diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 9 | ||||
-rw-r--r-- | mm/Kconfig.debug | 26 | ||||
-rw-r--r-- | mm/Makefile | 5 | ||||
-rw-r--r-- | mm/allocpercpu.c | 34 | ||||
-rw-r--r-- | mm/backing-dev.c | 36 | ||||
-rw-r--r-- | mm/bootmem.c | 35 | ||||
-rw-r--r-- | mm/debug-pagealloc.c | 129 | ||||
-rw-r--r-- | mm/filemap.c | 30 | ||||
-rw-r--r-- | mm/filemap_xip.c | 4 | ||||
-rw-r--r-- | mm/highmem.c | 110 | ||||
-rw-r--r-- | mm/hugetlb.c | 6 | ||||
-rw-r--r-- | mm/internal.h | 8 | ||||
-rw-r--r-- | mm/memcontrol.c | 687 | ||||
-rw-r--r-- | mm/memory.c | 39 | ||||
-rw-r--r-- | mm/migrate.c | 10 | ||||
-rw-r--r-- | mm/mmap.c | 7 | ||||
-rw-r--r-- | mm/nommu.c | 52 | ||||
-rw-r--r-- | mm/oom_kill.c | 13 | ||||
-rw-r--r-- | mm/page-writeback.c | 46 | ||||
-rw-r--r-- | mm/page_alloc.c | 42 | ||||
-rw-r--r-- | mm/page_cgroup.c | 37 | ||||
-rw-r--r-- | mm/pdflush.c | 2 | ||||
-rw-r--r-- | mm/percpu.c | 1326 | ||||
-rw-r--r-- | mm/quicklist.c | 2 | ||||
-rw-r--r-- | mm/readahead.c | 65 | ||||
-rw-r--r-- | mm/shmem.c | 5 | ||||
-rw-r--r-- | mm/slab.c | 80 | ||||
-rw-r--r-- | mm/slob.c | 80 | ||||
-rw-r--r-- | mm/slub.c | 164 | ||||
-rw-r--r-- | mm/sparse.c | 4 | ||||
-rw-r--r-- | mm/swap.c | 27 | ||||
-rw-r--r-- | mm/truncate.c | 10 | ||||
-rw-r--r-- | mm/util.c | 30 | ||||
-rw-r--r-- | mm/vmalloc.c | 116 | ||||
-rw-r--r-- | mm/vmscan.c | 115 | ||||
-rw-r--r-- | mm/vmstat.c | 18 |
36 files changed, 2782 insertions, 627 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index a5b77811fdf2..b53427ad30a3 100644 --- a/mm/Kconfig +++ b/mm/Kconfig | |||
@@ -206,7 +206,6 @@ config VIRT_TO_BUS | |||
206 | config UNEVICTABLE_LRU | 206 | config UNEVICTABLE_LRU |
207 | bool "Add LRU list to track non-evictable pages" | 207 | bool "Add LRU list to track non-evictable pages" |
208 | default y | 208 | default y |
209 | depends on MMU | ||
210 | help | 209 | help |
211 | Keeps unevictable pages off of the active and inactive pageout | 210 | Keeps unevictable pages off of the active and inactive pageout |
212 | lists, so kswapd will not waste CPU time or have its balancing | 211 | lists, so kswapd will not waste CPU time or have its balancing |
@@ -214,5 +213,13 @@ config UNEVICTABLE_LRU | |||
214 | will use one page flag and increase the code size a little, | 213 | will use one page flag and increase the code size a little, |
215 | say Y unless you know what you are doing. | 214 | say Y unless you know what you are doing. |
216 | 215 | ||
216 | config HAVE_MLOCK | ||
217 | bool | ||
218 | default y if MMU=y | ||
219 | |||
220 | config HAVE_MLOCKED_PAGE_BIT | ||
221 | bool | ||
222 | default y if HAVE_MLOCK=y && UNEVICTABLE_LRU=y | ||
223 | |||
217 | config MMU_NOTIFIER | 224 | config MMU_NOTIFIER |
218 | bool | 225 | bool |
diff --git a/mm/Kconfig.debug b/mm/Kconfig.debug new file mode 100644 index 000000000000..bb01e298f260 --- /dev/null +++ b/mm/Kconfig.debug | |||
@@ -0,0 +1,26 @@ | |||
1 | config DEBUG_PAGEALLOC | ||
2 | bool "Debug page memory allocations" | ||
3 | depends on DEBUG_KERNEL && ARCH_SUPPORTS_DEBUG_PAGEALLOC | ||
4 | depends on !HIBERNATION || !PPC && !SPARC | ||
5 | ---help--- | ||
6 | Unmap pages from the kernel linear mapping after free_pages(). | ||
7 | This results in a large slowdown, but helps to find certain types | ||
8 | of memory corruptions. | ||
9 | |||
10 | config WANT_PAGE_DEBUG_FLAGS | ||
11 | bool | ||
12 | |||
13 | config PAGE_POISONING | ||
14 | bool "Debug page memory allocations" | ||
15 | depends on DEBUG_KERNEL && !ARCH_SUPPORTS_DEBUG_PAGEALLOC | ||
16 | depends on !HIBERNATION | ||
17 | select DEBUG_PAGEALLOC | ||
18 | select WANT_PAGE_DEBUG_FLAGS | ||
19 | help | ||
20 | Fill the pages with poison patterns after free_pages() and verify | ||
21 | the patterns before alloc_pages(). This results in a large slowdown, | ||
22 | but helps to find certain types of memory corruptions. | ||
23 | |||
24 | This option cannot enalbe with hibernation. Otherwise, it will get | ||
25 | wrong messages for memory corruption because the free pages are not | ||
26 | saved to the suspend image. | ||
diff --git a/mm/Makefile b/mm/Makefile index 72255be57f89..ec73c68b6015 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -24,12 +24,17 @@ obj-$(CONFIG_SPARSEMEM_VMEMMAP) += sparse-vmemmap.o | |||
24 | obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o | 24 | obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o |
25 | obj-$(CONFIG_SLOB) += slob.o | 25 | obj-$(CONFIG_SLOB) += slob.o |
26 | obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o | 26 | obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o |
27 | obj-$(CONFIG_PAGE_POISONING) += debug-pagealloc.o | ||
27 | obj-$(CONFIG_SLAB) += slab.o | 28 | obj-$(CONFIG_SLAB) += slab.o |
28 | obj-$(CONFIG_SLUB) += slub.o | 29 | obj-$(CONFIG_SLUB) += slub.o |
29 | obj-$(CONFIG_FAILSLAB) += failslab.o | 30 | obj-$(CONFIG_FAILSLAB) += failslab.o |
30 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 31 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
31 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 32 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
32 | obj-$(CONFIG_MIGRATION) += migrate.o | 33 | obj-$(CONFIG_MIGRATION) += migrate.o |
34 | ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
35 | obj-$(CONFIG_SMP) += percpu.o | ||
36 | else | ||
33 | obj-$(CONFIG_SMP) += allocpercpu.o | 37 | obj-$(CONFIG_SMP) += allocpercpu.o |
38 | endif | ||
34 | obj-$(CONFIG_QUICKLIST) += quicklist.o | 39 | obj-$(CONFIG_QUICKLIST) += quicklist.o |
35 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o | 40 | obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o |
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index 4297bc41bfd2..139d5b7b6621 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c | |||
@@ -99,45 +99,51 @@ static int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp, | |||
99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) | 99 | __percpu_populate_mask((__pdata), (size), (gfp), &(mask)) |
100 | 100 | ||
101 | /** | 101 | /** |
102 | * percpu_alloc_mask - initial setup of per-cpu data | 102 | * alloc_percpu - initial setup of per-cpu data |
103 | * @size: size of per-cpu object | 103 | * @size: size of per-cpu object |
104 | * @gfp: may sleep or not etc. | 104 | * @align: alignment |
105 | * @mask: populate per-data for cpu's selected through mask bits | ||
106 | * | 105 | * |
107 | * Populating per-cpu data for all online cpu's would be a typical use case, | 106 | * Allocate dynamic percpu area. Percpu objects are populated with |
108 | * which is simplified by the percpu_alloc() wrapper. | 107 | * zeroed buffers. |
109 | * Per-cpu objects are populated with zeroed buffers. | ||
110 | */ | 108 | */ |
111 | void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask) | 109 | void *__alloc_percpu(size_t size, size_t align) |
112 | { | 110 | { |
113 | /* | 111 | /* |
114 | * We allocate whole cache lines to avoid false sharing | 112 | * We allocate whole cache lines to avoid false sharing |
115 | */ | 113 | */ |
116 | size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size()); | 114 | size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size()); |
117 | void *pdata = kzalloc(sz, gfp); | 115 | void *pdata = kzalloc(sz, GFP_KERNEL); |
118 | void *__pdata = __percpu_disguise(pdata); | 116 | void *__pdata = __percpu_disguise(pdata); |
119 | 117 | ||
118 | /* | ||
119 | * Can't easily make larger alignment work with kmalloc. WARN | ||
120 | * on it. Larger alignment should only be used for module | ||
121 | * percpu sections on SMP for which this path isn't used. | ||
122 | */ | ||
123 | WARN_ON_ONCE(align > SMP_CACHE_BYTES); | ||
124 | |||
120 | if (unlikely(!pdata)) | 125 | if (unlikely(!pdata)) |
121 | return NULL; | 126 | return NULL; |
122 | if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask))) | 127 | if (likely(!__percpu_populate_mask(__pdata, size, GFP_KERNEL, |
128 | &cpu_possible_map))) | ||
123 | return __pdata; | 129 | return __pdata; |
124 | kfree(pdata); | 130 | kfree(pdata); |
125 | return NULL; | 131 | return NULL; |
126 | } | 132 | } |
127 | EXPORT_SYMBOL_GPL(__percpu_alloc_mask); | 133 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
128 | 134 | ||
129 | /** | 135 | /** |
130 | * percpu_free - final cleanup of per-cpu data | 136 | * free_percpu - final cleanup of per-cpu data |
131 | * @__pdata: object to clean up | 137 | * @__pdata: object to clean up |
132 | * | 138 | * |
133 | * We simply clean up any per-cpu object left. No need for the client to | 139 | * We simply clean up any per-cpu object left. No need for the client to |
134 | * track and specify through a bis mask which per-cpu objects are to free. | 140 | * track and specify through a bis mask which per-cpu objects are to free. |
135 | */ | 141 | */ |
136 | void percpu_free(void *__pdata) | 142 | void free_percpu(void *__pdata) |
137 | { | 143 | { |
138 | if (unlikely(!__pdata)) | 144 | if (unlikely(!__pdata)) |
139 | return; | 145 | return; |
140 | __percpu_depopulate_mask(__pdata, &cpu_possible_map); | 146 | __percpu_depopulate_mask(__pdata, cpu_possible_mask); |
141 | kfree(__percpu_disguise(__pdata)); | 147 | kfree(__percpu_disguise(__pdata)); |
142 | } | 148 | } |
143 | EXPORT_SYMBOL_GPL(percpu_free); | 149 | EXPORT_SYMBOL_GPL(free_percpu); |
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 8e8587444132..493b468a5035 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -2,11 +2,24 @@ | |||
2 | #include <linux/wait.h> | 2 | #include <linux/wait.h> |
3 | #include <linux/backing-dev.h> | 3 | #include <linux/backing-dev.h> |
4 | #include <linux/fs.h> | 4 | #include <linux/fs.h> |
5 | #include <linux/pagemap.h> | ||
5 | #include <linux/sched.h> | 6 | #include <linux/sched.h> |
6 | #include <linux/module.h> | 7 | #include <linux/module.h> |
7 | #include <linux/writeback.h> | 8 | #include <linux/writeback.h> |
8 | #include <linux/device.h> | 9 | #include <linux/device.h> |
9 | 10 | ||
11 | void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) | ||
12 | { | ||
13 | } | ||
14 | EXPORT_SYMBOL(default_unplug_io_fn); | ||
15 | |||
16 | struct backing_dev_info default_backing_dev_info = { | ||
17 | .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, | ||
18 | .state = 0, | ||
19 | .capabilities = BDI_CAP_MAP_COPY, | ||
20 | .unplug_io_fn = default_unplug_io_fn, | ||
21 | }; | ||
22 | EXPORT_SYMBOL_GPL(default_backing_dev_info); | ||
10 | 23 | ||
11 | static struct class *bdi_class; | 24 | static struct class *bdi_class; |
12 | 25 | ||
@@ -166,9 +179,20 @@ static __init int bdi_class_init(void) | |||
166 | bdi_debug_init(); | 179 | bdi_debug_init(); |
167 | return 0; | 180 | return 0; |
168 | } | 181 | } |
169 | |||
170 | postcore_initcall(bdi_class_init); | 182 | postcore_initcall(bdi_class_init); |
171 | 183 | ||
184 | static int __init default_bdi_init(void) | ||
185 | { | ||
186 | int err; | ||
187 | |||
188 | err = bdi_init(&default_backing_dev_info); | ||
189 | if (!err) | ||
190 | bdi_register(&default_backing_dev_info, NULL, "default"); | ||
191 | |||
192 | return err; | ||
193 | } | ||
194 | subsys_initcall(default_bdi_init); | ||
195 | |||
172 | int bdi_register(struct backing_dev_info *bdi, struct device *parent, | 196 | int bdi_register(struct backing_dev_info *bdi, struct device *parent, |
173 | const char *fmt, ...) | 197 | const char *fmt, ...) |
174 | { | 198 | { |
@@ -260,12 +284,12 @@ static wait_queue_head_t congestion_wqh[2] = { | |||
260 | }; | 284 | }; |
261 | 285 | ||
262 | 286 | ||
263 | void clear_bdi_congested(struct backing_dev_info *bdi, int rw) | 287 | void clear_bdi_congested(struct backing_dev_info *bdi, int sync) |
264 | { | 288 | { |
265 | enum bdi_state bit; | 289 | enum bdi_state bit; |
266 | wait_queue_head_t *wqh = &congestion_wqh[rw]; | 290 | wait_queue_head_t *wqh = &congestion_wqh[sync]; |
267 | 291 | ||
268 | bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested; | 292 | bit = sync ? BDI_sync_congested : BDI_async_congested; |
269 | clear_bit(bit, &bdi->state); | 293 | clear_bit(bit, &bdi->state); |
270 | smp_mb__after_clear_bit(); | 294 | smp_mb__after_clear_bit(); |
271 | if (waitqueue_active(wqh)) | 295 | if (waitqueue_active(wqh)) |
@@ -273,11 +297,11 @@ void clear_bdi_congested(struct backing_dev_info *bdi, int rw) | |||
273 | } | 297 | } |
274 | EXPORT_SYMBOL(clear_bdi_congested); | 298 | EXPORT_SYMBOL(clear_bdi_congested); |
275 | 299 | ||
276 | void set_bdi_congested(struct backing_dev_info *bdi, int rw) | 300 | void set_bdi_congested(struct backing_dev_info *bdi, int sync) |
277 | { | 301 | { |
278 | enum bdi_state bit; | 302 | enum bdi_state bit; |
279 | 303 | ||
280 | bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested; | 304 | bit = sync ? BDI_sync_congested : BDI_async_congested; |
281 | set_bit(bit, &bdi->state); | 305 | set_bit(bit, &bdi->state); |
282 | } | 306 | } |
283 | EXPORT_SYMBOL(set_bdi_congested); | 307 | EXPORT_SYMBOL(set_bdi_congested); |
diff --git a/mm/bootmem.c b/mm/bootmem.c index 51a0ccf61e0e..daf92713f7de 100644 --- a/mm/bootmem.c +++ b/mm/bootmem.c | |||
@@ -382,7 +382,6 @@ int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, | |||
382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); | 382 | return mark_bootmem_node(pgdat->bdata, start, end, 1, flags); |
383 | } | 383 | } |
384 | 384 | ||
385 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE | ||
386 | /** | 385 | /** |
387 | * reserve_bootmem - mark a page range as usable | 386 | * reserve_bootmem - mark a page range as usable |
388 | * @addr: starting address of the range | 387 | * @addr: starting address of the range |
@@ -403,7 +402,6 @@ int __init reserve_bootmem(unsigned long addr, unsigned long size, | |||
403 | 402 | ||
404 | return mark_bootmem(start, end, 1, flags); | 403 | return mark_bootmem(start, end, 1, flags); |
405 | } | 404 | } |
406 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ | ||
407 | 405 | ||
408 | static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx, | 406 | static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx, |
409 | unsigned long step) | 407 | unsigned long step) |
@@ -429,8 +427,8 @@ static unsigned long align_off(struct bootmem_data *bdata, unsigned long off, | |||
429 | } | 427 | } |
430 | 428 | ||
431 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, | 429 | static void * __init alloc_bootmem_core(struct bootmem_data *bdata, |
432 | unsigned long size, unsigned long align, | 430 | unsigned long size, unsigned long align, |
433 | unsigned long goal, unsigned long limit) | 431 | unsigned long goal, unsigned long limit) |
434 | { | 432 | { |
435 | unsigned long fallback = 0; | 433 | unsigned long fallback = 0; |
436 | unsigned long min, max, start, sidx, midx, step; | 434 | unsigned long min, max, start, sidx, midx, step; |
@@ -530,17 +528,34 @@ find_block: | |||
530 | return NULL; | 528 | return NULL; |
531 | } | 529 | } |
532 | 530 | ||
531 | static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata, | ||
532 | unsigned long size, unsigned long align, | ||
533 | unsigned long goal, unsigned long limit) | ||
534 | { | ||
535 | #ifdef CONFIG_HAVE_ARCH_BOOTMEM | ||
536 | bootmem_data_t *p_bdata; | ||
537 | |||
538 | p_bdata = bootmem_arch_preferred_node(bdata, size, align, goal, limit); | ||
539 | if (p_bdata) | ||
540 | return alloc_bootmem_core(p_bdata, size, align, goal, limit); | ||
541 | #endif | ||
542 | return NULL; | ||
543 | } | ||
544 | |||
533 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, | 545 | static void * __init ___alloc_bootmem_nopanic(unsigned long size, |
534 | unsigned long align, | 546 | unsigned long align, |
535 | unsigned long goal, | 547 | unsigned long goal, |
536 | unsigned long limit) | 548 | unsigned long limit) |
537 | { | 549 | { |
538 | bootmem_data_t *bdata; | 550 | bootmem_data_t *bdata; |
551 | void *region; | ||
539 | 552 | ||
540 | restart: | 553 | restart: |
541 | list_for_each_entry(bdata, &bdata_list, list) { | 554 | region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit); |
542 | void *region; | 555 | if (region) |
556 | return region; | ||
543 | 557 | ||
558 | list_for_each_entry(bdata, &bdata_list, list) { | ||
544 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) | 559 | if (goal && bdata->node_low_pfn <= PFN_DOWN(goal)) |
545 | continue; | 560 | continue; |
546 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) | 561 | if (limit && bdata->node_min_pfn >= PFN_DOWN(limit)) |
@@ -618,6 +633,10 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata, | |||
618 | { | 633 | { |
619 | void *ptr; | 634 | void *ptr; |
620 | 635 | ||
636 | ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit); | ||
637 | if (ptr) | ||
638 | return ptr; | ||
639 | |||
621 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); | 640 | ptr = alloc_bootmem_core(bdata, size, align, goal, limit); |
622 | if (ptr) | 641 | if (ptr) |
623 | return ptr; | 642 | return ptr; |
@@ -674,6 +693,10 @@ void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, | |||
674 | { | 693 | { |
675 | void *ptr; | 694 | void *ptr; |
676 | 695 | ||
696 | ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0); | ||
697 | if (ptr) | ||
698 | return ptr; | ||
699 | |||
677 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); | 700 | ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); |
678 | if (ptr) | 701 | if (ptr) |
679 | return ptr; | 702 | return ptr; |
diff --git a/mm/debug-pagealloc.c b/mm/debug-pagealloc.c new file mode 100644 index 000000000000..a1e3324de2b5 --- /dev/null +++ b/mm/debug-pagealloc.c | |||
@@ -0,0 +1,129 @@ | |||
1 | #include <linux/kernel.h> | ||
2 | #include <linux/mm.h> | ||
3 | #include <linux/page-debug-flags.h> | ||
4 | #include <linux/poison.h> | ||
5 | |||
6 | static inline void set_page_poison(struct page *page) | ||
7 | { | ||
8 | __set_bit(PAGE_DEBUG_FLAG_POISON, &page->debug_flags); | ||
9 | } | ||
10 | |||
11 | static inline void clear_page_poison(struct page *page) | ||
12 | { | ||
13 | __clear_bit(PAGE_DEBUG_FLAG_POISON, &page->debug_flags); | ||
14 | } | ||
15 | |||
16 | static inline bool page_poison(struct page *page) | ||
17 | { | ||
18 | return test_bit(PAGE_DEBUG_FLAG_POISON, &page->debug_flags); | ||
19 | } | ||
20 | |||
21 | static void poison_highpage(struct page *page) | ||
22 | { | ||
23 | /* | ||
24 | * Page poisoning for highmem pages is not implemented. | ||
25 | * | ||
26 | * This can be called from interrupt contexts. | ||
27 | * So we need to create a new kmap_atomic slot for this | ||
28 | * application and it will need interrupt protection. | ||
29 | */ | ||
30 | } | ||
31 | |||
32 | static void poison_page(struct page *page) | ||
33 | { | ||
34 | void *addr; | ||
35 | |||
36 | if (PageHighMem(page)) { | ||
37 | poison_highpage(page); | ||
38 | return; | ||
39 | } | ||
40 | set_page_poison(page); | ||
41 | addr = page_address(page); | ||
42 | memset(addr, PAGE_POISON, PAGE_SIZE); | ||
43 | } | ||
44 | |||
45 | static void poison_pages(struct page *page, int n) | ||
46 | { | ||
47 | int i; | ||
48 | |||
49 | for (i = 0; i < n; i++) | ||
50 | poison_page(page + i); | ||
51 | } | ||
52 | |||
53 | static bool single_bit_flip(unsigned char a, unsigned char b) | ||
54 | { | ||
55 | unsigned char error = a ^ b; | ||
56 | |||
57 | return error && !(error & (error - 1)); | ||
58 | } | ||
59 | |||
60 | static void check_poison_mem(unsigned char *mem, size_t bytes) | ||
61 | { | ||
62 | unsigned char *start; | ||
63 | unsigned char *end; | ||
64 | |||
65 | for (start = mem; start < mem + bytes; start++) { | ||
66 | if (*start != PAGE_POISON) | ||
67 | break; | ||
68 | } | ||
69 | if (start == mem + bytes) | ||
70 | return; | ||
71 | |||
72 | for (end = mem + bytes - 1; end > start; end--) { | ||
73 | if (*end != PAGE_POISON) | ||
74 | break; | ||
75 | } | ||
76 | |||
77 | if (!printk_ratelimit()) | ||
78 | return; | ||
79 | else if (start == end && single_bit_flip(*start, PAGE_POISON)) | ||
80 | printk(KERN_ERR "pagealloc: single bit error\n"); | ||
81 | else | ||
82 | printk(KERN_ERR "pagealloc: memory corruption\n"); | ||
83 | |||
84 | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_ADDRESS, 16, 1, start, | ||
85 | end - start + 1, 1); | ||
86 | dump_stack(); | ||
87 | } | ||
88 | |||
89 | static void unpoison_highpage(struct page *page) | ||
90 | { | ||
91 | /* | ||
92 | * See comment in poison_highpage(). | ||
93 | * Highmem pages should not be poisoned for now | ||
94 | */ | ||
95 | BUG_ON(page_poison(page)); | ||
96 | } | ||
97 | |||
98 | static void unpoison_page(struct page *page) | ||
99 | { | ||
100 | if (PageHighMem(page)) { | ||
101 | unpoison_highpage(page); | ||
102 | return; | ||
103 | } | ||
104 | if (page_poison(page)) { | ||
105 | void *addr = page_address(page); | ||
106 | |||
107 | check_poison_mem(addr, PAGE_SIZE); | ||
108 | clear_page_poison(page); | ||
109 | } | ||
110 | } | ||
111 | |||
112 | static void unpoison_pages(struct page *page, int n) | ||
113 | { | ||
114 | int i; | ||
115 | |||
116 | for (i = 0; i < n; i++) | ||
117 | unpoison_page(page + i); | ||
118 | } | ||
119 | |||
120 | void kernel_map_pages(struct page *page, int numpages, int enable) | ||
121 | { | ||
122 | if (!debug_pagealloc_enabled) | ||
123 | return; | ||
124 | |||
125 | if (enable) | ||
126 | unpoison_pages(page, numpages); | ||
127 | else | ||
