diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 2 | ||||
-rw-r--r-- | mm/Makefile | 2 | ||||
-rw-r--r-- | mm/allocpercpu.c | 28 | ||||
-rw-r--r-- | mm/backing-dev.c | 90 | ||||
-rw-r--r-- | mm/kmemleak-test.c | 6 | ||||
-rw-r--r-- | mm/page-writeback.c | 27 | ||||
-rw-r--r-- | mm/percpu.c | 1420 | ||||
-rw-r--r-- | mm/quicklist.c | 2 | ||||
-rw-r--r-- | mm/slub.c | 6 | ||||
-rw-r--r-- | mm/vmalloc.c | 338 |
10 files changed, 1503 insertions, 418 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index fe5f674d7a7d..3aa519f52e18 100644 --- a/mm/Kconfig +++ b/mm/Kconfig | |||
@@ -153,7 +153,7 @@ config MEMORY_HOTREMOVE | |||
153 | # | 153 | # |
154 | config PAGEFLAGS_EXTENDED | 154 | config PAGEFLAGS_EXTENDED |
155 | def_bool y | 155 | def_bool y |
156 | depends on 64BIT || SPARSEMEM_VMEMMAP || !NUMA || !SPARSEMEM | 156 | depends on 64BIT || SPARSEMEM_VMEMMAP || !SPARSEMEM |
157 | 157 | ||
158 | # Heavily threaded applications may benefit from splitting the mm-wide | 158 | # Heavily threaded applications may benefit from splitting the mm-wide |
159 | # page_table_lock, so that faults on different parts of the user address | 159 | # page_table_lock, so that faults on different parts of the user address |
diff --git a/mm/Makefile b/mm/Makefile index 147a7a7873c4..ea4b18bd3960 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -33,7 +33,7 @@ obj-$(CONFIG_FAILSLAB) += failslab.o | |||
33 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 33 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
34 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 34 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
35 | obj-$(CONFIG_MIGRATION) += migrate.o | 35 | obj-$(CONFIG_MIGRATION) += migrate.o |
36 | ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | 36 | ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA |
37 | obj-$(CONFIG_SMP) += percpu.o | 37 | obj-$(CONFIG_SMP) += percpu.o |
38 | else | 38 | else |
39 | obj-$(CONFIG_SMP) += allocpercpu.o | 39 | obj-$(CONFIG_SMP) += allocpercpu.o |
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index dfdee6a47359..df34ceae0c67 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c | |||
@@ -5,6 +5,8 @@ | |||
5 | */ | 5 | */ |
6 | #include <linux/mm.h> | 6 | #include <linux/mm.h> |
7 | #include <linux/module.h> | 7 | #include <linux/module.h> |
8 | #include <linux/bootmem.h> | ||
9 | #include <asm/sections.h> | ||
8 | 10 | ||
9 | #ifndef cache_line_size | 11 | #ifndef cache_line_size |
10 | #define cache_line_size() L1_CACHE_BYTES | 12 | #define cache_line_size() L1_CACHE_BYTES |
@@ -147,3 +149,29 @@ void free_percpu(void *__pdata) | |||
147 | kfree(__percpu_disguise(__pdata)); | 149 | kfree(__percpu_disguise(__pdata)); |
148 | } | 150 | } |
149 | EXPORT_SYMBOL_GPL(free_percpu); | 151 | EXPORT_SYMBOL_GPL(free_percpu); |
152 | |||
153 | /* | ||
154 | * Generic percpu area setup. | ||
155 | */ | ||
156 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA | ||
157 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | ||
158 | |||
159 | EXPORT_SYMBOL(__per_cpu_offset); | ||
160 | |||
161 | void __init setup_per_cpu_areas(void) | ||
162 | { | ||
163 | unsigned long size, i; | ||
164 | char *ptr; | ||
165 | unsigned long nr_possible_cpus = num_possible_cpus(); | ||
166 | |||
167 | /* Copy section for each CPU (we discard the original) */ | ||
168 | size = ALIGN(PERCPU_ENOUGH_ROOM, PAGE_SIZE); | ||
169 | ptr = alloc_bootmem_pages(size * nr_possible_cpus); | ||
170 | |||
171 | for_each_possible_cpu(i) { | ||
172 | __per_cpu_offset[i] = ptr - __per_cpu_start; | ||
173 | memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); | ||
174 | ptr += size; | ||
175 | } | ||
176 | } | ||
177 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ | ||
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index d3ca0dac1111..3d3accb1f800 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -26,6 +26,12 @@ struct backing_dev_info default_backing_dev_info = { | |||
26 | EXPORT_SYMBOL_GPL(default_backing_dev_info); | 26 | EXPORT_SYMBOL_GPL(default_backing_dev_info); |
27 | 27 | ||
28 | static struct class *bdi_class; | 28 | static struct class *bdi_class; |
29 | |||
30 | /* | ||
31 | * bdi_lock protects updates to bdi_list and bdi_pending_list, as well as | ||
32 | * reader side protection for bdi_pending_list. bdi_list has RCU reader side | ||
33 | * locking. | ||
34 | */ | ||
29 | DEFINE_SPINLOCK(bdi_lock); | 35 | DEFINE_SPINLOCK(bdi_lock); |
30 | LIST_HEAD(bdi_list); | 36 | LIST_HEAD(bdi_list); |
31 | LIST_HEAD(bdi_pending_list); | 37 | LIST_HEAD(bdi_pending_list); |
@@ -284,9 +290,9 @@ static int bdi_start_fn(void *ptr) | |||
284 | /* | 290 | /* |
285 | * Add us to the active bdi_list | 291 | * Add us to the active bdi_list |
286 | */ | 292 | */ |
287 | spin_lock(&bdi_lock); | 293 | spin_lock_bh(&bdi_lock); |
288 | list_add(&bdi->bdi_list, &bdi_list); | 294 | list_add_rcu(&bdi->bdi_list, &bdi_list); |
289 | spin_unlock(&bdi_lock); | 295 | spin_unlock_bh(&bdi_lock); |
290 | 296 | ||
291 | bdi_task_init(bdi, wb); | 297 | bdi_task_init(bdi, wb); |
292 | 298 | ||
@@ -389,7 +395,7 @@ static int bdi_forker_task(void *ptr) | |||
389 | if (wb_has_dirty_io(me) || !list_empty(&me->bdi->work_list)) | 395 | if (wb_has_dirty_io(me) || !list_empty(&me->bdi->work_list)) |
390 | wb_do_writeback(me, 0); | 396 | wb_do_writeback(me, 0); |
391 | 397 | ||
392 | spin_lock(&bdi_lock); | 398 | spin_lock_bh(&bdi_lock); |
393 | 399 | ||
394 | /* | 400 | /* |
395 | * Check if any existing bdi's have dirty data without | 401 | * Check if any existing bdi's have dirty data without |
@@ -410,7 +416,7 @@ static int bdi_forker_task(void *ptr) | |||
410 | if (list_empty(&bdi_pending_list)) { | 416 | if (list_empty(&bdi_pending_list)) { |
411 | unsigned long wait; | 417 | unsigned long wait; |
412 | 418 | ||
413 | spin_unlock(&bdi_lock); | 419 | spin_unlock_bh(&bdi_lock); |
414 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); | 420 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); |
415 | schedule_timeout(wait); | 421 | schedule_timeout(wait); |
416 | try_to_freeze(); | 422 | try_to_freeze(); |
@@ -426,7 +432,7 @@ static int bdi_forker_task(void *ptr) | |||
426 | bdi = list_entry(bdi_pending_list.next, struct backing_dev_info, | 432 | bdi = list_entry(bdi_pending_list.next, struct backing_dev_info, |
427 | bdi_list); | 433 | bdi_list); |
428 | list_del_init(&bdi->bdi_list); | 434 | list_del_init(&bdi->bdi_list); |
429 | spin_unlock(&bdi_lock); | 435 | spin_unlock_bh(&bdi_lock); |
430 | 436 | ||
431 | wb = &bdi->wb; | 437 | wb = &bdi->wb; |
432 | wb->task = kthread_run(bdi_start_fn, wb, "flush-%s", | 438 | wb->task = kthread_run(bdi_start_fn, wb, "flush-%s", |
@@ -445,9 +451,9 @@ static int bdi_forker_task(void *ptr) | |||
445 | * a chance to flush other bdi's to free | 451 | * a chance to flush other bdi's to free |
446 | * memory. | 452 | * memory. |
447 | */ | 453 | */ |
448 | spin_lock(&bdi_lock); | 454 | spin_lock_bh(&bdi_lock); |
449 | list_add_tail(&bdi->bdi_list, &bdi_pending_list); | 455 | list_add_tail(&bdi->bdi_list, &bdi_pending_list); |
450 | spin_unlock(&bdi_lock); | 456 | spin_unlock_bh(&bdi_lock); |
451 | 457 | ||
452 | bdi_flush_io(bdi); | 458 | bdi_flush_io(bdi); |
453 | } | 459 | } |
@@ -456,6 +462,24 @@ static int bdi_forker_task(void *ptr) | |||
456 | return 0; | 462 | return 0; |
457 | } | 463 | } |
458 | 464 | ||
465 | static void bdi_add_to_pending(struct rcu_head *head) | ||
466 | { | ||
467 | struct backing_dev_info *bdi; | ||
468 | |||
469 | bdi = container_of(head, struct backing_dev_info, rcu_head); | ||
470 | INIT_LIST_HEAD(&bdi->bdi_list); | ||
471 | |||
472 | spin_lock(&bdi_lock); | ||
473 | list_add_tail(&bdi->bdi_list, &bdi_pending_list); | ||
474 | spin_unlock(&bdi_lock); | ||
475 | |||
476 | /* | ||
477 | * We are now on the pending list, wake up bdi_forker_task() | ||
478 | * to finish the job and add us back to the active bdi_list | ||
479 | */ | ||
480 | wake_up_process(default_backing_dev_info.wb.task); | ||
481 | } | ||
482 | |||
459 | /* | 483 | /* |
460 | * Add the default flusher task that gets created for any bdi | 484 | * Add the default flusher task that gets created for any bdi |
461 | * that has dirty data pending writeout | 485 | * that has dirty data pending writeout |
@@ -478,16 +502,29 @@ void static bdi_add_default_flusher_task(struct backing_dev_info *bdi) | |||
478 | * waiting for previous additions to finish. | 502 | * waiting for previous additions to finish. |
479 | */ | 503 | */ |
480 | if (!test_and_set_bit(BDI_pending, &bdi->state)) { | 504 | if (!test_and_set_bit(BDI_pending, &bdi->state)) { |
481 | list_move_tail(&bdi->bdi_list, &bdi_pending_list); | 505 | list_del_rcu(&bdi->bdi_list); |
482 | 506 | ||
483 | /* | 507 | /* |
484 | * We are now on the pending list, wake up bdi_forker_task() | 508 | * We must wait for the current RCU period to end before |
485 | * to finish the job and add us back to the active bdi_list | 509 | * moving to the pending list. So schedule that operation |
510 | * from an RCU callback. | ||
486 | */ | 511 | */ |
487 | wake_up_process(default_backing_dev_info.wb.task); | 512 | call_rcu(&bdi->rcu_head, bdi_add_to_pending); |
488 | } | 513 | } |
489 | } | 514 | } |
490 | 515 | ||
516 | /* | ||
517 | * Remove bdi from bdi_list, and ensure that it is no longer visible | ||
518 | */ | ||
519 | static void bdi_remove_from_list(struct backing_dev_info *bdi) | ||
520 | { | ||
521 | spin_lock_bh(&bdi_lock); | ||
522 | list_del_rcu(&bdi->bdi_list); | ||
523 | spin_unlock_bh(&bdi_lock); | ||
524 | |||
525 | synchronize_rcu(); | ||
526 | } | ||
527 | |||
491 | int bdi_register(struct backing_dev_info *bdi, struct device *parent, | 528 | int bdi_register(struct backing_dev_info *bdi, struct device *parent, |
492 | const char *fmt, ...) | 529 | const char *fmt, ...) |
493 | { | 530 | { |
@@ -506,9 +543,9 @@ int bdi_register(struct backing_dev_info *bdi, struct device *parent, | |||
506 | goto exit; | 543 | goto exit; |
507 | } | 544 | } |
508 | 545 | ||
509 | spin_lock(&bdi_lock); | 546 | spin_lock_bh(&bdi_lock); |
510 | list_add_tail(&bdi->bdi_list, &bdi_list); | 547 | list_add_tail_rcu(&bdi->bdi_list, &bdi_list); |
511 | spin_unlock(&bdi_lock); | 548 | spin_unlock_bh(&bdi_lock); |
512 | 549 | ||
513 | bdi->dev = dev; | 550 | bdi->dev = dev; |
514 | 551 | ||
@@ -526,9 +563,7 @@ int bdi_register(struct backing_dev_info *bdi, struct device *parent, | |||
526 | wb->task = NULL; | 563 | wb->task = NULL; |
527 | ret = -ENOMEM; | 564 | ret = -ENOMEM; |
528 | 565 | ||
529 | spin_lock(&bdi_lock); | 566 | bdi_remove_from_list(bdi); |
530 | list_del(&bdi->bdi_list); | ||
531 | spin_unlock(&bdi_lock); | ||
532 | goto exit; | 567 | goto exit; |
533 | } | 568 | } |
534 | } | 569 | } |
@@ -565,9 +600,7 @@ static void bdi_wb_shutdown(struct backing_dev_info *bdi) | |||
565 | /* | 600 | /* |
566 | * Make sure nobody finds us on the bdi_list anymore | 601 | * Make sure nobody finds us on the bdi_list anymore |
567 | */ | 602 | */ |
568 | spin_lock(&bdi_lock); | 603 | bdi_remove_from_list(bdi); |
569 | list_del(&bdi->bdi_list); | ||
570 | spin_unlock(&bdi_lock); | ||
571 | 604 | ||
572 | /* | 605 | /* |
573 | * Finally, kill the kernel threads. We don't need to be RCU | 606 | * Finally, kill the kernel threads. We don't need to be RCU |
@@ -599,6 +632,7 @@ int bdi_init(struct backing_dev_info *bdi) | |||
599 | bdi->max_ratio = 100; | 632 | bdi->max_ratio = 100; |
600 | bdi->max_prop_frac = PROP_FRAC_BASE; | 633 | bdi->max_prop_frac = PROP_FRAC_BASE; |
601 | spin_lock_init(&bdi->wb_lock); | 634 | spin_lock_init(&bdi->wb_lock); |
635 | INIT_RCU_HEAD(&bdi->rcu_head); | ||
602 | INIT_LIST_HEAD(&bdi->bdi_list); | 636 | INIT_LIST_HEAD(&bdi->bdi_list); |
603 | INIT_LIST_HEAD(&bdi->wb_list); | 637 | INIT_LIST_HEAD(&bdi->wb_list); |
604 | INIT_LIST_HEAD(&bdi->work_list); | 638 | INIT_LIST_HEAD(&bdi->work_list); |
@@ -634,7 +668,19 @@ void bdi_destroy(struct backing_dev_info *bdi) | |||
634 | { | 668 | { |
635 | int i; | 669 | int i; |
636 | 670 | ||
637 | WARN_ON(bdi_has_dirty_io(bdi)); | 671 | /* |
672 | * Splice our entries to the default_backing_dev_info, if this | ||
673 | * bdi disappears | ||
674 | */ | ||
675 | if (bdi_has_dirty_io(bdi)) { | ||
676 | struct bdi_writeback *dst = &default_backing_dev_info.wb; | ||
677 | |||
678 | spin_lock(&inode_lock); | ||
679 | list_splice(&bdi->wb.b_dirty, &dst->b_dirty); | ||
680 | list_splice(&bdi->wb.b_io, &dst->b_io); | ||
681 | list_splice(&bdi->wb.b_more_io, &dst->b_more_io); | ||
682 | spin_unlock(&inode_lock); | ||
683 | } | ||
638 | 684 | ||
639 | bdi_unregister(bdi); | 685 | bdi_unregister(bdi); |
640 | 686 | ||
diff --git a/mm/kmemleak-test.c b/mm/kmemleak-test.c index d5292fc6f523..177a5169bbde 100644 --- a/mm/kmemleak-test.c +++ b/mm/kmemleak-test.c | |||
@@ -36,7 +36,7 @@ struct test_node { | |||
36 | }; | 36 | }; |
37 | 37 | ||
38 | static LIST_HEAD(test_list); | 38 | static LIST_HEAD(test_list); |
39 | static DEFINE_PER_CPU(void *, test_pointer); | 39 | static DEFINE_PER_CPU(void *, kmemleak_test_pointer); |
40 | 40 | ||
41 | /* | 41 | /* |
42 | * Some very simple testing. This function needs to be extended for | 42 | * Some very simple testing. This function needs to be extended for |
@@ -86,9 +86,9 @@ static int __init kmemleak_test_init(void) | |||
86 | } | 86 | } |
87 | 87 | ||
88 | for_each_possible_cpu(i) { | 88 | for_each_possible_cpu(i) { |
89 | per_cpu(test_pointer, i) = kmalloc(129, GFP_KERNEL); | 89 | per_cpu(kmemleak_test_pointer, i) = kmalloc(129, GFP_KERNEL); |
90 | pr_info("kmemleak: kmalloc(129) = %p\n", | 90 | pr_info("kmemleak: kmalloc(129) = %p\n", |
91 | per_cpu(test_pointer, i)); | 91 | per_cpu(kmemleak_test_pointer, i)); |
92 | } | 92 | } |
93 | 93 | ||
94 | return 0; | 94 | return 0; |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 25e7770309b8..1eea4fa0d410 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -315,7 +315,7 @@ int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) | |||
315 | { | 315 | { |
316 | int ret = 0; | 316 | int ret = 0; |
317 | 317 | ||
318 | spin_lock(&bdi_lock); | 318 | spin_lock_bh(&bdi_lock); |
319 | if (min_ratio > bdi->max_ratio) { | 319 | if (min_ratio > bdi->max_ratio) { |
320 | ret = -EINVAL; | 320 | ret = -EINVAL; |
