42 | } while (pte++, addr += PAGE_SIZE, addr != end); |
41 | } | 43 | } |
42 | 44 | ||
43 | static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, | 45 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
44 | unsigned long end) | ||
45 | { | 46 | { |
46 | pmd_t *pmd; | 47 | pmd_t *pmd; |
47 | unsigned long next; | 48 | unsigned long next; |
@@ -55,8 +56,7 @@ static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, | |||
55 | } while (pmd++, addr = next, addr != end); | 56 | } while (pmd++, addr = next, addr != end); |
56 | } | 57 | } |
57 | 58 | ||
58 | static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, | 59 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
59 | unsigned long end) | ||
60 | { | 60 | { |
61 | pud_t *pud; | 61 | pud_t *pud; |
62 | unsigned long next; | 62 | unsigned long next; |
@@ -70,12 +70,10 @@ static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, | |||
70 | } while (pud++, addr = next, addr != end); | 70 | } while (pud++, addr = next, addr != end); |
71 | } | 71 | } |
72 | 72 | ||
73 | void unmap_kernel_range(unsigned long addr, unsigned long size) | 73 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
74 | { | 74 | { |
75 | pgd_t *pgd; | 75 | pgd_t *pgd; |
76 | unsigned long next; | 76 | unsigned long next; |
77 | unsigned long start = addr; | ||
78 | unsigned long end = addr + size; | ||
79 | 77 | ||
80 | BUG_ON(addr >= end); | 78 | BUG_ON(addr >= end); |
81 | pgd = pgd_offset_k(addr); | 79 | pgd = pgd_offset_k(addr); |
@@ -86,35 +84,36 @@ void unmap_kernel_range(unsigned long addr, unsigned long size) | |||
86 | continue; | 84 | continue; |
87 | vunmap_pud_range(pgd, addr, next); | 85 | vunmap_pud_range(pgd, addr, next); |
88 | } while (pgd++, addr = next, addr != end); | 86 | } while (pgd++, addr = next, addr != end); |
89 | flush_tlb_kernel_range(start, end); | ||
90 | } | ||
91 | |||
92 | static void unmap_vm_area(struct vm_struct *area) | ||
93 | { | ||
94 | unmap_kernel_range((unsigned long)area->addr, area->size); | ||
95 | } | 87 | } |
96 | 88 | ||
97 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | 89 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, |
98 | unsigned long end, pgprot_t prot, struct page ***pages) | 90 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
99 | { | 91 | { |
100 | pte_t *pte; | 92 | pte_t *pte; |
101 | 93 | ||
94 | /* | ||
95 | * nr is a running index into the array which helps higher level | ||
96 | * callers keep track of where we're up to. | ||
97 | */ | ||
98 | |||
102 | pte = pte_alloc_kernel(pmd, addr); | 99 | pte = pte_alloc_kernel(pmd, addr); |
103 | if (!pte) | 100 | if (!pte) |
104 | return -ENOMEM; | 101 | return -ENOMEM; |
105 | do { | 102 | do { |
106 | struct page *page = **pages; | 103 | struct page *page = pages[*nr]; |
107 | WARN_ON(!pte_none(*pte)); | 104 | |
108 | if (!page) | 105 | if (WARN_ON(!pte_none(*pte))) |
106 | return -EBUSY; | ||
107 | if (WARN_ON(!page)) | ||
109 | return -ENOMEM; | 108 | return -ENOMEM; |
110 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | 109 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); |
111 | (*pages)++; | 110 | (*nr)++; |
112 | } while (pte++, addr += PAGE_SIZE, addr != end); | 111 | } while (pte++, addr += PAGE_SIZE, addr != end); |
113 | return 0; | 112 | return 0; |
114 | } | 113 | } |
115 | 114 | ||
116 | static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, | 115 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
117 | unsigned long end, pgprot_t prot, struct page ***pages) | 116 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
118 | { | 117 | { |
119 | pmd_t *pmd; | 118 | pmd_t *pmd; |
120 | unsigned long next; | 119 | unsigned long next; |
@@ -124,14 +123,14 @@ static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, | |||
124 | return -ENOMEM; | 123 | return -ENOMEM; |
125 | do { | 124 | do { |
126 | next = pmd_addr_end(addr, end); | 125 | next = pmd_addr_end(addr, end); |
127 | if (vmap_pte_range(pmd, addr, next, prot, pages)) | 126 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
128 | return -ENOMEM; | 127 | return -ENOMEM; |
129 | } while (pmd++, addr = next, addr != end); | 128 | } while (pmd++, addr = next, addr != end); |
130 | return 0; | 129 | return 0; |
131 | } | 130 | } |
132 | 131 | ||
133 | static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, | 132 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
134 | unsigned long end, pgprot_t prot, struct page ***pages) | 133 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
135 | { | 134 | { |
136 | pud_t *pud; | 135 | pud_t *pud; |
137 | unsigned long next; | 136 | unsigned long next; |
@@ -141,32 +140,40 @@ static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, | |||
141 | return -ENOMEM; | 140 | return -ENOMEM; |
142 | do { | 141 | do { |
143 | next = pud_addr_end(addr, end); | 142 | next = pud_addr_end(addr, end); |
144 | if (vmap_pmd_range(pud, addr, next, prot, pages)) | 143 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
145 | return -ENOMEM; | 144 | return -ENOMEM; |
146 | } while (pud++, addr = next, addr != end); | 145 | } while (pud++, addr = next, addr != end); |
147 | return 0; | 146 | return 0; |
148 | } | 147 | } |
149 | 148 | ||
150 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | 149 | /* |
150 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | ||
151 | * will have pfns corresponding to the "pages" array. | ||
152 | * | ||
153 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | ||
154 | */ | ||
155 | static int vmap_page_range(unsigned long addr, unsigned long end, | ||
156 | pgprot_t prot, struct page **pages) | ||
151 | { | 157 | { |
152 | pgd_t *pgd; | 158 | pgd_t *pgd; |
153 | unsigned long next; | 159 | unsigned long next; |
154 | unsigned long addr = (unsigned long) area->addr; | 160 | int err = 0; |
155 | unsigned long end = addr + area->size - PAGE_SIZE; | 161 | int nr = 0; |
156 | int err; | ||
157 | 162 | ||
158 | BUG_ON(addr >= end); | 163 | BUG_ON(addr >= end); |
159 | pgd = pgd_offset_k(addr); | 164 | pgd = pgd_offset_k(addr); |
160 | do { | 165 | do { |
161 | next = pgd_addr_end(addr, end); | 166 | next = pgd_addr_end(addr, end); |
162 | err = vmap_pud_range(pgd, addr, next, prot, pages); | 167 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
163 | if (err) | 168 | if (err) |
164 | break; | 169 | break; |
165 | } while (pgd++, addr = next, addr != end); | 170 | } while (pgd++, addr = next, addr != end); |
166 | flush_cache_vmap((unsigned long) area->addr, end); | 171 | flush_cache_vmap(addr, end); |
167 | return err; | 172 | |
173 | if (unlikely(err)) | ||
174 | return err; | ||
175 | return nr; | ||
168 | } | 176 | } |
169 | EXPORT_SYMBOL_GPL(map_vm_area); | ||
170 | 177 | ||
171 | static inline int is_vmalloc_or_module_addr(const void *x) | 178 | static inline int is_vmalloc_or_module_addr(const void *x) |
172 | { | 179 | { |
@@ -184,16 +191,13 @@ static inline int is_vmalloc_or_module_addr(const void *x) | |||
184 | } | 191 | } |
185 | 192 | ||
186 | /* | 193 | /* |
187 | * Map a vmalloc()-space virtual address to the physical page. | 194 | * Walk a vmap address to the struct page it maps. |
188 | */ | 195 | */ |
189 | struct page *vmalloc_to_page(const void *vmalloc_addr) | 196 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
190 | { | 197 | { |
191 | unsigned long addr = (unsigned long) vmalloc_addr; | 198 | unsigned long addr = (unsigned long) vmalloc_addr; |
192 | struct page *page = NULL; | 199 | struct page *page = NULL; |
193 | pgd_t *pgd = pgd_offset_k(addr); | 200 | pgd_t *pgd = pgd_offset_k(addr); |
194 | pud_t *pud; | ||
195 | pmd_t *pmd; | ||
196 | pte_t *ptep, pte; | ||
197 | 201 | ||
198 | /* | 202 | /* |
199 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | 203 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for |
@@ -202,10 +206,12 @@ struct page *vmalloc_to_page(const void *vmalloc_addr) | |||
202 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); | 206 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
203 | 207 | ||
204 | if (!pgd_none(*pgd)) { | 208 | if (!pgd_none(*pgd)) { |
205 | pud = pud_offset(pgd, addr); | 209 | pud_t *pud = pud_offset(pgd, addr); |
206 | if (!pud_none(*pud)) { | 210 | if (!pud_none(*pud)) { |
207 | pmd = pmd_offset(pud, addr); | 211 | pmd_t *pmd = pmd_offset(pud, addr); |
208 | if (!pmd_none(*pmd)) { | 212 | if (!pmd_none(*pmd)) { |
213 | pte_t *ptep, pte; | ||
214 | |||
209 | ptep = pte_offset_map(pmd, addr); | 215 | ptep = pte_offset_map(pmd, addr); |
210 | pte = *ptep; | 216 | pte = *ptep; |
211 | if (pte_present(pte)) | 217 | if (pte_present(pte)) |
@@ -227,13 +233,751 @@ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) | |||
227 | } | 233 | } |
228 | EXPORT_SYMBOL(vmalloc_to_pfn); | 234 | EXPORT_SYMBOL(vmalloc_to_pfn); |
229 | 235 | ||
230 | static struct vm_struct * | 236 | |
231 | __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start, | 237 | /*** Global kva allocator ***/ |
232 | unsigned long end, int node, gfp_t gfp_mask, void *caller) | 238 | |
239 | #define VM_LAZY_FREE 0x01 | ||
240 | #define VM_LAZY_FREEING 0x02 | ||
241 | #define VM_VM_AREA 0x04 | ||
242 | |||
243 | struct vmap_area { | ||
244 | unsigned long va_start; | ||
245 | unsigned long va_end; | ||
246 | unsigned long flags; | ||
247 | struct rb_node rb_node; /* address sorted rbtree */ | ||
248 | struct list_head list; /* address sorted list */ | ||
249 | struct list_head purge_list; /* "lazy purge" list */ | ||
250 | void *private; | ||
251 | struct rcu_head rcu_head; | ||
252 | }; | ||
253 | |||
254 | static DEFINE_SPINLOCK(vmap_area_lock); | ||
255 | static struct rb_root vmap_area_root = RB_ROOT; | ||
256 | static LIST_HEAD(vmap_area_list); | ||
257 | |||
258 | static struct vmap_area *__find_vmap_area(unsigned long addr) | ||
233 | { | 259 | { |
234 | struct vm_struct **p, *tmp, *area; | 260 | struct rb_node *n = vmap_area_root.rb_node; |
235 | unsigned long align = 1; | 261 | |
262 | while (n) { | ||
263 | struct vmap_area *va; | ||
264 | |||
265 | va = rb_entry(n, struct vmap_area, rb_node); | ||
266 | if (addr < va->va_start) | ||
267 | n = n->rb_left; | ||
268 | else if (addr > va->va_start) | ||
269 | n = n->rb_right; | ||
270 | else | ||
271 | return va; | ||
272 | } | ||
273 | |||
274 | return NULL; | ||
275 | } | ||
276 | |||
277 | static void __insert_vmap_area(struct vmap_area *va) | ||
278 | { | ||
279 | struct rb_node **p = &vmap_area_root.rb_node; | ||
280 | struct rb_node *parent = NULL; | ||
281 | struct rb_node *tmp; | ||
282 | |||
283 | while (*p) { | ||
284 | struct vmap_area *tmp; | ||
285 | |||
286 | parent = *p; | ||
287 | tmp = rb_entry(parent, struct vmap_area, rb_node); | ||
288 | if (va->va_start < tmp->va_end) | ||
289 | p = &(*p)->rb_left; | ||
290 | else if (va->va_end > tmp->va_start) | ||
291 | p = &(*p)->rb_right; | ||
292 | else | ||
293 | BUG(); | ||
294 | } | ||
295 | |||
296 | rb_link_node(&va->rb_node, parent, p); | ||
297 | rb_insert_color(&va->rb_node, &vmap_area_root); | ||
298 | |||
299 | /* address-sort this list so it is usable like the vmlist */ | ||
300 | tmp = rb_prev(&va->rb_node); | ||
301 | if (tmp) { | ||
302 | struct vmap_area *prev; | ||
303 | prev = rb_entry(tmp, struct vmap_area, rb_node); | ||
304 | list_add_rcu(&va->list, &prev->list); | ||
305 | } else | ||
306 | list_add_rcu(&va->list, &vmap_area_list); | ||
307 | } | ||
308 | |||
309 | static void purge_vmap_area_lazy(void); | ||
310 | |||
311 | /* | ||
312 | * Allocate a region of KVA of the specified size and alignment, within the | ||
313 | * vstart and vend. | ||
314 | */ | ||
315 | static struct vmap_area *alloc_vmap_area(unsigned long size, | ||
316 | unsigned long align, | ||
317 | unsigned long vstart, unsigned long vend, | ||
318 | int node, gfp_t gfp_mask) | ||
319 | { | ||
320 | struct vmap_area *va; | ||
321 | struct rb_node *n; | ||
322 | unsigned long addr; | ||
323 | int purged = 0; | ||
324 | |||
325 | BUG_ON(size & ~PAGE_MASK); | ||
326 | |||
327 | addr = ALIGN(vstart, align); | ||
328 | |||
329 | va = kmalloc_node(sizeof(struct vmap_area), | ||
330 | gfp_mask & GFP_RECLAIM_MASK, node); | ||
331 | if (unlikely(!va)) | ||
332 | return ERR_PTR(-ENOMEM); | ||
333 | |||
334 | retry: | ||
335 | spin_lock(&vmap_area_lock); | ||
336 | /* XXX: could have a last_hole cache */ | ||
337 | n = vmap_area_root.rb_node; | ||
338 | if (n) { | ||
339 | struct vmap_area *first = NULL; | ||
340 | |||
341 | do { | ||
342 | struct vmap_area *tmp; | ||
343 | tmp = rb_entry(n, struct vmap_area, rb_node); | ||
344 | if (tmp->va_end >= addr) { | ||
345 | if (!first && tmp->va_start < addr + size) | ||
346 | first = tmp; | ||
347 | n = n->rb_left; | ||
348 | } else { | ||
349 | first = tmp; | ||
350 | n = n->rb_right; | ||
351 | } | ||
352 | } while (n); | ||
353 | |||
354 | if (!first) | ||
355 | goto found; | ||
356 | |||
357 | if (first->va_end < addr) { | ||
358 | n = rb_next(&first->rb_node); | ||
359 | if (n) | ||
360 | first = rb_entry(n, struct vmap_area, rb_node); | ||
361 | else | ||
362 | goto found; | ||
363 | } | ||
364 | |||
365 | while (addr + size >= first->va_start && addr + size <= vend) { | ||
366 | addr = ALIGN(first->va_end + PAGE_SIZE, align); | ||
367 | |||
368 | n = rb_next(&first->rb_node); | ||
369 | if (n) | ||
370 | first = rb_entry(n, struct vmap_area, rb_node); | ||
371 | else | ||
372 | goto found; | ||
373 | } | ||
374 | } | ||
375 | found: | ||
376 | if (addr + size > vend) { | ||
377 | spin_unlock(&vmap_area_lock); | ||
378 | if (!purged) { | ||
379 | purge_vmap_area_lazy(); | ||
380 | purged = 1; | ||
381 | goto retry; | ||
