diff options
Diffstat (limited to 'mm')
| -rw-r--r-- | mm/backing-dev.c | 449 | ||||
| -rw-r--r-- | mm/filemap.c | 2 | ||||
| -rw-r--r-- | mm/hugetlb.c | 6 | ||||
| -rw-r--r-- | mm/init-mm.c | 6 | ||||
| -rw-r--r-- | mm/kmemleak.c | 100 | ||||
| -rw-r--r-- | mm/ksm.c | 71 | ||||
| -rw-r--r-- | mm/memblock.c | 2 | ||||
| -rw-r--r-- | mm/memcontrol.c | 462 | ||||
| -rw-r--r-- | mm/memory.c | 12 | ||||
| -rw-r--r-- | mm/mempolicy.c | 82 | ||||
| -rw-r--r-- | mm/migrate.c | 10 | ||||
| -rw-r--r-- | mm/mmap.c | 50 | ||||
| -rw-r--r-- | mm/oom_kill.c | 683 | ||||
| -rw-r--r-- | mm/page-writeback.c | 254 | ||||
| -rw-r--r-- | mm/page_alloc.c | 33 | ||||
| -rw-r--r-- | mm/page_io.c | 2 | ||||
| -rw-r--r-- | mm/rmap.c | 127 | ||||
| -rw-r--r-- | mm/shmem.c | 133 | ||||
| -rw-r--r-- | mm/slab.c | 5 | ||||
| -rw-r--r-- | mm/slob.c | 14 | ||||
| -rw-r--r-- | mm/slub.c | 87 | ||||
| -rw-r--r-- | mm/swapfile.c | 100 | ||||
| -rw-r--r-- | mm/truncate.c | 38 | ||||
| -rw-r--r-- | mm/util.c | 11 | ||||
| -rw-r--r-- | mm/vmalloc.c | 13 | ||||
| -rw-r--r-- | mm/vmscan.c | 548 | ||||
| -rw-r--r-- | mm/vmstat.c | 8 |
27 files changed, 1901 insertions, 1407 deletions
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 123bcef13e51..eaa4a5bbe063 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
| @@ -10,6 +10,7 @@ | |||
| 10 | #include <linux/module.h> | 10 | #include <linux/module.h> |
| 11 | #include <linux/writeback.h> | 11 | #include <linux/writeback.h> |
| 12 | #include <linux/device.h> | 12 | #include <linux/device.h> |
| 13 | #include <trace/events/writeback.h> | ||
| 13 | 14 | ||
| 14 | static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); | 15 | static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); |
| 15 | 16 | ||
| @@ -49,8 +50,6 @@ static struct timer_list sync_supers_timer; | |||
| 49 | static int bdi_sync_supers(void *); | 50 | static int bdi_sync_supers(void *); |
| 50 | static void sync_supers_timer_fn(unsigned long); | 51 | static void sync_supers_timer_fn(unsigned long); |
| 51 | 52 | ||
| 52 | static void bdi_add_default_flusher_task(struct backing_dev_info *bdi); | ||
| 53 | |||
| 54 | #ifdef CONFIG_DEBUG_FS | 53 | #ifdef CONFIG_DEBUG_FS |
| 55 | #include <linux/debugfs.h> | 54 | #include <linux/debugfs.h> |
| 56 | #include <linux/seq_file.h> | 55 | #include <linux/seq_file.h> |
| @@ -65,31 +64,25 @@ static void bdi_debug_init(void) | |||
| 65 | static int bdi_debug_stats_show(struct seq_file *m, void *v) | 64 | static int bdi_debug_stats_show(struct seq_file *m, void *v) |
| 66 | { | 65 | { |
| 67 | struct backing_dev_info *bdi = m->private; | 66 | struct backing_dev_info *bdi = m->private; |
| 68 | struct bdi_writeback *wb; | 67 | struct bdi_writeback *wb = &bdi->wb; |
| 69 | unsigned long background_thresh; | 68 | unsigned long background_thresh; |
| 70 | unsigned long dirty_thresh; | 69 | unsigned long dirty_thresh; |
| 71 | unsigned long bdi_thresh; | 70 | unsigned long bdi_thresh; |
| 72 | unsigned long nr_dirty, nr_io, nr_more_io, nr_wb; | 71 | unsigned long nr_dirty, nr_io, nr_more_io, nr_wb; |
| 73 | struct inode *inode; | 72 | struct inode *inode; |
| 74 | 73 | ||
| 75 | /* | ||
| 76 | * inode lock is enough here, the bdi->wb_list is protected by | ||
| 77 | * RCU on the reader side | ||
| 78 | */ | ||
| 79 | nr_wb = nr_dirty = nr_io = nr_more_io = 0; | 74 | nr_wb = nr_dirty = nr_io = nr_more_io = 0; |
| 80 | spin_lock(&inode_lock); | 75 | spin_lock(&inode_lock); |
| 81 | list_for_each_entry(wb, &bdi->wb_list, list) { | 76 | list_for_each_entry(inode, &wb->b_dirty, i_list) |
| 82 | nr_wb++; | 77 | nr_dirty++; |
| 83 | list_for_each_entry(inode, &wb->b_dirty, i_list) | 78 | list_for_each_entry(inode, &wb->b_io, i_list) |
| 84 | nr_dirty++; | 79 | nr_io++; |
| 85 | list_for_each_entry(inode, &wb->b_io, i_list) | 80 | list_for_each_entry(inode, &wb->b_more_io, i_list) |
| 86 | nr_io++; | 81 | nr_more_io++; |
| 87 | list_for_each_entry(inode, &wb->b_more_io, i_list) | ||
| 88 | nr_more_io++; | ||
| 89 | } | ||
| 90 | spin_unlock(&inode_lock); | 82 | spin_unlock(&inode_lock); |
| 91 | 83 | ||
| 92 | get_dirty_limits(&background_thresh, &dirty_thresh, &bdi_thresh, bdi); | 84 | global_dirty_limits(&background_thresh, &dirty_thresh); |
| 85 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); | ||
| 93 | 86 | ||
| 94 | #define K(x) ((x) << (PAGE_SHIFT - 10)) | 87 | #define K(x) ((x) << (PAGE_SHIFT - 10)) |
| 95 | seq_printf(m, | 88 | seq_printf(m, |
| @@ -98,19 +91,16 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) | |||
| 98 | "BdiDirtyThresh: %8lu kB\n" | 91 | "BdiDirtyThresh: %8lu kB\n" |
| 99 | "DirtyThresh: %8lu kB\n" | 92 | "DirtyThresh: %8lu kB\n" |
| 100 | "BackgroundThresh: %8lu kB\n" | 93 | "BackgroundThresh: %8lu kB\n" |
| 101 | "WritebackThreads: %8lu\n" | ||
| 102 | "b_dirty: %8lu\n" | 94 | "b_dirty: %8lu\n" |
| 103 | "b_io: %8lu\n" | 95 | "b_io: %8lu\n" |
| 104 | "b_more_io: %8lu\n" | 96 | "b_more_io: %8lu\n" |
| 105 | "bdi_list: %8u\n" | 97 | "bdi_list: %8u\n" |
| 106 | "state: %8lx\n" | 98 | "state: %8lx\n", |
| 107 | "wb_list: %8u\n", | ||
| 108 | (unsigned long) K(bdi_stat(bdi, BDI_WRITEBACK)), | 99 | (unsigned long) K(bdi_stat(bdi, BDI_WRITEBACK)), |
| 109 | (unsigned long) K(bdi_stat(bdi, BDI_RECLAIMABLE)), | 100 | (unsigned long) K(bdi_stat(bdi, BDI_RECLAIMABLE)), |
| 110 | K(bdi_thresh), K(dirty_thresh), | 101 | K(bdi_thresh), K(dirty_thresh), |
| 111 | K(background_thresh), nr_wb, nr_dirty, nr_io, nr_more_io, | 102 | K(background_thresh), nr_dirty, nr_io, nr_more_io, |
| 112 | !list_empty(&bdi->bdi_list), bdi->state, | 103 | !list_empty(&bdi->bdi_list), bdi->state); |
| 113 | !list_empty(&bdi->wb_list)); | ||
| 114 | #undef K | 104 | #undef K |
| 115 | 105 | ||
| 116 | return 0; | 106 | return 0; |
| @@ -247,7 +237,6 @@ static int __init default_bdi_init(void) | |||
| 247 | sync_supers_tsk = kthread_run(bdi_sync_supers, NULL, "sync_supers"); | 237 | sync_supers_tsk = kthread_run(bdi_sync_supers, NULL, "sync_supers"); |
| 248 | BUG_ON(IS_ERR(sync_supers_tsk)); | 238 | BUG_ON(IS_ERR(sync_supers_tsk)); |
| 249 | 239 | ||
| 250 | init_timer(&sync_supers_timer); | ||
| 251 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); | 240 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); |
| 252 | bdi_arm_supers_timer(); | 241 | bdi_arm_supers_timer(); |
| 253 | 242 | ||
| @@ -259,77 +248,6 @@ static int __init default_bdi_init(void) | |||
| 259 | } | 248 | } |
| 260 | subsys_initcall(default_bdi_init); | 249 | subsys_initcall(default_bdi_init); |
| 261 | 250 | ||
| 262 | static void bdi_wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi) | ||
| 263 | { | ||
| 264 | memset(wb, 0, sizeof(*wb)); | ||
| 265 | |||
| 266 | wb->bdi = bdi; | ||
| 267 | wb->last_old_flush = jiffies; | ||
| 268 | INIT_LIST_HEAD(&wb->b_dirty); | ||
| 269 | INIT_LIST_HEAD(&wb->b_io); | ||
| 270 | INIT_LIST_HEAD(&wb->b_more_io); | ||
| 271 | } | ||
| 272 | |||
| 273 | static void bdi_task_init(struct backing_dev_info *bdi, | ||
| 274 | struct bdi_writeback *wb) | ||
| 275 | { | ||
| 276 | struct task_struct *tsk = current; | ||
| 277 | |||
| 278 | spin_lock(&bdi->wb_lock); | ||
| 279 | list_add_tail_rcu(&wb->list, &bdi->wb_list); | ||
| 280 | spin_unlock(&bdi->wb_lock); | ||
| 281 | |||
| 282 | tsk->flags |= PF_FLUSHER | PF_SWAPWRITE; | ||
| 283 | set_freezable(); | ||
| 284 | |||
| 285 | /* | ||
| 286 | * Our parent may run at a different priority, just set us to normal | ||
| 287 | */ | ||
| 288 | set_user_nice(tsk, 0); | ||
| 289 | } | ||
| 290 | |||
| 291 | static int bdi_start_fn(void *ptr) | ||
| 292 | { | ||
| 293 | struct bdi_writeback *wb = ptr; | ||
| 294 | struct backing_dev_info *bdi = wb->bdi; | ||
| 295 | int ret; | ||
| 296 | |||
| 297 | /* | ||
| 298 | * Add us to the active bdi_list | ||
| 299 | */ | ||
| 300 | spin_lock_bh(&bdi_lock); | ||
| 301 | list_add_rcu(&bdi->bdi_list, &bdi_list); | ||
| 302 | spin_unlock_bh(&bdi_lock); | ||
| 303 | |||
| 304 | bdi_task_init(bdi, wb); | ||
| 305 | |||
| 306 | /* | ||
| 307 | * Clear pending bit and wakeup anybody waiting to tear us down | ||
| 308 | */ | ||
| 309 | clear_bit(BDI_pending, &bdi->state); | ||
| 310 | smp_mb__after_clear_bit(); | ||
| 311 | wake_up_bit(&bdi->state, BDI_pending); | ||
| 312 | |||
| 313 | ret = bdi_writeback_task(wb); | ||
| 314 | |||
| 315 | /* | ||
| 316 | * Remove us from the list | ||
| 317 | */ | ||
| 318 | spin_lock(&bdi->wb_lock); | ||
| 319 | list_del_rcu(&wb->list); | ||
| 320 | spin_unlock(&bdi->wb_lock); | ||
| 321 | |||
| 322 | /* | ||
| 323 | * Flush any work that raced with us exiting. No new work | ||
| 324 | * will be added, since this bdi isn't discoverable anymore. | ||
| 325 | */ | ||
| 326 | if (!list_empty(&bdi->work_list)) | ||
| 327 | wb_do_writeback(wb, 1); | ||
| 328 | |||
| 329 | wb->task = NULL; | ||
| 330 | return ret; | ||
| 331 | } | ||
| 332 | |||
| 333 | int bdi_has_dirty_io(struct backing_dev_info *bdi) | 251 | int bdi_has_dirty_io(struct backing_dev_info *bdi) |
| 334 | { | 252 | { |
| 335 | return wb_has_dirty_io(&bdi->wb); | 253 | return wb_has_dirty_io(&bdi->wb); |
| @@ -348,10 +266,10 @@ static void bdi_flush_io(struct backing_dev_info *bdi) | |||
| 348 | } | 266 | } |
| 349 | 267 | ||
| 350 | /* | 268 | /* |
| 351 | * kupdated() used to do this. We cannot do it from the bdi_forker_task() | 269 | * kupdated() used to do this. We cannot do it from the bdi_forker_thread() |
| 352 | * or we risk deadlocking on ->s_umount. The longer term solution would be | 270 | * or we risk deadlocking on ->s_umount. The longer term solution would be |
| 353 | * to implement sync_supers_bdi() or similar and simply do it from the | 271 | * to implement sync_supers_bdi() or similar and simply do it from the |
| 354 | * bdi writeback tasks individually. | 272 | * bdi writeback thread individually. |
| 355 | */ | 273 | */ |
| 356 | static int bdi_sync_supers(void *unused) | 274 | static int bdi_sync_supers(void *unused) |
| 357 | { | 275 | { |
| @@ -387,144 +305,198 @@ static void sync_supers_timer_fn(unsigned long unused) | |||
| 387 | bdi_arm_supers_timer(); | 305 | bdi_arm_supers_timer(); |
| 388 | } | 306 | } |
| 389 | 307 | ||
| 390 | static int bdi_forker_task(void *ptr) | 308 | static void wakeup_timer_fn(unsigned long data) |
| 309 | { | ||
| 310 | struct backing_dev_info *bdi = (struct backing_dev_info *)data; | ||
| 311 | |||
| 312 | spin_lock_bh(&bdi->wb_lock); | ||
| 313 | if (bdi->wb.task) { | ||
| 314 | trace_writeback_wake_thread(bdi); | ||
| 315 | wake_up_process(bdi->wb.task); | ||
| 316 | } else { | ||
| 317 | /* | ||
| 318 | * When bdi tasks are inactive for long time, they are killed. | ||
| 319 | * In this case we have to wake-up the forker thread which | ||
| 320 | * should create and run the bdi thread. | ||
| 321 | */ | ||
| 322 | trace_writeback_wake_forker_thread(bdi); | ||
| 323 | wake_up_process(default_backing_dev_info.wb.task); | ||
| 324 | } | ||
| 325 | spin_unlock_bh(&bdi->wb_lock); | ||
| 326 | } | ||
| 327 | |||
| 328 | /* | ||
| 329 | * This function is used when the first inode for this bdi is marked dirty. It | ||
| 330 | * wakes-up the corresponding bdi thread which should then take care of the | ||
| 331 | * periodic background write-out of dirty inodes. Since the write-out would | ||
| 332 | * starts only 'dirty_writeback_interval' centisecs from now anyway, we just | ||
| 333 | * set up a timer which wakes the bdi thread up later. | ||
| 334 | * | ||
| 335 | * Note, we wouldn't bother setting up the timer, but this function is on the | ||
| 336 | * fast-path (used by '__mark_inode_dirty()'), so we save few context switches | ||
| 337 | * by delaying the wake-up. | ||
| 338 | */ | ||
| 339 | void bdi_wakeup_thread_delayed(struct backing_dev_info *bdi) | ||
| 340 | { | ||
| 341 | unsigned long timeout; | ||
| 342 | |||
| 343 | timeout = msecs_to_jiffies(dirty_writeback_interval * 10); | ||
| 344 | mod_timer(&bdi->wb.wakeup_timer, jiffies + timeout); | ||
| 345 | } | ||
| 346 | |||
| 347 | /* | ||
| 348 | * Calculate the longest interval (jiffies) bdi threads are allowed to be | ||
| 349 | * inactive. | ||
| 350 | */ | ||
| 351 | static unsigned long bdi_longest_inactive(void) | ||
| 352 | { | ||
| 353 | unsigned long interval; | ||
| 354 | |||
| 355 | interval = msecs_to_jiffies(dirty_writeback_interval * 10); | ||
| 356 | return max(5UL * 60 * HZ, interval); | ||
| 357 | } | ||
| 358 | |||
| 359 | static int bdi_forker_thread(void *ptr) | ||
| 391 | { | 360 | { |
| 392 | struct bdi_writeback *me = ptr; | 361 | struct bdi_writeback *me = ptr; |
| 393 | 362 | ||
| 394 | bdi_task_init(me->bdi, me); | 363 | current->flags |= PF_FLUSHER | PF_SWAPWRITE; |
| 364 | set_freezable(); | ||
| 365 | |||
| 366 | /* | ||
| 367 | * Our parent may run at a different priority, just set us to normal | ||
| 368 | */ | ||
| 369 | set_user_nice(current, 0); | ||
| 395 | 370 | ||
| 396 | for (;;) { | 371 | for (;;) { |
| 397 | struct backing_dev_info *bdi, *tmp; | 372 | struct task_struct *task = NULL; |
| 398 | struct bdi_writeback *wb; | 373 | struct backing_dev_info *bdi; |
| 374 | enum { | ||
| 375 | NO_ACTION, /* Nothing to do */ | ||
| 376 | FORK_THREAD, /* Fork bdi thread */ | ||
| 377 | KILL_THREAD, /* Kill inactive bdi thread */ | ||
| 378 | } action = NO_ACTION; | ||
| 399 | 379 | ||
| 400 | /* | 380 | /* |
| 401 | * Temporary measure, we want to make sure we don't see | 381 | * Temporary measure, we want to make sure we don't see |
| 402 | * dirty data on the default backing_dev_info | 382 | * dirty data on the default backing_dev_info |
| 403 | */ | 383 | */ |
| 404 | if (wb_has_dirty_io(me) || !list_empty(&me->bdi->work_list)) | 384 | if (wb_has_dirty_io(me) || !list_empty(&me->bdi->work_list)) { |
| 385 | del_timer(&me->wakeup_timer); | ||
| 405 | wb_do_writeback(me, 0); | 386 | wb_do_writeback(me, 0); |
| 387 | } | ||
| 406 | 388 | ||
| 407 | spin_lock_bh(&bdi_lock); | 389 | spin_lock_bh(&bdi_lock); |
| 390 | set_current_state(TASK_INTERRUPTIBLE); | ||
| 408 | 391 | ||
| 409 | /* | 392 | list_for_each_entry(bdi, &bdi_list, bdi_list) { |
| 410 | * Check if any existing bdi's have dirty data without | 393 | bool have_dirty_io; |
| 411 | * a thread registered. If so, set that up. | 394 | |
| 412 | */ | 395 | if (!bdi_cap_writeback_dirty(bdi) || |
| 413 | list_for_each_entry_safe(bdi, tmp, &bdi_list, bdi_list) { | 396 | bdi_cap_flush_forker(bdi)) |
| 414 | if (bdi->wb.task) | ||
| 415 | continue; | ||
| 416 | if (list_empty(&bdi->work_list) && | ||
| 417 | !bdi_has_dirty_io(bdi)) | ||
| 418 | continue; | 397 | continue; |
| 419 | 398 | ||
| 420 | bdi_add_default_flusher_task(bdi); | 399 | WARN(!test_bit(BDI_registered, &bdi->state), |
| 421 | } | 400 | "bdi %p/%s is not registered!\n", bdi, bdi->name); |
| 422 | 401 | ||
| 423 | set_current_state(TASK_INTERRUPTIBLE); | 402 | have_dirty_io = !list_empty(&bdi->work_list) || |
| 403 | wb_has_dirty_io(&bdi->wb); | ||
| 424 | 404 | ||
| 425 | if (list_empty(&bdi_pending_list)) { | 405 | /* |
| 426 | unsigned long wait; | 406 | * If the bdi has work to do, but the thread does not |
| 407 | * exist - create it. | ||
| 408 | */ | ||
| 409 | if (!bdi->wb.task && have_dirty_io) { | ||
| 410 | /* | ||
| 411 | * Set the pending bit - if someone will try to | ||
| 412 | * unregister this bdi - it'll wait on this bit. | ||
| 413 | */ | ||
| 414 | set_bit(BDI_pending, &bdi->state); | ||
| 415 | action = FORK_THREAD; | ||
| 416 | break; | ||
| 417 | } | ||
| 418 | |||
| 419 | spin_lock(&bdi->wb_lock); | ||
| 420 | |||
| 421 | /* | ||
| 422 | * If there is no work to do and the bdi thread was | ||
| 423 | * inactive long enough - kill it. The wb_lock is taken | ||
| 424 | * to make sure no-one adds more work to this bdi and | ||
| 425 | * wakes the bdi thread up. | ||
| 426 | */ | ||
| 427 | if (bdi->wb.task && !have_dirty_io && | ||
| 428 | time_after(jiffies, bdi->wb.last_active + | ||
| 429 | bdi_longest_inactive())) { | ||
| 430 | task = bdi->wb.task; | ||
| 431 | bdi->wb.task = NULL; | ||
| 432 | spin_unlock(&bdi->wb_lock); | ||
| 433 | set_bit(BDI_pending, &bdi->state); | ||
| 434 | action = KILL_THREAD; | ||
| 435 | break; | ||
| 436 | } | ||
| 437 | spin_unlock(&bdi->wb_lock); | ||
| 438 | } | ||
| 439 | spin_unlock_bh(&bdi_lock); | ||
| 427 | 440 | ||
| 428 | spin_unlock_bh(&bdi_lock); | 441 | /* Keep working if default bdi still has things to do */ |
| 429 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); | 442 | if (!list_empty(&me->bdi->work_list)) |
| 430 | if (wait) | 443 | __set_current_state(TASK_RUNNING); |
| 431 | schedule_timeout(wait); | 444 | |
| 445 | switch (action) { | ||
| 446 | case FORK_THREAD: | ||
| 447 | __set_current_state(TASK_RUNNING); | ||
| 448 | task = kthread_run(bdi_writeback_thread, &bdi->wb, "flush-%s", | ||
| 449 | dev_name(bdi->dev)); | ||
| 450 | if (IS_ERR(task)) { | ||
| 451 | /* | ||
| 452 | * If thread creation fails, force writeout of | ||
| 453 | * the bdi from the thread. | ||
| 454 | */ | ||
| 455 | bdi_flush_io(bdi); | ||
| 456 | } else { | ||
| 457 | /* | ||
| 458 | * The spinlock makes sure we do not lose | ||
| 459 | * wake-ups when racing with 'bdi_queue_work()'. | ||
| 460 | */ | ||
| 461 | spin_lock_bh(&bdi->wb_lock); | ||
| 462 | bdi->wb.task = task; | ||
| 463 | spin_unlock_bh(&bdi->wb_lock); | ||
| 464 | } | ||
| 465 | break; | ||
| 466 | |||
| 467 | case KILL_THREAD: | ||
| 468 | __set_current_state(TASK_RUNNING); | ||
| 469 | kthread_stop(task); | ||
| 470 | break; | ||
| 471 | |||
| 472 | case NO_ACTION: | ||
| 473 | if (!wb_has_dirty_io(me) || !dirty_writeback_interval) | ||
| 474 | /* | ||
| 475 | * There are no dirty data. The only thing we | ||
| 476 | * should now care about is checking for | ||
| 477 | * inactive bdi threads and killing them. Thus, | ||
| 478 | * let's sleep for longer time, save energy and | ||
| 479 | * be friendly for battery-driven devices. | ||
| 480 | */ | ||
| 481 | schedule_timeout(bdi_longest_inactive()); | ||
| 432 | else | 482 | else |
| 433 | schedule(); | 483 | schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); |
| 434 | try_to_freeze(); | 484 | try_to_freeze(); |
| 485 | /* Back to the main loop */ | ||
| 435 | continue; | 486 | continue; |
| 436 | } | 487 | } |
| 437 | 488 | ||
| 438 | __set_current_state(TASK_RUNNING); | ||
| 439 | |||
| 440 | /* | ||
| 441 | * This is our real job - check for pending entries in | ||
| 442 | * bdi_pending_list, and create the tasks that got added | ||
| 443 | */ | ||
| 444 | bdi = list_entry(bdi_pending_list.next, struct backing_dev_info, | ||
| 445 | bdi_list); | ||
| 446 | list_del_init(&bdi->bdi_list); | ||
| 447 | spin_unlock_bh(&bdi_lock); | ||
| 448 | |||
| 449 | wb = &bdi->wb; | ||
| 450 | wb->task = kthread_run(bdi_start_fn, wb, "flush-%s", | ||
| 451 | dev_name(bdi->dev)); | ||
| 452 | /* | 489 | /* |
| 453 | * If task creation fails, then readd the bdi to | 490 | * Clear pending bit and wakeup anybody waiting to tear us down. |
| 454 | * the pending list and force writeout of the bdi | ||
| 455 | * from this forker thread. That will free some memory | ||
| 456 | * and we can try again. | ||
| 457 | */ | 491 | */ |
| 458 | if (IS_ERR(wb->task)) { | 492 | clear_bit(BDI_pending, &bdi->state); |
| 459 | wb->task = NULL; | 493 | smp_mb__after_clear_bit(); |
| 460 | 494 | wake_up_bit(&bdi->state, BDI_pending); | |
| 461 | /* | ||
| 462 | * Add this 'bdi' to the back, so we get | ||
| 463 | * a chance to flush other bdi's to free | ||
| 464 | * memory. | ||
| 465 | */ | ||
| 466 | spin_lock_bh(&bdi_lock); | ||
| 467 | list_add_tail(&bdi->bdi_list, &bdi_pending_list); | ||
| 468 | spin_unlock_bh(&bdi_lock); | ||
| 469 | |||
| 470 | bdi_flush_io(bdi); | ||
| 471 | } | ||
| 472 | } | 495 | } |
| 473 | 496 | ||
| 474 | return 0; | 497 | return 0; |
| 475 | } | 498 | } |
| 476 | 499 | ||
| 477 | static void bdi_add_to_pending(struct rcu_head *head) | ||
| 478 | { | ||
| 479 | struct backing_dev_info *bdi; | ||
| 480 | |||
| 481 | bdi = container_of(head, struct backing_dev_info, rcu_head); | ||
| 482 | INIT_LIST_HEAD(&bdi->bdi_list); | ||
| 483 | |||
| 484 | spin_lock(&bdi_lock); | ||
| 485 | list_add_tail(&bdi->bdi_list, &bdi_pending_list); | ||
| 486 | spin_unlock(&bdi_lock); | ||
| 487 | |||
| 488 | /* | ||
| 489 | * We are now on the pending list, wake up bdi_forker_task() | ||
| 490 | * to finish the job and add us back to the active bdi_list | ||
| 491 | */ | ||
| 492 | wake_up_process(default_backing_dev_info.wb.task); | ||
| 493 | } | ||
| 494 | |||
| 495 | /* | ||
| 496 | * Add the default flusher task that gets created for any bdi | ||
| 497 | * that has dirty data pending writeout | ||
| 498 | */ | ||
| 499 | void static bdi_add_default_flusher_task(struct backing_dev_info *bdi) | ||
| 500 | { | ||
| 501 | if (!bdi_cap_writeback_dirty(bdi)) | ||
| 502 | return; | ||
| 503 | |||
| 504 | if (WARN_ON(!test_bit(BDI_registered, &bdi->state))) { | ||
| 505 | printk(KERN_ERR "bdi %p/%s is not registered!\n", | ||
| 506 | bdi, bdi->name); | ||
| 507 | return; | ||
| 508 | } | ||
| 509 | |||
| 510 | /* | ||
| 511 | * Check with the helper whether to proceed adding a task. Will only | ||
| 512 | * abort if we two or more simultanous calls to | ||
| 513 | * bdi_add_default_flusher_task() occured, further additions will block | ||
| 514 | * waiting for previous additions to finish. | ||
| 515 | */ | ||
| 516 | if (!test_and_set_bit(BDI_pending, &bdi->state)) { | ||
| 517 | list_del_rcu(&bdi->bdi_list); | ||
| 518 | |||
| 519 | /* | ||
| 520 | * We must wait for the current RCU period to end before | ||
| 521 | * moving to the pending list. So schedule that operation | ||
| 522 | * from an RCU callback. | ||
| 523 | */ | ||
| 524 | call_rcu(&bdi->rcu_head, bdi_add_to_pending); | ||
| 525 | } | ||
| 526 | } | ||
| 527 | |||
| 528 | /* | 500 | /* |
| 529 | * Remove bdi from bdi_list, and ensure that it is no longer visible | 501 | * Remove bdi from bdi_list, and ensure that it is no longer visible |
| 530 | */ | 502 | */ |
| @@ -541,23 +513,16 @@ int bdi_register(struct backing_dev_info *bdi, struct device *parent, | |||
| 541 | const char *fmt, ...) | 513 | const char *fmt, ...) |
| 542 | { | 514 | { |
| 543 | va_list args; | 515 | va_list args; |
| 544 | int ret = 0; | ||
| 545 | struct device *dev; | 516 | struct device *dev; |
| 546 | 517 | ||
| 547 | if (bdi->dev) /* The driver needs to use separate queues per device */ | 518 | if (bdi->dev) /* The driver needs to use separate queues per device */ |
| 548 | goto exit; | 519 | return 0; |
| 549 | 520 | ||
| 550 | va_start(args, fmt); | 521 | va_start(args, fmt); |
| 551 | dev = device_create_vargs(bdi_class, parent, MKDEV(0, 0), bdi, fmt, args); | 522 | dev = device_create_vargs(bdi_class, parent, MKDEV(0, 0), bdi, fmt, args); |
| 552 | va_end(args); | 523 | va_end(args); |
| 553 | if (IS_ERR(dev)) { | 524 | if (IS_ERR(dev)) |
| 554 | ret = PTR_ERR(dev); | 525 | return PTR_ERR(dev); |
| 555 | goto exit; | ||
| 556 | } | ||
| 557 | |||
| 558 | spin_lock_bh(&bdi_lock); | ||
| 559 | list_add_tail_rcu(&bdi->bdi_list, &bdi_list); | ||
| 560 | spin_unlock_bh(&bdi_lock); | ||
| 561 | 526 | ||
| 562 | bdi->dev = dev; | 527 | bdi->dev = dev; |
| 563 | 528 | ||
| @@ -569,21 +534,21 @@ int bdi_register(struct backing_dev_info *bdi, struct device *parent, | |||
| 569 | if (bdi_cap_flush_forker(bdi)) { | 534 | if (bdi_cap_flush_forker(bdi)) { |
| 570 | struct bdi_writeback *wb = &bdi->wb; | 535 | struct bdi_writeback *wb = &bdi->wb; |
| 571 | 536 | ||
| 572 | wb->task = kthread_run(bdi_forker_task, wb, "bdi-%s", | 537 | wb->task = kthread_run(bdi_forker_thread, wb, "bdi-%s", |
| 573 | dev_name(dev)); | 538 | dev_name(dev)); |
| 574 | if (IS_ERR(wb->task)) { | 539 | if (IS_ERR(wb->task)) |
| 575 | wb->task = NULL; | 540 | return PTR_ERR(wb->task); |
| 576 | ret = -ENOMEM; | ||
| 577 | |||
| 578 | bdi_remove_from_list(bdi); | ||
| 579 | goto exit; | ||
| 580 | } | ||
| 581 | } | 541 | } |
| 582 | 542 | ||
| 583 | bdi_debug_register(bdi, dev_name(dev)); | 543 | bdi_debug_register(bdi, dev_name(dev)); |
| 584 | set_bit(BDI_registered, &bdi->state); | 544 | set_bit(BDI_registered, &bdi->state); |
| 585 | exit: | 545 | |
| 586 | return ret; | 546 | spin_lock_bh(&bdi_lock); |
| 547 | list_add_tail_rcu(&bdi->bdi_list, &bdi_list); | ||
| 548 | spin_unlock_bh(&bdi_lock); | ||
| 549 | |||
| 550 | trace_writeback_bdi_register(bdi); | ||
| 551 | return 0; | ||
| 587 | } | 552 | } |
| 588 | EXPORT_SYMBOL(bdi_register); | 553 | EXPORT_SYMBOL(bdi_register); |
| 589 | 554 | ||
| @@ -598,31 +563,29 @@ EXPORT_SYMBOL(bdi_register_dev); | |||
| 598 | */ | 563 | */ |
| 599 | static void bdi_wb_shutdown(struct backing_dev_info *bdi) | 564 | static void bdi_wb_shutdown(struct backing_dev_info *bdi) |
| 600 | { | 565 | { |
| 601 | struct bdi_writeback *wb; | ||
| 602 | |||
| 603 | if (!bdi_cap_writeback_dirty(bdi)) | 566 | if (!bdi_cap_writeback_dirty(bdi)) |
| 604 | return; | 567 | return; |
| 605 | 568 | ||
| 606 | /* | 569 | /* |
| 607 | * If setup is pending, wait for that to complete first | 570 | * Make sure nobody finds us on the bdi_list anymore |
| 608 | */ | 571 | */ |
| 609 | wait_on_bit(&bdi->state, BDI_pending, bdi_sched_wait, | 572 | bdi_remove_from_list(bdi); |
| 610 | TASK_UNINTERRUPTIBLE); | ||
| 611 | 573 | ||
| 612 | /* | 574 | /* |
| 613 | * Make sure nobody finds us on the bdi_list anymore | 575 | * If setup is pending, wait for that to complete first |
| 614 | */ | 576 | */ |
| 615 | bdi_remove_from_list(bdi); | 577 | wait_on_bit(&bdi->state, BDI_pending, bdi_sched_wait, |
| 578 | TASK_UNINTERRUPTIBLE); | ||
| 616 | 579 | ||
| 617 | /* | 580 | /* |
| 618 | * Finally, kill the kernel threads. We don't need to be RCU | 581 | * Finally, kill the kernel thread. We don't need to be RCU |
| 619 | * safe anymore, since the bdi is gone from visibility. Force | 582 | * safe anymore, since the bdi is gone from visibility. Force |
| 620 | * unfreeze of the thread before calling kthread_stop(), otherwise | 583 | * unfreeze of the thread before calling kthread_stop(), otherwise |
| 621 | * it would never exet if it is currently stuck in the refrigerator. | 584 | * it would never exet if it is currently stuck in the refrigerator. |
| 622 | */ | 585 | */ |
| 623 | list_for_each_entry(wb, &bdi->wb_list, list) { | 586 | if (bdi->wb.task) { |
| 624 | thaw_process(wb->task); | 587 | thaw_process(bdi->wb.task); |
| 625 | kthread_stop(wb->task); | 588 | kthread_stop(bdi->wb.task); |
| 626 | } | 589 | } |
| 627 | } | 590 | } |
| 628 | 591 | ||
| @@ -644,7 +607,9 @@ static void bdi_prune_sb(struct backing_dev_info *bdi) | |||
| 644 | void bdi_unregister(struct backing_dev_info *bdi) | 607 | void bdi_unregister(struct backing_dev_info *bdi) |
| 645 | { | 608 | { |
| 646 | if (bdi->dev) { | 609 | if (bdi->dev) { |
| 610 | trace_writeback_bdi_unregister(bdi); | ||
| 647 | bdi_prune_sb(bdi); | 611 | bdi_prune_sb(bdi); |
| 612 | del_timer_sync(&bdi->wb.wakeup_timer); | ||
| 648 | 613 | ||
| 649 | if (!bdi_cap_flush_forker(bdi)) | 614 | if (!bdi_cap_flush_forker(bdi)) |
| 650 | bdi_wb_shutdown(bdi); | 615 | bdi_wb_shutdown(bdi); |
| @@ -655,6 +620,18 @@ void bdi_unregister(struct backing_dev_info *bdi) | |||
| 655 | } | 620 | } |
| 656 | EXPORT_SYMBOL(bdi_unregister); | 621 | EXPORT_SYMBOL(bdi_unregister); |
| 657 | 622 | ||
| 623 | static void bdi_wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi) | ||
| 624 | { | ||
| 625 | memset(wb, 0, sizeof(*wb)); | ||
| 626 | |||
| 627 | wb->bdi = bdi; | ||
| 628 | wb->last_old_flush = jiffies; | ||
| 629 | INIT_LIST_HEAD(&wb->b_dirty); | ||
| 630 | INIT_LIST_HEAD(&wb->b_io); | ||
| 631 | INIT_LIST_HEAD(&wb->b_more_io); | ||
| 632 | setup_timer(&wb->wakeup_timer, wakeup_timer_fn, (unsigned long)bdi); | ||
| 633 | } | ||
| 634 | |||
| 658 | int bdi_init(struct backing_dev_info *bdi) | 635 | int bdi_init(struct backing_dev_info *bdi) |
| 659 | { | 636 | { |
| 660 | int i, err; | 637 | int i, err; |
| @@ -665,9 +642,7 @@ int bdi_init(struct backing_dev_info *bdi) | |||
| 665 | bdi->max_ratio = 100; | 642 | bdi->max_ratio = 100; |
| 666 | bdi->max_prop_frac = PROP_FRAC_BASE; | 643 | bdi->max_prop_frac = PROP_FRAC_BASE; |
| 667 | spin_lock_init(&bdi->wb_lock); | 644 | spin_lock_init(&bdi->wb_lock); |
| 668 | INIT_RCU_HEAD(&bdi->rcu_head); | ||
| 669 | INIT_LIST_HEAD(&bdi->bdi_list); | 645 | INIT_LIST_HEAD(&bdi->bdi_list); |
| 670 | INIT_LIST_HEAD(&bdi->wb_list); | ||
| 671 | INIT_LIST_HEAD(&bdi->work_list); | 646 | INIT_LIST_HEAD(&bdi->work_list); |
| 672 | 647 | ||
| 673 | bdi_wb_init(&bdi->wb, bdi); | 648 | bdi_wb_init(&bdi->wb, bdi); |
diff --git a/mm/filemap.c b/mm/filemap.c index 20e5642e9f9f..3d4df44e4221 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
| @@ -2238,14 +2238,12 @@ static ssize_t generic_perform_write(struct file *file, | |||
| 2238 | 2238 | ||
| 2239 | do { | 2239 | do { |
| 2240 | struct page *page; | 2240 | struct page *page; |
| 2241 | pgoff_t index; /* Pagecache index for current page */ | ||
| 2242 | unsigned long offset; /* Offset into pagecache page */ | 2241 | unsigned long offset; /* Offset into pagecache page */ |
| 2243 | unsigned long bytes; /* Bytes to write to page */ | 2242 | unsigned long bytes; /* Bytes to write to page */ |
| 2244 | size_t copied; /* Bytes copied from user */ | 2243 | size_t copied; /* Bytes copied from user */ |
| 2245 | void *fsdata; | 2244 | void *fsdata; |
| 2246 | 2245 | ||
| 2247 | offset = (pos & (PAGE_CACHE_SIZE - 1)); | 2246 | offset = (pos & (PAGE_CACHE_SIZE - 1)); |
| 2248 | index = pos >> PAGE_CACHE_SHIFT; | ||
| 2249 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, | 2247 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
| 2250 | iov_iter_count(i)); | 2248 | iov_iter_count(i)); |
| 2251 | 2249 | ||
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 54d42b009dbe..b61d2db9f34e 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
| @@ -2349,11 +2349,17 @@ retry_avoidcopy: | |||
| 2349 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); | 2349 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
| 2350 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 2350 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
| 2351 | /* Break COW */ | 2351 | /* Break COW */ |
| 2352 | mmu_notifier_invalidate_range_start(mm, | ||
| 2353 | address & huge_page_mask(h), | ||
| 2354 | (address & huge_page_mask(h)) + huge_page_size(h)); | ||
| 2352 | huge_ptep_clear_flush(vma, address, ptep); | 2355 | huge_ptep_clear_flush(vma, address, ptep); |
| 2353 | set_huge_pte_at(mm, address, ptep, | 2356 | set_huge_pte_at(mm, address, ptep, |
| 2354 | make_huge_pte(vma, new_page, 1)); | 2357 | make_huge_pte(vma, new_page, 1)); |
| 2355 | /* Make the old page be freed below */ | 2358 | /* Make the old page be freed below */ |
| 2356 | new_page = old_page; | 2359 | new_page = old_page; |
| 2360 | mmu_notifier_invalidate_range_end(mm, | ||
| 2361 | address & huge_page_mask(h), | ||
| 2362 | (address & huge_page_mask(h)) + huge_page_size(h)); | ||
| 2357 | } | 2363 | } |
| 2358 | page_cache_release(new_page); | 2364 | page_cache_release(new_page); |
| 2359 | page_cache_release(old_page); | 2365 | page_cache_release(old_page); |
diff --git a/mm/init-mm.c b/mm/init-mm.c index 57aba0da9668..1d29cdfe8ebb 100644 --- a/mm/init-mm.c +++ b/mm/init-mm.c | |||
| @@ -7,6 +7,11 @@ | |||
| 7 | 7 | ||
| 8 | #include <asm/atomic.h> | 8 | #include <asm/atomic.h> |
| 9 | #include <asm/pgtable.h> | 9 | #include <asm/pgtable.h> |
| 10 | #include <asm/mmu.h> | ||
| 11 | |||
| 12 | #ifndef INIT_MM_CONTEXT | ||
| 13 | #define INIT_MM_CONTEXT(name) | ||
| 14 | #endif | ||
| 10 | 15 | ||
| 11 | struct mm_struct init_mm = { | 16 | struct mm_struct init_mm = { |
| 12 | .mm_rb = RB_ROOT, | 17 | .mm_rb = RB_ROOT, |
| @@ -17,4 +22,5 @@ struct mm_struct init_mm = { | |||
| 17 | .page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock), | 22 | .page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock), |
| 18 | .mmlist = LIST_HEAD_INIT(init_mm.mmlist), | 23 | .mmlist = LIST_HEAD_INIT(init_mm.mmlist), |
| 19 | .cpu_vm_mask = CPU_MASK_ALL, | 24 | .cpu_vm_mask = CPU_MASK_ALL, |
| 25 | INIT_MM_CONTEXT(init_mm) | ||
| 20 | }; | 26 | }; |
diff --git a/mm/kmemleak.c b/mm/kmemleak.c index 2c0d032ac898..bd9bc214091b 100644 --- a/mm/kmemleak.c +++ b/mm/kmemleak.c | |||
| @@ -211,6 +211,9 @@ static signed long jiffies_scan_wait; | |||
| 211 | static int kmemleak_stack_scan = 1; | 211 | static int kmemleak_stack_scan = 1; |
| 212 | /* protects the memory scanning, parameters and debug/kmemleak file access */ | 212 | /* protects the memory scanning, parameters and debug/kmemleak file access */ |
| 213 | static DEFINE_MUTEX(scan_mutex); | 213 | static DEFINE_MUTEX(scan_mutex); |
| 214 | /* setting kmemleak=on, will set this var, skipping the disable */ | ||
| 215 | static int kmemleak_skip_disable; | ||
| 216 | |||
| 214 | 217 | ||
| 215 | /* | 218 | /* |
| 216 | * Early object allocation/freeing logging. Kmemleak is initialized after the | 219 | * Early object allocation/freeing logging. Kmemleak is initialized after the |
| @@ -398,7 +401,9 @@ static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) | |||
| 398 | object = prio_tree_entry(node, struct kmemleak_object, | 401 | object = prio_tree_entry(node, struct kmemleak_object, |
| 399 | tree_node); | 402 | tree_node); |
| 400 | if (!alias && object->pointer != ptr) { | 403 | if (!alias && object->pointer != ptr) { |
| 401 | kmemleak_warn("Found object by alias"); | 404 | pr_warning("Found object by alias at 0x%08lx\n", ptr); |
| 405 | dump_stack(); | ||
| 406 | dump_object_info(object); | ||
| 402 | object = NULL; | 407 | object = NULL; |
| 403 | } | 408 | } |
| 404 | } else | 409 | } else |
| @@ -695,7 +700,7 @@ static void paint_ptr(unsigned long ptr, int color) | |||
| 695 | } | 700 | } |
| 696 | 701 | ||
| 697 | /* | 702 | /* |
| 698 | * Make a object permanently as gray-colored so that it can no longer be | 703 | * Mark an object permanently as gray-colored so that it can no longer be |
| 699 | * reported as a leak. This is used in general to mark a false positive. | 704 | * reported as a leak. This is used in general to mark a false positive. |
| 700 | */ | 705 | */ |
| 701 | static void make_gray_object(unsigned long ptr) | 706 | static void make_gray_object(unsigned long ptr) |
| @@ -838,10 +843,19 @@ out: | |||
| 838 | rcu_read_unlock(); | 843 | rcu_read_unlock(); |
| 839 | } | 844 | } |
| 840 | 845 | ||
| 841 | /* | 846 | /** |
| 842 | * Memory allocation function callback. This function is called from the | 847 | * kmemleak_alloc - register a newly allocated object |
| 843 | * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc, | 848 | * @ptr: pointer to beginning of the object |
| 844 | * vmalloc etc.). | 849 | * @size: size of the object |
| 850 | * @min_count: minimum number of references to this object. If during memory | ||
| 851 | * scanning a number of references less than @min_count is found, | ||
| 852 | * the object is reported as a memory leak. If @min_count is 0, | ||
| 853 | * the object is never reported as a leak. If @min_count is -1, | ||
| 854 | * the object is ignored (not scanned and not reported as a leak) | ||
| 855 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | ||
| 856 | * | ||
| 857 | * This function is called from the kernel allocators when a new object | ||
| 858 | * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). | ||
| 845 | */ | 859 | */ |
| 846 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, | 860 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
| 847 | gfp_t gfp) | 861 | gfp_t gfp) |
| @@ -855,9 +869,12 @@ void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, | |||
| 855 | } | 869 | } |
| 856 | EXPORT_SYMBOL_GPL(kmemleak_alloc); | 870 | EXPORT_SYMBOL_GPL(kmemleak_alloc); |
| 857 | 871 | ||
| 858 | /* | 872 | /** |
| 859 | * Memory freeing function callback. This function is called from the kernel | 873 | * kmemleak_free - unregister a previously registered object |