128 | poison_pages(page, numpages); | ||
129 | } | ||
diff --git a/mm/filemap.c b/mm/filemap.c index 23acefe51808..2e2d38ebda4b 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -513,6 +513,7 @@ int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |||
513 | } | 513 | } |
514 | return ret; | 514 | return ret; |
515 | } | 515 | } |
516 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); | ||
516 | 517 | ||
517 | #ifdef CONFIG_NUMA | 518 | #ifdef CONFIG_NUMA |
518 | struct page *__page_cache_alloc(gfp_t gfp) | 519 | struct page *__page_cache_alloc(gfp_t gfp) |
@@ -565,6 +566,24 @@ void wait_on_page_bit(struct page *page, int bit_nr) | |||
565 | EXPORT_SYMBOL(wait_on_page_bit); | 566 | EXPORT_SYMBOL(wait_on_page_bit); |
566 | 567 | ||
567 | /** | 568 | /** |
569 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | ||
570 | * @page - Page defining the wait queue of interest | ||
571 | * @waiter - Waiter to add to the queue | ||
572 | * | ||
573 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | ||
574 | */ | ||
575 | void add_page_wait_queue(struct page *page, wait_queue_t *waiter) | ||
576 | { | ||
577 | wait_queue_head_t *q = page_waitqueue(page); | ||
578 | unsigned long flags; | ||
579 | |||
580 | spin_lock_irqsave(&q->lock, flags); | ||
581 | __add_wait_queue(q, waiter); | ||
582 | spin_unlock_irqrestore(&q->lock, flags); | ||
583 | } | ||
584 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | ||
585 | |||
586 | /** | ||
568 | * unlock_page - unlock a locked page | 587 | * unlock_page - unlock a locked page |
569 | * @page: the page | 588 | * @page: the page |
570 | * | 589 | * |
@@ -627,6 +646,7 @@ int __lock_page_killable(struct page *page) | |||
627 | return __wait_on_bit_lock(page_waitqueue(page), &wait, | 646 | return __wait_on_bit_lock(page_waitqueue(page), &wait, |
628 | sync_page_killable, TASK_KILLABLE); | 647 | sync_page_killable, TASK_KILLABLE); |
629 | } | 648 | } |
649 | EXPORT_SYMBOL_GPL(__lock_page_killable); | ||
630 | 650 | ||
631 | /** | 651 | /** |
632 | * __lock_page_nosync - get a lock on the page, without calling sync_page() | 652 | * __lock_page_nosync - get a lock on the page, without calling sync_page() |
@@ -1823,7 +1843,7 @@ static size_t __iovec_copy_from_user_inatomic(char *vaddr, | |||
1823 | int copy = min(bytes, iov->iov_len - base); | 1843 | int copy = min(bytes, iov->iov_len - base); |
1824 | 1844 | ||
1825 | base = 0; | 1845 | base = 0; |
1826 | left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); | 1846 | left = __copy_from_user_inatomic(vaddr, buf, copy); |
1827 | copied += copy; | 1847 | copied += copy; |
1828 | bytes -= copy; | 1848 | bytes -= copy; |
1829 | vaddr += copy; | 1849 | vaddr += copy; |
@@ -1851,8 +1871,7 @@ size_t iov_iter_copy_from_user_atomic(struct page *page, | |||
1851 | if (likely(i->nr_segs == 1)) { | 1871 | if (likely(i->nr_segs == 1)) { |
1852 | int left; | 1872 | int left; |
1853 | char __user *buf = i->iov->iov_base + i->iov_offset; | 1873 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1854 | left = __copy_from_user_inatomic_nocache(kaddr + offset, | 1874 | left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); |
1855 | buf, bytes); | ||
1856 | copied = bytes - left; | 1875 | copied = bytes - left; |
1857 | } else { | 1876 | } else { |
1858 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 1877 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
@@ -1880,7 +1899,7 @@ size_t iov_iter_copy_from_user(struct page *page, | |||
1880 | if (likely(i->nr_segs == 1)) { | 1899 | if (likely(i->nr_segs == 1)) { |
1881 | int left; | 1900 | int left; |
1882 | char __user *buf = i->iov->iov_base + i->iov_offset; | 1901 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1883 | left = __copy_from_user_nocache(kaddr + offset, buf, bytes); | 1902 | left = __copy_from_user(kaddr + offset, buf, bytes); |
1884 | copied = bytes - left; | 1903 | copied = bytes - left; |
1885 | } else { | 1904 | } else { |
1886 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | 1905 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
@@ -2464,6 +2483,9 @@ EXPORT_SYMBOL(generic_file_aio_write); | |||
2464 | * (presumably at page->private). If the release was successful, return `1'. | 2483 | * (presumably at page->private). If the release was successful, return `1'. |
2465 | * Otherwise return zero. | 2484 | * Otherwise return zero. |
2466 | * | 2485 | * |
2486 | * This may also be called if PG_fscache is set on a page, indicating that the | ||
2487 | * page is known to the local caching routines. | ||
2488 | * | ||
2467 | * The @gfp_mask argument specifies whether I/O may be performed to release | 2489 | * The @gfp_mask argument specifies whether I/O may be performed to release |
2468 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). | 2490 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). |
2469 | * | 2491 | * |
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c index 0c04615651b7..427dfe3ce78c 100644 --- a/mm/filemap_xip.c +++ b/mm/filemap_xip.c | |||
@@ -89,8 +89,8 @@ do_xip_mapping_read(struct address_space *mapping, | |||
89 | } | 89 | } |
90 | } | 90 | } |
91 | nr = nr - offset; | 91 | nr = nr - offset; |
92 | if (nr > len) | 92 | if (nr > len - copied) |
93 | nr = len; | 93 | nr = len - copied; |
94 | 94 | ||
95 | error = mapping->a_ops->get_xip_mem(mapping, index, 0, | 95 | error = mapping->a_ops->get_xip_mem(mapping, index, 0, |
96 | &xip_mem, &xip_pfn); | 96 | &xip_mem, &xip_pfn); |
diff --git a/mm/highmem.c b/mm/highmem.c index b36b83b920ff..68eb1d9b63fa 100644 --- a/mm/highmem.c +++ b/mm/highmem.c | |||
@@ -67,6 +67,25 @@ pte_t * pkmap_page_table; | |||
67 | 67 | ||
68 | static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); | 68 | static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); |
69 | 69 | ||
70 | /* | ||
71 | * Most architectures have no use for kmap_high_get(), so let's abstract | ||
72 | * the disabling of IRQ out of the locking in that case to save on a | ||
73 | * potential useless overhead. | ||
74 | */ | ||
75 | #ifdef ARCH_NEEDS_KMAP_HIGH_GET | ||
76 | #define lock_kmap() spin_lock_irq(&kmap_lock) | ||
77 | #define unlock_kmap() spin_unlock_irq(&kmap_lock) | ||
78 | #define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags) | ||
79 | #define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags) | ||
80 | #else | ||
81 | #define lock_kmap() spin_lock(&kmap_lock) | ||
82 | #define unlock_kmap() spin_unlock(&kmap_lock) | ||
83 | #define lock_kmap_any(flags) \ | ||
84 | do { spin_lock(&kmap_lock); (void)(flags); } while (0) | ||
85 | #define unlock_kmap_any(flags) \ | ||
86 | do { spin_unlock(&kmap_lock); (void)(flags); } while (0) | ||
87 | #endif | ||
88 | |||
70 | static void flush_all_zero_pkmaps(void) | 89 | static void flush_all_zero_pkmaps(void) |
71 | { | 90 | { |
72 | int i; | 91 | int i; |
@@ -113,9 +132,9 @@ static void flush_all_zero_pkmaps(void) | |||
113 | */ | 132 | */ |
114 | void kmap_flush_unused(void) | 133 | void kmap_flush_unused(void) |
115 | { | 134 | { |
116 | spin_lock(&kmap_lock); | 135 | lock_kmap(); |
117 | flush_all_zero_pkmaps(); | 136 | flush_all_zero_pkmaps(); |
118 | spin_unlock(&kmap_lock); | 137 | unlock_kmap(); |
119 | } | 138 | } |
120 | 139 | ||
121 | static inline unsigned long map_new_virtual(struct page *page) | 140 | static inline unsigned long map_new_virtual(struct page *page) |
@@ -145,10 +164,10 @@ start: | |||
145 | 164 | ||
146 | __set_current_state(TASK_UNINTERRUPTIBLE); | 165 | __set_current_state(TASK_UNINTERRUPTIBLE); |
147 | add_wait_queue(&pkmap_map_wait, &wait); | 166 | add_wait_queue(&pkmap_map_wait, &wait); |
148 | spin_unlock(&kmap_lock); | 167 | unlock_kmap(); |
149 | schedule(); | 168 | schedule(); |
150 | remove_wait_queue(&pkmap_map_wait, &wait); | 169 | remove_wait_queue(&pkmap_map_wait, &wait); |
151 | spin_lock(&kmap_lock); | 170 | lock_kmap(); |
152 | 171 | ||
153 | /* Somebody else might have mapped it while we slept */ | 172 | /* Somebody else might have mapped it while we slept */ |
154 | if (page_address(page)) | 173 | if (page_address(page)) |
@@ -184,29 +203,59 @@ void *kmap_high(struct page *page) | |||
184 | * For highmem pages, we can't trust "virtual" until | 203 | * For highmem pages, we can't trust "virtual" until |
185 | * after we have the lock. | 204 | * after we have the lock. |
186 | */ | 205 | */ |
187 | spin_lock(&kmap_lock); | 206 | lock_kmap(); |
188 | vaddr = (unsigned long)page_address(page); | 207 | vaddr = (unsigned long)page_address(page); |
189 | if (!vaddr) | 208 | if (!vaddr) |
190 | vaddr = map_new_virtual(page); | 209 | vaddr = map_new_virtual(page); |
191 | pkmap_count[PKMAP_NR(vaddr)]++; | 210 | pkmap_count[PKMAP_NR(vaddr)]++; |
192 | BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2); | 211 | BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2); |
193 | spin_unlock(&kmap_lock); | 212 | unlock_kmap(); |
194 | return (void*) vaddr; | 213 | return (void*) vaddr; |
195 | } | 214 | } |
196 | 215 | ||
197 | EXPORT_SYMBOL(kmap_high); | 216 | EXPORT_SYMBOL(kmap_high); |
198 | 217 | ||
218 | #ifdef ARCH_NEEDS_KMAP_HIGH_GET | ||
219 | /** | ||
220 | * kmap_high_get - pin a highmem page into memory | ||
221 | * @page: &struct page to pin | ||
222 | * | ||
223 | * Returns the page's current virtual memory address, or NULL if no mapping | ||
224 | * exists. When and only when a non null address is returned then a | ||
225 | * matching call to kunmap_high() is necessary. | ||
226 | * | ||
227 | * This can be called from any context. | ||
228 | */ | ||
229 | void *kmap_high_get(struct page *page) | ||
230 | { | ||
231 | unsigned long vaddr, flags; | ||
232 | |||
233 | lock_kmap_any(flags); | ||
234 | vaddr = (unsigned long)page_address(page); | ||
235 | if (vaddr) { | ||
236 | BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1); | ||
237 | pkmap_count[PKMAP_NR(vaddr)]++; | ||
238 | } | ||
239 | unlock_kmap_any(flags); | ||
240 | return (void*) vaddr; | ||
241 | } | ||
242 | #endif | ||
243 | |||
199 | /** | 244 | /** |
200 | * kunmap_high - map a highmem page into memory | 245 | * kunmap_high - map a highmem page into memory |
201 | * @page: &struct page to unmap | 246 | * @page: &struct page to unmap |
247 | * | ||
248 | * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called | ||
249 | * only from user context. | ||
202 | */ | 250 | */ |
203 | void kunmap_high(struct page *page) | 251 | void kunmap_high(struct page *page) |
204 | { | 252 | { |
205 | unsigned long vaddr; | 253 | unsigned long vaddr; |
206 | unsigned long nr; | 254 | unsigned long nr; |
255 | unsigned long flags; | ||
207 | int need_wakeup; | 256 | int need_wakeup; |
208 | 257 | ||
209 | spin_lock(&kmap_lock); | 258 | lock_kmap_any(flags); |
210 | vaddr = (unsigned long)page_address(page); | 259 | vaddr = (unsigned long)page_address(page); |
211 | BUG_ON(!vaddr); | 260 | BUG_ON(!vaddr); |
212 | nr = PKMAP_NR(vaddr); | 261 | nr = PKMAP_NR(vaddr); |
@@ -232,7 +281,7 @@ void kunmap_high(struct page *page) | |||
232 | */ | 281 | */ |
233 | need_wakeup = waitqueue_active(&pkmap_map_wait); | 282 | need_wakeup = waitqueue_active(&pkmap_map_wait); |
234 | } | 283 | } |
235 | spin_unlock(&kmap_lock); | 284 | unlock_kmap_any(flags); |
236 | 285 | ||
237 | /* do wake-up, if needed, race-free outside of the spin lock */ | 286 | /* do wake-up, if needed, race-free outside of the spin lock */ |
238 | if (need_wakeup) | 287 | if (need_wakeup) |
@@ -373,3 +422,48 @@ void __init page_address_init(void) | |||
373 | } | 422 | } |
374 | 423 | ||
375 | #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ | 424 | #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ |
425 | |||
426 | #if defined(CONFIG_DEBUG_HIGHMEM) && defined(CONFIG_TRACE_IRQFLAGS_SUPPORT) | ||
427 | |||
428 | void debug_kmap_atomic(enum km_type type) | ||
429 | { | ||
430 | static unsigned warn_count = 10; | ||
431 | |||
432 | if (unlikely(warn_count == 0)) | ||
433 | return; | ||
434 | |||
435 | if (unlikely(in_interrupt())) { | ||
436 | if (in_irq()) { | ||
437 | if (type != KM_IRQ0 && type != KM_IRQ1 && | ||
438 | type != KM_BIO_SRC_IRQ && type != KM_BIO_DST_IRQ && | ||
439 | type != KM_BOUNCE_READ) { | ||
440 | WARN_ON(1); | ||
441 | warn_count--; | ||
442 | } | ||
443 | } else if (!irqs_disabled()) { /* softirq */ | ||
444 | if (type != KM_IRQ0 && type != KM_IRQ1 && | ||
445 | type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 && | ||
446 | type != KM_SKB_SUNRPC_DATA && | ||
447 | type != KM_SKB_DATA_SOFTIRQ && | ||
448 | type != KM_BOUNCE_READ) { | ||
449 | WARN_ON(1); | ||
450 | warn_count--; | ||
451 | } | ||
452 | } | ||
453 | } | ||
454 | |||
455 | if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ || | ||
456 | type == KM_BIO_SRC_IRQ || type == KM_BIO_DST_IRQ) { | ||
457 | if (!irqs_disabled()) { | ||
458 | WARN_ON(1); | ||
459 | warn_count--; | ||
460 | } | ||
461 | } else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) { | ||
462 | if (irq_count() == 0 && !irqs_disabled()) { | ||
463 | WARN_ON(1); | ||
464 | warn_count--; | ||
465 | } | ||
466 | } | ||
467 | } | ||
468 | |||
469 | #endif | ||
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 107da3d809a8..28c655ba9353 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -918,7 +918,7 @@ static void return_unused_surplus_pages(struct hstate *h, | |||
918 | * an instantiated the change should be committed via vma_commit_reservation. | 918 | * an instantiated the change should be committed via vma_commit_reservation. |
919 | * No action is required on failure. | 919 | * No action is required on failure. |
920 | */ | 920 | */ |
921 | static int vma_needs_reservation(struct hstate *h, | 921 | static long vma_needs_reservation(struct hstate *h, |
922 | struct vm_area_struct *vma, unsigned long addr) | 922 | struct vm_area_struct *vma, unsigned long addr) |
923 | { | 923 | { |
924 | struct address_space *mapping = vma->vm_file->f_mapping; | 924 | struct address_space *mapping = vma->vm_file->f_mapping; |
@@ -933,7 +933,7 @@ static int vma_needs_reservation(struct hstate *h, | |||
933 | return 1; | 933 | return 1; |
934 | 934 | ||
935 | } else { | 935 | } else { |
936 | int err; | 936 | long err; |
937 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 937 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
938 | struct resv_map *reservations = vma_resv_map(vma); | 938 | struct resv_map *reservations = vma_resv_map(vma); |
939 | 939 | ||
@@ -969,7 +969,7 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, | |||
969 | struct page *page; | 969 | struct page *page; |
970 | struct address_space *mapping = vma->vm_file->f_mapping; | 970 | struct address_space *mapping = vma->vm_file->f_mapping; |
971 | struct inode *inode = mapping->host; | 971 | struct inode *inode = mapping->host; |
972 | unsigned int chg; | 972 | long chg; |
973 | 973 | ||
974 | /* | 974 | /* |
975 | * Processes that did not create the mapping will have no reserves and | 975 | * Processes that did not create the mapping will have no reserves and |
diff --git a/mm/internal.h b/mm/internal.h index 478223b73a2a..987bb03fbdd8 100644 --- a/mm/internal.h +++ b/mm/internal.h | |||
@@ -63,6 +63,7 @@ static inline unsigned long page_order(struct page *page) | |||
63 | return page_private(page); | 63 | return page_private(page); |
64 | } | 64 | } |
65 | 65 | ||
66 | #ifdef CONFIG_HAVE_MLOCK | ||
66 | extern long mlock_vma_pages_range(struct vm_area_struct *vma, | 67 | extern long mlock_vma_pages_range(struct vm_area_struct *vma, |
67 | unsigned long start, unsigned long end); | 68 | unsigned long start, unsigned long end); |
68 | extern void munlock_vma_pages_range(struct vm_area_struct *vma, | 69 | extern void munlock_vma_pages_range(struct vm_area_struct *vma, |
@@ -71,6 +72,7 @@ static inline void munlock_vma_pages_all(struct vm_area_struct *vma) | |||
71 | { | 72 | { |
72 | munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); | 73 | munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); |
73 | } | 74 | } |
75 | #endif | ||
74 | 76 | ||
75 | #ifdef CONFIG_UNEVICTABLE_LRU | 77 | #ifdef CONFIG_UNEVICTABLE_LRU |
76 | /* | 78 | /* |
@@ -90,7 +92,7 @@ static inline void unevictable_migrate_page(struct page *new, struct page *old) | |||
90 | } | 92 | } |
91 | #endif | 93 | #endif |
92 | 94 | ||
93 | #ifdef CONFIG_UNEVICTABLE_LRU | 95 | #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT |
94 | /* | 96 | /* |
95 | * Called only in fault path via page_evictable() for a new page | 97 | * Called only in fault path via page_evictable() for a new page |
96 | * to determine if it's being mapped into a LOCKED vma. | 98 | * to determine if it's being mapped into a LOCKED vma. |
@@ -165,7 +167,7 @@ static inline void free_page_mlock(struct page *page) | |||
165 | } | 167 | } |
166 | } | 168 | } |
167 | 169 | ||
168 | #else /* CONFIG_UNEVICTABLE_LRU */ | 170 | #else /* CONFIG_HAVE_MLOCKED_PAGE_BIT */ |
169 | static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p) | 171 | static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p) |
170 | { | 172 | { |
171 | return 0; | 173 | return 0; |
@@ -175,7 +177,7 @@ static inline void mlock_vma_page(struct page *page) { } | |||
175 | static inline void mlock_migrate_page(struct page *new, struct page *old) { } | 177 | static inline void mlock_migrate_page(struct page *new, struct page *old) { } |
176 | static inline void free_page_mlock(struct page *page) { } | 178 | static inline void free_page_mlock(struct page *page) { } |
177 | 179 | ||
178 | #endif /* CONFIG_UNEVICTABLE_LRU */ | 180 | #endif /* CONFIG_HAVE_MLOCKED_PAGE_BIT */ |
179 | 181 | ||
180 | /* | 182 | /* |
181 | * Return the mem_map entry representing the 'offset' subpage within | 183 | * Return the mem_map entry representing the 'offset' subpage within |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 8e4be9cb2a6a..2fc6d6c48238 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -27,6 +27,7 @@ | |||
27 | #include <linux/backing-dev.h> | 27 | #include <linux/backing-dev.h> |
28 | #include <linux/bit_spinlock.h> | 28 | #include <linux/bit_spinlock.h> |
29 | #include <linux/rcupdate.h> | 29 | #include <linux/rcupdate.h> |
30 | #include <linux/limits.h> | ||
30 | #include <linux/mutex.h> | 31 | #include <linux/mutex.h> |
31 | #include <linux/slab.h> | 32 | #include <linux/slab.h> |
32 | #include <linux/swap.h> | 33 | #include <linux/swap.h> |
@@ -95,6 +96,15 @@ static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | |||
95 | return ret; | 96 | return ret; |
96 | } | 97 | } |
97 | 98 | ||
99 | static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat) | ||
100 | { | ||
101 | s64 ret; | ||
102 | |||
103 | ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE); | ||
104 | ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS); | ||
105 | return ret; | ||
106 | } | ||
107 | |||
98 | /* | 108 | /* |
99 | * per-zone information in memory controller. | 109 | * per-zone information in memory controller. |
100 | */ | 110 | */ |
@@ -154,9 +164,9 @@ struct mem_cgroup { | |||
154 | 164 | ||
155 | /* | 165 | /* |
156 | * While reclaiming in a hiearchy, we cache the last child we | 166 | * While reclaiming in a hiearchy, we cache the last child we |
157 | * reclaimed from. Protected by hierarchy_mutex | 167 | * reclaimed from. |
158 | */ | 168 | */ |
159 | struct mem_cgroup *last_scanned_child; | 169 | int last_scanned_child; |
160 | /* | 170 | /* |
161 | * Should the accounting and control be hierarchical, per subtree? | 171 | * Should the accounting and control be hierarchical, per subtree? |
162 | */ | 172 | */ |
@@ -247,7 +257,7 @@ page_cgroup_zoneinfo(struct page_cgroup *pc) | |||
247 | return mem_cgroup_zoneinfo(mem, nid, zid); | 257 | return mem_cgroup_zoneinfo(mem, nid, zid); |
248 | } | 258 | } |
249 | 259 | ||
250 | static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, | 260 | static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, |
251 | enum lru_list idx) | 261 | enum lru_list idx) |
252 | { | 262 | { |
253 | int nid, zid; | 263 | int nid, zid; |
@@ -286,6 +296,9 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | |||
286 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) | 296 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
287 | { | 297 | { |
288 | struct mem_cgroup *mem = NULL; | 298 | struct mem_cgroup *mem = NULL; |
299 | |||
300 | if (!mm) | ||
301 | return NULL; | ||
289 | /* | 302 | /* |
290 | * Because we have no locks, mm->owner's may be being moved to other | 303 | * Because we have no locks, mm->owner's may be being moved to other |
291 | * cgroup. We use css_tryget() here even if this looks | 304 | * cgroup. We use css_tryget() here even if this looks |
@@ -308,6 +321,42 @@ static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem) | |||
308 | return css_is_removed(&mem->css); | 321 | return css_is_removed(&mem->css); |
309 | } | 322 | } |
310 | 323 | ||
324 | |||
325 | /* | ||
326 | * Call callback function against all cgroup under hierarchy tree. | ||
327 | */ | ||
328 | static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, | ||
329 | int (*func)(struct mem_cgroup *, void *)) | ||
330 | { | ||
331 | int found, ret, nextid; | ||
332 | struct cgroup_subsys_state *css; | ||
333 | struct mem_cgroup *mem; | ||
334 | |||
335 | if (!root->use_hierarchy) | ||
336 | return (*func)(root, data); | ||