382 | } | ||
383 | if (printk_ratelimit()) | ||
384 | printk(KERN_WARNING "vmap allocation failed: " | ||
385 | "use vmalloc=<size> to increase size.\n"); | ||
386 | return ERR_PTR(-EBUSY); | ||
387 | } | ||
388 | |||
389 | BUG_ON(addr & (align-1)); | ||
390 | |||
391 | va->va_start = addr; | ||
392 | va->va_end = addr + size; | ||
393 | va->flags = 0; | ||
394 | __insert_vmap_area(va); | ||
395 | spin_unlock(&vmap_area_lock); | ||
396 | |||
397 | return va; | ||
398 | } | ||
399 | |||
400 | static void rcu_free_va(struct rcu_head *head) | ||
401 | { | ||
402 | struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); | ||
403 | |||
404 | kfree(va); | ||
405 | } | ||
406 | |||
407 | static void __free_vmap_area(struct vmap_area *va) | ||
408 | { | ||
409 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | ||
410 | rb_erase(&va->rb_node, &vmap_area_root); | ||
411 | RB_CLEAR_NODE(&va->rb_node); | ||
412 | list_del_rcu(&va->list); | ||
413 | |||
414 | call_rcu(&va->rcu_head, rcu_free_va); | ||
415 | } | ||
416 | |||
417 | /* | ||
418 | * Free a region of KVA allocated by alloc_vmap_area | ||
419 | */ | ||
420 | static void free_vmap_area(struct vmap_area *va) | ||
421 | { | ||
422 | spin_lock(&vmap_area_lock); | ||
423 | __free_vmap_area(va); | ||
424 | spin_unlock(&vmap_area_lock); | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * Clear the pagetable entries of a given vmap_area | ||
429 | */ | ||
430 | static void unmap_vmap_area(struct vmap_area *va) | ||
431 | { | ||
432 | vunmap_page_range(va->va_start, va->va_end); | ||
433 | } | ||
434 | |||
435 | /* | ||
436 | * lazy_max_pages is the maximum amount of virtual address space we gather up | ||
437 | * before attempting to purge with a TLB flush. | ||
438 | * | ||
439 | * There is a tradeoff here: a larger number will cover more kernel page tables | ||
440 | * and take slightly longer to purge, but it will linearly reduce the number of | ||
441 | * global TLB flushes that must be performed. It would seem natural to scale | ||
442 | * this number up linearly with the number of CPUs (because vmapping activity | ||
443 | * could also scale linearly with the number of CPUs), however it is likely | ||
444 | * that in practice, workloads might be constrained in other ways that mean | ||
445 | * vmap activity will not scale linearly with CPUs. Also, I want to be | ||
446 | * conservative and not introduce a big latency on huge systems, so go with | ||
447 | * a less aggressive log scale. It will still be an improvement over the old | ||
448 | * code, and it will be simple to change the scale factor if we find that it | ||
449 | * becomes a problem on bigger systems. | ||
450 | */ | ||
451 | static unsigned long lazy_max_pages(void) | ||
452 | { | ||
453 | unsigned int log; | ||
454 | |||
455 | log = fls(num_online_cpus()); | ||
456 | |||
457 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | ||
458 | } | ||
459 | |||
460 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | ||
461 | |||
462 | /* | ||
463 | * Purges all lazily-freed vmap areas. | ||
464 | * | ||
465 | * If sync is 0 then don't purge if there is already a purge in progress. | ||
466 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | ||
467 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | ||
468 | * their own TLB flushing). | ||
469 | * Returns with *start = min(*start, lowest purged address) | ||
470 | * *end = max(*end, highest purged address) | ||
471 | */ | ||
472 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | ||
473 | int sync, int force_flush) | ||
474 | { | ||
475 | static DEFINE_SPINLOCK(purge_lock); | ||
476 | LIST_HEAD(valist); | ||
477 | struct vmap_area *va; | ||
478 | int nr = 0; | ||
479 | |||
480 | /* | ||
481 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | ||
482 | * should not expect such behaviour. This just simplifies locking for | ||
483 | * the case that isn't actually used at the moment anyway. | ||
484 | */ | ||
485 | if (!sync && !force_flush) { | ||
486 | if (!spin_trylock(&purge_lock)) | ||
487 | return; | ||
488 | } else | ||
489 | spin_lock(&purge_lock); | ||
490 | |||
491 | rcu_read_lock(); | ||
492 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | ||
493 | if (va->flags & VM_LAZY_FREE) { | ||
494 | if (va->va_start < *start) | ||
495 | *start = va->va_start; | ||
496 | if (va->va_end > *end) | ||
497 | *end = va->va_end; | ||
498 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | ||
499 | unmap_vmap_area(va); | ||
500 | list_add_tail(&va->purge_list, &valist); | ||
501 | va->flags |= VM_LAZY_FREEING; | ||
502 | va->flags &= ~VM_LAZY_FREE; | ||
503 | } | ||
504 | } | ||
505 | rcu_read_unlock(); | ||
506 | |||
507 | if (nr) { | ||
508 | BUG_ON(nr > atomic_read(&vmap_lazy_nr)); | ||
509 | atomic_sub(nr, &vmap_lazy_nr); | ||
510 | } | ||
511 | |||
512 | if (nr || force_flush) | ||
513 | flush_tlb_kernel_range(*start, *end); | ||
514 | |||
515 | if (nr) { | ||
516 | spin_lock(&vmap_area_lock); | ||
517 | list_for_each_entry(va, &valist, purge_list) | ||
518 | __free_vmap_area(va); | ||
519 | spin_unlock(&vmap_area_lock); | ||
520 | } | ||
521 | spin_unlock(&purge_lock); | ||
522 | } | ||
523 | |||
524 | /* | ||
525 | * Kick off a purge of the outstanding lazy areas. | ||
526 | */ | ||
527 | static void purge_vmap_area_lazy(void) | ||
528 | { | ||
529 | unsigned long start = ULONG_MAX, end = 0; | ||
530 | |||
531 | __purge_vmap_area_lazy(&start, &end, 0, 0); | ||
532 | } | ||
533 | |||
534 | /* | ||
535 | * Free and unmap a vmap area | ||
536 | */ | ||
537 | static void free_unmap_vmap_area(struct vmap_area *va) | ||
538 | { | ||
539 | va->flags |= VM_LAZY_FREE; | ||
540 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | ||
541 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | ||
542 | purge_vmap_area_lazy(); | ||
543 | } | ||
544 | |||
545 | static struct vmap_area *find_vmap_area(unsigned long addr) | ||
546 | { | ||
547 | struct vmap_area *va; | ||
548 | |||
549 | spin_lock(&vmap_area_lock); | ||
550 | va = __find_vmap_area(addr); | ||
551 | spin_unlock(&vmap_area_lock); | ||
552 | |||
553 | return va; | ||
554 | } | ||
555 | |||
556 | static void free_unmap_vmap_area_addr(unsigned long addr) | ||
557 | { | ||
558 | struct vmap_area *va; | ||
559 | |||
560 | va = find_vmap_area(addr); | ||
561 | BUG_ON(!va); | ||
562 | free_unmap_vmap_area(va); | ||
563 | } | ||
564 | |||
565 | |||
566 | /*** Per cpu kva allocator ***/ | ||
567 | |||
568 | /* | ||
569 | * vmap space is limited especially on 32 bit architectures. Ensure there is | ||
570 | * room for at least 16 percpu vmap blocks per CPU. | ||
571 | */ | ||
572 | /* | ||
573 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | ||
574 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | ||
575 | * instead (we just need a rough idea) | ||
576 | */ | ||
577 | #if BITS_PER_LONG == 32 | ||
578 | #define VMALLOC_SPACE (128UL*1024*1024) | ||
579 | #else | ||
580 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | ||
581 | #endif | ||
582 | |||
583 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | ||
584 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | ||
585 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | ||
586 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | ||
587 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | ||
588 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | ||
589 | #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | ||
590 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | ||
591 | VMALLOC_PAGES / NR_CPUS / 16)) | ||
592 | |||
593 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | ||
594 | |||
595 | struct vmap_block_queue { | ||
596 | spinlock_t lock; | ||
597 | struct list_head free; | ||
598 | struct list_head dirty; | ||
599 | unsigned int nr_dirty; | ||
600 | }; | ||
601 | |||
602 | struct vmap_block { | ||
603 | spinlock_t lock; | ||
604 | struct vmap_area *va; | ||
605 | struct vmap_block_queue *vbq; | ||
606 | unsigned long free, dirty; | ||
607 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | ||
608 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | ||
609 | union { | ||
610 | struct { | ||
611 | struct list_head free_list; | ||
612 | struct list_head dirty_list; | ||
613 | }; | ||
614 | struct rcu_head rcu_head; | ||
615 | }; | ||
616 | }; | ||
617 | |||
618 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | ||
619 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | ||
620 | |||
621 | /* | ||
622 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | ||
623 | * in the free path. Could get rid of this if we change the API to return a | ||
624 | * "cookie" from alloc, to be passed to free. But no big deal yet. | ||
625 | */ | ||
626 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | ||
627 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | ||
628 | |||
629 | /* | ||
630 | * We should probably have a fallback mechanism to allocate virtual memory | ||
631 | * out of partially filled vmap blocks. However vmap block sizing should be | ||
632 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | ||
633 | * big problem. | ||
634 | */ | ||
635 | |||
636 | static unsigned long addr_to_vb_idx(unsigned long addr) | ||
637 | { | ||
638 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | ||
639 | addr /= VMAP_BLOCK_SIZE; | ||
640 | return addr; | ||
641 | } | ||
642 | |||
643 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | ||
644 | { | ||
645 | struct vmap_block_queue *vbq; | ||
646 | struct vmap_block *vb; | ||
647 | struct vmap_area *va; | ||
648 | unsigned long vb_idx; | ||
649 | int node, err; | ||
650 | |||
651 | node = numa_node_id(); | ||
652 | |||
653 | vb = kmalloc_node(sizeof(struct vmap_block), | ||
654 | gfp_mask & GFP_RECLAIM_MASK, node); | ||
655 | if (unlikely(!vb)) | ||
656 | return ERR_PTR(-ENOMEM); | ||
657 | |||
658 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | ||
659 | VMALLOC_START, VMALLOC_END, | ||
660 | node, gfp_mask); | ||
661 | if (unlikely(IS_ERR(va))) { | ||
662 | kfree(vb); | ||
663 | return ERR_PTR(PTR_ERR(va)); | ||
664 | } | ||
665 | |||
666 | err = radix_tree_preload(gfp_mask); | ||
667 | if (unlikely(err)) { | ||
668 | kfree(vb); | ||
669 | free_vmap_area(va); | ||
670 | return ERR_PTR(err); | ||
671 | } | ||
672 | |||
673 | spin_lock_init(&vb->lock); | ||
674 | vb->va = va; | ||
675 | vb->free = VMAP_BBMAP_BITS; | ||
676 | vb->dirty = 0; | ||
677 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | ||
678 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | ||
679 | INIT_LIST_HEAD(&vb->free_list); | ||
680 | INIT_LIST_HEAD(&vb->dirty_list); | ||
681 | |||
682 | vb_idx = addr_to_vb_idx(va->va_start); | ||
683 | spin_lock(&vmap_block_tree_lock); | ||
684 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | ||
685 | spin_unlock(&vmap_block_tree_lock); | ||
686 | BUG_ON(err); | ||
687 | radix_tree_preload_end(); | ||
688 | |||
689 | vbq = &get_cpu_var(vmap_block_queue); | ||
690 | vb->vbq = vbq; | ||
691 | spin_lock(&vbq->lock); | ||
692 | list_add(&vb->free_list, &vbq->free); | ||
693 | spin_unlock(&vbq->lock); | ||
694 | put_cpu_var(vmap_cpu_blocks); | ||
695 | |||
696 | return vb; | ||
697 | } | ||
698 | |||
699 | static void rcu_free_vb(struct rcu_head *head) | ||
700 | { | ||
701 | struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); | ||
702 | |||
703 | kfree(vb); | ||
704 | } | ||
705 | |||
706 | static void free_vmap_block(struct vmap_block *vb) | ||
707 | { | ||
708 | struct vmap_block *tmp; | ||
709 | unsigned long vb_idx; | ||
710 | |||
711 | spin_lock(&vb->vbq->lock); | ||
712 | if (!list_empty(&vb->free_list)) | ||
713 | list_del(&vb->free_list); | ||
714 | if (!list_empty(&vb->dirty_list)) | ||
715 | list_del(&vb->dirty_list); | ||
716 | spin_unlock(&vb->vbq->lock); | ||
717 | |||
718 | vb_idx = addr_to_vb_idx(vb->va->va_start); | ||
719 | spin_lock(&vmap_block_tree_lock); | ||
720 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | ||
721 | spin_unlock(&vmap_block_tree_lock); | ||
722 | BUG_ON(tmp != vb); | ||
723 | |||
724 | free_unmap_vmap_area(vb->va); | ||
725 | call_rcu(&vb->rcu_head, rcu_free_vb); | ||
726 | } | ||
727 | |||
728 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | ||
729 | { | ||
730 | struct vmap_block_queue *vbq; | ||
731 | struct vmap_block *vb; | ||
732 | unsigned long addr = 0; | ||
733 | unsigned int order; | ||
734 | |||
735 | BUG_ON(size & ~PAGE_MASK); | ||
736 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | ||
737 | order = get_order(size); | ||
738 | |||
739 | again: | ||
740 | rcu_read_lock(); | ||
741 | vbq = &get_cpu_var(vmap_block_queue); | ||
742 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | ||
743 | int i; | ||
744 | |||
745 | spin_lock(&vb->lock); | ||
746 | i = bitmap_find_free_region(vb->alloc_map, | ||
747 | VMAP_BBMAP_BITS, order); | ||
748 | |||
749 | if (i >= 0) { | ||
750 | addr = vb->va->va_start + (i << PAGE_SHIFT); | ||
751 | BUG_ON(addr_to_vb_idx(addr) != | ||
752 | addr_to_vb_idx(vb->va->va_start)); | ||
753 | vb->free -= 1UL << order; | ||
754 | if (vb->free == 0) { | ||
755 | spin_lock(&vbq->lock); | ||
756 | list_del_init(&vb->free_list); | ||
757 | spin_unlock(&vbq->lock); | ||
758 | } | ||
759 | spin_unlock(&vb->lock); | ||
760 | break; | ||
761 | } | ||
762 | spin_unlock(&vb->lock); | ||
763 | } | ||
764 | put_cpu_var(vmap_cpu_blocks); | ||
765 | rcu_read_unlock(); | ||
766 | |||
767 | if (!addr) { | ||
768 | vb = new_vmap_block(gfp_mask); | ||
769 | if (IS_ERR(vb)) | ||
770 | return vb; | ||
771 | goto again; | ||
772 | } | ||
773 | |||