| 860 | * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.). | 874 | * @ptr: pointer to beginning of the object |
| 875 | * | ||
| 876 | * This function is called from the kernel allocators when an object (memory | ||
| 877 | * block) is freed (kmem_cache_free, kfree, vfree etc.). | ||
| 861 | */ | 878 | */ |
| 862 | void __ref kmemleak_free(const void *ptr) | 879 | void __ref kmemleak_free(const void *ptr) |
| 863 | { | 880 | { |
| @@ -870,9 +887,14 @@ void __ref kmemleak_free(const void *ptr) | |||
| 870 | } | 887 | } |
| 871 | EXPORT_SYMBOL_GPL(kmemleak_free); | 888 | EXPORT_SYMBOL_GPL(kmemleak_free); |
| 872 | 889 | ||
| 873 | /* | 890 | /** |
| 874 | * Partial memory freeing function callback. This function is usually called | 891 | * kmemleak_free_part - partially unregister a previously registered object |
| 875 | * from bootmem allocator when (part of) a memory block is freed. | 892 | * @ptr: pointer to the beginning or inside the object. This also |
| 893 | * represents the start of the range to be freed | ||
| 894 | * @size: size to be unregistered | ||
| 895 | * | ||
| 896 | * This function is called when only a part of a memory block is freed | ||
| 897 | * (usually from the bootmem allocator). | ||
| 876 | */ | 898 | */ |
| 877 | void __ref kmemleak_free_part(const void *ptr, size_t size) | 899 | void __ref kmemleak_free_part(const void *ptr, size_t size) |
| 878 | { | 900 | { |
| @@ -885,9 +907,12 @@ void __ref kmemleak_free_part(const void *ptr, size_t size) | |||
| 885 | } | 907 | } |
| 886 | EXPORT_SYMBOL_GPL(kmemleak_free_part); | 908 | EXPORT_SYMBOL_GPL(kmemleak_free_part); |
| 887 | 909 | ||
| 888 | /* | 910 | /** |
| 889 | * Mark an already allocated memory block as a false positive. This will cause | 911 | * kmemleak_not_leak - mark an allocated object as false positive |
| 890 | * the block to no longer be reported as leak and always be scanned. | 912 | * @ptr: pointer to beginning of the object |
| 913 | * | ||
| 914 | * Calling this function on an object will cause the memory block to no longer | ||
| 915 | * be reported as leak and always be scanned. | ||
| 891 | */ | 916 | */ |
| 892 | void __ref kmemleak_not_leak(const void *ptr) | 917 | void __ref kmemleak_not_leak(const void *ptr) |
| 893 | { | 918 | { |
| @@ -900,10 +925,14 @@ void __ref kmemleak_not_leak(const void *ptr) | |||
| 900 | } | 925 | } |
| 901 | EXPORT_SYMBOL(kmemleak_not_leak); | 926 | EXPORT_SYMBOL(kmemleak_not_leak); |
| 902 | 927 | ||
| 903 | /* | 928 | /** |
| 904 | * Ignore a memory block. This is usually done when it is known that the | 929 | * kmemleak_ignore - ignore an allocated object |
| 905 | * corresponding block is not a leak and does not contain any references to | 930 | * @ptr: pointer to beginning of the object |
| 906 | * other allocated memory blocks. | 931 | * |
| 932 | * Calling this function on an object will cause the memory block to be | ||
| 933 | * ignored (not scanned and not reported as a leak). This is usually done when | ||
| 934 | * it is known that the corresponding block is not a leak and does not contain | ||
| 935 | * any references to other allocated memory blocks. | ||
| 907 | */ | 936 | */ |
| 908 | void __ref kmemleak_ignore(const void *ptr) | 937 | void __ref kmemleak_ignore(const void *ptr) |
| 909 | { | 938 | { |
| @@ -916,8 +945,16 @@ void __ref kmemleak_ignore(const void *ptr) | |||
| 916 | } | 945 | } |
| 917 | EXPORT_SYMBOL(kmemleak_ignore); | 946 | EXPORT_SYMBOL(kmemleak_ignore); |
| 918 | 947 | ||
| 919 | /* | 948 | /** |
| 920 | * Limit the range to be scanned in an allocated memory block. | 949 | * kmemleak_scan_area - limit the range to be scanned in an allocated object |
| 950 | * @ptr: pointer to beginning or inside the object. This also | ||
| 951 | * represents the start of the scan area | ||
| 952 | * @size: size of the scan area | ||
| 953 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | ||
| 954 | * | ||
| 955 | * This function is used when it is known that only certain parts of an object | ||
| 956 | * contain references to other objects. Kmemleak will only scan these areas | ||
| 957 | * reducing the number false negatives. | ||
| 921 | */ | 958 | */ |
| 922 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) | 959 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
| 923 | { | 960 | { |
| @@ -930,8 +967,14 @@ void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) | |||
| 930 | } | 967 | } |
| 931 | EXPORT_SYMBOL(kmemleak_scan_area); | 968 | EXPORT_SYMBOL(kmemleak_scan_area); |
| 932 | 969 | ||
| 933 | /* | 970 | /** |
| 934 | * Inform kmemleak not to scan the given memory block. | 971 | * kmemleak_no_scan - do not scan an allocated object |
| 972 | * @ptr: pointer to beginning of the object | ||
| 973 | * | ||
| 974 | * This function notifies kmemleak not to scan the given memory block. Useful | ||
| 975 | * in situations where it is known that the given object does not contain any | ||
| 976 | * references to other objects. Kmemleak will not scan such objects reducing | ||
| 977 | * the number of false negatives. | ||
| 935 | */ | 978 | */ |
| 936 | void __ref kmemleak_no_scan(const void *ptr) | 979 | void __ref kmemleak_no_scan(const void *ptr) |
| 937 | { | 980 | { |
| @@ -1602,7 +1645,9 @@ static int kmemleak_boot_config(char *str) | |||
| 1602 | return -EINVAL; | 1645 | return -EINVAL; |
| 1603 | if (strcmp(str, "off") == 0) | 1646 | if (strcmp(str, "off") == 0) |
| 1604 | kmemleak_disable(); | 1647 | kmemleak_disable(); |
| 1605 | else if (strcmp(str, "on") != 0) | 1648 | else if (strcmp(str, "on") == 0) |
| 1649 | kmemleak_skip_disable = 1; | ||
| 1650 | else | ||
| 1606 | return -EINVAL; | 1651 | return -EINVAL; |
| 1607 | return 0; | 1652 | return 0; |
| 1608 | } | 1653 | } |
| @@ -1616,6 +1661,13 @@ void __init kmemleak_init(void) | |||
| 1616 | int i; | 1661 | int i; |
| 1617 | unsigned long flags; | 1662 | unsigned long flags; |
| 1618 | 1663 | ||
| 1664 | #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF | ||
| 1665 | if (!kmemleak_skip_disable) { | ||
| 1666 | kmemleak_disable(); | ||
| 1667 | return; | ||
| 1668 | } | ||
| 1669 | #endif | ||
| 1670 | |||
| 1619 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); | 1671 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
| 1620 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); | 1672 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); |
| 1621 | 1673 | ||
| @@ -33,6 +33,7 @@ | |||
| 33 | #include <linux/mmu_notifier.h> | 33 | #include <linux/mmu_notifier.h> |
| 34 | #include <linux/swap.h> | 34 | #include <linux/swap.h> |
| 35 | #include <linux/ksm.h> | 35 | #include <linux/ksm.h> |
| 36 | #include <linux/hash.h> | ||
| 36 | 37 | ||
| 37 | #include <asm/tlbflush.h> | 38 | #include <asm/tlbflush.h> |
| 38 | #include "internal.h" | 39 | #include "internal.h" |
| @@ -153,8 +154,9 @@ struct rmap_item { | |||
| 153 | static struct rb_root root_stable_tree = RB_ROOT; | 154 | static struct rb_root root_stable_tree = RB_ROOT; |
| 154 | static struct rb_root root_unstable_tree = RB_ROOT; | 155 | static struct rb_root root_unstable_tree = RB_ROOT; |
| 155 | 156 | ||
| 156 | #define MM_SLOTS_HASH_HEADS 1024 | 157 | #define MM_SLOTS_HASH_SHIFT 10 |
| 157 | static struct hlist_head *mm_slots_hash; | 158 | #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT) |
| 159 | static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS]; | ||
| 158 | 160 | ||
| 159 | static struct mm_slot ksm_mm_head = { | 161 | static struct mm_slot ksm_mm_head = { |
| 160 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | 162 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), |
| @@ -269,28 +271,13 @@ static inline void free_mm_slot(struct mm_slot *mm_slot) | |||
| 269 | kmem_cache_free(mm_slot_cache, mm_slot); | 271 | kmem_cache_free(mm_slot_cache, mm_slot); |
| 270 | } | 272 | } |
| 271 | 273 | ||
| 272 | static int __init mm_slots_hash_init(void) | ||
| 273 | { | ||
| 274 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), | ||
| 275 | GFP_KERNEL); | ||
| 276 | if (!mm_slots_hash) | ||
| 277 | return -ENOMEM; | ||
| 278 | return 0; | ||
| 279 | } | ||
| 280 | |||
| 281 | static void __init mm_slots_hash_free(void) | ||
| 282 | { | ||
| 283 | kfree(mm_slots_hash); | ||
| 284 | } | ||
| 285 | |||
| 286 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 274 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) |
| 287 | { | 275 | { |
| 288 | struct mm_slot *mm_slot; | 276 | struct mm_slot *mm_slot; |
| 289 | struct hlist_head *bucket; | 277 | struct hlist_head *bucket; |
| 290 | struct hlist_node *node; | 278 | struct hlist_node *node; |
| 291 | 279 | ||
| 292 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | 280 | bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; |
| 293 | % MM_SLOTS_HASH_HEADS]; | ||
| 294 | hlist_for_each_entry(mm_slot, node, bucket, link) { | 281 | hlist_for_each_entry(mm_slot, node, bucket, link) { |
| 295 | if (mm == mm_slot->mm) | 282 | if (mm == mm_slot->mm) |
| 296 | return mm_slot; | 283 | return mm_slot; |
| @@ -303,8 +290,7 @@ static void insert_to_mm_slots_hash(struct mm_struct *mm, | |||
| 303 | { | 290 | { |
| 304 | struct hlist_head *bucket; | 291 | struct hlist_head *bucket; |
| 305 | 292 | ||
| 306 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | 293 | bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; |
| 307 | % MM_SLOTS_HASH_HEADS]; | ||
| 308 | mm_slot->mm = mm; | 294 | mm_slot->mm = mm; |
| 309 | hlist_add_head(&mm_slot->link, bucket); | 295 | hlist_add_head(&mm_slot->link, bucket); |
| 310 | } | 296 | } |
| @@ -318,19 +304,14 @@ static void hold_anon_vma(struct rmap_item *rmap_item, | |||
| 318 | struct anon_vma *anon_vma) | 304 | struct anon_vma *anon_vma) |
| 319 | { | 305 | { |
| 320 | rmap_item->anon_vma = anon_vma; | 306 | rmap_item->anon_vma = anon_vma; |
| 321 | atomic_inc(&anon_vma->external_refcount); | 307 | get_anon_vma(anon_vma); |
| 322 | } | 308 | } |
| 323 | 309 | ||
| 324 | static void drop_anon_vma(struct rmap_item *rmap_item) | 310 | static void ksm_drop_anon_vma(struct rmap_item *rmap_item) |
| 325 | { | 311 | { |
| 326 | struct anon_vma *anon_vma = rmap_item->anon_vma; | 312 | struct anon_vma *anon_vma = rmap_item->anon_vma; |
| 327 | 313 | ||
| 328 | if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) { | 314 | drop_anon_vma(anon_vma); |
| 329 | int empty = list_empty(&anon_vma->head); | ||
| 330 | spin_unlock(&anon_vma->lock); | ||
| 331 | if (empty) | ||
| 332 | anon_vma_free(anon_vma); | ||
| 333 | } | ||
| 334 | } | 315 | } |
| 335 | 316 | ||
| 336 | /* | 317 | /* |
| @@ -415,7 +396,7 @@ static void break_cow(struct rmap_item *rmap_item) | |||
| 415 | * It is not an accident that whenever we want to break COW | 396 | * It is not an accident that whenever we want to break COW |
| 416 | * to undo, we also need to drop a reference to the anon_vma. | 397 | * to undo, we also need to drop a reference to the anon_vma. |
| 417 | */ | 398 | */ |
| 418 | drop_anon_vma(rmap_item); | 399 | ksm_drop_anon_vma(rmap_item); |
| 419 | 400 | ||
| 420 | down_read(&mm->mmap_sem); | 401 | down_read(&mm->mmap_sem); |
| 421 | if (ksm_test_exit(mm)) | 402 | if (ksm_test_exit(mm)) |
| @@ -470,7 +451,7 @@ static void remove_node_from_stable_tree(struct stable_node *stable_node) | |||
| 470 | ksm_pages_sharing--; | 451 | ksm_pages_sharing--; |
| 471 | else | 452 | else |
| 472 | ksm_pages_shared--; | 453 | ksm_pages_shared--; |
| 473 | drop_anon_vma(rmap_item); | 454 | ksm_drop_anon_vma(rmap_item); |
| 474 | rmap_item->address &= PAGE_MASK; | 455 | rmap_item->address &= PAGE_MASK; |
| 475 | cond_resched(); | 456 | cond_resched(); |
| 476 | } | 457 | } |
| @@ -558,7 +539,7 @@ static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | |||
| 558 | else | 539 | else |
| 559 | ksm_pages_shared--; | 540 | ksm_pages_shared--; |
| 560 | 541 | ||
| 561 | drop_anon_vma(rmap_item); | 542 | ksm_drop_anon_vma(rmap_item); |
| 562 | rmap_item->address &= PAGE_MASK; | 543 | rmap_item->address &= PAGE_MASK; |
| 563 | 544 | ||
| 564 | } else if (rmap_item->address & UNSTABLE_FLAG) { | 545 | } else if (rmap_item->address & UNSTABLE_FLAG) { |
| @@ -1566,7 +1547,7 @@ again: | |||
| 1566 | struct anon_vma_chain *vmac; | 1547 | struct anon_vma_chain *vmac; |
| 1567 | struct vm_area_struct *vma; | 1548 | struct vm_area_struct *vma; |
| 1568 | 1549 | ||
| 1569 | spin_lock(&anon_vma->lock); | 1550 | anon_vma_lock(anon_vma); |
| 1570 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { | 1551 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { |
| 1571 | vma = vmac->vma; | 1552 | vma = vmac->vma; |
| 1572 | if (rmap_item->address < vma->vm_start || | 1553 | if (rmap_item->address < vma->vm_start || |
| @@ -1589,7 +1570,7 @@ again: | |||
| 1589 | if (!search_new_forks || !mapcount) | 1570 | if (!search_new_forks || !mapcount) |
| 1590 | break; | 1571 | break; |
| 1591 | } | 1572 | } |
| 1592 | spin_unlock(&anon_vma->lock); | 1573 | anon_vma_unlock(anon_vma); |
| 1593 | if (!mapcount) | 1574 | if (!mapcount) |
| 1594 | goto out; | 1575 | goto out; |
| 1595 | } | 1576 | } |
| @@ -1619,7 +1600,7 @@ again: | |||
| 1619 | struct anon_vma_chain *vmac; | 1600 | struct anon_vma_chain *vmac; |
| 1620 | struct vm_area_struct *vma; | 1601 | struct vm_area_struct *vma; |
| 1621 | 1602 | ||
| 1622 | spin_lock(&anon_vma->lock); | 1603 | anon_vma_lock(anon_vma); |
| 1623 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { | 1604 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { |
| 1624 | vma = vmac->vma; | 1605 | vma = vmac->vma; |
| 1625 | if (rmap_item->address < vma->vm_start || | 1606 | if (rmap_item->address < vma->vm_start || |
| @@ -1637,11 +1618,11 @@ again: | |||
| 1637 | ret = try_to_unmap_one(page, vma, | 1618 | ret = try_to_unmap_one(page, vma, |
| 1638 | rmap_item->address, flags); | 1619 | rmap_item->address, flags); |
| 1639 | if (ret != SWAP_AGAIN || !page_mapped(page)) { | 1620 | if (ret != SWAP_AGAIN || !page_mapped(page)) { |
| 1640 | spin_unlock(&anon_vma->lock); | 1621 | anon_vma_unlock(anon_vma); |
| 1641 | goto out; | 1622 | goto out; |
| 1642 | } | 1623 | } |
| 1643 | } | 1624 | } |
| 1644 | spin_unlock(&anon_vma->lock); | 1625 | anon_vma_unlock(anon_vma); |
| 1645 | } | 1626 | } |
| 1646 | if (!search_new_forks++) | 1627 | if (!search_new_forks++) |
| 1647 | goto again; | 1628 | goto again; |
| @@ -1671,7 +1652,7 @@ again: | |||
| 1671 | struct anon_vma_chain *vmac; | 1652 | struct anon_vma_chain *vmac; |
| 1672 | struct vm_area_struct *vma; | 1653 | struct vm_area_struct *vma; |
| 1673 | 1654 | ||
| 1674 | spin_lock(&anon_vma->lock); | 1655 | anon_vma_lock(anon_vma); |
| 1675 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { | 1656 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { |
| 1676 | vma = vmac->vma; | 1657 | vma = vmac->vma; |
| 1677 | if (rmap_item->address < vma->vm_start || | 1658 | if (rmap_item->address < vma->vm_start || |
| @@ -1688,11 +1669,11 @@ again: | |||
| 1688 | 1669 | ||
| 1689 | ret = rmap_one(page, vma, rmap_item->address, arg); | 1670 | ret = rmap_one(page, vma, rmap_item->address, arg); |
| 1690 | if (ret != SWAP_AGAIN) { | 1671 | if (ret != SWAP_AGAIN) { |
| 1691 | spin_unlock(&anon_vma->lock); | 1672 | anon_vma_unlock(anon_vma); |
| 1692 | goto out; | 1673 | goto out; |
| 1693 | } | 1674 | } |
| 1694 | } | 1675 | } |
| 1695 | spin_unlock(&anon_vma->lock); | 1676 | anon_vma_unlock(anon_vma); |
| 1696 | } | 1677 | } |
| 1697 | if (!search_new_forks++) | 1678 | if (!search_new_forks++) |
| 1698 | goto again; | 1679 | goto again; |
| @@ -1943,15 +1924,11 @@ static int __init ksm_init(void) | |||
| 1943 | if (err) | 1924 | if (err) |
| 1944 | goto out; | 1925 | goto out; |
| 1945 | 1926 | ||
| 1946 | err = mm_slots_hash_init(); | ||
| 1947 | if (err) | ||
| 1948 | goto out_free1; | ||
| 1949 | |||
| 1950 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | 1927 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); |
| 1951 | if (IS_ERR(ksm_thread)) { | 1928 | if (IS_ERR(ksm_thread)) { |
| 1952 | printk(KERN_ERR "ksm: creating kthread failed\n"); | 1929 | printk(KERN_ERR "ksm: creating kthread failed\n"); |
| 1953 | err = PTR_ERR(ksm_thread); | 1930 | err = PTR_ERR(ksm_thread); |
| 1954 | goto out_free2; | 1931 | goto out_free; |
| 1955 | } | 1932 | } |
| 1956 | 1933 | ||
| 1957 | #ifdef CONFIG_SYSFS | 1934 | #ifdef CONFIG_SYSFS |
| @@ -1959,7 +1936,7 @@ static int __init ksm_init(void) | |||
| 1959 | if (err) { | 1936 | if (err) { |
| 1960 | printk(KERN_ERR "ksm: register sysfs failed\n"); | 1937 | printk(KERN_ERR "ksm: register sysfs failed\n"); |
| 1961 | kthread_stop(ksm_thread); | 1938 | kthread_stop(ksm_thread); |
| 1962 | goto out_free2; | 1939 | goto out_free; |
| 1963 | } | 1940 | } |
| 1964 | #else | 1941 | #else |
| 1965 | ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ | 1942 | ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ |
| @@ -1975,9 +1952,7 @@ static int __init ksm_init(void) | |||
| 1975 | #endif | 1952 | #endif |
| 1976 | return 0; | 1953 | return 0; |
| 1977 | 1954 | ||
| 1978 | out_free2: | 1955 | out_free: |
| 1979 | mm_slots_hash_free(); | ||
| 1980 | out_free1: | ||
| 1981 | ksm_slab_free(); | 1956 | ksm_slab_free(); |
| 1982 | out: | 1957 | out: |
| 1983 | return err; | 1958 | return err; |
diff --git a/mm/memblock.c b/mm/memblock.c index 3024eb30fc27..43840b305ecb 100644 --- a/mm/memblock.c +++ b/mm/memblock.c | |||
| @@ -504,7 +504,7 @@ int __init memblock_is_reserved(u64 addr) | |||
| 504 | 504 | ||
| 505 | int memblock_is_region_reserved(u64 base, u64 size) | 505 | int memblock_is_region_reserved(u64 base, u64 size) |
| 506 | { | 506 | { |
| 507 | return memblock_overlaps_region(&memblock.reserved, base, size); | 507 | return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; |
| 508 | } | 508 | } |
| 509 | 509 | ||
| 510 | /* | 510 | /* |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 20a8193a7af8..3eed583895a6 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
| @@ -47,10 +47,13 @@ | |||
| 47 | #include <linux/mm_inline.h> | 47 | #include <linux/mm_inline.h> |
| 48 | #include <linux/page_cgroup.h> | 48 | #include <linux/page_cgroup.h> |
| 49 | #include <linux/cpu.h> | 49 | #include <linux/cpu.h> |
| 50 | #include <linux/oom.h> | ||
| 50 | #include "internal.h" | 51 | #include "internal.h" |
| 51 | 52 | ||
| 52 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
| 53 | 54 | ||
| 55 | #include <trace/events/vmscan.h> | ||
| 56 | |||
| 54 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 57 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
| 55 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | 58 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
| 56 | struct mem_cgroup *root_mem_cgroup __read_mostly; | 59 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
| @@ -211,8 +214,6 @@ struct mem_cgroup { | |||
| 211 | */ | 214 | */ |
| 212 | spinlock_t reclaim_param_lock; | 215 | spinlock_t reclaim_param_lock; |
| 213 | 216 | ||
| 214 | int prev_priority; /* for recording reclaim priority */ | ||
| 215 | |||
| 216 | /* | 217 | /* |
| 217 | * While reclaiming in a hierarchy, we cache the last child we | 218 | * While reclaiming in a hierarchy, we cache the last child we |
| 218 | * reclaimed from. | 219 | * reclaimed from. |
| @@ -268,6 +269,7 @@ enum move_type { | |||
| 268 | 269 | ||
| 269 | /* "mc" and its members are protected by cgroup_mutex */ | 270 | /* "mc" and its members are protected by cgroup_mutex */ |
| 270 | static struct move_charge_struct { | 271 | static struct move_charge_struct { |
| 272 | spinlock_t lock; /* for from, to, moving_task */ | ||
| 271 | struct mem_cgroup *from; | 273 | struct mem_cgroup *from; |
| 272 | struct mem_cgroup *to; | 274 | struct mem_cgroup *to; |
| 273 | unsigned long precharge; | 275 | unsigned long precharge; |
| @@ -276,6 +278,7 @@ static struct move_charge_struct { | |||
| 276 | struct task_struct *moving_task; /* a task moving charges */ | 278 | struct task_struct *moving_task; /* a task moving charges */ |
| 277 | wait_queue_head_t waitq; /* a waitq for other context */ | 279 | wait_queue_head_t waitq; /* a waitq for other context */ |
| 278 | } mc = { | 280 | } mc = { |
| 281 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | ||
| 279 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 282 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
| 280 | }; | 283 | }; |
| 281 | 284 | ||
| @@ -836,12 +839,13 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
| 836 | { | 839 | { |
| 837 | int ret; | 840 | int ret; |
| 838 | struct mem_cgroup *curr = NULL; | 841 | struct mem_cgroup *curr = NULL; |
| 842 | struct task_struct *p; | ||
| 839 | 843 | ||
| 840 | task_lock(task); | 844 | p = find_lock_task_mm(task); |
| 841 | rcu_read_lock(); | 845 | if (!p) |
| 842 | curr = try_get_mem_cgroup_from_mm(task->mm); | 846 | return 0; |
| 843 | rcu_read_unlock(); | 847 | curr = try_get_mem_cgroup_from_mm(p->mm); |
| 844 | task_unlock(task); | 848 | task_unlock(p); |
| 845 | if (!curr) | 849 | if (!curr) |
| 846 | return 0; | 850 | return 0; |
| 847 | /* | 851 | /* |
| @@ -858,35 +862,6 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
| 858 | return ret; | 862 | return ret; |
| 859 | } | 863 | } |
| 860 | 864 | ||
| 861 | /* | ||
| 862 | * prev_priority control...this will be used in memory reclaim path. | ||
| 863 | */ | ||
| 864 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | ||
| 865 | { | ||
| 866 | int prev_priority; | ||
| 867 | |||
| 868 | spin_lock(&mem->reclaim_param_lock); | ||
| 869 | prev_priority = mem->prev_priority; | ||
| 870 | spin_unlock(&mem->reclaim_param_lock); | ||
| 871 | |||
| 872 | return prev_priority; | ||
| 873 | } | ||
| 874 | |||
| 875 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | ||
| 876 | { | ||
| 877 | spin_lock(&mem->reclaim_param_lock); | ||
| 878 | if (priority < mem->prev_priority) | ||
| 879 | mem->prev_priority = priority; | ||
| 880 | spin_unlock(&mem->reclaim_param_lock); | ||
| 881 | } | ||
| 882 | |||
| 883 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | ||
| 884 | { | ||
| 885 | spin_lock(&mem->reclaim_param_lock); | ||
| 886 | mem->prev_priority = priority; | ||
| 887 | spin_unlock(&mem->reclaim_param_lock); | ||
| 888 | } | ||
| 889 | |||
| 890 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) | 865 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
| 891 | { | 866 | { |
| 892 | unsigned long active; | 867 | unsigned long active; |
| @@ -944,7 +919,7 @@ unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | |||
| 944 | struct zone *zone, | 919 | struct zone *zone, |
| 945 | enum lru_list lru) | 920 | enum lru_list lru) |
| 946 | { | 921 | { |
| 947 | int nid = zone->zone_pgdat->node_id; | 922 | int nid = zone_to_nid(zone); |
| 948 | int zid = zone_idx(zone); | 923 | int zid = zone_idx(zone); |
| 949 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 924 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
| 950 | 925 | ||
| @@ -954,7 +929,7 @@ unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | |||
| 954 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, | 929 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
| 955 | struct zone *zone) | 930 | struct zone *zone) |
| 956 | { | 931 | { |
| 957 | int nid = zone->zone_pgdat->node_id; | 932 | int nid = zone_to_nid(zone); |
| 958 | int zid = zone_idx(zone); | 933 | int zid = zone_idx(zone); |
| 959 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 934 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
| 960 | 935 | ||
| @@ -999,7 +974,7 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
| 999 | LIST_HEAD(pc_list); | 974 | LIST_HEAD(pc_list); |
| 1000 | struct list_head *src; | 975 | struct list_head *src; |
| 1001 | struct page_cgroup *pc, *tmp; | 976 | struct page_cgroup *pc, *tmp; |
| 1002 | int nid = z->zone_pgdat->node_id; | 977 | int nid = zone_to_nid(z); |
| 1003 | int zid = zone_idx(z); | 978 | int zid = zone_idx(z); |
| 1004 | struct mem_cgroup_per_zone *mz; | 979 | struct mem_cgroup_per_zone *mz; |
| 1005 | int lru = LRU_FILE * file + active; | 980 | int lru = LRU_FILE * file + active; |
| @@ -1038,6 +1013,10 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
| 1038 | } | 1013 | } |
| 1039 | 1014 | ||
| 1040 | *scanned = scan; | 1015 | *scanned = scan; |
| 1016 | |||
| 1017 | trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, | ||
| 1018 | 0, 0, 0, mode); | ||
| 1019 | |||
| 1041 | return nr_taken; | 1020 | return nr_taken; |
| 1042 | } | 1021 | } |
| 1043 | 1022 | ||
| @@ -1072,6 +1051,47 @@ static unsigned int get_swappiness(struct mem_cgroup *memcg) | |||
| 1072 | return swappiness; | 1051 | return swappiness; |
| 1073 | } | 1052 | } |
| 1074 | 1053 | ||
| 1054 | /* A routine for testing mem is not under move_account */ | ||
| 1055 | |||
| 1056 | static bool mem_cgroup_under_move(struct mem_cgroup *mem) | ||
| 1057 | { | ||
| 1058 | struct mem_cgroup *from; | ||
| 1059 | struct mem_cgroup *to; | ||
| 1060 | bool ret = false; | ||
| 1061 | /* | ||
| 1062 | * Unlike task_move routines, we access mc.to, mc.from not under | ||
| 1063 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | ||
| 1064 | */ | ||
| 1065 | spin_lock(&mc.lock); | ||
| 1066 | from = mc.from; | ||
| 1067 | to = mc.to; | ||
| 1068 | if (!from) | ||
| 1069 | goto unlock; | ||
| 1070 | if (from == mem || to == mem | ||
| 1071 | || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) | ||
| 1072 | || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) | ||
| 1073 | ret = true; | ||
| 1074 | unlock: | ||
| 1075 | spin_unlock(&mc.lock); | ||
| 1076 | return ret; | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) | ||
| 1080 | { | ||
| 1081 | if (mc.moving_task && current != mc.moving_task) { | ||
| 1082 | if (mem_cgroup_under_move(mem)) { | ||
| 1083 | DEFINE_WAIT(wait); | ||
| 1084 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | ||
| 1085 | /* moving charge context might have finished. */ | ||
| 1086 | if (mc.moving_task) | ||
| 1087 | schedule(); | ||
| 1088 | finish_wait(&mc.waitq, &wait); | ||
| 1089 | return true; | ||
| 1090 | } | ||
| 1091 | } | ||
| 1092 | return false; | ||
| 1093 | } | ||
| 1094 | |||
| 1075 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) | 1095 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) |
| 1076 | { | 1096 | { |
| 1077 | int *val = data; | 1097 | int *val = data; |
| @@ -1158,6 +1178,24 @@ static int mem_cgroup_count_children(struct mem_cgroup *mem) | |||
| 1158 | } | 1178 | } |
| 1159 | 1179 | ||
| 1160 | /* | 1180 | /* |
| 1181 | * Return the memory (and swap, if configured) limit for a memcg. | ||
| 1182 | */ | ||
| 1183 | u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) | ||
| 1184 | { | ||
| 1185 | u64 limit; | ||
| 1186 | u64 memsw; | ||
| 1187 | |||
| 1188 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT) + | ||
| 1189 | total_swap_pages; | ||
| 1190 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
| 1191 | /* | ||
| 1192 | * If memsw is finite and limits the amount of swap space available | ||
| 1193 | * to this memcg, return that limit. | ||
| 1194 | */ | ||
| 1195 | return min(limit, memsw); | ||
| 1196 | } | ||
| 1197 | |||
| 1198 | /* | ||
| 1161 | * Visit the first child (need not be the first child as per the ordering | 1199 | * Visit the first child (need not be the first child as per the ordering |
| 1162 | * of the cgroup list, since we track last_scanned_child) of @mem and use | 1200 | * of the cgroup list, since we track last_scanned_child) of @mem and use |
| 1163 | * that to reclaim free pages from. | 1201 | * that to reclaim free pages from. |
| @@ -1262,8 +1300,7 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | |||
| 1262 | /* we use swappiness of local cgroup */ | 1300 | /* we use swappiness of local cgroup */ |
| 1263 | if (check_soft) | 1301 | if (check_soft) |
| 1264 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, | 1302 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, |
| 1265 | noswap, get_swappiness(victim), zone, | 1303 | noswap, get_swappiness(victim), zone); |
| 1266 | zone->zone_pgdat->node_id); | ||
| 1267 | else | 1304 | else |
| 1268 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, | 1305 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, |
| 1269 | noswap, get_swappiness(victim)); | 1306 | noswap, get_swappiness(victim)); |
| @@ -1370,7 +1407,7 @@ static void memcg_wakeup_oom(struct mem_cgroup *mem) | |||
| 1370 | 1407 | ||
| 1371 | static void memcg_oom_recover(struct mem_cgroup *mem) | 1408 | static void memcg_oom_recover(struct mem_cgroup *mem) |
| 1372 | { | 1409 | { |
| 1373 | if (atomic_read(&mem->oom_lock)) | 1410 | if (mem && atomic_read(&mem->oom_lock)) |
| 1374 | memcg_wakeup_oom(mem); | 1411 | memcg_wakeup_oom(mem); |
| 1375 | } | 1412 | } |
| 1376 | 1413 | ||
| @@ -1582,16 +1619,83 @@ static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb, | |||
| 1582 | return NOTIFY_OK; | 1619 | return NOTIFY_OK; |
| 1583 | } | 1620 | } |
| 1584 | 1621 | ||
| 1622 | |||
| 1623 | /* See __mem_cgroup_try_charge() for details */ | ||
| 1624 | enum { | ||
| 1625 | CHARGE_OK, /* success */ | ||
| 1626 | CHARGE_RETRY, /* need to retry but retry is not bad */ | ||
| 1627 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | ||
| 1628 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | ||
| 1629 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | ||
| 1630 | }; | ||
| 1631 | |||
| 1632 | static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, | ||
| 1633 | int csize, bool oom_check) | ||
| 1634 | { | ||
| 1635 | struct mem_cgroup *mem_over_limit; | ||
| 1636 | struct res_counter *fail_res; | ||
| 1637 | unsigned long flags = 0; | ||
| 1638 | int ret; | ||
| 1639 | |||
| 1640 | ret = res_counter_charge(&mem->res, csize, &fail_res); | ||
| 1641 | |||
| 1642 | if (likely(!ret)) { | ||
| 1643 | if (!do_swap_account) | ||
| 1644 | return CHARGE_OK; | ||
| 1645 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | ||
| 1646 | if (likely(!ret)) | ||
| 1647 | return CHARGE_OK; | ||
| 1648 | |||
| 1649 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); | ||
| 1650 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | ||
| 1651 | } else | ||
| 1652 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | ||
| 1653 | |||
| 1654 | if (csize > PAGE_SIZE) /* change csize and retry */ | ||
| 1655 | return CHARGE_RETRY; | ||
| 1656 | |||
| 1657 | if (!(gfp_mask & __GFP_WAIT)) | ||
| 1658 | return CHARGE_WOULDBLOCK; | ||
| 1659 | |||
| 1660 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | ||
| 1661 | gfp_mask, flags); | ||
| 1662 | /* | ||
| 1663 | * try_to_free_mem_cgroup_pages() might not give us a full | ||
| 1664 | * picture of reclaim. Some pages are reclaimed and might be | ||
| 1665 | * moved to swap cache or just unmapped from the cgroup. | ||
| 1666 | * Check the limit again to see if the reclaim reduced the | ||
| 1667 | * current usage of the cgroup before giving up | ||
| 1668 | */ | ||
| 1669 | if (ret || mem_cgroup_check_under_limit(mem_over_limit)) | ||
| 1670 | return CHARGE_RETRY; | ||
| 1671 | |||
| 1672 | /* | ||
| 1673 | * At task move, charge accounts can be doubly counted. So, it's | ||
| 1674 | * better to wait until the end of task_move if something is going on. | ||
| 1675 | */ | ||
| 1676 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | ||
| 1677 | return CHARGE_RETRY; | ||
| 1678 | |||
| 1679 | /* If we don't need to call oom-killer at el, return immediately */ | ||
| 1680 | if (!oom_check) | ||
| 1681 | return CHARGE_NOMEM; | ||
| 1682 | /* check OOM */ | ||
| 1683 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) | ||
| 1684 | return CHARGE_OOM_DIE; | ||
| 1685 | |||
| 1686 | return CHARGE_RETRY; | ||
| 1687 | } | ||
| 1688 | |||
| 1585 | /* | 1689 | /* |
| 1586 | * Unlike exported interface, "oom" parameter is added. if oom==true, | 1690 | * Unlike exported interface, "oom" parameter is added. if oom==true, |
| 1587 | * oom-killer can be invoked. | 1691 | * oom-killer can be invoked. |
| 1588 | */ | 1692 | */ |
| 1589 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | 1693 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
| 1590 | gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) | 1694 | gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) |
| 1591 | { | 1695 | { |
| 1592 | struct mem_cgroup *mem, *mem_over_limit; | 1696 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
| 1593 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 1697 | struct mem_cgroup *mem = NULL; |
| 1594 | struct res_counter *fail_res; | 1698 | int ret; |
| 1595 | int csize = CHARGE_SIZE; | 1699 | int csize = CHARGE_SIZE; |
| 1596 | 1700 | ||
| 1597 | /* | 1701 | /* |
| @@ -1609,126 +1713,108 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, | |||
| 1609 | * thread group leader migrates. It's possible that mm is not | 1713 | * thread group leader migrates. It's possible that mm is not |
| 1610 | * set, if so charge the init_mm (happens for pagecache usage). | 1714 | * set, if so charge the init_mm (happens for pagecache usage). |
| 1611 | */ | 1715 | */ |
| 1612 | mem = *memcg; | 1716 | if (!*memcg && !mm) |
| 1613 | if (likely(!mem)) { | 1717 | goto bypass; |
| 1614 | mem = try_get_mem_cgroup_from_mm(mm); | 1718 | again: |
| 1615 | *memcg = mem; | 1719 | if (*memcg) { /* css should be a valid one */ |
| 1616 | } else { | 1720 | mem = *memcg; |
| 1617 | css_get(&mem->css); | 1721 | VM_BUG_ON(css_is_removed(&mem->css)); |
| 1618 | } | 1722 | if (mem_cgroup_is_root(mem)) |
| 1619 | if (unlikely(!mem)) | 1723 | goto done; |
| 1620 | return 0; | ||
| 1621 | |||
| 1622 | VM_BUG_ON(css_is_removed(&mem->css)); | ||
| 1623 | if (mem_cgroup_is_root(mem)) | ||
| 1624 | goto done; | ||
| 1625 | |||
| 1626 | while (1) { | ||
| 1627 | int ret = 0; | ||
| 1628 | unsigned long flags = 0; | ||
| 1629 | |||
| 1630 | if (consume_stock(mem)) | 1724 | if (consume_stock(mem)) |
| 1631 | goto done; | 1725 | goto done; |
| 1726 | css_get(&mem->css); | ||
| 1727 | } else { | ||
| 1728 | struct task_struct *p; | ||
| 1632 | 1729 | ||
| 1633 | ret = res_counter_charge(&mem->res, csize, &fail_res); | 1730 | rcu_read_lock(); |
| 1634 | if (likely(!ret)) { | 1731 | p = rcu_dereference(mm->owner); |
| 1635 | if (!do_swap_account) | 1732 | VM_BUG_ON(!p); |
| 1636 | break; | ||
| 1637 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | ||
| 1638 | if (likely(!ret)) | ||
| 1639 | break; | ||
| 1640 | /* mem+swap counter fails */ | ||
| 1641 | res_counter_uncharge(&mem->res, csize); | ||
| 1642 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | ||
| 1643 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
| 1644 | memsw); | ||
| 1645 | } else | ||
| 1646 | /* mem counter fails */ | ||
| 1647 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
| 1648 | res); | ||
| 1649 | |||
| 1650 | /* reduce request size and retry */ | ||
| 1651 | if (csize > PAGE_SIZE) { | ||
| 1652 | csize = PAGE_SIZE; | ||
| 1653 | continue; | ||
| 1654 | } | ||
| 1655 | if (!(gfp_mask & __GFP_WAIT)) | ||
| 1656 | goto nomem; | ||
| 1657 | |||
| 1658 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | ||
| 1659 | gfp_mask, flags); | ||
| 1660 | if (ret) | ||
| 1661 | continue; | ||
| 1662 | |||
| 1663 | /* | 1733 | /* |
| 1664 | * try_to_free_mem_cgroup_pages() might not give us a full | 1734 | * because we don't have task_lock(), "p" can exit while |
| 1665 | * picture of reclaim. Some pages are reclaimed and might be | 1735 | * we're here. In that case, "mem" can point to root |
| 1666 | * moved to swap cache or just unmapped from the cgroup. | 1736 | * cgroup but never be NULL. (and task_struct itself is freed |
| 1667 | * Check the limit again to see if the reclaim reduced the | 1737 | * by RCU, cgroup itself is RCU safe.) Then, we have small |
| 1668 | * current usage of the cgroup before giving up | 1738 | * risk here to get wrong cgroup. But such kind of mis-account |