337 | |||
338 | nextid = 1; | ||
339 | do { | ||
340 | ret = 0; | ||
341 | mem = NULL; | ||
342 | |||
343 | rcu_read_lock(); | ||
344 | css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, | ||
345 | &found); | ||
346 | if (css && css_tryget(css)) | ||
347 | mem = container_of(css, struct mem_cgroup, css); | ||
348 | rcu_read_unlock(); | ||
349 | |||
350 | if (mem) { | ||
351 | ret = (*func)(mem, data); | ||
352 | css_put(&mem->css); | ||
353 | } | ||
354 | nextid = found + 1; | ||
355 | } while (!ret && css); | ||
356 | |||
357 | return ret; | ||
358 | } | ||
359 | |||
311 | /* | 360 | /* |
312 | * Following LRU functions are allowed to be used without PCG_LOCK. | 361 | * Following LRU functions are allowed to be used without PCG_LOCK. |
313 | * Operations are called by routine of global LRU independently from memcg. | 362 | * Operations are called by routine of global LRU independently from memcg. |
@@ -441,31 +490,24 @@ void mem_cgroup_move_lists(struct page *page, | |||
441 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 490 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
442 | { | 491 | { |
443 | int ret; | 492 | int ret; |
493 | struct mem_cgroup *curr = NULL; | ||
444 | 494 | ||
445 | task_lock(task); | 495 | task_lock(task); |
446 | ret = task->mm && mm_match_cgroup(task->mm, mem); | 496 | rcu_read_lock(); |
497 | curr = try_get_mem_cgroup_from_mm(task->mm); | ||
498 | rcu_read_unlock(); | ||
447 | task_unlock(task); | 499 | task_unlock(task); |
500 | if (!curr) | ||
501 | return 0; | ||
502 | if (curr->use_hierarchy) | ||
503 | ret = css_is_ancestor(&curr->css, &mem->css); | ||
504 | else | ||
505 | ret = (curr == mem); | ||
506 | css_put(&curr->css); | ||
448 | return ret; | 507 | return ret; |
449 | } | 508 | } |
450 | 509 | ||
451 | /* | 510 | /* |
452 | * Calculate mapped_ratio under memory controller. This will be used in | ||
453 | * vmscan.c for deteremining we have to reclaim mapped pages. | ||
454 | */ | ||
455 | int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | ||
456 | { | ||
457 | long total, rss; | ||
458 | |||
459 | /* | ||
460 | * usage is recorded in bytes. But, here, we assume the number of | ||
461 | * physical pages can be represented by "long" on any arch. | ||
462 | */ | ||
463 | total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L; | ||
464 | rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); | ||
465 | return (int)((rss * 100L) / total); | ||
466 | } | ||
467 | |||
468 | /* | ||
469 | * prev_priority control...this will be used in memory reclaim path. | 511 | * prev_priority control...this will be used in memory reclaim path. |
470 | */ | 512 | */ |
471 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 513 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) |
@@ -501,8 +543,8 @@ static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_ | |||
501 | unsigned long gb; | 543 | unsigned long gb; |
502 | unsigned long inactive_ratio; | 544 | unsigned long inactive_ratio; |
503 | 545 | ||
504 | inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON); | 546 | inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); |
505 | active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON); | 547 | active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); |
506 | 548 | ||
507 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | 549 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
508 | if (gb) | 550 | if (gb) |
@@ -629,172 +671,202 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
629 | #define mem_cgroup_from_res_counter(counter, member) \ | 671 | #define mem_cgroup_from_res_counter(counter, member) \ |
630 | container_of(counter, struct mem_cgroup, member) | 672 | container_of(counter, struct mem_cgroup, member) |
631 | 673 | ||
632 | /* | 674 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) |
633 | * This routine finds the DFS walk successor. This routine should be | ||
634 | * called with hierarchy_mutex held | ||
635 | */ | ||
636 | static struct mem_cgroup * | ||
637 | __mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem) | ||
638 | { | 675 | { |
639 | struct cgroup *cgroup, *curr_cgroup, *root_cgroup; | 676 | if (do_swap_account) { |
640 | 677 | if (res_counter_check_under_limit(&mem->res) && | |
641 | curr_cgroup = curr->css.cgroup; | 678 | res_counter_check_under_limit(&mem->memsw)) |
642 | root_cgroup = root_mem->css.cgroup; | 679 | return true; |
680 | } else | ||
681 | if (res_counter_check_under_limit(&mem->res)) | ||
682 | return true; | ||
683 | return false; | ||
684 | } | ||
643 | 685 | ||
644 | if (!list_empty(&curr_cgroup->children)) { | 686 | static unsigned int get_swappiness(struct mem_cgroup *memcg) |
645 | /* | 687 | { |
646 | * Walk down to children | 688 | struct cgroup *cgrp = memcg->css.cgroup; |
647 | */ | 689 | unsigned int swappiness; |
648 | cgroup = list_entry(curr_cgroup->children.next, | ||
649 | struct cgroup, sibling); | ||
650 | curr = mem_cgroup_from_cont(cgroup); | ||
651 | goto done; | ||
652 | } | ||
653 | 690 | ||
654 | visit_parent: | 691 | /* root ? */ |
655 | if (curr_cgroup == root_cgroup) { | 692 | if (cgrp->parent == NULL) |
656 | /* caller handles NULL case */ | 693 | return vm_swappiness; |
657 | curr = NULL; | ||
658 | goto done; | ||
659 | } | ||
660 | 694 | ||
661 | /* | 695 | spin_lock(&memcg->reclaim_param_lock); |
662 | * Goto next sibling | 696 | swappiness = memcg->swappiness; |
663 | */ | 697 | spin_unlock(&memcg->reclaim_param_lock); |
664 | if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) { | ||
665 | cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup, | ||
666 | sibling); | ||
667 | curr = mem_cgroup_from_cont(cgroup); | ||
668 | goto done; | ||
669 | } | ||
670 | 698 | ||
671 | /* | 699 | return swappiness; |
672 | * Go up to next parent and next parent's sibling if need be | 700 | } |
673 | */ | ||
674 | curr_cgroup = curr_cgroup->parent; | ||
675 | goto visit_parent; | ||
676 | 701 | ||
677 | done: | 702 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) |
678 | return curr; | 703 | { |
704 | int *val = data; | ||
705 | (*val)++; | ||
706 | return 0; | ||
679 | } | 707 | } |
680 | 708 | ||
681 | /* | 709 | /** |
682 | * Visit the first child (need not be the first child as per the ordering | 710 | * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode. |
683 | * of the cgroup list, since we track last_scanned_child) of @mem and use | 711 | * @memcg: The memory cgroup that went over limit |
684 | * that to reclaim free pages from. | 712 | * @p: Task that is going to be killed |
713 | * | ||
714 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | ||
715 | * enabled | ||
685 | */ | 716 | */ |
686 | static struct mem_cgroup * | 717 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) |
687 | mem_cgroup_get_next_node(struct mem_cgroup *root_mem) | ||
688 | { | 718 | { |
689 | struct cgroup *cgroup; | 719 | struct cgroup *task_cgrp; |
690 | struct mem_cgroup *orig, *next; | 720 | struct cgroup *mem_cgrp; |
691 | bool obsolete; | ||
692 | |||
693 | /* | 721 | /* |
694 | * Scan all children under the mem_cgroup mem | 722 | * Need a buffer in BSS, can't rely on allocations. The code relies |
723 | * on the assumption that OOM is serialized for memory controller. | ||
724 | * If this assumption is broken, revisit this code. | ||
695 | */ | 725 | */ |
696 | mutex_lock(&mem_cgroup_subsys.hierarchy_mutex); | 726 | static char memcg_name[PATH_MAX]; |
727 | int ret; | ||
728 | |||
729 | if (!memcg) | ||
730 | return; | ||
697 | 731 | ||
698 | orig = root_mem->last_scanned_child; | ||
699 | obsolete = mem_cgroup_is_obsolete(orig); | ||
700 | 732 | ||
701 | if (list_empty(&root_mem->css.cgroup->children)) { | 733 | rcu_read_lock(); |
734 | |||
735 | mem_cgrp = memcg->css.cgroup; | ||
736 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | ||
737 | |||
738 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | ||
739 | if (ret < 0) { | ||
702 | /* | 740 | /* |
703 | * root_mem might have children before and last_scanned_child | 741 | * Unfortunately, we are unable to convert to a useful name |
704 | * may point to one of them. We put it later. | 742 | * But we'll still print out the usage information |
705 | */ | 743 | */ |
706 | if (orig) | 744 | rcu_read_unlock(); |
707 | VM_BUG_ON(!obsolete); | ||
708 | next = NULL; | ||
709 | goto done; | 745 | goto done; |
710 | } | 746 | } |
747 | rcu_read_unlock(); | ||
711 | 748 | ||
712 | if (!orig || obsolete) { | 749 | printk(KERN_INFO "Task in %s killed", memcg_name); |
713 | cgroup = list_first_entry(&root_mem->css.cgroup->children, | ||
714 | struct cgroup, sibling); | ||
715 | next = mem_cgroup_from_cont(cgroup); | ||
716 | } else | ||
717 | next = __mem_cgroup_get_next_node(orig, root_mem); | ||
718 | 750 | ||
751 | rcu_read_lock(); | ||
752 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | ||
753 | if (ret < 0) { | ||
754 | rcu_read_unlock(); | ||
755 | goto done; | ||
756 | } | ||
757 | rcu_read_unlock(); | ||
758 | |||
759 | /* | ||
760 | * Continues from above, so we don't need an KERN_ level | ||
761 | */ | ||
762 | printk(KERN_CONT " as a result of limit of %s\n", memcg_name); | ||
719 | done: | 763 | done: |
720 | if (next) | 764 | |
721 | mem_cgroup_get(next); | 765 | printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", |
722 | root_mem->last_scanned_child = next; | 766 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, |
723 | if (orig) | 767 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, |
724 | mem_cgroup_put(orig); | 768 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); |
725 | mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex); | 769 | printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " |
726 | return (next) ? next : root_mem; | 770 | "failcnt %llu\n", |
771 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, | ||
772 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | ||
773 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | ||
727 | } | 774 | } |
728 | 775 | ||
729 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) | 776 | /* |
777 | * This function returns the number of memcg under hierarchy tree. Returns | ||
778 | * 1(self count) if no children. | ||
779 | */ | ||
780 | static int mem_cgroup_count_children(struct mem_cgroup *mem) | ||
730 | { | 781 | { |
731 | if (do_swap_account) { | 782 | int num = 0; |
732 | if (res_counter_check_under_limit(&mem->res) && | 783 | mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); |
733 | res_counter_check_under_limit(&mem->memsw)) | 784 | return num; |
734 | return true; | ||
735 | } else | ||
736 | if (res_counter_check_under_limit(&mem->res)) | ||
737 | return true; | ||
738 | return false; | ||
739 | } | 785 | } |
740 | 786 | ||
741 | static unsigned int get_swappiness(struct mem_cgroup *memcg) | 787 | /* |
788 | * Visit the first child (need not be the first child as per the ordering | ||
789 | * of the cgroup list, since we track last_scanned_child) of @mem and use | ||
790 | * that to reclaim free pages from. | ||
791 | */ | ||
792 | static struct mem_cgroup * | ||
793 | mem_cgroup_select_victim(struct mem_cgroup *root_mem) | ||
742 | { | 794 | { |
743 | struct cgroup *cgrp = memcg->css.cgroup; | 795 | struct mem_cgroup *ret = NULL; |
744 | unsigned int swappiness; | 796 | struct cgroup_subsys_state *css; |
797 | int nextid, found; | ||
745 | 798 | ||
746 | /* root ? */ | 799 | if (!root_mem->use_hierarchy) { |
747 | if (cgrp->parent == NULL) | 800 | css_get(&root_mem->css); |
748 | return vm_swappiness; | 801 | ret = root_mem; |
802 | } | ||
749 | 803 | ||
750 | spin_lock(&memcg->reclaim_param_lock); | 804 | while (!ret) { |
751 | swappiness = memcg->swappiness; | 805 | rcu_read_lock(); |
752 | spin_unlock(&memcg->reclaim_param_lock); | 806 | nextid = root_mem->last_scanned_child + 1; |
807 | css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, | ||
808 | &found); | ||
809 | if (css && css_tryget(css)) | ||
810 | ret = container_of(css, struct mem_cgroup, css); | ||
811 | |||
812 | rcu_read_unlock(); | ||
813 | /* Updates scanning parameter */ | ||
814 | spin_lock(&root_mem->reclaim_param_lock); | ||
815 | if (!css) { | ||
816 | /* this means start scan from ID:1 */ | ||
817 | root_mem->last_scanned_child = 0; | ||
818 | } else | ||
819 | root_mem->last_scanned_child = found; | ||
820 | spin_unlock(&root_mem->reclaim_param_lock); | ||
821 | } | ||
753 | 822 | ||
754 | return swappiness; | 823 | return ret; |
755 | } | 824 | } |
756 | 825 | ||
757 | /* | 826 | /* |
758 | * Dance down the hierarchy if needed to reclaim memory. We remember the | 827 | * Scan the hierarchy if needed to reclaim memory. We remember the last child |
759 | * last child we reclaimed from, so that we don't end up penalizing | 828 | * we reclaimed from, so that we don't end up penalizing one child extensively |
760 | * one child extensively based on its position in the children list. | 829 | * based on its position in the children list. |
761 | * | 830 | * |
762 | * root_mem is the original ancestor that we've been reclaim from. | 831 | * root_mem is the original ancestor that we've been reclaim from. |
832 | * | ||
833 | * We give up and return to the caller when we visit root_mem twice. | ||
834 | * (other groups can be removed while we're walking....) | ||
835 | * | ||
836 | * If shrink==true, for avoiding to free too much, this returns immedieately. | ||
763 | */ | 837 | */ |
764 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | 838 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, |
765 | gfp_t gfp_mask, bool noswap) | 839 | gfp_t gfp_mask, bool noswap, bool shrink) |
766 | { | 840 | { |
767 | struct mem_cgroup *next_mem; | 841 | struct mem_cgroup *victim; |
768 | int ret = 0; | 842 | int ret, total = 0; |
769 | 843 | int loop = 0; | |
770 | /* | 844 | |
771 | * Reclaim unconditionally and don't check for return value. | 845 | while (loop < 2) { |
772 | * We need to reclaim in the current group and down the tree. | 846 | victim = mem_cgroup_select_victim(root_mem); |
773 | * One might think about checking for children before reclaiming, | 847 | if (victim == root_mem) |
774 | * but there might be left over accounting, even after children | 848 | loop++; |
775 | * have left. | 849 | if (!mem_cgroup_local_usage(&victim->stat)) { |
776 | */ | 850 | /* this cgroup's local usage == 0 */ |
777 | ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap, | 851 | css_put(&victim->css); |
778 | get_swappiness(root_mem)); | ||
779 | if (mem_cgroup_check_under_limit(root_mem)) | ||
780 | return 1; /* indicate reclaim has succeeded */ | ||
781 | if (!root_mem->use_hierarchy) | ||
782 | return ret; | ||
783 | |||
784 | next_mem = mem_cgroup_get_next_node(root_mem); | ||
785 | |||
786 | while (next_mem != root_mem) { | ||
787 | if (mem_cgroup_is_obsolete(next_mem)) { | ||
788 | next_mem = mem_cgroup_get_next_node(root_mem); | ||
789 | continue; | 852 | continue; |
790 | } | 853 | } |
791 | ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap, | 854 | /* we use swappiness of local cgroup */ |
792 | get_swappiness(next_mem)); | 855 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap, |
856 | get_swappiness(victim)); | ||
857 | css_put(&victim->css); | ||
858 | /* | ||
859 | * At shrinking usage, we can't check we should stop here or | ||
860 | * reclaim more. It's depends on callers. last_scanned_child | ||
861 | * will work enough for keeping fairness under tree. | ||
862 | */ | ||
863 | if (shrink) | ||
864 | return ret; | ||
865 | total += ret; | ||
793 | if (mem_cgroup_check_under_limit(root_mem)) | 866 | if (mem_cgroup_check_under_limit(root_mem)) |
794 | return 1; /* indicate reclaim has succeeded */ | 867 | return 1 + total; |
795 | next_mem = mem_cgroup_get_next_node(root_mem); | ||
796 | } | 868 | } |
797 | return ret; | 869 | return total; |
798 | } | 870 | } |
799 | 871 | ||
800 | bool mem_cgroup_oom_called(struct task_struct *task) | 872 | bool mem_cgroup_oom_called(struct task_struct *task) |
@@ -813,6 +885,19 @@ bool mem_cgroup_oom_called(struct task_struct *task) | |||
813 | rcu_read_unlock(); | 885 | rcu_read_unlock(); |
814 | return ret; | 886 | return ret; |
815 | } | 887 | } |
888 | |||
889 | static int record_last_oom_cb(struct mem_cgroup *mem, void *data) | ||
890 | { | ||
891 | mem->last_oom_jiffies = jiffies; | ||
892 | return 0; | ||
893 | } | ||
894 | |||
895 | static void record_last_oom(struct mem_cgroup *mem) | ||
896 | { | ||
897 | mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb); | ||
898 | } | ||
899 | |||
900 | |||
816 | /* | 901 | /* |
817 | * Unlike exported interface, "oom" parameter is added. if oom==true, | 902 | * Unlike exported interface, "oom" parameter is added. if oom==true, |
818 | * oom-killer can be invoked. | 903 | * oom-killer can be invoked. |
@@ -875,7 +960,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, | |||
875 | goto nomem; | 960 | goto nomem; |
876 | 961 | ||
877 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, | 962 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, |
878 | noswap); | 963 | noswap, false); |
879 | if (ret) | 964 | if (ret) |
880 | continue; | 965 | continue; |
881 | 966 | ||
@@ -895,7 +980,7 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, | |||
895 | mutex_lock(&memcg_tasklist); | 980 | mutex_lock(&memcg_tasklist); |
896 | mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); | 981 | mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); |
897 | mutex_unlock(&memcg_tasklist); | 982 | mutex_unlock(&memcg_tasklist); |
898 | mem_over_limit->last_oom_jiffies = jiffies; | 983 | record_last_oom(mem_over_limit); |
899 | } | 984 | } |
900 | goto nomem; | 985 | goto nomem; |
901 | } | 986 | } |
@@ -906,20 +991,55 @@ nomem: | |||
906 | return -ENOMEM; | 991 | return -ENOMEM; |
907 | } | 992 | } |
908 | 993 | ||
994 | |||
995 | /* | ||
996 | * A helper function to get mem_cgroup from ID. must be called under | ||
997 | * rcu_read_lock(). The caller must check css_is_removed() or some if | ||
998 | * it's concern. (dropping refcnt from swap can be called against removed | ||
999 | * memcg.) | ||
1000 | */ | ||
1001 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | ||
1002 | { | ||
1003 | struct cgroup_subsys_state *css; | ||
1004 | |||
1005 | /* ID 0 is unused ID */ | ||
1006 | if (!id) | ||
1007 | return NULL; | ||
1008 | css = css_lookup(&mem_cgroup_subsys, id); | ||
1009 | if (!css) | ||
1010 | return NULL; | ||
1011 | return container_of(css, struct mem_cgroup, css); | ||
1012 | } | ||
1013 | |||
909 | static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) | 1014 | static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) |
910 | { | 1015 | { |
911 | struct mem_cgroup *mem; | 1016 | struct mem_cgroup *mem; |
1017 | struct page_cgroup *pc; | ||
1018 | unsigned short id; | ||
912 | swp_entry_t ent; | 1019 | swp_entry_t ent; |
913 | 1020 | ||
1021 | VM_BUG_ON(!PageLocked(page)); | ||
1022 | |||
914 | if (!PageSwapCache(page)) | 1023 | if (!PageSwapCache(page)) |
915 | return NULL; | 1024 | return NULL; |
916 | 1025 | ||
917 | ent.val = page_private(page); | 1026 | pc = lookup_page_cgroup(page); |
918 | mem = lookup_swap_cgroup(ent); | 1027 | /* |
919 | if (!mem) | 1028 | * Used bit of swapcache is solid under page lock. |
920 | return NULL; | 1029 | */ |
921 | if (!css_tryget(&mem->css)) | 1030 | if (PageCgroupUsed(pc)) { |
922 | return NULL; | 1031 | mem = pc->mem_cgroup; |
1032 | if (mem && !css_tryget(&mem->css)) | ||
1033 | mem = NULL; | ||
1034 | } else { | ||
1035 | ent.val = page_private(page); | ||
1036 | id = lookup_swap_cgroup(ent); | ||
1037 | rcu_read_lock(); | ||
1038 | mem = mem_cgroup_lookup(id); | ||
1039 | if (mem && !css_tryget(&mem->css)) | ||
1040 | mem = NULL; | ||
1041 | rcu_read_unlock(); | ||
1042 | } | ||
923 | return mem; | 1043 | return mem; |
924 | } | 1044 | } |
925 | 1045 | ||
@@ -1118,6 +1238,10 @@ int mem_cgroup_newpage_charge(struct page *page, | |||
1118 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); | 1238 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); |
1119 | } | 1239 | } |
1120 | 1240 | ||
1241 | static void | ||
1242 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | ||
1243 | enum charge_type ctype); | ||
1244 | |||
1121 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 1245 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
1122 | gfp_t gfp_mask) | 1246 | gfp_t gfp_mask) |
1123 | { | 1247 | { |
@@ -1154,16 +1278,6 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
1154 | unlock_page_cgroup(pc); | 1278 | unlock_page_cgroup(pc); |
1155 | } | 1279 | } |
1156 | 1280 | ||
1157 | if (do_swap_account && PageSwapCache(page)) { | ||
1158 | mem = try_get_mem_cgroup_from_swapcache(page); | ||
1159 | if (mem) | ||
1160 | mm = NULL; | ||
1161 | else | ||
1162 | mem = NULL; | ||
1163 | /* SwapCache may be still linked to LRU now. */ | ||
1164 | mem_cgroup_lru_del_before_commit_swapcache(page); | ||
1165 | } | ||
1166 | |||
1167 | if (unlikely(!mm && !mem)) | 1281 | if (unlikely(!mm && !mem)) |
1168 | mm = &init_mm; | 1282 | mm = &init_mm; |
1169 | 1283 | ||
@@ -1171,22 +1285,16 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
1171 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 1285 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