774 | return (void *)addr; | ||
775 | } | ||
776 | |||
777 | static void vb_free(const void *addr, unsigned long size) | ||
778 | { | ||
779 | unsigned long offset; | ||
780 | unsigned long vb_idx; | ||
781 | unsigned int order; | ||
782 | struct vmap_block *vb; | ||
783 | |||
784 | BUG_ON(size & ~PAGE_MASK); | ||
785 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | ||
786 | order = get_order(size); | ||
787 | |||
788 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | ||
789 | |||
790 | vb_idx = addr_to_vb_idx((unsigned long)addr); | ||
791 | rcu_read_lock(); | ||
792 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | ||
793 | rcu_read_unlock(); | ||
794 | BUG_ON(!vb); | ||
795 | |||
796 | spin_lock(&vb->lock); | ||
797 | bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); | ||
798 | if (!vb->dirty) { | ||
799 | spin_lock(&vb->vbq->lock); | ||
800 | list_add(&vb->dirty_list, &vb->vbq->dirty); | ||
801 | spin_unlock(&vb->vbq->lock); | ||
802 | } | ||
803 | vb->dirty += 1UL << order; | ||
804 | if (vb->dirty == VMAP_BBMAP_BITS) { | ||
805 | BUG_ON(vb->free || !list_empty(&vb->free_list)); | ||
806 | spin_unlock(&vb->lock); | ||
807 | free_vmap_block(vb); | ||
808 | } else | ||
809 | spin_unlock(&vb->lock); | ||
810 | } | ||
811 | |||
812 | /** | ||
813 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | ||
814 | * | ||
815 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | ||
816 | * to amortize TLB flushing overheads. What this means is that any page you | ||
817 | * have now, may, in a former life, have been mapped into kernel virtual | ||
818 | * address by the vmap layer and so there might be some CPUs with TLB entries | ||
819 | * still referencing that page (additional to the regular 1:1 kernel mapping). | ||
820 | * | ||
821 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | ||
822 | * be sure that none of the pages we have control over will have any aliases | ||
823 | * from the vmap layer. | ||
824 | */ | ||
825 | void vm_unmap_aliases(void) | ||
826 | { | ||
827 | unsigned long start = ULONG_MAX, end = 0; | ||
828 | int cpu; | ||
829 | int flush = 0; | ||
830 | |||
831 | for_each_possible_cpu(cpu) { | ||
832 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | ||
833 | struct vmap_block *vb; | ||
834 | |||
835 | rcu_read_lock(); | ||
836 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | ||
837 | int i; | ||
838 | |||
839 | spin_lock(&vb->lock); | ||
840 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | ||
841 | while (i < VMAP_BBMAP_BITS) { | ||
842 | unsigned long s, e; | ||
843 | int j; | ||
844 | j = find_next_zero_bit(vb->dirty_map, | ||
845 | VMAP_BBMAP_BITS, i); | ||
846 | |||
847 | s = vb->va->va_start + (i << PAGE_SHIFT); | ||
848 | e = vb->va->va_start + (j << PAGE_SHIFT); | ||
849 | vunmap_page_range(s, e); | ||
850 | flush = 1; | ||
851 | |||
852 | if (s < start) | ||
853 | start = s; | ||
854 | if (e > end) | ||
855 | end = e; | ||
856 | |||
857 | i = j; | ||
858 | i = find_next_bit(vb->dirty_map, | ||
859 | VMAP_BBMAP_BITS, i); | ||
860 | } | ||
861 | spin_unlock(&vb->lock); | ||
862 | } | ||
863 | rcu_read_unlock(); | ||
864 | } | ||
865 | |||
866 | __purge_vmap_area_lazy(&start, &end, 1, flush); | ||
867 | } | ||
868 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | ||
869 | |||
870 | /** | ||
871 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | ||
872 | * @mem: the pointer returned by vm_map_ram | ||
873 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | ||
874 | */ | ||
875 | void vm_unmap_ram(const void *mem, unsigned int count) | ||
876 | { | ||
877 | unsigned long size = count << PAGE_SHIFT; | ||
878 | unsigned long addr = (unsigned long)mem; | ||
879 | |||
880 | BUG_ON(!addr); | ||
881 | BUG_ON(addr < VMALLOC_START); | ||
882 | BUG_ON(addr > VMALLOC_END); | ||
883 | BUG_ON(addr & (PAGE_SIZE-1)); | ||
884 | |||
885 | debug_check_no_locks_freed(mem, size); | ||
886 | |||
887 | if (likely(count <= VMAP_MAX_ALLOC)) | ||
888 | vb_free(mem, size); | ||
889 | else | ||
890 | free_unmap_vmap_area_addr(addr); | ||
891 | } | ||
892 | EXPORT_SYMBOL(vm_unmap_ram); | ||
893 | |||
894 | /** | ||
895 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | ||
896 | * @pages: an array of pointers to the pages to be mapped | ||
897 | * @count: number of pages | ||
898 | * @node: prefer to allocate data structures on this node | ||
899 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | ||
900 | * @returns: a pointer to the address that has been mapped, or NULL on failure | ||
901 | */ | ||
902 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | ||
903 | { | ||
904 | unsigned long size = count << PAGE_SHIFT; | ||
236 | unsigned long addr; | 905 | unsigned long addr; |
906 | void *mem; | ||
907 | |||
908 | if (likely(count <= VMAP_MAX_ALLOC)) { | ||
909 | mem = vb_alloc(size, GFP_KERNEL); | ||
910 | if (IS_ERR(mem)) | ||
911 | return NULL; | ||
912 | addr = (unsigned long)mem; | ||
913 | } else { | ||
914 | struct vmap_area *va; | ||
915 | va = alloc_vmap_area(size, PAGE_SIZE, | ||
916 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | ||
917 | if (IS_ERR(va)) | ||
918 | return NULL; | ||
919 | |||
920 | addr = va->va_start; | ||
921 | mem = (void *)addr; | ||
922 | } | ||
923 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | ||
924 | vm_unmap_ram(mem, count); | ||
925 | return NULL; | ||
926 | } | ||
927 | return mem; | ||
928 | } | ||
929 | EXPORT_SYMBOL(vm_map_ram); | ||
930 | |||
931 | void __init vmalloc_init(void) | ||
932 | { | ||
933 | int i; | ||
934 | |||
935 | for_each_possible_cpu(i) { | ||
936 | struct vmap_block_queue *vbq; | ||
937 | |||
938 | vbq = &per_cpu(vmap_block_queue, i); | ||
939 | spin_lock_init(&vbq->lock); | ||
940 | INIT_LIST_HEAD(&vbq->free); | ||
941 | INIT_LIST_HEAD(&vbq->dirty); | ||
942 | vbq->nr_dirty = 0; | ||
943 | } | ||
944 | } | ||
945 | |||
946 | void unmap_kernel_range(unsigned long addr, unsigned long size) | ||
947 | { | ||
948 | unsigned long end = addr + size; | ||
949 | vunmap_page_range(addr, end); | ||
950 | flush_tlb_kernel_range(addr, end); | ||
951 | } | ||
952 | |||
953 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | ||
954 | { | ||
955 | unsigned long addr = (unsigned long)area->addr; | ||
956 | unsigned long end = addr + area->size - PAGE_SIZE; | ||
957 | int err; | ||
958 | |||
959 | err = vmap_page_range(addr, end, prot, *pages); | ||
960 | if (err > 0) { | ||
961 | *pages += err; | ||
962 | err = 0; | ||
963 | } | ||
964 | |||
965 | return err; | ||
966 | } | ||
967 | EXPORT_SYMBOL_GPL(map_vm_area); | ||
968 | |||
969 | /*** Old vmalloc interfaces ***/ | ||
970 | DEFINE_RWLOCK(vmlist_lock); | ||
971 | struct vm_struct *vmlist; | ||
972 | |||
973 | static struct vm_struct *__get_vm_area_node(unsigned long size, | ||
974 | unsigned long flags, unsigned long start, unsigned long end, | ||
975 | int node, gfp_t gfp_mask, void *caller) | ||
976 | { | ||
977 | static struct vmap_area *va; | ||
978 | struct vm_struct *area; | ||
979 | struct vm_struct *tmp, **p; | ||
980 | unsigned long align = 1; | ||
237 | 981 | ||
238 | BUG_ON(in_interrupt()); | 982 | BUG_ON(in_interrupt()); |
239 | if (flags & VM_IOREMAP) { | 983 | if (flags & VM_IOREMAP) { |
@@ -246,13 +990,12 @@ __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start, | |||
246 | 990 | ||
247 | align = 1ul << bit; | 991 | align = 1ul << bit; |
248 | } | 992 | } |
249 | addr = ALIGN(start, align); | 993 | |
250 | size = PAGE_ALIGN(size); | 994 | size = PAGE_ALIGN(size); |
251 | if (unlikely(!size)) | 995 | if (unlikely(!size)) |
252 | return NULL; | 996 | return NULL; |
253 | 997 | ||
254 | area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | 998 | area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
255 | |||
256 | if (unlikely(!area)) | 999 | if (unlikely(!area)) |
257 | return NULL; | 1000 | return NULL; |
258 | 1001 | ||
@@ -261,48 +1004,32 @@ __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start, | |||
261 | */ | 1004 | */ |
262 | size += PAGE_SIZE; | 1005 | size += PAGE_SIZE; |
263 | 1006 | ||
264 | write_lock(&vmlist_lock); | 1007 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
265 | for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { | 1008 | if (IS_ERR(va)) { |
266 | if ((unsigned long)tmp->addr < addr) { | 1009 | kfree(area); |
267 | if((unsigned long)tmp->addr + tmp->size >= addr) | 1010 | return NULL; |
268 | addr = ALIGN(tmp->size + | ||
269 | (unsigned long)tmp->addr, align); | ||
270 | continue; | ||
271 | } | ||
272 | if ((size + addr) < addr) | ||
273 | goto out; | ||
274 | if (size + addr <= (unsigned long)tmp->addr) | ||
275 | goto found; | ||
276 | addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); | ||
277 | if (addr > end - size) | ||
278 | goto out; | ||
279 | } | 1011 | } |
280 | if ((size + addr) < addr) | ||
281 | goto out; | ||
282 | if (addr > end - size) | ||
283 | goto out; | ||
284 | |||
285 | found: | ||
286 | area->next = *p; | ||
287 | *p = area; | ||
288 | 1012 | ||
289 | area->flags = flags; | 1013 | area->flags = flags; |
290 | area->addr = (void *)addr; | 1014 | area->addr = (void *)va->va_start; |
291 | area->size = size; | 1015 | area->size = size; |
292 | area->pages = NULL; | 1016 | area->pages = NULL; |
293 | area->nr_pages = 0; | 1017 | area->nr_pages = 0; |
294 | area->phys_addr = 0; | 1018 | area->phys_addr = 0; |
295 | area->caller = caller; | 1019 | area->caller = caller; |
1020 | va->private = area; | ||
1021 | va->flags |= VM_VM_AREA; | ||
1022 | |||
1023 | write_lock(&vmlist_lock); | ||
1024 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | ||
1025 | if (tmp->addr >= area->addr) | ||
1026 | break; | ||
1027 | } | ||
1028 | area->next = *p; | ||
1029 | *p = area; | ||
296 | write_unlock(&vmlist_lock); | 1030 | write_unlock(&vmlist_lock); |
297 | 1031 | ||
298 | return area; | 1032 | return area; |
299 | |||
300 | out: | ||
301 | write_unlock(&vmlist_lock); | ||
302 | kfree(area); | ||
303 | if (printk_ratelimit()) | ||
304 | printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); | ||
305 | return NULL; | ||
306 | } | 1033 | } |
307 | 1034 | ||
308 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, | 1035 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
@@ -342,39 +1069,15 @@ struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, | |||
342 | gfp_mask, __builtin_return_address(0)); | 1069 | gfp_mask, __builtin_return_address(0)); |
343 | } | 1070 | } |
344 | 1071 | ||
345 | /* Caller must hold vmlist_lock */ | 1072 | static struct vm_struct *find_vm_area(const void *addr) |
346 | static struct vm_struct *__find_vm_area(const void *addr) | ||
347 | { | 1073 | { |
348 | struct vm_struct *tmp; | 1074 | struct vmap_area *va; |
349 | 1075 | ||
350 | for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { | 1076 | va = find_vmap_area((unsigned long)addr); |
351 | if (tmp->addr == addr) | 1077 | if (va && va->flags & VM_VM_AREA) |
352 | break; | 1078 | return va->private; |
353 | } | ||
354 | |||
355 | return tmp; | ||
356 | } | ||
357 | |||
358 | /* Caller must hold vmlist_lock */ | ||
359 | static struct vm_struct *__remove_vm_area(const void *addr) | ||
360 | { | ||
361 | struct vm_struct **p, *tmp; | ||
362 | 1079 | ||
363 | for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { | ||
364 | if (tmp->addr == addr) | ||
365 | goto found; | ||
366 | } | ||
367 | return NULL; | 1080 | return NULL; |
368 | |||
369 | found: | ||
370 | unmap_vm_area(tmp); | ||
371 | *p = tmp->next; | ||
372 | |||
373 | /* | ||
374 | * Remove the guard page. | ||
375 | */ | ||
376 | tmp->size -= PAGE_SIZE; | ||
377 | return tmp; | ||
378 | } | 1081 | } |
379 | 1082 | ||
380 | /** | 1083 | /** |
@@ -387,11 +1090,24 @@ found: | |||
387 | */ | 1090 | */ |
388 | struct vm_struct *remove_vm_area(const void *addr) | 1091 | struct vm_struct *remove_vm_area(const void *addr) |
389 | { | 1092 | { |
390 | struct vm_struct *v; | 1093 | struct vmap_area *va; |
391 | write_lock(&vmlist_lock); | 1094 | |
392 | v = __remove_vm_area(addr); | 1095 | va = find_vmap_area((unsigned long)addr); |
393 | write_unlock(&vmlist_lock); | 1096 | if (va && va->flags & VM_VM_AREA) { |
394 | return v; | 1097 | struct vm_struct *vm = va->private; |
1098 | struct vm_struct *tmp, **p; | ||
1099 | free_unmap_vmap_area(va); | ||
1100 | vm->size -= PAGE_SIZE; | ||
1101 | |||
1102 | write_lock(&vmlist_lock); | ||
1103 | for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) | ||
1104 | ; | ||
1105 | *p = tmp->next; | ||
1106 | write_unlock(&vmlist_lock); | ||
1107 | |||
1108 | return vm; | ||
1109 | } | ||
1110 | return NULL; | ||
395 | } | 1111 | } |
396 | 1112 | ||
397 | static void __vunmap(const void *addr, int deallocate_pages) | 1113 | static void __vunmap(const void *addr, int deallocate_pages) |
@@ -501,6 +1217,8 @@ void *vmap(struct page **pages, unsigned int count, | |||
501 | } | 1217 | } |
502 | EXPORT_SYMBOL(vmap); | 1218 | EXPORT_SYMBOL(vmap); |
503 | 1219 | ||
1220 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, | ||
1221 | int node, void *caller); | ||
504 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, | 1222 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
505 | pgprot_t prot, int node, void *caller) | 1223 | pgprot_t prot, int node, void *caller) |
506 | { | 1224 | { |
@@ -627,10 +1345,8 @@ void *vmalloc_user(unsigned long size) | |||
627 | 1345 | ||
628 | ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); | 1346 | ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); |
629 | if (ret) { | 1347 | if (ret) { |
630 | write_lock(&vmlist_lock); | 1348 | area = find_vm_area(ret); |
