aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/memory.c19
-rw-r--r--mm/rmap.c6
-rw-r--r--mm/swapfile.c304
3 files changed, 271 insertions, 58 deletions
diff --git a/mm/memory.c b/mm/memory.c
index 6ab19dd4a199..543c446bf4ed 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -572,7 +572,7 @@ out:
572 * covered by this vma. 572 * covered by this vma.
573 */ 573 */
574 574
575static inline void 575static inline unsigned long
576copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 576copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
577 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 577 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
578 unsigned long addr, int *rss) 578 unsigned long addr, int *rss)
@@ -586,7 +586,9 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
586 if (!pte_file(pte)) { 586 if (!pte_file(pte)) {
587 swp_entry_t entry = pte_to_swp_entry(pte); 587 swp_entry_t entry = pte_to_swp_entry(pte);
588 588
589 swap_duplicate(entry); 589 if (swap_duplicate(entry) < 0)
590 return entry.val;
591
590 /* make sure dst_mm is on swapoff's mmlist. */ 592 /* make sure dst_mm is on swapoff's mmlist. */
591 if (unlikely(list_empty(&dst_mm->mmlist))) { 593 if (unlikely(list_empty(&dst_mm->mmlist))) {
592 spin_lock(&mmlist_lock); 594 spin_lock(&mmlist_lock);
@@ -635,6 +637,7 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
635 637
636out_set_pte: 638out_set_pte:
637 set_pte_at(dst_mm, addr, dst_pte, pte); 639 set_pte_at(dst_mm, addr, dst_pte, pte);
640 return 0;
638} 641}
639 642
640static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 643static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
@@ -646,6 +649,7 @@ static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646 spinlock_t *src_ptl, *dst_ptl; 649 spinlock_t *src_ptl, *dst_ptl;
647 int progress = 0; 650 int progress = 0;
648 int rss[2]; 651 int rss[2];
652 swp_entry_t entry = (swp_entry_t){0};
649 653
650again: 654again:
651 rss[1] = rss[0] = 0; 655 rss[1] = rss[0] = 0;
@@ -674,7 +678,10 @@ again:
674 progress++; 678 progress++;
675 continue; 679 continue;
676 } 680 }
677 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 681 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
682 vma, addr, rss);
683 if (entry.val)
684 break;
678 progress += 8; 685 progress += 8;
679 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 686 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
680 687
@@ -684,6 +691,12 @@ again:
684 add_mm_rss(dst_mm, rss[0], rss[1]); 691 add_mm_rss(dst_mm, rss[0], rss[1]);
685 pte_unmap_unlock(orig_dst_pte, dst_ptl); 692 pte_unmap_unlock(orig_dst_pte, dst_ptl);
686 cond_resched(); 693 cond_resched();
694
695 if (entry.val) {
696 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
697 return -ENOMEM;
698 progress = 0;
699 }
687 if (addr != end) 700 if (addr != end)
688 goto again; 701 goto again;
689 return 0; 702 return 0;
diff --git a/mm/rmap.c b/mm/rmap.c
index dd43373a483f..710bb4b2adf1 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -822,7 +822,11 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
822 * Store the swap location in the pte. 822 * Store the swap location in the pte.
823 * See handle_pte_fault() ... 823 * See handle_pte_fault() ...
