aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig10
-rw-r--r--mm/Makefile1
-rw-r--r--mm/zbud.c527
3 files changed, 538 insertions, 0 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 7e28ecfa8aa4..45503ed5f3aa 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -478,6 +478,16 @@ config FRONTSWAP
478 478
479 If unsure, say Y to enable frontswap. 479 If unsure, say Y to enable frontswap.
480 480
481config ZBUD
482 tristate
483 default n
484 help
485 A special purpose allocator for storing compressed pages.
486 It is designed to store up to two compressed pages per physical
487 page. While this design limits storage density, it has simple and
488 deterministic reclaim properties that make it preferable to a higher
489 density approach when reclaim will be used.
490
481config MEM_SOFT_DIRTY 491config MEM_SOFT_DIRTY
482 bool "Track memory changes" 492 bool "Track memory changes"
483 depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY 493 depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY
diff --git a/mm/Makefile b/mm/Makefile
index 72c5acb9345f..95f0197ce3d3 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -58,3 +58,4 @@ obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o
58obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o 58obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o
59obj-$(CONFIG_CLEANCACHE) += cleancache.o 59obj-$(CONFIG_CLEANCACHE) += cleancache.o
60obj-$(CONFIG_MEMORY_ISOLATION) += page_isolation.o 60obj-$(CONFIG_MEMORY_ISOLATION) += page_isolation.o
61obj-$(CONFIG_ZBUD) += zbud.o
diff --git a/mm/zbud.c b/mm/zbud.c
new file mode 100644
index 000000000000..9bb4710e3589
--- /dev/null
+++ b/mm/zbud.c
@@ -0,0 +1,527 @@
1/*
2 * zbud.c
3 *
4 * Copyright (C) 2013, Seth Jennings, IBM
5 *
6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
7 *
8 * zbud is an special purpose allocator for storing compressed pages. Contrary
9 * to what its name may suggest, zbud is not a buddy allocator, but rather an
10 * allocator that "buddies" two compressed pages together in a single memory
11 * page.
12 *
13 * While this design limits storage density, it has simple and deterministic
14 * reclaim properties that make it preferable to a higher density approach when
15 * reclaim will be used.
16 *
17 * zbud works by storing compressed pages, or "zpages", together in pairs in a
18 * single memory page called a "zbud page". The first buddy is "left
19 * justifed" at the beginning of the zbud page, and the last buddy is "right
20 * justified" at the end of the zbud page. The benefit is that if either
21 * buddy is freed, the freed buddy space, coalesced with whatever slack space
22 * that existed between the buddies, results in the largest possible free region
23 * within the zbud page.
24 *
25 * zbud also provides an attractive lower bound on density. The ratio of zpages
26 * to zbud pages can not be less than 1. This ensures that zbud can never "do
27 * harm" by using more pages to store zpages than the uncompressed zpages would
28 * have used on their own.
29 *
30 * zbud pages are divided into "chunks". The size of the chunks is fixed at
31 * compile time and determined by NCHUNKS_ORDER below. Dividing zbud pages
32 * into chunks allows organizing unbuddied zbud pages into a manageable number
33 * of unbuddied lists according to the number of free chunks available in the
34 * zbud page.
35 *
36 * The zbud API differs from that of conventional allocators in that the
37 * allocation function, zbud_alloc(), returns an opaque handle to the user,
38 * not a dereferenceable pointer. The user must map the handle using
39 * zbud_map() in order to get a usable pointer by which to access the
40 * allocation data and unmap the handle with zbud_unmap() when operations
41 * on the allocation data are complete.
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/atomic.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/module.h>
50#include <linux/preempt.h>
51#include <linux/slab.h>
52#include <linux/spinlock.h>
53#include <linux/zbud.h>
54
55/*****************
56 * Structures
57*****************/
58/*
59 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
60 * adjusting internal fragmentation. It also determines the number of
61 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
62 * allocation granularity will be in chunks of size PAGE_SIZE/64, and there
63 * will be 64 freelists per pool.
64 */
65#define NCHUNKS_ORDER 6
66
67#define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
68#define CHUNK_SIZE (1 << CHUNK_SHIFT)
69#define NCHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
70#define ZHDR_SIZE_ALIGNED CHUNK_SIZE
71
72/**
73 * struct zbud_pool - stores metadata for each zbud pool
74 * @lock: protects all pool fields and first|last_chunk fields of any
75 * zbud page in the pool
76 * @unbuddied: array of lists tracking zbud pages that only contain one buddy;
77 * the lists each zbud page is added to depends on the size of
78 * its free region.
79 * @buddied: list tracking the zbud pages that contain two buddies;
80 * these zbud pages are full
81 * @lru: list tracking the zbud pages in LRU order by most recently
82 * added buddy.