631 | area = __find_vm_area(ret); | ||
632 | area->flags |= VM_USERMAP; | 1349 | area->flags |= VM_USERMAP; |
633 | write_unlock(&vmlist_lock); | ||
634 | } | 1350 | } |
635 | return ret; | 1351 | return ret; |
636 | } | 1352 | } |
@@ -710,10 +1426,8 @@ void *vmalloc_32_user(unsigned long size) | |||
710 | 1426 | ||
711 | ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); | 1427 | ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); |
712 | if (ret) { | 1428 | if (ret) { |
713 | write_lock(&vmlist_lock); | 1429 | area = find_vm_area(ret); |
714 | area = __find_vm_area(ret); | ||
715 | area->flags |= VM_USERMAP; | 1430 | area->flags |= VM_USERMAP; |
716 | write_unlock(&vmlist_lock); | ||
717 | } | 1431 | } |
718 | return ret; | 1432 | return ret; |
719 | } | 1433 | } |
@@ -814,26 +1528,25 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |||
814 | struct vm_struct *area; | 1528 | struct vm_struct *area; |
815 | unsigned long uaddr = vma->vm_start; | 1529 | unsigned long uaddr = vma->vm_start; |
816 | unsigned long usize = vma->vm_end - vma->vm_start; | 1530 | unsigned long usize = vma->vm_end - vma->vm_start; |
817 | int ret; | ||
818 | 1531 | ||
819 | if ((PAGE_SIZE-1) & (unsigned long)addr) | 1532 | if ((PAGE_SIZE-1) & (unsigned long)addr) |
820 | return -EINVAL; | 1533 | return -EINVAL; |
821 | 1534 | ||
822 | read_lock(&vmlist_lock); | 1535 | area = find_vm_area(addr); |
823 | area = __find_vm_area(addr); | ||
824 | if (!area) | 1536 | if (!area) |
825 | goto out_einval_locked; | 1537 | return -EINVAL; |
826 | 1538 | ||
827 | if (!(area->flags & VM_USERMAP)) | 1539 | if (!(area->flags & VM_USERMAP)) |
828 | goto out_einval_locked; | 1540 | return -EINVAL; |
829 | 1541 | ||
830 | if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | 1542 | if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) |
831 | goto out_einval_locked; | 1543 | return -EINVAL; |
832 | read_unlock(&vmlist_lock); | ||
833 | 1544 | ||
834 | addr += pgoff << PAGE_SHIFT; | 1545 | addr += pgoff << PAGE_SHIFT; |
835 | do { | 1546 | do { |
836 | struct page *page = vmalloc_to_page(addr); | 1547 | struct page *page = vmalloc_to_page(addr); |
1548 | int ret; | ||
1549 | |||
837 | ret = vm_insert_page(vma, uaddr, page); | 1550 | ret = vm_insert_page(vma, uaddr, page); |
838 | if (ret) | 1551 | if (ret) |
839 | return ret; | 1552 | return ret; |
@@ -846,11 +1559,7 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |||
846 | /* Prevent "things" like memory migration? VM_flags need a cleanup... */ | 1559 | /* Prevent "things" like memory migration? VM_flags need a cleanup... */ |
847 | vma->vm_flags |= VM_RESERVED; | 1560 | vma->vm_flags |= VM_RESERVED; |
848 | 1561 | ||
849 | return ret; | 1562 | return 0; |
850 | |||
851 | out_einval_locked: | ||
852 | read_unlock(&vmlist_lock); | ||
853 | return -EINVAL; | ||
854 | } | 1563 | } |
855 | EXPORT_SYMBOL(remap_vmalloc_range); | 1564 | EXPORT_SYMBOL(remap_vmalloc_range); |
856 | 1565 | ||
diff --git a/mm/vmscan.c b/mm/vmscan.c index 1ff1a58e7c10..3b5860294bb6 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -39,6 +39,7 @@ | |||
39 | #include <linux/freezer.h> | 39 | #include <linux/freezer.h> |
40 | #include <linux/memcontrol.h> | 40 | #include <linux/memcontrol.h> |
41 | #include <linux/delayacct.h> | 41 | #include <linux/delayacct.h> |
42 | #include <linux/sysctl.h> | ||
42 | 43 | ||
43 | #include <asm/tlbflush.h> | 44 | #include <asm/tlbflush.h> |
44 | #include <asm/div64.h> | 45 | #include <asm/div64.h> |
@@ -78,7 +79,7 @@ struct scan_control { | |||
78 | unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, | 79 | unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, |
79 | unsigned long *scanned, int order, int mode, | 80 | unsigned long *scanned, int order, int mode, |
80 | struct zone *z, struct mem_cgroup *mem_cont, | 81 | struct zone *z, struct mem_cgroup *mem_cont, |
81 | int active); | 82 | int active, int file); |
82 | }; | 83 | }; |
83 | 84 | ||
84 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | 85 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
@@ -470,6 +471,85 @@ int remove_mapping(struct address_space *mapping, struct page *page) | |||
470 | return 0; | 471 | return 0; |
471 | } | 472 | } |
472 | 473 | ||
474 | /** | ||
475 | * putback_lru_page - put previously isolated page onto appropriate LRU list | ||
476 | * @page: page to be put back to appropriate lru list | ||
477 | * | ||
478 | * Add previously isolated @page to appropriate LRU list. | ||
479 | * Page may still be unevictable for other reasons. | ||
480 | * | ||
481 | * lru_lock must not be held, interrupts must be enabled. | ||
482 | */ | ||
483 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
484 | void putback_lru_page(struct page *page) | ||
485 | { | ||
486 | int lru; | ||
487 | int active = !!TestClearPageActive(page); | ||
488 | int was_unevictable = PageUnevictable(page); | ||
489 | |||
490 | VM_BUG_ON(PageLRU(page)); | ||
491 | |||
492 | redo: | ||
493 | ClearPageUnevictable(page); | ||
494 | |||
495 | if (page_evictable(page, NULL)) { | ||
496 | /* | ||
497 | * For evictable pages, we can use the cache. | ||
498 | * In event of a race, worst case is we end up with an | ||
499 | * unevictable page on [in]active list. | ||
500 | * We know how to handle that. | ||
501 | */ | ||
502 | lru = active + page_is_file_cache(page); | ||
503 | lru_cache_add_lru(page, lru); | ||
504 | } else { | ||
505 | /* | ||
506 | * Put unevictable pages directly on zone's unevictable | ||
507 | * list. | ||
508 | */ | ||
509 | lru = LRU_UNEVICTABLE; | ||
510 | add_page_to_unevictable_list(page); | ||
511 | } | ||
512 | mem_cgroup_move_lists(page, lru); | ||
513 | |||
514 | /* | ||
515 | * page's status can change while we move it among lru. If an evictable | ||
516 | * page is on unevictable list, it never be freed. To avoid that, | ||
517 | * check after we added it to the list, again. | ||
518 | */ | ||
519 | if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { | ||
520 | if (!isolate_lru_page(page)) { | ||
521 | put_page(page); | ||
522 | goto redo; | ||
523 | } | ||
524 | /* This means someone else dropped this page from LRU | ||
525 | * So, it will be freed or putback to LRU again. There is | ||
526 | * nothing to do here. | ||
527 | */ | ||
528 | } | ||
529 | |||
530 | if (was_unevictable && lru != LRU_UNEVICTABLE) | ||
531 | count_vm_event(UNEVICTABLE_PGRESCUED); | ||
532 | else if (!was_unevictable && lru == LRU_UNEVICTABLE) | ||
533 | count_vm_event(UNEVICTABLE_PGCULLED); | ||
534 | |||
535 | put_page(page); /* drop ref from isolate */ | ||
536 | } | ||
537 | |||
538 | #else /* CONFIG_UNEVICTABLE_LRU */ | ||
539 | |||
540 | void putback_lru_page(struct page *page) | ||
541 | { | ||
542 | int lru; | ||
543 | VM_BUG_ON(PageLRU(page)); | ||
544 | |||
545 | lru = !!TestClearPageActive(page) + page_is_file_cache(page); | ||
546 | lru_cache_add_lru(page, lru); | ||
547 | mem_cgroup_move_lists(page, lru); | ||
548 | put_page(page); | ||
549 | } | ||
550 | #endif /* CONFIG_UNEVICTABLE_LRU */ | ||
551 | |||
552 | |||
473 | /* | 553 | /* |
474 | * shrink_page_list() returns the number of reclaimed pages | 554 | * shrink_page_list() returns the number of reclaimed pages |
475 | */ | 555 | */ |
@@ -503,6 +583,9 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
503 | 583 | ||
504 | sc->nr_scanned++; | 584 | sc->nr_scanned++; |
505 | 585 | ||
586 | if (unlikely(!page_evictable(page, NULL))) | ||
587 | goto cull_mlocked; | ||
588 | |||
506 | if (!sc->may_swap && page_mapped(page)) | 589 | if (!sc->may_swap && page_mapped(page)) |
507 | goto keep_locked; | 590 | goto keep_locked; |
508 | 591 | ||
@@ -539,9 +622,19 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
539 | * Anonymous process memory has backing store? | 622 | * Anonymous process memory has backing store? |
540 | * Try to allocate it some swap space here. | 623 | * Try to allocate it some swap space here. |
541 | */ | 624 | */ |
542 | if (PageAnon(page) && !PageSwapCache(page)) | 625 | if (PageAnon(page) && !PageSwapCache(page)) { |
626 | switch (try_to_munlock(page)) { | ||
627 | case SWAP_FAIL: /* shouldn't happen */ | ||
628 | case SWAP_AGAIN: | ||
629 | goto keep_locked; | ||
630 | case SWAP_MLOCK: | ||
631 | goto cull_mlocked; | ||
632 | case SWAP_SUCCESS: | ||
633 | ; /* fall thru'; add to swap cache */ | ||
634 | } | ||
543 | if (!add_to_swap(page, GFP_ATOMIC)) | 635 | if (!add_to_swap(page, GFP_ATOMIC)) |
544 | goto activate_locked; | 636 | goto activate_locked; |
637 | } | ||
545 | #endif /* CONFIG_SWAP */ | 638 | #endif /* CONFIG_SWAP */ |
546 | 639 | ||
547 | mapping = page_mapping(page); | 640 | mapping = page_mapping(page); |
@@ -556,6 +649,8 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
556 | goto activate_locked; | 649 | goto activate_locked; |
557 | case SWAP_AGAIN: | 650 | case SWAP_AGAIN: |
558 | goto keep_locked; | 651 | goto keep_locked; |
652 | case SWAP_MLOCK: | ||
653 | goto cull_mlocked; | ||
559 | case SWAP_SUCCESS: | 654 | case SWAP_SUCCESS: |
560 | ; /* try to free the page below */ | 655 | ; /* try to free the page below */ |
561 | } | 656 | } |
@@ -602,7 +697,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
602 | * possible for a page to have PageDirty set, but it is actually | 697 | * possible for a page to have PageDirty set, but it is actually |
603 | * clean (all its buffers are clean). This happens if the | 698 | * clean (all its buffers are clean). This happens if the |
604 | * buffers were written out directly, with submit_bh(). ext3 | 699 | * buffers were written out directly, with submit_bh(). ext3 |
605 | * will do this, as well as the blockdev mapping. | 700 | * will do this, as well as the blockdev mapping. |
606 | * try_to_release_page() will discover that cleanness and will | 701 | * try_to_release_page() will discover that cleanness and will |
607 | * drop the buffers and mark the page clean - it can be freed. | 702 | * drop the buffers and mark the page clean - it can be freed. |
608 | * | 703 | * |
@@ -637,7 +732,14 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
637 | if (!mapping || !__remove_mapping(mapping, page)) | 732 | if (!mapping || !__remove_mapping(mapping, page)) |
638 | goto keep_locked; | 733 | goto keep_locked; |
639 | 734 | ||
640 | unlock_page(page); | 735 | /* |
736 | * At this point, we have no other references and there is | ||
737 | * no way to pick any more up (removed from LRU, removed | ||
738 | * from pagecache). Can use non-atomic bitops now (and | ||
739 | * we obviously don't have to worry about waking up a process | ||
740 | * waiting on the page lock, because there are no references. | ||
741 | */ | ||
742 | __clear_page_locked(page); | ||
641 | free_it: | 743 | free_it: |
642 | nr_reclaimed++; | 744 | nr_reclaimed++; |
643 | if (!pagevec_add(&freed_pvec, page)) { | 745 | if (!pagevec_add(&freed_pvec, page)) { |
@@ -646,14 +748,23 @@ free_it: | |||
646 | } | 748 | } |
647 | continue; | 749 | continue; |
648 | 750 | ||
751 | cull_mlocked: | ||
752 | unlock_page(page); | ||
753 | putback_lru_page(page); | ||
754 | continue; | ||
755 | |||
649 | activate_locked: | 756 | activate_locked: |
757 | /* Not a candidate for swapping, so reclaim swap space. */ | ||
758 | if (PageSwapCache(page) && vm_swap_full()) | ||
759 | remove_exclusive_swap_page_ref(page); | ||
760 | VM_BUG_ON(PageActive(page)); | ||
650 | SetPageActive(page); | 761 | SetPageActive(page); |
651 | pgactivate++; | 762 | pgactivate++; |
652 | keep_locked: | 763 | keep_locked: |
653 | unlock_page(page); | 764 | unlock_page(page); |
654 | keep: | 765 | keep: |
655 | list_add(&page->lru, &ret_pages); | 766 | list_add(&page->lru, &ret_pages); |
656 | VM_BUG_ON(PageLRU(page)); | 767 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
657 | } | 768 | } |
658 | list_splice(&ret_pages, page_list); | 769 | list_splice(&ret_pages, page_list); |
659 | if (pagevec_count(&freed_pvec)) | 770 | if (pagevec_count(&freed_pvec)) |
@@ -677,7 +788,7 @@ keep: | |||
677 | * | 788 | * |
678 | * returns 0 on success, -ve errno on failure. | 789 | * returns 0 on success, -ve errno on failure. |
679 | */ | 790 | */ |
680 | int __isolate_lru_page(struct page *page, int mode) | 791 | int __isolate_lru_page(struct page *page, int mode, int file) |
681 | { | 792 | { |
682 | int ret = -EINVAL; | 793 | int ret = -EINVAL; |
683 | 794 | ||
@@ -693,6 +804,17 @@ int __isolate_lru_page(struct page *page, int mode) | |||
693 | if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) | 804 | if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) |
694 | return ret; | 805 | return ret; |
695 | 806 | ||
807 | if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) | ||
808 | return ret; | ||
809 | |||
810 | /* | ||
811 | * When this function is being called for lumpy reclaim, we | ||
812 | * initially look into all LRU pages, active, inactive and | ||
813 | * unevictable; only give shrink_page_list evictable pages. | ||
814 | */ | ||
815 | if (PageUnevictable(page)) | ||
816 | return ret; | ||
817 | |||
696 | ret = -EBUSY; | 818 | ret = -EBUSY; |
697 | if (likely(get_page_unless_zero(page))) { | 819 | if (likely(get_page_unless_zero(page))) { |
698 | /* | 820 | /* |
@@ -723,12 +845,13 @@ int __isolate_lru_page(struct page *page, int mode) | |||
723 | * @scanned: The number of pages that were scanned. | 845 | * @scanned: The number of pages that were scanned. |
724 | * @order: The caller's attempted allocation order | 846 | * @order: The caller's attempted allocation order |
725 | * @mode: One of the LRU isolation modes | 847 | * @mode: One of the LRU isolation modes |