824 */ 824 */
825 swap_duplicate(entry); 825 if (swap_duplicate(entry) < 0) {
826 set_pte_at(mm, address, pte, pteval);
827 ret = SWAP_FAIL;
828 goto out_unmap;
829 }
826 if (list_empty(&mm->mmlist)) { 830 if (list_empty(&mm->mmlist)) {
827 spin_lock(&mmlist_lock); 831 spin_lock(&mmlist_lock);
828 if (list_empty(&mm->mmlist)) 832 if (list_empty(&mm->mmlist))
diff --git a/mm/swapfile.c b/mm/swapfile.c
index c0d7b9ed0c16..cc5e7ebf2d2c 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -35,11 +35,14 @@
35#include <linux/swapops.h> 35#include <linux/swapops.h>
36#include <linux/page_cgroup.h> 36#include <linux/page_cgroup.h>
37 37
38static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
39 unsigned char);
40static void free_swap_count_continuations(struct swap_info_struct *);
41
38static DEFINE_SPINLOCK(swap_lock); 42static DEFINE_SPINLOCK(swap_lock);
39static unsigned int nr_swapfiles; 43static unsigned int nr_swapfiles;
40long nr_swap_pages; 44long nr_swap_pages;
41long total_swap_pages; 45long total_swap_pages;
42static int swap_overflow;
43static int least_priority; 46static int least_priority;
44 47
45static const char Bad_file[] = "Bad swap file entry "; 48static const char Bad_file[] = "Bad swap file entry ";
@@ -55,7 +58,7 @@ static DEFINE_MUTEX(swapon_mutex);
55 58
56static inline unsigned char swap_count(unsigned char ent) 59static inline unsigned char swap_count(unsigned char ent)
57{ 60{
58 return ent & ~SWAP_HAS_CACHE; 61 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
59} 62}
60 63
61/* returns 1 if swap entry is freed */ 64/* returns 1 if swap entry is freed */
@@ -545,8 +548,15 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
545 if (usage == SWAP_HAS_CACHE) { 548 if (usage == SWAP_HAS_CACHE) {
546 VM_BUG_ON(!has_cache); 549 VM_BUG_ON(!has_cache);
547 has_cache = 0; 550 has_cache = 0;
548 } else if (count < SWAP_MAP_MAX) 551 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
549 count--; 552 if (count == COUNT_CONTINUED) {
553 if (swap_count_continued(p, offset, count))
554 count = SWAP_MAP_MAX | COUNT_CONTINUED;
555 else
556 count = SWAP_MAP_MAX;
557 } else
558 count--;
559 }
550 560
551 if (!count) 561 if (!count)
552 mem_cgroup_uncharge_swap(entry); 562 mem_cgroup_uncharge_swap(entry);
@@ -604,6 +614,8 @@ void swapcache_free(swp_entry_t entry, struct page *page)
604 614
605/* 615/*
606 * How many references to page are currently swapped out? 616 * How many references to page are currently swapped out?
617 * This does not give an exact answer when swap count is continued,
618 * but does include the high COUNT_CONTINUED flag to allow for that.
607 */ 619 */
608static inline int page_swapcount(struct page *page) 620static inline int page_swapcount(struct page *page)
609{ 621{
@@ -1019,7 +1031,6 @@ static int try_to_unuse(unsigned int type)
1019 swp_entry_t entry; 1031 swp_entry_t entry;
1020 unsigned int i = 0; 1032 unsigned int i = 0;
1021 int retval = 0; 1033 int retval = 0;
1022 int reset_overflow = 0;
1023 int shmem; 1034 int shmem;
1024 1035
1025 /* 1036 /*
@@ -1034,8 +1045,7 @@ static int try_to_unuse(unsigned int type)
1034 * together, child after parent. If we race with dup_mmap(), we 1045 * together, child after parent. If we race with dup_mmap(), we
1035 * prefer to resolve parent before child, lest we miss entries 1046 * prefer to resolve parent before child, lest we miss entries
1036 * duplicated after we scanned child: using last mm would invert 1047 * duplicated after we scanned child: using last mm would invert
1037 * that. Though it's only a serious concern when an overflowed 1048 * that.
1038 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1039 */ 1049 */
1040 start_mm = &init_mm; 1050 start_mm = &init_mm;
1041 atomic_inc(&init_mm.mm_users); 1051 atomic_inc(&init_mm.mm_users);
@@ -1165,36 +1175,6 @@ static int try_to_unuse(unsigned int type)
1165 } 1175 }
1166 1176
1167 /* 1177 /*
1168 * How could swap count reach 0x7ffe ?
1169 * There's no way to repeat a swap page within an mm
1170 * (except in shmem, where it's the shared object which takes
1171 * the reference count)?
1172 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1173 * short is too small....)
1174 * If that's wrong, then we should worry more about
1175 * exit_mmap() and do_munmap() cases described above:
1176 * we might be resetting SWAP_MAP_MAX too early here.