83 * @pages_nr: number of zbud pages in the pool.
84 * @ops: pointer to a structure of user defined operations specified at
85 * pool creation time.
86 *
87 * This structure is allocated at pool creation time and maintains metadata
88 * pertaining to a particular zbud pool.
89 */
90struct zbud_pool {
91 spinlock_t lock;
92 struct list_head unbuddied[NCHUNKS];
93 struct list_head buddied;
94 struct list_head lru;
95 u64 pages_nr;
96 struct zbud_ops *ops;
97};
98
99/*
100 * struct zbud_header - zbud page metadata occupying the first chunk of each
101 * zbud page.
102 * @buddy: links the zbud page into the unbuddied/buddied lists in the pool
103 * @lru: links the zbud page into the lru list in the pool
104 * @first_chunks: the size of the first buddy in chunks, 0 if free
105 * @last_chunks: the size of the last buddy in chunks, 0 if free
106 */
107struct zbud_header {
108 struct list_head buddy;
109 struct list_head lru;
110 unsigned int first_chunks;
111 unsigned int last_chunks;
112 bool under_reclaim;
113};
114
115/*****************
116 * Helpers
117*****************/
118/* Just to make the code easier to read */
119enum buddy {
120 FIRST,
121 LAST
122};
123
124/* Converts an allocation size in bytes to size in zbud chunks */
125static int size_to_chunks(int size)
126{
127 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
128}
129
130#define for_each_unbuddied_list(_iter, _begin) \
131 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
132
133/* Initializes the zbud header of a newly allocated zbud page */
134static struct zbud_header *init_zbud_page(struct page *page)
135{
136 struct zbud_header *zhdr = page_address(page);
137 zhdr->first_chunks = 0;
138 zhdr->last_chunks = 0;
139 INIT_LIST_HEAD(&zhdr->buddy);
140 INIT_LIST_HEAD(&zhdr->lru);
141 zhdr->under_reclaim = 0;
142 return zhdr;
143}
144
145/* Resets the struct page fields and frees the page */
146static void free_zbud_page(struct zbud_header *zhdr)
147{
148 __free_page(virt_to_page(zhdr));
149}
150
151/*
152 * Encodes the handle of a particular buddy within a zbud page
153 * Pool lock should be held as this function accesses first|last_chunks
154 */
155static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
156{
157 unsigned long handle;
158
159 /*
160 * For now, the encoded handle is actually just the pointer to the data
161 * but this might not always be the case. A little information hiding.
162 * Add CHUNK_SIZE to the handle if it is the first allocation to jump
163 * over the zbud header in the first chunk.
164 */
165 handle = (unsigned long)zhdr;
166 if (bud == FIRST)
167 /* skip over zbud header */
168 handle += ZHDR_SIZE_ALIGNED;
169 else /* bud == LAST */
170 handle += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
171 return handle;
172}
173
174/* Returns the zbud page where a given handle is stored */
175static struct zbud_header *handle_to_zbud_header(unsigned long handle)
176{
177 return (struct zbud_header *)(handle & PAGE_MASK);
178}
179
180/* Returns the number of free chunks in a zbud page */
181static int num_free_chunks(struct zbud_header *zhdr)
182{
183 /*
184 * Rather than branch for different situations, just use the fact that
185 * free buddies have a length of zero to simplify everything. -1 at the
186 * end for the zbud header.
187 */
188 return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks - 1;
189}
190
191/*****************
192 * API Functions
193*****************/
194/**
195 * zbud_create_pool() - create a new zbud pool
196 * @gfp: gfp flags when allocating the zbud pool structure
197 * @ops: user-defined operations for the zbud pool
198 *
199 * Return: pointer to the new zbud pool or NULL if the metadata allocation
200 * failed.
201 */
202struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops)
203{
204 struct zbud_pool *pool;
205 int i;
206
207 pool = kmalloc(sizeof(struct zbud_pool), gfp);
208 if (!pool)
209 return NULL;
210 spin_lock_init(&pool->lock);
211 for_each_unbuddied_list(i, 0)
212 INIT_LIST_HEAD(&pool->unbuddied[i]);
213 INIT_LIST_HEAD(&pool->buddied);
214 INIT_LIST_HEAD(&pool->lru);
215 pool->pages_nr = 0;
216 pool->ops = ops;
217 return pool;
218}
219
220/**
221 * zbud_destroy_pool() - destroys an existing zbud pool
222 * @pool: the zbud pool to be destroyed
223 *
224 * The pool should be emptied before this function is called.