1172 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 1286 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
1173 | 1287 | ||
1174 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | 1288 | /* shmem */ |
1175 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); | 1289 | if (PageSwapCache(page)) { |
1176 | if (mem) | 1290 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); |
1177 | css_put(&mem->css); | 1291 | if (!ret) |
1178 | if (PageSwapCache(page)) | 1292 | __mem_cgroup_commit_charge_swapin(page, mem, |
1179 | mem_cgroup_lru_add_after_commit_swapcache(page); | 1293 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
1294 | } else | ||
1295 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | ||
1296 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); | ||
1180 | 1297 | ||
1181 | if (do_swap_account && !ret && PageSwapCache(page)) { | ||
1182 | swp_entry_t ent = {.val = page_private(page)}; | ||
1183 | /* avoid double counting */ | ||
1184 | mem = swap_cgroup_record(ent, NULL); | ||
1185 | if (mem) { | ||
1186 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | ||
1187 | mem_cgroup_put(mem); | ||
1188 | } | ||
1189 | } | ||
1190 | return ret; | 1298 | return ret; |
1191 | } | 1299 | } |
1192 | 1300 | ||
@@ -1229,7 +1337,9 @@ charge_cur_mm: | |||
1229 | return __mem_cgroup_try_charge(mm, mask, ptr, true); | 1337 | return __mem_cgroup_try_charge(mm, mask, ptr, true); |
1230 | } | 1338 | } |
1231 | 1339 | ||
1232 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | 1340 | static void |
1341 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | ||
1342 | enum charge_type ctype) | ||
1233 | { | 1343 | { |
1234 | struct page_cgroup *pc; | 1344 | struct page_cgroup *pc; |
1235 | 1345 | ||
@@ -1239,7 +1349,7 @@ void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | |||
1239 | return; | 1349 | return; |
1240 | pc = lookup_page_cgroup(page); | 1350 | pc = lookup_page_cgroup(page); |
1241 | mem_cgroup_lru_del_before_commit_swapcache(page); | 1351 | mem_cgroup_lru_del_before_commit_swapcache(page); |
1242 | __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED); | 1352 | __mem_cgroup_commit_charge(ptr, pc, ctype); |
1243 | mem_cgroup_lru_add_after_commit_swapcache(page); | 1353 | mem_cgroup_lru_add_after_commit_swapcache(page); |
1244 | /* | 1354 | /* |
1245 | * Now swap is on-memory. This means this page may be | 1355 | * Now swap is on-memory. This means this page may be |
@@ -1250,18 +1360,32 @@ void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | |||
1250 | */ | 1360 | */ |
1251 | if (do_swap_account && PageSwapCache(page)) { | 1361 | if (do_swap_account && PageSwapCache(page)) { |
1252 | swp_entry_t ent = {.val = page_private(page)}; | 1362 | swp_entry_t ent = {.val = page_private(page)}; |
1363 | unsigned short id; | ||
1253 | struct mem_cgroup *memcg; | 1364 | struct mem_cgroup *memcg; |
1254 | memcg = swap_cgroup_record(ent, NULL); | 1365 | |
1366 | id = swap_cgroup_record(ent, 0); | ||
1367 | rcu_read_lock(); | ||
1368 | memcg = mem_cgroup_lookup(id); | ||
1255 | if (memcg) { | 1369 | if (memcg) { |
1370 | /* | ||
1371 | * This recorded memcg can be obsolete one. So, avoid | ||
1372 | * calling css_tryget | ||
1373 | */ | ||
1256 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 1374 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
1257 | mem_cgroup_put(memcg); | 1375 | mem_cgroup_put(memcg); |
1258 | } | 1376 | } |
1259 | 1377 | rcu_read_unlock(); | |
1260 | } | 1378 | } |
1261 | /* add this page(page_cgroup) to the LRU we want. */ | 1379 | /* add this page(page_cgroup) to the LRU we want. */ |
1262 | 1380 | ||
1263 | } | 1381 | } |
1264 | 1382 | ||
1383 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | ||
1384 | { | ||
1385 | __mem_cgroup_commit_charge_swapin(page, ptr, | ||
1386 | MEM_CGROUP_CHARGE_TYPE_MAPPED); | ||
1387 | } | ||
1388 | |||
1265 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) | 1389 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) |
1266 | { | 1390 | { |
1267 | if (mem_cgroup_disabled()) | 1391 | if (mem_cgroup_disabled()) |
@@ -1324,8 +1448,8 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
1324 | res_counter_uncharge(&mem->res, PAGE_SIZE); | 1448 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
1325 | if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) | 1449 | if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) |
1326 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | 1450 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); |
1327 | |||
1328 | mem_cgroup_charge_statistics(mem, pc, false); | 1451 | mem_cgroup_charge_statistics(mem, pc, false); |
1452 | |||
1329 | ClearPageCgroupUsed(pc); | 1453 | ClearPageCgroupUsed(pc); |
1330 | /* | 1454 | /* |
1331 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | 1455 | * pc->mem_cgroup is not cleared here. It will be accessed when it's |
@@ -1377,7 +1501,7 @@ void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) | |||
1377 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT); | 1501 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT); |
1378 | /* record memcg information */ | 1502 | /* record memcg information */ |
1379 | if (do_swap_account && memcg) { | 1503 | if (do_swap_account && memcg) { |
1380 | swap_cgroup_record(ent, memcg); | 1504 | swap_cgroup_record(ent, css_id(&memcg->css)); |
1381 | mem_cgroup_get(memcg); | 1505 | mem_cgroup_get(memcg); |
1382 | } | 1506 | } |
1383 | if (memcg) | 1507 | if (memcg) |
@@ -1392,15 +1516,23 @@ void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) | |||
1392 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | 1516 | void mem_cgroup_uncharge_swap(swp_entry_t ent) |
1393 | { | 1517 | { |
1394 | struct mem_cgroup *memcg; | 1518 | struct mem_cgroup *memcg; |
1519 | unsigned short id; | ||
1395 | 1520 | ||
1396 | if (!do_swap_account) | 1521 | if (!do_swap_account) |
1397 | return; | 1522 | return; |
1398 | 1523 | ||
1399 | memcg = swap_cgroup_record(ent, NULL); | 1524 | id = swap_cgroup_record(ent, 0); |
1525 | rcu_read_lock(); | ||
1526 | memcg = mem_cgroup_lookup(id); | ||
1400 | if (memcg) { | 1527 | if (memcg) { |
1528 | /* | ||
1529 | * We uncharge this because swap is freed. | ||
1530 | * This memcg can be obsolete one. We avoid calling css_tryget | ||
1531 | */ | ||
1401 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 1532 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
1402 | mem_cgroup_put(memcg); | 1533 | mem_cgroup_put(memcg); |
1403 | } | 1534 | } |
1535 | rcu_read_unlock(); | ||
1404 | } | 1536 | } |
1405 | #endif | 1537 | #endif |
1406 | 1538 | ||
@@ -1508,7 +1640,8 @@ int mem_cgroup_shrink_usage(struct page *page, | |||
1508 | return 0; | 1640 | return 0; |
1509 | 1641 | ||
1510 | do { | 1642 | do { |
1511 | progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true); | 1643 | progress = mem_cgroup_hierarchical_reclaim(mem, |
1644 | gfp_mask, true, false); | ||
1512 | progress += mem_cgroup_check_under_limit(mem); | 1645 | progress += mem_cgroup_check_under_limit(mem); |
1513 | } while (!progress && --retry); | 1646 | } while (!progress && --retry); |
1514 | 1647 | ||
@@ -1523,11 +1656,21 @@ static DEFINE_MUTEX(set_limit_mutex); | |||
1523 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | 1656 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
1524 | unsigned long long val) | 1657 | unsigned long long val) |
1525 | { | 1658 | { |
1526 | 1659 | int retry_count; | |
1527 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | ||
1528 | int progress; | 1660 | int progress; |
1529 | u64 memswlimit; | 1661 | u64 memswlimit; |
1530 | int ret = 0; | 1662 | int ret = 0; |
1663 | int children = mem_cgroup_count_children(memcg); | ||
1664 | u64 curusage, oldusage; | ||
1665 | |||
1666 | /* | ||
1667 | * For keeping hierarchical_reclaim simple, how long we should retry | ||
1668 | * is depends on callers. We set our retry-count to be function | ||
1669 | * of # of children which we should visit in this loop. | ||
1670 | */ | ||
1671 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | ||
1672 | |||
1673 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | ||
1531 | 1674 | ||
1532 | while (retry_count) { | 1675 | while (retry_count) { |
1533 | if (signal_pending(current)) { | 1676 | if (signal_pending(current)) { |
@@ -1553,8 +1696,13 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | |||
1553 | break; | 1696 | break; |
1554 | 1697 | ||
1555 | progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, | 1698 | progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, |
1556 | false); | 1699 | false, true); |
1557 | if (!progress) retry_count--; | 1700 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
1701 | /* Usage is reduced ? */ | ||
1702 | if (curusage >= oldusage) | ||
1703 | retry_count--; | ||
1704 | else | ||
1705 | oldusage = curusage; | ||
1558 | } | 1706 | } |
1559 | 1707 | ||
1560 | return ret; | 1708 | return ret; |
@@ -1563,13 +1711,16 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | |||
1563 | int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | 1711 | int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
1564 | unsigned long long val) | 1712 | unsigned long long val) |
1565 | { | 1713 | { |
1566 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | 1714 | int retry_count; |
1567 | u64 memlimit, oldusage, curusage; | 1715 | u64 memlimit, oldusage, curusage; |
1568 | int ret; | 1716 | int children = mem_cgroup_count_children(memcg); |
1717 | int ret = -EBUSY; | ||
1569 | 1718 | ||
1570 | if (!do_swap_account) | 1719 | if (!do_swap_account) |
1571 | return -EINVAL; | 1720 | return -EINVAL; |
1572 | 1721 | /* see mem_cgroup_resize_res_limit */ | |
1722 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | ||
1723 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | ||
1573 | while (retry_count) { | 1724 | while (retry_count) { |
1574 | if (signal_pending(current)) { | 1725 | if (signal_pending(current)) { |
1575 | ret = -EINTR; | 1726 | ret = -EINTR; |
@@ -1593,11 +1744,13 @@ int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | |||
1593 | if (!ret) | 1744 | if (!ret) |
1594 | break; | 1745 | break; |
1595 | 1746 | ||
1596 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 1747 | mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true); |
1597 | mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true); | ||
1598 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 1748 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
1749 | /* Usage is reduced ? */ | ||
1599 | if (curusage >= oldusage) | 1750 | if (curusage >= oldusage) |
1600 | retry_count--; | 1751 | retry_count--; |
1752 | else | ||
1753 | oldusage = curusage; | ||
1601 | } | 1754 | } |
1602 | return ret; | 1755 | return ret; |
1603 | } | 1756 | } |
@@ -1893,54 +2046,90 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | |||
1893 | return 0; | 2046 | return 0; |
1894 | } | 2047 | } |
1895 | 2048 | ||
1896 | static const struct mem_cgroup_stat_desc { | 2049 | |
1897 | const char *msg; | 2050 | /* For read statistics */ |
1898 | u64 unit; | 2051 | enum { |
1899 | } mem_cgroup_stat_desc[] = { | 2052 | MCS_CACHE, |
1900 | [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, | 2053 | MCS_RSS, |
1901 | [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, | 2054 | MCS_PGPGIN, |
1902 | [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, }, | 2055 | MCS_PGPGOUT, |
1903 | [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, }, | 2056 | MCS_INACTIVE_ANON, |
2057 | MCS_ACTIVE_ANON, | ||
2058 | MCS_INACTIVE_FILE, | ||
2059 | MCS_ACTIVE_FILE, | ||
2060 | MCS_UNEVICTABLE, | ||
2061 | NR_MCS_STAT, | ||
2062 | }; | ||
2063 | |||
2064 | struct mcs_total_stat { | ||
2065 | s64 stat[NR_MCS_STAT]; | ||
2066 | }; | ||
2067 | |||
2068 | struct { | ||
2069 | char *local_name; | ||
2070 | char *total_name; | ||
2071 | } memcg_stat_strings[NR_MCS_STAT] = { | ||
2072 | {"cache", "total_cache"}, | ||
2073 | {"rss", "total_rss"}, | ||
2074 | {"pgpgin", "total_pgpgin"}, | ||
2075 | {"pgpgout", "total_pgpgout"}, | ||
2076 | {"inactive_anon", "total_inactive_anon"}, | ||
2077 | {"active_anon", "total_active_anon"}, | ||
2078 | {"inactive_file", "total_inactive_file"}, | ||
2079 | {"active_file", "total_active_file"}, | ||
2080 | {"unevictable", "total_unevictable"} | ||
1904 | }; | 2081 | }; |
1905 | 2082 | ||
2083 | |||
2084 | static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) | ||
2085 | { | ||
2086 | struct mcs_total_stat *s = data; | ||
2087 | s64 val; | ||
2088 | |||
2089 | /* per cpu stat */ | ||
2090 | val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE); | ||
2091 | s->stat[MCS_CACHE] += val * PAGE_SIZE; | ||
2092 | val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); | ||
2093 | s->stat[MCS_RSS] += val * PAGE_SIZE; | ||
2094 | val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT); | ||
2095 | s->stat[MCS_PGPGIN] += val; | ||
2096 | val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT); | ||
2097 | s->stat[MCS_PGPGOUT] += val; | ||
2098 | |||
2099 | /* per zone stat */ | ||
2100 | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); | ||
2101 | s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; | ||
2102 | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); | ||
2103 | s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; | ||
2104 | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); | ||
2105 | s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; | ||
2106 | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); | ||
2107 | s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; | ||
2108 | val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); | ||
2109 | s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; | ||
2110 | return 0; | ||
2111 | } | ||
2112 | |||
2113 | static void | ||
2114 | mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | ||
2115 | { | ||
2116 | mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); | ||
2117 | } | ||
2118 | |||
1906 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | 2119 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, |
1907 | struct cgroup_map_cb *cb) | 2120 | struct cgroup_map_cb *cb) |
1908 | { | 2121 | { |
1909 | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); | 2122 | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); |
1910 | struct mem_cgroup_stat *stat = &mem_cont->stat; | 2123 | struct mcs_total_stat mystat; |
1911 | int i; | 2124 | int i; |
1912 | 2125 | ||
1913 | for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { | 2126 | memset(&mystat, 0, sizeof(mystat)); |
1914 | s64 val; | 2127 | mem_cgroup_get_local_stat(mem_cont, &mystat); |
1915 | 2128 | ||
1916 | val = mem_cgroup_read_stat(stat, i); | 2129 | for (i = 0; i < NR_MCS_STAT; i++) |
1917 | val *= mem_cgroup_stat_desc[i].unit; | 2130 | cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); |
1918 | cb->fill(cb, mem_cgroup_stat_desc[i].msg, val); | ||
1919 | } | ||
1920 | /* showing # of active pages */ | ||
1921 | { | ||
1922 | unsigned long active_anon, inactive_anon; | ||
1923 | unsigned long active_file, inactive_file; | ||
1924 | unsigned long unevictable; | ||
1925 | |||
1926 | inactive_anon = mem_cgroup_get_all_zonestat(mem_cont, | ||
1927 | LRU_INACTIVE_ANON); | ||
1928 | active_anon = mem_cgroup_get_all_zonestat(mem_cont, | ||
1929 | LRU_ACTIVE_ANON); | ||
1930 | inactive_file = mem_cgroup_get_all_zonestat(mem_cont, | ||
1931 | LRU_INACTIVE_FILE); | ||
1932 | active_file = mem_cgroup_get_all_zonestat(mem_cont, | ||
1933 | LRU_ACTIVE_FILE); | ||
1934 | unevictable = mem_cgroup_get_all_zonestat(mem_cont, | ||
1935 | LRU_UNEVICTABLE); | ||
1936 | |||
1937 | cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE); | ||
1938 | cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE); | ||
1939 | cb->fill(cb, "active_file", (active_file) * PAGE_SIZE); | ||
1940 | cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE); | ||
1941 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); | ||
1942 | 2131 | ||
1943 | } | 2132 | /* Hierarchical information */ |
1944 | { | 2133 | { |
1945 | unsigned long long limit, memsw_limit; | 2134 | unsigned long long limit, memsw_limit; |
1946 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | 2135 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); |
@@ -1949,6 +2138,12 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | |||
1949 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | 2138 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); |
1950 | } | 2139 | } |
1951 | 2140 | ||
2141 | memset(&mystat, 0, sizeof(mystat)); | ||
2142 | mem_cgroup_get_total_stat(mem_cont, &mystat); | ||
2143 | for (i = 0; i < NR_MCS_STAT; i++) | ||
2144 | cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); | ||
2145 | |||
2146 | |||
1952 | #ifdef CONFIG_DEBUG_VM | 2147 | #ifdef CONFIG_DEBUG_VM |
1953 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); | 2148 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); |
1954 | 2149 | ||
@@ -2178,6 +2373,8 @@ static void __mem_cgroup_free(struct mem_cgroup *mem) | |||
2178 | { | 2373 | { |
2179 | int node; | 2374 | int node; |
2180 | 2375 | ||
2376 | free_css_id(&mem_cgroup_subsys, &mem->css); | ||
2377 | |||
2181 | for_each_node_state(node, N_POSSIBLE) | 2378 | for_each_node_state(node, N_POSSIBLE) |
2182 | free_mem_cgroup_per_zone_info(mem, node); | 2379 | free_mem_cgroup_per_zone_info(mem, node); |
2183 | 2380 | ||
@@ -2228,11 +2425,12 @@ static struct cgroup_subsys_state * __ref | |||
2228 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 2425 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
2229 | { | 2426 | { |
2230 | struct mem_cgroup *mem, *parent; | 2427 | struct mem_cgroup *mem, *parent; |
2428 | long error = -ENOMEM; | ||
2231 | int node; | 2429 | int node; |
2232 | 2430 | ||
2233 | mem = mem_cgroup_alloc(); | 2431 | mem = mem_cgroup_alloc(); |
2234 | if (!mem) | 2432 | if (!mem) |
2235 | return ERR_PTR(-ENOMEM); | 2433 | return ERR_PTR(error); |
2236 | 2434 | ||
2237 | for_each_node_state(node, N_POSSIBLE) | 2435 | for_each_node_state(node, N_POSSIBLE) |
2238 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | 2436 | if (alloc_mem_cgroup_per_zone_info(mem, node)) |
@@ -2260,7 +2458,7 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | |||
2260 | res_counter_init(&mem->res, NULL); | 2458 | res_counter_init(&mem->res, NULL); |
2261 | res_counter_init(&mem->memsw, NULL); | 2459 | res_counter_init(&mem->memsw, NULL); |
2262 | } | 2460 | } |
2263 | mem->last_scanned_child = NULL; | 2461 | mem->last_scanned_child = 0; |
2264 | spin_lock_init(&mem->reclaim_param_lock); | 2462 | spin_lock_init(&mem->reclaim_param_lock); |
2265 | 2463 | ||
2266 | if (parent) | 2464 | if (parent) |
@@ -2269,26 +2467,22 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | |||
2269 | return &mem->css; | 2467 | return &mem->css; |
2270 | free_out: | 2468 | free_out: |
2271 | __mem_cgroup_free(mem); | 2469 | __mem_cgroup_free(mem); |
2272 | return ERR_PTR(-ENOMEM); | 2470 | return ERR_PTR(error); |
2273 | } | 2471 | } |
2274 | 2472 | ||
2275 | static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | 2473 | static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, |
2276 | struct cgroup *cont) | 2474 | struct cgroup *cont) |
2277 | { | 2475 | { |
2278 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 2476 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
2279 | mem_cgroup_force_empty(mem, false); | 2477 | |
2478 | return mem_cgroup_force_empty(mem, false); | ||
2280 | } | 2479 | } |
2281 | 2480 | ||
2282 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 2481 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
2283 | struct cgroup *cont) | 2482 | struct cgroup *cont) |
2284 | { | 2483 | { |
2285 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 2484 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
2286 | struct mem_cgroup *last_scanned_child = mem->last_scanned_child; | ||
2287 | 2485 | ||
2288 | if (last_scanned_child) { | ||
2289 | VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child)); | ||
2290 | mem_cgroup_put(last_scanned_child); | ||
2291 | } | ||
2292 | mem_cgroup_put(mem); | 2486 | mem_cgroup_put(mem); |
2293 | } | 2487 | } |
2294 | 2488 | ||
@@ -2327,6 +2521,7 @@ struct cgroup_subsys mem_cgroup_subsys = { | |||
2327 | .populate = mem_cgroup_populate, | 2521 | .populate = mem_cgroup_populate, |
2328 | .attach = mem_cgroup_move_task, | 2522 | .attach = mem_cgroup_move_task, |
2329 | .early_init = 0, | 2523 | .early_init = 0, |
2524 | .use_id = 1, | ||
2330 | }; | 2525 | }; |
2331 | 2526 | ||
2332 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 2527 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
diff --git a/mm/memory.c b/mm/memory.c index baa999e87cd2..cf6873e91c6a 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -1151,6 +1151,11 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |||
1151 | if ((flags & FOLL_WRITE) && | 1151 | if ((flags & FOLL_WRITE) && |
1152 | !pte_dirty(pte) && !PageDirty(page)) | 1152 | !pte_dirty(pte) && !PageDirty(page)) |
1153 | set_page_dirty(page); | 1153 | set_page_dirty(page); |
1154 | /* | ||
1155 | * pte_mkyoung() would be more correct here, but atomic care | ||
1156 | * is needed to avoid losing the dirty bit: it is easier to use | ||