848 | * @file: True [1] if isolating file [!anon] pages | ||
726 | * | 849 | * |
727 | * returns how many pages were moved onto *@dst. | 850 | * returns how many pages were moved onto *@dst. |
728 | */ | 851 | */ |
729 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | 852 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
730 | struct list_head *src, struct list_head *dst, | 853 | struct list_head *src, struct list_head *dst, |
731 | unsigned long *scanned, int order, int mode) | 854 | unsigned long *scanned, int order, int mode, int file) |
732 | { | 855 | { |
733 | unsigned long nr_taken = 0; | 856 | unsigned long nr_taken = 0; |
734 | unsigned long scan; | 857 | unsigned long scan; |
@@ -745,7 +868,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
745 | 868 | ||
746 | VM_BUG_ON(!PageLRU(page)); | 869 | VM_BUG_ON(!PageLRU(page)); |
747 | 870 | ||
748 | switch (__isolate_lru_page(page, mode)) { | 871 | switch (__isolate_lru_page(page, mode, file)) { |
749 | case 0: | 872 | case 0: |
750 | list_move(&page->lru, dst); | 873 | list_move(&page->lru, dst); |
751 | nr_taken++; | 874 | nr_taken++; |
@@ -788,10 +911,11 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
788 | break; | 911 | break; |
789 | 912 | ||
790 | cursor_page = pfn_to_page(pfn); | 913 | cursor_page = pfn_to_page(pfn); |
914 | |||
791 | /* Check that we have not crossed a zone boundary. */ | 915 | /* Check that we have not crossed a zone boundary. */ |
792 | if (unlikely(page_zone_id(cursor_page) != zone_id)) | 916 | if (unlikely(page_zone_id(cursor_page) != zone_id)) |
793 | continue; | 917 | continue; |
794 | switch (__isolate_lru_page(cursor_page, mode)) { | 918 | switch (__isolate_lru_page(cursor_page, mode, file)) { |
795 | case 0: | 919 | case 0: |
796 | list_move(&cursor_page->lru, dst); | 920 | list_move(&cursor_page->lru, dst); |
797 | nr_taken++; | 921 | nr_taken++; |
@@ -802,7 +926,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
802 | /* else it is being freed elsewhere */ | 926 | /* else it is being freed elsewhere */ |
803 | list_move(&cursor_page->lru, src); | 927 | list_move(&cursor_page->lru, src); |
804 | default: | 928 | default: |
805 | break; | 929 | break; /* ! on LRU or wrong list */ |
806 | } | 930 | } |
807 | } | 931 | } |
808 | } | 932 | } |
@@ -816,40 +940,93 @@ static unsigned long isolate_pages_global(unsigned long nr, | |||
816 | unsigned long *scanned, int order, | 940 | unsigned long *scanned, int order, |
817 | int mode, struct zone *z, | 941 | int mode, struct zone *z, |
818 | struct mem_cgroup *mem_cont, | 942 | struct mem_cgroup *mem_cont, |
819 | int active) | 943 | int active, int file) |
820 | { | 944 | { |
945 | int lru = LRU_BASE; | ||
821 | if (active) | 946 | if (active) |
822 | return isolate_lru_pages(nr, &z->active_list, dst, | 947 | lru += LRU_ACTIVE; |
823 | scanned, order, mode); | 948 | if (file) |
824 | else | 949 | lru += LRU_FILE; |
825 | return isolate_lru_pages(nr, &z->inactive_list, dst, | 950 | return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, |
826 | scanned, order, mode); | 951 | mode, !!file); |
827 | } | 952 | } |
828 | 953 | ||
829 | /* | 954 | /* |
830 | * clear_active_flags() is a helper for shrink_active_list(), clearing | 955 | * clear_active_flags() is a helper for shrink_active_list(), clearing |
831 | * any active bits from the pages in the list. | 956 | * any active bits from the pages in the list. |
832 | */ | 957 | */ |
833 | static unsigned long clear_active_flags(struct list_head *page_list) | 958 | static unsigned long clear_active_flags(struct list_head *page_list, |
959 | unsigned int *count) | ||
834 | { | 960 | { |
835 | int nr_active = 0; | 961 | int nr_active = 0; |
962 | int lru; | ||
836 | struct page *page; | 963 | struct page *page; |
837 | 964 | ||
838 | list_for_each_entry(page, page_list, lru) | 965 | list_for_each_entry(page, page_list, lru) { |
966 | lru = page_is_file_cache(page); | ||
839 | if (PageActive(page)) { | 967 | if (PageActive(page)) { |
968 | lru += LRU_ACTIVE; | ||
840 | ClearPageActive(page); | 969 | ClearPageActive(page); |
841 | nr_active++; | 970 | nr_active++; |
842 | } | 971 | } |
972 | count[lru]++; | ||
973 | } | ||
843 | 974 | ||
844 | return nr_active; | 975 | return nr_active; |
845 | } | 976 | } |
846 | 977 | ||
978 | /** | ||
979 | * isolate_lru_page - tries to isolate a page from its LRU list | ||
980 | * @page: page to isolate from its LRU list | ||
981 | * | ||
982 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | ||
983 | * vmstat statistic corresponding to whatever LRU list the page was on. | ||
984 | * | ||
985 | * Returns 0 if the page was removed from an LRU list. | ||
986 | * Returns -EBUSY if the page was not on an LRU list. | ||
987 | * | ||
988 | * The returned page will have PageLRU() cleared. If it was found on | ||
989 | * the active list, it will have PageActive set. If it was found on | ||
990 | * the unevictable list, it will have the PageUnevictable bit set. That flag | ||
991 | * may need to be cleared by the caller before letting the page go. | ||
992 | * | ||
993 | * The vmstat statistic corresponding to the list on which the page was | ||
994 | * found will be decremented. | ||
995 | * | ||
996 | * Restrictions: | ||
997 | * (1) Must be called with an elevated refcount on the page. This is a | ||
998 | * fundamentnal difference from isolate_lru_pages (which is called | ||
999 | * without a stable reference). | ||
1000 | * (2) the lru_lock must not be held. | ||
1001 | * (3) interrupts must be enabled. | ||
1002 | */ | ||
1003 | int isolate_lru_page(struct page *page) | ||
1004 | { | ||
1005 | int ret = -EBUSY; | ||
1006 | |||
1007 | if (PageLRU(page)) { | ||
1008 | struct zone *zone = page_zone(page); | ||
1009 | |||
1010 | spin_lock_irq(&zone->lru_lock); | ||
1011 | if (PageLRU(page) && get_page_unless_zero(page)) { | ||
1012 | int lru = page_lru(page); | ||
1013 | ret = 0; | ||
1014 | ClearPageLRU(page); | ||
1015 | |||
1016 | del_page_from_lru_list(zone, page, lru); | ||
1017 | } | ||
1018 | spin_unlock_irq(&zone->lru_lock); | ||
1019 | } | ||
1020 | return ret; | ||
1021 | } | ||
1022 | |||
847 | /* | 1023 | /* |
848 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number | 1024 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
849 | * of reclaimed pages | 1025 | * of reclaimed pages |
850 | */ | 1026 | */ |
851 | static unsigned long shrink_inactive_list(unsigned long max_scan, | 1027 | static unsigned long shrink_inactive_list(unsigned long max_scan, |
852 | struct zone *zone, struct scan_control *sc) | 1028 | struct zone *zone, struct scan_control *sc, |
1029 | int priority, int file) | ||
853 | { | 1030 | { |
854 | LIST_HEAD(page_list); | 1031 | LIST_HEAD(page_list); |
855 | struct pagevec pvec; | 1032 | struct pagevec pvec; |
@@ -866,20 +1043,43 @@ static unsigned long shrink_inactive_list(unsigned long max_scan, | |||
866 | unsigned long nr_scan; | 1043 | unsigned long nr_scan; |
867 | unsigned long nr_freed; | 1044 | unsigned long nr_freed; |
868 | unsigned long nr_active; | 1045 | unsigned long nr_active; |
1046 | unsigned int count[NR_LRU_LISTS] = { 0, }; | ||
1047 | int mode = ISOLATE_INACTIVE; | ||
1048 | |||
1049 | /* | ||
1050 | * If we need a large contiguous chunk of memory, or have | ||
1051 | * trouble getting a small set of contiguous pages, we | ||
1052 | * will reclaim both active and inactive pages. | ||
1053 | * | ||
1054 | * We use the same threshold as pageout congestion_wait below. | ||
1055 | */ | ||
1056 | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | ||
1057 | mode = ISOLATE_BOTH; | ||
1058 | else if (sc->order && priority < DEF_PRIORITY - 2) | ||
1059 | mode = ISOLATE_BOTH; | ||
869 | 1060 | ||
870 | nr_taken = sc->isolate_pages(sc->swap_cluster_max, | 1061 | nr_taken = sc->isolate_pages(sc->swap_cluster_max, |
871 | &page_list, &nr_scan, sc->order, | 1062 | &page_list, &nr_scan, sc->order, mode, |
872 | (sc->order > PAGE_ALLOC_COSTLY_ORDER)? | 1063 | zone, sc->mem_cgroup, 0, file); |
873 | ISOLATE_BOTH : ISOLATE_INACTIVE, | 1064 | nr_active = clear_active_flags(&page_list, count); |
874 | zone, sc->mem_cgroup, 0); | ||
875 | nr_active = clear_active_flags(&page_list); | ||
876 | __count_vm_events(PGDEACTIVATE, nr_active); | 1065 | __count_vm_events(PGDEACTIVATE, nr_active); |
877 | 1066 | ||
878 | __mod_zone_page_state(zone, NR_ACTIVE, -nr_active); | 1067 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, |
879 | __mod_zone_page_state(zone, NR_INACTIVE, | 1068 | -count[LRU_ACTIVE_FILE]); |
880 | -(nr_taken - nr_active)); | 1069 | __mod_zone_page_state(zone, NR_INACTIVE_FILE, |
881 | if (scan_global_lru(sc)) | 1070 | -count[LRU_INACTIVE_FILE]); |
1071 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, | ||
1072 | -count[LRU_ACTIVE_ANON]); | ||
1073 | __mod_zone_page_state(zone, NR_INACTIVE_ANON, | ||
1074 | -count[LRU_INACTIVE_ANON]); | ||
1075 | |||
1076 | if (scan_global_lru(sc)) { | ||
882 | zone->pages_scanned += nr_scan; | 1077 | zone->pages_scanned += nr_scan; |
1078 | zone->recent_scanned[0] += count[LRU_INACTIVE_ANON]; | ||
1079 | zone->recent_scanned[0] += count[LRU_ACTIVE_ANON]; | ||
1080 | zone->recent_scanned[1] += count[LRU_INACTIVE_FILE]; | ||
1081 | zone->recent_scanned[1] += count[LRU_ACTIVE_FILE]; | ||
1082 | } | ||
883 | spin_unlock_irq(&zone->lru_lock); | 1083 | spin_unlock_irq(&zone->lru_lock); |
884 | 1084 | ||
885 | nr_scanned += nr_scan; | 1085 | nr_scanned += nr_scan; |
@@ -899,7 +1099,7 @@ static unsigned long shrink_inactive_list(unsigned long max_scan, | |||
899 | * The attempt at page out may have made some | 1099 | * The attempt at page out may have made some |
900 | * of the pages active, mark them inactive again. | 1100 | * of the pages active, mark them inactive again. |
901 | */ | 1101 | */ |
902 | nr_active = clear_active_flags(&page_list); | 1102 | nr_active = clear_active_flags(&page_list, count); |
903 | count_vm_events(PGDEACTIVATE, nr_active); | 1103 | count_vm_events(PGDEACTIVATE, nr_active); |
904 | 1104 | ||
905 | nr_freed += shrink_page_list(&page_list, sc, | 1105 | nr_freed += shrink_page_list(&page_list, sc, |
@@ -924,14 +1124,24 @@ static unsigned long shrink_inactive_list(unsigned long max_scan, | |||
924 | * Put back any unfreeable pages. | 1124 | * Put back any unfreeable pages. |
925 | */ | 1125 | */ |
926 | while (!list_empty(&page_list)) { | 1126 | while (!list_empty(&page_list)) { |
1127 | int lru; | ||
927 | page = lru_to_page(&page_list); | 1128 | page = lru_to_page(&page_list); |
928 | VM_BUG_ON(PageLRU(page)); | 1129 | VM_BUG_ON(PageLRU(page)); |
929 | SetPageLRU(page); | ||
930 | list_del(&page->lru); | 1130 | list_del(&page->lru); |
931 | if (PageActive(page)) | 1131 | if (unlikely(!page_evictable(page, NULL))) { |
932 | add_page_to_active_list(zone, page); | 1132 | spin_unlock_irq(&zone->lru_lock); |
933 | else | 1133 | putback_lru_page(page); |
934 | add_page_to_inactive_list(zone, page); | 1134 | spin_lock_irq(&zone->lru_lock); |
1135 | continue; | ||
1136 | } | ||
1137 | SetPageLRU(page); | ||
1138 | lru = page_lru(page); | ||
1139 | add_page_to_lru_list(zone, page, lru); | ||
1140 | mem_cgroup_move_lists(page, lru); | ||
1141 | if (PageActive(page) && scan_global_lru(sc)) { | ||
1142 | int file = !!page_is_file_cache(page); | ||
1143 | zone->recent_rotated[file]++; | ||
1144 | } | ||
935 | if (!pagevec_add(&pvec, page)) { | 1145 | if (!pagevec_add(&pvec, page)) { |
936 | spin_unlock_irq(&zone->lru_lock); | 1146 | spin_unlock_irq(&zone->lru_lock); |
937 | __pagevec_release(&pvec); | 1147 | __pagevec_release(&pvec); |
@@ -962,115 +1172,7 @@ static inline void note_zone_scanning_priority(struct zone *zone, int priority) | |||
962 | 1172 | ||
963 | static inline int zone_is_near_oom(struct zone *zone) | 1173 | static inline int zone_is_near_oom(struct zone *zone) |
964 | { | 1174 | { |
965 | return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE) | 1175 | return zone->pages_scanned >= (zone_lru_pages(zone) * 3); |
966 | + zone_page_state(zone, NR_INACTIVE))*3; | ||
967 | } | ||
968 | |||
969 | /* | ||
970 | * Determine we should try to reclaim mapped pages. | ||
971 | * This is called only when sc->mem_cgroup is NULL. | ||
972 | */ | ||
973 | static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone, | ||
974 | int priority) | ||
975 | { | ||
976 | long mapped_ratio; | ||
977 | long distress; | ||
978 | long swap_tendency; | ||
979 | long imbalance; | ||
980 | int reclaim_mapped = 0; | ||
981 | int prev_priority; | ||
982 | |||
983 | if (scan_global_lru(sc) && zone_is_near_oom(zone)) | ||
984 | return 1; | ||
985 | /* | ||
986 | * `distress' is a measure of how much trouble we're having | ||
987 | * reclaiming pages. 0 -> no problems. 100 -> great trouble. | ||
988 | */ | ||
989 | if (scan_global_lru(sc)) | ||
990 | prev_priority = zone->prev_priority; | ||
991 | else | ||
992 | prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup); | ||
993 | |||
994 | distress = 100 >> min(prev_priority, priority); | ||
995 | |||
996 | /* | ||
997 | * The point of this algorithm is to decide when to start | ||
998 | * reclaiming mapped memory instead of just pagecache. Work out | ||
999 | * how much memory | ||
1000 | * is mapped. | ||
1001 | */ | ||
1002 | if (scan_global_lru(sc)) | ||
1003 | mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + | ||
1004 | global_page_state(NR_ANON_PAGES)) * 100) / | ||
1005 | vm_total_pages; | ||
1006 | else | ||
1007 | mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup); | ||
1008 | |||
1009 | /* | ||