321 | } else { | 321 | } else { |
@@ -327,7 +327,7 @@ int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) | |||
327 | ret = -EINVAL; | 327 | ret = -EINVAL; |
328 | } | 328 | } |
329 | } | 329 | } |
330 | spin_unlock(&bdi_lock); | 330 | spin_unlock_bh(&bdi_lock); |
331 | 331 | ||
332 | return ret; | 332 | return ret; |
333 | } | 333 | } |
@@ -339,14 +339,14 @@ int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) | |||
339 | if (max_ratio > 100) | 339 | if (max_ratio > 100) |
340 | return -EINVAL; | 340 | return -EINVAL; |
341 | 341 | ||
342 | spin_lock(&bdi_lock); | 342 | spin_lock_bh(&bdi_lock); |
343 | if (bdi->min_ratio > max_ratio) { | 343 | if (bdi->min_ratio > max_ratio) { |
344 | ret = -EINVAL; | 344 | ret = -EINVAL; |
345 | } else { | 345 | } else { |
346 | bdi->max_ratio = max_ratio; | 346 | bdi->max_ratio = max_ratio; |
347 | bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; | 347 | bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; |
348 | } | 348 | } |
349 | spin_unlock(&bdi_lock); | 349 | spin_unlock_bh(&bdi_lock); |
350 | 350 | ||
351 | return ret; | 351 | return ret; |
352 | } | 352 | } |
@@ -582,16 +582,8 @@ static void balance_dirty_pages(struct address_space *mapping) | |||
582 | if ((laptop_mode && pages_written) || | 582 | if ((laptop_mode && pages_written) || |
583 | (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY) | 583 | (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY) |
584 | + global_page_state(NR_UNSTABLE_NFS)) | 584 | + global_page_state(NR_UNSTABLE_NFS)) |
585 | > background_thresh))) { | 585 | > background_thresh))) |
586 | struct writeback_control wbc = { | 586 | bdi_start_writeback(bdi, nr_writeback); |
587 | .bdi = bdi, | ||
588 | .sync_mode = WB_SYNC_NONE, | ||
589 | .nr_to_write = nr_writeback, | ||
590 | }; | ||
591 | |||
592 | |||
593 | bdi_start_writeback(&wbc); | ||
594 | } | ||
595 | } | 587 | } |
596 | 588 | ||
597 | void set_page_dirty_balance(struct page *page, int page_mkwrite) | 589 | void set_page_dirty_balance(struct page *page, int page_mkwrite) |
@@ -604,6 +596,8 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite) | |||
604 | } | 596 | } |
605 | } | 597 | } |
606 | 598 | ||
599 | static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; | ||
600 | |||
607 | /** | 601 | /** |
608 | * balance_dirty_pages_ratelimited_nr - balance dirty memory state | 602 | * balance_dirty_pages_ratelimited_nr - balance dirty memory state |
609 | * @mapping: address_space which was dirtied | 603 | * @mapping: address_space which was dirtied |
@@ -621,7 +615,6 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite) | |||
621 | void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, | 615 | void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, |
622 | unsigned long nr_pages_dirtied) | 616 | unsigned long nr_pages_dirtied) |
623 | { | 617 | { |
624 | static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; | ||
625 | unsigned long ratelimit; | 618 | unsigned long ratelimit; |
626 | unsigned long *p; | 619 | unsigned long *p; |
627 | 620 | ||
@@ -634,7 +627,7 @@ void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, | |||
634 | * tasks in balance_dirty_pages(). Period. | 627 | * tasks in balance_dirty_pages(). Period. |
635 | */ | 628 | */ |
636 | preempt_disable(); | 629 | preempt_disable(); |
637 | p = &__get_cpu_var(ratelimits); | 630 | p = &__get_cpu_var(bdp_ratelimits); |
638 | *p += nr_pages_dirtied; | 631 | *p += nr_pages_dirtied; |
639 | if (unlikely(*p >= ratelimit)) { | 632 | if (unlikely(*p >= ratelimit)) { |
640 | *p = 0; | 633 | *p = 0; |
@@ -1019,12 +1012,10 @@ int do_writepages(struct address_space *mapping, struct writeback_control *wbc) | |||
1019 | 1012 | ||
1020 | if (wbc->nr_to_write <= 0) | 1013 | if (wbc->nr_to_write <= 0) |
1021 | return 0; | 1014 | return 0; |
1022 | wbc->for_writepages = 1; | ||
1023 | if (mapping->a_ops->writepages) | 1015 | if (mapping->a_ops->writepages) |
1024 | ret = mapping->a_ops->writepages(mapping, wbc); | 1016 | ret = mapping->a_ops->writepages(mapping, wbc); |
1025 | else | 1017 | else |
1026 | ret = generic_writepages(mapping, wbc); | 1018 | ret = generic_writepages(mapping, wbc); |
1027 | wbc->for_writepages = 0; | ||
1028 | return ret; | 1019 | return ret; |
1029 | } | 1020 | } |
1030 | 1021 | ||
diff --git a/mm/percpu.c b/mm/percpu.c index 3311c8919f37..43d8cacfdaa5 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
@@ -8,12 +8,13 @@ | |||
8 | * | 8 | * |
9 | * This is percpu allocator which can handle both static and dynamic | 9 | * This is percpu allocator which can handle both static and dynamic |
10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | 10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each |
11 | * chunk is consisted of nr_cpu_ids units and the first chunk is used | 11 | * chunk is consisted of boot-time determined number of units and the |
12 | * for static percpu variables in the kernel image (special boot time | 12 | * first chunk is used for static percpu variables in the kernel image |
13 | * alloc/init handling necessary as these areas need to be brought up | 13 | * (special boot time alloc/init handling necessary as these areas |
14 | * before allocation services are running). Unit grows as necessary | 14 | * need to be brought up before allocation services are running). |
15 | * and all units grow or shrink in unison. When a chunk is filled up, | 15 | * Unit grows as necessary and all units grow or shrink in unison. |
16 | * another chunk is allocated. ie. in vmalloc area | 16 | * When a chunk is filled up, another chunk is allocated. ie. in |
17 | * vmalloc area | ||
17 | * | 18 | * |
18 | * c0 c1 c2 | 19 | * c0 c1 c2 |
19 | * ------------------- ------------------- ------------ | 20 | * ------------------- ------------------- ------------ |
@@ -22,11 +23,13 @@ | |||
22 | * | 23 | * |
23 | * Allocation is done in offset-size areas of single unit space. Ie, | 24 | * Allocation is done in offset-size areas of single unit space. Ie, |
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | 25 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, |
25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | 26 | * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to |
26 | * percpu base registers pcpu_unit_size apart. | 27 | * cpus. On NUMA, the mapping can be non-linear and even sparse. |
28 | * Percpu access can be done by configuring percpu base registers | ||
29 | * according to cpu to unit mapping and pcpu_unit_size. | ||
27 | * | 30 | * |
28 | * There are usually many small percpu allocations many of them as | 31 | * There are usually many small percpu allocations many of them being |
29 | * small as 4 bytes. The allocator organizes chunks into lists | 32 | * as small as 4 bytes. The allocator organizes chunks into lists |
30 | * according to free size and tries to allocate from the fullest one. | 33 | * according to free size and tries to allocate from the fullest one. |
31 | * Each chunk keeps the maximum contiguous area size hint which is | 34 | * Each chunk keeps the maximum contiguous area size hint which is |
32 | * guaranteed to be eqaul to or larger than the maximum contiguous | 35 | * guaranteed to be eqaul to or larger than the maximum contiguous |
@@ -43,7 +46,7 @@ | |||
43 | * | 46 | * |
44 | * To use this allocator, arch code should do the followings. | 47 | * To use this allocator, arch code should do the followings. |
45 | * | 48 | * |
46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | 49 | * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA |
47 | * | 50 | * |
48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | 51 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
49 | * regular address to percpu pointer and back if they need to be | 52 | * regular address to percpu pointer and back if they need to be |
@@ -55,7 +58,9 @@ | |||
55 | 58 | ||
56 | #include <linux/bitmap.h> | 59 | #include <linux/bitmap.h> |
57 | #include <linux/bootmem.h> | 60 | #include <linux/bootmem.h> |
61 | #include <linux/err.h> | ||
58 | #include <linux/list.h> | 62 | #include <linux/list.h> |
63 | #include <linux/log2.h> | ||
59 | #include <linux/mm.h> | 64 | #include <linux/mm.h> |
60 | #include <linux/module.h> | 65 | #include <linux/module.h> |
61 | #include <linux/mutex.h> | 66 | #include <linux/mutex.h> |
@@ -89,25 +94,38 @@ struct pcpu_chunk { | |||
89 | struct list_head list; /* linked to pcpu_slot lists */ | 94 | struct list_head list; /* linked to pcpu_slot lists */ |
90 | int free_size; /* free bytes in the chunk */ | 95 | int free_size; /* free bytes in the chunk */ |
91 | int contig_hint; /* max contiguous size hint */ | 96 | int contig_hint; /* max contiguous size hint */ |
92 | struct vm_struct *vm; /* mapped vmalloc region */ | 97 | void *base_addr; /* base address of this chunk */ |
93 | int map_used; /* # of map entries used */ | 98 | int map_used; /* # of map entries used */ |
94 | int map_alloc; /* # of map entries allocated */ | 99 | int map_alloc; /* # of map entries allocated */ |
95 | int *map; /* allocation map */ | 100 | int *map; /* allocation map */ |
101 | struct vm_struct **vms; /* mapped vmalloc regions */ | ||
96 | bool immutable; /* no [de]population allowed */ | 102 | bool immutable; /* no [de]population allowed */ |
97 | struct page **page; /* points to page array */ | 103 | unsigned long populated[]; /* populated bitmap */ |
98 | struct page *page_ar[]; /* #cpus * UNIT_PAGES */ | ||
99 | }; | 104 | }; |
100 | 105 | ||
101 | static int pcpu_unit_pages __read_mostly; | 106 | static int pcpu_unit_pages __read_mostly; |
102 | static int pcpu_unit_size __read_mostly; | 107 | static int pcpu_unit_size __read_mostly; |
103 | static int pcpu_chunk_size __read_mostly; | 108 | static int pcpu_nr_units __read_mostly; |
109 | static int pcpu_atom_size __read_mostly; | ||
104 | static int pcpu_nr_slots __read_mostly; | 110 | static int pcpu_nr_slots __read_mostly; |
105 | static size_t pcpu_chunk_struct_size __read_mostly; | 111 | static size_t pcpu_chunk_struct_size __read_mostly; |
106 | 112 | ||
113 | /* cpus with the lowest and highest unit numbers */ | ||
114 | static unsigned int pcpu_first_unit_cpu __read_mostly; | ||
115 | static unsigned int pcpu_last_unit_cpu __read_mostly; | ||
116 | |||
107 | /* the address of the first chunk which starts with the kernel static area */ | 117 | /* the address of the first chunk which starts with the kernel static area */ |
108 | void *pcpu_base_addr __read_mostly; | 118 | void *pcpu_base_addr __read_mostly; |
109 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | 119 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
110 | 120 | ||
121 | static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ | ||
122 | const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ | ||
123 | |||
124 | /* group information, used for vm allocation */ | ||
125 | static int pcpu_nr_groups __read_mostly; | ||
126 | static const unsigned long *pcpu_group_offsets __read_mostly; | ||
127 | static const size_t *pcpu_group_sizes __read_mostly; | ||
128 | |||
111 | /* | 129 | /* |
112 | * The first chunk which always exists. Note that unlike other | 130 | * The first chunk which always exists. Note that unlike other |
113 | * chunks, this one can be allocated and mapped in several different | 131 | * chunks, this one can be allocated and mapped in several different |
@@ -129,9 +147,9 @@ static int pcpu_reserved_chunk_limit; | |||
129 | * Synchronization rules. | 147 | * Synchronization rules. |
130 | * | 148 | * |
131 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | 149 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former |
132 | * protects allocation/reclaim paths, chunks and chunk->page arrays. | 150 | * protects allocation/reclaim paths, chunks, populated bitmap and |
133 | * The latter is a spinlock and protects the index data structures - | 151 | * vmalloc mapping. The latter is a spinlock and protects the index |
134 | * chunk slots, chunks and area maps in chunks. | 152 | * data structures - chunk slots, chunks and area maps in chunks. |
135 | * | 153 | * |
136 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | 154 | * During allocation, pcpu_alloc_mutex is kept locked all the time and |
137 | * pcpu_lock is grabbed and released as necessary. All actual memory | 155 | * pcpu_lock is grabbed and released as necessary. All actual memory |
@@ -178,31 +196,23 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | |||
178 | 196 | ||
179 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | 197 | static int pcpu_page_idx(unsigned int cpu, int page_idx) |
180 | { | 198 | { |
181 | return cpu * pcpu_unit_pages + page_idx; | 199 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
182 | } | ||
183 | |||
184 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | ||
185 | unsigned int cpu, int page_idx) | ||
186 | { | ||
187 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | ||
188 | } | 200 | } |
189 | 201 | ||
190 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | 202 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
191 | unsigned int cpu, int page_idx) | 203 | unsigned int cpu, int page_idx) |
192 | { | 204 | { |
193 | return (unsigned long)chunk->vm->addr + | 205 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + |
194 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | 206 | (page_idx << PAGE_SHIFT); |
195 | } | 207 | } |
196 | 208 | ||
197 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | 209 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, |
198 | int page_idx) | 210 | unsigned int cpu, int page_idx) |
199 | { | 211 | { |
200 | /* | 212 | /* must not be used on pre-mapped chunk */ |
201 | * Any possible cpu id can be used here, so there's no need to | 213 | WARN_ON(chunk->immutable); |
202 | * worry about preemption or cpu hotplug. | 214 | |
203 | */ | 215 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); |
204 | return *pcpu_chunk_pagep(chunk, raw_smp_processor_id(), | ||
205 | page_idx) != NULL; | ||
206 | } | 216 | } |
207 | 217 | ||
208 | /* set the pointer to a chunk in a page struct */ | 218 | /* set the pointer to a chunk in a page struct */ |
@@ -217,6 +227,34 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |||