1157 | * mark_page_accessed(). | ||
1158 | */ | ||
1154 | mark_page_accessed(page); | 1159 | mark_page_accessed(page); |
1155 | } | 1160 | } |
1156 | unlock: | 1161 | unlock: |
@@ -1665,9 +1670,10 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |||
1665 | * behaviour that some programs depend on. We mark the "original" | 1670 | * behaviour that some programs depend on. We mark the "original" |
1666 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 1671 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". |
1667 | */ | 1672 | */ |
1668 | if (addr == vma->vm_start && end == vma->vm_end) | 1673 | if (addr == vma->vm_start && end == vma->vm_end) { |
1669 | vma->vm_pgoff = pfn; | 1674 | vma->vm_pgoff = pfn; |
1670 | else if (is_cow_mapping(vma->vm_flags)) | 1675 | vma->vm_flags |= VM_PFN_AT_MMAP; |
1676 | } else if (is_cow_mapping(vma->vm_flags)) | ||
1671 | return -EINVAL; | 1677 | return -EINVAL; |
1672 | 1678 | ||
1673 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 1679 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
@@ -1679,6 +1685,7 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |||
1679 | * needed from higher level routine calling unmap_vmas | 1685 | * needed from higher level routine calling unmap_vmas |
1680 | */ | 1686 | */ |
1681 | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); | 1687 | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); |
1688 | vma->vm_flags &= ~VM_PFN_AT_MMAP; | ||
1682 | return -EINVAL; | 1689 | return -EINVAL; |
1683 | } | 1690 | } |
1684 | 1691 | ||
@@ -1938,6 +1945,15 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1938 | * get_user_pages(.write=1, .force=1). | 1945 | * get_user_pages(.write=1, .force=1). |
1939 | */ | 1946 | */ |
1940 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 1947 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
1948 | struct vm_fault vmf; | ||
1949 | int tmp; | ||
1950 | |||
1951 | vmf.virtual_address = (void __user *)(address & | ||
1952 | PAGE_MASK); | ||
1953 | vmf.pgoff = old_page->index; | ||
1954 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | ||
1955 | vmf.page = old_page; | ||
1956 | |||
1941 | /* | 1957 | /* |
1942 | * Notify the address space that the page is about to | 1958 | * Notify the address space that the page is about to |
1943 | * become writable so that it can prohibit this or wait | 1959 | * become writable so that it can prohibit this or wait |
@@ -1949,8 +1965,12 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1949 | page_cache_get(old_page); | 1965 | page_cache_get(old_page); |
1950 | pte_unmap_unlock(page_table, ptl); | 1966 | pte_unmap_unlock(page_table, ptl); |
1951 | 1967 | ||
1952 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | 1968 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
1969 | if (unlikely(tmp & | ||
1970 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | ||
1971 | ret = tmp; | ||
1953 | goto unwritable_page; | 1972 | goto unwritable_page; |
1973 | } | ||
1954 | 1974 | ||
1955 | /* | 1975 | /* |
1956 | * Since we dropped the lock we need to revalidate | 1976 | * Since we dropped the lock we need to revalidate |
@@ -2099,7 +2119,7 @@ oom: | |||
2099 | 2119 | ||
2100 | unwritable_page: | 2120 | unwritable_page: |
2101 | page_cache_release(old_page); | 2121 | page_cache_release(old_page); |
2102 | return VM_FAULT_SIGBUS; | 2122 | return ret; |
2103 | } | 2123 | } |
2104 | 2124 | ||
2105 | /* | 2125 | /* |
@@ -2433,8 +2453,6 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2433 | count_vm_event(PGMAJFAULT); | 2453 | count_vm_event(PGMAJFAULT); |
2434 | } | 2454 | } |
2435 | 2455 | ||
2436 | mark_page_accessed(page); | ||
2437 | |||
2438 | lock_page(page); | 2456 | lock_page(page); |
2439 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2457 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2440 | 2458 | ||
@@ -2643,9 +2661,14 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2643 | * to become writable | 2661 | * to become writable |
2644 | */ | 2662 | */ |
2645 | if (vma->vm_ops->page_mkwrite) { | 2663 | if (vma->vm_ops->page_mkwrite) { |
2664 | int tmp; | ||
2665 | |||
2646 | unlock_page(page); | 2666 | unlock_page(page); |
2647 | if (vma->vm_ops->page_mkwrite(vma, page) < 0) { | 2667 | vmf.flags |= FAULT_FLAG_MKWRITE; |
2648 | ret = VM_FAULT_SIGBUS; | 2668 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2669 | if (unlikely(tmp & | ||
2670 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | ||
2671 | ret = tmp; | ||
2649 | anon = 1; /* no anon but release vmf.page */ | 2672 | anon = 1; /* no anon but release vmf.page */ |
2650 | goto out_unlocked; | 2673 | goto out_unlocked; |
2651 | } | 2674 | } |
diff --git a/mm/migrate.c b/mm/migrate.c index a9eff3f092f6..068655d8f883 100644 --- a/mm/migrate.c +++ b/mm/migrate.c | |||
@@ -250,7 +250,7 @@ out: | |||
250 | * The number of remaining references must be: | 250 | * The number of remaining references must be: |
251 | * 1 for anonymous pages without a mapping | 251 | * 1 for anonymous pages without a mapping |
252 | * 2 for pages with a mapping | 252 | * 2 for pages with a mapping |
253 | * 3 for pages with a mapping and PagePrivate set. | 253 | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
254 | */ | 254 | */ |
255 | static int migrate_page_move_mapping(struct address_space *mapping, | 255 | static int migrate_page_move_mapping(struct address_space *mapping, |
256 | struct page *newpage, struct page *page) | 256 | struct page *newpage, struct page *page) |
@@ -270,7 +270,7 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
270 | pslot = radix_tree_lookup_slot(&mapping->page_tree, | 270 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
271 | page_index(page)); | 271 | page_index(page)); |
272 | 272 | ||
273 | expected_count = 2 + !!PagePrivate(page); | 273 | expected_count = 2 + !!page_has_private(page); |
274 | if (page_count(page) != expected_count || | 274 | if (page_count(page) != expected_count || |
275 | (struct page *)radix_tree_deref_slot(pslot) != page) { | 275 | (struct page *)radix_tree_deref_slot(pslot) != page) { |
276 | spin_unlock_irq(&mapping->tree_lock); | 276 | spin_unlock_irq(&mapping->tree_lock); |
@@ -386,7 +386,7 @@ EXPORT_SYMBOL(fail_migrate_page); | |||
386 | 386 | ||
387 | /* | 387 | /* |
388 | * Common logic to directly migrate a single page suitable for | 388 | * Common logic to directly migrate a single page suitable for |
389 | * pages that do not use PagePrivate. | 389 | * pages that do not use PagePrivate/PagePrivate2. |
390 | * | 390 | * |
391 | * Pages are locked upon entry and exit. | 391 | * Pages are locked upon entry and exit. |
392 | */ | 392 | */ |
@@ -522,7 +522,7 @@ static int fallback_migrate_page(struct address_space *mapping, | |||
522 | * Buffers may be managed in a filesystem specific way. | 522 | * Buffers may be managed in a filesystem specific way. |
523 | * We must have no buffers or drop them. | 523 | * We must have no buffers or drop them. |
524 | */ | 524 | */ |
525 | if (PagePrivate(page) && | 525 | if (page_has_private(page) && |
526 | !try_to_release_page(page, GFP_KERNEL)) | 526 | !try_to_release_page(page, GFP_KERNEL)) |
527 | return -EAGAIN; | 527 | return -EAGAIN; |
528 | 528 | ||
@@ -655,7 +655,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
655 | * free the metadata, so the page can be freed. | 655 | * free the metadata, so the page can be freed. |
656 | */ | 656 | */ |
657 | if (!page->mapping) { | 657 | if (!page->mapping) { |
658 | if (!PageAnon(page) && PagePrivate(page)) { | 658 | if (!PageAnon(page) && page_has_private(page)) { |
659 | /* | 659 | /* |
660 | * Go direct to try_to_free_buffers() here because | 660 | * Go direct to try_to_free_buffers() here because |
661 | * a) that's what try_to_release_page() would do anyway | 661 | * a) that's what try_to_release_page() would do anyway |
@@ -20,6 +20,7 @@ | |||
20 | #include <linux/fs.h> | 20 | #include <linux/fs.h> |
21 | #include <linux/personality.h> | 21 | #include <linux/personality.h> |
22 | #include <linux/security.h> | 22 | #include <linux/security.h> |
23 | #include <linux/ima.h> | ||
23 | #include <linux/hugetlb.h> | 24 | #include <linux/hugetlb.h> |
24 | #include <linux/profile.h> | 25 | #include <linux/profile.h> |
25 | #include <linux/module.h> | 26 | #include <linux/module.h> |
@@ -1049,6 +1050,9 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, | |||
1049 | error = security_file_mmap(file, reqprot, prot, flags, addr, 0); | 1050 | error = security_file_mmap(file, reqprot, prot, flags, addr, 0); |
1050 | if (error) | 1051 | if (error) |
1051 | return error; | 1052 | return error; |
1053 | error = ima_file_mmap(file, prot); | ||
1054 | if (error) | ||
1055 | return error; | ||
1052 | 1056 | ||
1053 | return mmap_region(file, addr, len, flags, vm_flags, pgoff); | 1057 | return mmap_region(file, addr, len, flags, vm_flags, pgoff); |
1054 | } | 1058 | } |
@@ -2477,7 +2481,4 @@ void mm_drop_all_locks(struct mm_struct *mm) | |||
2477 | */ | 2481 | */ |
2478 | void __init mmap_init(void) | 2482 | void __init mmap_init(void) |
2479 | { | 2483 | { |
2480 | vm_area_cachep = kmem_cache_create("vm_area_struct", | ||
2481 | sizeof(struct vm_area_struct), 0, | ||
2482 | SLAB_PANIC, NULL); | ||
2483 | } | 2484 | } |
diff --git a/mm/nommu.c b/mm/nommu.c index 2fcf47d449b4..72eda4aee2cb 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -69,7 +69,7 @@ int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; | |||
69 | int sysctl_nr_trim_pages = 1; /* page trimming behaviour */ | 69 | int sysctl_nr_trim_pages = 1; /* page trimming behaviour */ |
70 | int heap_stack_gap = 0; | 70 | int heap_stack_gap = 0; |
71 | 71 | ||
72 | atomic_t mmap_pages_allocated; | 72 | atomic_long_t mmap_pages_allocated; |
73 | 73 | ||
74 | EXPORT_SYMBOL(mem_map); | 74 | EXPORT_SYMBOL(mem_map); |
75 | EXPORT_SYMBOL(num_physpages); | 75 | EXPORT_SYMBOL(num_physpages); |
@@ -463,12 +463,7 @@ SYSCALL_DEFINE1(brk, unsigned long, brk) | |||
463 | */ | 463 | */ |
464 | void __init mmap_init(void) | 464 | void __init mmap_init(void) |
465 | { | 465 | { |
466 | vm_region_jar = kmem_cache_create("vm_region_jar", | 466 | vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); |
467 | sizeof(struct vm_region), 0, | ||
468 | SLAB_PANIC, NULL); | ||
469 | vm_area_cachep = kmem_cache_create("vm_area_struct", | ||
470 | sizeof(struct vm_area_struct), 0, | ||
471 | SLAB_PANIC, NULL); | ||
472 | } | 467 | } |
473 | 468 | ||
474 | /* | 469 | /* |
@@ -486,27 +481,24 @@ static noinline void validate_nommu_regions(void) | |||
486 | return; | 481 | return; |
487 | 482 | ||
488 | last = rb_entry(lastp, struct vm_region, vm_rb); | 483 | last = rb_entry(lastp, struct vm_region, vm_rb); |
489 | if (unlikely(last->vm_end <= last->vm_start)) | 484 | BUG_ON(unlikely(last->vm_end <= last->vm_start)); |
490 | BUG(); | 485 | BUG_ON(unlikely(last->vm_top < last->vm_end)); |
491 | if (unlikely(last->vm_top < last->vm_end)) | ||
492 | BUG(); | ||
493 | 486 | ||
494 | while ((p = rb_next(lastp))) { | 487 | while ((p = rb_next(lastp))) { |
495 | region = rb_entry(p, struct vm_region, vm_rb); | 488 | region = rb_entry(p, struct vm_region, vm_rb); |
496 | last = rb_entry(lastp, struct vm_region, vm_rb); | 489 | last = rb_entry(lastp, struct vm_region, vm_rb); |
497 | 490 | ||
498 | if (unlikely(region->vm_end <= region->vm_start)) | 491 | BUG_ON(unlikely(region->vm_end <= region->vm_start)); |
499 | BUG(); | 492 | BUG_ON(unlikely(region->vm_top < region->vm_end)); |
500 | if (unlikely(region->vm_top < region->vm_end)) | 493 | BUG_ON(unlikely(region->vm_start < last->vm_top)); |
501 | BUG(); | ||
502 | if (unlikely(region->vm_start < last->vm_top)) | ||
503 | BUG(); | ||
504 | 494 | ||
505 | lastp = p; | 495 | lastp = p; |
506 | } | 496 | } |
507 | } | 497 | } |
508 | #else | 498 | #else |
509 | #define validate_nommu_regions() do {} while(0) | 499 | static void validate_nommu_regions(void) |
500 | { | ||
501 | } | ||
510 | #endif | 502 | #endif |
511 | 503 | ||
512 | /* | 504 | /* |
@@ -563,16 +555,17 @@ static void free_page_series(unsigned long from, unsigned long to) | |||
563 | struct page *page = virt_to_page(from); | 555 | struct page *page = virt_to_page(from); |
564 | 556 | ||
565 | kdebug("- free %lx", from); | 557 | kdebug("- free %lx", from); |
566 | atomic_dec(&mmap_pages_allocated); | 558 | atomic_long_dec(&mmap_pages_allocated); |
567 | if (page_count(page) != 1) | 559 | if (page_count(page) != 1) |
568 | kdebug("free page %p [%d]", page, page_count(page)); | 560 | kdebug("free page %p: refcount not one: %d", |
561 | page, page_count(page)); | ||
569 | put_page(page); | 562 | put_page(page); |
570 | } | 563 | } |
571 | } | 564 | } |
572 | 565 | ||
573 | /* | 566 | /* |
574 | * release a reference to a region | 567 | * release a reference to a region |
575 | * - the caller must hold the region semaphore, which this releases | 568 | * - the caller must hold the region semaphore for writing, which this releases |
576 | * - the region may not have been added to the tree yet, in which case vm_top | 569 | * - the region may not have been added to the tree yet, in which case vm_top |
577 | * will equal vm_start | 570 | * will equal vm_start |
578 | */ | 571 | */ |
@@ -1096,7 +1089,7 @@ static int do_mmap_private(struct vm_area_struct *vma, | |||
1096 | goto enomem; | 1089 | goto enomem; |
1097 | 1090 | ||
1098 | total = 1 << order; | 1091 | total = 1 << order; |
1099 | atomic_add(total, &mmap_pages_allocated); | 1092 | atomic_long_add(total, &mmap_pages_allocated); |
1100 | 1093 | ||
1101 | point = rlen >> PAGE_SHIFT; | 1094 | point = rlen >> PAGE_SHIFT; |
1102 | 1095 | ||
@@ -1107,7 +1100,7 @@ static int do_mmap_private(struct vm_area_struct *vma, | |||
1107 | order = ilog2(total - point); | 1100 | order = ilog2(total - point); |
1108 | n = 1 << order; | 1101 | n = 1 << order; |
1109 | kdebug("shave %lu/%lu @%lu", n, total - point, total); | 1102 | kdebug("shave %lu/%lu @%lu", n, total - point, total); |
1110 | atomic_sub(n, &mmap_pages_allocated); | 1103 | atomic_long_sub(n, &mmap_pages_allocated); |
1111 | total -= n; | 1104 | total -= n; |
1112 | set_page_refcounted(pages + total); | 1105 | set_page_refcounted(pages + total); |
1113 | __free_pages(pages + total, order); | 1106 | __free_pages(pages + total, order); |
@@ -1536,10 +1529,15 @@ int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) | |||
1536 | /* find the first potentially overlapping VMA */ | 1529 | /* find the first potentially overlapping VMA */ |
1537 | vma = find_vma(mm, start); | 1530 | vma = find_vma(mm, start); |
1538 | if (!vma) { | 1531 | if (!vma) { |
1539 | printk(KERN_WARNING | 1532 | static int limit = 0; |
1540 | "munmap of memory not mmapped by process %d (%s):" | 1533 | if (limit < 5) { |
1541 | " 0x%lx-0x%lx\n", | 1534 | printk(KERN_WARNING |
1542 | current->pid, current->comm, start, start + len - 1); | 1535 | "munmap of memory not mmapped by process %d" |
1536 | " (%s): 0x%lx-0x%lx\n", | ||
1537 | current->pid, current->comm, | ||
1538 | start, start + len - 1); | ||
1539 | limit++; | ||
1540 | } | ||
1543 | return -EINVAL; | 1541 | return -EINVAL; |
1544 | } | 1542 | } |
1545 | 1543 | ||
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 40ba05061a4f..2f3166e308d9 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
@@ -55,7 +55,7 @@ static DEFINE_SPINLOCK(zone_scan_lock); | |||
55 | 55 | ||
56 | unsigned long badness(struct task_struct *p, unsigned long uptime) | 56 | unsigned long badness(struct task_struct *p, unsigned long uptime) |
57 | { | 57 | { |
58 | unsigned long points, cpu_time, run_time, s; | 58 | unsigned long points, cpu_time, run_time; |
59 | struct mm_struct *mm; | 59 | struct mm_struct *mm; |
60 | struct task_struct *child; | 60 | struct task_struct *child; |
61 | 61 | ||
@@ -110,12 +110,10 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
110 | else | 110 | else |
111 | run_time = 0; | 111 | run_time = 0; |
112 | 112 | ||
113 | s = int_sqrt(cpu_time); | 113 | if (cpu_time) |
114 | if (s) | 114 | points /= int_sqrt(cpu_time); |
115 | points /= s; | 115 | if (run_time) |
116 | s = int_sqrt(int_sqrt(run_time)); | 116 | points /= int_sqrt(int_sqrt(run_time)); |
117 | if (s) | ||
118 | points /= s; | ||
119 | 117 | ||
120 | /* | 118 | /* |
121 | * Niced processes are most likely less important, so double | 119 | * Niced processes are most likely less important, so double |
@@ -396,6 +394,7 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, | |||
396 | cpuset_print_task_mems_allowed(current); | 394 | cpuset_print_task_mems_allowed(current); |
397 | task_unlock(current); | 395 | task_unlock(current); |
398 | dump_stack(); | 396 | dump_stack(); |
397 | mem_cgroup_print_oom_info(mem, current); | ||
399 | show_mem(); | 398 | show_mem(); |
400 | if (sysctl_oom_dump_tasks) | 399 | if (sysctl_oom_dump_tasks) |
401 | dump_tasks(mem); | 400 | dump_tasks(mem); |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 74dc57c74349..30351f0063ac 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -66,7 +66,7 @@ static inline long sync_writeback_pages(void) | |||
66 | /* | 66 | /* |
67 | * Start background writeback (via pdflush) at this percentage | 67 | * Start background writeback (via pdflush) at this percentage |
68 | */ | 68 | */ |
69 | int dirty_background_ratio = 5; | 69 | int dirty_background_ratio = 10; |
70 | 70 | ||
71 | /* | 71 | /* |
72 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of | 72 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of |
@@ -83,7 +83,7 @@ int vm_highmem_is_dirtyable; | |||
83 | /* | 83 | /* |
84 | * The generator of dirty data starts writeback at this percentage | 84 | * The generator of dirty data starts writeback at this percentage |
85 | */ | 85 | */ |
86 | int vm_dirty_ratio = 10; | 86 | int vm_dirty_ratio = 20; |
87 | 87 | ||
88 | /* | 88 | /* |
89 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of | 89 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of |
@@ -92,14 +92,14 @@ int vm_dirty_ratio = 10; | |||
92 | unsigned long vm_dirty_bytes; | 92 | unsigned long vm_dirty_bytes; |
93 | 93 | ||
94 | /* | 94 | /* |
95 | * The interval between `kupdate'-style writebacks, in jiffies | 95 | * The interval between `kupdate'-style writebacks |
96 | */ | 96 | */ |
97 | int dirty_writeback_interval = 5 * HZ; | 97 | unsigned int dirty_writeback_interval = 5 * 100; /* sentiseconds */ |
98 | 98 | ||
99 | /* | 99 | /* |
100 | * The longest number of jiffies for which data is allowed to remain dirty | 100 | * The longest time for which data is allowed to remain dirty |
101 | */ | 101 | */ |
102 | int dirty_expire_interval = 30 * HZ; | 102 | unsigned int dirty_expire_interval = 30 * 100; /* sentiseconds */ |
103 | 103 | ||
104 | /* | 104 | /* |
105 | * Flag that makes the machine dump writes/reads and block dirtyings. | 105 | * Flag that makes the machine dump writes/reads and block dirtyings. |
@@ -770,9 +770,9 @@ static void wb_kupdate(unsigned long arg) | |||
770 | 770 | ||
771 | sync_supers(); | 771 | sync_supers(); |
772 | 772 | ||
773 | oldest_jif = jiffies - dirty_expire_interval; | 773 | oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval); |
774 | start_jif = jiffies; | 774 | start_jif = jiffies; |
775 | next_jif = start_jif + dirty_writeback_interval; | 775 | next_jif = start_jif + msecs_to_jiffies(dirty_writeback_interval * 10); |
776 | nr_to_write = global_page_state(NR_FILE_DIRTY) + | 776 | nr_to_write = global_page_state(NR_FILE_DIRTY) + |
777 | global_page_state(NR_UNSTABLE_NFS) + | 777 | global_page_state(NR_UNSTABLE_NFS) + |
778 | (inodes_stat.nr_inodes - inodes_stat.nr_unused); | 778 | (inodes_stat.nr_inodes - inodes_stat.nr_unused); |
@@ -801,9 +801,10 @@ static void wb_kupdate(unsigned long arg) | |||
801 | int dirty_writeback_centisecs_handler(ctl_table *table, int write, | 801 | int dirty_writeback_centisecs_handler(ctl_table *table, int write, |
802 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 802 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
803 | { | 803 | { |
804 | proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); | 804 | proc_dointvec(table, write, file, buffer, length, ppos); |
805 | if (dirty_writeback_interval) | 805 | if (dirty_writeback_interval) |
806 | mod_timer(&wb_timer, jiffies + dirty_writeback_interval); | 806 | mod_timer(&wb_timer, jiffies + |
807 | msecs_to_jiffies(dirty_writeback_interval * 10)); | ||
807 | else | 808 | else |
808 | del_timer(&wb_timer); | 809 | del_timer(&wb_timer); |
809 | return 0; | 810 | return 0; |
@@ -905,7 +906,8 @@ void __init page_writeback_init(void) | |||
905 | { | 906 | { |
906 | int shift; | 907 | int shift; |
907 | 908 | ||
908 | mod_timer(&wb_timer, jiffies + dirty_writeback_interval); | 909 | mod_timer(&wb_timer, |
910 | jiffies + msecs_to_jiffies(dirty_writeback_interval * 10)); | ||
909 | writeback_set_ratelimit(); | 911 | writeback_set_ratelimit(); |
910 | register_cpu_notifier(&ratelimit_nb); | 912 | register_cpu_notifier(&ratelimit_nb); |
911 | 913 | ||
@@ -1198,6 +1200,20 @@ int __set_page_dirty_no_writeback(struct page *page) | |||
1198 | } | 1200 | } |
1199 | 1201 | ||
1200 | /* | 1202 | /* |
1203 | * Helper function for set_page_dirty family. | ||
1204 | * NOTE: This relies on being atomic wrt interrupts. | ||
1205 | */ | ||
1206 | void account_page_dirtied(struct page *page, struct address_space *mapping) | ||