1177 *
1178 * Yes, that's wrong: though very unlikely, swap count 0x7ffe
1179 * could surely occur if pid_max raised from PID_MAX_DEFAULT;
1180 * and we are now lowering SWAP_MAP_MAX to 0x7e, making it
1181 * much easier to reach. But the next patch will fix that.
1182 *
1183 * We know "Undead"s can happen, they're okay, so don't
1184 * report them; but do report if we reset SWAP_MAP_MAX.
1185 */
1186 /* We might release the lock_page() in unuse_mm(). */
1187 if (!PageSwapCache(page) || page_private(page) != entry.val)
1188 goto retry;
1189
1190 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1191 spin_lock(&swap_lock);
1192 *swap_map = SWAP_HAS_CACHE;
1193 spin_unlock(&swap_lock);
1194 reset_overflow = 1;
1195 }
1196
1197 /*
1198 * If a reference remains (rare), we would like to leave 1178 * If a reference remains (rare), we would like to leave
1199 * the page in the swap cache; but try_to_unmap could 1179 * the page in the swap cache; but try_to_unmap could
1200 * then re-duplicate the entry once we drop page lock, 1180 * then re-duplicate the entry once we drop page lock,
@@ -1235,7 +1215,6 @@ static int try_to_unuse(unsigned int type)
1235 * mark page dirty so shrink_page_list will preserve it. 1215 * mark page dirty so shrink_page_list will preserve it.
1236 */ 1216 */
1237 SetPageDirty(page); 1217 SetPageDirty(page);
1238retry:
1239 unlock_page(page); 1218 unlock_page(page);
1240 page_cache_release(page); 1219 page_cache_release(page);
1241 1220
@@ -1247,10 +1226,6 @@ retry:
1247 } 1226 }
1248 1227
1249 mmput(start_mm); 1228 mmput(start_mm);
1250 if (reset_overflow) {
1251 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1252 swap_overflow = 0;
1253 }
1254 return retval; 1229 return retval;
1255} 1230}
1256 1231
@@ -1593,6 +1568,9 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1593 up_write(&swap_unplug_sem); 1568 up_write(&swap_unplug_sem);
1594 1569
1595 destroy_swap_extents(p); 1570 destroy_swap_extents(p);
1571 if (p->flags & SWP_CONTINUED)
1572 free_swap_count_continuations(p);
1573
1596 mutex_lock(&swapon_mutex); 1574 mutex_lock(&swapon_mutex);
1597 spin_lock(&swap_lock); 1575 spin_lock(&swap_lock);
1598 drain_mmlist(); 1576 drain_mmlist();
@@ -2079,14 +2057,13 @@ void si_swapinfo(struct sysinfo *val)
2079/* 2057/*
2080 * Verify that a swap entry is valid and increment its swap map count. 2058 * Verify that a swap entry is valid and increment its swap map count.
2081 * 2059 *
2082 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2083 * "permanent", but will be reclaimed by the next swapoff.
2084 * Returns error code in following case. 2060 * Returns error code in following case.
2085 * - success -> 0 2061 * - success -> 0
2086 * - swp_entry is invalid -> EINVAL 2062 * - swp_entry is invalid -> EINVAL
2087 * - swp_entry is migration entry -> EINVAL 2063 * - swp_entry is migration entry -> EINVAL
2088 * - swap-cache reference is requested but there is already one. -> EEXIST 2064 * - swap-cache reference is requested but there is already one. -> EEXIST
2089 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2065 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2066 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2090 */ 2067 */
2091static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2068static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2092{ 2069{
@@ -2126,15 +2103,14 @@ static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2126 2103
2127 } else if (count || has_cache) { 2104 } else if (count || has_cache) {
2128 2105
2129 if (count < SWAP_MAP_MAX - 1) 2106 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2130 count++; 2107 count += usage;
2131 else if (count <= SWAP_MAP_MAX) { 2108 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2132 if (swap_overflow++ < 5)
2133 printk(KERN_WARNING
2134 "swap_dup: swap entry overflow\n");
2135 count = SWAP_MAP_MAX;
2136 } else
2137 err = -EINVAL; 2109 err = -EINVAL;
2110 else if (swap_count_continued(p, offset, count))
2111 count = COUNT_CONTINUED;
2112 else
2113 err = -ENOMEM;
2138 } else 2114 } else
2139 err = -ENOENT; /* unused swap entry */ 2115 err = -ENOENT; /* unused swap entry */
2140 2116
@@ -2153,9 +2129,13 @@ bad_file:
2153/* 2129/*
2154 * increase reference count of swap entry by 1. 2130 * increase reference count of swap entry by 1.