| 1669 | * | 1739 | * by race always happens because we don't have cgroup_mutex(). |
| 1740 | * It's overkill and we allow that small race, here. | ||
| 1670 | */ | 1741 | */ |
| 1671 | if (mem_cgroup_check_under_limit(mem_over_limit)) | 1742 | mem = mem_cgroup_from_task(p); |
| 1672 | continue; | 1743 | VM_BUG_ON(!mem); |
| 1673 | 1744 | if (mem_cgroup_is_root(mem)) { | |
| 1674 | /* try to avoid oom while someone is moving charge */ | 1745 | rcu_read_unlock(); |
| 1675 | if (mc.moving_task && current != mc.moving_task) { | 1746 | goto done; |
| 1676 | struct mem_cgroup *from, *to; | 1747 | } |
| 1677 | bool do_continue = false; | 1748 | if (consume_stock(mem)) { |
| 1678 | /* | 1749 | /* |
| 1679 | * There is a small race that "from" or "to" can be | 1750 | * It seems dagerous to access memcg without css_get(). |
| 1680 | * freed by rmdir, so we use css_tryget(). | 1751 | * But considering how consume_stok works, it's not |
| 1752 | * necessary. If consume_stock success, some charges | ||
| 1753 | * from this memcg are cached on this cpu. So, we | ||
| 1754 | * don't need to call css_get()/css_tryget() before | ||
| 1755 | * calling consume_stock(). | ||
| 1681 | */ | 1756 | */ |
| 1682 | from = mc.from; | 1757 | rcu_read_unlock(); |
| 1683 | to = mc.to; | 1758 | goto done; |
| 1684 | if (from && css_tryget(&from->css)) { | 1759 | } |
| 1685 | if (mem_over_limit->use_hierarchy) | 1760 | /* after here, we may be blocked. we need to get refcnt */ |
| 1686 | do_continue = css_is_ancestor( | 1761 | if (!css_tryget(&mem->css)) { |
| 1687 | &from->css, | 1762 | rcu_read_unlock(); |
| 1688 | &mem_over_limit->css); | 1763 | goto again; |
| 1689 | else | 1764 | } |
| 1690 | do_continue = (from == mem_over_limit); | 1765 | rcu_read_unlock(); |
| 1691 | css_put(&from->css); | 1766 | } |
| 1692 | } | 1767 | |
| 1693 | if (!do_continue && to && css_tryget(&to->css)) { | 1768 | do { |
| 1694 | if (mem_over_limit->use_hierarchy) | 1769 | bool oom_check; |
| 1695 | do_continue = css_is_ancestor( | 1770 | |
| 1696 | &to->css, | 1771 | /* If killed, bypass charge */ |
| 1697 | &mem_over_limit->css); | 1772 | if (fatal_signal_pending(current)) { |
| 1698 | else | 1773 | css_put(&mem->css); |
| 1699 | do_continue = (to == mem_over_limit); | 1774 | goto bypass; |
| 1700 | css_put(&to->css); | 1775 | } |
| 1701 | } | 1776 | |
| 1702 | if (do_continue) { | 1777 | oom_check = false; |
| 1703 | DEFINE_WAIT(wait); | 1778 | if (oom && !nr_oom_retries) { |
| 1704 | prepare_to_wait(&mc.waitq, &wait, | 1779 | oom_check = true; |
| 1705 | TASK_INTERRUPTIBLE); | 1780 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
| 1706 | /* moving charge context might have finished. */ | ||
| 1707 | if (mc.moving_task) | ||
| 1708 | schedule(); | ||
| 1709 | finish_wait(&mc.waitq, &wait); | ||
| 1710 | continue; | ||
| 1711 | } | ||
| 1712 | } | 1781 | } |
| 1713 | 1782 | ||
| 1714 | if (!nr_retries--) { | 1783 | ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); |
| 1715 | if (!oom) | 1784 | |
| 1785 | switch (ret) { | ||
| 1786 | case CHARGE_OK: | ||
| 1787 | break; | ||
| 1788 | case CHARGE_RETRY: /* not in OOM situation but retry */ | ||
| 1789 | csize = PAGE_SIZE; | ||
| 1790 | css_put(&mem->css); | ||
| 1791 | mem = NULL; | ||
| 1792 | goto again; | ||
| 1793 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ | ||
| 1794 | css_put(&mem->css); | ||
| 1795 | goto nomem; | ||
| 1796 | case CHARGE_NOMEM: /* OOM routine works */ | ||
| 1797 | if (!oom) { | ||
| 1798 | css_put(&mem->css); | ||
| 1716 | goto nomem; | 1799 | goto nomem; |
| 1717 | if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) { | ||
| 1718 | nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
| 1719 | continue; | ||
| 1720 | } | 1800 | } |
| 1721 | /* When we reach here, current task is dying .*/ | 1801 | /* If oom, we never return -ENOMEM */ |
| 1802 | nr_oom_retries--; | ||
| 1803 | break; | ||
| 1804 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | ||
| 1722 | css_put(&mem->css); | 1805 | css_put(&mem->css); |
| 1723 | goto bypass; | 1806 | goto bypass; |
| 1724 | } | 1807 | } |
| 1725 | } | 1808 | } while (ret != CHARGE_OK); |
| 1809 | |||
| 1726 | if (csize > PAGE_SIZE) | 1810 | if (csize > PAGE_SIZE) |
| 1727 | refill_stock(mem, csize - PAGE_SIZE); | 1811 | refill_stock(mem, csize - PAGE_SIZE); |
| 1812 | css_put(&mem->css); | ||
| 1728 | done: | 1813 | done: |
| 1814 | *memcg = mem; | ||
| 1729 | return 0; | 1815 | return 0; |
| 1730 | nomem: | 1816 | nomem: |
| 1731 | css_put(&mem->css); | 1817 | *memcg = NULL; |
| 1732 | return -ENOMEM; | 1818 | return -ENOMEM; |
| 1733 | bypass: | 1819 | bypass: |
| 1734 | *memcg = NULL; | 1820 | *memcg = NULL; |
| @@ -1747,11 +1833,7 @@ static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, | |||
| 1747 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); | 1833 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); |
| 1748 | if (do_swap_account) | 1834 | if (do_swap_account) |
| 1749 | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); | 1835 | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); |
| 1750 | VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags)); | ||
| 1751 | WARN_ON_ONCE(count > INT_MAX); | ||
| 1752 | __css_put(&mem->css, (int)count); | ||
| 1753 | } | 1836 | } |
| 1754 | /* we don't need css_put for root */ | ||
| 1755 | } | 1837 | } |
| 1756 | 1838 | ||
| 1757 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) | 1839 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) |
| @@ -1979,10 +2061,9 @@ out: | |||
| 1979 | * < 0 if the cgroup is over its limit | 2061 | * < 0 if the cgroup is over its limit |
| 1980 | */ | 2062 | */ |
| 1981 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 2063 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
| 1982 | gfp_t gfp_mask, enum charge_type ctype, | 2064 | gfp_t gfp_mask, enum charge_type ctype) |
| 1983 | struct mem_cgroup *memcg) | ||
| 1984 | { | 2065 | { |
| 1985 | struct mem_cgroup *mem; | 2066 | struct mem_cgroup *mem = NULL; |
| 1986 | struct page_cgroup *pc; | 2067 | struct page_cgroup *pc; |
| 1987 | int ret; | 2068 | int ret; |
| 1988 | 2069 | ||
| @@ -1992,7 +2073,6 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
| 1992 | return 0; | 2073 | return 0; |
| 1993 | prefetchw(pc); | 2074 | prefetchw(pc); |
| 1994 | 2075 | ||
| 1995 | mem = memcg; | ||
| 1996 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); | 2076 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); |
| 1997 | if (ret || !mem) | 2077 | if (ret || !mem) |
| 1998 | return ret; | 2078 | return ret; |
| @@ -2020,7 +2100,7 @@ int mem_cgroup_newpage_charge(struct page *page, | |||
| 2020 | if (unlikely(!mm)) | 2100 | if (unlikely(!mm)) |
| 2021 | mm = &init_mm; | 2101 | mm = &init_mm; |
| 2022 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 2102 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
| 2023 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); | 2103 | MEM_CGROUP_CHARGE_TYPE_MAPPED); |
| 2024 | } | 2104 | } |
| 2025 | 2105 | ||
| 2026 | static void | 2106 | static void |
| @@ -2030,7 +2110,6 @@ __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | |||
| 2030 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 2110 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
| 2031 | gfp_t gfp_mask) | 2111 | gfp_t gfp_mask) |
| 2032 | { | 2112 | { |
| 2033 | struct mem_cgroup *mem = NULL; | ||
| 2034 | int ret; | 2113 | int ret; |
| 2035 | 2114 | ||
| 2036 | if (mem_cgroup_disabled()) | 2115 | if (mem_cgroup_disabled()) |
| @@ -2051,7 +2130,6 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
| 2051 | if (!(gfp_mask & __GFP_WAIT)) { | 2130 | if (!(gfp_mask & __GFP_WAIT)) { |
| 2052 | struct page_cgroup *pc; | 2131 | struct page_cgroup *pc; |
| 2053 | 2132 | ||
| 2054 | |||
| 2055 | pc = lookup_page_cgroup(page); | 2133 | pc = lookup_page_cgroup(page); |
| 2056 | if (!pc) | 2134 | if (!pc) |
| 2057 | return 0; | 2135 | return 0; |
| @@ -2063,22 +2141,24 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
| 2063 | unlock_page_cgroup(pc); | 2141 | unlock_page_cgroup(pc); |
| 2064 | } | 2142 | } |
| 2065 | 2143 | ||
| 2066 | if (unlikely(!mm && !mem)) | 2144 | if (unlikely(!mm)) |
| 2067 | mm = &init_mm; | 2145 | mm = &init_mm; |
| 2068 | 2146 | ||
| 2069 | if (page_is_file_cache(page)) | 2147 | if (page_is_file_cache(page)) |
| 2070 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 2148 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
| 2071 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 2149 | MEM_CGROUP_CHARGE_TYPE_CACHE); |
| 2072 | 2150 | ||
| 2073 | /* shmem */ | 2151 | /* shmem */ |
| 2074 | if (PageSwapCache(page)) { | 2152 | if (PageSwapCache(page)) { |
| 2153 | struct mem_cgroup *mem = NULL; | ||
| 2154 | |||
| 2075 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | 2155 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); |
| 2076 | if (!ret) | 2156 | if (!ret) |
| 2077 | __mem_cgroup_commit_charge_swapin(page, mem, | 2157 | __mem_cgroup_commit_charge_swapin(page, mem, |
| 2078 | MEM_CGROUP_CHARGE_TYPE_SHMEM); | 2158 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
| 2079 | } else | 2159 | } else |
| 2080 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | 2160 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, |
| 2081 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); | 2161 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
| 2082 | 2162 | ||
| 2083 | return ret; | 2163 | return ret; |
| 2084 | } | 2164 | } |
| @@ -2114,7 +2194,6 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | |||
| 2114 | goto charge_cur_mm; | 2194 | goto charge_cur_mm; |
| 2115 | *ptr = mem; | 2195 | *ptr = mem; |
| 2116 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); | 2196 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); |
| 2117 | /* drop extra refcnt from tryget */ | ||
| 2118 | css_put(&mem->css); | 2197 | css_put(&mem->css); |
| 2119 | return ret; | 2198 | return ret; |
| 2120 | charge_cur_mm: | 2199 | charge_cur_mm: |
| @@ -2245,7 +2324,6 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
| 2245 | { | 2324 | { |
| 2246 | struct page_cgroup *pc; | 2325 | struct page_cgroup *pc; |
| 2247 | struct mem_cgroup *mem = NULL; | 2326 | struct mem_cgroup *mem = NULL; |
| 2248 | struct mem_cgroup_per_zone *mz; | ||
| 2249 | 2327 | ||
| 2250 | if (mem_cgroup_disabled()) | 2328 | if (mem_cgroup_disabled()) |
| 2251 | return NULL; | 2329 | return NULL; |
| @@ -2285,10 +2363,6 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
| 2285 | break; | 2363 | break; |
| 2286 | } | 2364 | } |
| 2287 | 2365 | ||
| 2288 | if (!mem_cgroup_is_root(mem)) | ||
| 2289 | __do_uncharge(mem, ctype); | ||
| 2290 | if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | ||
| 2291 | mem_cgroup_swap_statistics(mem, true); | ||
| 2292 | mem_cgroup_charge_statistics(mem, pc, false); | 2366 | mem_cgroup_charge_statistics(mem, pc, false); |
| 2293 | 2367 | ||
| 2294 | ClearPageCgroupUsed(pc); | 2368 | ClearPageCgroupUsed(pc); |
| @@ -2299,13 +2373,18 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
| 2299 | * special functions. | 2373 | * special functions. |
| 2300 | */ | 2374 | */ |
| 2301 | 2375 | ||
| 2302 | mz = page_cgroup_zoneinfo(pc); | ||
| 2303 | unlock_page_cgroup(pc); | 2376 | unlock_page_cgroup(pc); |
| 2304 | 2377 | /* | |
| 2378 | * even after unlock, we have mem->res.usage here and this memcg | ||
| 2379 | * will never be freed. | ||
| 2380 | */ | ||
| 2305 | memcg_check_events(mem, page); | 2381 | memcg_check_events(mem, page); |
| 2306 | /* at swapout, this memcg will be accessed to record to swap */ | 2382 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
| 2307 | if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 2383 | mem_cgroup_swap_statistics(mem, true); |
| 2308 | css_put(&mem->css); | 2384 | mem_cgroup_get(mem); |
| 2385 | } | ||
| 2386 | if (!mem_cgroup_is_root(mem)) | ||
| 2387 | __do_uncharge(mem, ctype); | ||
| 2309 | 2388 | ||
| 2310 | return mem; | 2389 | return mem; |
| 2311 | 2390 | ||
| @@ -2392,13 +2471,12 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |||
| 2392 | 2471 | ||
| 2393 | memcg = __mem_cgroup_uncharge_common(page, ctype); | 2472 | memcg = __mem_cgroup_uncharge_common(page, ctype); |
| 2394 | 2473 | ||
| 2395 | /* record memcg information */ | 2474 | /* |
| 2396 | if (do_swap_account && swapout && memcg) { | 2475 | * record memcg information, if swapout && memcg != NULL, |
| 2476 | * mem_cgroup_get() was called in uncharge(). | ||
| 2477 | */ | ||
| 2478 | if (do_swap_account && swapout && memcg) | ||
| 2397 | swap_cgroup_record(ent, css_id(&memcg->css)); | 2479 | swap_cgroup_record(ent, css_id(&memcg->css)); |
| 2398 | mem_cgroup_get(memcg); | ||
| 2399 | } | ||
| 2400 | if (swapout && memcg) | ||
| 2401 | css_put(&memcg->css); | ||
| 2402 | } | 2480 | } |
| 2403 | #endif | 2481 | #endif |
| 2404 | 2482 | ||
| @@ -2476,7 +2554,6 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry, | |||
| 2476 | */ | 2554 | */ |
| 2477 | if (!mem_cgroup_is_root(to)) | 2555 | if (!mem_cgroup_is_root(to)) |
| 2478 | res_counter_uncharge(&to->res, PAGE_SIZE); | 2556 | res_counter_uncharge(&to->res, PAGE_SIZE); |
| 2479 | css_put(&to->css); | ||
| 2480 | } | 2557 | } |
| 2481 | return 0; | 2558 | return 0; |
| 2482 | } | 2559 | } |
| @@ -2611,11 +2688,8 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem, | |||
| 2611 | ClearPageCgroupMigration(pc); | 2688 | ClearPageCgroupMigration(pc); |
| 2612 | unlock_page_cgroup(pc); | 2689 | unlock_page_cgroup(pc); |
| 2613 | 2690 | ||
| 2614 | if (unused != oldpage) | ||
| 2615 | pc = lookup_page_cgroup(unused); | ||
| 2616 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); | 2691 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); |
| 2617 | 2692 | ||
| 2618 | pc = lookup_page_cgroup(used); | ||
| 2619 | /* | 2693 | /* |
| 2620 | * If a page is a file cache, radix-tree replacement is very atomic | 2694 | * If a page is a file cache, radix-tree replacement is very atomic |
| 2621 | * and we can skip this check. When it was an Anon page, its mapcount | 2695 | * and we can skip this check. When it was an Anon page, its mapcount |
| @@ -2791,8 +2865,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | |||
| 2791 | } | 2865 | } |
| 2792 | 2866 | ||
| 2793 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 2867 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
| 2794 | gfp_t gfp_mask, int nid, | 2868 | gfp_t gfp_mask) |
| 2795 | int zid) | ||
| 2796 | { | 2869 | { |
| 2797 | unsigned long nr_reclaimed = 0; | 2870 | unsigned long nr_reclaimed = 0; |
| 2798 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 2871 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; |
| @@ -2804,7 +2877,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | |||
| 2804 | if (order > 0) | 2877 | if (order > 0) |
| 2805 | return 0; | 2878 | return 0; |
| 2806 | 2879 | ||
| 2807 | mctz = soft_limit_tree_node_zone(nid, zid); | 2880 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
| 2808 | /* | 2881 | /* |
| 2809 | * This loop can run a while, specially if mem_cgroup's continuously | 2882 | * This loop can run a while, specially if mem_cgroup's continuously |
| 2810 | * keep exceeding their soft limit and putting the system under | 2883 | * keep exceeding their soft limit and putting the system under |
| @@ -3759,8 +3832,6 @@ static int mem_cgroup_oom_control_read(struct cgroup *cgrp, | |||
| 3759 | return 0; | 3832 | return 0; |
| 3760 | } | 3833 | } |
| 3761 | 3834 | ||
| 3762 | /* | ||
| 3763 | */ | ||
| 3764 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, | 3835 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
| 3765 | struct cftype *cft, u64 val) | 3836 | struct cftype *cft, u64 val) |
| 3766 | { | 3837 | { |
| @@ -4180,9 +4251,6 @@ static int mem_cgroup_do_precharge(unsigned long count) | |||
| 4180 | goto one_by_one; | 4251 | goto one_by_one; |
| 4181 | } | 4252 | } |
| 4182 | mc.precharge += count; | 4253 | mc.precharge += count; |
| 4183 | VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags)); | ||
| 4184 | WARN_ON_ONCE(count > INT_MAX); | ||
| 4185 | __css_get(&mem->css, (int)count); | ||
| 4186 | return ret; | 4254 | return ret; |
| 4187 | } | 4255 | } |
| 4188 | one_by_one: | 4256 | one_by_one: |
| @@ -4400,11 +4468,13 @@ static int mem_cgroup_precharge_mc(struct mm_struct *mm) | |||
| 4400 | 4468 | ||
| 4401 | static void mem_cgroup_clear_mc(void) | 4469 | static void mem_cgroup_clear_mc(void) |
| 4402 | { | 4470 | { |
| 4471 | struct mem_cgroup *from = mc.from; | ||
| 4472 | struct mem_cgroup *to = mc.to; | ||
| 4473 | |||
| 4403 | /* we must uncharge all the leftover precharges from mc.to */ | 4474 | /* we must uncharge all the leftover precharges from mc.to */ |
| 4404 | if (mc.precharge) { | 4475 | if (mc.precharge) { |
| 4405 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | 4476 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); |
| 4406 | mc.precharge = 0; | 4477 | mc.precharge = 0; |
| 4407 | memcg_oom_recover(mc.to); | ||
| 4408 | } | 4478 | } |
| 4409 | /* | 4479 | /* |
| 4410 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 4480 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so |
| @@ -4413,11 +4483,9 @@ static void mem_cgroup_clear_mc(void) | |||
| 4413 | if (mc.moved_charge) { | 4483 | if (mc.moved_charge) { |
| 4414 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | 4484 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); |
| 4415 | mc.moved_charge = 0; | 4485 | mc.moved_charge = 0; |
| 4416 | memcg_oom_recover(mc.from); | ||
| 4417 | } | 4486 | } |
| 4418 | /* we must fixup refcnts and charges */ | 4487 | /* we must fixup refcnts and charges */ |
| 4419 | if (mc.moved_swap) { | 4488 | if (mc.moved_swap) { |
| 4420 | WARN_ON_ONCE(mc.moved_swap > INT_MAX); | ||
| 4421 | /* uncharge swap account from the old cgroup */ | 4489 | /* uncharge swap account from the old cgroup */ |
| 4422 | if (!mem_cgroup_is_root(mc.from)) | 4490 | if (!mem_cgroup_is_root(mc.from)) |
| 4423 | res_counter_uncharge(&mc.from->memsw, | 4491 | res_counter_uncharge(&mc.from->memsw, |
| @@ -4431,16 +4499,18 @@ static void mem_cgroup_clear_mc(void) | |||
| 4431 | */ | 4499 | */ |
| 4432 | res_counter_uncharge(&mc.to->res, | 4500 | res_counter_uncharge(&mc.to->res, |
| 4433 | PAGE_SIZE * mc.moved_swap); | 4501 | PAGE_SIZE * mc.moved_swap); |
| 4434 | VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags)); | ||
| 4435 | __css_put(&mc.to->css, mc.moved_swap); | ||
| 4436 | } | 4502 | } |
| 4437 | /* we've already done mem_cgroup_get(mc.to) */ | 4503 | /* we've already done mem_cgroup_get(mc.to) */ |
| 4438 | 4504 | ||
| 4439 | mc.moved_swap = 0; | 4505 | mc.moved_swap = 0; |
| 4440 | } | 4506 | } |
| 4507 | spin_lock(&mc.lock); | ||
| 4441 | mc.from = NULL; | 4508 | mc.from = NULL; |
| 4442 | mc.to = NULL; | 4509 | mc.to = NULL; |
| 4443 | mc.moving_task = NULL; | 4510 | mc.moving_task = NULL; |
| 4511 | spin_unlock(&mc.lock); | ||
| 4512 | memcg_oom_recover(from); | ||
| 4513 | memcg_oom_recover(to); | ||
| 4444 | wake_up_all(&mc.waitq); | 4514 | wake_up_all(&mc.waitq); |
| 4445 | } | 4515 | } |
| 4446 | 4516 | ||
| @@ -4469,12 +4539,14 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | |||
| 4469 | VM_BUG_ON(mc.moved_charge); | 4539 | VM_BUG_ON(mc.moved_charge); |
| 4470 | VM_BUG_ON(mc.moved_swap); | 4540 | VM_BUG_ON(mc.moved_swap); |
| 4471 | VM_BUG_ON(mc.moving_task); | 4541 | VM_BUG_ON(mc.moving_task); |
| 4542 | spin_lock(&mc.lock); | ||
| 4472 | mc.from = from; | 4543 | mc.from = from; |
| 4473 | mc.to = mem; | 4544 | mc.to = mem; |
| 4474 | mc.precharge = 0; | 4545 | mc.precharge = 0; |
| 4475 | mc.moved_charge = 0; | 4546 | mc.moved_charge = 0; |
| 4476 | mc.moved_swap = 0; | 4547 | mc.moved_swap = 0; |
| 4477 | mc.moving_task = current; | 4548 | mc.moving_task = current; |
| 4549 | spin_unlock(&mc.lock); | ||
| 4478 | 4550 | ||
| 4479 | ret = mem_cgroup_precharge_mc(mm); | 4551 | ret = mem_cgroup_precharge_mc(mm); |
| 4480 | if (ret) | 4552 | if (ret) |
diff --git a/mm/memory.c b/mm/memory.c index bde42c6d3633..858829d06a92 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
| @@ -307,7 +307,6 @@ void free_pgd_range(struct mmu_gather *tlb, | |||
| 307 | { | 307 | { |
| 308 | pgd_t *pgd; | 308 | pgd_t *pgd; |
| 309 | unsigned long next; | 309 | unsigned long next; |
| 310 | unsigned long start; | ||
| 311 | 310 | ||
| 312 | /* | 311 | /* |
| 313 | * The next few lines have given us lots of grief... | 312 | * The next few lines have given us lots of grief... |
| @@ -351,7 +350,6 @@ void free_pgd_range(struct mmu_gather *tlb, | |||
| 351 | if (addr > end - 1) | 350 | if (addr > end - 1) |
| 352 | return; | 351 | return; |
| 353 | 352 | ||
| 354 | start = addr; | ||
| 355 | pgd = pgd_offset(tlb->mm, addr); | 353 | pgd = pgd_offset(tlb->mm, addr); |
| 356 | do { | 354 | do { |
| 357 | next = pgd_addr_end(addr, end); | 355 | next = pgd_addr_end(addr, end); |
| @@ -2008,11 +2006,10 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |||
| 2008 | { | 2006 | { |
| 2009 | pgd_t *pgd; | 2007 | pgd_t *pgd; |
| 2010 | unsigned long next; | 2008 | unsigned long next; |
| 2011 | unsigned long start = addr, end = addr + size; | 2009 | unsigned long end = addr + size; |
| 2012 | int err; | 2010 | int err; |
| 2013 | 2011 | ||
| 2014 | BUG_ON(addr >= end); | 2012 | BUG_ON(addr >= end); |
| 2015 | mmu_notifier_invalidate_range_start(mm, start, end); | ||
| 2016 | pgd = pgd_offset(mm, addr); | 2013 | pgd = pgd_offset(mm, addr); |
| 2017 | do { | 2014 | do { |
| 2018 | next = pgd_addr_end(addr, end); | 2015 | next = pgd_addr_end(addr, end); |
| @@ -2020,7 +2017,7 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |||
| 2020 | if (err) | 2017 | if (err) |
| 2021 | break; | 2018 | break; |
| 2022 | } while (pgd++, addr = next, addr != end); | 2019 | } while (pgd++, addr = next, addr != end); |
| 2023 | mmu_notifier_invalidate_range_end(mm, start, end); | 2020 | |
| 2024 | return err; | 2021 | return err; |
| 2025 | } | 2022 | } |
| 2026 | EXPORT_SYMBOL_GPL(apply_to_page_range); | 2023 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
| @@ -2630,6 +2627,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
| 2630 | swp_entry_t entry; | 2627 | swp_entry_t entry; |
| 2631 | pte_t pte; | 2628 | pte_t pte; |
| 2632 | struct mem_cgroup *ptr = NULL; | 2629 | struct mem_cgroup *ptr = NULL; |
| 2630 | int exclusive = 0; | ||
| 2633 | int ret = 0; | 2631 | int ret = 0; |
| 2634 | 2632 | ||
| 2635 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 2633 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
| @@ -2724,10 +2722,12 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
| 2724 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { | 2722 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { |
| 2725 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 2723 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
| 2726 | flags &= ~FAULT_FLAG_WRITE; | 2724 | flags &= ~FAULT_FLAG_WRITE; |
| 2725 | ret |= VM_FAULT_WRITE; | ||
| 2726 | exclusive = 1; | ||
| 2727 | } | 2727 | } |
| 2728 | flush_icache_page(vma, page); | 2728 | flush_icache_page(vma, page); |
| 2729 | set_pte_at(mm, address, page_table, pte); | 2729 | set_pte_at(mm, address, page_table, pte); |
| 2730 | page_add_anon_rmap(page, vma, address); | 2730 | do_page_add_anon_rmap(page, vma, address, exclusive); |
| 2731 | /* It's better to call commit-charge after rmap is established */ | 2731 | /* It's better to call commit-charge after rmap is established */ |
| 2732 | mem_cgroup_commit_charge_swapin(page, ptr); | 2732 | mem_cgroup_commit_charge_swapin(page, ptr); |
| 2733 | 2733 | ||
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 5bc0a96beb51..f969da5dd8a2 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
| @@ -1275,33 +1275,42 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | |||
| 1275 | const unsigned long __user *, new_nodes) | 1275 | const unsigned long __user *, new_nodes) |
| 1276 | { | 1276 | { |
| 1277 | const struct cred *cred = current_cred(), *tcred; | 1277 | const struct cred *cred = current_cred(), *tcred; |
| 1278 | struct mm_struct *mm; | 1278 | struct mm_struct *mm = NULL; |
| 1279 | struct task_struct *task; | 1279 | struct task_struct *task; |
| 1280 | nodemask_t old; | ||
| 1281 | nodemask_t new; | ||
| 1282 | nodemask_t task_nodes; | 1280 | nodemask_t task_nodes; |
| 1283 | int err; | 1281 | int err; |
| 1282 | nodemask_t *old; | ||
| 1283 | nodemask_t *new; | ||
| 1284 | NODEMASK_SCRATCH(scratch); | ||
| 1285 | |||
| 1286 | if (!scratch) | ||
| 1287 | return -ENOMEM; | ||
| 1288 | |||
| 1289 | old = &scratch->mask1; | ||
| 1290 | new = &scratch->mask2; | ||
| 1284 | 1291 | ||
| 1285 | err = get_nodes(&old, old_nodes, maxnode); | 1292 | err = get_nodes(old, old_nodes, maxnode); |
| 1286 | if (err) | 1293 | if (err) |
| 1287 | return err; | 1294 | goto out; |
| 1288 | 1295 | ||
| 1289 | err = get_nodes(&new, new_nodes, maxnode); | 1296 | err = get_nodes(new, new_nodes, maxnode); |
| 1290 | if (err) | 1297 | if (err) |
| 1291 | return err; | 1298 | goto out; |
| 1292 | 1299 | ||
| 1293 | /* Find the mm_struct */ | 1300 | /* Find the mm_struct */ |
| 1294 | read_lock(&tasklist_lock); | 1301 | read_lock(&tasklist_lock); |
| 1295 | task = pid ? find_task_by_vpid(pid) : current; | 1302 | task = pid ? find_task_by_vpid(pid) : current; |
| 1296 | if (!task) { | 1303 | if (!task) { |
| 1297 | read_unlock(&tasklist_lock); | 1304 | read_unlock(&tasklist_lock); |
| 1298 | return -ESRCH; | 1305 | err = -ESRCH; |
| 1306 | goto out; | ||
| 1299 | } | 1307 | } |
| 1300 | mm = get_task_mm(task); | 1308 | mm = get_task_mm(task); |
| 1301 | read_unlock(&tasklist_lock); | 1309 | read_unlock(&tasklist_lock); |
| 1302 | 1310 | ||
| 1311 | err = -EINVAL; | ||
| 1303 | if (!mm) | 1312 | if (!mm) |
| 1304 | return -EINVAL; | 1313 | goto out; |
| 1305 | 1314 | ||
| 1306 | /* | 1315 | /* |
| 1307 | * Check if this process has the right to modify the specified | 1316 | * Check if this process has the right to modify the specified |
| @@ -1322,12 +1331,12 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | |||
| 1322 | 1331 | ||
| 1323 | task_nodes = cpuset_mems_allowed(task); | 1332 | task_nodes = cpuset_mems_allowed(task); |
| 1324 | /* Is the user allowed to access the target nodes? */ | 1333 | /* Is the user allowed to access the target nodes? */ |
| 1325 | if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { | 1334 | if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { |
| 1326 | err = -EPERM; | 1335 | err = -EPERM; |
| 1327 | goto out; | 1336 | goto out; |
| 1328 | } | 1337 | } |
| 1329 | 1338 | ||
| 1330 | if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) { | 1339 | if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) { |
| 1331 | err = -EINVAL; | 1340 | err = -EINVAL; |
| 1332 | goto out; | 1341 | goto out; |
| 1333 | } | 1342 | } |
| @@ -1336,10 +1345,13 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | |||
| 1336 | if (err) | 1345 | if (err) |
| 1337 | goto out; | 1346 | goto out; |
| 1338 | 1347 | ||
| 1339 | err = do_migrate_pages(mm, &old, &new, | 1348 | err = do_migrate_pages(mm, old, new, |
| 1340 | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); | 1349 | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); |
| 1341 | out: | 1350 | out: |
| 1342 | mmput(mm); | 1351 | if (mm) |
| 1352 | mmput(mm); | ||
| 1353 | NODEMASK_SCRATCH_FREE(scratch); | ||
| 1354 | |||
| 1343 | return err; | 1355 | return err; |
| 1344 | } | 1356 | } |
| 1345 | 1357 | ||
| @@ -1712,6 +1724,50 @@ bool init_nodemask_of_mempolicy(nodemask_t *mask) | |||
| 1712 | } | 1724 | } |
| 1713 | #endif | 1725 | #endif |
| 1714 | 1726 | ||
| 1727 | /* | ||
| 1728 | * mempolicy_nodemask_intersects | ||
| 1729 | * | ||
| 1730 | * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default | ||
| 1731 | * policy. Otherwise, check for intersection between mask and the policy | ||
| 1732 | * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' | ||
| 1733 | * policy, always return true since it may allocate elsewhere on fallback. | ||
| 1734 | * | ||
| 1735 | * Takes task_lock(tsk) to prevent freeing of its mempolicy. | ||
| 1736 | */ | ||
| 1737 | bool mempolicy_nodemask_intersects(struct task_struct *tsk, | ||
| 1738 | const nodemask_t *mask) | ||
| 1739 | { | ||
| 1740 | struct mempolicy *mempolicy; | ||
| 1741 | bool ret = true; | ||
| 1742 | |||
| 1743 | if (!mask) | ||
| 1744 | return ret; | ||
| 1745 | task_lock(tsk); | ||
| 1746 | mempolicy = tsk->mempolicy; | ||
| 1747 | if (!mempolicy) | ||
| 1748 | goto out; | ||
| 1749 | |||
| 1750 | switch (mempolicy->mode) { | ||
| 1751 | case MPOL_PREFERRED: | ||
| 1752 | /* | ||
| 1753 | * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to | ||
| 1754 | * allocate from, they may fallback to other nodes when oom. | ||
| 1755 | * Thus, it's possible for tsk to have allocated memory from | ||
| 1756 | * nodes in mask. | ||
| 1757 | */ | ||
| 1758 | break; | ||
| 1759 | case MPOL_BIND: | ||
| 1760 | case MPOL_INTERLEAVE: | ||
| 1761 | ret = nodes_intersects(mempolicy->v.nodes, *mask); | ||
| 1762 | break; | ||
| 1763 | default: | ||
| 1764 | BUG(); | ||
| 1765 | } | ||
| 1766 | out: | ||
| 1767 | task_unlock(tsk); | ||
| 1768 | return ret; | ||
| 1769 | } | ||
| 1770 | |||
| 1715 | /* Allocate a page in interleaved policy. | 1771 | /* Allocate a page in interleaved policy. |
| 1716 | Own path because it needs to do special accounting. */ | 1772 | Own path because it needs to do special accounting. */ |
| 1717 | static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, | 1773 | static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, |
diff --git a/mm/migrate.c b/mm/migrate.c index 4205b1d6049e..38e7cad782f4 100644 --- a/mm/migrate.c +++ b/mm/migrate.c | |||
| @@ -639,7 +639,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
| 639 | * exist when the page is remapped later | 639 | * exist when the page is remapped later |
| 640 | */ | 640 | */ |
| 641 | anon_vma = page_anon_vma(page); | 641 | anon_vma = page_anon_vma(page); |
| 642 | atomic_inc(&anon_vma->external_refcount); | 642 | get_anon_vma(anon_vma); |
| 643 | } | 643 | } |
| 644 | } | 644 | } |
| 645 | 645 | ||
| @@ -682,12 +682,8 @@ skip_unmap: | |||
| 682 | rcu_unlock: | 682 | rcu_unlock: |
| 683 | 683 | ||
| 684 | /* Drop an anon_vma reference if we took one */ | 684 | /* Drop an anon_vma reference if we took one */ |
| 685 | if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) { | 685 | if (anon_vma) |
| 686 | int empty = list_empty(&anon_vma->head); | 686 | drop_anon_vma(anon_vma); |
| 687 | spin_unlock(&anon_vma->lock); | ||
| 688 | if (empty) | ||
| 689 | anon_vma_free(anon_vma); | ||
| 690 | } | ||
| 691 | 687 | ||
| 692 | if (rcu_locked) | 688 | if (rcu_locked) |
| 693 | rcu_read_unlock(); | 689 | rcu_read_unlock(); |
| @@ -452,12 +452,10 @@ static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | |||
| 452 | spin_lock(&mapping->i_mmap_lock); | 452 | spin_lock(&mapping->i_mmap_lock); |
| 453 | vma->vm_truncate_count = mapping->truncate_count; | 453 | vma->vm_truncate_count = mapping->truncate_count; |
| 454 | } | 454 | } |
| 455 | anon_vma_lock(vma); | ||
| 456 | 455 | ||
| 457 | __vma_link(mm, vma, prev, rb_link, rb_parent); | 456 | __vma_link(mm, vma, prev, rb_link, rb_parent); |
| 458 | __vma_link_file(vma); | 457 | __vma_link_file(vma); |
| 459 | 458 | ||
| 460 | anon_vma_unlock(vma); | ||
| 461 | if (mapping) | 459 | if (mapping) |
| 462 | spin_unlock(&mapping->i_mmap_lock); | 460 | spin_unlock(&mapping->i_mmap_lock); |
| 463 | 461 | ||
| @@ -506,6 +504,7 @@ int vma_adjust(struct vm_area_struct *vma, unsigned long start, | |||
| 506 | struct vm_area_struct *importer = NULL; | 504 | struct vm_area_struct *importer = NULL; |
| 507 | struct address_space *mapping = NULL; | 505 | struct address_space *mapping = NULL; |
| 508 | struct prio_tree_root *root = NULL; | 506 | struct prio_tree_root *root = NULL; |
| 507 | struct anon_vma *anon_vma = NULL; | ||
| 509 | struct file *file = vma->vm_file; | 508 | struct file *file = vma->vm_file; |
| 510 | long adjust_next = 0; | 509 | long adjust_next = 0; |
| 511 | int remove_next = 0; | 510 | int remove_next = 0; |
| @@ -578,6 +577,17 @@ again: remove_next = 1 + (end > next->vm_end); | |||
| 578 | } | 577 | } |
| 579 | } | 578 | } |
| 580 | 579 | ||
| 580 | /* | ||
| 581 | * When changing only vma->vm_end, we don't really need anon_vma | ||
| 582 | * lock. This is a fairly rare case by itself, but the anon_vma | ||
| 583 | * lock may be shared between many sibling processes. Skipping | ||
| 584 | * the lock for brk adjustments makes a difference sometimes. | ||
| 585 | */ | ||
| 586 | if (vma->anon_vma && (insert || importer || start != vma->vm_start)) { | ||
| 587 | anon_vma = vma->anon_vma; | ||
| 588 | anon_vma_lock(anon_vma); | ||
| 589 | } | ||
| 590 | |||
| 581 | if (root) { | 591 | if (root) { |
| 582 | flush_dcache_mmap_lock(mapping); | 592 | flush_dcache_mmap_lock(mapping); |
| 583 | vma_prio_tree_remove(vma, root); | 593 | vma_prio_tree_remove(vma, root); |
| @@ -617,6 +627,8 @@ again: remove_next = 1 + (end > next->vm_end); | |||
| 617 | __insert_vm_struct(mm, insert); | 627 | __insert_vm_struct(mm, insert); |
| 618 | } | 628 | } |
| 619 | 629 | ||
| 630 | if (anon_vma) | ||
| 631 | anon_vma_unlock(anon_vma); | ||
| 620 | if (mapping) | 632 | if (mapping) |
| 621 | spin_unlock(&mapping->i_mmap_lock); | 633 | spin_unlock(&mapping->i_mmap_lock); |
| 622 | 634 | ||
| @@ -1710,7 +1722,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) | |||
| 1710 | */ | 1722 | */ |
| 1711 | if (unlikely(anon_vma_prepare(vma))) | 1723 | if (unlikely(anon_vma_prepare(vma))) |
| 1712 | return -ENOMEM; | 1724 | return -ENOMEM; |
| 1713 | anon_vma_lock(vma); | 1725 | vma_lock_anon_vma(vma); |
| 1714 | 1726 | ||
| 1715 | /* | 1727 | /* |
| 1716 | * vma->vm_start/vm_end cannot change under us because the caller | 1728 | * vma->vm_start/vm_end cannot change under us because the caller |
| @@ -1721,7 +1733,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) | |||
| 1721 | if (address < PAGE_ALIGN(address+4)) | 1733 | if (address < PAGE_ALIGN(address+4)) |
| 1722 | address = PAGE_ALIGN(address+4); | 1734 | address = PAGE_ALIGN(address+4); |
| 1723 | else { | 1735 | else { |
| 1724 | anon_vma_unlock(vma); | 1736 | vma_unlock_anon_vma(vma); |
| 1725 | return -ENOMEM; | 1737 | return -ENOMEM; |
| 1726 | } | 1738 | } |
| 1727 | error = 0; | 1739 | error = 0; |
| @@ -1734,10 +1746,12 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) | |||
| 1734 | grow = (address - vma->vm_end) >> PAGE_SHIFT; | 1746 | grow = (address - vma->vm_end) >> PAGE_SHIFT; |
| 1735 | 1747 | ||
| 1736 | error = acct_stack_growth(vma, size, grow); | 1748 | error = acct_stack_growth(vma, size, grow); |
| 1737 | if (!error) | 1749 | if (!error) { |
| 1738 | vma->vm_end = address; | 1750 | vma->vm_end = address; |
| 1751 | perf_event_mmap(vma); | ||
| 1752 | } | ||
| 1739 | } | 1753 | } |
| 1740 | anon_vma_unlock(vma); | 1754 | vma_unlock_anon_vma(vma); |
| 1741 | return error; | 1755 | return error; |
| 1742 | } | 1756 | } |
| 1743 | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ | 1757 | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ |
| @@ -1762,7 +1776,7 @@ static int expand_downwards(struct vm_area_struct *vma, | |||
| 1762 | if (error) | 1776 | if (error) |
| 1763 | return error; | 1777 | return error; |
| 1764 | 1778 | ||
| 1765 | anon_vma_lock(vma); | 1779 | vma_lock_anon_vma(vma); |
| 1766 | 1780 | ||
| 1767 | /* | 1781 | /* |
| 1768 | * vma->vm_start/vm_end cannot change under us because the caller | 1782 | * vma->vm_start/vm_end cannot change under us because the caller |
| @@ -1781,9 +1795,10 @@ static int expand_downwards(struct vm_area_struct *vma, | |||