1207 | { | ||
1208 | if (mapping_cap_account_dirty(mapping)) { | ||
1209 | __inc_zone_page_state(page, NR_FILE_DIRTY); | ||
1210 | __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | ||
1211 | task_dirty_inc(current); | ||
1212 | task_io_account_write(PAGE_CACHE_SIZE); | ||
1213 | } | ||
1214 | } | ||
1215 | |||
1216 | /* | ||
1201 | * For address_spaces which do not use buffers. Just tag the page as dirty in | 1217 | * For address_spaces which do not use buffers. Just tag the page as dirty in |
1202 | * its radix tree. | 1218 | * its radix tree. |
1203 | * | 1219 | * |
@@ -1226,13 +1242,7 @@ int __set_page_dirty_nobuffers(struct page *page) | |||
1226 | if (mapping2) { /* Race with truncate? */ | 1242 | if (mapping2) { /* Race with truncate? */ |
1227 | BUG_ON(mapping2 != mapping); | 1243 | BUG_ON(mapping2 != mapping); |
1228 | WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); | 1244 | WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); |
1229 | if (mapping_cap_account_dirty(mapping)) { | 1245 | account_page_dirtied(page, mapping); |
1230 | __inc_zone_page_state(page, NR_FILE_DIRTY); | ||
1231 | __inc_bdi_stat(mapping->backing_dev_info, | ||
1232 | BDI_RECLAIMABLE); | ||
1233 | task_dirty_inc(current); | ||
1234 | task_io_account_write(PAGE_CACHE_SIZE); | ||
1235 | } | ||
1236 | radix_tree_tag_set(&mapping->page_tree, | 1246 | radix_tree_tag_set(&mapping->page_tree, |
1237 | page_index(page), PAGECACHE_TAG_DIRTY); | 1247 | page_index(page), PAGECACHE_TAG_DIRTY); |
1238 | } | 1248 | } |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 5c44ed49ca93..e2f26991fff1 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -331,7 +331,7 @@ static int destroy_compound_page(struct page *page, unsigned long order) | |||
331 | for (i = 1; i < nr_pages; i++) { | 331 | for (i = 1; i < nr_pages; i++) { |
332 | struct page *p = page + i; | 332 | struct page *p = page + i; |
333 | 333 | ||
334 | if (unlikely(!PageTail(p) | (p->first_page != page))) { | 334 | if (unlikely(!PageTail(p) || (p->first_page != page))) { |
335 | bad_page(page); | 335 | bad_page(page); |
336 | bad++; | 336 | bad++; |
337 | } | 337 | } |
@@ -922,13 +922,10 @@ static void drain_pages(unsigned int cpu) | |||
922 | unsigned long flags; | 922 | unsigned long flags; |
923 | struct zone *zone; | 923 | struct zone *zone; |
924 | 924 | ||
925 | for_each_zone(zone) { | 925 | for_each_populated_zone(zone) { |
926 | struct per_cpu_pageset *pset; | 926 | struct per_cpu_pageset *pset; |
927 | struct per_cpu_pages *pcp; | 927 | struct per_cpu_pages *pcp; |
928 | 928 | ||
929 | if (!populated_zone(zone)) | ||
930 | continue; | ||
931 | |||
932 | pset = zone_pcp(zone, cpu); | 929 | pset = zone_pcp(zone, cpu); |
933 | 930 | ||
934 | pcp = &pset->pcp; | 931 | pcp = &pset->pcp; |
@@ -1479,6 +1476,8 @@ __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, | |||
1479 | unsigned long did_some_progress; | 1476 | unsigned long did_some_progress; |
1480 | unsigned long pages_reclaimed = 0; | 1477 | unsigned long pages_reclaimed = 0; |
1481 | 1478 | ||
1479 | lockdep_trace_alloc(gfp_mask); | ||
1480 | |||
1482 | might_sleep_if(wait); | 1481 | might_sleep_if(wait); |
1483 | 1482 | ||
1484 | if (should_fail_alloc_page(gfp_mask, order)) | 1483 | if (should_fail_alloc_page(gfp_mask, order)) |
@@ -1578,12 +1577,16 @@ nofail_alloc: | |||
1578 | */ | 1577 | */ |
1579 | cpuset_update_task_memory_state(); | 1578 | cpuset_update_task_memory_state(); |
1580 | p->flags |= PF_MEMALLOC; | 1579 | p->flags |= PF_MEMALLOC; |
1580 | |||
1581 | lockdep_set_current_reclaim_state(gfp_mask); | ||
1581 | reclaim_state.reclaimed_slab = 0; | 1582 | reclaim_state.reclaimed_slab = 0; |
1582 | p->reclaim_state = &reclaim_state; | 1583 | p->reclaim_state = &reclaim_state; |
1583 | 1584 | ||
1584 | did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); | 1585 | did_some_progress = try_to_free_pages(zonelist, order, |
1586 | gfp_mask, nodemask); | ||
1585 | 1587 | ||
1586 | p->reclaim_state = NULL; | 1588 | p->reclaim_state = NULL; |
1589 | lockdep_clear_current_reclaim_state(); | ||
1587 | p->flags &= ~PF_MEMALLOC; | 1590 | p->flags &= ~PF_MEMALLOC; |
1588 | 1591 | ||
1589 | cond_resched(); | 1592 | cond_resched(); |
@@ -1874,10 +1877,7 @@ void show_free_areas(void) | |||
1874 | int cpu; | 1877 | int cpu; |
1875 | struct zone *zone; | 1878 | struct zone *zone; |
1876 | 1879 | ||
1877 | for_each_zone(zone) { | 1880 | for_each_populated_zone(zone) { |
1878 | if (!populated_zone(zone)) | ||
1879 | continue; | ||
1880 | |||
1881 | show_node(zone); | 1881 | show_node(zone); |
1882 | printk("%s per-cpu:\n", zone->name); | 1882 | printk("%s per-cpu:\n", zone->name); |
1883 | 1883 | ||
@@ -1917,12 +1917,9 @@ void show_free_areas(void) | |||
1917 | global_page_state(NR_PAGETABLE), | 1917 | global_page_state(NR_PAGETABLE), |
1918 | global_page_state(NR_BOUNCE)); | 1918 | global_page_state(NR_BOUNCE)); |
1919 | 1919 | ||
1920 | for_each_zone(zone) { | 1920 | for_each_populated_zone(zone) { |
1921 | int i; | 1921 | int i; |
1922 | 1922 | ||
1923 | if (!populated_zone(zone)) | ||
1924 | continue; | ||
1925 | |||
1926 | show_node(zone); | 1923 | show_node(zone); |
1927 | printk("%s" | 1924 | printk("%s" |
1928 | " free:%lukB" | 1925 | " free:%lukB" |
@@ -1962,12 +1959,9 @@ void show_free_areas(void) | |||
1962 | printk("\n"); | 1959 | printk("\n"); |
1963 | } | 1960 | } |
1964 | 1961 | ||
1965 | for_each_zone(zone) { | 1962 | for_each_populated_zone(zone) { |
1966 | unsigned long nr[MAX_ORDER], flags, order, total = 0; | 1963 | unsigned long nr[MAX_ORDER], flags, order, total = 0; |
1967 | 1964 | ||
1968 | if (!populated_zone(zone)) | ||
1969 | continue; | ||
1970 | |||
1971 | show_node(zone); | 1965 | show_node(zone); |
1972 | printk("%s: ", zone->name); | 1966 | printk("%s: ", zone->name); |
1973 | 1967 | ||
@@ -2134,7 +2128,7 @@ static int find_next_best_node(int node, nodemask_t *used_node_mask) | |||
2134 | int n, val; | 2128 | int n, val; |
2135 | int min_val = INT_MAX; | 2129 | int min_val = INT_MAX; |
2136 | int best_node = -1; | 2130 | int best_node = -1; |
2137 | node_to_cpumask_ptr(tmp, 0); | 2131 | const struct cpumask *tmp = cpumask_of_node(0); |
2138 | 2132 | ||
2139 | /* Use the local node if we haven't already */ | 2133 | /* Use the local node if we haven't already */ |
2140 | if (!node_isset(node, *used_node_mask)) { | 2134 | if (!node_isset(node, *used_node_mask)) { |
@@ -2155,8 +2149,8 @@ static int find_next_best_node(int node, nodemask_t *used_node_mask) | |||
2155 | val += (n < node); | 2149 | val += (n < node); |
2156 | 2150 | ||
2157 | /* Give preference to headless and unused nodes */ | 2151 | /* Give preference to headless and unused nodes */ |
2158 | node_to_cpumask_ptr_next(tmp, n); | 2152 | tmp = cpumask_of_node(n); |
2159 | if (!cpus_empty(*tmp)) | 2153 | if (!cpumask_empty(tmp)) |
2160 | val += PENALTY_FOR_NODE_WITH_CPUS; | 2154 | val += PENALTY_FOR_NODE_WITH_CPUS; |
2161 | 2155 | ||
2162 | /* Slight preference for less loaded node */ | 2156 | /* Slight preference for less loaded node */ |
@@ -2779,11 +2773,7 @@ static int __cpuinit process_zones(int cpu) | |||
2779 | 2773 | ||
2780 | node_set_state(node, N_CPU); /* this node has a cpu */ | 2774 | node_set_state(node, N_CPU); /* this node has a cpu */ |
2781 | 2775 | ||
2782 | for_each_zone(zone) { | 2776 | for_each_populated_zone(zone) { |
2783 | |||
2784 | if (!populated_zone(zone)) | ||
2785 | continue; | ||
2786 | |||
2787 | zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), | 2777 | zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), |
2788 | GFP_KERNEL, node); | 2778 | GFP_KERNEL, node); |
2789 | if (!zone_pcp(zone, cpu)) | 2779 | if (!zone_pcp(zone, cpu)) |
diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c index ceecfbb143fa..791905c991df 100644 --- a/mm/page_cgroup.c +++ b/mm/page_cgroup.c | |||
@@ -285,12 +285,8 @@ struct swap_cgroup_ctrl { | |||
285 | 285 | ||
286 | struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES]; | 286 | struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES]; |
287 | 287 | ||
288 | /* | ||
289 | * This 8bytes seems big..maybe we can reduce this when we can use "id" for | ||
290 | * cgroup rather than pointer. | ||
291 | */ | ||
292 | struct swap_cgroup { | 288 | struct swap_cgroup { |
293 | struct mem_cgroup *val; | 289 | unsigned short id; |
294 | }; | 290 | }; |
295 | #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup)) | 291 | #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup)) |
296 | #define SC_POS_MASK (SC_PER_PAGE - 1) | 292 | #define SC_POS_MASK (SC_PER_PAGE - 1) |
@@ -342,10 +338,10 @@ not_enough_page: | |||
342 | * @ent: swap entry to be recorded into | 338 | * @ent: swap entry to be recorded into |
343 | * @mem: mem_cgroup to be recorded | 339 | * @mem: mem_cgroup to be recorded |
344 | * | 340 | * |
345 | * Returns old value at success, NULL at failure. | 341 | * Returns old value at success, 0 at failure. |
346 | * (Of course, old value can be NULL.) | 342 | * (Of course, old value can be 0.) |
347 | */ | 343 | */ |
348 | struct mem_cgroup *swap_cgroup_record(swp_entry_t ent, struct mem_cgroup *mem) | 344 | unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id) |
349 | { | 345 | { |
350 | int type = swp_type(ent); | 346 | int type = swp_type(ent); |
351 | unsigned long offset = swp_offset(ent); | 347 | unsigned long offset = swp_offset(ent); |
@@ -354,18 +350,18 @@ struct mem_cgroup *swap_cgroup_record(swp_entry_t ent, struct mem_cgroup *mem) | |||
354 | struct swap_cgroup_ctrl *ctrl; | 350 | struct swap_cgroup_ctrl *ctrl; |
355 | struct page *mappage; | 351 | struct page *mappage; |
356 | struct swap_cgroup *sc; | 352 | struct swap_cgroup *sc; |
357 | struct mem_cgroup *old; | 353 | unsigned short old; |
358 | 354 | ||
359 | if (!do_swap_account) | 355 | if (!do_swap_account) |
360 | return NULL; | 356 | return 0; |
361 | 357 | ||
362 | ctrl = &swap_cgroup_ctrl[type]; | 358 | ctrl = &swap_cgroup_ctrl[type]; |
363 | 359 | ||
364 | mappage = ctrl->map[idx]; | 360 | mappage = ctrl->map[idx]; |
365 | sc = page_address(mappage); | 361 | sc = page_address(mappage); |
366 | sc += pos; | 362 | sc += pos; |
367 | old = sc->val; | 363 | old = sc->id; |
368 | sc->val = mem; | 364 | sc->id = id; |
369 | 365 | ||
370 | return old; | 366 | return old; |
371 | } | 367 | } |
@@ -374,9 +370,9 @@ struct mem_cgroup *swap_cgroup_record(swp_entry_t ent, struct mem_cgroup *mem) | |||
374 | * lookup_swap_cgroup - lookup mem_cgroup tied to swap entry | 370 | * lookup_swap_cgroup - lookup mem_cgroup tied to swap entry |
375 | * @ent: swap entry to be looked up. | 371 | * @ent: swap entry to be looked up. |
376 | * | 372 | * |
377 | * Returns pointer to mem_cgroup at success. NULL at failure. | 373 | * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID) |
378 | */ | 374 | */ |
379 | struct mem_cgroup *lookup_swap_cgroup(swp_entry_t ent) | 375 | unsigned short lookup_swap_cgroup(swp_entry_t ent) |
380 | { | 376 | { |
381 | int type = swp_type(ent); | 377 | int type = swp_type(ent); |
382 | unsigned long offset = swp_offset(ent); | 378 | unsigned long offset = swp_offset(ent); |
@@ -385,16 +381,16 @@ struct mem_cgroup *lookup_swap_cgroup(swp_entry_t ent) | |||
385 | struct swap_cgroup_ctrl *ctrl; | 381 | struct swap_cgroup_ctrl *ctrl; |
386 | struct page *mappage; | 382 | struct page *mappage; |
387 | struct swap_cgroup *sc; | 383 | struct swap_cgroup *sc; |
388 | struct mem_cgroup *ret; | 384 | unsigned short ret; |
389 | 385 | ||
390 | if (!do_swap_account) | 386 | if (!do_swap_account) |
391 | return NULL; | 387 | return 0; |
392 | 388 | ||
393 | ctrl = &swap_cgroup_ctrl[type]; | 389 | ctrl = &swap_cgroup_ctrl[type]; |
394 | mappage = ctrl->map[idx]; | 390 | mappage = ctrl->map[idx]; |
395 | sc = page_address(mappage); | 391 | sc = page_address(mappage); |
396 | sc += pos; | 392 | sc += pos; |
397 | ret = sc->val; | 393 | ret = sc->id; |
398 | return ret; | 394 | return ret; |
399 | } | 395 | } |
400 | 396 | ||
@@ -430,13 +426,6 @@ int swap_cgroup_swapon(int type, unsigned long max_pages) | |||
430 | } | 426 | } |
431 | mutex_unlock(&swap_cgroup_mutex); | 427 | mutex_unlock(&swap_cgroup_mutex); |
432 | 428 | ||
433 | printk(KERN_INFO | ||
434 | "swap_cgroup: uses %ld bytes of vmalloc for pointer array space" | ||
435 | " and %ld bytes to hold mem_cgroup pointers on swap\n", | ||
436 | array_size, length * PAGE_SIZE); | ||
437 | printk(KERN_INFO | ||
438 | "swap_cgroup can be disabled by noswapaccount boot option.\n"); | ||
439 | |||
440 | return 0; | 429 | return 0; |
441 | nomem: | 430 | nomem: |
442 | printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n"); | 431 | printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n"); |
diff --git a/mm/pdflush.c b/mm/pdflush.c index 15de509b68fd..118905e3d788 100644 --- a/mm/pdflush.c +++ b/mm/pdflush.c | |||
@@ -191,7 +191,7 @@ static int pdflush(void *dummy) | |||
191 | 191 | ||
192 | /* | 192 | /* |
193 | * Some configs put our parent kthread in a limited cpuset, | 193 | * Some configs put our parent kthread in a limited cpuset, |
194 | * which kthread() overrides, forcing cpus_allowed == CPU_MASK_ALL. | 194 | * which kthread() overrides, forcing cpus_allowed == cpu_all_mask. |
195 | * Our needs are more modest - cut back to our cpusets cpus_allowed. | 195 | * Our needs are more modest - cut back to our cpusets cpus_allowed. |
196 | * This is needed as pdflush's are dynamically created and destroyed. | 196 | * This is needed as pdflush's are dynamically created and destroyed. |
197 | * The boottime pdflush's are easily placed w/o these 2 lines. | 197 | * The boottime pdflush's are easily placed w/o these 2 lines. |
diff --git a/mm/percpu.c b/mm/percpu.c new file mode 100644 index 000000000000..1aa5d8fbca12 --- /dev/null +++ b/mm/percpu.c | |||
@@ -0,0 +1,1326 @@ | |||
1 | /* | ||
2 | * linux/mm/percpu.c - percpu memory allocator | ||
3 | * | ||
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | ||
5 | * Copyright (C) 2009 Tejun Heo <tj@kernel.org> | ||
6 | * | ||
7 | * This file is released under the GPLv2. | ||
8 | * | ||
9 | * This is percpu allocator which can handle both static and dynamic | ||
10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | ||
11 | * chunk is consisted of num_possible_cpus() units and the first chunk | ||
12 | * is used for static percpu variables in the kernel image (special | ||
13 | * boot time alloc/init handling necessary as these areas need to be | ||
14 | * brought up before allocation services are running). Unit grows as | ||
15 | * necessary and all units grow or shrink in unison. When a chunk is | ||
16 | * filled up, another chunk is allocated. ie. in vmalloc area | ||
17 | * | ||
18 | * c0 c1 c2 | ||
19 | * ------------------- ------------------- ------------ | ||
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | ||
21 | * ------------------- ...... ------------------- .... ------------ | ||
22 | * | ||
23 | * Allocation is done in offset-size areas of single unit space. Ie, | ||
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | ||
25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | ||
26 | * percpu base registers UNIT_SIZE apart. | ||
27 | * | ||
28 | * There are usually many small percpu allocations many of them as | ||
29 | * small as 4 bytes. The allocator organizes chunks into lists | ||
30 | * according to free size and tries to allocate from the fullest one. | ||
31 | * Each chunk keeps the maximum contiguous area size hint which is | ||
32 | * guaranteed to be eqaul to or larger than the maximum contiguous | ||
33 | * area in the chunk. This helps the allocator not to iterate the | ||
34 | * chunk maps unnecessarily. | ||
35 | * | ||
36 | * Allocation state in each chunk is kept using an array of integers | ||
37 | * on chunk->map. A positive value in the map represents a free | ||
38 | * region and negative allocated. Allocation inside a chunk is done | ||
39 | * by scanning this map sequentially and serving the first matching | ||
40 | * entry. This is mostly copied from the percpu_modalloc() allocator. | ||
41 | * Chunks are also linked into a rb tree to ease address to chunk | ||
42 | * mapping during free. | ||
43 | * | ||
44 | * To use this allocator, arch code should do the followings. | ||
45 | * | ||
46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | ||
47 | * | ||
48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | ||
49 | * regular address to percpu pointer and back if they need to be | ||
50 | * different from the default | ||
51 | * | ||
52 | * - use pcpu_setup_first_chunk() during percpu area initialization to | ||
53 | * setup the first chunk containing the kernel static percpu area | ||
54 | */ | ||
55 | |||
56 | #include <linux/bitmap.h> | ||
57 | #include <linux/bootmem.h> | ||
58 | #include <linux/list.h> | ||
59 | #include <linux/mm.h> | ||
60 | #include <linux/module.h> | ||
61 | #include <linux/mutex.h> | ||
62 | #include <linux/percpu.h> | ||
63 | #include <linux/pfn.h> | ||
64 | #include <linux/rbtree.h> | ||
65 | #include <linux/slab.h> | ||
66 | #include <linux/spinlock.h> | ||
67 | #include <linux/vmalloc.h> | ||
68 | #include <linux/workqueue.h> | ||
69 | |||
70 | #include <asm/cacheflush.h> | ||
71 | #include <asm/sections.h> | ||
72 | #include <asm/tlbflush.h> | ||
73 | |||
74 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ | ||
75 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | ||
76 | |||
77 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ | ||
78 | #ifndef __addr_to_pcpu_ptr | ||
79 | #define __addr_to_pcpu_ptr(addr) \ | ||
80 | (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \ | ||
81 | + (unsigned long)__per_cpu_start) | ||
82 | #endif | ||
83 | #ifndef __pcpu_ptr_to_addr | ||
84 | #define __pcpu_ptr_to_addr(ptr) \ | ||
85 | (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \ | ||
86 | - (unsigned long)__per_cpu_start) | ||
87 | #endif | ||
88 | |||
89 | struct pcpu_chunk { | ||
90 | struct list_head list; /* linked to pcpu_slot lists */ | ||
91 | struct rb_node rb_node; /* key is chunk->vm->addr */ | ||
92 | int free_size; /* free bytes in the chunk */ | ||
93 | int contig_hint; /* max contiguous size hint */ | ||
94 | struct vm_struct *vm; /* mapped vmalloc region */ | ||
95 | int map_used; /* # of map entries used */ | ||
96 | int map_alloc; /* # of map entries allocated */ | ||
97 | int *map; /* allocation map */ | ||
98 | bool immutable; /* no [de]population allowed */ | ||
99 | struct page **page; /* points to page array */ | ||
100 | struct page *page_ar[]; /* #cpus * UNIT_PAGES */ | ||
101 | }; | ||
102 | |||
103 | static int pcpu_unit_pages __read_mostly; | ||
104 | static int pcpu_unit_size __read_mostly; | ||
105 | static int pcpu_chunk_size __read_mostly; | ||
106 | static int pcpu_nr_slots __read_mostly; | ||
107 | static size_t pcpu_chunk_struct_size __read_mostly; | ||
108 | |||
109 | /* the address of the first chunk which starts with the kernel static area */ | ||
110 | void *pcpu_base_addr __read_mostly; | ||
111 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | ||
112 | |||
113 | /* optional reserved chunk, only accessible for reserved allocations */ | ||
114 | static struct pcpu_chunk *pcpu_reserved_chunk; | ||
115 | /* offset limit of the reserved chunk */ | ||
116 | static int pcpu_reserved_chunk_limit; | ||
117 | |||
118 | /* | ||
119 | * Synchronization rules. | ||
120 | * | ||
121 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | ||
122 | * protects allocation/reclaim paths, chunks and chunk->page arrays. | ||
123 | * The latter is a spinlock and protects the index data structures - | ||
124 | * chunk slots, rbtree, chunks and area maps in chunks. | ||
125 | * | ||
126 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | ||
127 | * pcpu_lock is grabbed and released as necessary. All actual memory | ||
128 | * allocations are done using GFP_KERNEL with pcpu_lock released. | ||
129 | * | ||
130 | * Free path accesses and alters only the index data structures, so it | ||
131 | * can be safely called from atomic context. When memory needs to be | ||
132 | * returned to the system, free path schedules reclaim_work which | ||
133 | * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | ||
134 | * reclaimed, release both locks and frees the chunks. Note that it's | ||
135 | * necessary to grab both locks to remove a chunk from circulation as | ||
136 | * allocation path might be referencing the chunk with only | ||
137 | * pcpu_alloc_mutex locked. | ||
138 | */ | ||
139 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ | ||
140 | static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ | ||
141 | |||
142 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | ||
143 | static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */ | ||
144 | |||
145 | /* reclaim work to release fully free chunks, scheduled from free path */ | ||
146 | static void pcpu_reclaim(struct work_struct *work); | ||
147 | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | ||
148 | |||
149 | static int __pcpu_size_to_slot(int size) | ||
150 | { | ||
151 | int highbit = fls(size); /* size is in bytes */ | ||
152 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | ||
153 | } | ||
154 | |||
155 | static int pcpu_size_to_slot(int size) | ||