217 | return (struct pcpu_chunk *)page->index; | 227 | return (struct pcpu_chunk *)page->index; |
218 | } | 228 | } |
219 | 229 | ||
230 | static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | ||
231 | { | ||
232 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | ||
233 | *re = find_next_bit(chunk->populated, end, *rs + 1); | ||
234 | } | ||
235 | |||
236 | static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | ||
237 | { | ||
238 | *rs = find_next_bit(chunk->populated, end, *rs); | ||
239 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * (Un)populated page region iterators. Iterate over (un)populated | ||
244 | * page regions betwen @start and @end in @chunk. @rs and @re should | ||
245 | * be integer variables and will be set to start and end page index of | ||
246 | * the current region. | ||
247 | */ | ||
248 | #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ | ||
249 | for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ | ||
250 | (rs) < (re); \ | ||
251 | (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) | ||
252 | |||
253 | #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ | ||
254 | for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ | ||
255 | (rs) < (re); \ | ||
256 | (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) | ||
257 | |||
220 | /** | 258 | /** |
221 | * pcpu_mem_alloc - allocate memory | 259 | * pcpu_mem_alloc - allocate memory |
222 | * @size: bytes to allocate | 260 | * @size: bytes to allocate |
@@ -292,10 +330,10 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |||
292 | */ | 330 | */ |
293 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | 331 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) |
294 | { | 332 | { |
295 | void *first_start = pcpu_first_chunk->vm->addr; | 333 | void *first_start = pcpu_first_chunk->base_addr; |
296 | 334 | ||
297 | /* is it in the first chunk? */ | 335 | /* is it in the first chunk? */ |
298 | if (addr >= first_start && addr < first_start + pcpu_chunk_size) { | 336 | if (addr >= first_start && addr < first_start + pcpu_unit_size) { |
299 | /* is it in the reserved area? */ | 337 | /* is it in the reserved area? */ |
300 | if (addr < first_start + pcpu_reserved_chunk_limit) | 338 | if (addr < first_start + pcpu_reserved_chunk_limit) |
301 | return pcpu_reserved_chunk; | 339 | return pcpu_reserved_chunk; |
@@ -309,7 +347,7 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |||
309 | * space. Note that any possible cpu id can be used here, so | 347 | * space. Note that any possible cpu id can be used here, so |
310 | * there's no need to worry about preemption or cpu hotplug. | 348 | * there's no need to worry about preemption or cpu hotplug. |
311 | */ | 349 | */ |
312 | addr += raw_smp_processor_id() * pcpu_unit_size; | 350 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; |
313 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); | 351 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); |
314 | } | 352 | } |
315 | 353 | ||
@@ -558,125 +596,327 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |||
558 | } | 596 | } |
559 | 597 | ||
560 | /** | 598 | /** |
561 | * pcpu_unmap - unmap pages out of a pcpu_chunk | 599 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap |
562 | * @chunk: chunk of interest | 600 | * @chunk: chunk of interest |
563 | * @page_start: page index of the first page to unmap | 601 | * @bitmapp: output parameter for bitmap |
564 | * @page_end: page index of the last page to unmap + 1 | 602 | * @may_alloc: may allocate the array |
565 | * @flush_tlb: whether to flush tlb or not | ||
566 | * | 603 | * |
567 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 604 | * Returns pointer to array of pointers to struct page and bitmap, |
568 | * If @flush is true, vcache is flushed before unmapping and tlb | 605 | * both of which can be indexed with pcpu_page_idx(). The returned |
569 | * after. | 606 | * array is cleared to zero and *@bitmapp is copied from |
607 | * @chunk->populated. Note that there is only one array and bitmap | ||
608 | * and access exclusion is the caller's responsibility. | ||
609 | * | ||
610 | * CONTEXT: | ||
611 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
612 | * Otherwise, don't care. | ||
613 | * | ||
614 | * RETURNS: | ||
615 | * Pointer to temp pages array on success, NULL on failure. | ||
570 | */ | 616 | */ |
571 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | 617 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, |
572 | bool flush_tlb) | 618 | unsigned long **bitmapp, |
619 | bool may_alloc) | ||
573 | { | 620 | { |
574 | unsigned int last = nr_cpu_ids - 1; | 621 | static struct page **pages; |
575 | unsigned int cpu; | 622 | static unsigned long *bitmap; |
623 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
624 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
625 | sizeof(unsigned long); | ||
626 | |||
627 | if (!pages || !bitmap) { | ||
628 | if (may_alloc && !pages) | ||
629 | pages = pcpu_mem_alloc(pages_size); | ||
630 | if (may_alloc && !bitmap) | ||
631 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
632 | if (!pages || !bitmap) | ||
633 | return NULL; | ||
634 | } | ||
576 | 635 | ||
577 | /* unmap must not be done on immutable chunk */ | 636 | memset(pages, 0, pages_size); |
578 | WARN_ON(chunk->immutable); | 637 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); |
579 | 638 | ||
580 | /* | 639 | *bitmapp = bitmap; |
581 | * Each flushing trial can be very expensive, issue flush on | 640 | return pages; |
582 | * the whole region at once rather than doing it for each cpu. | 641 | } |
583 | * This could be an overkill but is more scalable. | ||
584 | */ | ||
585 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
586 | pcpu_chunk_addr(chunk, last, page_end)); | ||
587 | 642 | ||
588 | for_each_possible_cpu(cpu) | 643 | /** |
589 | unmap_kernel_range_noflush( | 644 | * pcpu_free_pages - free pages which were allocated for @chunk |
590 | pcpu_chunk_addr(chunk, cpu, page_start), | 645 | * @chunk: chunk pages were allocated for |
591 | (page_end - page_start) << PAGE_SHIFT); | 646 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() |
592 | 647 | * @populated: populated bitmap | |
593 | /* ditto as flush_cache_vunmap() */ | 648 | * @page_start: page index of the first page to be freed |
594 | if (flush_tlb) | 649 | * @page_end: page index of the last page to be freed + 1 |
595 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | 650 | * |
596 | pcpu_chunk_addr(chunk, last, page_end)); | 651 | * Free pages [@page_start and @page_end) in @pages for all units. |
652 | * The pages were allocated for @chunk. | ||
653 | */ | ||
654 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
655 | struct page **pages, unsigned long *populated, | ||
656 | int page_start, int page_end) | ||
657 | { | ||
658 | unsigned int cpu; | ||
659 | int i; | ||
660 | |||
661 | for_each_possible_cpu(cpu) { | ||
662 | for (i = page_start; i < page_end; i++) { | ||
663 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | ||
664 | |||
665 | if (page) | ||
666 | __free_page(page); | ||
667 | } | ||
668 | } | ||
597 | } | 669 | } |
598 | 670 | ||
599 | /** | 671 | /** |
600 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | 672 | * pcpu_alloc_pages - allocates pages for @chunk |
601 | * @chunk: chunk to depopulate | 673 | * @chunk: target chunk |
602 | * @off: offset to the area to depopulate | 674 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() |
603 | * @size: size of the area to depopulate in bytes | 675 | * @populated: populated bitmap |
604 | * @flush: whether to flush cache and tlb or not | 676 | * @page_start: page index of the first page to be allocated |
605 | * | 677 | * @page_end: page index of the last page to be allocated + 1 |
606 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | 678 | * |
607 | * from @chunk. If @flush is true, vcache is flushed before unmapping | 679 | * Allocate pages [@page_start,@page_end) into @pages for all units. |
608 | * and tlb after. | 680 | * The allocation is for @chunk. Percpu core doesn't care about the |
609 | * | 681 | * content of @pages and will pass it verbatim to pcpu_map_pages(). |
610 | * CONTEXT: | ||
611 | * pcpu_alloc_mutex. | ||
612 | */ | 682 | */ |
613 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | 683 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, |
614 | bool flush) | 684 | struct page **pages, unsigned long *populated, |
685 | int page_start, int page_end) | ||
615 | { | 686 | { |
616 | int page_start = PFN_DOWN(off); | 687 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; |
617 | int page_end = PFN_UP(off + size); | ||
618 | int unmap_start = -1; | ||
619 | int uninitialized_var(unmap_end); | ||
620 | unsigned int cpu; | 688 | unsigned int cpu; |
621 | int i; | 689 | int i; |
622 | 690 | ||
623 | for (i = page_start; i < page_end; i++) { | 691 | for_each_possible_cpu(cpu) { |
624 | for_each_possible_cpu(cpu) { | 692 | for (i = page_start; i < page_end; i++) { |
625 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | 693 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; |
694 | |||
695 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
696 | if (!*pagep) { | ||
697 | pcpu_free_pages(chunk, pages, populated, | ||
698 | page_start, page_end); | ||
699 | return -ENOMEM; | ||
700 | } | ||
701 | } | ||
702 | } | ||
703 | return 0; | ||
704 | } | ||
626 | 705 | ||
627 | if (!*pagep) | 706 | /** |
628 | continue; | 707 | * pcpu_pre_unmap_flush - flush cache prior to unmapping |
708 | * @chunk: chunk the regions to be flushed belongs to | ||
709 | * @page_start: page index of the first page to be flushed | ||
710 | * @page_end: page index of the last page to be flushed + 1 | ||
711 | * | ||
712 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
713 | * unmapped. Flush cache. As each flushing trial can be very | ||
714 | * expensive, issue flush on the whole region at once rather than | ||
715 | * doing it for each cpu. This could be an overkill but is more | ||
716 | * scalable. | ||
717 | */ | ||
718 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
719 | int page_start, int page_end) | ||
720 | { | ||
721 | flush_cache_vunmap( | ||
722 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
723 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
724 | } | ||
725 | |||
726 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | ||
727 | { | ||
728 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | ||
729 | } | ||
629 | 730 | ||
630 | __free_page(*pagep); | 731 | /** |
732 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | ||
733 | * @chunk: chunk of interest | ||
734 | * @pages: pages array which can be used to pass information to free | ||
735 | * @populated: populated bitmap | ||
736 | * @page_start: page index of the first page to unmap | ||
737 | * @page_end: page index of the last page to unmap + 1 | ||
738 | * | ||
739 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
740 | * Corresponding elements in @pages were cleared by the caller and can | ||
741 | * be used to carry information to pcpu_free_pages() which will be | ||
742 | * called after all unmaps are finished. The caller should call | ||
743 | * proper pre/post flush functions. | ||
744 | */ | ||
745 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | ||
746 | struct page **pages, unsigned long *populated, | ||
747 | int page_start, int page_end) | ||
748 | { | ||
749 | unsigned int cpu; | ||
750 | int i; | ||
631 | 751 | ||
632 | /* | 752 | for_each_possible_cpu(cpu) { |
633 | * If it's partial depopulation, it might get | 753 | for (i = page_start; i < page_end; i++) { |
634 | * populated or depopulated again. Mark the | 754 | struct page *page; |
635 | * page gone. | ||
636 | */ | ||
637 | *pagep = NULL; | ||
638 | 755 | ||
639 | unmap_start = unmap_start < 0 ? i : unmap_start; | 756 | page = pcpu_chunk_page(chunk, cpu, i); |
640 | unmap_end = i + 1; | 757 | WARN_ON(!page); |
758 | pages[pcpu_page_idx(cpu, i)] = page; | ||
641 | } | 759 | } |
760 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
761 | page_end - page_start); | ||
642 | } | 762 | } |
643 | 763 | ||
644 | if (unmap_start >= 0) | 764 | for (i = page_start; i < page_end; i++) |
645 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | 765 | __clear_bit(i, populated); |
766 | } | ||
767 | |||
768 | /** | ||
769 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | ||
770 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
771 | * @page_start: page index of the first page to be flushed | ||
772 | * @page_end: page index of the last page to be flushed + 1 | ||
773 | * | ||
774 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
775 | * TLB for the regions. This can be skipped if the area is to be | ||
776 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
777 | * | ||
778 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
779 | * for the whole region. | ||
780 | */ | ||
781 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
782 | int page_start, int page_end) | ||
783 | { | ||
784 | flush_tlb_kernel_range( | ||
785 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
786 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
787 | } | ||
788 | |||
789 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
790 | int nr_pages) | ||
791 | { | ||
792 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
793 | PAGE_KERNEL, pages); | ||
646 | } | 794 | } |
647 | 795 | ||
648 | /** | 796 | /** |
649 | * pcpu_map - map pages into a pcpu_chunk | 797 | * pcpu_map_pages - map pages into a pcpu_chunk |
650 | * @chunk: chunk of interest | 798 | * @chunk: chunk of interest |
799 | * @pages: pages array containing pages to be mapped | ||
800 | * @populated: populated bitmap | ||
651 | * @page_start: page index of the first page to map | 801 | * @page_start: page index of the first page to map |
652 | * @page_end: page index of the last page to map + 1 | 802 | * @page_end: page index of the last page to map + 1 |
653 | * | 803 | * |
654 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | 804 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The |