| 1781 | if (!error) { | 1795 | if (!error) { |
| 1782 | vma->vm_start = address; | 1796 | vma->vm_start = address; |
| 1783 | vma->vm_pgoff -= grow; | 1797 | vma->vm_pgoff -= grow; |
| 1798 | perf_event_mmap(vma); | ||
| 1784 | } | 1799 | } |
| 1785 | } | 1800 | } |
| 1786 | anon_vma_unlock(vma); | 1801 | vma_unlock_anon_vma(vma); |
| 1787 | return error; | 1802 | return error; |
| 1788 | } | 1803 | } |
| 1789 | 1804 | ||
| @@ -2208,6 +2223,7 @@ unsigned long do_brk(unsigned long addr, unsigned long len) | |||
| 2208 | vma->vm_page_prot = vm_get_page_prot(flags); | 2223 | vma->vm_page_prot = vm_get_page_prot(flags); |
| 2209 | vma_link(mm, vma, prev, rb_link, rb_parent); | 2224 | vma_link(mm, vma, prev, rb_link, rb_parent); |
| 2210 | out: | 2225 | out: |
| 2226 | perf_event_mmap(vma); | ||
| 2211 | mm->total_vm += len >> PAGE_SHIFT; | 2227 | mm->total_vm += len >> PAGE_SHIFT; |
| 2212 | if (flags & VM_LOCKED) { | 2228 | if (flags & VM_LOCKED) { |
| 2213 | if (!mlock_vma_pages_range(vma, addr, addr + len)) | 2229 | if (!mlock_vma_pages_range(vma, addr, addr + len)) |
| @@ -2466,23 +2482,23 @@ static DEFINE_MUTEX(mm_all_locks_mutex); | |||
| 2466 | 2482 | ||
| 2467 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) | 2483 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) |
| 2468 | { | 2484 | { |
| 2469 | if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { | 2485 | if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { |
| 2470 | /* | 2486 | /* |
| 2471 | * The LSB of head.next can't change from under us | 2487 | * The LSB of head.next can't change from under us |
| 2472 | * because we hold the mm_all_locks_mutex. | 2488 | * because we hold the mm_all_locks_mutex. |
| 2473 | */ | 2489 | */ |
| 2474 | spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); | 2490 | spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem); |
| 2475 | /* | 2491 | /* |
| 2476 | * We can safely modify head.next after taking the | 2492 | * We can safely modify head.next after taking the |
| 2477 | * anon_vma->lock. If some other vma in this mm shares | 2493 | * anon_vma->root->lock. If some other vma in this mm shares |
| 2478 | * the same anon_vma we won't take it again. | 2494 | * the same anon_vma we won't take it again. |
| 2479 | * | 2495 | * |
| 2480 | * No need of atomic instructions here, head.next | 2496 | * No need of atomic instructions here, head.next |
| 2481 | * can't change from under us thanks to the | 2497 | * can't change from under us thanks to the |
| 2482 | * anon_vma->lock. | 2498 | * anon_vma->root->lock. |
| 2483 | */ | 2499 | */ |
| 2484 | if (__test_and_set_bit(0, (unsigned long *) | 2500 | if (__test_and_set_bit(0, (unsigned long *) |
| 2485 | &anon_vma->head.next)) | 2501 | &anon_vma->root->head.next)) |
| 2486 | BUG(); | 2502 | BUG(); |
| 2487 | } | 2503 | } |
| 2488 | } | 2504 | } |
| @@ -2573,7 +2589,7 @@ out_unlock: | |||
| 2573 | 2589 | ||
| 2574 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | 2590 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) |
| 2575 | { | 2591 | { |
| 2576 | if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { | 2592 | if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { |
| 2577 | /* | 2593 | /* |
| 2578 | * The LSB of head.next can't change to 0 from under | 2594 | * The LSB of head.next can't change to 0 from under |
| 2579 | * us because we hold the mm_all_locks_mutex. | 2595 | * us because we hold the mm_all_locks_mutex. |
| @@ -2584,12 +2600,12 @@ static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | |||
| 2584 | * | 2600 | * |
| 2585 | * No need of atomic instructions here, head.next | 2601 | * No need of atomic instructions here, head.next |
| 2586 | * can't change from under us until we release the | 2602 | * can't change from under us until we release the |
| 2587 | * anon_vma->lock. | 2603 | * anon_vma->root->lock. |
| 2588 | */ | 2604 | */ |
| 2589 | if (!__test_and_clear_bit(0, (unsigned long *) | 2605 | if (!__test_and_clear_bit(0, (unsigned long *) |
| 2590 | &anon_vma->head.next)) | 2606 | &anon_vma->root->head.next)) |
| 2591 | BUG(); | 2607 | BUG(); |
| 2592 | spin_unlock(&anon_vma->lock); | 2608 | anon_vma_unlock(anon_vma); |
| 2593 | } | 2609 | } |
| 2594 | } | 2610 | } |
| 2595 | 2611 | ||
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 709aedfaa014..5014e50644d1 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
| @@ -4,6 +4,8 @@ | |||
| 4 | * Copyright (C) 1998,2000 Rik van Riel | 4 | * Copyright (C) 1998,2000 Rik van Riel |
| 5 | * Thanks go out to Claus Fischer for some serious inspiration and | 5 | * Thanks go out to Claus Fischer for some serious inspiration and |
| 6 | * for goading me into coding this file... | 6 | * for goading me into coding this file... |
| 7 | * Copyright (C) 2010 Google, Inc. | ||
| 8 | * Rewritten by David Rientjes | ||
| 7 | * | 9 | * |
| 8 | * The routines in this file are used to kill a process when | 10 | * The routines in this file are used to kill a process when |
| 9 | * we're seriously out of memory. This gets called from __alloc_pages() | 11 | * we're seriously out of memory. This gets called from __alloc_pages() |
| @@ -27,171 +29,188 @@ | |||
| 27 | #include <linux/module.h> | 29 | #include <linux/module.h> |
| 28 | #include <linux/notifier.h> | 30 | #include <linux/notifier.h> |
| 29 | #include <linux/memcontrol.h> | 31 | #include <linux/memcontrol.h> |
| 32 | #include <linux/mempolicy.h> | ||
| 30 | #include <linux/security.h> | 33 | #include <linux/security.h> |
| 31 | 34 | ||
| 32 | int sysctl_panic_on_oom; | 35 | int sysctl_panic_on_oom; |
| 33 | int sysctl_oom_kill_allocating_task; | 36 | int sysctl_oom_kill_allocating_task; |
| 34 | int sysctl_oom_dump_tasks; | 37 | int sysctl_oom_dump_tasks = 1; |
| 35 | static DEFINE_SPINLOCK(zone_scan_lock); | 38 | static DEFINE_SPINLOCK(zone_scan_lock); |
| 36 | /* #define DEBUG */ | 39 | |
| 40 | #ifdef CONFIG_NUMA | ||
| 41 | /** | ||
| 42 | * has_intersects_mems_allowed() - check task eligiblity for kill | ||
| 43 | * @tsk: task struct of which task to consider | ||
| 44 | * @mask: nodemask passed to page allocator for mempolicy ooms | ||
| 45 | * | ||
| 46 | * Task eligibility is determined by whether or not a candidate task, @tsk, | ||
| 47 | * shares the same mempolicy nodes as current if it is bound by such a policy | ||
| 48 | * and whether or not it has the same set of allowed cpuset nodes. | ||
| 49 | */ | ||
| 50 | static bool has_intersects_mems_allowed(struct task_struct *tsk, | ||
| 51 | const nodemask_t *mask) | ||
| 52 | { | ||
| 53 | struct task_struct *start = tsk; | ||
| 54 | |||
| 55 | do { | ||
| 56 | if (mask) { | ||
| 57 | /* | ||
| 58 | * If this is a mempolicy constrained oom, tsk's | ||
| 59 | * cpuset is irrelevant. Only return true if its | ||
| 60 | * mempolicy intersects current, otherwise it may be | ||
| 61 | * needlessly killed. | ||
| 62 | */ | ||
| 63 | if (mempolicy_nodemask_intersects(tsk, mask)) | ||
| 64 | return true; | ||
| 65 | } else { | ||
| 66 | /* | ||
| 67 | * This is not a mempolicy constrained oom, so only | ||
| 68 | * check the mems of tsk's cpuset. | ||
| 69 | */ | ||
| 70 | if (cpuset_mems_allowed_intersects(current, tsk)) | ||
| 71 | return true; | ||
| 72 | } | ||
| 73 | } while_each_thread(start, tsk); | ||
| 74 | |||
| 75 | return false; | ||
| 76 | } | ||
| 77 | #else | ||
| 78 | static bool has_intersects_mems_allowed(struct task_struct *tsk, | ||
| 79 | const nodemask_t *mask) | ||
| 80 | { | ||
| 81 | return true; | ||
| 82 | } | ||
| 83 | #endif /* CONFIG_NUMA */ | ||
| 37 | 84 | ||
| 38 | /* | 85 | /* |
| 39 | * Is all threads of the target process nodes overlap ours? | 86 | * If this is a system OOM (not a memcg OOM) and the task selected to be |
| 87 | * killed is not already running at high (RT) priorities, speed up the | ||
| 88 | * recovery by boosting the dying task to the lowest FIFO priority. | ||
| 89 | * That helps with the recovery and avoids interfering with RT tasks. | ||
| 40 | */ | 90 | */ |
| 41 | static int has_intersects_mems_allowed(struct task_struct *tsk) | 91 | static void boost_dying_task_prio(struct task_struct *p, |
| 92 | struct mem_cgroup *mem) | ||
| 42 | { | 93 | { |
| 43 | struct task_struct *t; | 94 | struct sched_param param = { .sched_priority = 1 }; |
| 95 | |||
| 96 | if (mem) | ||
| 97 | return; | ||
| 98 | |||
| 99 | if (!rt_task(p)) | ||
| 100 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | ||
| 101 | } | ||
| 102 | |||
| 103 | /* | ||
| 104 | * The process p may have detached its own ->mm while exiting or through | ||
| 105 | * use_mm(), but one or more of its subthreads may still have a valid | ||
| 106 | * pointer. Return p, or any of its subthreads with a valid ->mm, with | ||
| 107 | * task_lock() held. | ||
| 108 | */ | ||
| 109 | struct task_struct *find_lock_task_mm(struct task_struct *p) | ||
| 110 | { | ||
| 111 | struct task_struct *t = p; | ||
| 44 | 112 | ||
| 45 | t = tsk; | ||
| 46 | do { | 113 | do { |
| 47 | if (cpuset_mems_allowed_intersects(current, t)) | 114 | task_lock(t); |
| 48 | return 1; | 115 | if (likely(t->mm)) |
| 49 | t = next_thread(t); | 116 | return t; |
| 50 | } while (t != tsk); | 117 | task_unlock(t); |
| 118 | } while_each_thread(p, t); | ||
| 51 | 119 | ||
| 52 | return 0; | 120 | return NULL; |
| 121 | } | ||
| 122 | |||
| 123 | /* return true if the task is not adequate as candidate victim task. */ | ||
| 124 | static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem, | ||
| 125 | const nodemask_t *nodemask) | ||
| 126 | { | ||
| 127 | if (is_global_init(p)) | ||
| 128 | return true; | ||
| 129 | if (p->flags & PF_KTHREAD) | ||
| 130 | return true; | ||
| 131 | |||
| 132 | /* When mem_cgroup_out_of_memory() and p is not member of the group */ | ||
| 133 | if (mem && !task_in_mem_cgroup(p, mem)) | ||
| 134 | return true; | ||
| 135 | |||
| 136 | /* p may not have freeable memory in nodemask */ | ||
| 137 | if (!has_intersects_mems_allowed(p, nodemask)) | ||
| 138 | return true; | ||
| 139 | |||
| 140 | return false; | ||
| 53 | } | 141 | } |
| 54 | 142 | ||
| 55 | /** | 143 | /** |
| 56 | * badness - calculate a numeric value for how bad this task has been | 144 | * oom_badness - heuristic function to determine which candidate task to kill |
| 57 | * @p: task struct of which task we should calculate | 145 | * @p: task struct of which task we should calculate |
| 58 | * @uptime: current uptime in seconds | 146 | * @totalpages: total present RAM allowed for page allocation |
| 59 | * | ||
| 60 | * The formula used is relatively simple and documented inline in the | ||
| 61 | * function. The main rationale is that we want to select a good task | ||
| 62 | * to kill when we run out of memory. | ||
| 63 | * | 147 | * |
| 64 | * Good in this context means that: | 148 | * The heuristic for determining which task to kill is made to be as simple and |
| 65 | * 1) we lose the minimum amount of work done | 149 | * predictable as possible. The goal is to return the highest value for the |
| 66 | * 2) we recover a large amount of memory | 150 | * task consuming the most memory to avoid subsequent oom failures. |
| 67 | * 3) we don't kill anything innocent of eating tons of memory | ||
| 68 | * 4) we want to kill the minimum amount of processes (one) | ||
| 69 | * 5) we try to kill the process the user expects us to kill, this | ||
| 70 | * algorithm has been meticulously tuned to meet the principle | ||
| 71 | * of least surprise ... (be careful when you change it) | ||
| 72 | */ | 151 | */ |
| 73 | 152 | unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, | |
| 74 | unsigned long badness(struct task_struct *p, unsigned long uptime) | 153 | const nodemask_t *nodemask, unsigned long totalpages) |
| 75 | { | 154 | { |
| 76 | unsigned long points, cpu_time, run_time; | 155 | int points; |
| 77 | struct mm_struct *mm; | ||
| 78 | struct task_struct *child; | ||
| 79 | int oom_adj = p->signal->oom_adj; | ||
| 80 | struct task_cputime task_time; | ||
| 81 | unsigned long utime; | ||
| 82 | unsigned long stime; | ||
| 83 | 156 | ||
| 84 | if (oom_adj == OOM_DISABLE) | 157 | if (oom_unkillable_task(p, mem, nodemask)) |
| 85 | return 0; | 158 | return 0; |
| 86 | 159 | ||
| 87 | task_lock(p); | 160 | p = find_lock_task_mm(p); |
| 88 | mm = p->mm; | 161 | if (!p) |
| 89 | if (!mm) { | ||
| 90 | task_unlock(p); | ||
| 91 | return 0; | 162 | return 0; |
| 92 | } | ||
| 93 | |||
| 94 | /* | ||
| 95 | * The memory size of the process is the basis for the badness. | ||
| 96 | */ | ||
| 97 | points = mm->total_vm; | ||
| 98 | 163 | ||
| 99 | /* | 164 | /* |
| 100 | * After this unlock we can no longer dereference local variable `mm' | 165 | * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't |
| 166 | * need to be executed for something that cannot be killed. | ||
| 101 | */ | 167 | */ |
| 102 | task_unlock(p); | 168 | if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { |
| 103 | 169 | task_unlock(p); | |
| 104 | /* | 170 | return 0; |
| 105 | * swapoff can easily use up all memory, so kill those first. | ||
| 106 | */ | ||
| 107 | if (p->flags & PF_OOM_ORIGIN) | ||
| 108 | return ULONG_MAX; | ||
| 109 | |||
| 110 | /* | ||
| 111 | * Processes which fork a lot of child processes are likely | ||
| 112 | * a good choice. We add half the vmsize of the children if they | ||
| 113 | * have an own mm. This prevents forking servers to flood the | ||
| 114 | * machine with an endless amount of children. In case a single | ||
| 115 | * child is eating the vast majority of memory, adding only half | ||
| 116 | * to the parents will make the child our kill candidate of choice. | ||
| 117 | */ | ||
| 118 | list_for_each_entry(child, &p->children, sibling) { | ||
| 119 | task_lock(child); | ||
| 120 | if (child->mm != mm && child->mm) | ||
| 121 | points += child->mm->total_vm/2 + 1; | ||
| 122 | task_unlock(child); | ||
| 123 | } | 171 | } |
| 124 | 172 | ||
| 125 | /* | 173 | /* |
| 126 | * CPU time is in tens of seconds and run time is in thousands | 174 | * When the PF_OOM_ORIGIN bit is set, it indicates the task should have |
| 127 | * of seconds. There is no particular reason for this other than | 175 | * priority for oom killing. |
| 128 | * that it turned out to work very well in practice. | ||
| 129 | */ | ||
| 130 | thread_group_cputime(p, &task_time); | ||
| 131 | utime = cputime_to_jiffies(task_time.utime); | ||
| 132 | stime = cputime_to_jiffies(task_time.stime); | ||
| 133 | cpu_time = (utime + stime) >> (SHIFT_HZ + 3); | ||
| 134 | |||
| 135 | |||
| 136 | if (uptime >= p->start_time.tv_sec) | ||
| 137 | run_time = (uptime - p->start_time.tv_sec) >> 10; | ||
| 138 | else | ||
| 139 | run_time = 0; | ||
| 140 | |||
| 141 | if (cpu_time) | ||
| 142 | points /= int_sqrt(cpu_time); | ||
| 143 | if (run_time) | ||
| 144 | points /= int_sqrt(int_sqrt(run_time)); | ||
| 145 | |||
| 146 | /* | ||
| 147 | * Niced processes are most likely less important, so double | ||
| 148 | * their badness points. | ||
| 149 | */ | 176 | */ |
| 150 | if (task_nice(p) > 0) | 177 | if (p->flags & PF_OOM_ORIGIN) { |
| 151 | points *= 2; | 178 | task_unlock(p); |
| 179 | return 1000; | ||
| 180 | } | ||
| 152 | 181 | ||
| 153 | /* | 182 | /* |
| 154 | * Superuser processes are usually more important, so we make it | 183 | * The memory controller may have a limit of 0 bytes, so avoid a divide |
| 155 | * less likely that we kill those. | 184 | * by zero, if necessary. |
| 156 | */ | 185 | */ |
| 157 | if (has_capability_noaudit(p, CAP_SYS_ADMIN) || | 186 | if (!totalpages) |
| 158 | has_capability_noaudit(p, CAP_SYS_RESOURCE)) | 187 | totalpages = 1; |
| 159 | points /= 4; | ||
| 160 | 188 | ||
| 161 | /* | 189 | /* |
| 162 | * We don't want to kill a process with direct hardware access. | 190 | * The baseline for the badness score is the proportion of RAM that each |
| 163 | * Not only could that mess up the hardware, but usually users | 191 | * task's rss and swap space use. |
| 164 | * tend to only have this flag set on applications they think | ||
| 165 | * of as important. | ||
| 166 | */ | 192 | */ |
| 167 | if (has_capability_noaudit(p, CAP_SYS_RAWIO)) | 193 | points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 / |
| 168 | points /= 4; | 194 | totalpages; |
| 195 | task_unlock(p); | ||
| 169 | 196 | ||
| 170 | /* | 197 | /* |
| 171 | * If p's nodes don't overlap ours, it may still help to kill p | 198 | * Root processes get 3% bonus, just like the __vm_enough_memory() |
| 172 | * because p may have allocated or otherwise mapped memory on | 199 | * implementation used by LSMs. |
| 173 | * this node before. However it will be less likely. | ||
| 174 | */ | 200 | */ |
| 175 | if (!has_intersects_mems_allowed(p)) | 201 | if (has_capability_noaudit(p, CAP_SYS_ADMIN)) |
| 176 | points /= 8; | 202 | points -= 30; |
| 177 | 203 | ||
| 178 | /* | 204 | /* |
| 179 | * Adjust the score by oom_adj. | 205 | * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may |
| 206 | * either completely disable oom killing or always prefer a certain | ||
| 207 | * task. | ||
| 180 | */ | 208 | */ |
| 181 | if (oom_adj) { | 209 | points += p->signal->oom_score_adj; |
| 182 | if (oom_adj > 0) { | ||
| 183 | if (!points) | ||
| 184 | points = 1; | ||
| 185 | points <<= oom_adj; | ||
| 186 | } else | ||
| 187 | points >>= -(oom_adj); | ||
| 188 | } | ||
| 189 | 210 | ||
| 190 | #ifdef DEBUG | 211 | if (points < 0) |
| 191 | printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", | 212 | return 0; |
| 192 | p->pid, p->comm, points); | 213 | return (points < 1000) ? points : 1000; |
| 193 | #endif | ||
| 194 | return points; | ||
| 195 | } | 214 | } |
| 196 | 215 | ||
| 197 | /* | 216 | /* |
| @@ -199,12 +218,20 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
| 199 | */ | 218 | */ |
| 200 | #ifdef CONFIG_NUMA | 219 | #ifdef CONFIG_NUMA |
| 201 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 220 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, |
| 202 | gfp_t gfp_mask, nodemask_t *nodemask) | 221 | gfp_t gfp_mask, nodemask_t *nodemask, |
| 222 | unsigned long *totalpages) | ||
| 203 | { | 223 | { |
| 204 | struct zone *zone; | 224 | struct zone *zone; |
| 205 | struct zoneref *z; | 225 | struct zoneref *z; |
| 206 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | 226 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); |
| 227 | bool cpuset_limited = false; | ||
| 228 | int nid; | ||
| 229 | |||
| 230 | /* Default to all available memory */ | ||
| 231 | *totalpages = totalram_pages + total_swap_pages; | ||
| 207 | 232 | ||
| 233 | if (!zonelist) | ||
| 234 | return CONSTRAINT_NONE; | ||
| 208 | /* | 235 | /* |
| 209 | * Reach here only when __GFP_NOFAIL is used. So, we should avoid | 236 | * Reach here only when __GFP_NOFAIL is used. So, we should avoid |
| 210 | * to kill current.We have to random task kill in this case. | 237 | * to kill current.We have to random task kill in this case. |
| @@ -214,26 +241,37 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | |||
| 214 | return CONSTRAINT_NONE; | 241 | return CONSTRAINT_NONE; |
| 215 | 242 | ||
| 216 | /* | 243 | /* |
| 217 | * The nodemask here is a nodemask passed to alloc_pages(). Now, | 244 | * This is not a __GFP_THISNODE allocation, so a truncated nodemask in |
| 218 | * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy | 245 | * the page allocator means a mempolicy is in effect. Cpuset policy |
| 219 | * feature. mempolicy is an only user of nodemask here. | 246 | * is enforced in get_page_from_freelist(). |
| 220 | * check mempolicy's nodemask contains all N_HIGH_MEMORY | ||
| 221 | */ | 247 | */ |
| 222 | if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) | 248 | if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { |
| 249 | *totalpages = total_swap_pages; | ||
| 250 | for_each_node_mask(nid, *nodemask) | ||
| 251 | *totalpages += node_spanned_pages(nid); | ||
| 223 | return CONSTRAINT_MEMORY_POLICY; | 252 | return CONSTRAINT_MEMORY_POLICY; |
| 253 | } | ||
| 224 | 254 | ||
| 225 | /* Check this allocation failure is caused by cpuset's wall function */ | 255 | /* Check this allocation failure is caused by cpuset's wall function */ |
| 226 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 256 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
| 227 | high_zoneidx, nodemask) | 257 | high_zoneidx, nodemask) |
| 228 | if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) | 258 | if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) |
| 229 | return CONSTRAINT_CPUSET; | 259 | cpuset_limited = true; |
| 230 | 260 | ||
| 261 | if (cpuset_limited) { | ||
| 262 | *totalpages = total_swap_pages; | ||
| 263 | for_each_node_mask(nid, cpuset_current_mems_allowed) | ||
| 264 | *totalpages += node_spanned_pages(nid); | ||
| 265 | return CONSTRAINT_CPUSET; | ||
| 266 | } | ||
| 231 | return CONSTRAINT_NONE; | 267 | return CONSTRAINT_NONE; |
| 232 | } | 268 | } |
| 233 | #else | 269 | #else |
| 234 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 270 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, |
| 235 | gfp_t gfp_mask, nodemask_t *nodemask) | 271 | gfp_t gfp_mask, nodemask_t *nodemask, |
| 272 | unsigned long *totalpages) | ||
| 236 | { | 273 | { |
| 274 | *totalpages = totalram_pages + total_swap_pages; | ||
| 237 | return CONSTRAINT_NONE; | 275 | return CONSTRAINT_NONE; |
| 238 | } | 276 | } |
| 239 | #endif | 277 | #endif |
| @@ -244,28 +282,18 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | |||
| 244 | * | 282 | * |
| 245 | * (not docbooked, we don't want this one cluttering up the manual) | 283 | * (not docbooked, we don't want this one cluttering up the manual) |
| 246 | */ | 284 | */ |
| 247 | static struct task_struct *select_bad_process(unsigned long *ppoints, | 285 | static struct task_struct *select_bad_process(unsigned int *ppoints, |
| 248 | struct mem_cgroup *mem) | 286 | unsigned long totalpages, struct mem_cgroup *mem, |
| 287 | const nodemask_t *nodemask) | ||
| 249 | { | 288 | { |
| 250 | struct task_struct *p; | 289 | struct task_struct *p; |
| 251 | struct task_struct *chosen = NULL; | 290 | struct task_struct *chosen = NULL; |
| 252 | struct timespec uptime; | ||
| 253 | *ppoints = 0; | 291 | *ppoints = 0; |
| 254 | 292 | ||
| 255 | do_posix_clock_monotonic_gettime(&uptime); | ||
| 256 | for_each_process(p) { | 293 | for_each_process(p) { |
| 257 | unsigned long points; | 294 | unsigned int points; |
| 258 | 295 | ||
| 259 | /* | 296 | if (oom_unkillable_task(p, mem, nodemask)) |
| 260 | * skip kernel threads and tasks which have already released | ||
| 261 | * their mm. | ||
| 262 | */ | ||
| 263 | if (!p->mm) | ||
| 264 | continue; | ||
| 265 | /* skip the init task */ | ||
| 266 | if (is_global_init(p)) | ||
| 267 | continue; | ||
| 268 | if (mem && !task_in_mem_cgroup(p, mem)) | ||
| 269 | continue; | 297 | continue; |
| 270 | 298 | ||
| 271 | /* | 299 | /* |
| @@ -290,19 +318,16 @@ static struct task_struct *select_bad_process(unsigned long *ppoints, | |||
| 290 | * the process of exiting and releasing its resources. | 318 | * the process of exiting and releasing its resources. |
| 291 | * Otherwise we could get an easy OOM deadlock. | 319 | * Otherwise we could get an easy OOM deadlock. |
| 292 | */ | 320 | */ |
| 293 | if (p->flags & PF_EXITING) { | 321 | if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) { |
| 294 | if (p != current) | 322 | if (p != current) |
| 295 | return ERR_PTR(-1UL); | 323 | return ERR_PTR(-1UL); |
| 296 | 324 | ||
| 297 | chosen = p; | 325 | chosen = p; |
| 298 | *ppoints = ULONG_MAX; | 326 | *ppoints = 1000; |
| 299 | } | 327 | } |
| 300 | 328 | ||
| 301 | if (p->signal->oom_adj == OOM_DISABLE) | 329 | points = oom_badness(p, mem, nodemask, totalpages); |
| 302 | continue; | 330 | if (points > *ppoints) { |
| 303 | |||
| 304 | points = badness(p, uptime.tv_sec); | ||
| 305 | if (points > *ppoints || !chosen) { | ||
| 306 | chosen = p; | 331 | chosen = p; |
| 307 | *ppoints = points; | 332 | *ppoints = points; |
| 308 | } | 333 | } |
| @@ -313,11 +338,11 @@ static struct task_struct *select_bad_process(unsigned long *ppoints, | |||
| 313 | 338 | ||
| 314 | /** | 339 | /** |
| 315 | * dump_tasks - dump current memory state of all system tasks | 340 | * dump_tasks - dump current memory state of all system tasks |
| 316 | * @mem: target memory controller | 341 | * @mem: current's memory controller, if constrained |
| 317 | * | 342 | * |
| 318 | * Dumps the current memory state of all system tasks, excluding kernel threads. | 343 | * Dumps the current memory state of all system tasks, excluding kernel threads. |
| 319 | * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj | 344 | * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj |
| 320 | * score, and name. | 345 | * value, oom_score_adj value, and name. |
| 321 | * | 346 | * |
| 322 | * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are | 347 | * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are |
| 323 | * shown. | 348 | * shown. |
| @@ -326,44 +351,43 @@ static struct task_struct *select_bad_process(unsigned long *ppoints, | |||
| 326 | */ | 351 | */ |
| 327 | static void dump_tasks(const struct mem_cgroup *mem) | 352 | static void dump_tasks(const struct mem_cgroup *mem) |
| 328 | { | 353 | { |
| 329 | struct task_struct *g, *p; | 354 | struct task_struct *p; |
| 330 | 355 | struct task_struct *task; | |
| 331 | printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " | ||
| 332 | "name\n"); | ||
| 333 | do_each_thread(g, p) { | ||
| 334 | struct mm_struct *mm; | ||
| 335 | 356 | ||
| 336 | if (mem && !task_in_mem_cgroup(p, mem)) | 357 | pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); |
| 358 | for_each_process(p) { | ||
| 359 | if (p->flags & PF_KTHREAD) | ||
| 337 | continue; | 360 | continue; |
| 338 | if (!thread_group_leader(p)) | 361 | if (mem && !task_in_mem_cgroup(p, mem)) |
| 339 | continue; | 362 | continue; |
| 340 | 363 | ||
| 341 | task_lock(p); | 364 | task = find_lock_task_mm(p); |
| 342 | mm = p->mm; | 365 | if (!task) { |
| 343 | if (!mm) { | ||
| 344 | /* | 366 | /* |
| 345 | * total_vm and rss sizes do not exist for tasks with no | 367 | * This is a kthread or all of p's threads have already |
| 346 | * mm so there's no need to report them; they can't be | 368 | * detached their mm's. There's no need to report |
| 347 | * oom killed anyway. | 369 | * them; they can't be oom killed anyway. |
| 348 | */ | 370 | */ |
| 349 | task_unlock(p); | ||
| 350 | continue; | 371 | continue; |
| 351 | } | 372 | } |
| 352 | printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", | 373 | |
| 353 | p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm, | 374 | pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", |
| 354 | get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj, | 375 | task->pid, __task_cred(task)->uid, task->tgid, |
| 355 | p->comm); | 376 | task->mm->total_vm, get_mm_rss(task->mm), |
| 356 | task_unlock(p); | 377 | task_cpu(task), task->signal->oom_adj, |
| 357 | } while_each_thread(g, p); | 378 | task->signal->oom_score_adj, task->comm); |
| 379 | task_unlock(task); | ||
| 380 | } | ||
| 358 | } | 381 | } |
| 359 | 382 | ||
| 360 | static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, | 383 | static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, |
| 361 | struct mem_cgroup *mem) | 384 | struct mem_cgroup *mem) |
| 362 | { | 385 | { |
| 363 | pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " | ||
| 364 | "oom_adj=%d\n", | ||
| 365 | current->comm, gfp_mask, order, current->signal->oom_adj); | ||
| 366 | task_lock(current); | 386 | task_lock(current); |
| 387 | pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " | ||
| 388 | "oom_adj=%d, oom_score_adj=%d\n", | ||
| 389 | current->comm, gfp_mask, order, current->signal->oom_adj, | ||
| 390 | current->signal->oom_score_adj); | ||
| 367 | cpuset_print_task_mems_allowed(current); | 391 | cpuset_print_task_mems_allowed(current); |
| 368 | task_unlock(current); | 392 | task_unlock(current); |
| 369 | dump_stack(); | 393 | dump_stack(); |
| @@ -374,72 +398,43 @@ static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, | |||
| 374 | } | 398 | } |
| 375 | 399 | ||
| 376 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 400 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
| 377 | 401 | static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) | |
| 378 | /* | ||
| 379 | * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO | ||
| 380 | * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO | ||
| 381 | * set. | ||
| 382 | */ | ||
| 383 | static void __oom_kill_task(struct task_struct *p, int verbose) | ||
| 384 | { | 402 | { |
| 385 | if (is_global_init(p)) { | 403 | p = find_lock_task_mm(p); |
| 386 | WARN_ON(1); | 404 | if (!p) { |
| 387 | printk(KERN_WARNING "tried to kill init!\n"); | ||
| 388 | return; | ||
| 389 | } | ||
| 390 | |||
| 391 | task_lock(p); | ||
| 392 | if (!p->mm) { | ||
| 393 | WARN_ON(1); | ||
| 394 | printk(KERN_WARNING "tried to kill an mm-less task %d (%s)!\n", | ||
| 395 | task_pid_nr(p), p->comm); | ||
| 396 | task_unlock(p); | 405 | task_unlock(p); |
| 397 | return; | 406 | return 1; |
| 398 | } | 407 | } |
| 399 | 408 | pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", | |
| 400 | if (verbose) | 409 | task_pid_nr(p), p->comm, K(p->mm->total_vm), |
| 401 | printk(KERN_ERR "Killed process %d (%s) " | 410 | K(get_mm_counter(p->mm, MM_ANONPAGES)), |
| 402 | "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n", | 411 | K(get_mm_counter(p->mm, MM_FILEPAGES))); |
| 403 | task_pid_nr(p), p->comm, | ||
| 404 | K(p->mm->total_vm), | ||
| 405 | K(get_mm_counter(p->mm, MM_ANONPAGES)), | ||
| 406 | K(get_mm_counter(p->mm, MM_FILEPAGES))); | ||
| 407 | task_unlock(p); | 412 | task_unlock(p); |
| 408 | 413 | ||
| 414 | |||
| 415 | set_tsk_thread_flag(p, TIF_MEMDIE); | ||
| 416 | force_sig(SIGKILL, p); | ||
| 417 | |||
| 409 | /* | 418 | /* |
| 410 | * We give our sacrificial lamb high priority and access to | 419 | * We give our sacrificial lamb high priority and access to |
| 411 | * all the memory it needs. That way it should be able to | 420 | * all the memory it needs. That way it should be able to |
| 412 | * exit() and clear out its resources quickly... | 421 | * exit() and clear out its resources quickly... |
| 413 | */ | 422 | */ |
| 414 | p->rt.time_slice = HZ; | 423 | boost_dying_task_prio(p, mem); |
| 415 | set_tsk_thread_flag(p, TIF_MEMDIE); | ||
| 416 | |||
| 417 | force_sig(SIGKILL, p); | ||
| 418 | } | ||
| 419 | |||
| 420 | static int oom_kill_task(struct task_struct *p) | ||
| 421 | { | ||
| 422 | /* WARNING: mm may not be dereferenced since we did not obtain its | ||
| 423 | * value from get_task_mm(p). This is OK since all we need to do is | ||
| 424 | * compare mm to q->mm below. | ||
| 425 | * | ||
| 426 | * Furthermore, even if mm contains a non-NULL value, p->mm may | ||
| 427 | * change to NULL at any time since we do not hold task_lock(p). | ||
| 428 | * However, this is of no concern to us. | ||
| 429 | */ | ||
| 430 | if (!p->mm || p->signal->oom_adj == OOM_DISABLE) | ||
| 431 | return 1; | ||
| 432 | |||
| 433 | __oom_kill_task(p, 1); | ||
| 434 | 424 | ||
| 435 | return 0; | 425 | return 0; |
| 436 | } | 426 | } |
| 427 | #undef K | ||
| 437 | 428 | ||
| 438 | static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, | 429 | static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, |
| 439 | unsigned long points, struct mem_cgroup *mem, | 430 | unsigned int points, unsigned long totalpages, |
| 431 | struct mem_cgroup *mem, nodemask_t *nodemask, | ||
| 440 | const char *message) | 432 | const char *message) |
| 441 | { | 433 | { |
| 442 | struct task_struct *c; | 434 | struct task_struct *victim = p; |
| 435 | struct task_struct *child; | ||
| 436 | struct task_struct *t = p; | ||
| 437 | unsigned int victim_points = 0; | ||
| 443 | 438 | ||
| 444 | if (printk_ratelimit()) | 439 | if (printk_ratelimit()) |
| 445 | dump_header(p, gfp_mask, order, mem); | 440 | dump_header(p, gfp_mask, order, mem); |
| @@ -449,40 +444,81 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, | |||
| 449 | * its children or threads, just set TIF_MEMDIE so it can die quickly | 444 | * its children or threads, just set TIF_MEMDIE so it can die quickly |
| 450 | */ | 445 | */ |
| 451 | if (p->flags & PF_EXITING) { | 446 | if (p->flags & PF_EXITING) { |
| 452 | __oom_kill_task(p, 0); | 447 | set_tsk_thread_flag(p, TIF_MEMDIE); |
| 448 | boost_dying_task_prio(p, mem); | ||
| 453 | return 0; | 449 | return 0; |
| 454 | } | 450 | } |
| 455 | 451 | ||
| 456 | printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", | 452 | task_lock(p); |
| 457 | message, task_pid_nr(p), p->comm, points); | 453 | pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", |
| 454 | message, task_pid_nr(p), p->comm, points); | ||
| 455 | task_unlock(p); | ||
| 458 | 456 | ||
| 459 | /* Try to kill a child first */ | 457 | /* |
| 460 | list_for_each_entry(c, &p->children, sibling) { | 458 | * If any of p's children has a different mm and is eligible for kill, |
| 461 | if (c->mm == p->mm) | 459 | * the one with the highest badness() score is sacrificed for its |
| 462 | continue; | 460 | * parent. This attempts to lose the minimal amount of work done while |
| 463 | if (mem && !task_in_mem_cgroup(c, mem)) | 461 | * still freeing memory. |
| 464 | continue; | 462 | */ |
| 465 | if (!oom_kill_task(c)) | 463 | do { |
| 466 | return 0; | 464 | list_for_each_entry(child, &t->children, sibling) { |
| 465 | unsigned int child_points; | ||
| 466 | |||
| 467 | /* | ||
| 468 | * oom_badness() returns 0 if the thread is unkillable | ||
| 469 | */ | ||
| 470 | child_points = oom_badness(child, mem, nodemask, | ||
| 471 | totalpages); | ||
| 472 | if (child_points > victim_points) { | ||
| 473 | victim = child; | ||
| 474 | victim_points = child_points; | ||
| 475 | } | ||
| 476 | } | ||
| 477 | } while_each_thread(p, t); | ||
| 478 | |||
| 479 | return oom_kill_task(victim, mem); | ||
| 480 | } | ||
| 481 | |||
| 482 | /* | ||
| 483 | * Determines whether the kernel must panic because of the panic_on_oom sysctl. | ||
| 484 | */ | ||
| 485 | static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, | ||
| 486 | int order) | ||
| 487 | { | ||
| 488 | if (likely(!sysctl_panic_on_oom)) | ||
| 489 | return; | ||
| 490 | if (sysctl_panic_on_oom != 2) { | ||
| 491 | /* | ||
| 492 | * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel | ||
| 493 | * does not panic for cpuset, mempolicy, or memcg allocation | ||
| 494 | * failures. | ||
| 495 | */ | ||
| 496 | if (constraint != CONSTRAINT_NONE) | ||
| 497 | return; | ||
| 467 | } | 498 | } |
| 468 | return oom_kill_task(p); | 499 | read_lock(&tasklist_lock); |
| 500 | dump_header(NULL, gfp_mask, order, NULL); | ||
| 501 | read_unlock(&tasklist_lock); | ||
| 502 | panic("Out of memory: %s panic_on_oom is enabled\n", | ||
| 503 | sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); | ||
| 469 | } | 504 | } |
| 470 | 505 | ||
| 471 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 506 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| 472 | void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) | 507 | void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) |
| 473 | { | 508 | { |
| 474 | unsigned long points = 0; | 509 | unsigned long limit; |
| 510 | unsigned int points = 0; | ||
| 475 | struct task_struct *p; | 511 | struct task_struct *p; |
| 476 | 512 | ||
| 477 | if (sysctl_panic_on_oom == 2) | 513 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0); |
| 478 | panic("out of memory(memcg). panic_on_oom is selected.\n"); | 514 | limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; |
| 479 | read_lock(&tasklist_lock); | 515 | read_lock(&tasklist_lock); |
| 480 | retry: | 516 | retry: |