156 | { | ||
157 | if (size == pcpu_unit_size) | ||
158 | return pcpu_nr_slots - 1; | ||
159 | return __pcpu_size_to_slot(size); | ||
160 | } | ||
161 | |||
162 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | ||
163 | { | ||
164 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | ||
165 | return 0; | ||
166 | |||
167 | return pcpu_size_to_slot(chunk->free_size); | ||
168 | } | ||
169 | |||
170 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | ||
171 | { | ||
172 | return cpu * pcpu_unit_pages + page_idx; | ||
173 | } | ||
174 | |||
175 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | ||
176 | unsigned int cpu, int page_idx) | ||
177 | { | ||
178 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | ||
179 | } | ||
180 | |||
181 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | ||
182 | unsigned int cpu, int page_idx) | ||
183 | { | ||
184 | return (unsigned long)chunk->vm->addr + | ||
185 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | ||
186 | } | ||
187 | |||
188 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | ||
189 | int page_idx) | ||
190 | { | ||
191 | return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | ||
192 | } | ||
193 | |||
194 | /** | ||
195 | * pcpu_mem_alloc - allocate memory | ||
196 | * @size: bytes to allocate | ||
197 | * | ||
198 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, | ||
199 | * kzalloc() is used; otherwise, vmalloc() is used. The returned | ||
200 | * memory is always zeroed. | ||
201 | * | ||
202 | * CONTEXT: | ||
203 | * Does GFP_KERNEL allocation. | ||
204 | * | ||
205 | * RETURNS: | ||
206 | * Pointer to the allocated area on success, NULL on failure. | ||
207 | */ | ||
208 | static void *pcpu_mem_alloc(size_t size) | ||
209 | { | ||
210 | if (size <= PAGE_SIZE) | ||
211 | return kzalloc(size, GFP_KERNEL); | ||
212 | else { | ||
213 | void *ptr = vmalloc(size); | ||
214 | if (ptr) | ||
215 | memset(ptr, 0, size); | ||
216 | return ptr; | ||
217 | } | ||
218 | } | ||
219 | |||
220 | /** | ||
221 | * pcpu_mem_free - free memory | ||
222 | * @ptr: memory to free | ||
223 | * @size: size of the area | ||
224 | * | ||
225 | * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). | ||
226 | */ | ||
227 | static void pcpu_mem_free(void *ptr, size_t size) | ||
228 | { | ||
229 | if (size <= PAGE_SIZE) | ||
230 | kfree(ptr); | ||
231 | else | ||
232 | vfree(ptr); | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | ||
237 | * @chunk: chunk of interest | ||
238 | * @oslot: the previous slot it was on | ||
239 | * | ||
240 | * This function is called after an allocation or free changed @chunk. | ||
241 | * New slot according to the changed state is determined and @chunk is | ||
242 | * moved to the slot. Note that the reserved chunk is never put on | ||
243 | * chunk slots. | ||
244 | * | ||
245 | * CONTEXT: | ||
246 | * pcpu_lock. | ||
247 | */ | ||
248 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | ||
249 | { | ||
250 | int nslot = pcpu_chunk_slot(chunk); | ||
251 | |||
252 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { | ||
253 | if (oslot < nslot) | ||
254 | list_move(&chunk->list, &pcpu_slot[nslot]); | ||
255 | else | ||
256 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | ||
257 | } | ||
258 | } | ||
259 | |||
260 | static struct rb_node **pcpu_chunk_rb_search(void *addr, | ||
261 | struct rb_node **parentp) | ||
262 | { | ||
263 | struct rb_node **p = &pcpu_addr_root.rb_node; | ||
264 | struct rb_node *parent = NULL; | ||
265 | struct pcpu_chunk *chunk; | ||
266 | |||
267 | while (*p) { | ||
268 | parent = *p; | ||
269 | chunk = rb_entry(parent, struct pcpu_chunk, rb_node); | ||
270 | |||
271 | if (addr < chunk->vm->addr) | ||
272 | p = &(*p)->rb_left; | ||
273 | else if (addr > chunk->vm->addr) | ||
274 | p = &(*p)->rb_right; | ||
275 | else | ||
276 | break; | ||
277 | } | ||
278 | |||
279 | if (parentp) | ||
280 | *parentp = parent; | ||
281 | return p; | ||
282 | } | ||
283 | |||
284 | /** | ||
285 | * pcpu_chunk_addr_search - search for chunk containing specified address | ||
286 | * @addr: address to search for | ||
287 | * | ||
288 | * Look for chunk which might contain @addr. More specifically, it | ||
289 | * searchs for the chunk with the highest start address which isn't | ||
290 | * beyond @addr. | ||
291 | * | ||
292 | * CONTEXT: | ||
293 | * pcpu_lock. | ||
294 | * | ||
295 | * RETURNS: | ||
296 | * The address of the found chunk. | ||
297 | */ | ||
298 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | ||
299 | { | ||
300 | struct rb_node *n, *parent; | ||
301 | struct pcpu_chunk *chunk; | ||
302 | |||
303 | /* is it in the reserved chunk? */ | ||
304 | if (pcpu_reserved_chunk) { | ||
305 | void *start = pcpu_reserved_chunk->vm->addr; | ||
306 | |||
307 | if (addr >= start && addr < start + pcpu_reserved_chunk_limit) | ||
308 | return pcpu_reserved_chunk; | ||
309 | } | ||
310 | |||
311 | /* nah... search the regular ones */ | ||
312 | n = *pcpu_chunk_rb_search(addr, &parent); | ||
313 | if (!n) { | ||
314 | /* no exactly matching chunk, the parent is the closest */ | ||
315 | n = parent; | ||
316 | BUG_ON(!n); | ||
317 | } | ||
318 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
319 | |||
320 | if (addr < chunk->vm->addr) { | ||
321 | /* the parent was the next one, look for the previous one */ | ||
322 | n = rb_prev(n); | ||
323 | BUG_ON(!n); | ||
324 | chunk = rb_entry(n, struct pcpu_chunk, rb_node); | ||
325 | } | ||
326 | |||
327 | return chunk; | ||
328 | } | ||
329 | |||
330 | /** | ||
331 | * pcpu_chunk_addr_insert - insert chunk into address rb tree | ||
332 | * @new: chunk to insert | ||
333 | * | ||
334 | * Insert @new into address rb tree. | ||
335 | * | ||
336 | * CONTEXT: | ||
337 | * pcpu_lock. | ||
338 | */ | ||
339 | static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) | ||
340 | { | ||
341 | struct rb_node **p, *parent; | ||
342 | |||
343 | p = pcpu_chunk_rb_search(new->vm->addr, &parent); | ||
344 | BUG_ON(*p); | ||
345 | rb_link_node(&new->rb_node, parent, p); | ||
346 | rb_insert_color(&new->rb_node, &pcpu_addr_root); | ||
347 | } | ||
348 | |||
349 | /** | ||
350 | * pcpu_extend_area_map - extend area map for allocation | ||
351 | * @chunk: target chunk | ||
352 | * | ||
353 | * Extend area map of @chunk so that it can accomodate an allocation. | ||
354 | * A single allocation can split an area into three areas, so this | ||
355 | * function makes sure that @chunk->map has at least two extra slots. | ||
356 | * | ||
357 | * CONTEXT: | ||
358 | * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired | ||
359 | * if area map is extended. | ||
360 | * | ||
361 | * RETURNS: | ||
362 | * 0 if noop, 1 if successfully extended, -errno on failure. | ||
363 | */ | ||
364 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk) | ||
365 | { | ||
366 | int new_alloc; | ||
367 | int *new; | ||
368 | size_t size; | ||
369 | |||
370 | /* has enough? */ | ||
371 | if (chunk->map_alloc >= chunk->map_used + 2) | ||
372 | return 0; | ||
373 | |||
374 | spin_unlock_irq(&pcpu_lock); | ||
375 | |||
376 | new_alloc = PCPU_DFL_MAP_ALLOC; | ||
377 | while (new_alloc < chunk->map_used + 2) | ||
378 | new_alloc *= 2; | ||
379 | |||
380 | new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); | ||
381 | if (!new) { | ||
382 | spin_lock_irq(&pcpu_lock); | ||
383 | return -ENOMEM; | ||
384 | } | ||
385 | |||
386 | /* | ||
387 | * Acquire pcpu_lock and switch to new area map. Only free | ||
388 | * could have happened inbetween, so map_used couldn't have | ||
389 | * grown. | ||
390 | */ | ||
391 | spin_lock_irq(&pcpu_lock); | ||
392 | BUG_ON(new_alloc < chunk->map_used + 2); | ||
393 | |||
394 | size = chunk->map_alloc * sizeof(chunk->map[0]); | ||
395 | memcpy(new, chunk->map, size); | ||
396 | |||
397 | /* | ||
398 | * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is | ||
399 | * one of the first chunks and still using static map. | ||
400 | */ | ||
401 | if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) | ||
402 | pcpu_mem_free(chunk->map, size); | ||
403 | |||
404 | chunk->map_alloc = new_alloc; | ||
405 | chunk->map = new; | ||
406 | return 0; | ||
407 | } | ||
408 | |||
409 | /** | ||
410 | * pcpu_split_block - split a map block | ||
411 | * @chunk: chunk of interest | ||
412 | * @i: index of map block to split | ||
413 | * @head: head size in bytes (can be 0) | ||
414 | * @tail: tail size in bytes (can be 0) | ||
415 | * | ||
416 | * Split the @i'th map block into two or three blocks. If @head is | ||
417 | * non-zero, @head bytes block is inserted before block @i moving it | ||
418 | * to @i+1 and reducing its size by @head bytes. | ||
419 | * | ||
420 | * If @tail is non-zero, the target block, which can be @i or @i+1 | ||
421 | * depending on @head, is reduced by @tail bytes and @tail byte block | ||
422 | * is inserted after the target block. | ||
423 | * | ||
424 | * @chunk->map must have enough free slots to accomodate the split. | ||
425 | * | ||
426 | * CONTEXT: | ||
427 | * pcpu_lock. | ||
428 | */ | ||
429 | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, | ||
430 | int head, int tail) | ||
431 | { | ||
432 | int nr_extra = !!head + !!tail; | ||
433 | |||
434 | BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); | ||
435 | |||
436 | /* insert new subblocks */ | ||
437 | memmove(&chunk->map[i + nr_extra], &chunk->map[i], | ||
438 | sizeof(chunk->map[0]) * (chunk->map_used - i)); | ||
439 | chunk->map_used += nr_extra; | ||
440 | |||
441 | if (head) { | ||
442 | chunk->map[i + 1] = chunk->map[i] - head; | ||
443 | chunk->map[i++] = head; | ||
444 | } | ||
445 | if (tail) { | ||
446 | chunk->map[i++] -= tail; | ||
447 | chunk->map[i] = tail; | ||
448 | } | ||
449 | } | ||
450 | |||
451 | /** | ||
452 | * pcpu_alloc_area - allocate area from a pcpu_chunk | ||
453 | * @chunk: chunk of interest | ||
454 | * @size: wanted size in bytes | ||
455 | * @align: wanted align | ||
456 | * | ||
457 | * Try to allocate @size bytes area aligned at @align from @chunk. | ||
458 | * Note that this function only allocates the offset. It doesn't | ||
459 | * populate or map the area. | ||
460 | * | ||
461 | * @chunk->map must have at least two free slots. | ||
462 | * | ||
463 | * CONTEXT: | ||
464 | * pcpu_lock. | ||
465 | * | ||
466 | * RETURNS: | ||
467 | * Allocated offset in @chunk on success, -1 if no matching area is | ||
468 | * found. | ||
469 | */ | ||
470 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | ||
471 | { | ||
472 | int oslot = pcpu_chunk_slot(chunk); | ||
473 | int max_contig = 0; | ||
474 | int i, off; | ||
475 | |||
476 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { | ||
477 | bool is_last = i + 1 == chunk->map_used; | ||
478 | int head, tail; | ||
479 | |||
480 | /* extra for alignment requirement */ | ||
481 | head = ALIGN(off, align) - off; | ||
482 | BUG_ON(i == 0 && head != 0); | ||
483 | |||
484 | if (chunk->map[i] < 0) | ||
485 | continue; | ||
486 | if (chunk->map[i] < head + size) { | ||
487 | max_contig = max(chunk->map[i], max_contig); | ||
488 | continue; | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * If head is small or the previous block is free, | ||
493 | * merge'em. Note that 'small' is defined as smaller | ||
494 | * than sizeof(int), which is very small but isn't too | ||
495 | * uncommon for percpu allocations. | ||
496 | */ | ||
497 | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | ||
498 | if (chunk->map[i - 1] > 0) | ||
499 | chunk->map[i - 1] += head; | ||
500 | else { | ||
501 | chunk->map[i - 1] -= head; | ||
502 | chunk->free_size -= head; | ||
503 | } | ||
504 | chunk->map[i] -= head; | ||
505 | off += head; | ||
506 | head = 0; | ||
507 | } | ||
508 | |||
509 | /* if tail is small, just keep it around */ | ||
510 | tail = chunk->map[i] - head - size; | ||
511 | if (tail < sizeof(int)) | ||
512 | tail = 0; | ||
513 | |||
514 | /* split if warranted */ | ||
515 | if (head || tail) { | ||
516 | pcpu_split_block(chunk, i, head, tail); | ||
517 | if (head) { | ||
518 | i++; | ||
519 | off += head; | ||
520 | max_contig = max(chunk->map[i - 1], max_contig); | ||
521 | } | ||
522 | if (tail) | ||
523 | max_contig = max(chunk->map[i + 1], max_contig); | ||
524 | } | ||
525 | |||
526 | /* update hint and mark allocated */ | ||
527 | if (is_last) | ||
528 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
529 | else | ||
530 | chunk->contig_hint = max(chunk->contig_hint, | ||
531 | max_contig); | ||
532 | |||
533 | chunk->free_size -= chunk->map[i]; | ||
534 | chunk->map[i] = -chunk->map[i]; | ||
535 | |||
536 | pcpu_chunk_relocate(chunk, oslot); | ||
537 | return off; | ||
538 | } | ||
539 | |||
540 | chunk->contig_hint = max_contig; /* fully scanned */ | ||
541 | pcpu_chunk_relocate(chunk, oslot); | ||
542 | |||
543 | /* tell the upper layer that this chunk has no matching area */ | ||
544 | return -1; | ||
545 | } | ||
546 | |||
547 | /** | ||
548 | * pcpu_free_area - free area to a pcpu_chunk | ||
549 | * @chunk: chunk of interest | ||
550 | * @freeme: offset of area to free | ||
551 | * | ||
552 | * Free area starting from @freeme to @chunk. Note that this function | ||
553 | * only modifies the allocation map. It doesn't depopulate or unmap | ||
554 | * the area. | ||
555 | * | ||
556 | * CONTEXT: | ||
557 | * pcpu_lock. | ||
558 | */ | ||
559 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | ||
560 | { | ||
561 | int oslot = pcpu_chunk_slot(chunk); | ||
562 | int i, off; | ||
563 | |||
564 | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | ||
565 | if (off == freeme) | ||
566 | break; | ||
567 | BUG_ON(off != freeme); | ||
568 | BUG_ON(chunk->map[i] > 0); | ||
569 | |||
570 | chunk->map[i] = -chunk->map[i]; | ||
571 | chunk->free_size += chunk->map[i]; | ||
572 | |||
573 | /* merge with previous? */ | ||
574 | if (i > 0 && chunk->map[i - 1] >= 0) { | ||
575 | chunk->map[i - 1] += chunk->map[i]; | ||
576 | chunk->map_used--; | ||
577 | memmove(&chunk->map[i], &chunk->map[i + 1], | ||
578 | (chunk->map_used - i) * sizeof(chunk->map[0])); | ||
579 | i--; | ||
580 | } | ||
581 | /* merge with next? */ | ||
582 | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | ||
583 | chunk->map[i] += chunk->map[i + 1]; | ||
584 | chunk->map_used--; | ||
585 | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | ||
586 | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | ||
587 | } | ||
588 | |||
589 | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | ||
590 | pcpu_chunk_relocate(chunk, oslot); | ||
591 | } | ||
592 | |||
593 | /** | ||
594 | * pcpu_unmap - unmap pages out of a pcpu_chunk | ||
595 | * @chunk: chunk of interest | ||
596 | * @page_start: page index of the first page to unmap | ||
597 | * @page_end: page index of the last page to unmap + 1 | ||
598 | * @flush: whether to flush cache and tlb or not | ||
599 | * | ||
600 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
601 | * If @flush is true, vcache is flushed before unmapping and tlb | ||
602 | * after. | ||
603 | */ | ||
604 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | ||
605 | bool flush) | ||
606 | { | ||
607 | unsigned int last = num_possible_cpus() - 1; | ||
608 | unsigned int cpu; | ||
609 | |||
610 | /* unmap must not be done on immutable chunk */ | ||
611 | WARN_ON(chunk->immutable); | ||
612 | |||
613 | /* | ||
614 | * Each flushing trial can be very expensive, issue flush on | ||
615 | * the whole region at once rather than doing it for each cpu. | ||
616 | * This could be an overkill but is more scalable. | ||
617 | */ | ||
618 | if (flush) | ||
619 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
620 | pcpu_chunk_addr(chunk, last, page_end)); | ||
621 | |||
622 | for_each_possible_cpu(cpu) | ||
623 | unmap_kernel_range_noflush( | ||
624 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
625 | (page_end - page_start) << PAGE_SHIFT); | ||
626 | |||
627 | /* ditto as flush_cache_vunmap() */ | ||
628 | if (flush) | ||
629 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | ||
630 | pcpu_chunk_addr(chunk, last, page_end)); | ||
631 | } | ||
632 | |||
633 | /** | ||
634 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
635 | * @chunk: chunk to depopulate | ||
636 | * @off: offset to the area to depopulate | ||
637 | * @size: size of the area to depopulate in bytes | ||
638 | * @flush: whether to flush cache and tlb or not | ||
639 | * | ||
640 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
641 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
642 | * and tlb after. | ||
643 | * | ||
644 | * CONTEXT: | ||
645 | * pcpu_alloc_mutex. | ||
646 | */ | ||
647 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | ||
648 | bool flush) | ||
649 | { | ||
650 | int page_start = PFN_DOWN(off); | ||
651 | int page_end = PFN_UP(off + size); | ||
652 | int unmap_start = -1; | ||
653 | int uninitialized_var(unmap_end); | ||
654 | unsigned int cpu; | ||
655 | int i; | ||
656 | |||
657 | for (i = page_start; i < page_end; i++) { | ||
658 | for_each_possible_cpu(cpu) { | ||
659 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
660 | |||
661 | if (!*pagep) | ||
662 | continue; | ||
663 | |||
664 | __free_page(*pagep); | ||
665 | |||
666 | /* | ||
667 | * If it's partial depopulation, it might get | ||
668 | * populated or depopulated again. Mark the | ||
669 | * page gone. | ||
670 | */ | ||
671 | *pagep = NULL; | ||
672 | |||
673 | unmap_start = unmap_start < 0 ? i : unmap_start; | ||
674 | unmap_end = i + 1; | ||
675 | } | ||
676 | } | ||
677 | |||
678 | if (unmap_start >= 0) | ||
679 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | ||
680 | } | ||
681 | |||
682 | /** | ||
683 | * pcpu_map - map pages into a pcpu_chunk | ||
684 | * @chunk: chunk of interest | ||
685 | * @page_start: page index of the first page to map | ||
686 | * @page_end: page index of the last page to map + 1 | ||
687 | * | ||
688 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | ||
689 | * vcache is flushed afterwards. | ||
690 | */ | ||
691 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | ||
692 | { | ||
693 | unsigned int last = num_possible_cpus() - 1; | ||
694 | unsigned int cpu; | ||
695 | int err; | ||
696 | |||
697 | /* map must not be done on immutable chunk */ | ||
698 | WARN_ON(chunk->immutable); | ||
699 | |||
700 | for_each_possible_cpu(cpu) { | ||
701 | err = map_kernel_range_noflush( | ||
702 | pcpu_chunk_addr(chunk, cpu, page_start), | ||
703 | (page_end - page_start) << PAGE_SHIFT, | ||
704 | PAGE_KERNEL, | ||
705 | pcpu_chunk_pagep(chunk, cpu, page_start)); | ||
706 | if (err < 0) | ||
707 | return err; | ||
708 | } | ||
709 | |||
710 | /* flush at once, please read comments in pcpu_unmap() */ | ||
711 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
712 | pcpu_chunk_addr(chunk, last, page_end)); | ||
713 | return 0; | ||
714 | } | ||
715 | |||
716 | /** | ||
717 | * pcpu_populate_chunk - populate and map an area of a pcpu_chunk | ||
718 | * @chunk: chunk of interest | ||
719 | * @off: offset to the area to populate | ||
720 | * @size: size of the area to populate in bytes | ||
721 | * | ||
722 | * For each cpu, populate and map pages [@page_start,@page_end) into | ||
723 | * @chunk. The area is cleared on return. | ||
724 | * | ||
725 | * CONTEXT: | ||
726 | * pcpu_alloc_mutex, does GFP_KERNEL allocation. | ||
727 | */ | ||
728 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
729 | { | ||
730 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
731 | int page_start = PFN_DOWN(off); | ||
732 | int page_end = PFN_UP(off + size); | ||
733 | int map_start = -1; | ||
734 | int uninitialized_var(map_end); | ||
735 | unsigned int cpu; | ||
736 | int i; | ||
737 | |||
738 | for (i = page_start; i < page_end; i++) { | ||
739 | if (pcpu_chunk_page_occupied(chunk, i)) { | ||
740 | if (map_start >= 0) { | ||
741 | if (pcpu_map(chunk, map_start, map_end)) | ||
742 | goto err; | ||
743 | map_start = -1; | ||
744 | } | ||
745 | continue; | ||
746 | } | ||
747 | |||
748 | map_start = map_start < 0 ? i : map_start; | ||
749 | map_end = i + 1; | ||
750 | |||
751 | for_each_possible_cpu(cpu) { | ||
752 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | ||
753 | |||
754 | *pagep = alloc_pages_node(cpu_to_node(cpu), | ||
755 | alloc_mask, 0); | ||
756 | if (!*pagep) | ||
757 | goto err; | ||
758 | } | ||
759 | } | ||
760 | |||
761 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | ||
762 | goto err; | ||
763 | |||
764 | for_each_possible_cpu(cpu) | ||
765 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | ||
766 | size); | ||
767 | |||
768 | return 0; | ||
769 | err: | ||
770 | /* likely under heavy memory pressure, give memory back */ | ||
771 | pcpu_depopulate_chunk(chunk, off, size, true); | ||
772 | return -ENOMEM; | ||
773 | } | ||
774 | |||
775 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | ||
776 | { | ||
777 | if (!chunk) | ||
778 | return; | ||
779 | if (chunk->vm) | ||
780 | free_vm_area(chunk->vm); | ||
781 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | ||
782 | kfree(chunk); | ||
783 | } | ||
784 | |||
785 | static struct pcpu_chunk *alloc_pcpu_chunk(void) | ||
786 | { | ||
787 | struct pcpu_chunk *chunk; | ||
788 | |||
789 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | ||
790 | if (!chunk) | ||
791 | return NULL; | ||
792 | |||
793 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | ||