1010 | * Now decide how much we really want to unmap some pages. The | ||
1011 | * mapped ratio is downgraded - just because there's a lot of | ||
1012 | * mapped memory doesn't necessarily mean that page reclaim | ||
1013 | * isn't succeeding. | ||
1014 | * | ||
1015 | * The distress ratio is important - we don't want to start | ||
1016 | * going oom. | ||
1017 | * | ||
1018 | * A 100% value of vm_swappiness overrides this algorithm | ||
1019 | * altogether. | ||
1020 | */ | ||
1021 | swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; | ||
1022 | |||
1023 | /* | ||
1024 | * If there's huge imbalance between active and inactive | ||
1025 | * (think active 100 times larger than inactive) we should | ||
1026 | * become more permissive, or the system will take too much | ||
1027 | * cpu before it start swapping during memory pressure. | ||
1028 | * Distress is about avoiding early-oom, this is about | ||
1029 | * making swappiness graceful despite setting it to low | ||
1030 | * values. | ||
1031 | * | ||
1032 | * Avoid div by zero with nr_inactive+1, and max resulting | ||
1033 | * value is vm_total_pages. | ||
1034 | */ | ||
1035 | if (scan_global_lru(sc)) { | ||
1036 | imbalance = zone_page_state(zone, NR_ACTIVE); | ||
1037 | imbalance /= zone_page_state(zone, NR_INACTIVE) + 1; | ||
1038 | } else | ||
1039 | imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup); | ||
1040 | |||
1041 | /* | ||
1042 | * Reduce the effect of imbalance if swappiness is low, | ||
1043 | * this means for a swappiness very low, the imbalance | ||
1044 | * must be much higher than 100 for this logic to make | ||
1045 | * the difference. | ||
1046 | * | ||
1047 | * Max temporary value is vm_total_pages*100. | ||
1048 | */ | ||
1049 | imbalance *= (vm_swappiness + 1); | ||
1050 | imbalance /= 100; | ||
1051 | |||
1052 | /* | ||
1053 | * If not much of the ram is mapped, makes the imbalance | ||
1054 | * less relevant, it's high priority we refill the inactive | ||
1055 | * list with mapped pages only in presence of high ratio of | ||
1056 | * mapped pages. | ||
1057 | * | ||
1058 | * Max temporary value is vm_total_pages*100. | ||
1059 | */ | ||
1060 | imbalance *= mapped_ratio; | ||
1061 | imbalance /= 100; | ||
1062 | |||
1063 | /* apply imbalance feedback to swap_tendency */ | ||
1064 | swap_tendency += imbalance; | ||
1065 | |||
1066 | /* | ||
1067 | * Now use this metric to decide whether to start moving mapped | ||
1068 | * memory onto the inactive list. | ||
1069 | */ | ||
1070 | if (swap_tendency >= 100) | ||
1071 | reclaim_mapped = 1; | ||
1072 | |||
1073 | return reclaim_mapped; | ||
1074 | } | 1176 | } |
1075 | 1177 | ||
1076 | /* | 1178 | /* |
@@ -1093,53 +1195,71 @@ static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone, | |||
1093 | 1195 | ||
1094 | 1196 | ||
1095 | static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | 1197 | static void shrink_active_list(unsigned long nr_pages, struct zone *zone, |
1096 | struct scan_control *sc, int priority) | 1198 | struct scan_control *sc, int priority, int file) |
1097 | { | 1199 | { |
1098 | unsigned long pgmoved; | 1200 | unsigned long pgmoved; |
1099 | int pgdeactivate = 0; | 1201 | int pgdeactivate = 0; |
1100 | unsigned long pgscanned; | 1202 | unsigned long pgscanned; |
1101 | LIST_HEAD(l_hold); /* The pages which were snipped off */ | 1203 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
1102 | LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ | 1204 | LIST_HEAD(l_inactive); |
1103 | LIST_HEAD(l_active); /* Pages to go onto the active_list */ | ||
1104 | struct page *page; | 1205 | struct page *page; |
1105 | struct pagevec pvec; | 1206 | struct pagevec pvec; |
1106 | int reclaim_mapped = 0; | 1207 | enum lru_list lru; |
1107 | |||
1108 | if (sc->may_swap) | ||
1109 | reclaim_mapped = calc_reclaim_mapped(sc, zone, priority); | ||
1110 | 1208 | ||
1111 | lru_add_drain(); | 1209 | lru_add_drain(); |
1112 | spin_lock_irq(&zone->lru_lock); | 1210 | spin_lock_irq(&zone->lru_lock); |
1113 | pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, | 1211 | pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, |
1114 | ISOLATE_ACTIVE, zone, | 1212 | ISOLATE_ACTIVE, zone, |
1115 | sc->mem_cgroup, 1); | 1213 | sc->mem_cgroup, 1, file); |
1116 | /* | 1214 | /* |
1117 | * zone->pages_scanned is used for detect zone's oom | 1215 | * zone->pages_scanned is used for detect zone's oom |
1118 | * mem_cgroup remembers nr_scan by itself. | 1216 | * mem_cgroup remembers nr_scan by itself. |
1119 | */ | 1217 | */ |
1120 | if (scan_global_lru(sc)) | 1218 | if (scan_global_lru(sc)) { |
1121 | zone->pages_scanned += pgscanned; | 1219 | zone->pages_scanned += pgscanned; |
1220 | zone->recent_scanned[!!file] += pgmoved; | ||
1221 | } | ||
1122 | 1222 | ||
1123 | __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved); | 1223 | if (file) |
1224 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); | ||
1225 | else | ||
1226 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); | ||
1124 | spin_unlock_irq(&zone->lru_lock); | 1227 | spin_unlock_irq(&zone->lru_lock); |
1125 | 1228 | ||
1229 | pgmoved = 0; | ||
1126 | while (!list_empty(&l_hold)) { | 1230 | while (!list_empty(&l_hold)) { |
1127 | cond_resched(); | 1231 | cond_resched(); |
1128 | page = lru_to_page(&l_hold); | 1232 | page = lru_to_page(&l_hold); |
1129 | list_del(&page->lru); | 1233 | list_del(&page->lru); |
1130 | if (page_mapped(page)) { | 1234 | |
1131 | if (!reclaim_mapped || | 1235 | if (unlikely(!page_evictable(page, NULL))) { |
1132 | (total_swap_pages == 0 && PageAnon(page)) || | 1236 | putback_lru_page(page); |
1133 | page_referenced(page, 0, sc->mem_cgroup)) { | 1237 | continue; |
1134 | list_add(&page->lru, &l_active); | ||
1135 | continue; | ||
1136 | } | ||
1137 | } | 1238 | } |
1239 | |||
1240 | /* page_referenced clears PageReferenced */ | ||
1241 | if (page_mapping_inuse(page) && | ||
1242 | page_referenced(page, 0, sc->mem_cgroup)) | ||
1243 | pgmoved++; | ||
1244 | |||
1138 | list_add(&page->lru, &l_inactive); | 1245 | list_add(&page->lru, &l_inactive); |
1139 | } | 1246 | } |
1140 | 1247 | ||
1248 | /* | ||
1249 | * Count referenced pages from currently used mappings as | ||
1250 | * rotated, even though they are moved to the inactive list. | ||
1251 | * This helps balance scan pressure between file and anonymous | ||
1252 | * pages in get_scan_ratio. | ||
1253 | */ | ||
1254 | zone->recent_rotated[!!file] += pgmoved; | ||
1255 | |||
1256 | /* | ||
1257 | * Move the pages to the [file or anon] inactive list. | ||
1258 | */ | ||
1141 | pagevec_init(&pvec, 1); | 1259 | pagevec_init(&pvec, 1); |
1260 | |||
1142 | pgmoved = 0; | 1261 | pgmoved = 0; |
1262 | lru = LRU_BASE + file * LRU_FILE; | ||
1143 | spin_lock_irq(&zone->lru_lock); | 1263 | spin_lock_irq(&zone->lru_lock); |
1144 | while (!list_empty(&l_inactive)) { | 1264 | while (!list_empty(&l_inactive)) { |
1145 | page = lru_to_page(&l_inactive); | 1265 | page = lru_to_page(&l_inactive); |
@@ -1149,11 +1269,11 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | |||
1149 | VM_BUG_ON(!PageActive(page)); | 1269 | VM_BUG_ON(!PageActive(page)); |
1150 | ClearPageActive(page); | 1270 | ClearPageActive(page); |
1151 | 1271 | ||
1152 | list_move(&page->lru, &zone->inactive_list); | 1272 | list_move(&page->lru, &zone->lru[lru].list); |
1153 | mem_cgroup_move_lists(page, false); | 1273 | mem_cgroup_move_lists(page, lru); |
1154 | pgmoved++; | 1274 | pgmoved++; |
1155 | if (!pagevec_add(&pvec, page)) { | 1275 | if (!pagevec_add(&pvec, page)) { |
1156 | __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); | 1276 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); |
1157 | spin_unlock_irq(&zone->lru_lock); | 1277 | spin_unlock_irq(&zone->lru_lock); |
1158 | pgdeactivate += pgmoved; | 1278 | pgdeactivate += pgmoved; |
1159 | pgmoved = 0; | 1279 | pgmoved = 0; |
@@ -1163,104 +1283,189 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | |||
1163 | spin_lock_irq(&zone->lru_lock); | 1283 | spin_lock_irq(&zone->lru_lock); |
1164 | } | 1284 | } |
1165 | } | 1285 | } |
1166 | __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); | 1286 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); |
1167 | pgdeactivate += pgmoved; | 1287 | pgdeactivate += pgmoved; |
1168 | if (buffer_heads_over_limit) { | 1288 | if (buffer_heads_over_limit) { |
1169 | spin_unlock_irq(&zone->lru_lock); | 1289 | spin_unlock_irq(&zone->lru_lock); |
1170 | pagevec_strip(&pvec); | 1290 | pagevec_strip(&pvec); |
1171 | spin_lock_irq(&zone->lru_lock); | 1291 | spin_lock_irq(&zone->lru_lock); |
1172 | } | 1292 | } |
1173 | |||
1174 | pgmoved = 0; | ||
1175 | while (!list_empty(&l_active)) { | ||
1176 | page = lru_to_page(&l_active); | ||
1177 | prefetchw_prev_lru_page(page, &l_active, flags); | ||
1178 | VM_BUG_ON(PageLRU(page)); | ||
1179 | SetPageLRU(page); | ||
1180 | VM_BUG_ON(!PageActive(page)); | ||
1181 | |||
1182 | list_move(&page->lru, &zone->active_list); | ||
1183 | mem_cgroup_move_lists(page, true); | ||
1184 | pgmoved++; | ||
1185 | if (!pagevec_add(&pvec, page)) { | ||
1186 | __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); | ||
1187 | pgmoved = 0; | ||
1188 | spin_unlock_irq(&zone->lru_lock); | ||
1189 | __pagevec_release(&pvec); | ||
1190 | spin_lock_irq(&zone->lru_lock); | ||
1191 | } | ||
1192 | } | ||
1193 | __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); | ||
1194 | |||
1195 | __count_zone_vm_events(PGREFILL, zone, pgscanned); | 1293 | __count_zone_vm_events(PGREFILL, zone, pgscanned); |
1196 | __count_vm_events(PGDEACTIVATE, pgdeactivate); | 1294 | __count_vm_events(PGDEACTIVATE, pgdeactivate); |
1197 | spin_unlock_irq(&zone->lru_lock); | 1295 | spin_unlock_irq(&zone->lru_lock); |
1296 | if (vm_swap_full()) | ||
1297 | pagevec_swap_free(&pvec); | ||
1198 | 1298 | ||
1199 | pagevec_release(&pvec); | 1299 | pagevec_release(&pvec); |
1200 | } | 1300 | } |
1201 | 1301 | ||
1302 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, | ||
1303 | struct zone *zone, struct scan_control *sc, int priority) | ||
1304 | { | ||
1305 | int file = is_file_lru(lru); | ||
1306 | |||
1307 | if (lru == LRU_ACTIVE_FILE) { | ||
1308 | shrink_active_list(nr_to_scan, zone, sc, priority, file); | ||
1309 | return 0; | ||
1310 | } | ||
1311 | |||
1312 | if (lru == LRU_ACTIVE_ANON && | ||
1313 | (!scan_global_lru(sc) || inactive_anon_is_low(zone))) { | ||
1314 | shrink_active_list(nr_to_scan, zone, sc, priority, file); | ||
1315 | return 0; | ||
1316 | } | ||
1317 | return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); | ||
1318 | } | ||
1319 | |||
1320 | /* | ||
1321 | * Determine how aggressively the anon and file LRU lists should be | ||
1322 | * scanned. The relative value of each set of LRU lists is determined | ||
1323 | * by looking at the fraction of the pages scanned we did rotate back | ||
1324 | * onto the active list instead of evict. | ||
1325 | * | ||
1326 | * percent[0] specifies how much pressure to put on ram/swap backed | ||
1327 | * memory, while percent[1] determines pressure on the file LRUs. | ||
1328 | */ | ||
1329 | static void get_scan_ratio(struct zone *zone, struct scan_control *sc, | ||
1330 | unsigned long *percent) | ||
1331 | { | ||
1332 | unsigned long anon, file, free; | ||
1333 | unsigned long anon_prio, file_prio; | ||
1334 | unsigned long ap, fp; | ||
1335 | |||
1336 | anon = zone_page_state(zone, NR_ACTIVE_ANON) + | ||
1337 | zone_page_state(zone, NR_INACTIVE_ANON); | ||
1338 | file = zone_page_state(zone, NR_ACTIVE_FILE) + | ||
1339 | zone_page_state(zone, NR_INACTIVE_FILE); | ||
1340 | free = zone_page_state(zone, NR_FREE_PAGES); | ||
1341 | |||
1342 | /* If we have no swap space, do not bother scanning anon pages. */ | ||
1343 | if (nr_swap_pages <= 0) { | ||
1344 | percent[0] = 0; | ||
1345 | percent[1] = 100; | ||
1346 | return; | ||
1347 | } | ||
1348 | |||
1349 | /* If we have very few page cache pages, force-scan anon pages. */ | ||
1350 | if (unlikely(file + free <= zone->pages_high)) { | ||
1351 | percent[0] = 100; | ||
1352 | percent[1] = 0; | ||
1353 | return; | ||
1354 | } | ||
1355 | |||
1356 | /* | ||
1357 | * OK, so we have swap space and a fair amount of page cache | ||
1358 | * pages. We use the recently rotated / recently scanned | ||
1359 | * ratios to determine how valuable each cache is. | ||
1360 | * | ||
1361 | * Because workloads change over time (and to avoid overflow) | ||
1362 | * we keep these statistics as a floating average, which ends | ||
1363 | * up weighing recent references more than old ones. | ||
1364 | * | ||
1365 | * anon in [0], file in [1] | ||
1366 | */ | ||
1367 | if (unlikely(zone->recent_scanned[0] > anon / 4)) { | ||
1368 | spin_lock_irq(&zone->lru_lock); | ||
1369 | zone->recent_scanned[0] /= 2; | ||
1370 | zone->recent_rotated[0] /= 2; | ||
1371 | spin_unlock_irq(&zone->lru_lock); | ||
1372 | } | ||
1373 | |||
1374 | if (unlikely(zone->recent_scanned[1] > file / 4)) { | ||
1375 | spin_lock_irq(&zone->lru_lock); | ||
1376 | zone->recent_scanned[1] /= 2; | ||
1377 | zone->recent_rotated[1] /= 2; | ||
1378 | spin_unlock_irq(&zone->lru_lock); | ||
1379 | } | ||
1380 | |||
1381 | /* | ||
1382 | * With swappiness at 100, anonymous and file have the same priority. | ||
1383 | * This scanning priority is essentially the inverse of IO cost. | ||
1384 | */ | ||
1385 | anon_prio = sc->swappiness; | ||
1386 | file_prio = 200 - sc->swappiness; | ||
1387 | |||
1388 | /* | ||
1389 | * anon recent_rotated[0] | ||
1390 | * %anon = 100 * ----------- / ----------------- * IO cost | ||
1391 | * anon + file rotate_sum | ||