| 481 | p = select_bad_process(&points, mem); | 517 | p = select_bad_process(&points, limit, mem, NULL); |
| 482 | if (!p || PTR_ERR(p) == -1UL) | 518 | if (!p || PTR_ERR(p) == -1UL) |
| 483 | goto out; | 519 | goto out; |
| 484 | 520 | ||
| 485 | if (oom_kill_process(p, gfp_mask, 0, points, mem, | 521 | if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, |
| 486 | "Memory cgroup out of memory")) | 522 | "Memory cgroup out of memory")) |
| 487 | goto retry; | 523 | goto retry; |
| 488 | out: | 524 | out: |
| @@ -509,7 +545,7 @@ EXPORT_SYMBOL_GPL(unregister_oom_notifier); | |||
| 509 | * if a parallel OOM killing is already taking place that includes a zone in | 545 | * if a parallel OOM killing is already taking place that includes a zone in |
| 510 | * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. | 546 | * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. |
| 511 | */ | 547 | */ |
| 512 | int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) | 548 | int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) |
| 513 | { | 549 | { |
| 514 | struct zoneref *z; | 550 | struct zoneref *z; |
| 515 | struct zone *zone; | 551 | struct zone *zone; |
| @@ -526,7 +562,7 @@ int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) | |||
| 526 | for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 562 | for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { |
| 527 | /* | 563 | /* |
| 528 | * Lock each zone in the zonelist under zone_scan_lock so a | 564 | * Lock each zone in the zonelist under zone_scan_lock so a |
| 529 | * parallel invocation of try_set_zone_oom() doesn't succeed | 565 | * parallel invocation of try_set_zonelist_oom() doesn't succeed |
| 530 | * when it shouldn't. | 566 | * when it shouldn't. |
| 531 | */ | 567 | */ |
| 532 | zone_set_flag(zone, ZONE_OOM_LOCKED); | 568 | zone_set_flag(zone, ZONE_OOM_LOCKED); |
| @@ -555,65 +591,40 @@ void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) | |||
| 555 | } | 591 | } |
| 556 | 592 | ||
| 557 | /* | 593 | /* |
| 558 | * Must be called with tasklist_lock held for read. | 594 | * Try to acquire the oom killer lock for all system zones. Returns zero if a |
| 595 | * parallel oom killing is taking place, otherwise locks all zones and returns | ||
| 596 | * non-zero. | ||
| 559 | */ | 597 | */ |
| 560 | static void __out_of_memory(gfp_t gfp_mask, int order) | 598 | static int try_set_system_oom(void) |
| 561 | { | 599 | { |
| 562 | struct task_struct *p; | 600 | struct zone *zone; |
| 563 | unsigned long points; | 601 | int ret = 1; |
| 564 | |||
| 565 | if (sysctl_oom_kill_allocating_task) | ||
| 566 | if (!oom_kill_process(current, gfp_mask, order, 0, NULL, | ||
| 567 | "Out of memory (oom_kill_allocating_task)")) | ||
| 568 | return; | ||
| 569 | retry: | ||
| 570 | /* | ||
| 571 | * Rambo mode: Shoot down a process and hope it solves whatever | ||
| 572 | * issues we may have. | ||
| 573 | */ | ||
| 574 | p = select_bad_process(&points, NULL); | ||
| 575 | |||
| 576 | if (PTR_ERR(p) == -1UL) | ||
| 577 | return; | ||
| 578 | |||
| 579 | /* Found nothing?!?! Either we hang forever, or we panic. */ | ||
| 580 | if (!p) { | ||
| 581 | read_unlock(&tasklist_lock); | ||
| 582 | dump_header(NULL, gfp_mask, order, NULL); | ||
| 583 | panic("Out of memory and no killable processes...\n"); | ||
| 584 | } | ||
| 585 | 602 | ||
| 586 | if (oom_kill_process(p, gfp_mask, order, points, NULL, | 603 | spin_lock(&zone_scan_lock); |
| 587 | "Out of memory")) | 604 | for_each_populated_zone(zone) |
| 588 | goto retry; | 605 | if (zone_is_oom_locked(zone)) { |
| 606 | ret = 0; | ||
| 607 | goto out; | ||
| 608 | } | ||
| 609 | for_each_populated_zone(zone) | ||
| 610 | zone_set_flag(zone, ZONE_OOM_LOCKED); | ||
| 611 | out: | ||
| 612 | spin_unlock(&zone_scan_lock); | ||
| 613 | return ret; | ||
| 589 | } | 614 | } |
| 590 | 615 | ||
| 591 | /* | 616 | /* |
| 592 | * pagefault handler calls into here because it is out of memory but | 617 | * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation |
| 593 | * doesn't know exactly how or why. | 618 | * attempts or page faults may now recall the oom killer, if necessary. |
| 594 | */ | 619 | */ |
| 595 | void pagefault_out_of_memory(void) | 620 | static void clear_system_oom(void) |
| 596 | { | 621 | { |
| 597 | unsigned long freed = 0; | 622 | struct zone *zone; |
| 598 | |||
| 599 | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | ||
| 600 | if (freed > 0) | ||
| 601 | /* Got some memory back in the last second. */ | ||
| 602 | return; | ||
| 603 | |||
| 604 | if (sysctl_panic_on_oom) | ||
| 605 | panic("out of memory from page fault. panic_on_oom is selected.\n"); | ||
| 606 | |||
| 607 | read_lock(&tasklist_lock); | ||
| 608 | __out_of_memory(0, 0); /* unknown gfp_mask and order */ | ||
| 609 | read_unlock(&tasklist_lock); | ||
| 610 | 623 | ||
| 611 | /* | 624 | spin_lock(&zone_scan_lock); |
| 612 | * Give "p" a good chance of killing itself before we | 625 | for_each_populated_zone(zone) |
| 613 | * retry to allocate memory. | 626 | zone_clear_flag(zone, ZONE_OOM_LOCKED); |
| 614 | */ | 627 | spin_unlock(&zone_scan_lock); |
| 615 | if (!test_thread_flag(TIF_MEMDIE)) | ||
| 616 | schedule_timeout_uninterruptible(1); | ||
| 617 | } | 628 | } |
| 618 | 629 | ||
| 619 | /** | 630 | /** |
| @@ -621,6 +632,7 @@ void pagefault_out_of_memory(void) | |||
| 621 | * @zonelist: zonelist pointer | 632 | * @zonelist: zonelist pointer |
| 622 | * @gfp_mask: memory allocation flags | 633 | * @gfp_mask: memory allocation flags |
| 623 | * @order: amount of memory being requested as a power of 2 | 634 | * @order: amount of memory being requested as a power of 2 |
| 635 | * @nodemask: nodemask passed to page allocator | ||
| 624 | * | 636 | * |
| 625 | * If we run out of memory, we have the choice between either | 637 | * If we run out of memory, we have the choice between either |
| 626 | * killing a random task (bad), letting the system crash (worse) | 638 | * killing a random task (bad), letting the system crash (worse) |
| @@ -630,43 +642,68 @@ void pagefault_out_of_memory(void) | |||
| 630 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, | 642 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, |
| 631 | int order, nodemask_t *nodemask) | 643 | int order, nodemask_t *nodemask) |
| 632 | { | 644 | { |
| 645 | struct task_struct *p; | ||
| 646 | unsigned long totalpages; | ||
| 633 | unsigned long freed = 0; | 647 | unsigned long freed = 0; |
| 634 | enum oom_constraint constraint; | 648 | unsigned int points; |
| 649 | enum oom_constraint constraint = CONSTRAINT_NONE; | ||
| 635 | 650 | ||
| 636 | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | 651 | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); |
| 637 | if (freed > 0) | 652 | if (freed > 0) |
| 638 | /* Got some memory back in the last second. */ | 653 | /* Got some memory back in the last second. */ |
| 639 | return; | 654 | return; |
| 640 | 655 | ||
| 641 | if (sysctl_panic_on_oom == 2) { | 656 | /* |
| 642 | dump_header(NULL, gfp_mask, order, NULL); | 657 | * If current has a pending SIGKILL, then automatically select it. The |
| 643 | panic("out of memory. Compulsory panic_on_oom is selected.\n"); | 658 | * goal is to allow it to allocate so that it may quickly exit and free |
| 659 | * its memory. | ||
| 660 | */ | ||
| 661 | if (fatal_signal_pending(current)) { | ||
| 662 | set_thread_flag(TIF_MEMDIE); | ||
| 663 | boost_dying_task_prio(current, NULL); | ||
| 664 | return; | ||
| 644 | } | 665 | } |
| 645 | 666 | ||
| 646 | /* | 667 | /* |
| 647 | * Check if there were limitations on the allocation (only relevant for | 668 | * Check if there were limitations on the allocation (only relevant for |
| 648 | * NUMA) that may require different handling. | 669 | * NUMA) that may require different handling. |
| 649 | */ | 670 | */ |
| 650 | constraint = constrained_alloc(zonelist, gfp_mask, nodemask); | 671 | constraint = constrained_alloc(zonelist, gfp_mask, nodemask, |
| 672 | &totalpages); | ||
| 673 | check_panic_on_oom(constraint, gfp_mask, order); | ||
| 674 | |||
| 651 | read_lock(&tasklist_lock); | 675 | read_lock(&tasklist_lock); |
| 676 | if (sysctl_oom_kill_allocating_task && | ||
| 677 | !oom_unkillable_task(current, NULL, nodemask) && | ||
| 678 | (current->signal->oom_adj != OOM_DISABLE)) { | ||
| 679 | /* | ||
| 680 | * oom_kill_process() needs tasklist_lock held. If it returns | ||
| 681 | * non-zero, current could not be killed so we must fallback to | ||
| 682 | * the tasklist scan. | ||
| 683 | */ | ||
| 684 | if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, | ||
| 685 | NULL, nodemask, | ||
| 686 | "Out of memory (oom_kill_allocating_task)")) | ||
| 687 | return; | ||
| 688 | } | ||
| 652 | 689 | ||
| 653 | switch (constraint) { | 690 | retry: |
| 654 | case CONSTRAINT_MEMORY_POLICY: | 691 | p = select_bad_process(&points, totalpages, NULL, |
| 655 | oom_kill_process(current, gfp_mask, order, 0, NULL, | 692 | constraint == CONSTRAINT_MEMORY_POLICY ? nodemask : |
| 656 | "No available memory (MPOL_BIND)"); | 693 | NULL); |
| 657 | break; | 694 | if (PTR_ERR(p) == -1UL) |
| 695 | return; | ||
| 658 | 696 | ||
| 659 | case CONSTRAINT_NONE: | 697 | /* Found nothing?!?! Either we hang forever, or we panic. */ |
| 660 | if (sysctl_panic_on_oom) { | 698 | if (!p) { |
| 661 | dump_header(NULL, gfp_mask, order, NULL); | 699 | dump_header(NULL, gfp_mask, order, NULL); |
| 662 | panic("out of memory. panic_on_oom is selected\n"); | 700 | read_unlock(&tasklist_lock); |
| 663 | } | 701 | panic("Out of memory and no killable processes...\n"); |
| 664 | /* Fall-through */ | ||
| 665 | case CONSTRAINT_CPUSET: | ||
| 666 | __out_of_memory(gfp_mask, order); | ||
| 667 | break; | ||
| 668 | } | 702 | } |
| 669 | 703 | ||
| 704 | if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, | ||
| 705 | nodemask, "Out of memory")) | ||
| 706 | goto retry; | ||
| 670 | read_unlock(&tasklist_lock); | 707 | read_unlock(&tasklist_lock); |
| 671 | 708 | ||
| 672 | /* | 709 | /* |
| @@ -676,3 +713,19 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, | |||
| 676 | if (!test_thread_flag(TIF_MEMDIE)) | 713 | if (!test_thread_flag(TIF_MEMDIE)) |
| 677 | schedule_timeout_uninterruptible(1); | 714 | schedule_timeout_uninterruptible(1); |
| 678 | } | 715 | } |
| 716 | |||
| 717 | /* | ||
| 718 | * The pagefault handler calls here because it is out of memory, so kill a | ||
| 719 | * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel | ||
| 720 | * oom killing is already in progress so do nothing. If a task is found with | ||
| 721 | * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. | ||
| 722 | */ | ||
| 723 | void pagefault_out_of_memory(void) | ||
| 724 | { | ||
| 725 | if (try_set_system_oom()) { | ||
| 726 | out_of_memory(NULL, 0, 0, NULL); | ||
| 727 | clear_system_oom(); | ||
| 728 | } | ||
| 729 | if (!test_thread_flag(TIF_MEMDIE)) | ||
| 730 | schedule_timeout_uninterruptible(1); | ||
| 731 | } | ||
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 37498ef61548..20890d80c7ef 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
| @@ -34,6 +34,7 @@ | |||
| 34 | #include <linux/syscalls.h> | 34 | #include <linux/syscalls.h> |
| 35 | #include <linux/buffer_head.h> | 35 | #include <linux/buffer_head.h> |
| 36 | #include <linux/pagevec.h> | 36 | #include <linux/pagevec.h> |
| 37 | #include <trace/events/writeback.h> | ||
| 37 | 38 | ||
| 38 | /* | 39 | /* |
| 39 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | 40 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
| @@ -252,32 +253,6 @@ static void bdi_writeout_fraction(struct backing_dev_info *bdi, | |||
| 252 | } | 253 | } |
| 253 | } | 254 | } |
| 254 | 255 | ||
| 255 | /* | ||
| 256 | * Clip the earned share of dirty pages to that which is actually available. | ||
| 257 | * This avoids exceeding the total dirty_limit when the floating averages | ||
| 258 | * fluctuate too quickly. | ||
| 259 | */ | ||
| 260 | static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, | ||
| 261 | unsigned long dirty, unsigned long *pbdi_dirty) | ||
| 262 | { | ||
| 263 | unsigned long avail_dirty; | ||
| 264 | |||
| 265 | avail_dirty = global_page_state(NR_FILE_DIRTY) + | ||
| 266 | global_page_state(NR_WRITEBACK) + | ||
| 267 | global_page_state(NR_UNSTABLE_NFS) + | ||
| 268 | global_page_state(NR_WRITEBACK_TEMP); | ||
| 269 | |||
| 270 | if (avail_dirty < dirty) | ||
| 271 | avail_dirty = dirty - avail_dirty; | ||
| 272 | else | ||
| 273 | avail_dirty = 0; | ||
| 274 | |||
| 275 | avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + | ||
| 276 | bdi_stat(bdi, BDI_WRITEBACK); | ||
| 277 | |||
| 278 | *pbdi_dirty = min(*pbdi_dirty, avail_dirty); | ||
| 279 | } | ||
| 280 | |||
| 281 | static inline void task_dirties_fraction(struct task_struct *tsk, | 256 | static inline void task_dirties_fraction(struct task_struct *tsk, |
| 282 | long *numerator, long *denominator) | 257 | long *numerator, long *denominator) |
| 283 | { | 258 | { |
| @@ -286,16 +261,24 @@ static inline void task_dirties_fraction(struct task_struct *tsk, | |||
| 286 | } | 261 | } |
| 287 | 262 | ||
| 288 | /* | 263 | /* |
| 289 | * scale the dirty limit | 264 | * task_dirty_limit - scale down dirty throttling threshold for one task |
| 290 | * | 265 | * |
| 291 | * task specific dirty limit: | 266 | * task specific dirty limit: |
| 292 | * | 267 | * |
| 293 | * dirty -= (dirty/8) * p_{t} | 268 | * dirty -= (dirty/8) * p_{t} |
| 269 | * | ||
| 270 | * To protect light/slow dirtying tasks from heavier/fast ones, we start | ||
| 271 | * throttling individual tasks before reaching the bdi dirty limit. | ||
| 272 | * Relatively low thresholds will be allocated to heavy dirtiers. So when | ||
| 273 | * dirty pages grow large, heavy dirtiers will be throttled first, which will | ||
| 274 | * effectively curb the growth of dirty pages. Light dirtiers with high enough | ||
| 275 | * dirty threshold may never get throttled. | ||
| 294 | */ | 276 | */ |
| 295 | static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) | 277 | static unsigned long task_dirty_limit(struct task_struct *tsk, |
| 278 | unsigned long bdi_dirty) | ||
| 296 | { | 279 | { |
| 297 | long numerator, denominator; | 280 | long numerator, denominator; |
| 298 | unsigned long dirty = *pdirty; | 281 | unsigned long dirty = bdi_dirty; |
| 299 | u64 inv = dirty >> 3; | 282 | u64 inv = dirty >> 3; |
| 300 | 283 | ||
| 301 | task_dirties_fraction(tsk, &numerator, &denominator); | 284 | task_dirties_fraction(tsk, &numerator, &denominator); |
| @@ -303,10 +286,8 @@ static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) | |||
| 303 | do_div(inv, denominator); | 286 | do_div(inv, denominator); |
| 304 | 287 | ||
| 305 | dirty -= inv; | 288 | dirty -= inv; |
| 306 | if (dirty < *pdirty/2) | ||
| 307 | dirty = *pdirty/2; | ||
| 308 | 289 | ||
| 309 | *pdirty = dirty; | 290 | return max(dirty, bdi_dirty/2); |
| 310 | } | 291 | } |
| 311 | 292 | ||
| 312 | /* | 293 | /* |
| @@ -416,9 +397,16 @@ unsigned long determine_dirtyable_memory(void) | |||
| 416 | return x + 1; /* Ensure that we never return 0 */ | 397 | return x + 1; /* Ensure that we never return 0 */ |
| 417 | } | 398 | } |
| 418 | 399 | ||
| 419 | void | 400 | /** |
| 420 | get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, | 401 | * global_dirty_limits - background-writeback and dirty-throttling thresholds |
| 421 | unsigned long *pbdi_dirty, struct backing_dev_info *bdi) | 402 | * |
| 403 | * Calculate the dirty thresholds based on sysctl parameters | ||
| 404 | * - vm.dirty_background_ratio or vm.dirty_background_bytes | ||
| 405 | * - vm.dirty_ratio or vm.dirty_bytes | ||
| 406 | * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and | ||
| 407 | * runtime tasks. | ||
| 408 | */ | ||
| 409 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) | ||
| 422 | { | 410 | { |
| 423 | unsigned long background; | 411 | unsigned long background; |
| 424 | unsigned long dirty; | 412 | unsigned long dirty; |
| @@ -450,27 +438,37 @@ get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, | |||
| 450 | } | 438 | } |
| 451 | *pbackground = background; | 439 | *pbackground = background; |
| 452 | *pdirty = dirty; | 440 | *pdirty = dirty; |
| 441 | } | ||
| 453 | 442 | ||
| 454 | if (bdi) { | 443 | /** |
| 455 | u64 bdi_dirty; | 444 | * bdi_dirty_limit - @bdi's share of dirty throttling threshold |
| 456 | long numerator, denominator; | 445 | * |
| 446 | * Allocate high/low dirty limits to fast/slow devices, in order to prevent | ||
| 447 | * - starving fast devices | ||
| 448 | * - piling up dirty pages (that will take long time to sync) on slow devices | ||
| 449 | * | ||
| 450 | * The bdi's share of dirty limit will be adapting to its throughput and | ||
| 451 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. | ||
| 452 | */ | ||
| 453 | unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) | ||
| 454 | { | ||
| 455 | u64 bdi_dirty; | ||
| 456 | long numerator, denominator; | ||
| 457 | 457 | ||
| 458 | /* | 458 | /* |
| 459 | * Calculate this BDI's share of the dirty ratio. | 459 | * Calculate this BDI's share of the dirty ratio. |
| 460 | */ | 460 | */ |
| 461 | bdi_writeout_fraction(bdi, &numerator, &denominator); | 461 | bdi_writeout_fraction(bdi, &numerator, &denominator); |
| 462 | 462 | ||
| 463 | bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; | 463 | bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; |
| 464 | bdi_dirty *= numerator; | 464 | bdi_dirty *= numerator; |
| 465 | do_div(bdi_dirty, denominator); | 465 | do_div(bdi_dirty, denominator); |
| 466 | bdi_dirty += (dirty * bdi->min_ratio) / 100; | 466 | |
| 467 | if (bdi_dirty > (dirty * bdi->max_ratio) / 100) | 467 | bdi_dirty += (dirty * bdi->min_ratio) / 100; |
| 468 | bdi_dirty = dirty * bdi->max_ratio / 100; | 468 | if (bdi_dirty > (dirty * bdi->max_ratio) / 100) |
| 469 | 469 | bdi_dirty = dirty * bdi->max_ratio / 100; | |
| 470 | *pbdi_dirty = bdi_dirty; | 470 | |
| 471 | clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); | 471 | return bdi_dirty; |
| 472 | task_dirty_limit(current, pbdi_dirty); | ||
| 473 | } | ||
| 474 | } | 472 | } |
| 475 | 473 | ||
| 476 | /* | 474 | /* |
| @@ -490,7 +488,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
| 490 | unsigned long bdi_thresh; | 488 | unsigned long bdi_thresh; |
| 491 | unsigned long pages_written = 0; | 489 | unsigned long pages_written = 0; |
| 492 | unsigned long pause = 1; | 490 | unsigned long pause = 1; |
| 493 | 491 | bool dirty_exceeded = false; | |
| 494 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 492 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
| 495 | 493 | ||
| 496 | for (;;) { | 494 | for (;;) { |
| @@ -501,18 +499,11 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
| 501 | .range_cyclic = 1, | 499 | .range_cyclic = 1, |
| 502 | }; | 500 | }; |
| 503 | 501 | ||
| 504 | get_dirty_limits(&background_thresh, &dirty_thresh, | ||
| 505 | &bdi_thresh, bdi); | ||
| 506 | |||
| 507 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + | 502 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + |
| 508 | global_page_state(NR_UNSTABLE_NFS); | 503 | global_page_state(NR_UNSTABLE_NFS); |
| 509 | nr_writeback = global_page_state(NR_WRITEBACK); | 504 | nr_writeback = global_page_state(NR_WRITEBACK); |
| 510 | 505 | ||
| 511 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 506 | global_dirty_limits(&background_thresh, &dirty_thresh); |
| 512 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | ||
| 513 | |||
| 514 | if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | ||
| 515 | break; | ||
| 516 | 507 | ||
| 517 | /* | 508 | /* |
| 518 | * Throttle it only when the background writeback cannot | 509 | * Throttle it only when the background writeback cannot |
| @@ -523,24 +514,8 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
| 523 | (background_thresh + dirty_thresh) / 2) | 514 | (background_thresh + dirty_thresh) / 2) |
| 524 | break; | 515 | break; |
| 525 | 516 | ||
| 526 | if (!bdi->dirty_exceeded) | 517 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); |
| 527 | bdi->dirty_exceeded = 1; | 518 | bdi_thresh = task_dirty_limit(current, bdi_thresh); |
| 528 | |||
| 529 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | ||
| 530 | * Unstable writes are a feature of certain networked | ||
| 531 | * filesystems (i.e. NFS) in which data may have been | ||
| 532 | * written to the server's write cache, but has not yet | ||
| 533 | * been flushed to permanent storage. | ||
| 534 | * Only move pages to writeback if this bdi is over its | ||
| 535 | * threshold otherwise wait until the disk writes catch | ||
| 536 | * up. | ||
| 537 | */ | ||
| 538 | if (bdi_nr_reclaimable > bdi_thresh) { | ||
| 539 | writeback_inodes_wb(&bdi->wb, &wbc); | ||
| 540 | pages_written += write_chunk - wbc.nr_to_write; | ||
| 541 | get_dirty_limits(&background_thresh, &dirty_thresh, | ||
| 542 | &bdi_thresh, bdi); | ||
| 543 | } | ||
| 544 | 519 | ||
| 545 | /* | 520 | /* |
| 546 | * In order to avoid the stacked BDI deadlock we need | 521 | * In order to avoid the stacked BDI deadlock we need |
| @@ -555,16 +530,45 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
| 555 | if (bdi_thresh < 2*bdi_stat_error(bdi)) { | 530 | if (bdi_thresh < 2*bdi_stat_error(bdi)) { |
| 556 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); | 531 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); |
| 557 | bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); | 532 | bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); |
| 558 | } else if (bdi_nr_reclaimable) { | 533 | } else { |
| 559 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 534 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); |
| 560 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | 535 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); |
| 561 | } | 536 | } |
| 562 | 537 | ||
| 563 | if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | 538 | /* |
| 539 | * The bdi thresh is somehow "soft" limit derived from the | ||
| 540 | * global "hard" limit. The former helps to prevent heavy IO | ||
| 541 | * bdi or process from holding back light ones; The latter is | ||
| 542 | * the last resort safeguard. | ||
| 543 | */ | ||
| 544 | dirty_exceeded = | ||
| 545 | (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh) | ||
| 546 | || (nr_reclaimable + nr_writeback >= dirty_thresh); | ||
| 547 | |||
| 548 | if (!dirty_exceeded) | ||
| 564 | break; | 549 | break; |
| 565 | if (pages_written >= write_chunk) | ||
| 566 | break; /* We've done our duty */ | ||
| 567 | 550 | ||
| 551 | if (!bdi->dirty_exceeded) | ||
| 552 | bdi->dirty_exceeded = 1; | ||
| 553 | |||
| 554 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | ||
| 555 | * Unstable writes are a feature of certain networked | ||
| 556 | * filesystems (i.e. NFS) in which data may have been | ||
| 557 | * written to the server's write cache, but has not yet | ||
| 558 | * been flushed to permanent storage. | ||
| 559 | * Only move pages to writeback if this bdi is over its | ||
| 560 | * threshold otherwise wait until the disk writes catch | ||
| 561 | * up. | ||
| 562 | */ | ||
| 563 | trace_wbc_balance_dirty_start(&wbc, bdi); | ||
| 564 | if (bdi_nr_reclaimable > bdi_thresh) { | ||
| 565 | writeback_inodes_wb(&bdi->wb, &wbc); | ||
| 566 | pages_written += write_chunk - wbc.nr_to_write; | ||
| 567 | trace_wbc_balance_dirty_written(&wbc, bdi); | ||
| 568 | if (pages_written >= write_chunk) | ||
| 569 | break; /* We've done our duty */ | ||
| 570 | } | ||
| 571 | trace_wbc_balance_dirty_wait(&wbc, bdi); | ||
| 568 | __set_current_state(TASK_INTERRUPTIBLE); | 572 | __set_current_state(TASK_INTERRUPTIBLE); |
| 569 | io_schedule_timeout(pause); | 573 | io_schedule_timeout(pause); |
| 570 | 574 | ||
| @@ -577,8 +581,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
| 577 | pause = HZ / 10; | 581 | pause = HZ / 10; |
| 578 | } | 582 | } |
| 579 | 583 | ||
| 580 | if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && | 584 | if (!dirty_exceeded && bdi->dirty_exceeded) |
| 581 | bdi->dirty_exceeded) | ||
| 582 | bdi->dirty_exceeded = 0; | 585 | bdi->dirty_exceeded = 0; |
| 583 | 586 | ||
| 584 | if (writeback_in_progress(bdi)) | 587 | if (writeback_in_progress(bdi)) |
| @@ -593,9 +596,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
| 593 | * background_thresh, to keep the amount of dirty memory low. | 596 | * background_thresh, to keep the amount of dirty memory low. |
| 594 | */ | 597 | */ |
| 595 | if ((laptop_mode && pages_written) || | 598 | if ((laptop_mode && pages_written) || |
| 596 | (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) | 599 | (!laptop_mode && (nr_reclaimable > background_thresh))) |
| 597 | + global_page_state(NR_UNSTABLE_NFS)) | ||
| 598 | > background_thresh))) | ||
| 599 | bdi_start_background_writeback(bdi); | 600 | bdi_start_background_writeback(bdi); |
| 600 | } | 601 | } |
| 601 | 602 | ||
| @@ -659,7 +660,7 @@ void throttle_vm_writeout(gfp_t gfp_mask) | |||
| 659 | unsigned long dirty_thresh; | 660 | unsigned long dirty_thresh; |
| 660 | 661 | ||
| 661 | for ( ; ; ) { | 662 | for ( ; ; ) { |
| 662 | get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); | 663 | global_dirty_limits(&background_thresh, &dirty_thresh); |
| 663 | 664 | ||
| 664 | /* | 665 | /* |
| 665 | * Boost the allowable dirty threshold a bit for page | 666 | * Boost the allowable dirty threshold a bit for page |
| @@ -805,6 +806,41 @@ void __init page_writeback_init(void) | |||
| 805 | } | 806 | } |
| 806 | 807 | ||
| 807 | /** | 808 | /** |
| 809 | * tag_pages_for_writeback - tag pages to be written by write_cache_pages | ||
| 810 | * @mapping: address space structure to write | ||
| 811 | * @start: starting page index | ||
| 812 | * @end: ending page index (inclusive) | ||
| 813 | * | ||
| 814 | * This function scans the page range from @start to @end (inclusive) and tags | ||
| 815 | * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is | ||
| 816 | * that write_cache_pages (or whoever calls this function) will then use | ||
| 817 | * TOWRITE tag to identify pages eligible for writeback. This mechanism is | ||
| 818 | * used to avoid livelocking of writeback by a process steadily creating new | ||
| 819 | * dirty pages in the file (thus it is important for this function to be quick | ||
| 820 | * so that it can tag pages faster than a dirtying process can create them). | ||
| 821 | */ | ||
| 822 | /* | ||
| 823 | * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. | ||
| 824 | */ | ||
| 825 | void tag_pages_for_writeback(struct address_space *mapping, | ||
| 826 | pgoff_t start, pgoff_t end) | ||
| 827 | { | ||
| 828 | #define WRITEBACK_TAG_BATCH 4096 | ||
| 829 | unsigned long tagged; | ||
| 830 | |||
| 831 | do { | ||
| 832 | spin_lock_irq(&mapping->tree_lock); | ||
| 833 | tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, | ||
| 834 | &start, end, WRITEBACK_TAG_BATCH, | ||
| 835 | PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); | ||
| 836 | spin_unlock_irq(&mapping->tree_lock); | ||
| 837 | WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); | ||
| 838 | cond_resched(); | ||
| 839 | } while (tagged >= WRITEBACK_TAG_BATCH); | ||
| 840 | } | ||
| 841 | EXPORT_SYMBOL(tag_pages_for_writeback); | ||
| 842 | |||
| 843 | /** | ||
| 808 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 844 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. |
| 809 | * @mapping: address space structure to write | 845 | * @mapping: address space structure to write |
| 810 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 846 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write |
| @@ -818,6 +854,13 @@ void __init page_writeback_init(void) | |||
| 818 | * the call was made get new I/O started against them. If wbc->sync_mode is | 854 | * the call was made get new I/O started against them. If wbc->sync_mode is |
| 819 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | 855 | * WB_SYNC_ALL then we were called for data integrity and we must wait for |
| 820 | * existing IO to complete. | 856 | * existing IO to complete. |
| 857 | * | ||
| 858 | * To avoid livelocks (when other process dirties new pages), we first tag | ||
| 859 | * pages which should be written back with TOWRITE tag and only then start | ||
| 860 | * writing them. For data-integrity sync we have to be careful so that we do | ||
| 861 | * not miss some pages (e.g., because some other process has cleared TOWRITE | ||
| 862 | * tag we set). The rule we follow is that TOWRITE tag can be cleared only | ||
| 863 | * by the process clearing the DIRTY tag (and submitting the page for IO). | ||
| 821 | */ | 864 | */ |
| 822 | int write_cache_pages(struct address_space *mapping, | 865 | int write_cache_pages(struct address_space *mapping, |
| 823 | struct writeback_control *wbc, writepage_t writepage, | 866 | struct writeback_control *wbc, writepage_t writepage, |
| @@ -833,6 +876,7 @@ int write_cache_pages(struct address_space *mapping, | |||
| 833 | pgoff_t done_index; | 876 | pgoff_t done_index; |
| 834 | int cycled; | 877 | int cycled; |
| 835 | int range_whole = 0; | 878 | int range_whole = 0; |
| 879 | int tag; | ||
| 836 | 880 | ||
| 837 | pagevec_init(&pvec, 0); | 881 | pagevec_init(&pvec, 0); |
| 838 | if (wbc->range_cyclic) { | 882 | if (wbc->range_cyclic) { |
| @@ -849,29 +893,19 @@ int write_cache_pages(struct address_space *mapping, | |||
| 849 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 893 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
| 850 | range_whole = 1; | 894 | range_whole = 1; |
| 851 | cycled = 1; /* ignore range_cyclic tests */ | 895 | cycled = 1; /* ignore range_cyclic tests */ |
| 852 | |||
| 853 | /* | ||
| 854 | * If this is a data integrity sync, cap the writeback to the | ||
| 855 | * current end of file. Any extension to the file that occurs | ||
| 856 | * after this is a new write and we don't need to write those | ||
| 857 | * pages out to fulfil our data integrity requirements. If we | ||
| 858 | * try to write them out, we can get stuck in this scan until | ||
| 859 | * the concurrent writer stops adding dirty pages and extending | ||
| 860 | * EOF. | ||
| 861 | */ | ||
| 862 | if (wbc->sync_mode == WB_SYNC_ALL && | ||
| 863 | wbc->range_end == LLONG_MAX) { | ||
| 864 | end = i_size_read(mapping->host) >> PAGE_CACHE_SHIFT; | ||
| 865 | } | ||
| 866 | } | 896 | } |
| 867 | 897 | if (wbc->sync_mode == WB_SYNC_ALL) | |
| 898 | tag = PAGECACHE_TAG_TOWRITE; | ||
| 899 | else | ||
| 900 | tag = PAGECACHE_TAG_DIRTY; | ||
| 868 | retry: | 901 | retry: |
| 902 | if (wbc->sync_mode == WB_SYNC_ALL) | ||
| 903 | tag_pages_for_writeback(mapping, index, end); | ||
| 869 | done_index = index; | 904 | done_index = index; |
| 870 | while (!done && (index <= end)) { | 905 | while (!done && (index <= end)) { |
| 871 | int i; | 906 | int i; |
| 872 | 907 | ||
| 873 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 908 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, |
| 874 | PAGECACHE_TAG_DIRTY, | ||
| 875 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 909 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| 876 | if (nr_pages == 0) | 910 | if (nr_pages == 0) |
| 877 | break; | 911 | break; |
| @@ -929,6 +963,7 @@ continue_unlock: | |||
| 929 | if (!clear_page_dirty_for_io(page)) | 963 | if (!clear_page_dirty_for_io(page)) |
| 930 | goto continue_unlock; | 964 | goto continue_unlock; |
| 931 | 965 | ||
| 966 | trace_wbc_writepage(wbc, mapping->backing_dev_info); | ||
| 932 | ret = (*writepage)(page, wbc, data); | 967 | ret = (*writepage)(page, wbc, data); |
| 933 | if (unlikely(ret)) { | 968 | if (unlikely(ret)) { |
| 934 | if (ret == AOP_WRITEPAGE_ACTIVATE) { | 969 | if (ret == AOP_WRITEPAGE_ACTIVATE) { |
| @@ -1327,6 +1362,9 @@ int test_set_page_writeback(struct page *page) | |||
| 1327 | radix_tree_tag_clear(&mapping->page_tree, | 1362 | radix_tree_tag_clear(&mapping->page_tree, |
| 1328 | page_index(page), | 1363 | page_index(page), |
| 1329 | PAGECACHE_TAG_DIRTY); | 1364 | PAGECACHE_TAG_DIRTY); |
| 1365 | radix_tree_tag_clear(&mapping->page_tree, | ||
| 1366 | page_index(page), | ||
| 1367 | PAGECACHE_TAG_TOWRITE); | ||
| 1330 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | 1368 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
| 1331 | } else { | 1369 | } else { |
| 1332 | ret = TestSetPageWriteback(page); | 1370 | ret = TestSetPageWriteback(page); |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 9bd339eb04c6..a9649f4b261e 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
| @@ -1738,7 +1738,7 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |||
| 1738 | struct page *page; | 1738 | struct page *page; |
| 1739 | 1739 | ||
| 1740 | /* Acquire the OOM killer lock for the zones in zonelist */ | 1740 | /* Acquire the OOM killer lock for the zones in zonelist */ |
| 1741 | if (!try_set_zone_oom(zonelist, gfp_mask)) { | 1741 | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { |
| 1742 | schedule_timeout_uninterruptible(1); | 1742 | schedule_timeout_uninterruptible(1); |
| 1743 | return NULL; | 1743 | return NULL; |
| 1744 | } | 1744 | } |
| @@ -1759,6 +1759,9 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |||
| 1759 | /* The OOM killer will not help higher order allocs */ | 1759 | /* The OOM killer will not help higher order allocs */ |
| 1760 | if (order > PAGE_ALLOC_COSTLY_ORDER) | 1760 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
| 1761 | goto out; | 1761 | goto out; |
| 1762 | /* The OOM killer does not needlessly kill tasks for lowmem */ | ||
| 1763 | if (high_zoneidx < ZONE_NORMAL) | ||
| 1764 | goto out; | ||
| 1762 | /* | 1765 | /* |
| 1763 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. | 1766 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. |
| 1764 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. | 1767 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. |
| @@ -2052,15 +2055,23 @@ rebalance: | |||
| 2052 | if (page) | 2055 | if (page) |
| 2053 | goto got_pg; | 2056 | goto got_pg; |
| 2054 | 2057 | ||
| 2055 | /* | 2058 | if (!(gfp_mask & __GFP_NOFAIL)) { |
| 2056 | * The OOM killer does not trigger for high-order | 2059 | /* |
| 2057 | * ~__GFP_NOFAIL allocations so if no progress is being | 2060 | * The oom killer is not called for high-order |
| 2058 | * made, there are no other options and retrying is | 2061 | * allocations that may fail, so if no progress |
| 2059 | * unlikely to help. | 2062 | * is being made, there are no other options and |
| 2060 | */ | 2063 | * retrying is unlikely to help. |
| 2061 | if (order > PAGE_ALLOC_COSTLY_ORDER && | 2064 | */ |
| 2062 | !(gfp_mask & __GFP_NOFAIL)) | 2065 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
| 2063 | goto nopage; | 2066 | goto nopage; |
| 2067 | /* | ||
| 2068 | * The oom killer is not called for lowmem | ||
| 2069 | * allocations to prevent needlessly killing | ||
| 2070 | * innocent tasks. | ||
| 2071 | */ | ||
| 2072 | if (high_zoneidx < ZONE_NORMAL) | ||
| 2073 | goto nopage; | ||
| 2074 | } | ||
| 2064 | 2075 | ||
| 2065 | goto restart; | 2076 | goto restart; |
| 2066 | } | 2077 | } |
| @@ -4089,8 +4100,6 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
| 4089 | zone_seqlock_init(zone); | 4100 | zone_seqlock_init(zone); |
| 4090 | zone->zone_pgdat = pgdat; | 4101 | zone->zone_pgdat = pgdat; |
| 4091 | 4102 | ||
| 4092 | zone->prev_priority = DEF_PRIORITY; | ||
| 4093 | |||
| 4094 | zone_pcp_init(zone); | 4103 | zone_pcp_init(zone); |
| 4095 | for_each_lru(l) { | 4104 | for_each_lru(l) { |
| 4096 | INIT_LIST_HEAD(&zone->lru[l].list); | 4105 | INIT_LIST_HEAD(&zone->lru[l].list); |
diff --git a/mm/page_io.c b/mm/page_io.c index 31a3b962230a..2dee975bf469 100644 --- a/mm/page_io.c +++ b/mm/page_io.c | |||
| @@ -106,7 +106,7 @@ int swap_writepage(struct page *page, struct writeback_control *wbc) | |||