655 | * vcache is flushed afterwards. | 805 | * caller is responsible for calling pcpu_post_map_flush() after all |
806 | * mappings are complete. | ||
807 | * | ||
808 | * This function is responsible for setting corresponding bits in | ||
809 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
810 | * lookup (addr -> chunk). | ||
656 | */ | 811 | */ |
657 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | 812 | static int pcpu_map_pages(struct pcpu_chunk *chunk, |
813 | struct page **pages, unsigned long *populated, | ||
814 | int page_start, int page_end) | ||
658 | { | 815 | { |
659 | unsigned int last = nr_cpu_ids - 1; | 816 | unsigned int cpu, tcpu; |
660 | unsigned int cpu; | 817 | int i, err; |
661 | int err; | ||
662 | |||
663 | /* map must not be done on immutable chunk */ | ||
664 | WARN_ON(chunk->immutable); | ||
665 | 818 | ||
666 | for_each_possible_cpu(cpu) { | 819 | for_each_possible_cpu(cpu) { |
667 | err = map_kernel_range_noflush( | 820 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), |
668 | pcpu_chunk_addr(chunk, cpu, page_start), | 821 | &pages[pcpu_page_idx(cpu, page_start)], |
669 | (page_end - page_start) << PAGE_SHIFT, | 822 | page_end - page_start); |
670 | PAGE_KERNEL, | ||
671 | pcpu_chunk_pagep(chunk, cpu, page_start)); | ||
672 | if (err < 0) | 823 | if (err < 0) |
673 | return err; | 824 | goto err; |
825 | } | ||
826 | |||
827 | /* mapping successful, link chunk and mark populated */ | ||
828 | for (i = page_start; i < page_end; i++) { | ||
829 | for_each_possible_cpu(cpu) | ||
830 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
831 | chunk); | ||
832 | __set_bit(i, populated); | ||
674 | } | 833 | } |
675 | 834 | ||
676 | /* flush at once, please read comments in pcpu_unmap() */ | ||
677 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
678 | pcpu_chunk_addr(chunk, last, page_end)); | ||
679 | return 0; | 835 | return 0; |
836 | |||
837 | err: | ||
838 | for_each_possible_cpu(tcpu) { | ||
839 | if (tcpu == cpu) | ||
840 | break; | ||
841 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
842 | page_end - page_start); | ||
843 | } | ||
844 | return err; | ||
845 | } | ||
846 | |||
847 | /** | ||
848 | * pcpu_post_map_flush - flush cache after mapping | ||
849 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
850 | * @page_start: page index of the first page to be flushed | ||
851 | * @page_end: page index of the last page to be flushed + 1 | ||
852 | * | ||
853 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
854 | * cache. | ||
855 | * | ||
856 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
857 | * for the whole region. | ||
858 | */ | ||
859 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
860 | int page_start, int page_end) | ||
861 | { | ||
862 | flush_cache_vmap( | ||
863 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
864 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
865 | } | ||
866 | |||
867 | /** | ||
868 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
869 | * @chunk: chunk to depopulate | ||
870 | * @off: offset to the area to depopulate | ||
871 | * @size: size of the area to depopulate in bytes | ||
872 | * @flush: whether to flush cache and tlb or not | ||
873 | * | ||
874 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
875 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
876 | * and tlb after. | ||
877 | * | ||
878 | * CONTEXT: | ||
879 | * pcpu_alloc_mutex. | ||
880 | */ | ||
881 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
882 | { | ||
883 | int page_start = PFN_DOWN(off); | ||
884 | int page_end = PFN_UP(off + size); | ||
885 | struct page **pages; | ||
886 | unsigned long *populated; | ||
887 | int rs, re; | ||
888 | |||
889 | /* quick path, check whether it's empty already */ | ||
890 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
891 | if (rs == page_start && re == page_end) | ||
892 | return; | ||
893 | break; | ||
894 | } | ||
895 | |||
896 | /* immutable chunks can't be depopulated */ | ||
897 | WARN_ON(chunk->immutable); | ||
898 | |||
899 | /* | ||
900 | * If control reaches here, there must have been at least one | ||
901 | * successful population attempt so the temp pages array must | ||
902 | * be available now. | ||
903 | */ | ||
904 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | ||
905 | BUG_ON(!pages); | ||
906 | |||
907 | /* unmap and free */ | ||
908 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
909 | |||
910 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
911 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
912 | |||
913 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
914 | |||
915 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
916 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
917 | |||
918 | /* commit new bitmap */ | ||
919 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
680 | } | 920 | } |
681 | 921 | ||
682 | /** | 922 | /** |
@@ -693,58 +933,68 @@ static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | |||
693 | */ | 933 | */ |
694 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | 934 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) |
695 | { | 935 | { |
696 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
697 | int page_start = PFN_DOWN(off); | 936 | int page_start = PFN_DOWN(off); |
698 | int page_end = PFN_UP(off + size); | 937 | int page_end = PFN_UP(off + size); |
699 | int map_start = -1; | 938 | int free_end = page_start, unmap_end = page_start; |
700 | int uninitialized_var(map_end); | 939 | struct page **pages; |
940 | unsigned long *populated; | ||
701 | unsigned int cpu; | 941 | unsigned int cpu; |
702 | int i; | 942 | int rs, re, rc; |
703 | 943 | ||
704 | for (i = page_start; i < page_end; i++) { | 944 | /* quick path, check whether all pages are already there */ |
705 | if (pcpu_chunk_page_occupied(chunk, i)) { | 945 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) { |
706 | if (map_start >= 0) { | 946 | if (rs == page_start && re == page_end) |
707 | if (pcpu_map(chunk, map_start, map_end)) | 947 | goto clear; |
708 | goto err; | 948 | break; |
709 | map_start = -1; | 949 | } |
710 | } | ||
711 | continue; | ||
712 | } | ||
713 | 950 | ||
714 | map_start = map_start < 0 ? i : map_start; | 951 | /* need to allocate and map pages, this chunk can't be immutable */ |
715 | map_end = i + 1; | 952 | WARN_ON(chunk->immutable); |
716 | 953 | ||
717 | for_each_possible_cpu(cpu) { | 954 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); |
718 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | 955 | if (!pages) |
956 | return -ENOMEM; | ||
719 | 957 | ||
720 | *pagep = alloc_pages_node(cpu_to_node(cpu), | 958 | /* alloc and map */ |
721 | alloc_mask, 0); | 959 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { |
722 | if (!*pagep) | 960 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); |
723 | goto err; | 961 | if (rc) |
724 | pcpu_set_page_chunk(*pagep, chunk); | 962 | goto err_free; |
725 | } | 963 | free_end = re; |
726 | } | 964 | } |
727 | 965 | ||
728 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | 966 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { |
729 | goto err; | 967 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); |
968 | if (rc) | ||
969 | goto err_unmap; | ||
970 | unmap_end = re; | ||
971 | } | ||
972 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
730 | 973 | ||
974 | /* commit new bitmap */ | ||
975 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
976 | clear: | ||
731 | for_each_possible_cpu(cpu) | 977 | for_each_possible_cpu(cpu) |
732 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | 978 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); |
733 | size); | ||
734 | |||
735 | return 0; | 979 | return 0; |
736 | err: | 980 | |
737 | /* likely under heavy memory pressure, give memory back */ | 981 | err_unmap: |
738 | pcpu_depopulate_chunk(chunk, off, size, true); | 982 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); |
739 | return -ENOMEM; | 983 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) |
984 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
985 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
986 | err_free: | ||
987 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
988 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
989 | return rc; | ||
740 | } | 990 | } |
741 | 991 | ||
742 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | 992 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) |
743 | { | 993 | { |
744 | if (!chunk) | 994 | if (!chunk) |
745 | return; | 995 | return; |
746 | if (chunk->vm) | 996 | if (chunk->vms) |
747 | free_vm_area(chunk->vm); | 997 | pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); |
748 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | 998 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); |
749 | kfree(chunk); | 999 | kfree(chunk); |
750 | } | 1000 | } |
@@ -760,10 +1010,11 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) | |||
760 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | 1010 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); |
761 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | 1011 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; |
762 | chunk->map[chunk->map_used++] = pcpu_unit_size; | 1012 | chunk->map[chunk->map_used++] = pcpu_unit_size; |
763 | chunk->page = chunk->page_ar; | ||
764 | 1013 | ||
765 | chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC); | 1014 | chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, |
766 | if (!chunk->vm) { | 1015 | pcpu_nr_groups, pcpu_atom_size, |
1016 | GFP_KERNEL); | ||
1017 | if (!chunk->vms) { | ||
767 | free_pcpu_chunk(chunk); | 1018 | free_pcpu_chunk(chunk); |
768 | return NULL; | 1019 | return NULL; |
769 | } | 1020 | } |
@@ -771,6 +1022,7 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) | |||
771 | INIT_LIST_HEAD(&chunk->list); | 1022 | INIT_LIST_HEAD(&chunk->list); |
772 | chunk->free_size = pcpu_unit_size; | 1023 | chunk->free_size = pcpu_unit_size; |
773 | chunk->contig_hint = pcpu_unit_size; | 1024 | chunk->contig_hint = pcpu_unit_size; |
1025 | chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; | ||
774 | 1026 | ||
775 | return chunk; | 1027 | return chunk; |
776 | } | 1028 | } |
@@ -860,7 +1112,8 @@ area_found: | |||
860 | 1112 | ||
861 | mutex_unlock(&pcpu_alloc_mutex); | 1113 | mutex_unlock(&pcpu_alloc_mutex); |
862 | 1114 | ||
863 | return __addr_to_pcpu_ptr(chunk->vm->addr + off); | 1115 | /* return address relative to base address */ |
1116 | return __addr_to_pcpu_ptr(chunk->base_addr + off); | ||
864 | 1117 | ||
865 | fail_unlock: | 1118 | fail_unlock: |
866 | spin_unlock_irq(&pcpu_lock); | 1119 | spin_unlock_irq(&pcpu_lock); |
@@ -938,12 +1191,13 @@ static void pcpu_reclaim(struct work_struct *work) | |||
938 | } | 1191 | } |
939 | 1192 | ||
940 | spin_unlock_irq(&pcpu_lock); | 1193 | spin_unlock_irq(&pcpu_lock); |
941 | mutex_unlock(&pcpu_alloc_mutex); | ||
942 | 1194 | ||
943 | list_for_each_entry_safe(chunk, next, &todo, list) { | 1195 | list_for_each_entry_safe(chunk, next, &todo, list) { |
944 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | 1196 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); |
945 | free_pcpu_chunk(chunk); | 1197 | free_pcpu_chunk(chunk); |
946 | } | 1198 | } |
1199 | |||
1200 | mutex_unlock(&pcpu_alloc_mutex); | ||
947 | } | 1201 | } |
948 | 1202 | ||
949 | /** | 1203 | /** |
@@ -968,7 +1222,7 @@ void free_percpu(void *ptr) | |||
968 | spin_lock_irqsave(&pcpu_lock, flags); | 1222 | spin_lock_irqsave(&pcpu_lock, flags); |
969 | 1223 | ||
970 | chunk = pcpu_chunk_addr_search(addr); | 1224 | chunk = pcpu_chunk_addr_search(addr); |
971 | off = addr - chunk->vm->addr; | 1225 | off = addr - chunk->base_addr; |
972 | 1226 | ||
973 | pcpu_free_area(chunk, off); | 1227 | pcpu_free_area(chunk, off); |
974 | 1228 | ||
@@ -987,30 +1241,295 @@ void free_percpu(void *ptr) | |||
987 | } | 1241 | } |
988 | EXPORT_SYMBOL_GPL(free_percpu); | 1242 | EXPORT_SYMBOL_GPL(free_percpu); |
989 | 1243 | ||
1244 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | ||
1245 | size_t reserved_size, | ||
1246 | ssize_t *dyn_sizep) | ||
1247 | { | ||
1248 | size_t size_sum; | ||
1249 | |||
1250 | size_sum = PFN_ALIGN(static_size + reserved_size + | ||
1251 | (*dyn_sizep >= 0 ? *dyn_sizep : 0)); | ||
1252 | if (*dyn_sizep != 0) | ||
1253 | *dyn_sizep = size_sum - static_size - reserved_size; | ||
1254 | |||
1255 | return size_sum; | ||
1256 | } | ||
1257 | |||
990 | /** | 1258 | /** |
991 | * pcpu_setup_first_chunk - initialize the first percpu chunk | 1259 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
992 | * @get_page_fn: callback to fetch page pointer | 1260 | * @nr_groups: the number of groups |
993 | * @static_size: the size of static percpu area in bytes | 1261 | * @nr_units: the number of units |
1262 | * | ||
1263 | * Allocate ai which is large enough for @nr_groups groups containing | ||
1264 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | ||
1265 | * cpu_map array which is long enough for @nr_units and filled with | ||
1266 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | ||
1267 | * pointer of other groups. | ||
1268 | * | ||
1269 | * RETURNS: | ||
1270 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | ||
1271 | * failure. | ||
1272 | */ | ||
1273 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | ||
1274 | int nr_units) | ||
1275 | { | ||
1276 | struct pcpu_alloc_info *ai; | ||
1277 | size_t base_size, ai_size; | ||
1278 | void *ptr; | ||
1279 | int unit; | ||
1280 | |||
1281 | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | ||
1282 | __alignof__(ai->groups[0].cpu_map[0])); | ||
1283 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | ||
1284 | |||
1285 | ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); | ||
1286 | if (!ptr) | ||
1287 | return NULL; | ||
1288 | ai = ptr; | ||
1289 | ptr += base_size; | ||
1290 | |||
1291 | ai->groups[0].cpu_map = ptr; | ||
1292 | |||
1293 | for (unit = 0; unit < nr_units; unit++) | ||
1294 | ai->groups[0].cpu_map[unit] = NR_CPUS; | ||
1295 | |||
1296 | ai->nr_groups = nr_groups; | ||
1297 | ai->__ai_size = PFN_ALIGN(ai_size); | ||
1298 | |||
1299 | return ai; | ||
1300 | } | ||
1301 | |||
1302 | /** | ||