2155 */ 2131 */
2156void swap_duplicate(swp_entry_t entry) 2132int swap_duplicate(swp_entry_t entry)
2157{ 2133{
2158 __swap_duplicate(entry, 1); 2134 int err = 0;
2135
2136 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2137 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2138 return err;
2159} 2139}
2160 2140
2161/* 2141/*
@@ -2222,3 +2202,219 @@ int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2222 *offset = ++toff; 2202 *offset = ++toff;
2223 return nr_pages? ++nr_pages: 0; 2203 return nr_pages? ++nr_pages: 0;
2224} 2204}
2205
2206/*
2207 * add_swap_count_continuation - called when a swap count is duplicated
2208 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2209 * page of the original vmalloc'ed swap_map, to hold the continuation count
2210 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2211 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2212 *
2213 * These continuation pages are seldom referenced: the common paths all work
2214 * on the original swap_map, only referring to a continuation page when the
2215 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2216 *
2217 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2218 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2219 * can be called after dropping locks.
2220 */
2221int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2222{
2223 struct swap_info_struct *si;
2224 struct page *head;
2225 struct page *page;
2226 struct page *list_page;
2227 pgoff_t offset;
2228 unsigned char count;
2229
2230 /*
2231 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2232 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2233 */
2234 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2235
2236 si = swap_info_get(entry);
2237 if (!si) {
2238 /*
2239 * An acceptable race has occurred since the failing
2240 * __swap_duplicate(): the swap entry has been freed,
2241 * perhaps even the whole swap_map cleared for swapoff.
2242 */
2243 goto outer;
2244 }
2245
2246 offset = swp_offset(entry);
2247 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2248
2249 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2250 /*
2251 * The higher the swap count, the more likely it is that tasks
2252 * will race to add swap count continuation: we need to avoid
2253 * over-provisioning.
2254 */
2255 goto out;
2256 }
2257
2258 if (!page) {
2259 spin_unlock(&swap_lock);
2260 return -ENOMEM;
2261 }
2262
2263 /*
2264 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2265 * no architecture is using highmem pages for kernel pagetables: so it
2266 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2267 */
2268 head = vmalloc_to_page(si->swap_map + offset);
2269 offset &= ~PAGE_MASK;
2270
2271 /*
2272 * Page allocation does not initialize the page's lru field,
2273 * but it does always reset its private field.
2274 */
2275 if (!page_private(head)) {
2276 BUG_ON(count & COUNT_CONTINUED);
2277 INIT_LIST_HEAD(&head->lru);
2278 set_page_private(head, SWP_CONTINUED);
2279 si->flags |= SWP_CONTINUED;
2280 }
2281
2282 list_for_each_entry(list_page, &head->lru, lru) {
2283 unsigned char *map;
2284
2285 /*
2286 * If the previous map said no continuation, but we've found
2287 * a continuation page, free our allocation and use this one.
2288 */
2289 if (!(count & COUNT_CONTINUED))
2290 goto out;
2291
2292 map = kmap_atomic(list_page, KM_USER0) + offset;
2293 count = *map;
2294 kunmap_atomic(map, KM_USER0);
2295
2296 /*
2297 * If this continuation count now has some space in it,
2298 * free our allocation and use this one.