225 */
226void zbud_destroy_pool(struct zbud_pool *pool)
227{
228 kfree(pool);
229}
230
231/**
232 * zbud_alloc() - allocates a region of a given size
233 * @pool: zbud pool from which to allocate
234 * @size: size in bytes of the desired allocation
235 * @gfp: gfp flags used if the pool needs to grow
236 * @handle: handle of the new allocation
237 *
238 * This function will attempt to find a free region in the pool large enough to
239 * satisfy the allocation request. A search of the unbuddied lists is
240 * performed first. If no suitable free region is found, then a new page is
241 * allocated and added to the pool to satisfy the request.
242 *
243 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
244 * as zbud pool pages.
245 *
246 * Return: 0 if success and handle is set, otherwise -EINVAL is the size or
247 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
248 * a new page.
249 */
250int zbud_alloc(struct zbud_pool *pool, int size, gfp_t gfp,
251 unsigned long *handle)
252{
253 int chunks, i, freechunks;
254 struct zbud_header *zhdr = NULL;
255 enum buddy bud;
256 struct page *page;
257
258 if (size <= 0 || gfp & __GFP_HIGHMEM)
259 return -EINVAL;
260 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED)
261 return -ENOSPC;
262 chunks = size_to_chunks(size);
263 spin_lock(&pool->lock);
264
265 /* First, try to find an unbuddied zbud page. */
266 zhdr = NULL;
267 for_each_unbuddied_list(i, chunks) {
268 if (!list_empty(&pool->unbuddied[i])) {
269 zhdr = list_first_entry(&pool->unbuddied[i],
270 struct zbud_header, buddy);
271 list_del(&zhdr->buddy);
272 if (zhdr->first_chunks == 0)
273 bud = FIRST;
274 else
275 bud = LAST;
276 goto found;
277 }
278 }
279
280 /* Couldn't find unbuddied zbud page, create new one */
281 spin_unlock(&pool->lock);
282 page = alloc_page(gfp);
283 if (!page)
284 return -ENOMEM;
285 spin_lock(&pool->lock);
286 pool->pages_nr++;
287 zhdr = init_zbud_page(page);
288 bud = FIRST;
289
290found:
291 if (bud == FIRST)
292 zhdr->first_chunks = chunks;
293 else
294 zhdr->last_chunks = chunks;
295
296 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
297 /* Add to unbuddied list */
298 freechunks = num_free_chunks(zhdr);
299 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
300 } else {
301 /* Add to buddied list */
302 list_add(&zhdr->buddy, &pool->buddied);
303 }
304
305 /* Add/move zbud page to beginning of LRU */
306 if (!list_empty(&zhdr->lru))
307 list_del(&zhdr->lru);
308 list_add(&zhdr->lru, &pool->lru);
309
310 *handle = encode_handle(zhdr, bud);
311 spin_unlock(&pool->lock);
312
313 return 0;
314}
315
316/**
317 * zbud_free() - frees the allocation associated with the given handle
318 * @pool: pool in which the allocation resided
319 * @handle: handle associated with the allocation returned by zbud_alloc()
320 *
321 * In the case that the zbud page in which the allocation resides is under
322 * reclaim, as indicated by the PG_reclaim flag being set, this function
323 * only sets the first|last_chunks to 0. The page is actually freed
324 * once both buddies are evicted (see zbud_reclaim_page() below).
325 */
326void zbud_free(struct zbud_pool *pool, unsigned long handle)
327{
328 struct zbud_header *zhdr;
329 int freechunks;
330
331 spin_lock(&pool->lock);
332 zhdr = handle_to_zbud_header(handle);
333
334 /* If first buddy, handle will be page aligned */
335 if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
336 zhdr->last_chunks = 0;
337 else
338 zhdr->first_chunks = 0;
339
340 if (zhdr->under_reclaim) {
341 /* zbud page is under reclaim, reclaim will free */
342 spin_unlock(&pool->lock);
343 return;
344 }
345
346 /* Remove from existing buddy list */
347 list_del(&zhdr->buddy);
348
349 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
350 /* zbud page is empty, free */
351 list_del(&zhdr->lru);
352 free_zbud_page(zhdr);
353 pool->pages_nr--;
354 } else {
355 /* Add to unbuddied list */
356 freechunks = num_free_chunks(zhdr);
357 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
358 }
359
360 spin_unlock(&pool->lock);
361}
362
363#define list_tail_entry(ptr, type, member) \
364 list_entry((ptr)->prev, type, member)
365
366/**
367 * zbud_reclaim_page() - evicts allocations from a pool page and frees it
368 * @pool: pool from which a page will attempt to be evicted
369 * @retires: number of pages on the LRU list for which eviction will
370 * be attempted before failing
371 *
372 * zbud reclaim is different from normal system reclaim in that the reclaim is
373 * done from the bottom, up. This is because only the bottom layer, zbud, has
374 * information on how the allocations are organized within each zbud page. This
375 * has the potential to create interesting locking situations between zbud and
376 * the user, however.