1303 | * pcpu_free_alloc_info - free percpu allocation info | ||
1304 | * @ai: pcpu_alloc_info to free | ||
1305 | * | ||
1306 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | ||
1307 | */ | ||
1308 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | ||
1309 | { | ||
1310 | free_bootmem(__pa(ai), ai->__ai_size); | ||
1311 | } | ||
1312 | |||
1313 | /** | ||
1314 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | ||
994 | * @reserved_size: the size of reserved percpu area in bytes | 1315 | * @reserved_size: the size of reserved percpu area in bytes |
995 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 1316 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto |
996 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | 1317 | * @atom_size: allocation atom size |
997 | * @base_addr: mapped address, NULL for auto | 1318 | * @cpu_distance_fn: callback to determine distance between cpus, optional |
998 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | 1319 | * |
1320 | * This function determines grouping of units, their mappings to cpus | ||
1321 | * and other parameters considering needed percpu size, allocation | ||
1322 | * atom size and distances between CPUs. | ||
1323 | * | ||
1324 | * Groups are always mutliples of atom size and CPUs which are of | ||
1325 | * LOCAL_DISTANCE both ways are grouped together and share space for | ||
1326 | * units in the same group. The returned configuration is guaranteed | ||
1327 | * to have CPUs on different nodes on different groups and >=75% usage | ||
1328 | * of allocated virtual address space. | ||
1329 | * | ||
1330 | * RETURNS: | ||
1331 | * On success, pointer to the new allocation_info is returned. On | ||
1332 | * failure, ERR_PTR value is returned. | ||
1333 | */ | ||
1334 | struct pcpu_alloc_info * __init pcpu_build_alloc_info( | ||
1335 | size_t reserved_size, ssize_t dyn_size, | ||
1336 | size_t atom_size, | ||
1337 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | ||
1338 | { | ||
1339 | static int group_map[NR_CPUS] __initdata; | ||
1340 | static int group_cnt[NR_CPUS] __initdata; | ||
1341 | const size_t static_size = __per_cpu_end - __per_cpu_start; | ||
1342 | int group_cnt_max = 0, nr_groups = 1, nr_units = 0; | ||
1343 | size_t size_sum, min_unit_size, alloc_size; | ||
1344 | int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ | ||
1345 | int last_allocs, group, unit; | ||
1346 | unsigned int cpu, tcpu; | ||
1347 | struct pcpu_alloc_info *ai; | ||
1348 | unsigned int *cpu_map; | ||
1349 | |||
1350 | /* | ||
1351 | * Determine min_unit_size, alloc_size and max_upa such that | ||
1352 | * alloc_size is multiple of atom_size and is the smallest | ||
1353 | * which can accomodate 4k aligned segments which are equal to | ||
1354 | * or larger than min_unit_size. | ||
1355 | */ | ||
1356 | size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); | ||
1357 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | ||
1358 | |||
1359 | alloc_size = roundup(min_unit_size, atom_size); | ||
1360 | upa = alloc_size / min_unit_size; | ||
1361 | while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | ||
1362 | upa--; | ||
1363 | max_upa = upa; | ||
1364 | |||
1365 | /* group cpus according to their proximity */ | ||
1366 | for_each_possible_cpu(cpu) { | ||
1367 | group = 0; | ||
1368 | next_group: | ||
1369 | for_each_possible_cpu(tcpu) { | ||
1370 | if (cpu == tcpu) | ||
1371 | break; | ||
1372 | if (group_map[tcpu] == group && cpu_distance_fn && | ||
1373 | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | ||
1374 | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | ||
1375 | group++; | ||
1376 | nr_groups = max(nr_groups, group + 1); | ||
1377 | goto next_group; | ||
1378 | } | ||
1379 | } | ||
1380 | group_map[cpu] = group; | ||
1381 | group_cnt[group]++; | ||
1382 | group_cnt_max = max(group_cnt_max, group_cnt[group]); | ||
1383 | } | ||
1384 | |||
1385 | /* | ||
1386 | * Expand unit size until address space usage goes over 75% | ||
1387 | * and then as much as possible without using more address | ||
1388 | * space. | ||
1389 | */ | ||
1390 | last_allocs = INT_MAX; | ||
1391 | for (upa = max_upa; upa; upa--) { | ||
1392 | int allocs = 0, wasted = 0; | ||
1393 | |||
1394 | if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | ||
1395 | continue; | ||
1396 | |||
1397 | for (group = 0; group < nr_groups; group++) { | ||
1398 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | ||
1399 | allocs += this_allocs; | ||
1400 | wasted += this_allocs * upa - group_cnt[group]; | ||
1401 | } | ||
1402 | |||
1403 | /* | ||
1404 | * Don't accept if wastage is over 25%. The | ||
1405 | * greater-than comparison ensures upa==1 always | ||
1406 | * passes the following check. | ||
1407 | */ | ||
1408 | if (wasted > num_possible_cpus() / 3) | ||
1409 | continue; | ||
1410 | |||
1411 | /* and then don't consume more memory */ | ||
1412 | if (allocs > last_allocs) | ||
1413 | break; | ||
1414 | last_allocs = allocs; | ||
1415 | best_upa = upa; | ||
1416 | } | ||
1417 | upa = best_upa; | ||
1418 | |||
1419 | /* allocate and fill alloc_info */ | ||
1420 | for (group = 0; group < nr_groups; group++) | ||
1421 | nr_units += roundup(group_cnt[group], upa); | ||
1422 | |||
1423 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | ||
1424 | if (!ai) | ||
1425 | return ERR_PTR(-ENOMEM); | ||
1426 | cpu_map = ai->groups[0].cpu_map; | ||
1427 | |||
1428 | for (group = 0; group < nr_groups; group++) { | ||
1429 | ai->groups[group].cpu_map = cpu_map; | ||
1430 | cpu_map += roundup(group_cnt[group], upa); | ||
1431 | } | ||
1432 | |||
1433 | ai->static_size = static_size; | ||
1434 | ai->reserved_size = reserved_size; | ||
1435 | ai->dyn_size = dyn_size; | ||
1436 | ai->unit_size = alloc_size / upa; | ||
1437 | ai->atom_size = atom_size; | ||
1438 | ai->alloc_size = alloc_size; | ||
1439 | |||
1440 | for (group = 0, unit = 0; group_cnt[group]; group++) { | ||
1441 | struct pcpu_group_info *gi = &ai->groups[group]; | ||
1442 | |||
1443 | /* | ||
1444 | * Initialize base_offset as if all groups are located | ||
1445 | * back-to-back. The caller should update this to | ||
1446 | * reflect actual allocation. | ||
1447 | */ | ||
1448 | gi->base_offset = unit * ai->unit_size; | ||
1449 | |||
1450 | for_each_possible_cpu(cpu) | ||
1451 | if (group_map[cpu] == group) | ||
1452 | gi->cpu_map[gi->nr_units++] = cpu; | ||
1453 | gi->nr_units = roundup(gi->nr_units, upa); | ||
1454 | unit += gi->nr_units; | ||
1455 | } | ||
1456 | BUG_ON(unit != nr_units); | ||
1457 | |||
1458 | return ai; | ||
1459 | } | ||
1460 | |||
1461 | /** | ||
1462 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | ||
1463 | * @lvl: loglevel | ||
1464 | * @ai: allocation info to dump | ||
1465 | * | ||
1466 | * Print out information about @ai using loglevel @lvl. | ||
1467 | */ | ||
1468 | static void pcpu_dump_alloc_info(const char *lvl, | ||
1469 | const struct pcpu_alloc_info *ai) | ||
1470 | { | ||
1471 | int group_width = 1, cpu_width = 1, width; | ||
1472 | char empty_str[] = "--------"; | ||
1473 | int alloc = 0, alloc_end = 0; | ||
1474 | int group, v; | ||
1475 | int upa, apl; /* units per alloc, allocs per line */ | ||
1476 | |||
1477 | v = ai->nr_groups; | ||
1478 | while (v /= 10) | ||
1479 | group_width++; | ||
1480 | |||
1481 | v = num_possible_cpus(); | ||
1482 | while (v /= 10) | ||
1483 | cpu_width++; | ||
1484 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | ||
1485 | |||
1486 | upa = ai->alloc_size / ai->unit_size; | ||
1487 | width = upa * (cpu_width + 1) + group_width + 3; | ||
1488 | apl = rounddown_pow_of_two(max(60 / width, 1)); | ||
1489 | |||
1490 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", | ||
1491 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | ||
1492 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | ||
1493 | |||
1494 | for (group = 0; group < ai->nr_groups; group++) { | ||
1495 | const struct pcpu_group_info *gi = &ai->groups[group]; | ||
1496 | int unit = 0, unit_end = 0; | ||
1497 | |||
1498 | BUG_ON(gi->nr_units % upa); | ||
1499 | for (alloc_end += gi->nr_units / upa; | ||
1500 | alloc < alloc_end; alloc++) { | ||
1501 | if (!(alloc % apl)) { | ||
1502 | printk("\n"); | ||
1503 | printk("%spcpu-alloc: ", lvl); | ||
1504 | } | ||
1505 | printk("[%0*d] ", group_width, group); | ||
1506 | |||
1507 | for (unit_end += upa; unit < unit_end; unit++) | ||
1508 | if (gi->cpu_map[unit] != NR_CPUS) | ||
1509 | printk("%0*d ", cpu_width, | ||
1510 | gi->cpu_map[unit]); | ||
1511 | else | ||
1512 | printk("%s ", empty_str); | ||
1513 | } | ||
1514 | } | ||
1515 | printk("\n"); | ||
1516 | } | ||
1517 | |||
1518 | /** | ||
1519 | * pcpu_setup_first_chunk - initialize the first percpu chunk | ||
1520 | * @ai: pcpu_alloc_info describing how to percpu area is shaped | ||
1521 | * @base_addr: mapped address | ||
999 | * | 1522 | * |
1000 | * Initialize the first percpu chunk which contains the kernel static | 1523 | * Initialize the first percpu chunk which contains the kernel static |
1001 | * perpcu area. This function is to be called from arch percpu area | 1524 | * perpcu area. This function is to be called from arch percpu area |
1002 | * setup path. The first two parameters are mandatory. The rest are | 1525 | * setup path. |
1003 | * optional. | 1526 | * |
1004 | * | 1527 | * @ai contains all information necessary to initialize the first |
1005 | * @get_page_fn() should return pointer to percpu page given cpu | 1528 | * chunk and prime the dynamic percpu allocator. |
1006 | * number and page number. It should at least return enough pages to | 1529 | * |
1007 | * cover the static area. The returned pages for static area should | 1530 | * @ai->static_size is the size of static percpu area. |
1008 | * have been initialized with valid data. If @unit_size is specified, | 1531 | * |
1009 | * it can also return pages after the static area. NULL return | 1532 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to |
1010 | * indicates end of pages for the cpu. Note that @get_page_fn() must | ||
1011 | * return the same number of pages for all cpus. | ||
1012 | * | ||
1013 | * @reserved_size, if non-zero, specifies the amount of bytes to | ||
1014 | * reserve after the static area in the first chunk. This reserves | 1533 | * reserve after the static area in the first chunk. This reserves |
1015 | * the first chunk such that it's available only through reserved | 1534 | * the first chunk such that it's available only through reserved |
1016 | * percpu allocation. This is primarily used to serve module percpu | 1535 | * percpu allocation. This is primarily used to serve module percpu |
@@ -1018,22 +1537,29 @@ EXPORT_SYMBOL_GPL(free_percpu); | |||
1018 | * limited offset range for symbol relocations to guarantee module | 1537 | * limited offset range for symbol relocations to guarantee module |
1019 | * percpu symbols fall inside the relocatable range. | 1538 | * percpu symbols fall inside the relocatable range. |
1020 | * | 1539 | * |
1021 | * @dyn_size, if non-negative, determines the number of bytes | 1540 | * @ai->dyn_size determines the number of bytes available for dynamic |
1022 | * available for dynamic allocation in the first chunk. Specifying | 1541 | * allocation in the first chunk. The area between @ai->static_size + |
1023 | * non-negative value makes percpu leave alone the area beyond | 1542 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. |
1024 | * @static_size + @reserved_size + @dyn_size. | ||
1025 | * | 1543 | * |
1026 | * @unit_size, if non-negative, specifies unit size and must be | 1544 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
1027 | * aligned to PAGE_SIZE and equal to or larger than @static_size + | 1545 | * and equal to or larger than @ai->static_size + @ai->reserved_size + |
1028 | * @reserved_size + if non-negative, @dyn_size. | 1546 | * @ai->dyn_size. |
1029 | * | 1547 | * |
1030 | * Non-null @base_addr means that the caller already allocated virtual | 1548 | * @ai->atom_size is the allocation atom size and used as alignment |
1031 | * region for the first chunk and mapped it. percpu must not mess | 1549 | * for vm areas. |
1032 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | ||
1033 | * @populate_pte_fn doesn't make any sense. | ||
1034 | * | 1550 | * |
1035 | * @populate_pte_fn is used to populate the pagetable. NULL means the | 1551 | * @ai->alloc_size is the allocation size and always multiple of |
1036 | * caller already populated the pagetable. | 1552 | * @ai->atom_size. This is larger than @ai->atom_size if |
1553 | * @ai->unit_size is larger than @ai->atom_size. | ||
1554 | * | ||
1555 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | ||
1556 | * percpu areas. Units which should be colocated are put into the | ||
1557 | * same group. Dynamic VM areas will be allocated according to these | ||
1558 | * groupings. If @ai->nr_groups is zero, a single group containing | ||
1559 | * all units is assumed. | ||
1560 | * | ||
1561 | * The caller should have mapped the first chunk at @base_addr and | ||
1562 | * copied static data to each unit. | ||
1037 | * | 1563 | * |
1038 | * If the first chunk ends up with both reserved and dynamic areas, it | 1564 | * If the first chunk ends up with both reserved and dynamic areas, it |
1039 | * is served by two chunks - one to serve the core static and reserved | 1565 | * is served by two chunks - one to serve the core static and reserved |
@@ -1043,49 +1569,83 @@ EXPORT_SYMBOL_GPL(free_percpu); | |||
1043 | * and available for dynamic allocation like any other chunks. | 1569 | * and available for dynamic allocation like any other chunks. |
1044 | * | 1570 | * |
1045 | * RETURNS: | 1571 | * RETURNS: |
1046 | * The determined pcpu_unit_size which can be used to initialize | 1572 | * 0 on success, -errno on failure. |
1047 | * percpu access. | ||
1048 | */ | 1573 | */ |
1049 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | 1574 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
1050 | size_t static_size, size_t reserved_size, | 1575 | void *base_addr) |
1051 | ssize_t dyn_size, ssize_t unit_size, | ||
1052 | void *base_addr, | ||
1053 | pcpu_populate_pte_fn_t populate_pte_fn) | ||
1054 | { | 1576 | { |