| 106 | goto out; | 106 | goto out; |
| 107 | } | 107 | } |
| 108 | if (wbc->sync_mode == WB_SYNC_ALL) | 108 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 109 | rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); | 109 | rw |= REQ_SYNC | REQ_UNPLUG; |
| 110 | count_vm_event(PSWPOUT); | 110 | count_vm_event(PSWPOUT); |
| 111 | set_page_writeback(page); | 111 | set_page_writeback(page); |
| 112 | unlock_page(page); | 112 | unlock_page(page); |
| @@ -132,9 +132,14 @@ int anon_vma_prepare(struct vm_area_struct *vma) | |||
| 132 | if (unlikely(!anon_vma)) | 132 | if (unlikely(!anon_vma)) |
| 133 | goto out_enomem_free_avc; | 133 | goto out_enomem_free_avc; |
| 134 | allocated = anon_vma; | 134 | allocated = anon_vma; |
| 135 | /* | ||
| 136 | * This VMA had no anon_vma yet. This anon_vma is | ||
| 137 | * the root of any anon_vma tree that might form. | ||
| 138 | */ | ||
| 139 | anon_vma->root = anon_vma; | ||
| 135 | } | 140 | } |
| 136 | 141 | ||
| 137 | spin_lock(&anon_vma->lock); | 142 | anon_vma_lock(anon_vma); |
| 138 | /* page_table_lock to protect against threads */ | 143 | /* page_table_lock to protect against threads */ |
| 139 | spin_lock(&mm->page_table_lock); | 144 | spin_lock(&mm->page_table_lock); |
| 140 | if (likely(!vma->anon_vma)) { | 145 | if (likely(!vma->anon_vma)) { |
| @@ -142,12 +147,12 @@ int anon_vma_prepare(struct vm_area_struct *vma) | |||
| 142 | avc->anon_vma = anon_vma; | 147 | avc->anon_vma = anon_vma; |
| 143 | avc->vma = vma; | 148 | avc->vma = vma; |
| 144 | list_add(&avc->same_vma, &vma->anon_vma_chain); | 149 | list_add(&avc->same_vma, &vma->anon_vma_chain); |
| 145 | list_add(&avc->same_anon_vma, &anon_vma->head); | 150 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
| 146 | allocated = NULL; | 151 | allocated = NULL; |
| 147 | avc = NULL; | 152 | avc = NULL; |
| 148 | } | 153 | } |
| 149 | spin_unlock(&mm->page_table_lock); | 154 | spin_unlock(&mm->page_table_lock); |
| 150 | spin_unlock(&anon_vma->lock); | 155 | anon_vma_unlock(anon_vma); |
| 151 | 156 | ||
| 152 | if (unlikely(allocated)) | 157 | if (unlikely(allocated)) |
| 153 | anon_vma_free(allocated); | 158 | anon_vma_free(allocated); |
| @@ -170,9 +175,9 @@ static void anon_vma_chain_link(struct vm_area_struct *vma, | |||
| 170 | avc->anon_vma = anon_vma; | 175 | avc->anon_vma = anon_vma; |
| 171 | list_add(&avc->same_vma, &vma->anon_vma_chain); | 176 | list_add(&avc->same_vma, &vma->anon_vma_chain); |
| 172 | 177 | ||
| 173 | spin_lock(&anon_vma->lock); | 178 | anon_vma_lock(anon_vma); |
| 174 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); | 179 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
| 175 | spin_unlock(&anon_vma->lock); | 180 | anon_vma_unlock(anon_vma); |
| 176 | } | 181 | } |
| 177 | 182 | ||
| 178 | /* | 183 | /* |
| @@ -224,9 +229,21 @@ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |||
| 224 | avc = anon_vma_chain_alloc(); | 229 | avc = anon_vma_chain_alloc(); |
| 225 | if (!avc) | 230 | if (!avc) |
| 226 | goto out_error_free_anon_vma; | 231 | goto out_error_free_anon_vma; |
| 227 | anon_vma_chain_link(vma, avc, anon_vma); | 232 | |
| 233 | /* | ||
| 234 | * The root anon_vma's spinlock is the lock actually used when we | ||
| 235 | * lock any of the anon_vmas in this anon_vma tree. | ||
| 236 | */ | ||
| 237 | anon_vma->root = pvma->anon_vma->root; | ||
| 238 | /* | ||
| 239 | * With KSM refcounts, an anon_vma can stay around longer than the | ||
| 240 | * process it belongs to. The root anon_vma needs to be pinned | ||
| 241 | * until this anon_vma is freed, because the lock lives in the root. | ||
| 242 | */ | ||
| 243 | get_anon_vma(anon_vma->root); | ||
| 228 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ | 244 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
| 229 | vma->anon_vma = anon_vma; | 245 | vma->anon_vma = anon_vma; |
| 246 | anon_vma_chain_link(vma, avc, anon_vma); | ||
| 230 | 247 | ||
| 231 | return 0; | 248 | return 0; |
| 232 | 249 | ||
| @@ -246,22 +263,29 @@ static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) | |||
| 246 | if (!anon_vma) | 263 | if (!anon_vma) |
| 247 | return; | 264 | return; |
| 248 | 265 | ||
| 249 | spin_lock(&anon_vma->lock); | 266 | anon_vma_lock(anon_vma); |
| 250 | list_del(&anon_vma_chain->same_anon_vma); | 267 | list_del(&anon_vma_chain->same_anon_vma); |
| 251 | 268 | ||
| 252 | /* We must garbage collect the anon_vma if it's empty */ | 269 | /* We must garbage collect the anon_vma if it's empty */ |
| 253 | empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); | 270 | empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); |
| 254 | spin_unlock(&anon_vma->lock); | 271 | anon_vma_unlock(anon_vma); |
| 255 | 272 | ||
| 256 | if (empty) | 273 | if (empty) { |
| 274 | /* We no longer need the root anon_vma */ | ||
| 275 | if (anon_vma->root != anon_vma) | ||
| 276 | drop_anon_vma(anon_vma->root); | ||
| 257 | anon_vma_free(anon_vma); | 277 | anon_vma_free(anon_vma); |
| 278 | } | ||
| 258 | } | 279 | } |
| 259 | 280 | ||
| 260 | void unlink_anon_vmas(struct vm_area_struct *vma) | 281 | void unlink_anon_vmas(struct vm_area_struct *vma) |
| 261 | { | 282 | { |
| 262 | struct anon_vma_chain *avc, *next; | 283 | struct anon_vma_chain *avc, *next; |
| 263 | 284 | ||
| 264 | /* Unlink each anon_vma chained to the VMA. */ | 285 | /* |
| 286 | * Unlink each anon_vma chained to the VMA. This list is ordered | ||
| 287 | * from newest to oldest, ensuring the root anon_vma gets freed last. | ||
| 288 | */ | ||
| 265 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 289 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
| 266 | anon_vma_unlink(avc); | 290 | anon_vma_unlink(avc); |
| 267 | list_del(&avc->same_vma); | 291 | list_del(&avc->same_vma); |
| @@ -302,7 +326,7 @@ struct anon_vma *page_lock_anon_vma(struct page *page) | |||
| 302 | goto out; | 326 | goto out; |
| 303 | 327 | ||
| 304 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 328 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); |
| 305 | spin_lock(&anon_vma->lock); | 329 | anon_vma_lock(anon_vma); |
| 306 | return anon_vma; | 330 | return anon_vma; |
| 307 | out: | 331 | out: |
| 308 | rcu_read_unlock(); | 332 | rcu_read_unlock(); |
| @@ -311,7 +335,7 @@ out: | |||
| 311 | 335 | ||
| 312 | void page_unlock_anon_vma(struct anon_vma *anon_vma) | 336 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
| 313 | { | 337 | { |
| 314 | spin_unlock(&anon_vma->lock); | 338 | anon_vma_unlock(anon_vma); |
| 315 | rcu_read_unlock(); | 339 | rcu_read_unlock(); |
| 316 | } | 340 | } |
| 317 | 341 | ||
| @@ -340,9 +364,10 @@ vma_address(struct page *page, struct vm_area_struct *vma) | |||
| 340 | */ | 364 | */ |
| 341 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 365 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) |
| 342 | { | 366 | { |
| 343 | if (PageAnon(page)) | 367 | if (PageAnon(page)) { |
| 344 | ; | 368 | if (vma->anon_vma->root != page_anon_vma(page)->root) |
| 345 | else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | 369 | return -EFAULT; |
| 370 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | ||
| 346 | if (!vma->vm_file || | 371 | if (!vma->vm_file || |
| 347 | vma->vm_file->f_mapping != page->mapping) | 372 | vma->vm_file->f_mapping != page->mapping) |
| 348 | return -EFAULT; | 373 | return -EFAULT; |
| @@ -743,14 +768,20 @@ static void __page_set_anon_rmap(struct page *page, | |||
| 743 | * If the page isn't exclusively mapped into this vma, | 768 | * If the page isn't exclusively mapped into this vma, |
| 744 | * we must use the _oldest_ possible anon_vma for the | 769 | * we must use the _oldest_ possible anon_vma for the |
| 745 | * page mapping! | 770 | * page mapping! |
| 746 | * | ||
| 747 | * So take the last AVC chain entry in the vma, which is | ||
| 748 | * the deepest ancestor, and use the anon_vma from that. | ||
| 749 | */ | 771 | */ |
| 750 | if (!exclusive) { | 772 | if (!exclusive) { |
| 751 | struct anon_vma_chain *avc; | 773 | if (PageAnon(page)) |
| 752 | avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma); | 774 | return; |
| 753 | anon_vma = avc->anon_vma; | 775 | anon_vma = anon_vma->root; |
| 776 | } else { | ||
| 777 | /* | ||
| 778 | * In this case, swapped-out-but-not-discarded swap-cache | ||
| 779 | * is remapped. So, no need to update page->mapping here. | ||
| 780 | * We convice anon_vma poitned by page->mapping is not obsolete | ||
| 781 | * because vma->anon_vma is necessary to be a family of it. | ||
| 782 | */ | ||
| 783 | if (PageAnon(page)) | ||
| 784 | return; | ||
| 754 | } | 785 | } |
| 755 | 786 | ||
| 756 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 787 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
| @@ -780,6 +811,7 @@ static void __page_check_anon_rmap(struct page *page, | |||
| 780 | * are initially only visible via the pagetables, and the pte is locked | 811 | * are initially only visible via the pagetables, and the pte is locked |
| 781 | * over the call to page_add_new_anon_rmap. | 812 | * over the call to page_add_new_anon_rmap. |
| 782 | */ | 813 | */ |
| 814 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); | ||
| 783 | BUG_ON(page->index != linear_page_index(vma, address)); | 815 | BUG_ON(page->index != linear_page_index(vma, address)); |
| 784 | #endif | 816 | #endif |
| 785 | } | 817 | } |
| @@ -798,6 +830,17 @@ static void __page_check_anon_rmap(struct page *page, | |||
| 798 | void page_add_anon_rmap(struct page *page, | 830 | void page_add_anon_rmap(struct page *page, |
| 799 | struct vm_area_struct *vma, unsigned long address) | 831 | struct vm_area_struct *vma, unsigned long address) |
| 800 | { | 832 | { |
| 833 | do_page_add_anon_rmap(page, vma, address, 0); | ||
| 834 | } | ||
| 835 | |||
| 836 | /* | ||
| 837 | * Special version of the above for do_swap_page, which often runs | ||
| 838 | * into pages that are exclusively owned by the current process. | ||
| 839 | * Everybody else should continue to use page_add_anon_rmap above. | ||
| 840 | */ | ||
| 841 | void do_page_add_anon_rmap(struct page *page, | ||
| 842 | struct vm_area_struct *vma, unsigned long address, int exclusive) | ||
| 843 | { | ||
| 801 | int first = atomic_inc_and_test(&page->_mapcount); | 844 | int first = atomic_inc_and_test(&page->_mapcount); |
| 802 | if (first) | 845 | if (first) |
| 803 | __inc_zone_page_state(page, NR_ANON_PAGES); | 846 | __inc_zone_page_state(page, NR_ANON_PAGES); |
| @@ -807,7 +850,7 @@ void page_add_anon_rmap(struct page *page, | |||
| 807 | VM_BUG_ON(!PageLocked(page)); | 850 | VM_BUG_ON(!PageLocked(page)); |
| 808 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 851 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
| 809 | if (first) | 852 | if (first) |
| 810 | __page_set_anon_rmap(page, vma, address, 0); | 853 | __page_set_anon_rmap(page, vma, address, exclusive); |
| 811 | else | 854 | else |
| 812 | __page_check_anon_rmap(page, vma, address); | 855 | __page_check_anon_rmap(page, vma, address); |
| 813 | } | 856 | } |
| @@ -1368,6 +1411,42 @@ int try_to_munlock(struct page *page) | |||
| 1368 | return try_to_unmap_file(page, TTU_MUNLOCK); | 1411 | return try_to_unmap_file(page, TTU_MUNLOCK); |
| 1369 | } | 1412 | } |
| 1370 | 1413 | ||
| 1414 | #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) | ||
| 1415 | /* | ||
| 1416 | * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root | ||
| 1417 | * if necessary. Be careful to do all the tests under the lock. Once | ||
| 1418 | * we know we are the last user, nobody else can get a reference and we | ||
| 1419 | * can do the freeing without the lock. | ||
| 1420 | */ | ||
| 1421 | void drop_anon_vma(struct anon_vma *anon_vma) | ||
| 1422 | { | ||
| 1423 | BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); | ||
| 1424 | if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { | ||
| 1425 | struct anon_vma *root = anon_vma->root; | ||
| 1426 | int empty = list_empty(&anon_vma->head); | ||
| 1427 | int last_root_user = 0; | ||
| 1428 | int root_empty = 0; | ||
| 1429 | |||
| 1430 | /* | ||
| 1431 | * The refcount on a non-root anon_vma got dropped. Drop | ||
| 1432 | * the refcount on the root and check if we need to free it. | ||
| 1433 | */ | ||
| 1434 | if (empty && anon_vma != root) { | ||
| 1435 | BUG_ON(atomic_read(&root->external_refcount) <= 0); | ||
| 1436 | last_root_user = atomic_dec_and_test(&root->external_refcount); | ||
| 1437 | root_empty = list_empty(&root->head); | ||
| 1438 | } | ||
| 1439 | anon_vma_unlock(anon_vma); | ||
| 1440 | |||
| 1441 | if (empty) { | ||
| 1442 | anon_vma_free(anon_vma); | ||
| 1443 | if (root_empty && last_root_user) | ||
| 1444 | anon_vma_free(root); | ||
| 1445 | } | ||
| 1446 | } | ||
| 1447 | } | ||
| 1448 | #endif | ||
| 1449 | |||
| 1371 | #ifdef CONFIG_MIGRATION | 1450 | #ifdef CONFIG_MIGRATION |
| 1372 | /* | 1451 | /* |
| 1373 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | 1452 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): |
| @@ -1389,7 +1468,7 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |||
| 1389 | anon_vma = page_anon_vma(page); | 1468 | anon_vma = page_anon_vma(page); |
| 1390 | if (!anon_vma) | 1469 | if (!anon_vma) |
| 1391 | return ret; | 1470 | return ret; |
| 1392 | spin_lock(&anon_vma->lock); | 1471 | anon_vma_lock(anon_vma); |
| 1393 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 1472 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
| 1394 | struct vm_area_struct *vma = avc->vma; | 1473 | struct vm_area_struct *vma = avc->vma; |
| 1395 | unsigned long address = vma_address(page, vma); | 1474 | unsigned long address = vma_address(page, vma); |
| @@ -1399,7 +1478,7 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |||
| 1399 | if (ret != SWAP_AGAIN) | 1478 | if (ret != SWAP_AGAIN) |
| 1400 | break; | 1479 | break; |
| 1401 | } | 1480 | } |
| 1402 | spin_unlock(&anon_vma->lock); | 1481 | anon_vma_unlock(anon_vma); |
| 1403 | return ret; | 1482 | return ret; |
| 1404 | } | 1483 | } |
| 1405 | 1484 | ||
diff --git a/mm/shmem.c b/mm/shmem.c index f65f84062db5..dfaa0f4e9789 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
| @@ -28,6 +28,7 @@ | |||
| 28 | #include <linux/file.h> | 28 | #include <linux/file.h> |
| 29 | #include <linux/mm.h> | 29 | #include <linux/mm.h> |
| 30 | #include <linux/module.h> | 30 | #include <linux/module.h> |
| 31 | #include <linux/percpu_counter.h> | ||
| 31 | #include <linux/swap.h> | 32 | #include <linux/swap.h> |
| 32 | 33 | ||
| 33 | static struct vfsmount *shm_mnt; | 34 | static struct vfsmount *shm_mnt; |
| @@ -233,10 +234,10 @@ static void shmem_free_blocks(struct inode *inode, long pages) | |||
| 233 | { | 234 | { |
| 234 | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 235 | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); |
| 235 | if (sbinfo->max_blocks) { | 236 | if (sbinfo->max_blocks) { |
| 236 | spin_lock(&sbinfo->stat_lock); | 237 | percpu_counter_add(&sbinfo->used_blocks, -pages); |
| 237 | sbinfo->free_blocks += pages; | 238 | spin_lock(&inode->i_lock); |
| 238 | inode->i_blocks -= pages*BLOCKS_PER_PAGE; | 239 | inode->i_blocks -= pages*BLOCKS_PER_PAGE; |
| 239 | spin_unlock(&sbinfo->stat_lock); | 240 | spin_unlock(&inode->i_lock); |
| 240 | } | 241 | } |
| 241 | } | 242 | } |
| 242 | 243 | ||
| @@ -416,19 +417,17 @@ static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long | |||
| 416 | if (sgp == SGP_READ) | 417 | if (sgp == SGP_READ) |
| 417 | return shmem_swp_map(ZERO_PAGE(0)); | 418 | return shmem_swp_map(ZERO_PAGE(0)); |
| 418 | /* | 419 | /* |
| 419 | * Test free_blocks against 1 not 0, since we have 1 data | 420 | * Test used_blocks against 1 less max_blocks, since we have 1 data |
| 420 | * page (and perhaps indirect index pages) yet to allocate: | 421 | * page (and perhaps indirect index pages) yet to allocate: |
| 421 | * a waste to allocate index if we cannot allocate data. | 422 | * a waste to allocate index if we cannot allocate data. |
| 422 | */ | 423 | */ |
| 423 | if (sbinfo->max_blocks) { | 424 | if (sbinfo->max_blocks) { |
| 424 | spin_lock(&sbinfo->stat_lock); | 425 | if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0) |
| 425 | if (sbinfo->free_blocks <= 1) { | ||
| 426 | spin_unlock(&sbinfo->stat_lock); | ||
| 427 | return ERR_PTR(-ENOSPC); | 426 | return ERR_PTR(-ENOSPC); |
| 428 | } | 427 | percpu_counter_inc(&sbinfo->used_blocks); |
| 429 | sbinfo->free_blocks--; | 428 | spin_lock(&inode->i_lock); |
| 430 | inode->i_blocks += BLOCKS_PER_PAGE; | 429 | inode->i_blocks += BLOCKS_PER_PAGE; |
| 431 | spin_unlock(&sbinfo->stat_lock); | 430 | spin_unlock(&inode->i_lock); |
| 432 | } | 431 | } |
| 433 | 432 | ||
| 434 | spin_unlock(&info->lock); | 433 | spin_unlock(&info->lock); |
| @@ -767,6 +766,10 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) | |||
| 767 | loff_t newsize = attr->ia_size; | 766 | loff_t newsize = attr->ia_size; |
| 768 | int error; | 767 | int error; |
| 769 | 768 | ||
| 769 | error = inode_change_ok(inode, attr); | ||
| 770 | if (error) | ||
| 771 | return error; | ||
| 772 | |||
| 770 | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE) | 773 | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE) |
| 771 | && newsize != inode->i_size) { | 774 | && newsize != inode->i_size) { |
| 772 | struct page *page = NULL; | 775 | struct page *page = NULL; |
| @@ -801,25 +804,22 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) | |||
| 801 | } | 804 | } |
| 802 | } | 805 | } |
| 803 | 806 | ||
| 804 | error = simple_setsize(inode, newsize); | 807 | /* XXX(truncate): truncate_setsize should be called last */ |
| 808 | truncate_setsize(inode, newsize); | ||
| 805 | if (page) | 809 | if (page) |
| 806 | page_cache_release(page); | 810 | page_cache_release(page); |
| 807 | if (error) | ||
| 808 | return error; | ||
| 809 | shmem_truncate_range(inode, newsize, (loff_t)-1); | 811 | shmem_truncate_range(inode, newsize, (loff_t)-1); |
| 810 | } | 812 | } |
| 811 | 813 | ||
| 812 | error = inode_change_ok(inode, attr); | 814 | setattr_copy(inode, attr); |
| 813 | if (!error) | ||
| 814 | generic_setattr(inode, attr); | ||
| 815 | #ifdef CONFIG_TMPFS_POSIX_ACL | 815 | #ifdef CONFIG_TMPFS_POSIX_ACL |
| 816 | if (!error && (attr->ia_valid & ATTR_MODE)) | 816 | if (attr->ia_valid & ATTR_MODE) |
| 817 | error = generic_acl_chmod(inode); | 817 | error = generic_acl_chmod(inode); |
| 818 | #endif | 818 | #endif |
| 819 | return error; | 819 | return error; |
| 820 | } | 820 | } |
| 821 | 821 | ||
| 822 | static void shmem_delete_inode(struct inode *inode) | 822 | static void shmem_evict_inode(struct inode *inode) |
| 823 | { | 823 | { |
| 824 | struct shmem_inode_info *info = SHMEM_I(inode); | 824 | struct shmem_inode_info *info = SHMEM_I(inode); |
| 825 | 825 | ||
| @@ -836,7 +836,7 @@ static void shmem_delete_inode(struct inode *inode) | |||
| 836 | } | 836 | } |
| 837 | BUG_ON(inode->i_blocks); | 837 | BUG_ON(inode->i_blocks); |
| 838 | shmem_free_inode(inode->i_sb); | 838 | shmem_free_inode(inode->i_sb); |
| 839 | clear_inode(inode); | 839 | end_writeback(inode); |
| 840 | } | 840 | } |
| 841 | 841 | ||
| 842 | static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) | 842 | static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) |
| @@ -933,7 +933,7 @@ found: | |||
| 933 | 933 | ||
| 934 | /* | 934 | /* |
| 935 | * Move _head_ to start search for next from here. | 935 | * Move _head_ to start search for next from here. |
| 936 | * But be careful: shmem_delete_inode checks list_empty without taking | 936 | * But be careful: shmem_evict_inode checks list_empty without taking |
| 937 | * mutex, and there's an instant in list_move_tail when info->swaplist | 937 | * mutex, and there's an instant in list_move_tail when info->swaplist |
| 938 | * would appear empty, if it were the only one on shmem_swaplist. We | 938 | * would appear empty, if it were the only one on shmem_swaplist. We |
| 939 | * could avoid doing it if inode NULL; or use this minor optimization. | 939 | * could avoid doing it if inode NULL; or use this minor optimization. |
| @@ -1223,6 +1223,7 @@ static int shmem_getpage(struct inode *inode, unsigned long idx, | |||
| 1223 | struct shmem_sb_info *sbinfo; | 1223 | struct shmem_sb_info *sbinfo; |
| 1224 | struct page *filepage = *pagep; | 1224 | struct page *filepage = *pagep; |
| 1225 | struct page *swappage; | 1225 | struct page *swappage; |
| 1226 | struct page *prealloc_page = NULL; | ||
| 1226 | swp_entry_t *entry; | 1227 | swp_entry_t *entry; |
| 1227 | swp_entry_t swap; | 1228 | swp_entry_t swap; |
| 1228 | gfp_t gfp; | 1229 | gfp_t gfp; |
| @@ -1247,7 +1248,6 @@ repeat: | |||
| 1247 | filepage = find_lock_page(mapping, idx); | 1248 | filepage = find_lock_page(mapping, idx); |
| 1248 | if (filepage && PageUptodate(filepage)) | 1249 | if (filepage && PageUptodate(filepage)) |
| 1249 | goto done; | 1250 | goto done; |
| 1250 | error = 0; | ||
| 1251 | gfp = mapping_gfp_mask(mapping); | 1251 | gfp = mapping_gfp_mask(mapping); |
| 1252 | if (!filepage) { | 1252 | if (!filepage) { |
| 1253 | /* | 1253 | /* |
| @@ -1258,7 +1258,19 @@ repeat: | |||
| 1258 | if (error) | 1258 | if (error) |
| 1259 | goto failed; | 1259 | goto failed; |
| 1260 | radix_tree_preload_end(); | 1260 | radix_tree_preload_end(); |
| 1261 | if (sgp != SGP_READ && !prealloc_page) { | ||
| 1262 | /* We don't care if this fails */ | ||
| 1263 | prealloc_page = shmem_alloc_page(gfp, info, idx); | ||
| 1264 | if (prealloc_page) { | ||
| 1265 | if (mem_cgroup_cache_charge(prealloc_page, | ||
| 1266 | current->mm, GFP_KERNEL)) { | ||
| 1267 | page_cache_release(prealloc_page); | ||
| 1268 | prealloc_page = NULL; | ||
| 1269 | } | ||
| 1270 | } | ||
| 1271 | } | ||
| 1261 | } | 1272 | } |
| 1273 | error = 0; | ||
| 1262 | 1274 | ||
| 1263 | spin_lock(&info->lock); | 1275 | spin_lock(&info->lock); |
| 1264 | shmem_recalc_inode(inode); | 1276 | shmem_recalc_inode(inode); |
| @@ -1387,17 +1399,16 @@ repeat: | |||
| 1387 | shmem_swp_unmap(entry); | 1399 | shmem_swp_unmap(entry); |
| 1388 | sbinfo = SHMEM_SB(inode->i_sb); | 1400 | sbinfo = SHMEM_SB(inode->i_sb); |
| 1389 | if (sbinfo->max_blocks) { | 1401 | if (sbinfo->max_blocks) { |
| 1390 | spin_lock(&sbinfo->stat_lock); | 1402 | if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) || |
| 1391 | if (sbinfo->free_blocks == 0 || | ||
| 1392 | shmem_acct_block(info->flags)) { | 1403 | shmem_acct_block(info->flags)) { |
| 1393 | spin_unlock(&sbinfo->stat_lock); | ||
| 1394 | spin_unlock(&info->lock); | 1404 | spin_unlock(&info->lock); |
| 1395 | error = -ENOSPC; | 1405 | error = -ENOSPC; |
| 1396 | goto failed; | 1406 | goto failed; |
| 1397 | } | 1407 | } |
| 1398 | sbinfo->free_blocks--; | 1408 | percpu_counter_inc(&sbinfo->used_blocks); |
| 1409 | spin_lock(&inode->i_lock); | ||
| 1399 | inode->i_blocks += BLOCKS_PER_PAGE; | 1410 | inode->i_blocks += BLOCKS_PER_PAGE; |
| 1400 | spin_unlock(&sbinfo->stat_lock); | 1411 | spin_unlock(&inode->i_lock); |
| 1401 | } else if (shmem_acct_block(info->flags)) { | 1412 | } else if (shmem_acct_block(info->flags)) { |
| 1402 | spin_unlock(&info->lock); | 1413 | spin_unlock(&info->lock); |
| 1403 | error = -ENOSPC; | 1414 | error = -ENOSPC; |
| @@ -1407,28 +1418,38 @@ repeat: | |||
| 1407 | if (!filepage) { | 1418 | if (!filepage) { |
| 1408 | int ret; | 1419 | int ret; |
| 1409 | 1420 | ||
| 1410 | spin_unlock(&info->lock); | 1421 | if (!prealloc_page) { |
| 1411 | filepage = shmem_alloc_page(gfp, info, idx); | 1422 | spin_unlock(&info->lock); |
| 1412 | if (!filepage) { | 1423 | filepage = shmem_alloc_page(gfp, info, idx); |
| 1413 | shmem_unacct_blocks(info->flags, 1); | 1424 | if (!filepage) { |
| 1414 | shmem_free_blocks(inode, 1); | 1425 | shmem_unacct_blocks(info->flags, 1); |
| 1415 | error = -ENOMEM; | 1426 | shmem_free_blocks(inode, 1); |
| 1416 | goto failed; | 1427 | error = -ENOMEM; |
| 1417 | } | 1428 | goto failed; |
| 1418 | SetPageSwapBacked(filepage); | 1429 | } |
| 1430 | SetPageSwapBacked(filepage); | ||
| 1419 | 1431 | ||
| 1420 | /* Precharge page while we can wait, compensate after */ | 1432 | /* |
| 1421 | error = mem_cgroup_cache_charge(filepage, current->mm, | 1433 | * Precharge page while we can wait, compensate |
| 1422 | GFP_KERNEL); | 1434 | * after |
| 1423 | if (error) { | 1435 | */ |
| 1424 | page_cache_release(filepage); | 1436 | error = mem_cgroup_cache_charge(filepage, |
| 1425 | shmem_unacct_blocks(info->flags, 1); | 1437 | current->mm, GFP_KERNEL); |
| 1426 | shmem_free_blocks(inode, 1); | 1438 | if (error) { |
| 1427 | filepage = NULL; | 1439 | page_cache_release(filepage); |
| 1428 | goto failed; | 1440 | shmem_unacct_blocks(info->flags, 1); |
| 1441 | shmem_free_blocks(inode, 1); | ||
| 1442 | filepage = NULL; | ||
| 1443 | goto failed; | ||
| 1444 | } | ||
| 1445 | |||
| 1446 | spin_lock(&info->lock); | ||
| 1447 | } else { | ||
| 1448 | filepage = prealloc_page; | ||
| 1449 | prealloc_page = NULL; | ||
| 1450 | SetPageSwapBacked(filepage); | ||
| 1429 | } | 1451 | } |
| 1430 | 1452 | ||
| 1431 | spin_lock(&info->lock); | ||
| 1432 | entry = shmem_swp_alloc(info, idx, sgp); | 1453 | entry = shmem_swp_alloc(info, idx, sgp); |
| 1433 | if (IS_ERR(entry)) | 1454 | if (IS_ERR(entry)) |
| 1434 | error = PTR_ERR(entry); | 1455 | error = PTR_ERR(entry); |
| @@ -1469,13 +1490,19 @@ repeat: | |||
| 1469 | } | 1490 | } |
| 1470 | done: | 1491 | done: |
| 1471 | *pagep = filepage; | 1492 | *pagep = filepage; |
| 1472 | return 0; | 1493 | error = 0; |
| 1494 | goto out; | ||
| 1473 | 1495 | ||
| 1474 | failed: | 1496 | failed: |
| 1475 | if (*pagep != filepage) { | 1497 | if (*pagep != filepage) { |
| 1476 | unlock_page(filepage); | 1498 | unlock_page(filepage); |
| 1477 | page_cache_release(filepage); | 1499 | page_cache_release(filepage); |
| 1478 | } | 1500 | } |
| 1501 | out: | ||
| 1502 | if (prealloc_page) { | ||
| 1503 | mem_cgroup_uncharge_cache_page(prealloc_page); | ||
| 1504 | page_cache_release(prealloc_page); | ||
| 1505 | } | ||
| 1479 | return error; | 1506 | return error; |
| 1480 | } | 1507 | } |
| 1481 | 1508 | ||
| @@ -1791,17 +1818,16 @@ static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | |||
| 1791 | buf->f_type = TMPFS_MAGIC; | 1818 | buf->f_type = TMPFS_MAGIC; |
| 1792 | buf->f_bsize = PAGE_CACHE_SIZE; | 1819 | buf->f_bsize = PAGE_CACHE_SIZE; |
| 1793 | buf->f_namelen = NAME_MAX; | 1820 | buf->f_namelen = NAME_MAX; |
| 1794 | spin_lock(&sbinfo->stat_lock); | ||
| 1795 | if (sbinfo->max_blocks) { | 1821 | if (sbinfo->max_blocks) { |
| 1796 | buf->f_blocks = sbinfo->max_blocks; | 1822 | buf->f_blocks = sbinfo->max_blocks; |
| 1797 | buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; | 1823 | buf->f_bavail = buf->f_bfree = |
| 1824 | sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); | ||
| 1798 | } | 1825 | } |
| 1799 | if (sbinfo->max_inodes) { | 1826 | if (sbinfo->max_inodes) { |
| 1800 | buf->f_files = sbinfo->max_inodes; | 1827 | buf->f_files = sbinfo->max_inodes; |
| 1801 | buf->f_ffree = sbinfo->free_inodes; | 1828 | buf->f_ffree = sbinfo->free_inodes; |
| 1802 | } | 1829 | } |
| 1803 | /* else leave those fields 0 like simple_statfs */ | 1830 | /* else leave those fields 0 like simple_statfs */ |
| 1804 | spin_unlock(&sbinfo->stat_lock); | ||
| 1805 | return 0; | 1831 | return 0; |
| 1806 | } | 1832 | } |
| 1807 | 1833 | ||
| @@ -2242,7 +2268,6 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | |||
| 2242 | { | 2268 | { |
| 2243 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 2269 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
| 2244 | struct shmem_sb_info config = *sbinfo; | 2270 | struct shmem_sb_info config = *sbinfo; |
| 2245 | unsigned long blocks; | ||
| 2246 | unsigned long inodes; | 2271 | unsigned long inodes; |
| 2247 | int error = -EINVAL; | 2272 | int error = -EINVAL; |
| 2248 | 2273 | ||
| @@ -2250,9 +2275,8 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | |||
| 2250 | return error; | 2275 | return error; |
| 2251 | 2276 | ||
| 2252 | spin_lock(&sbinfo->stat_lock); | 2277 | spin_lock(&sbinfo->stat_lock); |
| 2253 | blocks = sbinfo->max_blocks - sbinfo->free_blocks; | ||
| 2254 | inodes = sbinfo->max_inodes - sbinfo->free_inodes; | 2278 | inodes = sbinfo->max_inodes - sbinfo->free_inodes; |
| 2255 | if (config.max_blocks < blocks) | 2279 | if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) |
| 2256 | goto out; | 2280 | goto out; |
| 2257 | if (config.max_inodes < inodes) | 2281 | if (config.max_inodes < inodes) |
| 2258 | goto out; | 2282 | goto out; |
| @@ -2269,7 +2293,6 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | |||
| 2269 | 2293 | ||
| 2270 | error = 0; | 2294 | error = 0; |
| 2271 | sbinfo->max_blocks = config.max_blocks; | 2295 | sbinfo->max_blocks = config.max_blocks; |
| 2272 | sbinfo->free_blocks = config.max_blocks - blocks; | ||
| 2273 | sbinfo->max_inodes = config.max_inodes; | 2296 | sbinfo->max_inodes = config.max_inodes; |
| 2274 | sbinfo->free_inodes = config.max_inodes - inodes; | 2297 | sbinfo->free_inodes = config.max_inodes - inodes; |
| 2275 | 2298 | ||
| @@ -2344,7 +2367,7 @@ int shmem_fill_super(struct super_block *sb, void *data, int silent) | |||
| 2344 | #endif | 2367 | #endif |
| 2345 | 2368 | ||
| 2346 | spin_lock_init(&sbinfo->stat_lock); | 2369 | spin_lock_init(&sbinfo->stat_lock); |
| 2347 | sbinfo->free_blocks = sbinfo->max_blocks; | 2370 | percpu_counter_init(&sbinfo->used_blocks, 0); |
| 2348 | sbinfo->free_inodes = sbinfo->max_inodes; | 2371 | sbinfo->free_inodes = sbinfo->max_inodes; |
| 2349 | 2372 | ||
| 2350 | sb->s_maxbytes = SHMEM_MAX_BYTES; | 2373 | sb->s_maxbytes = SHMEM_MAX_BYTES; |
| @@ -2496,7 +2519,7 @@ static const struct super_operations shmem_ops = { | |||
| 2496 | .remount_fs = shmem_remount_fs, | 2519 | .remount_fs = shmem_remount_fs, |
| 2497 | .show_options = shmem_show_options, | 2520 | .show_options = shmem_show_options, |
| 2498 | #endif | 2521 | #endif |
| 2499 | .delete_inode = shmem_delete_inode, | 2522 | .evict_inode = shmem_evict_inode, |
| 2500 | .drop_inode = generic_delete_inode, | 2523 | .drop_inode = generic_delete_inode, |
| 2501 | .put_super = shmem_put_super, | 2524 | .put_super = shmem_put_super, |
| 2502 | }; | 2525 | }; |
| @@ -102,7 +102,6 @@ | |||
| 102 | #include <linux/cpu.h> | 102 | #include <linux/cpu.h> |
| 103 | #include <linux/sysctl.h> | 103 | #include <linux/sysctl.h> |
| 104 | #include <linux/module.h> | 104 | #include <linux/module.h> |
| 105 | #include <linux/kmemtrace.h> | ||
| 106 | #include <linux/rcupdate.h> | 105 | #include <linux/rcupdate.h> |
| 107 | #include <linux/string.h> | 106 | #include <linux/string.h> |
| 108 | #include <linux/uaccess.h> | 107 | #include <linux/uaccess.h> |
| @@ -395,7 +394,7 @@ static void kmem_list3_init(struct kmem_list3 *parent) | |||
| 395 | #define STATS_DEC_ACTIVE(x) do { } while (0) | 394 | #define STATS_DEC_ACTIVE(x) do { } while (0) |
| 396 | #define STATS_INC_ALLOCED(x) do { } while (0) | 395 | #define STATS_INC_ALLOCED(x) do { } while (0) |
| 397 | #define STATS_INC_GROWN(x) do { } while (0) | 396 | #define STATS_INC_GROWN(x) do { } while (0) |
| 398 | #define STATS_ADD_REAPED(x,y) do { } while (0) | 397 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
| 399 | #define STATS_SET_HIGH(x) do { } while (0) | 398 | #define STATS_SET_HIGH(x) do { } while (0) |
| 400 | #define STATS_INC_ERR(x) do { } while (0) | 399 | #define STATS_INC_ERR(x) do { } while (0) |
| 401 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | 400 | #define STATS_INC_NODEALLOCS(x) do { } while (0) |
| @@ -861,7 +860,7 @@ static void __cpuinit start_cpu_timer(int cpu) | |||
| 861 | */ | 860 | */ |
| 862 | if (keventd_up() && reap_work->work.func == NULL) { | 861 | if (keventd_up() && reap_work->work.func == NULL) { |
| 863 | init_reap_node(cpu); | 862 | init_reap_node(cpu); |
| 864 | INIT_DELAYED_WORK(reap_work, cache_reap); | 863 | INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); |
| 865 | schedule_delayed_work_on(cpu, reap_work, | 864 | schedule_delayed_work_on(cpu, reap_work, |
| 866 | __round_jiffies_relative(HZ, cpu)); | 865 | __round_jiffies_relative(HZ, cpu)); |
| 867 | } | 866 | } |
| @@ -66,8 +66,10 @@ | |||
| 66 | #include <linux/module.h> | 66 | #include <linux/module.h> |
| 67 | #include <linux/rcupdate.h> | 67 | #include <linux/rcupdate.h> |
| 68 | #include <linux/list.h> | 68 | #include <linux/list.h> |
| 69 | #include <linux/kmemtrace.h> | ||
| 70 | #include <linux/kmemleak.h> | 69 | #include <linux/kmemleak.h> |
| 70 | |||
| 71 | #include <trace/events/kmem.h> | ||
| 72 | |||
| 71 | #include <asm/atomic.h> | 73 | #include <asm/atomic.h> |
| 72 | 74 | ||
| 73 | /* | 75 | /* |
| @@ -394,6 +396,7 @@ static void slob_free(void *block, int size) | |||
| 394 | slob_t *prev, *next, *b = (slob_t *)block; | 396 | slob_t *prev, *next, *b = (slob_t *)block; |
| 395 | slobidx_t units; | 397 | slobidx_t units; |
| 396 | unsigned long flags; | 398 | unsigned long flags; |
| 399 | struct list_head *slob_list; | ||
| 397 | 400 | ||
| 398 | if (unlikely(ZERO_OR_NULL_PTR(block))) | 401 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
| 399 | return; | 402 | return; |
| @@ -422,7 +425,13 @@ static void slob_free(void *block, int size) | |||
| 422 | set_slob(b, units, | 425 | set_slob(b, units, |
| 423 | (void *)((unsigned long)(b + | 426 | (void *)((unsigned long)(b + |
| 424 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | 427 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
| 425 | set_slob_page_free(sp, &free_slob_small); | 428 | if (size < SLOB_BREAK1) |
| 429 | slob_list = &free_slob_small; | ||
| 430 | else if (size < SLOB_BREAK2) | ||
| 431 | slob_list = &free_slob_medium; | ||
| 432 | else | ||
| 433 | slob_list = &free_slob_large; | ||
| 434 | set_slob_page_free(sp, slob_list); | ||
| 426 | goto out; | 435 | goto out; |
| 427 | } | 436 | } |
| 428 | 437 | ||
| @@ -639,7 +648,6 @@ void kmem_cache_free(struct kmem_cache *c, void *b) | |||
| 639 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { | 648 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
| 640 | struct slob_rcu *slob_rcu; | 649 | struct slob_rcu *slob_rcu; |
| 641 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | 650 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
| 642 | INIT_RCU_HEAD(&slob_rcu->head); | ||
| 643 | slob_rcu->size = c->size; | 651 | slob_rcu->size = c->size; |
| 644 | call_rcu(&slob_rcu->head, kmem_rcu_free); | 652 | call_rcu(&slob_rcu->head, kmem_rcu_free); |
| 645 | } else { | 653 | } else { |
| @@ -17,7 +17,6 @@ | |||
| 17 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
| 18 | #include <linux/proc_fs.h> | 18 | #include <linux/proc_fs.h> |
| 19 | #include <linux/seq_file.h> | 19 | #include <linux/seq_file.h> |
| 20 | #include <linux/kmemtrace.h> | ||
| 21 | #include <linux/kmemcheck.h> | 20 | #include <linux/kmemcheck.h> |
| 22 | #include <linux/cpu.h> | 21 | #include <linux/cpu.h> |
| 23 | #include <linux/cpuset.h> | 22 | #include <linux/cpuset.h> |
| @@ -107,11 +106,17 @@ | |||
| 107 | * the fast path and disables lockless freelists. | 106 | * the fast path and disables lockless freelists. |
| 108 | */ | 107 | */ |
| 109 | 108 | ||
| 109 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | ||
| 110 | SLAB_TRACE | SLAB_DEBUG_FREE) | ||
| 111 | |||
| 112 | static inline int kmem_cache_debug(struct kmem_cache *s) | ||
| 113 | { | ||
| 110 | #ifdef CONFIG_SLUB_DEBUG | 114 | #ifdef CONFIG_SLUB_DEBUG |
| 111 | #define SLABDEBUG 1 | 115 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
| 112 | #else | 116 | #else |
| 113 | #define SLABDEBUG 0 | 117 | return 0; |
| 114 | #endif | 118 | #endif |
| 119 | } | ||
| 115 | 120 | ||
| 116 | /* | 121 | /* |
| 117 | * Issues still to be resolved: | 122 | * Issues still to be resolved: |
| @@ -162,8 +167,8 @@ | |||