2299 */
2300 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2301 goto out;
2302 }
2303
2304 list_add_tail(&page->lru, &head->lru);
2305 page = NULL; /* now it's attached, don't free it */
2306out:
2307 spin_unlock(&swap_lock);
2308outer:
2309 if (page)
2310 __free_page(page);
2311 return 0;
2312}
2313
2314/*
2315 * swap_count_continued - when the original swap_map count is incremented
2316 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2317 * into, carry if so, or else fail until a new continuation page is allocated;
2318 * when the original swap_map count is decremented from 0 with continuation,
2319 * borrow from the continuation and report whether it still holds more.
2320 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2321 */
2322static bool swap_count_continued(struct swap_info_struct *si,
2323 pgoff_t offset, unsigned char count)
2324{
2325 struct page *head;
2326 struct page *page;
2327 unsigned char *map;
2328
2329 head = vmalloc_to_page(si->swap_map + offset);
2330 if (page_private(head) != SWP_CONTINUED) {
2331 BUG_ON(count & COUNT_CONTINUED);
2332 return false; /* need to add count continuation */
2333 }
2334
2335 offset &= ~PAGE_MASK;
2336 page = list_entry(head->lru.next, struct page, lru);
2337 map = kmap_atomic(page, KM_USER0) + offset;
2338
2339 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2340 goto init_map; /* jump over SWAP_CONT_MAX checks */
2341
2342 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2343 /*
2344 * Think of how you add 1 to 999
2345 */
2346 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2347 kunmap_atomic(map, KM_USER0);
2348 page = list_entry(page->lru.next, struct page, lru);
2349 BUG_ON(page == head);
2350 map = kmap_atomic(page, KM_USER0) + offset;
2351 }
2352 if (*map == SWAP_CONT_MAX) {
2353 kunmap_atomic(map, KM_USER0);
2354 page = list_entry(page->lru.next, struct page, lru);
2355 if (page == head)
2356 return false; /* add count continuation */
2357 map = kmap_atomic(page, KM_USER0) + offset;
2358init_map: *map = 0; /* we didn't zero the page */
2359 }
2360 *map += 1;
2361 kunmap_atomic(map, KM_USER0);
2362 page = list_entry(page->lru.prev, struct page, lru);
2363 while (page != head) {
2364 map = kmap_atomic(page, KM_USER0) + offset;
2365 *map = COUNT_CONTINUED;
2366 kunmap_atomic(map, KM_USER0);
2367 page = list_entry(page->lru.prev, struct page, lru);
2368 }
2369 return true; /* incremented */
2370
2371 } else { /* decrementing */
2372 /*
2373 * Think of how you subtract 1 from 1000
2374 */
2375 BUG_ON(count != COUNT_CONTINUED);
2376 while (*map == COUNT_CONTINUED) {
2377 kunmap_atomic(map, KM_USER0);
2378 page = list_entry(page->lru.next, struct page, lru);
2379 BUG_ON(page == head);
2380 map = kmap_atomic(page, KM_USER0) + offset;
2381 }
2382 BUG_ON(*map == 0);
2383 *map -= 1;
2384 if (*map == 0)
2385 count = 0;
2386 kunmap_atomic(map, KM_USER0);
2387 page = list_entry(page->lru.prev, struct page, lru);
2388 while (page != head) {
2389 map = kmap_atomic(page, KM_USER0) + offset;
2390 *map = SWAP_CONT_MAX | count;
2391 count = COUNT_CONTINUED;
2392 kunmap_atomic(map, KM_USER0);
2393 page = list_entry(page->lru.prev, struct page, lru);
2394 }
2395 return count == COUNT_CONTINUED;
2396 }
2397}
2398
2399/*
2400 * free_swap_count_continuations - swapoff free all the continuation pages
2401 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2402 */
2403static void free_swap_count_continuations(struct swap_info_struct *si)
2404{
2405 pgoff_t offset;
2406
2407 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2408 struct page *head;
2409 head = vmalloc_to_page(si->swap_map + offset);
2410 if (page_private(head)) {
2411 struct list_head *this, *next;
2412 list_for_each_safe(this, next, &head->lru) {
2413 struct page *page;
2414 page = list_entry(this, struct page, lru);
2415 list_del(this);
2416 __free_page(page);
2417 }
2418 }
2419 }
2420}