1055 | static struct vm_struct first_vm; | ||
1056 | static int smap[2], dmap[2]; | 1577 | static int smap[2], dmap[2]; |
1057 | size_t size_sum = static_size + reserved_size + | 1578 | size_t dyn_size = ai->dyn_size; |
1058 | (dyn_size >= 0 ? dyn_size : 0); | 1579 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; |
1059 | struct pcpu_chunk *schunk, *dchunk = NULL; | 1580 | struct pcpu_chunk *schunk, *dchunk = NULL; |
1581 | unsigned long *group_offsets; | ||
1582 | size_t *group_sizes; | ||
1583 | unsigned long *unit_off; | ||
1060 | unsigned int cpu; | 1584 | unsigned int cpu; |
1061 | int nr_pages; | 1585 | int *unit_map; |
1062 | int err, i; | 1586 | int group, unit, i; |
1063 | 1587 | ||
1064 | /* santiy checks */ | 1588 | /* sanity checks */ |
1065 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | 1589 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || |
1066 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | 1590 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); |
1067 | BUG_ON(!static_size); | 1591 | BUG_ON(ai->nr_groups <= 0); |
1068 | if (unit_size >= 0) { | 1592 | BUG_ON(!ai->static_size); |
1069 | BUG_ON(unit_size < size_sum); | 1593 | BUG_ON(!base_addr); |
1070 | BUG_ON(unit_size & ~PAGE_MASK); | 1594 | BUG_ON(ai->unit_size < size_sum); |
1071 | BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); | 1595 | BUG_ON(ai->unit_size & ~PAGE_MASK); |
1072 | } else | 1596 | BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
1073 | BUG_ON(base_addr); | 1597 | |
1074 | BUG_ON(base_addr && populate_pte_fn); | 1598 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
1075 | 1599 | ||
1076 | if (unit_size >= 0) | 1600 | /* process group information and build config tables accordingly */ |
1077 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; | 1601 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); |
1078 | else | 1602 | group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); |
1079 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | 1603 | unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); |
1080 | PFN_UP(size_sum)); | 1604 | unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); |
1605 | |||
1606 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) | ||
1607 | unit_map[cpu] = NR_CPUS; | ||
1608 | pcpu_first_unit_cpu = NR_CPUS; | ||
1609 | |||
1610 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { | ||
1611 | const struct pcpu_group_info *gi = &ai->groups[group]; | ||
1612 | |||
1613 | group_offsets[group] = gi->base_offset; | ||
1614 | group_sizes[group] = gi->nr_units * ai->unit_size; | ||
1615 | |||
1616 | for (i = 0; i < gi->nr_units; i++) { | ||
1617 | cpu = gi->cpu_map[i]; | ||
1618 | if (cpu == NR_CPUS) | ||
1619 | continue; | ||
1081 | 1620 | ||
1082 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | 1621 | BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu)); |
1083 | pcpu_chunk_size = nr_cpu_ids * pcpu_unit_size; | 1622 | BUG_ON(unit_map[cpu] != NR_CPUS); |
1084 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | ||
1085 | + nr_cpu_ids * pcpu_unit_pages * sizeof(struct page *); | ||
1086 | 1623 | ||
1087 | if (dyn_size < 0) | 1624 | unit_map[cpu] = unit + i; |
1088 | dyn_size = pcpu_unit_size - static_size - reserved_size; | 1625 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
1626 | |||
1627 | if (pcpu_first_unit_cpu == NR_CPUS) | ||
1628 | pcpu_first_unit_cpu = cpu; | ||
1629 | } | ||
1630 | } | ||
1631 | pcpu_last_unit_cpu = cpu; | ||
1632 | pcpu_nr_units = unit; | ||
1633 | |||
1634 | for_each_possible_cpu(cpu) | ||
1635 | BUG_ON(unit_map[cpu] == NR_CPUS); | ||
1636 | |||
1637 | pcpu_nr_groups = ai->nr_groups; | ||
1638 | pcpu_group_offsets = group_offsets; | ||
1639 | pcpu_group_sizes = group_sizes; | ||
1640 | pcpu_unit_map = unit_map; | ||
1641 | pcpu_unit_offsets = unit_off; | ||
1642 | |||
1643 | /* determine basic parameters */ | ||
1644 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; | ||
1645 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | ||
1646 | pcpu_atom_size = ai->atom_size; | ||
1647 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + | ||
1648 | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | ||
1089 | 1649 | ||
1090 | /* | 1650 | /* |
1091 | * Allocate chunk slots. The additional last slot is for | 1651 | * Allocate chunk slots. The additional last slot is for |
@@ -1105,189 +1665,351 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | |||
1105 | */ | 1665 | */ |
1106 | schunk = alloc_bootmem(pcpu_chunk_struct_size); | 1666 | schunk = alloc_bootmem(pcpu_chunk_struct_size); |
1107 | INIT_LIST_HEAD(&schunk->list); | 1667 | INIT_LIST_HEAD(&schunk->list); |
1108 | schunk->vm = &first_vm; | 1668 | schunk->base_addr = base_addr; |
1109 | schunk->map = smap; | 1669 | schunk->map = smap; |
1110 | schunk->map_alloc = ARRAY_SIZE(smap); | 1670 | schunk->map_alloc = ARRAY_SIZE(smap); |
1111 | schunk->page = schunk->page_ar; | 1671 | schunk->immutable = true; |
1672 | bitmap_fill(schunk->populated, pcpu_unit_pages); | ||
1112 | 1673 | ||
1113 | if (reserved_size) { | 1674 | if (ai->reserved_size) { |
1114 | schunk->free_size = reserved_size; | 1675 | schunk->free_size = ai->reserved_size; |
1115 | pcpu_reserved_chunk = schunk; | 1676 | pcpu_reserved_chunk = schunk; |
1116 | pcpu_reserved_chunk_limit = static_size + reserved_size; | 1677 | pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; |
1117 | } else { | 1678 | } else { |
1118 | schunk->free_size = dyn_size; | 1679 | schunk->free_size = dyn_size; |
1119 | dyn_size = 0; /* dynamic area covered */ | 1680 | dyn_size = 0; /* dynamic area covered */ |
1120 | } | 1681 | } |
1121 | schunk->contig_hint = schunk->free_size; | 1682 | schunk->contig_hint = schunk->free_size; |
1122 | 1683 | ||
1123 | schunk->map[schunk->map_used++] = -static_size; | 1684 | schunk->map[schunk->map_used++] = -ai->static_size; |
1124 | if (schunk->free_size) | 1685 | if (schunk->free_size) |
1125 | schunk->map[schunk->map_used++] = schunk->free_size; | 1686 | schunk->map[schunk->map_used++] = schunk->free_size; |
1126 | 1687 | ||
1127 | /* init dynamic chunk if necessary */ | 1688 | /* init dynamic chunk if necessary */ |
1128 | if (dyn_size) { | 1689 | if (dyn_size) { |
1129 | dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | 1690 | dchunk = alloc_bootmem(pcpu_chunk_struct_size); |
1130 | INIT_LIST_HEAD(&dchunk->list); | 1691 | INIT_LIST_HEAD(&dchunk->list); |
1131 | dchunk->vm = &first_vm; | 1692 | dchunk->base_addr = base_addr; |
1132 | dchunk->map = dmap; | 1693 | dchunk->map = dmap; |
1133 | dchunk->map_alloc = ARRAY_SIZE(dmap); | 1694 | dchunk->map_alloc = ARRAY_SIZE(dmap); |
1134 | dchunk->page = schunk->page_ar; /* share page map with schunk */ | 1695 | dchunk->immutable = true; |
1696 | bitmap_fill(dchunk->populated, pcpu_unit_pages); | ||
1135 | 1697 | ||
1136 | dchunk->contig_hint = dchunk->free_size = dyn_size; | 1698 | dchunk->contig_hint = dchunk->free_size = dyn_size; |
1137 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | 1699 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; |
1138 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | 1700 | dchunk->map[dchunk->map_used++] = dchunk->free_size; |
1139 | } | 1701 | } |
1140 | 1702 | ||
1141 | /* allocate vm address */ | ||
1142 | first_vm.flags = VM_ALLOC; | ||
1143 | first_vm.size = pcpu_chunk_size; | ||
1144 | |||
1145 | if (!base_addr) | ||
1146 | vm_area_register_early(&first_vm, PAGE_SIZE); | ||
1147 | else { | ||
1148 | /* | ||
1149 | * Pages already mapped. No need to remap into | ||
1150 | * vmalloc area. In this case the first chunks can't | ||
1151 | * be mapped or unmapped by percpu and are marked | ||
1152 | * immutable. | ||
1153 | */ | ||
1154 | first_vm.addr = base_addr; | ||
1155 | schunk->immutable = true; | ||
1156 | if (dchunk) | ||
1157 | dchunk->immutable = true; | ||
1158 | } | ||
1159 | |||
1160 | /* assign pages */ | ||
1161 | nr_pages = -1; | ||
1162 | for_each_possible_cpu(cpu) { | ||
1163 | for (i = 0; i < pcpu_unit_pages; i++) { | ||
1164 | struct page *page = get_page_fn(cpu, i); | ||
1165 | |||
1166 | if (!page) | ||
1167 | break; | ||
1168 | *pcpu_chunk_pagep(schunk, cpu, i) = page; | ||
1169 | } | ||
1170 | |||
1171 | BUG_ON(i < PFN_UP(static_size)); | ||
1172 | |||
1173 | if (nr_pages < 0) | ||
1174 | nr_pages = i; | ||
1175 | else | ||
1176 | BUG_ON(nr_pages != i); | ||
1177 | } | ||
1178 | |||
1179 | /* map them */ | ||
1180 | if (populate_pte_fn) { | ||
1181 | for_each_possible_cpu(cpu) | ||
1182 | for (i = 0; i < nr_pages; i++) | ||
1183 | populate_pte_fn(pcpu_chunk_addr(schunk, | ||
1184 | cpu, i)); | ||
1185 | |||
1186 | err = pcpu_map(schunk, 0, nr_pages); | ||
1187 | if (err) | ||
1188 | panic("failed to setup static percpu area, err=%d\n", | ||
1189 | err); | ||
1190 | } | ||
1191 | |||
1192 | /* link the first chunk in */ | 1703 | /* link the first chunk in */ |
1193 | pcpu_first_chunk = dchunk ?: schunk; | 1704 | pcpu_first_chunk = dchunk ?: schunk; |
1194 | pcpu_chunk_relocate(pcpu_first_chunk, -1); | 1705 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
1195 | 1706 | ||
1196 | /* we're done */ | 1707 | /* we're done */ |
1197 | pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); | 1708 | pcpu_base_addr = base_addr; |
1198 | return pcpu_unit_size; | 1709 | return 0; |
1199 | } | 1710 | } |
1200 | 1711 | ||
1201 | /* | 1712 | const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { |
1202 | * Embedding first chunk setup helper. | 1713 | [PCPU_FC_AUTO] = "auto", |
1203 | */ | 1714 | [PCPU_FC_EMBED] = "embed", |
1204 | static void *pcpue_ptr __initdata; | 1715 | [PCPU_FC_PAGE] = "page", |
1205 | static size_t pcpue_size __initdata; | 1716 | }; |
1206 | static size_t pcpue_unit_size __initdata; | ||
1207 | 1717 | ||
1208 | static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) | 1718 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
1209 | { | ||
1210 | size_t off = (size_t)pageno << PAGE_SHIFT; | ||
1211 | 1719 | ||
1212 | if (off >= pcpue_size) | 1720 | static int __init percpu_alloc_setup(char *str) |
1213 | return NULL; | 1721 | { |
1722 | if (0) | ||
1723 | /* nada */; | ||
1724 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | ||
1725 | else if (!strcmp(str, "embed")) | ||
1726 | pcpu_chosen_fc = PCPU_FC_EMBED; | ||
1727 | #endif | ||
1728 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | ||
1729 | else if (!strcmp(str, "page")) | ||
1730 | pcpu_chosen_fc = PCPU_FC_PAGE; | ||
1731 | #endif | ||
1732 | else | ||
1733 | pr_warning("PERCPU: unknown allocator %s specified\n", str); | ||
1214 | 1734 | ||
1215 | return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); | 1735 | return 0; |
1216 | } | 1736 | } |
1737 | early_param("percpu_alloc", percpu_alloc_setup); | ||
1217 | 1738 | ||
1739 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ | ||
1740 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | ||
1218 | /** | 1741 | /** |
1219 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | 1742 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem |
1220 | * @static_size: the size of static percpu area in bytes | ||
1221 | * @reserved_size: the size of reserved percpu area in bytes | 1743 | * @reserved_size: the size of reserved percpu area in bytes |
1222 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 1744 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto |
1223 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | 1745 | * @atom_size: allocation atom size |
1746 | * @cpu_distance_fn: callback to determine distance between cpus, optional | ||
1747 | * @alloc_fn: function to allocate percpu page | ||
1748 | * @free_fn: funtion to free percpu page | ||
1224 | * | 1749 | * |
1225 | * This is a helper to ease setting up embedded first percpu chunk and | 1750 | * This is a helper to ease setting up embedded first percpu chunk and |
1226 | * can be called where pcpu_setup_first_chunk() is expected. | 1751 | * can be called where pcpu_setup_first_chunk() is expected. |
1227 | * | 1752 | * |
1228 | * If this function is used to setup the first chunk, it is allocated | 1753 | * If this function is used to setup the first chunk, it is allocated |
1229 | * as a contiguous area using bootmem allocator and used as-is without | 1754 | * by calling @alloc_fn and used as-is without being mapped into |
1230 | * being mapped into vmalloc area. This enables the first chunk to | 1755 | * vmalloc area. Allocations are always whole multiples of @atom_size |
1231 | * piggy back on the linear physical mapping which often uses larger | 1756 | * aligned to @atom_size. |
1232 | * page size. | 1757 | * |
1758 | * This enables the first chunk to piggy back on the linear physical | ||
1759 | * mapping which often uses larger page size. Please note that this | ||
1760 | * can result in very sparse cpu->unit mapping on NUMA machines thus | ||
1761 | * requiring large vmalloc address space. Don't use this allocator if | ||
1762 | * vmalloc space is not orders of magnitude larger than distances | ||
1763 | * between node memory addresses (ie. 32bit NUMA machines). | ||
1233 | * | 1764 | * |
1234 | * When @dyn_size is positive, dynamic area might be larger than | 1765 | * When @dyn_size is positive, dynamic area might be larger than |
1235 | * specified to fill page alignment. Also, when @dyn_size is auto, | 1766 | * specified to fill page alignment. When @dyn_size is auto, |
1236 | * @dyn_size does not fill the whole first chunk but only what's | 1767 | * @dyn_size is just big enough to fill page alignment after static |
1237 | * necessary for page alignment after static and reserved areas. | 1768 | * and reserved areas. |
1238 | * | 1769 | * |
1239 | * If the needed size is smaller than the minimum or specified unit | 1770 | * If the needed size is smaller than the minimum or specified unit |
1240 | * size, the leftover is returned to the bootmem allocator. | 1771 | * size, the leftover is returned using @free_fn. |
1241 | * | 1772 | * |
1242 | * RETURNS: | 1773 | * RETURNS: |
1243 | * The determined pcpu_unit_size which can be used to initialize | 1774 | * 0 on success, -errno on failure. |
1244 | * percpu access on success, -errno on failure. | ||
1245 | */ | 1775 | */ |