| 162 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ | 167 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ |
| 163 | 168 | ||
| 164 | /* Internal SLUB flags */ | 169 | /* Internal SLUB flags */ |
| 165 | #define __OBJECT_POISON 0x80000000 /* Poison object */ | 170 | #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
| 166 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ | 171 | #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */ |
| 167 | 172 | ||
| 168 | static int kmem_size = sizeof(struct kmem_cache); | 173 | static int kmem_size = sizeof(struct kmem_cache); |
| 169 | 174 | ||
| @@ -1073,7 +1078,7 @@ static inline struct page *alloc_slab_page(gfp_t flags, int node, | |||
| 1073 | 1078 | ||
| 1074 | flags |= __GFP_NOTRACK; | 1079 | flags |= __GFP_NOTRACK; |
| 1075 | 1080 | ||
| 1076 | if (node == -1) | 1081 | if (node == NUMA_NO_NODE) |
| 1077 | return alloc_pages(flags, order); | 1082 | return alloc_pages(flags, order); |
| 1078 | else | 1083 | else |
| 1079 | return alloc_pages_exact_node(node, flags, order); | 1084 | return alloc_pages_exact_node(node, flags, order); |
| @@ -1157,9 +1162,6 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |||
| 1157 | inc_slabs_node(s, page_to_nid(page), page->objects); | 1162 | inc_slabs_node(s, page_to_nid(page), page->objects); |
| 1158 | page->slab = s; | 1163 | page->slab = s; |
| 1159 | page->flags |= 1 << PG_slab; | 1164 | page->flags |= 1 << PG_slab; |
| 1160 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | ||
| 1161 | SLAB_STORE_USER | SLAB_TRACE)) | ||
| 1162 | __SetPageSlubDebug(page); | ||
| 1163 | 1165 | ||
| 1164 | start = page_address(page); | 1166 | start = page_address(page); |
| 1165 | 1167 | ||
| @@ -1186,14 +1188,13 @@ static void __free_slab(struct kmem_cache *s, struct page *page) | |||
| 1186 | int order = compound_order(page); | 1188 | int order = compound_order(page); |
| 1187 | int pages = 1 << order; | 1189 | int pages = 1 << order; |
| 1188 | 1190 | ||
| 1189 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { | 1191 | if (kmem_cache_debug(s)) { |
| 1190 | void *p; | 1192 | void *p; |
| 1191 | 1193 | ||
| 1192 | slab_pad_check(s, page); | 1194 | slab_pad_check(s, page); |
| 1193 | for_each_object(p, s, page_address(page), | 1195 | for_each_object(p, s, page_address(page), |
| 1194 | page->objects) | 1196 | page->objects) |
| 1195 | check_object(s, page, p, 0); | 1197 | check_object(s, page, p, 0); |
| 1196 | __ClearPageSlubDebug(page); | ||
| 1197 | } | 1198 | } |
| 1198 | 1199 | ||
| 1199 | kmemcheck_free_shadow(page, compound_order(page)); | 1200 | kmemcheck_free_shadow(page, compound_order(page)); |
| @@ -1387,10 +1388,10 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |||
| 1387 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | 1388 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) |
| 1388 | { | 1389 | { |
| 1389 | struct page *page; | 1390 | struct page *page; |
| 1390 | int searchnode = (node == -1) ? numa_node_id() : node; | 1391 | int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; |
| 1391 | 1392 | ||
| 1392 | page = get_partial_node(get_node(s, searchnode)); | 1393 | page = get_partial_node(get_node(s, searchnode)); |
| 1393 | if (page || (flags & __GFP_THISNODE)) | 1394 | if (page || node != -1) |
| 1394 | return page; | 1395 | return page; |
| 1395 | 1396 | ||
| 1396 | return get_any_partial(s, flags); | 1397 | return get_any_partial(s, flags); |
| @@ -1415,8 +1416,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
| 1415 | stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | 1416 | stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
| 1416 | } else { | 1417 | } else { |
| 1417 | stat(s, DEACTIVATE_FULL); | 1418 | stat(s, DEACTIVATE_FULL); |
| 1418 | if (SLABDEBUG && PageSlubDebug(page) && | 1419 | if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) |
| 1419 | (s->flags & SLAB_STORE_USER)) | ||
| 1420 | add_full(n, page); | 1420 | add_full(n, page); |
| 1421 | } | 1421 | } |
| 1422 | slab_unlock(page); | 1422 | slab_unlock(page); |
| @@ -1515,7 +1515,7 @@ static void flush_all(struct kmem_cache *s) | |||
| 1515 | static inline int node_match(struct kmem_cache_cpu *c, int node) | 1515 | static inline int node_match(struct kmem_cache_cpu *c, int node) |
| 1516 | { | 1516 | { |
| 1517 | #ifdef CONFIG_NUMA | 1517 | #ifdef CONFIG_NUMA |
| 1518 | if (node != -1 && c->node != node) | 1518 | if (node != NUMA_NO_NODE && c->node != node) |
| 1519 | return 0; | 1519 | return 0; |
| 1520 | #endif | 1520 | #endif |
| 1521 | return 1; | 1521 | return 1; |
| @@ -1624,7 +1624,7 @@ load_freelist: | |||
| 1624 | object = c->page->freelist; | 1624 | object = c->page->freelist; |
| 1625 | if (unlikely(!object)) | 1625 | if (unlikely(!object)) |
| 1626 | goto another_slab; | 1626 | goto another_slab; |
| 1627 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) | 1627 | if (kmem_cache_debug(s)) |
| 1628 | goto debug; | 1628 | goto debug; |
| 1629 | 1629 | ||
| 1630 | c->freelist = get_freepointer(s, object); | 1630 | c->freelist = get_freepointer(s, object); |
| @@ -1727,7 +1727,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, | |||
| 1727 | 1727 | ||
| 1728 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 1728 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
| 1729 | { | 1729 | { |
| 1730 | void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); | 1730 | void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); |
| 1731 | 1731 | ||
| 1732 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); | 1732 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); |
| 1733 | 1733 | ||
| @@ -1738,7 +1738,7 @@ EXPORT_SYMBOL(kmem_cache_alloc); | |||
| 1738 | #ifdef CONFIG_TRACING | 1738 | #ifdef CONFIG_TRACING |
| 1739 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) | 1739 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) |
| 1740 | { | 1740 | { |
| 1741 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | 1741 | return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); |
| 1742 | } | 1742 | } |
| 1743 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | 1743 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); |
| 1744 | #endif | 1744 | #endif |
| @@ -1783,7 +1783,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, | |||
| 1783 | stat(s, FREE_SLOWPATH); | 1783 | stat(s, FREE_SLOWPATH); |
| 1784 | slab_lock(page); | 1784 | slab_lock(page); |
| 1785 | 1785 | ||
| 1786 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) | 1786 | if (kmem_cache_debug(s)) |
| 1787 | goto debug; | 1787 | goto debug; |
| 1788 | 1788 | ||
| 1789 | checks_ok: | 1789 | checks_ok: |
| @@ -2490,7 +2490,6 @@ void kmem_cache_destroy(struct kmem_cache *s) | |||
| 2490 | s->refcount--; | 2490 | s->refcount--; |
| 2491 | if (!s->refcount) { | 2491 | if (!s->refcount) { |
| 2492 | list_del(&s->list); | 2492 | list_del(&s->list); |
| 2493 | up_write(&slub_lock); | ||
| 2494 | if (kmem_cache_close(s)) { | 2493 | if (kmem_cache_close(s)) { |
| 2495 | printk(KERN_ERR "SLUB %s: %s called for cache that " | 2494 | printk(KERN_ERR "SLUB %s: %s called for cache that " |
| 2496 | "still has objects.\n", s->name, __func__); | 2495 | "still has objects.\n", s->name, __func__); |
| @@ -2499,8 +2498,8 @@ void kmem_cache_destroy(struct kmem_cache *s) | |||
| 2499 | if (s->flags & SLAB_DESTROY_BY_RCU) | 2498 | if (s->flags & SLAB_DESTROY_BY_RCU) |
| 2500 | rcu_barrier(); | 2499 | rcu_barrier(); |
| 2501 | sysfs_slab_remove(s); | 2500 | sysfs_slab_remove(s); |
| 2502 | } else | 2501 | } |
| 2503 | up_write(&slub_lock); | 2502 | up_write(&slub_lock); |
| 2504 | } | 2503 | } |
| 2505 | EXPORT_SYMBOL(kmem_cache_destroy); | 2504 | EXPORT_SYMBOL(kmem_cache_destroy); |
| 2506 | 2505 | ||
| @@ -2728,7 +2727,7 @@ void *__kmalloc(size_t size, gfp_t flags) | |||
| 2728 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2727 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
| 2729 | return s; | 2728 | return s; |
| 2730 | 2729 | ||
| 2731 | ret = slab_alloc(s, flags, -1, _RET_IP_); | 2730 | ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); |
| 2732 | 2731 | ||
| 2733 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 2732 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
| 2734 | 2733 | ||
| @@ -3118,9 +3117,12 @@ void __init kmem_cache_init(void) | |||
| 3118 | slab_state = UP; | 3117 | slab_state = UP; |
| 3119 | 3118 | ||
| 3120 | /* Provide the correct kmalloc names now that the caches are up */ | 3119 | /* Provide the correct kmalloc names now that the caches are up */ |
| 3121 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) | 3120 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
| 3122 | kmalloc_caches[i]. name = | 3121 | char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); |
| 3123 | kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); | 3122 | |
| 3123 | BUG_ON(!s); | ||
| 3124 | kmalloc_caches[i].name = s; | ||
| 3125 | } | ||
| 3124 | 3126 | ||
| 3125 | #ifdef CONFIG_SMP | 3127 | #ifdef CONFIG_SMP |
| 3126 | register_cpu_notifier(&slab_notifier); | 3128 | register_cpu_notifier(&slab_notifier); |
| @@ -3223,14 +3225,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |||
| 3223 | */ | 3225 | */ |
| 3224 | s->objsize = max(s->objsize, (int)size); | 3226 | s->objsize = max(s->objsize, (int)size); |
| 3225 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 3227 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
| 3226 | up_write(&slub_lock); | ||
| 3227 | 3228 | ||
| 3228 | if (sysfs_slab_alias(s, name)) { | 3229 | if (sysfs_slab_alias(s, name)) { |
| 3229 | down_write(&slub_lock); | ||
| 3230 | s->refcount--; | 3230 | s->refcount--; |
| 3231 | up_write(&slub_lock); | ||
| 3232 | goto err; | 3231 | goto err; |
| 3233 | } | 3232 | } |
| 3233 | up_write(&slub_lock); | ||
| 3234 | return s; | 3234 | return s; |
| 3235 | } | 3235 | } |
| 3236 | 3236 | ||
| @@ -3239,14 +3239,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |||
| 3239 | if (kmem_cache_open(s, GFP_KERNEL, name, | 3239 | if (kmem_cache_open(s, GFP_KERNEL, name, |
| 3240 | size, align, flags, ctor)) { | 3240 | size, align, flags, ctor)) { |
| 3241 | list_add(&s->list, &slab_caches); | 3241 | list_add(&s->list, &slab_caches); |
| 3242 | up_write(&slub_lock); | ||
| 3243 | if (sysfs_slab_add(s)) { | 3242 | if (sysfs_slab_add(s)) { |
| 3244 | down_write(&slub_lock); | ||
| 3245 | list_del(&s->list); | 3243 | list_del(&s->list); |
| 3246 | up_write(&slub_lock); | ||
| 3247 | kfree(s); | 3244 | kfree(s); |
| 3248 | goto err; | 3245 | goto err; |
| 3249 | } | 3246 | } |
| 3247 | up_write(&slub_lock); | ||
| 3250 | return s; | 3248 | return s; |
| 3251 | } | 3249 | } |
| 3252 | kfree(s); | 3250 | kfree(s); |
| @@ -3312,7 +3310,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | |||
| 3312 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3310 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
| 3313 | return s; | 3311 | return s; |
| 3314 | 3312 | ||
| 3315 | ret = slab_alloc(s, gfpflags, -1, caller); | 3313 | ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); |
| 3316 | 3314 | ||
| 3317 | /* Honor the call site pointer we recieved. */ | 3315 | /* Honor the call site pointer we recieved. */ |
| 3318 | trace_kmalloc(caller, ret, size, s->size, gfpflags); | 3316 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
| @@ -3395,16 +3393,6 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page, | |||
| 3395 | } else | 3393 | } else |
| 3396 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | 3394 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", |
| 3397 | s->name, page); | 3395 | s->name, page); |
| 3398 | |||
| 3399 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | ||
| 3400 | if (!PageSlubDebug(page)) | ||
| 3401 | printk(KERN_ERR "SLUB %s: SlubDebug not set " | ||
| 3402 | "on slab 0x%p\n", s->name, page); | ||
| 3403 | } else { | ||
| 3404 | if (PageSlubDebug(page)) | ||
| 3405 | printk(KERN_ERR "SLUB %s: SlubDebug set on " | ||
| 3406 | "slab 0x%p\n", s->name, page); | ||
| 3407 | } | ||
| 3408 | } | 3396 | } |
| 3409 | 3397 | ||
| 3410 | static int validate_slab_node(struct kmem_cache *s, | 3398 | static int validate_slab_node(struct kmem_cache *s, |
| @@ -4504,6 +4492,13 @@ static int sysfs_slab_add(struct kmem_cache *s) | |||
| 4504 | 4492 | ||
| 4505 | static void sysfs_slab_remove(struct kmem_cache *s) | 4493 | static void sysfs_slab_remove(struct kmem_cache *s) |
| 4506 | { | 4494 | { |
| 4495 | if (slab_state < SYSFS) | ||
| 4496 | /* | ||
| 4497 | * Sysfs has not been setup yet so no need to remove the | ||
| 4498 | * cache from sysfs. | ||
| 4499 | */ | ||
| 4500 | return; | ||
| 4501 | |||
| 4507 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 4502 | kobject_uevent(&s->kobj, KOBJ_REMOVE); |
| 4508 | kobject_del(&s->kobj); | 4503 | kobject_del(&s->kobj); |
| 4509 | kobject_put(&s->kobj); | 4504 | kobject_put(&s->kobj); |
| @@ -4549,8 +4544,11 @@ static int __init slab_sysfs_init(void) | |||
| 4549 | struct kmem_cache *s; | 4544 | struct kmem_cache *s; |
| 4550 | int err; | 4545 | int err; |
| 4551 | 4546 | ||
| 4547 | down_write(&slub_lock); | ||
| 4548 | |||
| 4552 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 4549 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
| 4553 | if (!slab_kset) { | 4550 | if (!slab_kset) { |
| 4551 | up_write(&slub_lock); | ||
| 4554 | printk(KERN_ERR "Cannot register slab subsystem.\n"); | 4552 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
| 4555 | return -ENOSYS; | 4553 | return -ENOSYS; |
| 4556 | } | 4554 | } |
| @@ -4575,6 +4573,7 @@ static int __init slab_sysfs_init(void) | |||
| 4575 | kfree(al); | 4573 | kfree(al); |
| 4576 | } | 4574 | } |
| 4577 | 4575 | ||
| 4576 | up_write(&slub_lock); | ||
| 4578 | resiliency_test(); | 4577 | resiliency_test(); |
| 4579 | return 0; | 4578 | return 0; |
| 4580 | } | 4579 | } |
diff --git a/mm/swapfile.c b/mm/swapfile.c index 03aa2d55f1a2..1f3f9c59a73a 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
| @@ -47,6 +47,8 @@ long nr_swap_pages; | |||
| 47 | long total_swap_pages; | 47 | long total_swap_pages; |
| 48 | static int least_priority; | 48 | static int least_priority; |
| 49 | 49 | ||
| 50 | static bool swap_for_hibernation; | ||
| 51 | |||
| 50 | static const char Bad_file[] = "Bad swap file entry "; | 52 | static const char Bad_file[] = "Bad swap file entry "; |
| 51 | static const char Unused_file[] = "Unused swap file entry "; | 53 | static const char Unused_file[] = "Unused swap file entry "; |
| 52 | static const char Bad_offset[] = "Bad swap offset entry "; | 54 | static const char Bad_offset[] = "Bad swap offset entry "; |
| @@ -318,8 +320,10 @@ checks: | |||
| 318 | if (offset > si->highest_bit) | 320 | if (offset > si->highest_bit) |
| 319 | scan_base = offset = si->lowest_bit; | 321 | scan_base = offset = si->lowest_bit; |
| 320 | 322 | ||
| 321 | /* reuse swap entry of cache-only swap if not busy. */ | 323 | /* reuse swap entry of cache-only swap if not hibernation. */ |
| 322 | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 324 | if (vm_swap_full() |
| 325 | && usage == SWAP_HAS_CACHE | ||
| 326 | && si->swap_map[offset] == SWAP_HAS_CACHE) { | ||
| 323 | int swap_was_freed; | 327 | int swap_was_freed; |
| 324 | spin_unlock(&swap_lock); | 328 | spin_unlock(&swap_lock); |
| 325 | swap_was_freed = __try_to_reclaim_swap(si, offset); | 329 | swap_was_freed = __try_to_reclaim_swap(si, offset); |
| @@ -449,6 +453,8 @@ swp_entry_t get_swap_page(void) | |||
| 449 | spin_lock(&swap_lock); | 453 | spin_lock(&swap_lock); |
| 450 | if (nr_swap_pages <= 0) | 454 | if (nr_swap_pages <= 0) |
| 451 | goto noswap; | 455 | goto noswap; |
| 456 | if (swap_for_hibernation) | ||
| 457 | goto noswap; | ||
| 452 | nr_swap_pages--; | 458 | nr_swap_pages--; |
| 453 | 459 | ||
| 454 | for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { | 460 | for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { |
| @@ -481,28 +487,6 @@ noswap: | |||
| 481 | return (swp_entry_t) {0}; | 487 | return (swp_entry_t) {0}; |
| 482 | } | 488 | } |
| 483 | 489 | ||
| 484 | /* The only caller of this function is now susupend routine */ | ||
| 485 | swp_entry_t get_swap_page_of_type(int type) | ||
| 486 | { | ||
| 487 | struct swap_info_struct *si; | ||
| 488 | pgoff_t offset; | ||
| 489 | |||
| 490 | spin_lock(&swap_lock); | ||
| 491 | si = swap_info[type]; | ||
| 492 | if (si && (si->flags & SWP_WRITEOK)) { | ||
| 493 | nr_swap_pages--; | ||
| 494 | /* This is called for allocating swap entry, not cache */ | ||
| 495 | offset = scan_swap_map(si, 1); | ||
| 496 | if (offset) { | ||
| 497 | spin_unlock(&swap_lock); | ||
| 498 | return swp_entry(type, offset); | ||
| 499 | } | ||
| 500 | nr_swap_pages++; | ||
| 501 | } | ||
| 502 | spin_unlock(&swap_lock); | ||
| 503 | return (swp_entry_t) {0}; | ||
| 504 | } | ||
| 505 | |||
| 506 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) | 490 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) |
| 507 | { | 491 | { |
| 508 | struct swap_info_struct *p; | 492 | struct swap_info_struct *p; |
| @@ -762,6 +746,74 @@ int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) | |||
| 762 | #endif | 746 | #endif |
| 763 | 747 | ||
| 764 | #ifdef CONFIG_HIBERNATION | 748 | #ifdef CONFIG_HIBERNATION |
| 749 | |||
| 750 | static pgoff_t hibernation_offset[MAX_SWAPFILES]; | ||
| 751 | /* | ||
| 752 | * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise, | ||
| 753 | * saved swap_map[] image to the disk will be an incomplete because it's | ||
| 754 | * changing without synchronization with hibernation snap shot. | ||
| 755 | * At resume, we just make swap_for_hibernation=false. We can forget | ||
| 756 | * used maps easily. | ||
| 757 | */ | ||
| 758 | void hibernation_freeze_swap(void) | ||
| 759 | { | ||
| 760 | int i; | ||
| 761 | |||
| 762 | spin_lock(&swap_lock); | ||
| 763 | |||
| 764 | printk(KERN_INFO "PM: Freeze Swap\n"); | ||
| 765 | swap_for_hibernation = true; | ||
| 766 | for (i = 0; i < MAX_SWAPFILES; i++) | ||
| 767 | hibernation_offset[i] = 1; | ||
| 768 | spin_unlock(&swap_lock); | ||
| 769 | } | ||
| 770 | |||
| 771 | void hibernation_thaw_swap(void) | ||
| 772 | { | ||
| 773 | spin_lock(&swap_lock); | ||
| 774 | if (swap_for_hibernation) { | ||
| 775 | printk(KERN_INFO "PM: Thaw Swap\n"); | ||
| 776 | swap_for_hibernation = false; | ||
| 777 | } | ||
| 778 | spin_unlock(&swap_lock); | ||
| 779 | } | ||
| 780 | |||
| 781 | /* | ||
| 782 | * Because updateing swap_map[] can make not-saved-status-change, | ||
| 783 | * we use our own easy allocator. | ||
| 784 | * Please see kernel/power/swap.c, Used swaps are recorded into | ||
| 785 | * RB-tree. | ||
| 786 | */ | ||
| 787 | swp_entry_t get_swap_for_hibernation(int type) | ||
| 788 | { | ||
| 789 | pgoff_t off; | ||
| 790 | swp_entry_t val = {0}; | ||
| 791 | struct swap_info_struct *si; | ||
| 792 | |||
| 793 | spin_lock(&swap_lock); | ||
| 794 | |||
| 795 | si = swap_info[type]; | ||
| 796 | if (!si || !(si->flags & SWP_WRITEOK)) | ||
| 797 | goto done; | ||
| 798 | |||
| 799 | for (off = hibernation_offset[type]; off < si->max; ++off) { | ||
| 800 | if (!si->swap_map[off]) | ||
| 801 | break; | ||
| 802 | } | ||
| 803 | if (off < si->max) { | ||
| 804 | val = swp_entry(type, off); | ||
| 805 | hibernation_offset[type] = off + 1; | ||
| 806 | } | ||
| 807 | done: | ||
| 808 | spin_unlock(&swap_lock); | ||
| 809 | return val; | ||
| 810 | } | ||
| 811 | |||
| 812 | void swap_free_for_hibernation(swp_entry_t ent) | ||
| 813 | { | ||
| 814 | /* Nothing to do */ | ||
| 815 | } | ||
| 816 | |||
| 765 | /* | 817 | /* |
| 766 | * Find the swap type that corresponds to given device (if any). | 818 | * Find the swap type that corresponds to given device (if any). |
| 767 | * | 819 | * |
diff --git a/mm/truncate.c b/mm/truncate.c index 937571b8b233..ba887bff48c5 100644 --- a/mm/truncate.c +++ b/mm/truncate.c | |||
| @@ -541,28 +541,48 @@ void truncate_pagecache(struct inode *inode, loff_t old, loff_t new) | |||
| 541 | EXPORT_SYMBOL(truncate_pagecache); | 541 | EXPORT_SYMBOL(truncate_pagecache); |
| 542 | 542 | ||
| 543 | /** | 543 | /** |
| 544 | * truncate_setsize - update inode and pagecache for a new file size | ||
| 545 | * @inode: inode | ||
| 546 | * @newsize: new file size | ||
| 547 | * | ||
| 548 | * truncate_setsize updastes i_size update and performs pagecache | ||
| 549 | * truncation (if necessary) for a file size updates. It will be | ||
| 550 | * typically be called from the filesystem's setattr function when | ||
| 551 | * ATTR_SIZE is passed in. | ||
| 552 | * | ||
| 553 | * Must be called with inode_mutex held and after all filesystem | ||
| 554 | * specific block truncation has been performed. | ||
| 555 | */ | ||
| 556 | void truncate_setsize(struct inode *inode, loff_t newsize) | ||
| 557 | { | ||
| 558 | loff_t oldsize; | ||
| 559 | |||
| 560 | oldsize = inode->i_size; | ||
| 561 | i_size_write(inode, newsize); | ||
| 562 | |||
| 563 | truncate_pagecache(inode, oldsize, newsize); | ||
| 564 | } | ||
| 565 | EXPORT_SYMBOL(truncate_setsize); | ||
| 566 | |||
| 567 | /** | ||
| 544 | * vmtruncate - unmap mappings "freed" by truncate() syscall | 568 | * vmtruncate - unmap mappings "freed" by truncate() syscall |
| 545 | * @inode: inode of the file used | 569 | * @inode: inode of the file used |
| 546 | * @offset: file offset to start truncating | 570 | * @offset: file offset to start truncating |
| 547 | * | 571 | * |
| 548 | * NOTE! We have to be ready to update the memory sharing | 572 | * This function is deprecated and truncate_setsize or truncate_pagecache |
| 549 | * between the file and the memory map for a potential last | 573 | * should be used instead, together with filesystem specific block truncation. |
| 550 | * incomplete page. Ugly, but necessary. | ||
| 551 | * | ||
| 552 | * This function is deprecated and simple_setsize or truncate_pagecache | ||
| 553 | * should be used instead. | ||
| 554 | */ | 574 | */ |
| 555 | int vmtruncate(struct inode *inode, loff_t offset) | 575 | int vmtruncate(struct inode *inode, loff_t offset) |
| 556 | { | 576 | { |
| 557 | int error; | 577 | int error; |
| 558 | 578 | ||
| 559 | error = simple_setsize(inode, offset); | 579 | error = inode_newsize_ok(inode, offset); |
| 560 | if (error) | 580 | if (error) |
| 561 | return error; | 581 | return error; |
| 562 | 582 | ||
| 583 | truncate_setsize(inode, offset); | ||
| 563 | if (inode->i_op->truncate) | 584 | if (inode->i_op->truncate) |
| 564 | inode->i_op->truncate(inode); | 585 | inode->i_op->truncate(inode); |
| 565 | 586 | return 0; | |
| 566 | return error; | ||
| 567 | } | 587 | } |
| 568 | EXPORT_SYMBOL(vmtruncate); | 588 | EXPORT_SYMBOL(vmtruncate); |
| @@ -225,15 +225,10 @@ char *strndup_user(const char __user *s, long n) | |||
| 225 | if (length > n) | 225 | if (length > n) |
| 226 | return ERR_PTR(-EINVAL); | 226 | return ERR_PTR(-EINVAL); |
| 227 | 227 | ||
| 228 | p = kmalloc(length, GFP_KERNEL); | 228 | p = memdup_user(s, length); |
| 229 | 229 | ||
| 230 | if (!p) | 230 | if (IS_ERR(p)) |
| 231 | return ERR_PTR(-ENOMEM); | 231 | return p; |
| 232 | |||
| 233 | if (copy_from_user(p, s, length)) { | ||
| 234 | kfree(p); | ||
| 235 | return ERR_PTR(-EFAULT); | ||
| 236 | } | ||
| 237 | 232 | ||
| 238 | p[length - 1] = '\0'; | 233 | p[length - 1] = '\0'; |
| 239 | 234 | ||
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index ae007462b7f6..6b8889da69a6 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
| @@ -31,6 +31,7 @@ | |||
| 31 | #include <asm/tlbflush.h> | 31 | #include <asm/tlbflush.h> |
| 32 | #include <asm/shmparam.h> | 32 | #include <asm/shmparam.h> |
| 33 | 33 | ||
| 34 | bool vmap_lazy_unmap __read_mostly = true; | ||
| 34 | 35 | ||
| 35 | /*** Page table manipulation functions ***/ | 36 | /*** Page table manipulation functions ***/ |
| 36 | 37 | ||
| @@ -502,6 +503,9 @@ static unsigned long lazy_max_pages(void) | |||
| 502 | { | 503 | { |
| 503 | unsigned int log; | 504 | unsigned int log; |
| 504 | 505 | ||
| 506 | if (!vmap_lazy_unmap) | ||
| 507 | return 0; | ||
| 508 | |||
| 505 | log = fls(num_online_cpus()); | 509 | log = fls(num_online_cpus()); |
| 506 | 510 | ||
| 507 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | 511 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); |
| @@ -732,7 +736,7 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |||
| 732 | node, gfp_mask); | 736 | node, gfp_mask); |
| 733 | if (unlikely(IS_ERR(va))) { | 737 | if (unlikely(IS_ERR(va))) { |
| 734 | kfree(vb); | 738 | kfree(vb); |
| 735 | return ERR_PTR(PTR_ERR(va)); | 739 | return ERR_CAST(va); |
| 736 | } | 740 | } |
| 737 | 741 | ||
| 738 | err = radix_tree_preload(gfp_mask); | 742 | err = radix_tree_preload(gfp_mask); |
| @@ -2403,7 +2407,7 @@ static int s_show(struct seq_file *m, void *p) | |||
| 2403 | seq_printf(m, " pages=%d", v->nr_pages); | 2407 | seq_printf(m, " pages=%d", v->nr_pages); |
| 2404 | 2408 | ||
| 2405 | if (v->phys_addr) | 2409 | if (v->phys_addr) |
| 2406 | seq_printf(m, " phys=%lx", v->phys_addr); | 2410 | seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); |
| 2407 | 2411 | ||
| 2408 | if (v->flags & VM_IOREMAP) | 2412 | if (v->flags & VM_IOREMAP) |
| 2409 | seq_printf(m, " ioremap"); | 2413 | seq_printf(m, " ioremap"); |
| @@ -2437,8 +2441,11 @@ static int vmalloc_open(struct inode *inode, struct file *file) | |||
| 2437 | unsigned int *ptr = NULL; | 2441 | unsigned int *ptr = NULL; |
| 2438 | int ret; | 2442 | int ret; |
| 2439 | 2443 | ||
| 2440 | if (NUMA_BUILD) | 2444 | if (NUMA_BUILD) { |
| 2441 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | 2445 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); |
| 2446 | if (ptr == NULL) | ||
| 2447 | return -ENOMEM; | ||
| 2448 | } | ||
| 2442 | ret = seq_open(file, &vmalloc_op); | 2449 | ret = seq_open(file, &vmalloc_op); |
| 2443 | if (!ret) { | 2450 | if (!ret) { |
| 2444 | struct seq_file *m = file->private_data; | 2451 | struct seq_file *m = file->private_data; |
diff --git a/mm/vmscan.c b/mm/vmscan.c index b94fe1b3da43..c391c320dbaf 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
| @@ -48,6 +48,9 @@ | |||
| 48 | 48 | ||
| 49 | #include "internal.h" | 49 | #include "internal.h" |
| 50 | 50 | ||
| 51 | #define CREATE_TRACE_POINTS | ||
| 52 | #include <trace/events/vmscan.h> | ||
| 53 | |||
| 51 | struct scan_control { | 54 | struct scan_control { |
| 52 | /* Incremented by the number of inactive pages that were scanned */ | 55 | /* Incremented by the number of inactive pages that were scanned */ |
| 53 | unsigned long nr_scanned; | 56 | unsigned long nr_scanned; |
| @@ -398,6 +401,8 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
| 398 | /* synchronous write or broken a_ops? */ | 401 | /* synchronous write or broken a_ops? */ |
| 399 | ClearPageReclaim(page); | 402 | ClearPageReclaim(page); |
| 400 | } | 403 | } |
| 404 | trace_mm_vmscan_writepage(page, | ||
| 405 | trace_reclaim_flags(page, sync_writeback)); | ||
| 401 | inc_zone_page_state(page, NR_VMSCAN_WRITE); | 406 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
| 402 | return PAGE_SUCCESS; | 407 | return PAGE_SUCCESS; |
| 403 | } | 408 | } |
| @@ -617,6 +622,24 @@ static enum page_references page_check_references(struct page *page, | |||
| 617 | return PAGEREF_RECLAIM; | 622 | return PAGEREF_RECLAIM; |
| 618 | } | 623 | } |
| 619 | 624 | ||
| 625 | static noinline_for_stack void free_page_list(struct list_head *free_pages) | ||
| 626 | { | ||
| 627 | struct pagevec freed_pvec; | ||
| 628 | struct page *page, *tmp; | ||
| 629 | |||
| 630 | pagevec_init(&freed_pvec, 1); | ||
| 631 | |||
| 632 | list_for_each_entry_safe(page, tmp, free_pages, lru) { | ||
| 633 | list_del(&page->lru); | ||
| 634 | if (!pagevec_add(&freed_pvec, page)) { | ||
| 635 | __pagevec_free(&freed_pvec); | ||
| 636 | pagevec_reinit(&freed_pvec); | ||
| 637 | } | ||
| 638 | } | ||
| 639 | |||
| 640 | pagevec_free(&freed_pvec); | ||
| 641 | } | ||
| 642 | |||
| 620 | /* | 643 | /* |
| 621 | * shrink_page_list() returns the number of reclaimed pages | 644 | * shrink_page_list() returns the number of reclaimed pages |
| 622 | */ | 645 | */ |
| @@ -625,13 +648,12 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
| 625 | enum pageout_io sync_writeback) | 648 | enum pageout_io sync_writeback) |
| 626 | { | 649 | { |
| 627 | LIST_HEAD(ret_pages); | 650 | LIST_HEAD(ret_pages); |
| 628 | struct pagevec freed_pvec; | 651 | LIST_HEAD(free_pages); |
| 629 | int pgactivate = 0; | 652 | int pgactivate = 0; |
| 630 | unsigned long nr_reclaimed = 0; | 653 | unsigned long nr_reclaimed = 0; |
| 631 | 654 | ||
| 632 | cond_resched(); | 655 | cond_resched(); |
| 633 | 656 | ||
| 634 | pagevec_init(&freed_pvec, 1); | ||
| 635 | while (!list_empty(page_list)) { | 657 | while (!list_empty(page_list)) { |
| 636 | enum page_references references; | 658 | enum page_references references; |
| 637 | struct address_space *mapping; | 659 | struct address_space *mapping; |
| @@ -806,10 +828,12 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
| 806 | __clear_page_locked(page); | 828 | __clear_page_locked(page); |
| 807 | free_it: | 829 | free_it: |
| 808 | nr_reclaimed++; | 830 | nr_reclaimed++; |
| 809 | if (!pagevec_add(&freed_pvec, page)) { | 831 | |
| 810 | __pagevec_free(&freed_pvec); | 832 | /* |
| 811 | pagevec_reinit(&freed_pvec); | 833 | * Is there need to periodically free_page_list? It would |
| 812 | } | 834 | * appear not as the counts should be low |
| 835 | */ | ||
| 836 | list_add(&page->lru, &free_pages); | ||
| 813 | continue; | 837 | continue; |
| 814 | 838 | ||
| 815 | cull_mlocked: | 839 | cull_mlocked: |
| @@ -832,9 +856,10 @@ keep: | |||
| 832 | list_add(&page->lru, &ret_pages); | 856 | list_add(&page->lru, &ret_pages); |
| 833 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); | 857 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
| 834 | } | 858 | } |
| 859 | |||
| 860 | free_page_list(&free_pages); | ||
| 861 | |||
| 835 | list_splice(&ret_pages, page_list); | 862 | list_splice(&ret_pages, page_list); |
| 836 | if (pagevec_count(&freed_pvec)) | ||
| 837 | __pagevec_free(&freed_pvec); | ||
| 838 | count_vm_events(PGACTIVATE, pgactivate); | 863 | count_vm_events(PGACTIVATE, pgactivate); |
| 839 | return nr_reclaimed; | 864 | return nr_reclaimed; |
| 840 | } | 865 | } |
| @@ -916,6 +941,9 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
| 916 | unsigned long *scanned, int order, int mode, int file) | 941 | unsigned long *scanned, int order, int mode, int file) |
| 917 | { | 942 | { |
| 918 | unsigned long nr_taken = 0; | 943 | unsigned long nr_taken = 0; |
| 944 | unsigned long nr_lumpy_taken = 0; | ||
| 945 | unsigned long nr_lumpy_dirty = 0; | ||
| 946 | unsigned long nr_lumpy_failed = 0; | ||
| 919 | unsigned long scan; | 947 | unsigned long scan; |
| 920 | 948 | ||
| 921 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { | 949 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
| @@ -993,12 +1021,25 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
| 993 | list_move(&cursor_page->lru, dst); | 1021 | list_move(&cursor_page->lru, dst); |
| 994 | mem_cgroup_del_lru(cursor_page); | 1022 | mem_cgroup_del_lru(cursor_page); |
| 995 | nr_taken++; | 1023 | nr_taken++; |
| 1024 | nr_lumpy_taken++; | ||
| 1025 | if (PageDirty(cursor_page)) | ||
| 1026 | nr_lumpy_dirty++; | ||
| 996 | scan++; | 1027 | scan++; |
| 1028 | } else { | ||
| 1029 | if (mode == ISOLATE_BOTH && | ||
| 1030 | page_count(cursor_page)) | ||
| 1031 | nr_lumpy_failed++; | ||
| 997 | } | 1032 | } |
| 998 | } | 1033 | } |
| 999 | } | 1034 | } |
| 1000 | 1035 | ||
| 1001 | *scanned = scan; | 1036 | *scanned = scan; |
| 1037 | |||
| 1038 | trace_mm_vmscan_lru_isolate(order, | ||
| 1039 | nr_to_scan, scan, | ||
| 1040 | nr_taken, | ||
| 1041 | nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed, | ||
| 1042 | mode); | ||
| 1002 | return nr_taken; | 1043 | return nr_taken; |
| 1003 | } | 1044 | } |
| 1004 | 1045 | ||
| @@ -1035,7 +1076,8 @@ static unsigned long clear_active_flags(struct list_head *page_list, | |||
| 1035 | ClearPageActive(page); | 1076 | ClearPageActive(page); |
| 1036 | nr_active++; | 1077 | nr_active++; |
| 1037 | } | 1078 | } |
| 1038 | count[lru]++; | 1079 | if (count) |
| 1080 | count[lru]++; | ||
| 1039 | } | 1081 | } |
| 1040 | 1082 | ||
| 1041 | return nr_active; | 1083 | return nr_active; |
| @@ -1112,174 +1154,212 @@ static int too_many_isolated(struct zone *zone, int file, | |||
| 1112 | } | 1154 | } |
| 1113 | 1155 | ||
| 1114 | /* | 1156 | /* |
| 1115 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number | 1157 | * TODO: Try merging with migrations version of putback_lru_pages |
| 1116 | * of reclaimed pages | ||
| 1117 | */ | 1158 | */ |
| 1118 | static unsigned long shrink_inactive_list(unsigned long max_scan, | 1159 | static noinline_for_stack void |
| 1119 | struct zone *zone, struct scan_control *sc, | 1160 | putback_lru_pages(struct zone *zone, struct scan_control *sc, |
| 1120 | int priority, int file) | 1161 | unsigned long nr_anon, unsigned long nr_file, |
| 1162 | struct list_head *page_list) | ||
| 1121 | { | 1163 | { |
| 1122 | LIST_HEAD(page_list); | 1164 | struct page *page; |
| 1123 | struct pagevec pvec; | 1165 | struct pagevec pvec; |
| 1124 | unsigned long nr_scanned = 0; | ||
| 1125 | unsigned long nr_reclaimed = 0; | ||
| 1126 | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | 1166 | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); |
| 1127 | 1167 | ||
| 1128 | while (unlikely(too_many_isolated(zone, file, sc))) { | 1168 | pagevec_init(&pvec, 1); |
| 1129 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
| 1130 | 1169 | ||
| 1131 | /* We are about to die and free our memory. Return now. */ | 1170 | /* |
| 1132 | if (fatal_signal_pending(current)) | 1171 | * Put back any unfreeable pages. |
| 1133 | return SWAP_CLUSTER_MAX; | 1172 | */ |
| 1173 | spin_lock(&zone->lru_lock); | ||
| 1174 | while (!list_empty(page_list)) { | ||
| 1175 | int lru; | ||
| 1176 | page = lru_to_page(page_list); | ||
| 1177 | VM_BUG_ON(PageLRU(page)); | ||
| 1178 | list_del(&page->lru); | ||
| 1179 | if (unlikely(!page_evictable(page, NULL))) { | ||
| 1180 | spin_unlock_irq(&zone->lru_lock); | ||
| 1181 | putback_lru_page(page); | ||
| 1182 | spin_lock_irq(&zone->lru_lock); | ||
| 1183 | continue; | ||
| 1184 | } | ||
| 1185 | SetPageLRU(page); | ||
| 1186 | lru = page_lru(page); | ||
| 1187 | add_page_to_lru_list(zone, page, lru); | ||
| 1188 | if (is_active_lru(lru)) { | ||
| 1189 | int file = is_file_lru(lru); | ||
| 1190 | reclaim_stat->recent_rotated[file]++; | ||
| 1191 | } | ||
| 1192 | if (!pagevec_add(&pvec, page)) { | ||
| 1193 | spin_unlock_irq(&zone->lru_lock); | ||
| 1194 | __pagevec_release(&pvec); | ||
| 1195 | spin_lock_irq(&zone->lru_lock); | ||
| 1196 | } | ||
| 1134 | } | 1197 | } |
| 1198 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); | ||
| 1199 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); | ||
| 1200 | |||
| 1201 | spin_unlock_irq(&zone->lru_lock); | ||
| 1202 | pagevec_release(&pvec); | ||
| 1203 | } | ||
| 1135 | 1204 | ||
| 1205 | static noinline_for_stack void update_isolated_counts(struct zone *zone, | ||
| 1206 | struct scan_control *sc, | ||
| 1207 | unsigned long *nr_anon, | ||
| 1208 | unsigned long *nr_file, | ||
| 1209 | struct list_head *isolated_list) | ||
| 1210 | { | ||
| 1211 | unsigned long nr_active; | ||
| 1212 | unsigned int count[NR_LRU_LISTS] = { 0, }; | ||
| 1213 | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | ||
| 1136 | 1214 | ||
| 1137 | pagevec_init(&pvec, 1); | 1215 | nr_active = clear_active_flags(isolated_list, count); |
| 1216 | __count_vm_events(PGDEACTIVATE, nr_active); | ||
| 1138 | 1217 | ||
| 1139 | lru_add_drain(); | 1218 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, |
| 1140 | spin_lock_irq(&zone->lru_lock); | 1219 | -count[LRU_ACTIVE_FILE]); |