377 *
378 * To avoid these, this is how zbud_reclaim_page() should be called:
379
380 * The user detects a page should be reclaimed and calls zbud_reclaim_page().
381 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
382 * the user-defined eviction handler with the pool and handle as arguments.
383 *
384 * If the handle can not be evicted, the eviction handler should return
385 * non-zero. zbud_reclaim_page() will add the zbud page back to the
386 * appropriate list and try the next zbud page on the LRU up to
387 * a user defined number of retries.
388 *
389 * If the handle is successfully evicted, the eviction handler should
390 * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
391 * contains logic to delay freeing the page if the page is under reclaim,
392 * as indicated by the setting of the PG_reclaim flag on the underlying page.
393 *
394 * If all buddies in the zbud page are successfully evicted, then the
395 * zbud page can be freed.
396 *
397 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
398 * no pages to evict or an eviction handler is not registered, -EAGAIN if
399 * the retry limit was hit.
400 */
401int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
402{
403 int i, ret, freechunks;
404 struct zbud_header *zhdr;
405 unsigned long first_handle = 0, last_handle = 0;
406
407 spin_lock(&pool->lock);
408 if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
409 retries == 0) {
410 spin_unlock(&pool->lock);
411 return -EINVAL;
412 }
413 for (i = 0; i < retries; i++) {
414 zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru);
415 list_del(&zhdr->lru);
416 list_del(&zhdr->buddy);
417 /* Protect zbud page against free */
418 zhdr->under_reclaim = true;
419 /*
420 * We need encode the handles before unlocking, since we can
421 * race with free that will set (first|last)_chunks to 0
422 */
423 first_handle = 0;
424 last_handle = 0;
425 if (zhdr->first_chunks)
426 first_handle = encode_handle(zhdr, FIRST);
427 if (zhdr->last_chunks)
428 last_handle = encode_handle(zhdr, LAST);
429 spin_unlock(&pool->lock);
430
431 /* Issue the eviction callback(s) */
432 if (first_handle) {
433 ret = pool->ops->evict(pool, first_handle);
434 if (ret)
435 goto next;
436 }
437 if (last_handle) {
438 ret = pool->ops->evict(pool, last_handle);
439 if (ret)
440 goto next;
441 }
442next:
443 spin_lock(&pool->lock);
444 zhdr->under_reclaim = false;
445 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
446 /*
447 * Both buddies are now free, free the zbud page and
448 * return success.
449 */
450 free_zbud_page(zhdr);
451 pool->pages_nr--;
452 spin_unlock(&pool->lock);
453 return 0;
454 } else if (zhdr->first_chunks == 0 ||
455 zhdr->last_chunks == 0) {
456 /* add to unbuddied list */
457 freechunks = num_free_chunks(zhdr);
458 list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
459 } else {
460 /* add to buddied list */
461 list_add(&zhdr->buddy, &pool->buddied);
462 }
463
464 /* add to beginning of LRU */
465 list_add(&zhdr->lru, &pool->lru);
466 }
467 spin_unlock(&pool->lock);
468 return -EAGAIN;
469}
470
471/**
472 * zbud_map() - maps the allocation associated with the given handle
473 * @pool: pool in which the allocation resides
474 * @handle: handle associated with the allocation to be mapped
475 *
476 * While trivial for zbud, the mapping functions for others allocators
477 * implementing this allocation API could have more complex information encoded
478 * in the handle and could create temporary mappings to make the data
479 * accessible to the user.
480 *
481 * Returns: a pointer to the mapped allocation
482 */
483void *zbud_map(struct zbud_pool *pool, unsigned long handle)
484{
485 return (void *)(handle);
486}
487
488/**
489 * zbud_unmap() - maps the allocation associated with the given handle
490 * @pool: pool in which the allocation resides
491 * @handle: handle associated with the allocation to be unmapped
492 */
493void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
494{
495}
496
497/**
498 * zbud_get_pool_size() - gets the zbud pool size in pages
499 * @pool: pool whose size is being queried
500 *
501 * Returns: size in pages of the given pool. The pool lock need not be
502 * taken to access pages_nr.
503 */
504u64 zbud_get_pool_size(struct zbud_pool *pool)
505{
506 return pool->pages_nr;
507}
508
509static int __init init_zbud(void)
510{
511 /* Make sure the zbud header will fit in one chunk */
512 BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
513 pr_info("loaded\n");
514 return 0;
515}
516
517static void __exit exit_zbud(void)
518{
519 pr_info("unloaded\n");
520}
521
522module_init(init_zbud);
523module_exit(exit_zbud);
524
525MODULE_LICENSE("GPL");
526MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
527MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");