1246 | ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, | 1776 | int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, |
1247 | ssize_t dyn_size, ssize_t unit_size) | 1777 | size_t atom_size, |
1778 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | ||
1779 | pcpu_fc_alloc_fn_t alloc_fn, | ||
1780 | pcpu_fc_free_fn_t free_fn) | ||
1248 | { | 1781 | { |
1249 | size_t chunk_size; | 1782 | void *base = (void *)ULONG_MAX; |
1250 | unsigned int cpu; | 1783 | void **areas = NULL; |
1784 | struct pcpu_alloc_info *ai; | ||
1785 | size_t size_sum, areas_size; | ||
1786 | int group, i, rc; | ||
1787 | |||
1788 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, | ||
1789 | cpu_distance_fn); | ||
1790 | if (IS_ERR(ai)) | ||
1791 | return PTR_ERR(ai); | ||
1792 | |||
1793 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; | ||
1794 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); | ||
1795 | |||
1796 | areas = alloc_bootmem_nopanic(areas_size); | ||
1797 | if (!areas) { | ||
1798 | rc = -ENOMEM; | ||
1799 | goto out_free; | ||
1800 | } | ||
1251 | 1801 | ||
1252 | /* determine parameters and allocate */ | 1802 | /* allocate, copy and determine base address */ |
1253 | pcpue_size = PFN_ALIGN(static_size + reserved_size + | 1803 | for (group = 0; group < ai->nr_groups; group++) { |
1254 | (dyn_size >= 0 ? dyn_size : 0)); | 1804 | struct pcpu_group_info *gi = &ai->groups[group]; |
1255 | if (dyn_size != 0) | 1805 | unsigned int cpu = NR_CPUS; |
1256 | dyn_size = pcpue_size - static_size - reserved_size; | 1806 | void *ptr; |
1257 | 1807 | ||
1258 | if (unit_size >= 0) { | 1808 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) |
1259 | BUG_ON(unit_size < pcpue_size); | 1809 | cpu = gi->cpu_map[i]; |
1260 | pcpue_unit_size = unit_size; | 1810 | BUG_ON(cpu == NR_CPUS); |
1261 | } else | 1811 | |
1262 | pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); | 1812 | /* allocate space for the whole group */ |
1263 | 1813 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
1264 | chunk_size = pcpue_unit_size * nr_cpu_ids; | 1814 | if (!ptr) { |
1265 | 1815 | rc = -ENOMEM; | |
1266 | pcpue_ptr = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE, | 1816 | goto out_free_areas; |
1267 | __pa(MAX_DMA_ADDRESS)); | 1817 | } |
1268 | if (!pcpue_ptr) { | 1818 | areas[group] = ptr; |
1269 | pr_warning("PERCPU: failed to allocate %zu bytes for " | 1819 | |
1270 | "embedding\n", chunk_size); | 1820 | base = min(ptr, base); |
1271 | return -ENOMEM; | 1821 | |
1822 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | ||
1823 | if (gi->cpu_map[i] == NR_CPUS) { | ||
1824 | /* unused unit, free whole */ | ||
1825 | free_fn(ptr, ai->unit_size); | ||
1826 | continue; | ||
1827 | } | ||
1828 | /* copy and return the unused part */ | ||
1829 | memcpy(ptr, __per_cpu_load, ai->static_size); | ||
1830 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | ||
1831 | } | ||
1272 | } | 1832 | } |
1273 | 1833 | ||
1274 | /* return the leftover and copy */ | 1834 | /* base address is now known, determine group base offsets */ |
1275 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) { | 1835 | for (group = 0; group < ai->nr_groups; group++) |
1276 | void *ptr = pcpue_ptr + cpu * pcpue_unit_size; | 1836 | ai->groups[group].base_offset = areas[group] - base; |
1837 | |||
1838 | pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", | ||
1839 | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, | ||
1840 | ai->dyn_size, ai->unit_size); | ||
1841 | |||
1842 | rc = pcpu_setup_first_chunk(ai, base); | ||
1843 | goto out_free; | ||
1844 | |||
1845 | out_free_areas: | ||
1846 | for (group = 0; group < ai->nr_groups; group++) | ||
1847 | free_fn(areas[group], | ||
1848 | ai->groups[group].nr_units * ai->unit_size); | ||
1849 | out_free: | ||
1850 | pcpu_free_alloc_info(ai); | ||
1851 | if (areas) | ||
1852 | free_bootmem(__pa(areas), areas_size); | ||
1853 | return rc; | ||
1854 | } | ||
1855 | #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || | ||
1856 | !CONFIG_HAVE_SETUP_PER_CPU_AREA */ | ||
1857 | |||
1858 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | ||
1859 | /** | ||
1860 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages | ||
1861 | * @reserved_size: the size of reserved percpu area in bytes | ||
1862 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | ||
1863 | * @free_fn: funtion to free percpu page, always called with PAGE_SIZE | ||
1864 | * @populate_pte_fn: function to populate pte | ||
1865 | * | ||
1866 | * This is a helper to ease setting up page-remapped first percpu | ||
1867 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | ||
1868 | * | ||
1869 | * This is the basic allocator. Static percpu area is allocated | ||
1870 | * page-by-page into vmalloc area. | ||
1871 | * | ||
1872 | * RETURNS: | ||
1873 | * 0 on success, -errno on failure. | ||
1874 | */ | ||
1875 | int __init pcpu_page_first_chunk(size_t reserved_size, | ||
1876 | pcpu_fc_alloc_fn_t alloc_fn, | ||
1877 | pcpu_fc_free_fn_t free_fn, | ||
1878 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | ||
1879 | { | ||
1880 | static struct vm_struct vm; | ||
1881 | struct pcpu_alloc_info *ai; | ||
1882 | char psize_str[16]; | ||
1883 | int unit_pages; | ||
1884 | size_t pages_size; | ||
1885 | struct page **pages; | ||
1886 | int unit, i, j, rc; | ||
1887 | |||
1888 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); | ||
1889 | |||
1890 | ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); | ||
1891 | if (IS_ERR(ai)) | ||
1892 | return PTR_ERR(ai); | ||
1893 | BUG_ON(ai->nr_groups != 1); | ||
1894 | BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); | ||
1895 | |||
1896 | unit_pages = ai->unit_size >> PAGE_SHIFT; | ||
1897 | |||
1898 | /* unaligned allocations can't be freed, round up to page size */ | ||
1899 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * | ||
1900 | sizeof(pages[0])); | ||
1901 | pages = alloc_bootmem(pages_size); | ||
1902 | |||
1903 | /* allocate pages */ | ||
1904 | j = 0; | ||
1905 | for (unit = 0; unit < num_possible_cpus(); unit++) | ||
1906 | for (i = 0; i < unit_pages; i++) { | ||
1907 | unsigned int cpu = ai->groups[0].cpu_map[unit]; | ||
1908 | void *ptr; | ||
1909 | |||
1910 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); | ||
1911 | if (!ptr) { | ||
1912 | pr_warning("PERCPU: failed to allocate %s page " | ||
1913 | "for cpu%u\n", psize_str, cpu); | ||
1914 | goto enomem; | ||
1915 | } | ||
1916 | pages[j++] = virt_to_page(ptr); | ||
1917 | } | ||
1918 | |||
1919 | /* allocate vm area, map the pages and copy static data */ | ||
1920 | vm.flags = VM_ALLOC; | ||
1921 | vm.size = num_possible_cpus() * ai->unit_size; | ||
1922 | vm_area_register_early(&vm, PAGE_SIZE); | ||
1923 | |||
1924 | for (unit = 0; unit < num_possible_cpus(); unit++) { | ||
1925 | unsigned long unit_addr = | ||
1926 | (unsigned long)vm.addr + unit * ai->unit_size; | ||
1927 | |||
1928 | for (i = 0; i < unit_pages; i++) | ||
1929 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); | ||
1930 | |||
1931 | /* pte already populated, the following shouldn't fail */ | ||
1932 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], | ||
1933 | unit_pages); | ||
1934 | if (rc < 0) | ||
1935 | panic("failed to map percpu area, err=%d\n", rc); | ||
1277 | 1936 | ||
1278 | if (cpu_possible(cpu)) { | 1937 | /* |
1279 | free_bootmem(__pa(ptr + pcpue_size), | 1938 | * FIXME: Archs with virtual cache should flush local |
1280 | pcpue_unit_size - pcpue_size); | 1939 | * cache for the linear mapping here - something |
1281 | memcpy(ptr, __per_cpu_load, static_size); | 1940 | * equivalent to flush_cache_vmap() on the local cpu. |
1282 | } else | 1941 | * flush_cache_vmap() can't be used as most supporting |
1283 | free_bootmem(__pa(ptr), pcpue_unit_size); | 1942 | * data structures are not set up yet. |
1943 | */ | ||
1944 | |||
1945 | /* copy static data */ | ||
1946 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); | ||
1284 | } | 1947 | } |
1285 | 1948 | ||
1286 | /* we're ready, commit */ | 1949 | /* we're ready, commit */ |
1287 | pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", | 1950 | pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", |
1288 | pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); | 1951 | unit_pages, psize_str, vm.addr, ai->static_size, |
1952 | ai->reserved_size, ai->dyn_size); | ||
1953 | |||
1954 | rc = pcpu_setup_first_chunk(ai, vm.addr); | ||
1955 | goto out_free_ar; | ||
1956 | |||
1957 | enomem: | ||
1958 | while (--j >= 0) | ||
1959 | free_fn(page_address(pages[j]), PAGE_SIZE); | ||
1960 | rc = -ENOMEM; | ||
1961 | out_free_ar: | ||
1962 | free_bootmem(__pa(pages), pages_size); | ||
1963 | pcpu_free_alloc_info(ai); | ||
1964 | return rc; | ||
1965 | } | ||
1966 | #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ | ||
1967 | |||
1968 | /* | ||
1969 | * Generic percpu area setup. | ||
1970 | * | ||
1971 | * The embedding helper is used because its behavior closely resembles | ||
1972 | * the original non-dynamic generic percpu area setup. This is | ||
1973 | * important because many archs have addressing restrictions and might | ||
1974 | * fail if the percpu area is located far away from the previous | ||
1975 | * location. As an added bonus, in non-NUMA cases, embedding is | ||
1976 | * generally a good idea TLB-wise because percpu area can piggy back | ||
1977 | * on the physical linear memory mapping which uses large page | ||
1978 | * mappings on applicable archs. | ||
1979 | */ | ||
1980 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA | ||
1981 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | ||
1982 | EXPORT_SYMBOL(__per_cpu_offset); | ||
1983 | |||
1984 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, | ||
1985 | size_t align) | ||
1986 | { | ||
1987 | return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); | ||
1988 | } | ||
1289 | 1989 | ||
1290 | return pcpu_setup_first_chunk(pcpue_get_page, static_size, | 1990 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
1291 | reserved_size, dyn_size, | 1991 | { |
1292 | pcpue_unit_size, pcpue_ptr, NULL); | 1992 | free_bootmem(__pa(ptr), size); |
1993 | } | ||
1994 | |||
1995 | void __init setup_per_cpu_areas(void) | ||
1996 | { | ||
1997 | unsigned long delta; | ||
1998 | unsigned int cpu; | ||
1999 | int rc; | ||
2000 | |||
2001 | /* | ||
2002 | * Always reserve area for module percpu variables. That's | ||
2003 | * what the legacy allocator did. | ||
2004 | */ | ||
2005 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, | ||
2006 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, | ||
2007 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | ||
2008 | if (rc < 0) | ||
2009 | panic("Failed to initialized percpu areas."); | ||
2010 | |||
2011 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | ||
2012 | for_each_possible_cpu(cpu) | ||
2013 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; | ||
1293 | } | 2014 | } |
2015 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ | ||
diff --git a/mm/quicklist.c b/mm/quicklist.c index e66d07d1b4ff..6eedf7e473d1 100644 --- a/mm/quicklist.c +++ b/mm/quicklist.c | |||
@@ -19,7 +19,7 @@ | |||
19 | #include <linux/module.h> | 19 | #include <linux/module.h> |
20 | #include <linux/quicklist.h> | 20 | #include <linux/quicklist.h> |
21 | 21 | ||
22 | DEFINE_PER_CPU(struct quicklist, quicklist)[CONFIG_NR_QUICK]; | 22 | DEFINE_PER_CPU(struct quicklist [CONFIG_NR_QUICK], quicklist); |
23 | 23 | ||
24 | #define FRACTION_OF_NODE_MEM 16 | 24 | #define FRACTION_OF_NODE_MEM 16 |
25 | 25 | ||
@@ -1071,6 +1071,8 @@ static inline unsigned long kmem_cache_flags(unsigned long objsize, | |||
1071 | } | 1071 | } |
1072 | #define slub_debug 0 | 1072 | #define slub_debug 0 |
1073 | 1073 | ||
1074 | #define disable_higher_order_debug 0 | ||
1075 | |||
1074 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 1076 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
1075 | { return 0; } | 1077 | { return 0; } |
1076 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 1078 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
@@ -2111,8 +2113,8 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | |||
2111 | */ | 2113 | */ |
2112 | #define NR_KMEM_CACHE_CPU 100 | 2114 | #define NR_KMEM_CACHE_CPU 100 |
2113 | 2115 | ||
2114 | static DEFINE_PER_CPU(struct kmem_cache_cpu, | 2116 | static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU], |
2115 | kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; | 2117 | kmem_cache_cpu); |
2116 | 2118 | ||
2117 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); | 2119 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); |
2118 | static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); | 2120 | static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); |
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index f8189a4b3e13..204b8243d8ab 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -265,6 +265,7 @@ struct vmap_area { | |||
265 | static DEFINE_SPINLOCK(vmap_area_lock); | 265 | static DEFINE_SPINLOCK(vmap_area_lock); |
266 | static struct rb_root vmap_area_root = RB_ROOT; | 266 | static struct rb_root vmap_area_root = RB_ROOT; |
267 | static LIST_HEAD(vmap_area_list); | 267 | static LIST_HEAD(vmap_area_list); |
268 | static unsigned long vmap_area_pcpu_hole; | ||
268 | 269 | ||
269 | static struct vmap_area *__find_vmap_area(unsigned long addr) | 270 | static struct vmap_area *__find_vmap_area(unsigned long addr) |
270 | { | 271 | { |
@@ -431,6 +432,15 @@ static void __free_vmap_area(struct vmap_area *va) | |||
431 | RB_CLEAR_NODE(&va->rb_node); | 432 | RB_CLEAR_NODE(&va->rb_node); |
432 | list_del_rcu(&va->list); | 433 | list_del_rcu(&va->list); |
433 | 434 | ||
435 | /* | ||
436 | * Track the highest possible candidate for pcpu area | ||
437 | * allocation. Areas outside of vmalloc area can be returned | ||
438 | * here too, consider only end addresses which fall inside | ||
439 | * vmalloc area proper. | ||
440 | */ | ||
441 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | ||
442 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | ||
443 | |||
434 | call_rcu(&va->rcu_head, rcu_free_va); | 444 | call_rcu(&va->rcu_head, rcu_free_va); |
435 | } | 445 | } |
436 | 446 | ||