| 1141 | do { | 1220 | __mod_zone_page_state(zone, NR_INACTIVE_FILE, |
| 1142 | struct page *page; | 1221 | -count[LRU_INACTIVE_FILE]); |
| 1143 | unsigned long nr_taken; | 1222 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, |
| 1144 | unsigned long nr_scan; | 1223 | -count[LRU_ACTIVE_ANON]); |
| 1145 | unsigned long nr_freed; | 1224 | __mod_zone_page_state(zone, NR_INACTIVE_ANON, |
| 1146 | unsigned long nr_active; | 1225 | -count[LRU_INACTIVE_ANON]); |
| 1147 | unsigned int count[NR_LRU_LISTS] = { 0, }; | ||
| 1148 | int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE; | ||
| 1149 | unsigned long nr_anon; | ||
| 1150 | unsigned long nr_file; | ||
| 1151 | 1226 | ||
| 1152 | if (scanning_global_lru(sc)) { | 1227 | *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; |
| 1153 | nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX, | 1228 | *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; |
| 1154 | &page_list, &nr_scan, | 1229 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon); |
| 1155 | sc->order, mode, | 1230 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file); |
| 1156 | zone, 0, file); | ||
| 1157 | zone->pages_scanned += nr_scan; | ||
| 1158 | if (current_is_kswapd()) | ||
| 1159 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, | ||
| 1160 | nr_scan); | ||
| 1161 | else | ||
| 1162 | __count_zone_vm_events(PGSCAN_DIRECT, zone, | ||
| 1163 | nr_scan); | ||
| 1164 | } else { | ||
| 1165 | nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX, | ||
| 1166 | &page_list, &nr_scan, | ||
| 1167 | sc->order, mode, | ||
| 1168 | zone, sc->mem_cgroup, | ||
| 1169 | 0, file); | ||
| 1170 | /* | ||
| 1171 | * mem_cgroup_isolate_pages() keeps track of | ||
| 1172 | * scanned pages on its own. | ||
| 1173 | */ | ||
| 1174 | } | ||
| 1175 | 1231 | ||
| 1176 | if (nr_taken == 0) | 1232 | reclaim_stat->recent_scanned[0] += *nr_anon; |
| 1177 | goto done; | 1233 | reclaim_stat->recent_scanned[1] += *nr_file; |
| 1234 | } | ||
| 1178 | 1235 | ||
| 1179 | nr_active = clear_active_flags(&page_list, count); | 1236 | /* |
| 1180 | __count_vm_events(PGDEACTIVATE, nr_active); | 1237 | * Returns true if the caller should wait to clean dirty/writeback pages. |
| 1238 | * | ||
| 1239 | * If we are direct reclaiming for contiguous pages and we do not reclaim | ||
| 1240 | * everything in the list, try again and wait for writeback IO to complete. | ||
| 1241 | * This will stall high-order allocations noticeably. Only do that when really | ||
| 1242 | * need to free the pages under high memory pressure. | ||
| 1243 | */ | ||
| 1244 | static inline bool should_reclaim_stall(unsigned long nr_taken, | ||
| 1245 | unsigned long nr_freed, | ||
| 1246 | int priority, | ||
| 1247 | struct scan_control *sc) | ||
| 1248 | { | ||
| 1249 | int lumpy_stall_priority; | ||
| 1181 | 1250 | ||
| 1182 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, | 1251 | /* kswapd should not stall on sync IO */ |
| 1183 | -count[LRU_ACTIVE_FILE]); | 1252 | if (current_is_kswapd()) |
| 1184 | __mod_zone_page_state(zone, NR_INACTIVE_FILE, | 1253 | return false; |
| 1185 | -count[LRU_INACTIVE_FILE]); | ||
| 1186 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, | ||
| 1187 | -count[LRU_ACTIVE_ANON]); | ||
| 1188 | __mod_zone_page_state(zone, NR_INACTIVE_ANON, | ||
| 1189 | -count[LRU_INACTIVE_ANON]); | ||
| 1190 | 1254 | ||
| 1191 | nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; | 1255 | /* Only stall on lumpy reclaim */ |
| 1192 | nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; | 1256 | if (!sc->lumpy_reclaim_mode) |
| 1193 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon); | 1257 | return false; |
| 1194 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file); | ||
| 1195 | 1258 | ||
| 1196 | reclaim_stat->recent_scanned[0] += nr_anon; | 1259 | /* If we have relaimed everything on the isolated list, no stall */ |
| 1197 | reclaim_stat->recent_scanned[1] += nr_file; | 1260 | if (nr_freed == nr_taken) |
| 1261 | return false; | ||
| 1198 | 1262 | ||
| 1199 | spin_unlock_irq(&zone->lru_lock); | 1263 | /* |
| 1264 | * For high-order allocations, there are two stall thresholds. | ||
| 1265 | * High-cost allocations stall immediately where as lower | ||
| 1266 | * order allocations such as stacks require the scanning | ||
| 1267 | * priority to be much higher before stalling. | ||
| 1268 | */ | ||
| 1269 | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | ||
| 1270 | lumpy_stall_priority = DEF_PRIORITY; | ||
| 1271 | else | ||
| 1272 | lumpy_stall_priority = DEF_PRIORITY / 3; | ||
| 1200 | 1273 | ||
| 1201 | nr_scanned += nr_scan; | 1274 | return priority <= lumpy_stall_priority; |
| 1202 | nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); | 1275 | } |
| 1203 | 1276 | ||
| 1277 | /* | ||
| 1278 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number | ||
| 1279 | * of reclaimed pages | ||
| 1280 | */ | ||
| 1281 | static noinline_for_stack unsigned long | ||
| 1282 | shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | ||
| 1283 | struct scan_control *sc, int priority, int file) | ||
| 1284 | { | ||
| 1285 | LIST_HEAD(page_list); | ||
| 1286 | unsigned long nr_scanned; | ||
| 1287 | unsigned long nr_reclaimed = 0; | ||
| 1288 | unsigned long nr_taken; | ||
| 1289 | unsigned long nr_active; | ||
| 1290 | unsigned long nr_anon; | ||
| 1291 | unsigned long nr_file; | ||
| 1292 | |||
| 1293 | while (unlikely(too_many_isolated(zone, file, sc))) { | ||
| 1294 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
| 1295 | |||
| 1296 | /* We are about to die and free our memory. Return now. */ | ||
| 1297 | if (fatal_signal_pending(current)) | ||
| 1298 | return SWAP_CLUSTER_MAX; | ||
| 1299 | } | ||
| 1300 | |||
| 1301 | |||
| 1302 | lru_add_drain(); | ||
| 1303 | spin_lock_irq(&zone->lru_lock); | ||
| 1304 | |||
| 1305 | if (scanning_global_lru(sc)) { | ||
| 1306 | nr_taken = isolate_pages_global(nr_to_scan, | ||
| 1307 | &page_list, &nr_scanned, sc->order, | ||
| 1308 | sc->lumpy_reclaim_mode ? | ||
| 1309 | ISOLATE_BOTH : ISOLATE_INACTIVE, | ||
| 1310 | zone, 0, file); | ||
| 1311 | zone->pages_scanned += nr_scanned; | ||
| 1312 | if (current_is_kswapd()) | ||
| 1313 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, | ||
| 1314 | nr_scanned); | ||
| 1315 | else | ||
| 1316 | __count_zone_vm_events(PGSCAN_DIRECT, zone, | ||
| 1317 | nr_scanned); | ||
| 1318 | } else { | ||
| 1319 | nr_taken = mem_cgroup_isolate_pages(nr_to_scan, | ||
| 1320 | &page_list, &nr_scanned, sc->order, | ||
| 1321 | sc->lumpy_reclaim_mode ? | ||
| 1322 | ISOLATE_BOTH : ISOLATE_INACTIVE, | ||
| 1323 | zone, sc->mem_cgroup, | ||
| 1324 | 0, file); | ||
| 1204 | /* | 1325 | /* |
| 1205 | * If we are direct reclaiming for contiguous pages and we do | 1326 | * mem_cgroup_isolate_pages() keeps track of |
| 1206 | * not reclaim everything in the list, try again and wait | 1327 | * scanned pages on its own. |
| 1207 | * for IO to complete. This will stall high-order allocations | ||
| 1208 | * but that should be acceptable to the caller | ||
| 1209 | */ | 1328 | */ |
| 1210 | if (nr_freed < nr_taken && !current_is_kswapd() && | 1329 | } |
| 1211 | sc->lumpy_reclaim_mode) { | ||
| 1212 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
| 1213 | 1330 | ||
| 1214 | /* | 1331 | if (nr_taken == 0) { |
| 1215 | * The attempt at page out may have made some | 1332 | spin_unlock_irq(&zone->lru_lock); |
| 1216 | * of the pages active, mark them inactive again. | 1333 | return 0; |
| 1217 | */ | 1334 | } |
| 1218 | nr_active = clear_active_flags(&page_list, count); | ||
| 1219 | count_vm_events(PGDEACTIVATE, nr_active); | ||
| 1220 | 1335 | ||
| 1221 | nr_freed += shrink_page_list(&page_list, sc, | 1336 | update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list); |
| 1222 | PAGEOUT_IO_SYNC); | ||
| 1223 | } | ||
| 1224 | 1337 | ||
| 1225 | nr_reclaimed += nr_freed; | 1338 | spin_unlock_irq(&zone->lru_lock); |
| 1226 | 1339 | ||
| 1227 | local_irq_disable(); | 1340 | nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); |
| 1228 | if (current_is_kswapd()) | 1341 | |
| 1229 | __count_vm_events(KSWAPD_STEAL, nr_freed); | 1342 | /* Check if we should syncronously wait for writeback */ |
| 1230 | __count_zone_vm_events(PGSTEAL, zone, nr_freed); | 1343 | if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { |
| 1344 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
| 1231 | 1345 | ||
| 1232 | spin_lock(&zone->lru_lock); | ||
| 1233 | /* | 1346 | /* |
| 1234 | * Put back any unfreeable pages. | 1347 | * The attempt at page out may have made some |
| 1348 | * of the pages active, mark them inactive again. | ||
| 1235 | */ | 1349 | */ |
| 1236 | while (!list_empty(&page_list)) { | 1350 | nr_active = clear_active_flags(&page_list, NULL); |
| 1237 | int lru; | 1351 | count_vm_events(PGDEACTIVATE, nr_active); |
| 1238 | page = lru_to_page(&page_list); | ||
| 1239 | VM_BUG_ON(PageLRU(page)); | ||
| 1240 | list_del(&page->lru); | ||
| 1241 | if (unlikely(!page_evictable(page, NULL))) { | ||
| 1242 | spin_unlock_irq(&zone->lru_lock); | ||
| 1243 | putback_lru_page(page); | ||
| 1244 | spin_lock_irq(&zone->lru_lock); | ||
| 1245 | continue; | ||
| 1246 | } | ||
| 1247 | SetPageLRU(page); | ||
| 1248 | lru = page_lru(page); | ||
| 1249 | add_page_to_lru_list(zone, page, lru); | ||
| 1250 | if (is_active_lru(lru)) { | ||
| 1251 | int file = is_file_lru(lru); | ||
| 1252 | reclaim_stat->recent_rotated[file]++; | ||
| 1253 | } | ||
| 1254 | if (!pagevec_add(&pvec, page)) { | ||
| 1255 | spin_unlock_irq(&zone->lru_lock); | ||
| 1256 | __pagevec_release(&pvec); | ||
| 1257 | spin_lock_irq(&zone->lru_lock); | ||
| 1258 | } | ||
| 1259 | } | ||
| 1260 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); | ||
| 1261 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); | ||
| 1262 | 1352 | ||
| 1263 | } while (nr_scanned < max_scan); | 1353 | nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC); |
| 1354 | } | ||
| 1264 | 1355 | ||
| 1265 | done: | 1356 | local_irq_disable(); |
| 1266 | spin_unlock_irq(&zone->lru_lock); | 1357 | if (current_is_kswapd()) |
| 1267 | pagevec_release(&pvec); | 1358 | __count_vm_events(KSWAPD_STEAL, nr_reclaimed); |
| 1268 | return nr_reclaimed; | 1359 | __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); |
| 1269 | } | ||
| 1270 | 1360 | ||
| 1271 | /* | 1361 | putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); |
| 1272 | * We are about to scan this zone at a certain priority level. If that priority | 1362 | return nr_reclaimed; |
| 1273 | * level is smaller (ie: more urgent) than the previous priority, then note | ||
| 1274 | * that priority level within the zone. This is done so that when the next | ||
| 1275 | * process comes in to scan this zone, it will immediately start out at this | ||
| 1276 | * priority level rather than having to build up its own scanning priority. | ||
| 1277 | * Here, this priority affects only the reclaim-mapped threshold. | ||
| 1278 | */ | ||
| 1279 | static inline void note_zone_scanning_priority(struct zone *zone, int priority) | ||
| 1280 | { | ||
| 1281 | if (priority < zone->prev_priority) | ||
| 1282 | zone->prev_priority = priority; | ||
| 1283 | } | 1363 | } |
| 1284 | 1364 | ||
| 1285 | /* | 1365 | /* |
| @@ -1583,6 +1663,13 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, | |||
| 1583 | } | 1663 | } |
| 1584 | 1664 | ||
| 1585 | /* | 1665 | /* |
| 1666 | * With swappiness at 100, anonymous and file have the same priority. | ||
| 1667 | * This scanning priority is essentially the inverse of IO cost. | ||
| 1668 | */ | ||
| 1669 | anon_prio = sc->swappiness; | ||
| 1670 | file_prio = 200 - sc->swappiness; | ||
| 1671 | |||
| 1672 | /* | ||
| 1586 | * OK, so we have swap space and a fair amount of page cache | 1673 | * OK, so we have swap space and a fair amount of page cache |
| 1587 | * pages. We use the recently rotated / recently scanned | 1674 | * pages. We use the recently rotated / recently scanned |
| 1588 | * ratios to determine how valuable each cache is. | 1675 | * ratios to determine how valuable each cache is. |
| @@ -1593,28 +1680,18 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, | |||
| 1593 | * | 1680 | * |
| 1594 | * anon in [0], file in [1] | 1681 | * anon in [0], file in [1] |
| 1595 | */ | 1682 | */ |
| 1683 | spin_lock_irq(&zone->lru_lock); | ||
| 1596 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { | 1684 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
| 1597 | spin_lock_irq(&zone->lru_lock); | ||
| 1598 | reclaim_stat->recent_scanned[0] /= 2; | 1685 | reclaim_stat->recent_scanned[0] /= 2; |
| 1599 | reclaim_stat->recent_rotated[0] /= 2; | 1686 | reclaim_stat->recent_rotated[0] /= 2; |
| 1600 | spin_unlock_irq(&zone->lru_lock); | ||
| 1601 | } | 1687 | } |
| 1602 | 1688 | ||
| 1603 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { | 1689 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
| 1604 | spin_lock_irq(&zone->lru_lock); | ||
| 1605 | reclaim_stat->recent_scanned[1] /= 2; | 1690 | reclaim_stat->recent_scanned[1] /= 2; |
| 1606 | reclaim_stat->recent_rotated[1] /= 2; | 1691 | reclaim_stat->recent_rotated[1] /= 2; |
| 1607 | spin_unlock_irq(&zone->lru_lock); | ||
| 1608 | } | 1692 | } |
| 1609 | 1693 | ||
| 1610 | /* | 1694 | /* |
| 1611 | * With swappiness at 100, anonymous and file have the same priority. | ||
| 1612 | * This scanning priority is essentially the inverse of IO cost. | ||
| 1613 | */ | ||
| 1614 | anon_prio = sc->swappiness; | ||
| 1615 | file_prio = 200 - sc->swappiness; | ||
| 1616 | |||
| 1617 | /* | ||
| 1618 | * The amount of pressure on anon vs file pages is inversely | 1695 | * The amount of pressure on anon vs file pages is inversely |
| 1619 | * proportional to the fraction of recently scanned pages on | 1696 | * proportional to the fraction of recently scanned pages on |
| 1620 | * each list that were recently referenced and in active use. | 1697 | * each list that were recently referenced and in active use. |
| @@ -1624,6 +1701,7 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, | |||
| 1624 | 1701 | ||
| 1625 | fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); | 1702 | fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); |
| 1626 | fp /= reclaim_stat->recent_rotated[1] + 1; | 1703 | fp /= reclaim_stat->recent_rotated[1] + 1; |
| 1704 | spin_unlock_irq(&zone->lru_lock); | ||
| 1627 | 1705 | ||
| 1628 | fraction[0] = ap; | 1706 | fraction[0] = ap; |
| 1629 | fraction[1] = fp; | 1707 | fraction[1] = fp; |
| @@ -1729,13 +1807,12 @@ static void shrink_zone(int priority, struct zone *zone, | |||
| 1729 | static bool shrink_zones(int priority, struct zonelist *zonelist, | 1807 | static bool shrink_zones(int priority, struct zonelist *zonelist, |
| 1730 | struct scan_control *sc) | 1808 | struct scan_control *sc) |
| 1731 | { | 1809 | { |
| 1732 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); | ||
| 1733 | struct zoneref *z; | 1810 | struct zoneref *z; |
| 1734 | struct zone *zone; | 1811 | struct zone *zone; |
| 1735 | bool all_unreclaimable = true; | 1812 | bool all_unreclaimable = true; |
| 1736 | 1813 | ||
| 1737 | for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, | 1814 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
| 1738 | sc->nodemask) { | 1815 | gfp_zone(sc->gfp_mask), sc->nodemask) { |
| 1739 | if (!populated_zone(zone)) | 1816 | if (!populated_zone(zone)) |
| 1740 | continue; | 1817 | continue; |
| 1741 | /* | 1818 | /* |
| @@ -1745,17 +1822,8 @@ static bool shrink_zones(int priority, struct zonelist *zonelist, | |||
| 1745 | if (scanning_global_lru(sc)) { | 1822 | if (scanning_global_lru(sc)) { |
| 1746 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 1823 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
| 1747 | continue; | 1824 | continue; |
| 1748 | note_zone_scanning_priority(zone, priority); | ||
| 1749 | |||
| 1750 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | 1825 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) |
| 1751 | continue; /* Let kswapd poll it */ | 1826 | continue; /* Let kswapd poll it */ |
| 1752 | } else { | ||
| 1753 | /* | ||
| 1754 | * Ignore cpuset limitation here. We just want to reduce | ||
| 1755 | * # of used pages by us regardless of memory shortage. | ||
| 1756 | */ | ||
| 1757 | mem_cgroup_note_reclaim_priority(sc->mem_cgroup, | ||
| 1758 | priority); | ||
| 1759 | } | 1827 | } |
| 1760 | 1828 | ||
| 1761 | shrink_zone(priority, zone, sc); | 1829 | shrink_zone(priority, zone, sc); |
| @@ -1787,10 +1855,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
| 1787 | bool all_unreclaimable; | 1855 | bool all_unreclaimable; |
| 1788 | unsigned long total_scanned = 0; | 1856 | unsigned long total_scanned = 0; |
| 1789 | struct reclaim_state *reclaim_state = current->reclaim_state; | 1857 | struct reclaim_state *reclaim_state = current->reclaim_state; |
| 1790 | unsigned long lru_pages = 0; | ||
| 1791 | struct zoneref *z; | 1858 | struct zoneref *z; |
| 1792 | struct zone *zone; | 1859 | struct zone *zone; |
| 1793 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); | ||
| 1794 | unsigned long writeback_threshold; | 1860 | unsigned long writeback_threshold; |
| 1795 | 1861 | ||
| 1796 | get_mems_allowed(); | 1862 | get_mems_allowed(); |
| @@ -1798,18 +1864,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
| 1798 | 1864 | ||
| 1799 | if (scanning_global_lru(sc)) | 1865 | if (scanning_global_lru(sc)) |
| 1800 | count_vm_event(ALLOCSTALL); | 1866 | count_vm_event(ALLOCSTALL); |
| 1801 | /* | ||
| 1802 | * mem_cgroup will not do shrink_slab. | ||
| 1803 | */ | ||
| 1804 | if (scanning_global_lru(sc)) { | ||
| 1805 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | ||
| 1806 | |||
| 1807 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | ||
| 1808 | continue; | ||
| 1809 | |||
| 1810 | lru_pages += zone_reclaimable_pages(zone); | ||
| 1811 | } | ||
| 1812 | } | ||
| 1813 | 1867 | ||
| 1814 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | 1868 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { |
| 1815 | sc->nr_scanned = 0; | 1869 | sc->nr_scanned = 0; |
| @@ -1821,6 +1875,15 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
| 1821 | * over limit cgroups | 1875 | * over limit cgroups |
| 1822 | */ | 1876 | */ |
| 1823 | if (scanning_global_lru(sc)) { | 1877 | if (scanning_global_lru(sc)) { |
| 1878 | unsigned long lru_pages = 0; | ||
| 1879 | for_each_zone_zonelist(zone, z, zonelist, | ||
| 1880 | gfp_zone(sc->gfp_mask)) { | ||
| 1881 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | ||
| 1882 | continue; | ||
| 1883 | |||
| 1884 | lru_pages += zone_reclaimable_pages(zone); | ||
| 1885 | } | ||
| 1886 | |||
| 1824 | shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); | 1887 | shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); |
| 1825 | if (reclaim_state) { | 1888 | if (reclaim_state) { |
| 1826 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | 1889 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
| @@ -1861,17 +1924,6 @@ out: | |||
| 1861 | if (priority < 0) | 1924 | if (priority < 0) |
| 1862 | priority = 0; | 1925 | priority = 0; |
| 1863 | 1926 | ||
| 1864 | if (scanning_global_lru(sc)) { | ||
| 1865 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | ||
| 1866 | |||
| 1867 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | ||
| 1868 | continue; | ||
| 1869 | |||
| 1870 | zone->prev_priority = priority; | ||
| 1871 | } | ||
| 1872 | } else | ||
| 1873 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); | ||
| 1874 | |||
| 1875 | delayacct_freepages_end(); | 1927 | delayacct_freepages_end(); |
| 1876 | put_mems_allowed(); | 1928 | put_mems_allowed(); |
| 1877 | 1929 | ||
| @@ -1888,6 +1940,7 @@ out: | |||
| 1888 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | 1940 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
| 1889 | gfp_t gfp_mask, nodemask_t *nodemask) | 1941 | gfp_t gfp_mask, nodemask_t *nodemask) |
| 1890 | { | 1942 | { |
| 1943 | unsigned long nr_reclaimed; | ||
| 1891 | struct scan_control sc = { | 1944 | struct scan_control sc = { |
| 1892 | .gfp_mask = gfp_mask, | 1945 | .gfp_mask = gfp_mask, |
| 1893 | .may_writepage = !laptop_mode, | 1946 | .may_writepage = !laptop_mode, |
| @@ -1900,7 +1953,15 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |||
| 1900 | .nodemask = nodemask, | 1953 | .nodemask = nodemask, |
| 1901 | }; | 1954 | }; |
| 1902 | 1955 | ||
| 1903 | return do_try_to_free_pages(zonelist, &sc); | 1956 | trace_mm_vmscan_direct_reclaim_begin(order, |
| 1957 | sc.may_writepage, | ||
| 1958 | gfp_mask); | ||
| 1959 | |||
| 1960 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | ||
| 1961 | |||
| 1962 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | ||
| 1963 | |||
| 1964 | return nr_reclaimed; | ||
| 1904 | } | 1965 | } |
| 1905 | 1966 | ||
| 1906 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 1967 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
| @@ -1908,9 +1969,10 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |||
| 1908 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | 1969 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, |
| 1909 | gfp_t gfp_mask, bool noswap, | 1970 | gfp_t gfp_mask, bool noswap, |
| 1910 | unsigned int swappiness, | 1971 | unsigned int swappiness, |
| 1911 | struct zone *zone, int nid) | 1972 | struct zone *zone) |
| 1912 | { | 1973 | { |
| 1913 | struct scan_control sc = { | 1974 | struct scan_control sc = { |
| 1975 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | ||
| 1914 | .may_writepage = !laptop_mode, | 1976 | .may_writepage = !laptop_mode, |
| 1915 | .may_unmap = 1, | 1977 | .may_unmap = 1, |
| 1916 | .may_swap = !noswap, | 1978 | .may_swap = !noswap, |
| @@ -1918,13 +1980,13 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | |||
| 1918 | .order = 0, | 1980 | .order = 0, |
| 1919 | .mem_cgroup = mem, | 1981 | .mem_cgroup = mem, |
| 1920 | }; | 1982 | }; |
| 1921 | nodemask_t nm = nodemask_of_node(nid); | ||
| 1922 | |||
| 1923 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 1983 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
| 1924 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 1984 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
| 1925 | sc.nodemask = &nm; | 1985 | |
| 1926 | sc.nr_reclaimed = 0; | 1986 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, |
| 1927 | sc.nr_scanned = 0; | 1987 | sc.may_writepage, |
| 1988 | sc.gfp_mask); | ||
| 1989 | |||
| 1928 | /* | 1990 | /* |
| 1929 | * NOTE: Although we can get the priority field, using it | 1991 | * NOTE: Although we can get the priority field, using it |
| 1930 | * here is not a good idea, since it limits the pages we can scan. | 1992 | * here is not a good idea, since it limits the pages we can scan. |
| @@ -1933,6 +1995,9 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | |||
| 1933 | * the priority and make it zero. | 1995 | * the priority and make it zero. |
| 1934 | */ | 1996 | */ |
| 1935 | shrink_zone(0, zone, &sc); | 1997 | shrink_zone(0, zone, &sc); |
| 1998 | |||
| 1999 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | ||
| 2000 | |||
| 1936 | return sc.nr_reclaimed; | 2001 | return sc.nr_reclaimed; |
| 1937 | } | 2002 | } |
| 1938 | 2003 | ||
| @@ -1942,6 +2007,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, | |||
| 1942 | unsigned int swappiness) | 2007 | unsigned int swappiness) |
| 1943 | { | 2008 | { |
| 1944 | struct zonelist *zonelist; | 2009 | struct zonelist *zonelist; |
| 2010 | unsigned long nr_reclaimed; | ||
| 1945 | struct scan_control sc = { | 2011 | struct scan_control sc = { |
| 1946 | .may_writepage = !laptop_mode, | 2012 | .may_writepage = !laptop_mode, |
| 1947 | .may_unmap = 1, | 2013 | .may_unmap = 1, |
| @@ -1956,7 +2022,16 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, | |||
| 1956 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 2022 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
| 1957 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 2023 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
| 1958 | zonelist = NODE_DATA(numa_node_id())->node_zonelists; | 2024 | zonelist = NODE_DATA(numa_node_id())->node_zonelists; |
| 1959 | return do_try_to_free_pages(zonelist, &sc); | 2025 | |
| 2026 | trace_mm_vmscan_memcg_reclaim_begin(0, | ||
| 2027 | sc.may_writepage, | ||
| 2028 | sc.gfp_mask); | ||
| 2029 | |||
| 2030 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | ||
| 2031 | |||
| 2032 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | ||
| 2033 | |||
| 2034 | return nr_reclaimed; | ||
| 1960 | } | 2035 | } |
| 1961 | #endif | 2036 | #endif |
| 1962 | 2037 | ||
| @@ -2028,22 +2103,12 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order) | |||
| 2028 | .order = order, | 2103 | .order = order, |
| 2029 | .mem_cgroup = NULL, | 2104 | .mem_cgroup = NULL, |
| 2030 | }; | 2105 | }; |
| 2031 | /* | ||
| 2032 | * temp_priority is used to remember the scanning priority at which | ||
| 2033 | * this zone was successfully refilled to | ||
| 2034 | * free_pages == high_wmark_pages(zone). | ||
| 2035 | */ | ||
| 2036 | int temp_priority[MAX_NR_ZONES]; | ||
| 2037 | |||
| 2038 | loop_again: | 2106 | loop_again: |
| 2039 | total_scanned = 0; | 2107 | total_scanned = 0; |
| 2040 | sc.nr_reclaimed = 0; | 2108 | sc.nr_reclaimed = 0; |
| 2041 | sc.may_writepage = !laptop_mode; | 2109 | sc.may_writepage = !laptop_mode; |
| 2042 | count_vm_event(PAGEOUTRUN); | 2110 | count_vm_event(PAGEOUTRUN); |
| 2043 | 2111 | ||
| 2044 | for (i = 0; i < pgdat->nr_zones; i++) | ||
| 2045 | temp_priority[i] = DEF_PRIORITY; | ||
| 2046 | |||
| 2047 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | 2112 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { |
| 2048 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ | 2113 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
| 2049 | unsigned long lru_pages = 0; | 2114 | unsigned long lru_pages = 0; |
| @@ -2103,7 +2168,6 @@ loop_again: | |||
| 2103 | for (i = 0; i <= end_zone; i++) { | 2168 | for (i = 0; i <= end_zone; i++) { |
| 2104 | struct zone *zone = pgdat->node_zones + i; | 2169 | struct zone *zone = pgdat->node_zones + i; |
| 2105 | int nr_slab; | 2170 | int nr_slab; |
| 2106 | int nid, zid; | ||
| 2107 | 2171 | ||
| 2108 | if (!populated_zone(zone)) | 2172 | if (!populated_zone(zone)) |
| 2109 | continue; | 2173 | continue; |
| @@ -2111,18 +2175,14 @@ loop_again: | |||
| 2111 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | 2175 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) |
| 2112 | continue; | 2176 | continue; |
| 2113 | 2177 | ||
| 2114 | temp_priority[i] = priority; | ||
| 2115 | sc.nr_scanned = 0; | 2178 | sc.nr_scanned = 0; |
| 2116 | note_zone_scanning_priority(zone, priority); | ||
| 2117 | 2179 | ||
| 2118 | nid = pgdat->node_id; | ||
| 2119 | zid = zone_idx(zone); | ||
| 2120 | /* | 2180 | /* |
| 2121 | * Call soft limit reclaim before calling shrink_zone. | 2181 | * Call soft limit reclaim before calling shrink_zone. |
| 2122 | * For now we ignore the return value | 2182 | * For now we ignore the return value |
| 2123 | */ | 2183 | */ |
| 2124 | mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask, | 2184 | mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); |
| 2125 | nid, zid); | 2185 | |
| 2126 | /* | 2186 | /* |
| 2127 | * We put equal pressure on every zone, unless one | 2187 | * We put equal pressure on every zone, unless one |
| 2128 | * zone has way too many pages free already. | 2188 | * zone has way too many pages free already. |
| @@ -2186,16 +2246,6 @@ loop_again: | |||
| 2186 | break; | 2246 | break; |
| 2187 | } | 2247 | } |
| 2188 | out: | 2248 | out: |
| 2189 | /* | ||
| 2190 | * Note within each zone the priority level at which this zone was | ||
| 2191 | * brought into a happy state. So that the next thread which scans this | ||
| 2192 | * zone will start out at that priority level. | ||
| 2193 | */ | ||
| 2194 | for (i = 0; i < pgdat->nr_zones; i++) { | ||
| 2195 | struct zone *zone = pgdat->node_zones + i; | ||
| 2196 | |||
| 2197 | zone->prev_priority = temp_priority[i]; | ||
| 2198 | } | ||
| 2199 | if (!all_zones_ok) { | 2249 | if (!all_zones_ok) { |
| 2200 | cond_resched(); | 2250 | cond_resched(); |
| 2201 | 2251 | ||
| @@ -2299,9 +2349,10 @@ static int kswapd(void *p) | |||
| 2299 | * premature sleep. If not, then go fully | 2349 | * premature sleep. If not, then go fully |
| 2300 | * to sleep until explicitly woken up | 2350 | * to sleep until explicitly woken up |
| 2301 | */ | 2351 | */ |
| 2302 | if (!sleeping_prematurely(pgdat, order, remaining)) | 2352 | if (!sleeping_prematurely(pgdat, order, remaining)) { |
| 2353 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | ||
| 2303 | schedule(); | 2354 | schedule(); |
| 2304 | else { | 2355 | } else { |
| 2305 | if (remaining) | 2356 | if (remaining) |
| 2306 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | 2357 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); |
| 2307 | else | 2358 | else |
| @@ -2321,8 +2372,10 @@ static int kswapd(void *p) | |||
| 2321 | * We can speed up thawing tasks if we don't call balance_pgdat | 2372 | * We can speed up thawing tasks if we don't call balance_pgdat |
| 2322 | * after returning from the refrigerator | 2373 | * after returning from the refrigerator |
| 2323 | */ | 2374 | */ |
| 2324 | if (!ret) | 2375 | if (!ret) { |
| 2376 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); | ||
| 2325 | balance_pgdat(pgdat, order); | 2377 | balance_pgdat(pgdat, order); |
| 2378 | } | ||
| 2326 | } | 2379 | } |
| 2327 | return 0; | 2380 | return 0; |
| 2328 | } | 2381 | } |
| @@ -2342,6 +2395,7 @@ void wakeup_kswapd(struct zone *zone, int order) | |||
| 2342 | return; | 2395 | return; |
| 2343 | if (pgdat->kswapd_max_order < order) | 2396 | if (pgdat->kswapd_max_order < order) |
| 2344 | pgdat->kswapd_max_order = order; | 2397 | pgdat->kswapd_max_order = order; |
| 2398 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | ||
| 2345 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 2399 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
| 2346 | return; | 2400 | return; |
| 2347 | if (!waitqueue_active(&pgdat->kswapd_wait)) | 2401 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
| @@ -2590,9 +2644,8 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
| 2590 | .swappiness = vm_swappiness, | 2644 | .swappiness = vm_swappiness, |
| 2591 | .order = order, | 2645 | .order = order, |
| 2592 | }; | 2646 | }; |
| 2593 | unsigned long slab_reclaimable; | 2647 | unsigned long nr_slab_pages0, nr_slab_pages1; |
| 2594 | 2648 | ||
| 2595 | disable_swap_token(); | ||
| 2596 | cond_resched(); | 2649 | cond_resched(); |
| 2597 | /* | 2650 | /* |
| 2598 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | 2651 | * We need to be able to allocate from the reserves for RECLAIM_SWAP |
| @@ -2611,14 +2664,13 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
| 2611 | */ | 2664 | */ |
| 2612 | priority = ZONE_RECLAIM_PRIORITY; | 2665 | priority = ZONE_RECLAIM_PRIORITY; |
| 2613 | do { | 2666 | do { |
| 2614 | note_zone_scanning_priority(zone, priority); | ||
| 2615 | shrink_zone(priority, zone, &sc); | 2667 | shrink_zone(priority, zone, &sc); |
| 2616 | priority--; | 2668 | priority--; |
| 2617 | } while (priority >= 0 && sc.nr_reclaimed < nr_pages); | 2669 | } while (priority >= 0 && sc.nr_reclaimed < nr_pages); |
| 2618 | } | 2670 | } |
| 2619 | 2671 | ||
| 2620 | slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); | 2672 | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
| 2621 | if (slab_reclaimable > zone->min_slab_pages) { | 2673 | if (nr_slab_pages0 > zone->min_slab_pages) { |
| 2622 | /* | 2674 | /* |
| 2623 | * shrink_slab() does not currently allow us to determine how | 2675 | * shrink_slab() does not currently allow us to determine how |
| 2624 | * many pages were freed in this zone. So we take the current | 2676 | * many pages were freed in this zone. So we take the current |
| @@ -2629,17 +2681,27 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
| 2629 | * Note that shrink_slab will free memory on all zones and may | 2681 | * Note that shrink_slab will free memory on all zones and may |
| 2630 | * take a long time. | 2682 | * take a long time. |
| 2631 | */ | 2683 | */ |
| 2632 | while (shrink_slab(sc.nr_scanned, gfp_mask, order) && | 2684 | for (;;) { |
| 2633 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) > | 2685 | unsigned long lru_pages = zone_reclaimable_pages(zone); |
| 2634 | slab_reclaimable - nr_pages) | 2686 | |
| 2635 | ; | 2687 | /* No reclaimable slab or very low memory pressure */ |
| 2688 | if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages)) | ||
| 2689 | break; | ||
| 2690 | |||
| 2691 | /* Freed enough memory */ | ||
| 2692 | nr_slab_pages1 = zone_page_state(zone, | ||
| 2693 | NR_SLAB_RECLAIMABLE); | ||
| 2694 | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) | ||
| 2695 | break; | ||
| 2696 | } | ||
| 2636 | 2697 | ||
| 2637 | /* | 2698 | /* |
| 2638 | * Update nr_reclaimed by the number of slab pages we | 2699 | * Update nr_reclaimed by the number of slab pages we |
| 2639 | * reclaimed from this zone. | 2700 | * reclaimed from this zone. |
| 2640 | */ | 2701 | */ |
| 2641 | sc.nr_reclaimed += slab_reclaimable - | 2702 | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
| 2642 | zone_page_state(zone, NR_SLAB_RECLAIMABLE); | 2703 | if (nr_slab_pages1 < nr_slab_pages0) |
| 2704 | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; | ||
| 2643 | } | 2705 | } |
| 2644 | 2706 | ||
| 2645 | p->reclaim_state = NULL; | 2707 | p->reclaim_state = NULL; |
diff --git a/mm/vmstat.c b/mm/vmstat.c index 7759941d4e77..f389168f9a83 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c | |||
| @@ -22,14 +22,14 @@ | |||
| 22 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; | 22 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
| 23 | EXPORT_PER_CPU_SYMBOL(vm_event_states); | 23 | EXPORT_PER_CPU_SYMBOL(vm_event_states); |
| 24 | 24 | ||
| 25 | static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) | 25 | static void sum_vm_events(unsigned long *ret) |
| 26 | { | 26 | { |
| 27 | int cpu; | 27 | int cpu; |
| 28 | int i; | 28 | int i; |
| 29 | 29 | ||
| 30 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 30 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
| 31 | 31 | ||
| 32 | for_each_cpu(cpu, cpumask) { | 32 | for_each_online_cpu(cpu) { |
| 33 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 33 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
| 34 | 34 | ||
| 35 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 35 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
| @@ -45,7 +45,7 @@ static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) | |||
| 45 | void all_vm_events(unsigned long *ret) | 45 | void all_vm_events(unsigned long *ret) |
| 46 | { | 46 | { |
| 47 | get_online_cpus(); | 47 | get_online_cpus(); |
| 48 | sum_vm_events(ret, cpu_online_mask); | 48 | sum_vm_events(ret); |
| 49 | put_online_cpus(); | 49 | put_online_cpus(); |
| 50 | } | 50 | } |
| 51 | EXPORT_SYMBOL_GPL(all_vm_events); | 51 | EXPORT_SYMBOL_GPL(all_vm_events); |
| @@ -853,11 +853,9 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | |||
| 853 | } | 853 | } |
| 854 | seq_printf(m, | 854 | seq_printf(m, |
| 855 | "\n all_unreclaimable: %u" | 855 | "\n all_unreclaimable: %u" |
| 856 | "\n prev_priority: %i" | ||
| 857 | "\n start_pfn: %lu" | 856 | "\n start_pfn: %lu" |
| 858 | "\n inactive_ratio: %u", | 857 | "\n inactive_ratio: %u", |
| 859 | zone->all_unreclaimable, | 858 | zone->all_unreclaimable, |
| 860 | zone->prev_priority, | ||
| 861 | zone->zone_start_pfn, | 859 | zone->zone_start_pfn, |
| 862 | zone->inactive_ratio); | 860 | zone->inactive_ratio); |
| 863 | seq_putc(m, '\n'); | 861 | seq_putc(m, '\n'); |