1392 | */ | ||
1393 | ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1); | ||
1394 | ap /= zone->recent_rotated[0] + 1; | ||
1395 | |||
1396 | fp = (file_prio + 1) * (zone->recent_scanned[1] + 1); | ||
1397 | fp /= zone->recent_rotated[1] + 1; | ||
1398 | |||
1399 | /* Normalize to percentages */ | ||
1400 | percent[0] = 100 * ap / (ap + fp + 1); | ||
1401 | percent[1] = 100 - percent[0]; | ||
1402 | } | ||
1403 | |||
1404 | |||
1202 | /* | 1405 | /* |
1203 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | 1406 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. |
1204 | */ | 1407 | */ |
1205 | static unsigned long shrink_zone(int priority, struct zone *zone, | 1408 | static unsigned long shrink_zone(int priority, struct zone *zone, |
1206 | struct scan_control *sc) | 1409 | struct scan_control *sc) |
1207 | { | 1410 | { |
1208 | unsigned long nr_active; | 1411 | unsigned long nr[NR_LRU_LISTS]; |
1209 | unsigned long nr_inactive; | ||
1210 | unsigned long nr_to_scan; | 1412 | unsigned long nr_to_scan; |
1211 | unsigned long nr_reclaimed = 0; | 1413 | unsigned long nr_reclaimed = 0; |
1414 | unsigned long percent[2]; /* anon @ 0; file @ 1 */ | ||
1415 | enum lru_list l; | ||
1212 | 1416 | ||
1213 | if (scan_global_lru(sc)) { | 1417 | get_scan_ratio(zone, sc, percent); |
1214 | /* | ||
1215 | * Add one to nr_to_scan just to make sure that the kernel | ||
1216 | * will slowly sift through the active list. | ||
1217 | */ | ||
1218 | zone->nr_scan_active += | ||
1219 | (zone_page_state(zone, NR_ACTIVE) >> priority) + 1; | ||
1220 | nr_active = zone->nr_scan_active; | ||
1221 | zone->nr_scan_inactive += | ||
1222 | (zone_page_state(zone, NR_INACTIVE) >> priority) + 1; | ||
1223 | nr_inactive = zone->nr_scan_inactive; | ||
1224 | if (nr_inactive >= sc->swap_cluster_max) | ||
1225 | zone->nr_scan_inactive = 0; | ||
1226 | else | ||
1227 | nr_inactive = 0; | ||
1228 | |||
1229 | if (nr_active >= sc->swap_cluster_max) | ||
1230 | zone->nr_scan_active = 0; | ||
1231 | else | ||
1232 | nr_active = 0; | ||
1233 | } else { | ||
1234 | /* | ||
1235 | * This reclaim occurs not because zone memory shortage but | ||
1236 | * because memory controller hits its limit. | ||
1237 | * Then, don't modify zone reclaim related data. | ||
1238 | */ | ||
1239 | nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup, | ||
1240 | zone, priority); | ||
1241 | |||
1242 | nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup, | ||
1243 | zone, priority); | ||
1244 | } | ||
1245 | 1418 | ||
1419 | for_each_evictable_lru(l) { | ||
1420 | if (scan_global_lru(sc)) { | ||
1421 | int file = is_file_lru(l); | ||
1422 | int scan; | ||
1246 | 1423 | ||
1247 | while (nr_active || nr_inactive) { | 1424 | scan = zone_page_state(zone, NR_LRU_BASE + l); |
1248 | if (nr_active) { | 1425 | if (priority) { |
1249 | nr_to_scan = min(nr_active, | 1426 | scan >>= priority; |
1250 | (unsigned long)sc->swap_cluster_max); | 1427 | scan = (scan * percent[file]) / 100; |
1251 | nr_active -= nr_to_scan; | 1428 | } |
1252 | shrink_active_list(nr_to_scan, zone, sc, priority); | 1429 | zone->lru[l].nr_scan += scan; |
1430 | nr[l] = zone->lru[l].nr_scan; | ||
1431 | if (nr[l] >= sc->swap_cluster_max) | ||
1432 | zone->lru[l].nr_scan = 0; | ||
1433 | else | ||
1434 | nr[l] = 0; | ||
1435 | } else { | ||
1436 | /* | ||
1437 | * This reclaim occurs not because zone memory shortage | ||
1438 | * but because memory controller hits its limit. | ||
1439 | * Don't modify zone reclaim related data. | ||
1440 | */ | ||
1441 | nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone, | ||
1442 | priority, l); | ||
1253 | } | 1443 | } |
1444 | } | ||
1254 | 1445 | ||
1255 | if (nr_inactive) { | 1446 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
1256 | nr_to_scan = min(nr_inactive, | 1447 | nr[LRU_INACTIVE_FILE]) { |
1448 | for_each_evictable_lru(l) { | ||
1449 | if (nr[l]) { | ||
1450 | nr_to_scan = min(nr[l], | ||
1257 | (unsigned long)sc->swap_cluster_max); | 1451 | (unsigned long)sc->swap_cluster_max); |
1258 | nr_inactive -= nr_to_scan; | 1452 | nr[l] -= nr_to_scan; |
1259 | nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, | 1453 | |
1260 | sc); | 1454 | nr_reclaimed += shrink_list(l, nr_to_scan, |
1455 | zone, sc, priority); | ||
1456 | } | ||
1261 | } | 1457 | } |
1262 | } | 1458 | } |
1263 | 1459 | ||
1460 | /* | ||
1461 | * Even if we did not try to evict anon pages at all, we want to | ||
1462 | * rebalance the anon lru active/inactive ratio. | ||
1463 | */ | ||
1464 | if (!scan_global_lru(sc) || inactive_anon_is_low(zone)) | ||
1465 | shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); | ||
1466 | else if (!scan_global_lru(sc)) | ||
1467 | shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); | ||
1468 | |||
1264 | throttle_vm_writeout(sc->gfp_mask); | 1469 | throttle_vm_writeout(sc->gfp_mask); |
1265 | return nr_reclaimed; | 1470 | return nr_reclaimed; |
1266 | } | 1471 | } |
@@ -1321,7 +1526,7 @@ static unsigned long shrink_zones(int priority, struct zonelist *zonelist, | |||
1321 | 1526 | ||
1322 | return nr_reclaimed; | 1527 | return nr_reclaimed; |
1323 | } | 1528 | } |
1324 | 1529 | ||
1325 | /* | 1530 | /* |
1326 | * This is the main entry point to direct page reclaim. | 1531 | * This is the main entry point to direct page reclaim. |
1327 | * | 1532 | * |
@@ -1364,8 +1569,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1364 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 1569 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1365 | continue; | 1570 | continue; |
1366 | 1571 | ||
1367 | lru_pages += zone_page_state(zone, NR_ACTIVE) | 1572 | lru_pages += zone_lru_pages(zone); |
1368 | + zone_page_state(zone, NR_INACTIVE); | ||
1369 | } | 1573 | } |
1370 | } | 1574 | } |
1371 | 1575 | ||
@@ -1555,6 +1759,14 @@ loop_again: | |||
1555 | priority != DEF_PRIORITY) | 1759 | priority != DEF_PRIORITY) |
1556 | continue; | 1760 | continue; |
1557 | 1761 | ||
1762 | /* | ||
1763 | * Do some background aging of the anon list, to give | ||
1764 | * pages a chance to be referenced before reclaiming. | ||
1765 | */ | ||
1766 | if (inactive_anon_is_low(zone)) | ||
1767 | shrink_active_list(SWAP_CLUSTER_MAX, zone, | ||
1768 | &sc, priority, 0); | ||
1769 | |||
1558 | if (!zone_watermark_ok(zone, order, zone->pages_high, | 1770 | if (!zone_watermark_ok(zone, order, zone->pages_high, |
1559 | 0, 0)) { | 1771 | 0, 0)) { |
1560 | end_zone = i; | 1772 | end_zone = i; |
@@ -1567,8 +1779,7 @@ loop_again: | |||
1567 | for (i = 0; i <= end_zone; i++) { | 1779 | for (i = 0; i <= end_zone; i++) { |
1568 | struct zone *zone = pgdat->node_zones + i; | 1780 | struct zone *zone = pgdat->node_zones + i; |
1569 | 1781 | ||
1570 | lru_pages += zone_page_state(zone, NR_ACTIVE) | 1782 | lru_pages += zone_lru_pages(zone); |
1571 | + zone_page_state(zone, NR_INACTIVE); | ||
1572 | } | 1783 | } |
1573 | 1784 | ||
1574 | /* | 1785 | /* |
@@ -1612,8 +1823,7 @@ loop_again: | |||
1612 | if (zone_is_all_unreclaimable(zone)) | 1823 | if (zone_is_all_unreclaimable(zone)) |
1613 | continue; | 1824 | continue; |
1614 | if (nr_slab == 0 && zone->pages_scanned >= | 1825 | if (nr_slab == 0 && zone->pages_scanned >= |
1615 | (zone_page_state(zone, NR_ACTIVE) | 1826 | (zone_lru_pages(zone) * 6)) |
1616 | + zone_page_state(zone, NR_INACTIVE)) * 6) | ||
1617 | zone_set_flag(zone, | 1827 | zone_set_flag(zone, |
1618 | ZONE_ALL_UNRECLAIMABLE); | 1828 | ZONE_ALL_UNRECLAIMABLE); |
1619 | /* | 1829 | /* |
@@ -1667,7 +1877,7 @@ out: | |||
1667 | 1877 | ||
1668 | /* | 1878 | /* |
1669 | * The background pageout daemon, started as a kernel thread | 1879 | * The background pageout daemon, started as a kernel thread |
1670 | * from the init process. | 1880 | * from the init process. |
1671 | * | 1881 | * |
1672 | * This basically trickles out pages so that we have _some_ | 1882 | * This basically trickles out pages so that we have _some_ |
1673 | * free memory available even if there is no other activity | 1883 | * free memory available even if there is no other activity |
@@ -1761,6 +1971,14 @@ void wakeup_kswapd(struct zone *zone, int order) | |||
1761 | wake_up_interruptible(&pgdat->kswapd_wait); | 1971 | wake_up_interruptible(&pgdat->kswapd_wait); |
1762 | } | 1972 | } |
1763 | 1973 | ||
1974 | unsigned long global_lru_pages(void) | ||
1975 | { | ||
1976 | return global_page_state(NR_ACTIVE_ANON) | ||
1977 | + global_page_state(NR_ACTIVE_FILE) | ||
1978 | + global_page_state(NR_INACTIVE_ANON) | ||
1979 | + global_page_state(NR_INACTIVE_FILE); | ||
1980 | } | ||
1981 | |||
1764 | #ifdef CONFIG_PM | 1982 | #ifdef CONFIG_PM |
1765 | /* | 1983 | /* |
1766 | * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages | 1984 | * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages |
@@ -1774,6 +1992,7 @@ static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, | |||
1774 | { | 1992 | { |
1775 | struct zone *zone; | 1993 | struct zone *zone; |
1776 | unsigned long nr_to_scan, ret = 0; | 1994 | unsigned long nr_to_scan, ret = 0; |
1995 | enum lru_list l; | ||
1777 | 1996 | ||
1778 | for_each_zone(zone) { | 1997 | for_each_zone(zone) { |
1779 | 1998 | ||
@@ -1783,38 +2002,31 @@ static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, | |||
1783 | if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) | 2002 | if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) |
1784 | continue; | 2003 | continue; |
1785 | 2004 | ||
1786 | /* For pass = 0 we don't shrink the active list */ | 2005 | for_each_evictable_lru(l) { |
1787 | if (pass > 0) { | 2006 | /* For pass = 0, we don't shrink the active list */ |
1788 | zone->nr_scan_active += | 2007 | if (pass == 0 && |
1789 | (zone_page_state(zone, NR_ACTIVE) >> prio) + 1; | 2008 | (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE)) |
1790 | if (zone->nr_scan_active >= nr_pages || pass > 3) { | 2009 | continue; |
1791 | zone->nr_scan_active = 0; | 2010 | |
2011 | zone->lru[l].nr_scan += | ||
2012 | (zone_page_state(zone, NR_LRU_BASE + l) | ||
2013 | >> prio) + 1; | ||
2014 | if (zone->lru[l].nr_scan >= nr_pages || pass > 3) { | ||
2015 | zone->lru[l].nr_scan = 0; | ||
1792 | nr_to_scan = min(nr_pages, | 2016 | nr_to_scan = min(nr_pages, |
1793 | zone_page_state(zone, NR_ACTIVE)); | 2017 | zone_page_state(zone, |
1794 | shrink_active_list(nr_to_scan, zone, sc, prio); | 2018 | NR_LRU_BASE + l)); |
2019 | ret += shrink_list(l, nr_to_scan, zone, | ||
2020 | sc, prio); | ||
2021 | if (ret >= nr_pages) | ||
2022 | return ret; | ||
1795 | } | 2023 | } |
1796 | } | 2024 | } |
1797 | |||
1798 | zone->nr_scan_inactive += | ||
1799 | (zone_page_state(zone, NR_INACTIVE) >> prio) + 1; | ||
1800 | if (zone->nr_scan_inactive >= nr_pages || pass > 3) { | ||
1801 | zone->nr_scan_inactive = 0; | ||
1802 | nr_to_scan = min(nr_pages, | ||
1803 | zone_page_state(zone, NR_INACTIVE)); | ||
1804 | ret += shrink_inactive_list(nr_to_scan, zone, sc); | ||
1805 | if (ret >= nr_pages) | ||
1806 | return ret; | ||
1807 | } | ||
1808 | } | 2025 | } |
1809 | 2026 | ||
1810 | return ret; | 2027 | return ret; |
1811 | } | 2028 | } |
1812 | 2029 | ||
1813 | static unsigned long count_lru_pages(void) | ||
1814 | { | ||
1815 | return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE); | ||
1816 | } | ||
1817 | |||
1818 | /* | 2030 | /* |
1819 | * Try to free `nr_pages' of memory, system-wide, and return the number of | 2031 | * Try to free `nr_pages' of memory, system-wide, and return the number of |
1820 | * freed pages. | 2032 | * freed pages. |
@@ -1840,7 +2052,7 @@ unsigned long shrink_all_memory(unsigned long nr_pages) | |||
1840 | 2052 | ||
1841 | current->reclaim_state = &reclaim_state; | 2053 | current->reclaim_state = &reclaim_state; |
1842 | 2054 | ||
1843 | lru_pages = count_lru_pages(); | 2055 | lru_pages = global_lru_pages(); |
1844 | nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); | 2056 | nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); |
1845 | /* If slab caches are huge, it's better to hit them first */ | 2057 | /* If slab caches are huge, it's better to hit them first */ |
1846 | while (nr_slab >= lru_pages) { | 2058 | while (nr_slab >= lru_pages) { |
@@ -1883,7 +2095,7 @@ unsigned long shrink_all_memory(unsigned long nr_pages) | |||
1883 | 2095 | ||
1884 | reclaim_state.reclaimed_slab = 0; | 2096 | reclaim_state.reclaimed_slab = 0; |
1885 | shrink_slab(sc.nr_scanned, sc.gfp_mask, | 2097 | shrink_slab(sc.nr_scanned, sc.gfp_mask, |
1886 | count_lru_pages()); | 2098 | global_lru_pages()); |
1887 | ret += reclaim_state.reclaimed_slab; | 2099 | ret += reclaim_state.reclaimed_slab; |
1888 | if (ret >= nr_pages) | 2100 | if (ret >= nr_pages) |
1889 | goto out; | 2101 | goto out; |
@@ -1900,7 +2112,7 @@ unsigned long shrink_all_memory(unsigned long nr_pages) | |||
1900 | if (!ret) { | 2112 | if (!ret) { |
1901 | do { | 2113 | do { |
1902 | reclaim_state.reclaimed_slab = 0; | 2114 | reclaim_state.reclaimed_slab = 0; |
1903 | shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages()); | 2115 | shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); |
1904 | ret += reclaim_state.reclaimed_slab; | 2116 | ret += reclaim_state.reclaimed_slab; |
1905 | } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); | 2117 | } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); |
1906 | } | 2118 | } |
@@ -2128,3 +2340,285 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
2128 | return ret; | 2340 | return ret; |
2129 | } | 2341 | } |
2130 | #endif | 2342 | #endif |
2343 | |||
2344 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
2345 | /* | ||