@@ -1038,6 +1048,9 @@ void __init vmalloc_init(void) | |||
1038 | va->va_end = va->va_start + tmp->size; | 1048 | va->va_end = va->va_start + tmp->size; |
1039 | __insert_vmap_area(va); | 1049 | __insert_vmap_area(va); |
1040 | } | 1050 | } |
1051 | |||
1052 | vmap_area_pcpu_hole = VMALLOC_END; | ||
1053 | |||
1041 | vmap_initialized = true; | 1054 | vmap_initialized = true; |
1042 | } | 1055 | } |
1043 | 1056 | ||
@@ -1122,13 +1135,34 @@ EXPORT_SYMBOL_GPL(map_vm_area); | |||
1122 | DEFINE_RWLOCK(vmlist_lock); | 1135 | DEFINE_RWLOCK(vmlist_lock); |
1123 | struct vm_struct *vmlist; | 1136 | struct vm_struct *vmlist; |
1124 | 1137 | ||
1138 | static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, | ||
1139 | unsigned long flags, void *caller) | ||
1140 | { | ||
1141 | struct vm_struct *tmp, **p; | ||
1142 | |||
1143 | vm->flags = flags; | ||
1144 | vm->addr = (void *)va->va_start; | ||
1145 | vm->size = va->va_end - va->va_start; | ||
1146 | vm->caller = caller; | ||
1147 | va->private = vm; | ||
1148 | va->flags |= VM_VM_AREA; | ||
1149 | |||
1150 | write_lock(&vmlist_lock); | ||
1151 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | ||
1152 | if (tmp->addr >= vm->addr) | ||
1153 | break; | ||
1154 | } | ||
1155 | vm->next = *p; | ||
1156 | *p = vm; | ||
1157 | write_unlock(&vmlist_lock); | ||
1158 | } | ||
1159 | |||
1125 | static struct vm_struct *__get_vm_area_node(unsigned long size, | 1160 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
1126 | unsigned long flags, unsigned long start, unsigned long end, | 1161 | unsigned long flags, unsigned long start, unsigned long end, |
1127 | int node, gfp_t gfp_mask, void *caller) | 1162 | int node, gfp_t gfp_mask, void *caller) |
1128 | { | 1163 | { |
1129 | static struct vmap_area *va; | 1164 | static struct vmap_area *va; |
1130 | struct vm_struct *area; | 1165 | struct vm_struct *area; |
1131 | struct vm_struct *tmp, **p; | ||
1132 | unsigned long align = 1; | 1166 | unsigned long align = 1; |
1133 | 1167 | ||
1134 | BUG_ON(in_interrupt()); | 1168 | BUG_ON(in_interrupt()); |
@@ -1147,7 +1181,7 @@ static struct vm_struct *__get_vm_area_node(unsigned long size, | |||
1147 | if (unlikely(!size)) | 1181 | if (unlikely(!size)) |
1148 | return NULL; | 1182 | return NULL; |
1149 | 1183 | ||
1150 | area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | 1184 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1151 | if (unlikely(!area)) | 1185 | if (unlikely(!area)) |
1152 | return NULL; | 1186 | return NULL; |
1153 | 1187 | ||
@@ -1162,25 +1196,7 @@ static struct vm_struct *__get_vm_area_node(unsigned long size, | |||
1162 | return NULL; | 1196 | return NULL; |
1163 | } | 1197 | } |
1164 | 1198 | ||
1165 | area->flags = flags; | 1199 | insert_vmalloc_vm(area, va, flags, caller); |
1166 | area->addr = (void *)va->va_start; | ||
1167 | area->size = size; | ||
1168 | area->pages = NULL; | ||
1169 | area->nr_pages = 0; | ||
1170 | area->phys_addr = 0; | ||
1171 | area->caller = caller; | ||
1172 | va->private = area; | ||
1173 | va->flags |= VM_VM_AREA; | ||
1174 | |||
1175 | write_lock(&vmlist_lock); | ||
1176 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | ||
1177 | if (tmp->addr >= area->addr) | ||
1178 | break; | ||
1179 | } | ||
1180 | area->next = *p; | ||
1181 | *p = area; | ||
1182 | write_unlock(&vmlist_lock); | ||
1183 | |||
1184 | return area; | 1200 | return area; |
1185 | } | 1201 | } |
1186 | 1202 | ||
@@ -1818,6 +1834,286 @@ void free_vm_area(struct vm_struct *area) | |||
1818 | } | 1834 | } |
1819 | EXPORT_SYMBOL_GPL(free_vm_area); | 1835 | EXPORT_SYMBOL_GPL(free_vm_area); |
1820 | 1836 | ||
1837 | static struct vmap_area *node_to_va(struct rb_node *n) | ||
1838 | { | ||
1839 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | ||
1840 | } | ||
1841 | |||
1842 | /** | ||
1843 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | ||
1844 | * @end: target address | ||
1845 | * @pnext: out arg for the next vmap_area | ||
1846 | * @pprev: out arg for the previous vmap_area | ||
1847 | * | ||
1848 | * Returns: %true if either or both of next and prev are found, | ||
1849 | * %false if no vmap_area exists | ||
1850 | * | ||
1851 | * Find vmap_areas end addresses of which enclose @end. ie. if not | ||
1852 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | ||
1853 | */ | ||
1854 | static bool pvm_find_next_prev(unsigned long end, | ||
1855 | struct vmap_area **pnext, | ||
1856 | struct vmap_area **pprev) | ||
1857 | { | ||
1858 | struct rb_node *n = vmap_area_root.rb_node; | ||
1859 | struct vmap_area *va = NULL; | ||
1860 | |||
1861 | while (n) { | ||
1862 | va = rb_entry(n, struct vmap_area, rb_node); | ||
1863 | if (end < va->va_end) | ||
1864 | n = n->rb_left; | ||
1865 | else if (end > va->va_end) | ||
1866 | n = n->rb_right; | ||
1867 | else | ||
1868 | break; | ||
1869 | } | ||
1870 | |||
1871 | if (!va) | ||
1872 | return false; | ||
1873 | |||
1874 | if (va->va_end > end) { | ||
1875 | *pnext = va; | ||
1876 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | ||
1877 | } else { | ||
1878 | *pprev = va; | ||
1879 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | ||
1880 | } | ||
1881 | return true; | ||
1882 | } | ||
1883 | |||
1884 | /** | ||
1885 | * pvm_determine_end - find the highest aligned address between two vmap_areas | ||
1886 | * @pnext: in/out arg for the next vmap_area | ||
1887 | * @pprev: in/out arg for the previous vmap_area | ||
1888 | * @align: alignment | ||
1889 | * | ||
1890 | * Returns: determined end address | ||
1891 | * | ||
1892 | * Find the highest aligned address between *@pnext and *@pprev below | ||
1893 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | ||
1894 | * down address is between the end addresses of the two vmap_areas. | ||
1895 | * | ||
1896 | * Please note that the address returned by this function may fall | ||
1897 | * inside *@pnext vmap_area. The caller is responsible for checking | ||
1898 | * that. | ||
1899 | */ | ||
1900 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | ||
1901 | struct vmap_area **pprev, | ||
1902 | unsigned long align) | ||
1903 | { | ||
1904 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | ||
1905 | unsigned long addr; | ||
1906 | |||
1907 | if (*pnext) | ||
1908 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | ||
1909 | else | ||
1910 | addr = vmalloc_end; | ||
1911 | |||
1912 | while (*pprev && (*pprev)->va_end > addr) { | ||
1913 | *pnext = *pprev; | ||
1914 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | ||
1915 | } | ||
1916 | |||
1917 | return addr; | ||
1918 | } | ||
1919 | |||
1920 | /** | ||
1921 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | ||
1922 | * @offsets: array containing offset of each area | ||
1923 | * @sizes: array containing size of each area | ||
1924 | * @nr_vms: the number of areas to allocate | ||
1925 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | ||
1926 | * @gfp_mask: allocation mask | ||
1927 | * | ||
1928 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | ||
1929 | * vm_structs on success, %NULL on failure | ||
1930 | * | ||
1931 | * Percpu allocator wants to use congruent vm areas so that it can | ||
1932 | * maintain the offsets among percpu areas. This function allocates | ||
1933 | * congruent vmalloc areas for it. These areas tend to be scattered | ||
1934 | * pretty far, distance between two areas easily going up to | ||
1935 | * gigabytes. To avoid interacting with regular vmallocs, these areas | ||
1936 | * are allocated from top. | ||
1937 | * | ||
1938 | * Despite its complicated look, this allocator is rather simple. It | ||
1939 | * does everything top-down and scans areas from the end looking for | ||
1940 | * matching slot. While scanning, if any of the areas overlaps with | ||
1941 | * existing vmap_area, the base address is pulled down to fit the | ||
1942 | * area. Scanning is repeated till all the areas fit and then all | ||
1943 | * necessary data structres are inserted and the result is returned. | ||
1944 | */ | ||
1945 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | ||
1946 | const size_t *sizes, int nr_vms, | ||
1947 | size_t align, gfp_t gfp_mask) | ||
1948 | { | ||
1949 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | ||
1950 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | ||
1951 | struct vmap_area **vas, *prev, *next; | ||
1952 | struct vm_struct **vms; | ||
1953 | int area, area2, last_area, term_area; | ||
1954 | unsigned long base, start, end, last_end; | ||
1955 | bool purged = false; | ||
1956 | |||
1957 | gfp_mask &= GFP_RECLAIM_MASK; | ||
1958 | |||
1959 | /* verify parameters and allocate data structures */ | ||
1960 | BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | ||
1961 | for (last_area = 0, area = 0; area < nr_vms; area++) { | ||
1962 | start = offsets[area]; | ||
1963 | end = start + sizes[area]; | ||
1964 | |||
1965 | /* is everything aligned properly? */ | ||
1966 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | ||
1967 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | ||
1968 | |||
1969 | /* detect the area with the highest address */ | ||
1970 | if (start > offsets[last_area]) | ||
1971 | last_area = area; | ||
1972 | |||
1973 | for (area2 = 0; area2 < nr_vms; area2++) { | ||
1974 | unsigned long start2 = offsets[area2]; | ||
1975 | unsigned long end2 = start2 + sizes[area2]; | ||
1976 | |||
1977 | if (area2 == area) | ||
1978 | continue; | ||
1979 | |||
1980 | BUG_ON(start2 >= start && start2 < end); | ||
1981 | BUG_ON(end2 <= end && end2 > start); | ||
1982 | } | ||
1983 | } | ||
1984 | last_end = offsets[last_area] + sizes[last_area]; | ||
1985 | |||
1986 | if (vmalloc_end - vmalloc_start < last_end) { | ||
1987 | WARN_ON(true); | ||
1988 | return NULL; | ||
1989 | } | ||
1990 | |||
1991 | vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); | ||
1992 | vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); | ||
1993 | if (!vas || !vms) | ||
1994 | goto err_free; | ||
1995 | |||
1996 | for (area = 0; area < nr_vms; area++) { | ||
1997 | vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); | ||
1998 | vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); | ||
1999 | if (!vas[area] || !vms[area]) | ||
2000 | goto err_free; | ||
2001 | } | ||
2002 | retry: | ||
2003 | spin_lock(&vmap_area_lock); | ||
2004 | |||
2005 | /* start scanning - we scan from the top, begin with the last area */ | ||
2006 | area = term_area = last_area; | ||
2007 | start = offsets[area]; | ||
2008 | end = start + sizes[area]; | ||
2009 | |||
2010 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | ||
2011 | base = vmalloc_end - last_end; | ||
2012 | goto found; | ||
2013 | } | ||
2014 | base = pvm_determine_end(&next, &prev, align) - end; | ||
2015 | |||
2016 | while (true) { | ||
2017 | BUG_ON(next && next->va_end <= base + end); | ||
2018 | BUG_ON(prev && prev->va_end > base + end); | ||
2019 | |||
2020 | /* | ||
2021 | * base might have underflowed, add last_end before | ||
2022 | * comparing. | ||
2023 | */ | ||
2024 | if (base + last_end < vmalloc_start + last_end) { | ||
2025 | spin_unlock(&vmap_area_lock); | ||
2026 | if (!purged) { | ||
2027 | purge_vmap_area_lazy(); | ||
2028 | purged = true; | ||
2029 | goto retry; | ||
2030 | } | ||
2031 | goto err_free; | ||
2032 | } | ||
2033 | |||
2034 | /* | ||
2035 | * If next overlaps, move base downwards so that it's | ||
2036 | * right below next and then recheck. | ||
2037 | */ | ||
2038 | if (next && next->va_start < base + end) { | ||
2039 | base = pvm_determine_end(&next, &prev, align) - end; | ||
2040 | term_area = area; | ||
2041 | continue; | ||
2042 | } | ||
2043 | |||
2044 | /* | ||
2045 | * If prev overlaps, shift down next and prev and move | ||
2046 | * base so that it's right below new next and then | ||
2047 | * recheck. | ||
2048 | */ | ||
2049 | if (prev && prev->va_end > base + start) { | ||
2050 | next = prev; | ||
2051 | prev = node_to_va(rb_prev(&next->rb_node)); | ||
2052 | base = pvm_determine_end(&next, &prev, align) - end; | ||
2053 | term_area = area; | ||
2054 | continue; | ||
2055 | } | ||
2056 | |||
2057 | /* | ||
2058 | * This area fits, move on to the previous one. If | ||
2059 | * the previous one is the terminal one, we're done. | ||
2060 | */ | ||
2061 | area = (area + nr_vms - 1) % nr_vms; | ||
2062 | if (area == term_area) | ||
2063 | break; | ||
2064 | start = offsets[area]; | ||
2065 | end = start + sizes[area]; | ||
2066 | pvm_find_next_prev(base + end, &next, &prev); | ||
2067 | } | ||
2068 | found: | ||
2069 | /* we've found a fitting base, insert all va's */ | ||
2070 | for (area = 0; area < nr_vms; area++) { | ||
2071 | struct vmap_area *va = vas[area]; | ||
2072 | |||
2073 | va->va_start = base + offsets[area]; | ||
2074 | va->va_end = va->va_start + sizes[area]; | ||
2075 | __insert_vmap_area(va); | ||
2076 | } | ||
2077 | |||
2078 | vmap_area_pcpu_hole = base + offsets[last_area]; | ||
2079 | |||
2080 | spin_unlock(&vmap_area_lock); | ||
2081 | |||
2082 | /* insert all vm's */ | ||
2083 | for (area = 0; area < nr_vms; area++) | ||
2084 | insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | ||
2085 | pcpu_get_vm_areas); | ||
2086 | |||
2087 | kfree(vas); | ||
2088 | return vms; | ||
2089 | |||
2090 | err_free: | ||
2091 | for (area = 0; area < nr_vms; area++) { | ||
2092 | if (vas) | ||
2093 | kfree(vas[area]); | ||
2094 | if (vms) | ||
2095 | kfree(vms[area]); | ||
2096 | } | ||
2097 | kfree(vas); | ||
2098 | kfree(vms); | ||
2099 | return NULL; | ||
2100 | } | ||
2101 | |||
2102 | /** | ||
2103 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | ||
2104 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | ||
2105 | * @nr_vms: the number of allocated areas | ||
2106 | * | ||
2107 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | ||
2108 | */ | ||
2109 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | ||
2110 | { | ||
2111 | int i; | ||
2112 | |||
2113 | for (i = 0; i < nr_vms; i++) | ||
2114 | free_vm_area(vms[i]); | ||
2115 | kfree(vms); | ||
2116 | } | ||
1821 | 2117 | ||
1822 | #ifdef CONFIG_PROC_FS | 2118 | #ifdef CONFIG_PROC_FS |
1823 | static void *s_start(struct seq_file *m, loff_t *pos) | 2119 | static void *s_start(struct seq_file *m, loff_t *pos) |