2346 | * page_evictable - test whether a page is evictable | ||
2347 | * @page: the page to test | ||
2348 | * @vma: the VMA in which the page is or will be mapped, may be NULL | ||
2349 | * | ||
2350 | * Test whether page is evictable--i.e., should be placed on active/inactive | ||
2351 | * lists vs unevictable list. The vma argument is !NULL when called from the | ||
2352 | * fault path to determine how to instantate a new page. | ||
2353 | * | ||
2354 | * Reasons page might not be evictable: | ||
2355 | * (1) page's mapping marked unevictable | ||
2356 | * (2) page is part of an mlocked VMA | ||
2357 | * | ||
2358 | */ | ||
2359 | int page_evictable(struct page *page, struct vm_area_struct *vma) | ||
2360 | { | ||
2361 | |||
2362 | if (mapping_unevictable(page_mapping(page))) | ||
2363 | return 0; | ||
2364 | |||
2365 | if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) | ||
2366 | return 0; | ||
2367 | |||
2368 | return 1; | ||
2369 | } | ||
2370 | |||
2371 | static void show_page_path(struct page *page) | ||
2372 | { | ||
2373 | char buf[256]; | ||
2374 | if (page_is_file_cache(page)) { | ||
2375 | struct address_space *mapping = page->mapping; | ||
2376 | struct dentry *dentry; | ||
2377 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | ||
2378 | |||
2379 | spin_lock(&mapping->i_mmap_lock); | ||
2380 | dentry = d_find_alias(mapping->host); | ||
2381 | printk(KERN_INFO "rescued: %s %lu\n", | ||
2382 | dentry_path(dentry, buf, 256), pgoff); | ||
2383 | spin_unlock(&mapping->i_mmap_lock); | ||
2384 | } else { | ||
2385 | #if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU) | ||
2386 | struct anon_vma *anon_vma; | ||
2387 | struct vm_area_struct *vma; | ||
2388 | |||
2389 | anon_vma = page_lock_anon_vma(page); | ||
2390 | if (!anon_vma) | ||
2391 | return; | ||
2392 | |||
2393 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | ||
2394 | printk(KERN_INFO "rescued: anon %s\n", | ||
2395 | vma->vm_mm->owner->comm); | ||
2396 | break; | ||
2397 | } | ||
2398 | page_unlock_anon_vma(anon_vma); | ||
2399 | #endif | ||
2400 | } | ||
2401 | } | ||
2402 | |||
2403 | |||
2404 | /** | ||
2405 | * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list | ||
2406 | * @page: page to check evictability and move to appropriate lru list | ||
2407 | * @zone: zone page is in | ||
2408 | * | ||
2409 | * Checks a page for evictability and moves the page to the appropriate | ||
2410 | * zone lru list. | ||
2411 | * | ||
2412 | * Restrictions: zone->lru_lock must be held, page must be on LRU and must | ||
2413 | * have PageUnevictable set. | ||
2414 | */ | ||
2415 | static void check_move_unevictable_page(struct page *page, struct zone *zone) | ||
2416 | { | ||
2417 | VM_BUG_ON(PageActive(page)); | ||
2418 | |||
2419 | retry: | ||
2420 | ClearPageUnevictable(page); | ||
2421 | if (page_evictable(page, NULL)) { | ||
2422 | enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page); | ||
2423 | |||
2424 | show_page_path(page); | ||
2425 | |||
2426 | __dec_zone_state(zone, NR_UNEVICTABLE); | ||
2427 | list_move(&page->lru, &zone->lru[l].list); | ||
2428 | __inc_zone_state(zone, NR_INACTIVE_ANON + l); | ||
2429 | __count_vm_event(UNEVICTABLE_PGRESCUED); | ||
2430 | } else { | ||
2431 | /* | ||
2432 | * rotate unevictable list | ||
2433 | */ | ||
2434 | SetPageUnevictable(page); | ||
2435 | list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); | ||
2436 | if (page_evictable(page, NULL)) | ||
2437 | goto retry; | ||
2438 | } | ||
2439 | } | ||
2440 | |||
2441 | /** | ||
2442 | * scan_mapping_unevictable_pages - scan an address space for evictable pages | ||
2443 | * @mapping: struct address_space to scan for evictable pages | ||
2444 | * | ||
2445 | * Scan all pages in mapping. Check unevictable pages for | ||
2446 | * evictability and move them to the appropriate zone lru list. | ||
2447 | */ | ||
2448 | void scan_mapping_unevictable_pages(struct address_space *mapping) | ||
2449 | { | ||
2450 | pgoff_t next = 0; | ||
2451 | pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> | ||
2452 | PAGE_CACHE_SHIFT; | ||
2453 | struct zone *zone; | ||
2454 | struct pagevec pvec; | ||
2455 | |||
2456 | if (mapping->nrpages == 0) | ||
2457 | return; | ||
2458 | |||
2459 | pagevec_init(&pvec, 0); | ||
2460 | while (next < end && | ||
2461 | pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | ||
2462 | int i; | ||
2463 | int pg_scanned = 0; | ||
2464 | |||
2465 | zone = NULL; | ||
2466 | |||
2467 | for (i = 0; i < pagevec_count(&pvec); i++) { | ||
2468 | struct page *page = pvec.pages[i]; | ||
2469 | pgoff_t page_index = page->index; | ||
2470 | struct zone *pagezone = page_zone(page); | ||
2471 | |||
2472 | pg_scanned++; | ||
2473 | if (page_index > next) | ||
2474 | next = page_index; | ||
2475 | next++; | ||
2476 | |||
2477 | if (pagezone != zone) { | ||
2478 | if (zone) | ||
2479 | spin_unlock_irq(&zone->lru_lock); | ||
2480 | zone = pagezone; | ||
2481 | spin_lock_irq(&zone->lru_lock); | ||
2482 | } | ||
2483 | |||
2484 | if (PageLRU(page) && PageUnevictable(page)) | ||
2485 | check_move_unevictable_page(page, zone); | ||
2486 | } | ||
2487 | if (zone) | ||
2488 | spin_unlock_irq(&zone->lru_lock); | ||
2489 | pagevec_release(&pvec); | ||
2490 | |||
2491 | count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); | ||
2492 | } | ||
2493 | |||
2494 | } | ||
2495 | |||
2496 | /** | ||
2497 | * scan_zone_unevictable_pages - check unevictable list for evictable pages | ||
2498 | * @zone - zone of which to scan the unevictable list | ||
2499 | * | ||
2500 | * Scan @zone's unevictable LRU lists to check for pages that have become | ||
2501 | * evictable. Move those that have to @zone's inactive list where they | ||
2502 | * become candidates for reclaim, unless shrink_inactive_zone() decides | ||
2503 | * to reactivate them. Pages that are still unevictable are rotated | ||
2504 | * back onto @zone's unevictable list. | ||
2505 | */ | ||
2506 | #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ | ||
2507 | void scan_zone_unevictable_pages(struct zone *zone) | ||
2508 | { | ||
2509 | struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; | ||
2510 | unsigned long scan; | ||
2511 | unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); | ||
2512 | |||
2513 | while (nr_to_scan > 0) { | ||
2514 | unsigned long batch_size = min(nr_to_scan, | ||
2515 | SCAN_UNEVICTABLE_BATCH_SIZE); | ||
2516 | |||
2517 | spin_lock_irq(&zone->lru_lock); | ||
2518 | for (scan = 0; scan < batch_size; scan++) { | ||
2519 | struct page *page = lru_to_page(l_unevictable); | ||
2520 | |||
2521 | if (!trylock_page(page)) | ||
2522 | continue; | ||
2523 | |||
2524 | prefetchw_prev_lru_page(page, l_unevictable, flags); | ||
2525 | |||
2526 | if (likely(PageLRU(page) && PageUnevictable(page))) | ||
2527 | check_move_unevictable_page(page, zone); | ||
2528 | |||
2529 | unlock_page(page); | ||
2530 | } | ||
2531 | spin_unlock_irq(&zone->lru_lock); | ||
2532 | |||
2533 | nr_to_scan -= batch_size; | ||
2534 | } | ||
2535 | } | ||
2536 | |||
2537 | |||
2538 | /** | ||
2539 | * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages | ||
2540 | * | ||
2541 | * A really big hammer: scan all zones' unevictable LRU lists to check for | ||
2542 | * pages that have become evictable. Move those back to the zones' | ||
2543 | * inactive list where they become candidates for reclaim. | ||
2544 | * This occurs when, e.g., we have unswappable pages on the unevictable lists, | ||
2545 | * and we add swap to the system. As such, it runs in the context of a task | ||
2546 | * that has possibly/probably made some previously unevictable pages | ||
2547 | * evictable. | ||
2548 | */ | ||
2549 | void scan_all_zones_unevictable_pages(void) | ||
2550 | { | ||
2551 | struct zone *zone; | ||
2552 | |||
2553 | for_each_zone(zone) { | ||
2554 | scan_zone_unevictable_pages(zone); | ||
2555 | } | ||
2556 | } | ||
2557 | |||
2558 | /* | ||
2559 | * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of | ||
2560 | * all nodes' unevictable lists for evictable pages | ||
2561 | */ | ||
2562 | unsigned long scan_unevictable_pages; | ||
2563 | |||
2564 | int scan_unevictable_handler(struct ctl_table *table, int write, | ||
2565 | struct file *file, void __user *buffer, | ||
2566 | size_t *length, loff_t *ppos) | ||
2567 | { | ||
2568 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | ||
2569 | |||
2570 | if (write && *(unsigned long *)table->data) | ||
2571 | scan_all_zones_unevictable_pages(); | ||
2572 | |||
2573 | scan_unevictable_pages = 0; | ||
2574 | return 0; | ||
2575 | } | ||
2576 | |||
2577 | /* | ||
2578 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of | ||
2579 | * a specified node's per zone unevictable lists for evictable pages. | ||
2580 | */ | ||
2581 | |||
2582 | static ssize_t read_scan_unevictable_node(struct sys_device *dev, | ||
2583 | struct sysdev_attribute *attr, | ||
2584 | char *buf) | ||
2585 | { | ||
2586 | return sprintf(buf, "0\n"); /* always zero; should fit... */ | ||
2587 | } | ||
2588 | |||
2589 | static ssize_t write_scan_unevictable_node(struct sys_device *dev, | ||
2590 | struct sysdev_attribute *attr, | ||
2591 | const char *buf, size_t count) | ||
2592 | { | ||
2593 | struct zone *node_zones = NODE_DATA(dev->id)->node_zones; | ||
2594 | struct zone *zone; | ||
2595 | unsigned long res; | ||
2596 | unsigned long req = strict_strtoul(buf, 10, &res); | ||
2597 | |||
2598 | if (!req) | ||
2599 | return 1; /* zero is no-op */ | ||
2600 | |||
2601 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | ||
2602 | if (!populated_zone(zone)) | ||
2603 | continue; | ||
2604 | scan_zone_unevictable_pages(zone); | ||
2605 | } | ||
2606 | return 1; | ||
2607 | } | ||
2608 | |||
2609 | |||
2610 | static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, | ||
2611 | read_scan_unevictable_node, | ||
2612 | write_scan_unevictable_node); | ||
2613 | |||
2614 | int scan_unevictable_register_node(struct node *node) | ||
2615 | { | ||
2616 | return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); | ||
2617 | } | ||
2618 | |||
2619 | void scan_unevictable_unregister_node(struct node *node) | ||
2620 | { | ||
2621 | sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); | ||
2622 | } | ||
2623 | |||
2624 | #endif | ||
diff --git a/mm/vmstat.c b/mm/vmstat.c index d7826af2fb07..9343227c5c60 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c | |||
@@ -619,8 +619,14 @@ const struct seq_operations pagetypeinfo_op = { | |||
619 | static const char * const vmstat_text[] = { | 619 | static const char * const vmstat_text[] = { |
620 | /* Zoned VM counters */ | 620 | /* Zoned VM counters */ |
621 | "nr_free_pages", | 621 | "nr_free_pages", |
622 | "nr_inactive", | 622 | "nr_inactive_anon", |
623 | "nr_active", | 623 | "nr_active_anon", |
624 | "nr_inactive_file", | ||
625 | "nr_active_file", | ||
626 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
627 | "nr_unevictable", | ||
628 | "nr_mlock", | ||
629 | #endif | ||
624 | "nr_anon_pages", | 630 | "nr_anon_pages", |
625 | "nr_mapped", | 631 | "nr_mapped", |
626 | "nr_file_pages", | 632 | "nr_file_pages", |
@@ -675,6 +681,16 @@ static const char * const vmstat_text[] = { | |||
675 | "htlb_buddy_alloc_success", | 681 | "htlb_buddy_alloc_success", |
676 | "htlb_buddy_alloc_fail", | 682 | "htlb_buddy_alloc_fail", |
677 | #endif | 683 | #endif |
684 | #ifdef CONFIG_UNEVICTABLE_LRU | ||
685 | "unevictable_pgs_culled", | ||
686 | "unevictable_pgs_scanned", | ||
687 | "unevictable_pgs_rescued", | ||
688 | "unevictable_pgs_mlocked", | ||
689 | "unevictable_pgs_munlocked", | ||
690 | "unevictable_pgs_cleared", | ||
691 | "unevictable_pgs_stranded", | ||
692 | "unevictable_pgs_mlockfreed", | ||
693 | #endif | ||
678 | #endif | 694 | #endif |
679 | }; | 695 | }; |
680 | 696 | ||
@@ -688,7 +704,7 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | |||
688 | "\n min %lu" | 704 | "\n min %lu" |
689 | "\n low %lu" | 705 | "\n low %lu" |
690 | "\n high %lu" | 706 | "\n high %lu" |
691 | "\n scanned %lu (a: %lu i: %lu)" | 707 | "\n scanned %lu (aa: %lu ia: %lu af: %lu if: %lu)" |
692 | "\n spanned %lu" | 708 | "\n spanned %lu" |
693 | "\n present %lu", | 709 | "\n present %lu", |
694 | zone_page_state(zone, NR_FREE_PAGES), | 710 | zone_page_state(zone, NR_FREE_PAGES), |
@@ -696,7 +712,10 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | |||
696 | zone->pages_low, | 712 | zone->pages_low, |
697 | zone->pages_high, | 713 | zone->pages_high, |
698 | zone->pages_scanned, | 714 | zone->pages_scanned, |
699 | zone->nr_scan_active, zone->nr_scan_inactive, | 715 | zone->lru[LRU_ACTIVE_ANON].nr_scan, |
716 | zone->lru[LRU_INACTIVE_ANON].nr_scan, | ||
717 | zone->lru[LRU_ACTIVE_FILE].nr_scan, | ||
718 | zone->lru[LRU_INACTIVE_FILE].nr_scan, | ||
700 | zone->spanned_pages, | 719 | zone->spanned_pages, |
701 | zone->present_pages); | 720 | zone->present_pages); |
702 | 721 | ||
@@ -733,10 +752,12 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | |||
733 | seq_printf(m, | 752 | seq_printf(m, |
734 | "\n all_unreclaimable: %u" | 753 | "\n all_unreclaimable: %u" |
735 | "\n prev_priority: %i" | 754 | "\n prev_priority: %i" |
736 | "\n start_pfn: %lu", | 755 | "\n start_pfn: %lu" |
756 | "\n inactive_ratio: %u", | ||
737 | zone_is_all_unreclaimable(zone), | 757 | zone_is_all_unreclaimable(zone), |
738 | zone->prev_priority, | 758 | zone->prev_priority, |
739 | zone->zone_start_pfn); | 759 | zone->zone_start_pfn, |
760 | zone->inactive_ratio); | ||
740 | seq_putc(m, '\n'); | 761 | seq_putc(m, '\n'); |
741 | } | 762 | } |
742 | 763 | ||