794 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | ||
795 | chunk->map[chunk->map_used++] = pcpu_unit_size; | ||
796 | chunk->page = chunk->page_ar; | ||
797 | |||
798 | chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); | ||
799 | if (!chunk->vm) { | ||
800 | free_pcpu_chunk(chunk); | ||
801 | return NULL; | ||
802 | } | ||
803 | |||
804 | INIT_LIST_HEAD(&chunk->list); | ||
805 | chunk->free_size = pcpu_unit_size; | ||
806 | chunk->contig_hint = pcpu_unit_size; | ||
807 | |||
808 | return chunk; | ||
809 | } | ||
810 | |||
811 | /** | ||
812 | * pcpu_alloc - the percpu allocator | ||
813 | * @size: size of area to allocate in bytes | ||
814 | * @align: alignment of area (max PAGE_SIZE) | ||
815 | * @reserved: allocate from the reserved chunk if available | ||
816 | * | ||
817 | * Allocate percpu area of @size bytes aligned at @align. | ||
818 | * | ||
819 | * CONTEXT: | ||
820 | * Does GFP_KERNEL allocation. | ||
821 | * | ||
822 | * RETURNS: | ||
823 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
824 | */ | ||
825 | static void *pcpu_alloc(size_t size, size_t align, bool reserved) | ||
826 | { | ||
827 | struct pcpu_chunk *chunk; | ||
828 | int slot, off; | ||
829 | |||
830 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { | ||
831 | WARN(true, "illegal size (%zu) or align (%zu) for " | ||
832 | "percpu allocation\n", size, align); | ||
833 | return NULL; | ||
834 | } | ||
835 | |||
836 | mutex_lock(&pcpu_alloc_mutex); | ||
837 | spin_lock_irq(&pcpu_lock); | ||
838 | |||
839 | /* serve reserved allocations from the reserved chunk if available */ | ||
840 | if (reserved && pcpu_reserved_chunk) { | ||
841 | chunk = pcpu_reserved_chunk; | ||
842 | if (size > chunk->contig_hint || | ||
843 | pcpu_extend_area_map(chunk) < 0) | ||
844 | goto fail_unlock; | ||
845 | off = pcpu_alloc_area(chunk, size, align); | ||
846 | if (off >= 0) | ||
847 | goto area_found; | ||
848 | goto fail_unlock; | ||
849 | } | ||
850 | |||
851 | restart: | ||
852 | /* search through normal chunks */ | ||
853 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | ||
854 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | ||
855 | if (size > chunk->contig_hint) | ||
856 | continue; | ||
857 | |||
858 | switch (pcpu_extend_area_map(chunk)) { | ||
859 | case 0: | ||
860 | break; | ||
861 | case 1: | ||
862 | goto restart; /* pcpu_lock dropped, restart */ | ||
863 | default: | ||
864 | goto fail_unlock; | ||
865 | } | ||
866 | |||
867 | off = pcpu_alloc_area(chunk, size, align); | ||
868 | if (off >= 0) | ||
869 | goto area_found; | ||
870 | } | ||
871 | } | ||
872 | |||
873 | /* hmmm... no space left, create a new chunk */ | ||
874 | spin_unlock_irq(&pcpu_lock); | ||
875 | |||
876 | chunk = alloc_pcpu_chunk(); | ||
877 | if (!chunk) | ||
878 | goto fail_unlock_mutex; | ||
879 | |||
880 | spin_lock_irq(&pcpu_lock); | ||
881 | pcpu_chunk_relocate(chunk, -1); | ||
882 | pcpu_chunk_addr_insert(chunk); | ||
883 | goto restart; | ||
884 | |||
885 | area_found: | ||
886 | spin_unlock_irq(&pcpu_lock); | ||
887 | |||
888 | /* populate, map and clear the area */ | ||
889 | if (pcpu_populate_chunk(chunk, off, size)) { | ||
890 | spin_lock_irq(&pcpu_lock); | ||
891 | pcpu_free_area(chunk, off); | ||
892 | goto fail_unlock; | ||
893 | } | ||
894 | |||
895 | mutex_unlock(&pcpu_alloc_mutex); | ||
896 | |||
897 | return __addr_to_pcpu_ptr(chunk->vm->addr + off); | ||
898 | |||
899 | fail_unlock: | ||
900 | spin_unlock_irq(&pcpu_lock); | ||
901 | fail_unlock_mutex: | ||
902 | mutex_unlock(&pcpu_alloc_mutex); | ||
903 | return NULL; | ||
904 | } | ||
905 | |||
906 | /** | ||
907 | * __alloc_percpu - allocate dynamic percpu area | ||
908 | * @size: size of area to allocate in bytes | ||
909 | * @align: alignment of area (max PAGE_SIZE) | ||
910 | * | ||
911 | * Allocate percpu area of @size bytes aligned at @align. Might | ||
912 | * sleep. Might trigger writeouts. | ||
913 | * | ||
914 | * CONTEXT: | ||
915 | * Does GFP_KERNEL allocation. | ||
916 | * | ||
917 | * RETURNS: | ||
918 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
919 | */ | ||
920 | void *__alloc_percpu(size_t size, size_t align) | ||
921 | { | ||
922 | return pcpu_alloc(size, align, false); | ||
923 | } | ||
924 | EXPORT_SYMBOL_GPL(__alloc_percpu); | ||
925 | |||
926 | /** | ||
927 | * __alloc_reserved_percpu - allocate reserved percpu area | ||
928 | * @size: size of area to allocate in bytes | ||
929 | * @align: alignment of area (max PAGE_SIZE) | ||
930 | * | ||
931 | * Allocate percpu area of @size bytes aligned at @align from reserved | ||
932 | * percpu area if arch has set it up; otherwise, allocation is served | ||
933 | * from the same dynamic area. Might sleep. Might trigger writeouts. | ||
934 | * | ||
935 | * CONTEXT: | ||
936 | * Does GFP_KERNEL allocation. | ||
937 | * | ||
938 | * RETURNS: | ||
939 | * Percpu pointer to the allocated area on success, NULL on failure. | ||
940 | */ | ||
941 | void *__alloc_reserved_percpu(size_t size, size_t align) | ||
942 | { | ||
943 | return pcpu_alloc(size, align, true); | ||
944 | } | ||
945 | |||
946 | /** | ||
947 | * pcpu_reclaim - reclaim fully free chunks, workqueue function | ||
948 | * @work: unused | ||
949 | * | ||
950 | * Reclaim all fully free chunks except for the first one. | ||
951 | * | ||
952 | * CONTEXT: | ||
953 | * workqueue context. | ||
954 | */ | ||
955 | static void pcpu_reclaim(struct work_struct *work) | ||
956 | { | ||
957 | LIST_HEAD(todo); | ||
958 | struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | ||
959 | struct pcpu_chunk *chunk, *next; | ||
960 | |||
961 | mutex_lock(&pcpu_alloc_mutex); | ||
962 | spin_lock_irq(&pcpu_lock); | ||
963 | |||
964 | list_for_each_entry_safe(chunk, next, head, list) { | ||
965 | WARN_ON(chunk->immutable); | ||
966 | |||
967 | /* spare the first one */ | ||
968 | if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | ||
969 | continue; | ||
970 | |||
971 | rb_erase(&chunk->rb_node, &pcpu_addr_root); | ||
972 | list_move(&chunk->list, &todo); | ||
973 | } | ||
974 | |||
975 | spin_unlock_irq(&pcpu_lock); | ||
976 | mutex_unlock(&pcpu_alloc_mutex); | ||
977 | |||
978 | list_for_each_entry_safe(chunk, next, &todo, list) { | ||
979 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | ||
980 | free_pcpu_chunk(chunk); | ||
981 | } | ||
982 | } | ||
983 | |||
984 | /** | ||
985 | * free_percpu - free percpu area | ||
986 | * @ptr: pointer to area to free | ||
987 | * | ||
988 | * Free percpu area @ptr. | ||
989 | * | ||
990 | * CONTEXT: | ||
991 | * Can be called from atomic context. | ||
992 | */ | ||
993 | void free_percpu(void *ptr) | ||
994 | { | ||
995 | void *addr = __pcpu_ptr_to_addr(ptr); | ||
996 | struct pcpu_chunk *chunk; | ||
997 | unsigned long flags; | ||
998 | int off; | ||
999 | |||
1000 | if (!ptr) | ||
1001 | return; | ||
1002 | |||
1003 | spin_lock_irqsave(&pcpu_lock, flags); | ||
1004 | |||
1005 | chunk = pcpu_chunk_addr_search(addr); | ||
1006 | off = addr - chunk->vm->addr; | ||
1007 | |||
1008 | pcpu_free_area(chunk, off); | ||
1009 | |||
1010 | /* if there are more than one fully free chunks, wake up grim reaper */ | ||
1011 | if (chunk->free_size == pcpu_unit_size) { | ||
1012 | struct pcpu_chunk *pos; | ||
1013 | |||
1014 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) | ||
1015 | if (pos != chunk) { | ||
1016 | schedule_work(&pcpu_reclaim_work); | ||
1017 | break; | ||
1018 | } | ||
1019 | } | ||
1020 | |||
1021 | spin_unlock_irqrestore(&pcpu_lock, flags); | ||
1022 | } | ||
1023 | EXPORT_SYMBOL_GPL(free_percpu); | ||
1024 | |||
1025 | /** | ||
1026 | * pcpu_setup_first_chunk - initialize the first percpu chunk | ||
1027 | * @get_page_fn: callback to fetch page pointer | ||
1028 | * @static_size: the size of static percpu area in bytes | ||
1029 | * @reserved_size: the size of reserved percpu area in bytes | ||
1030 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | ||
1031 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | ||
1032 | * @base_addr: mapped address, NULL for auto | ||
1033 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | ||
1034 | * | ||
1035 | * Initialize the first percpu chunk which contains the kernel static | ||
1036 | * perpcu area. This function is to be called from arch percpu area | ||
1037 | * setup path. The first two parameters are mandatory. The rest are | ||
1038 | * optional. | ||
1039 | * | ||
1040 | * @get_page_fn() should return pointer to percpu page given cpu | ||
1041 | * number and page number. It should at least return enough pages to | ||
1042 | * cover the static area. The returned pages for static area should | ||
1043 | * have been initialized with valid data. If @unit_size is specified, | ||
1044 | * it can also return pages after the static area. NULL return | ||
1045 | * indicates end of pages for the cpu. Note that @get_page_fn() must | ||
1046 | * return the same number of pages for all cpus. | ||
1047 | * | ||
1048 | * @reserved_size, if non-zero, specifies the amount of bytes to | ||
1049 | * reserve after the static area in the first chunk. This reserves | ||
1050 | * the first chunk such that it's available only through reserved | ||
1051 | * percpu allocation. This is primarily used to serve module percpu | ||
1052 | * static areas on architectures where the addressing model has | ||
1053 | * limited offset range for symbol relocations to guarantee module | ||
1054 | * percpu symbols fall inside the relocatable range. | ||
1055 | * | ||
1056 | * @dyn_size, if non-negative, determines the number of bytes | ||
1057 | * available for dynamic allocation in the first chunk. Specifying | ||
1058 | * non-negative value makes percpu leave alone the area beyond | ||
1059 | * @static_size + @reserved_size + @dyn_size. | ||
1060 | * | ||
1061 | * @unit_size, if non-negative, specifies unit size and must be | ||
1062 | * aligned to PAGE_SIZE and equal to or larger than @static_size + | ||
1063 | * @reserved_size + if non-negative, @dyn_size. | ||
1064 | * | ||
1065 | * Non-null @base_addr means that the caller already allocated virtual | ||
1066 | * region for the first chunk and mapped it. percpu must not mess | ||
1067 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | ||
1068 | * @populate_pte_fn doesn't make any sense. | ||
1069 | * | ||
1070 | * @populate_pte_fn is used to populate the pagetable. NULL means the | ||
1071 | * caller already populated the pagetable. | ||
1072 | * | ||
1073 | * If the first chunk ends up with both reserved and dynamic areas, it | ||
1074 | * is served by two chunks - one to serve the core static and reserved | ||
1075 | * areas and the other for the dynamic area. They share the same vm | ||
1076 | * and page map but uses different area allocation map to stay away | ||
1077 | * from each other. The latter chunk is circulated in the chunk slots | ||
1078 | * and available for dynamic allocation like any other chunks. | ||
1079 | * | ||
1080 | * RETURNS: | ||
1081 | * The determined pcpu_unit_size which can be used to initialize | ||
1082 | * percpu access. | ||
1083 | */ | ||
1084 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | ||
1085 | size_t static_size, size_t reserved_size, | ||
1086 | ssize_t dyn_size, ssize_t unit_size, | ||
1087 | void *base_addr, | ||
1088 | pcpu_populate_pte_fn_t populate_pte_fn) | ||
1089 | { | ||
1090 | static struct vm_struct first_vm; | ||
1091 | static int smap[2], dmap[2]; | ||
1092 | size_t size_sum = static_size + reserved_size + | ||
1093 | (dyn_size >= 0 ? dyn_size : 0); | ||
1094 | struct pcpu_chunk *schunk, *dchunk = NULL; | ||
1095 | unsigned int cpu; | ||
1096 | int nr_pages; | ||
1097 | int err, i; | ||
1098 | |||
1099 | /* santiy checks */ | ||
1100 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | ||
1101 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | ||
1102 | BUG_ON(!static_size); | ||
1103 | if (unit_size >= 0) { | ||
1104 | BUG_ON(unit_size < size_sum); | ||
1105 | BUG_ON(unit_size & ~PAGE_MASK); | ||
1106 | BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); | ||
1107 | } else | ||
1108 | BUG_ON(base_addr); | ||
1109 | BUG_ON(base_addr && populate_pte_fn); | ||
1110 | |||
1111 | if (unit_size >= 0) | ||
1112 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; | ||
1113 | else | ||
1114 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | ||
1115 | PFN_UP(size_sum)); | ||
1116 | |||
1117 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | ||
1118 | pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; | ||
1119 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | ||
1120 | + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); | ||
1121 | |||
1122 | if (dyn_size < 0) | ||
1123 | dyn_size = pcpu_unit_size - static_size - reserved_size; | ||
1124 | |||
1125 | /* | ||
1126 | * Allocate chunk slots. The additional last slot is for | ||
1127 | * empty chunks. | ||
1128 | */ | ||
1129 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | ||
1130 | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); | ||
1131 | for (i = 0; i < pcpu_nr_slots; i++) | ||
1132 | INIT_LIST_HEAD(&pcpu_slot[i]); | ||
1133 | |||
1134 | /* | ||
1135 | * Initialize static chunk. If reserved_size is zero, the | ||
1136 | * static chunk covers static area + dynamic allocation area | ||
1137 | * in the first chunk. If reserved_size is not zero, it | ||
1138 | * covers static area + reserved area (mostly used for module | ||
1139 | * static percpu allocation). | ||
1140 | */ | ||
1141 | schunk = alloc_bootmem(pcpu_chunk_struct_size); | ||
1142 | INIT_LIST_HEAD(&schunk->list); | ||
1143 | schunk->vm = &first_vm; | ||
1144 | schunk->map = smap; | ||
1145 | schunk->map_alloc = ARRAY_SIZE(smap); | ||
1146 | schunk->page = schunk->page_ar; | ||
1147 | |||
1148 | if (reserved_size) { | ||
1149 | schunk->free_size = reserved_size; | ||
1150 | pcpu_reserved_chunk = schunk; /* not for dynamic alloc */ | ||
1151 | } else { | ||
1152 | schunk->free_size = dyn_size; | ||
1153 | dyn_size = 0; /* dynamic area covered */ | ||
1154 | } | ||
1155 | schunk->contig_hint = schunk->free_size; | ||
1156 | |||
1157 | schunk->map[schunk->map_used++] = -static_size; | ||
1158 | if (schunk->free_size) | ||
1159 | schunk->map[schunk->map_used++] = schunk->free_size; | ||
1160 | |||
1161 | pcpu_reserved_chunk_limit = static_size + schunk->free_size; | ||
1162 | |||
1163 | /* init dynamic chunk if necessary */ | ||
1164 | if (dyn_size) { | ||
1165 | dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | ||
1166 | INIT_LIST_HEAD(&dchunk->list); | ||
1167 | dchunk->vm = &first_vm; | ||
1168 | dchunk->map = dmap; | ||
1169 | dchunk->map_alloc = ARRAY_SIZE(dmap); | ||
1170 | dchunk->page = schunk->page_ar; /* share page map with schunk */ | ||
1171 | |||
1172 | dchunk->contig_hint = dchunk->free_size = dyn_size; | ||
1173 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | ||
1174 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | ||
1175 | } | ||
1176 | |||
1177 | /* allocate vm address */ | ||
1178 | first_vm.flags = VM_ALLOC; | ||
1179 | first_vm.size = pcpu_chunk_size; | ||
1180 | |||
1181 | if (!base_addr) | ||
1182 | vm_area_register_early(&first_vm, PAGE_SIZE); | ||
1183 | else { | ||
1184 | /* | ||
1185 | * Pages already mapped. No need to remap into | ||
1186 | * vmalloc area. In this case the first chunks can't | ||
1187 | * be mapped or unmapped by percpu and are marked | ||
1188 | * immutable. | ||
1189 | */ | ||
1190 | first_vm.addr = base_addr; | ||
1191 | schunk->immutable = true; | ||
1192 | if (dchunk) | ||
1193 | dchunk->immutable = true; | ||
1194 | } | ||
1195 | |||
1196 | /* assign pages */ | ||
1197 | nr_pages = -1; | ||
1198 | for_each_possible_cpu(cpu) { | ||
1199 | for (i = 0; i < pcpu_unit_pages; i++) { | ||
1200 | struct page *page = get_page_fn(cpu, i); | ||
1201 | |||
1202 | if (!page) | ||
1203 | break; | ||
1204 | *pcpu_chunk_pagep(schunk, cpu, i) = page; | ||
1205 | } | ||
1206 | |||
1207 | BUG_ON(i < PFN_UP(static_size)); | ||
1208 | |||
1209 | if (nr_pages < 0) | ||
1210 | nr_pages = i; | ||
1211 | else | ||
1212 | BUG_ON(nr_pages != i); | ||
1213 | } | ||
1214 | |||
1215 | /* map them */ | ||
1216 | if (populate_pte_fn) { | ||
1217 | for_each_possible_cpu(cpu) | ||
1218 | for (i = 0; i < nr_pages; i++) | ||
1219 | populate_pte_fn(pcpu_chunk_addr(schunk, | ||
1220 | cpu, i)); | ||
1221 | |||
1222 | err = pcpu_map(schunk, 0, nr_pages); | ||
1223 | if (err) | ||
1224 | panic("failed to setup static percpu area, err=%d\n", | ||
1225 | err); | ||
1226 | } | ||
1227 | |||
1228 | /* link the first chunk in */ | ||
1229 | if (!dchunk) { | ||
1230 | pcpu_chunk_relocate(schunk, -1); | ||
1231 | pcpu_chunk_addr_insert(schunk); | ||
1232 | } else { | ||
1233 | pcpu_chunk_relocate(dchunk, -1); | ||
1234 | pcpu_chunk_addr_insert(dchunk); | ||
1235 | } | ||
1236 | |||
1237 | /* we're done */ | ||
1238 | pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); | ||
1239 | return pcpu_unit_size; | ||
1240 | } | ||
1241 | |||
1242 | /* | ||
1243 | * Embedding first chunk setup helper. | ||
1244 | */ | ||
1245 | static void *pcpue_ptr __initdata; | ||
1246 | static size_t pcpue_size __initdata; | ||
1247 | static size_t pcpue_unit_size __initdata; | ||
1248 | |||
1249 | static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) | ||
1250 | { | ||
1251 | size_t off = (size_t)pageno << PAGE_SHIFT; | ||
1252 | |||
1253 | if (off >= pcpue_size) | ||
1254 | return NULL; | ||
1255 | |||
1256 | return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); | ||
1257 | } | ||
1258 | |||
1259 | /** | ||
1260 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | ||
1261 | * @static_size: the size of static percpu area in bytes | ||
1262 | * @reserved_size: the size of reserved percpu area in bytes | ||
1263 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | ||
1264 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | ||
1265 | * | ||
1266 | * This is a helper to ease setting up embedded first percpu chunk and | ||
1267 | * can be called where pcpu_setup_first_chunk() is expected. | ||
1268 | * | ||
1269 | * If this function is used to setup the first chunk, it is allocated | ||
1270 | * as a contiguous area using bootmem allocator and used as-is without | ||
1271 | * being mapped into vmalloc area. This enables the first chunk to | ||
1272 | * piggy back on the linear physical mapping which often uses larger | ||
1273 | * page size. | ||
1274 | * | ||
1275 | * When @dyn_size is positive, dynamic area might be larger than | ||
1276 | * specified to fill page alignment. Also, when @dyn_size is auto, | ||
1277 | * @dyn_size does not fill the whole first chunk but only what's | ||
1278 | * necessary for page alignment after static and reserved areas. | ||
1279 | * | ||
1280 | * If the needed size is smaller than the minimum or specified unit | ||
1281 | * size, the leftover is returned to the bootmem allocator. | ||
1282 | * | ||
1283 | * RETURNS: | ||
1284 | * The determined pcpu_unit_size which can be used to initialize | ||
1285 | * percpu access on success, -errno on failure. | ||
1286 | */ | ||
1287 | ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, | ||
1288 | ssize_t dyn_size, ssize_t unit_size) | ||
1289 | { | ||
1290 | unsigned int cpu; | ||
1291 | |||
1292 | /* determine parameters and allocate */ | ||
1293 | pcpue_size = PFN_ALIGN(static_size + reserved_size + | ||
1294 | (dyn_size >= 0 ? dyn_size : 0)); | ||
1295 | if (dyn_size != 0) | ||
1296 | dyn_size = pcpue_size - static_size - reserved_size; | ||
1297 | |||
1298 | if (unit_size >= 0) { | ||
1299 | BUG_ON(unit_size < pcpue_size); | ||
1300 | pcpue_unit_size = unit_size; | ||
1301 | } else | ||
1302 | pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); | ||
1303 | |||
1304 | pcpue_ptr = __alloc_bootmem_nopanic( | ||
1305 | num_possible_cpus() * pcpue_unit_size, | ||
1306 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | ||
1307 | if (!pcpue_ptr) | ||
1308 | return -ENOMEM; | ||
1309 | |||
1310 | /* return the leftover and copy */ | ||
1311 | for_each_possible_cpu(cpu) { | ||
1312 | void *ptr = pcpue_ptr + cpu * pcpue_unit_size; | ||
1313 | |||
1314 | free_bootmem(__pa(ptr + pcpue_size), | ||
1315 | pcpue_unit_size - pcpue_size); | ||
1316 | memcpy(ptr, __per_cpu_load, static_size); | ||
1317 | } | ||
1318 | |||
1319 | /* we're ready, commit */ | ||
1320 | pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", | ||
1321 | pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); | ||
1322 | |||
1323 | return pcpu_setup_first_chunk(pcpue_get_page, static_size, | ||
1324 | reserved_size, dyn_size, | ||
1325 | pcpue_unit_size, pcpue_ptr, NULL); | ||
1326 | } | ||
diff --git a/mm/quicklist.c b/mm/quicklist.c index 8dbb6805ef35..e66d07d1b4ff 100644 --- a/mm/quicklist.c +++ b/mm/quicklist.c | |||
@@ -29,7 +29,7 @@ static unsigned long max_pages(unsigned long min_pages) | |||
29 | int node = numa_node_id(); | 29 | int node = numa_node_id(); |
30 | struct zone *zones = NODE_DATA(node)->node_zones; | 30 | struct zone *zones = NODE_DATA(node)->node_zones; |
31 | int num_cpus_on_node; | 31 | int num_cpus_on_node; |
32 | node_to_cpumask_ptr(cpumask_on_node, node); | 32 | const struct cpumask *cpumask_on_node = cpumask_of_node(node); |
33 | 33 | ||
34 | node_free_pages = | 34 | node_free_pages = |
35 | #ifdef CONFIG_ZONE_DMA | 35 | #ifdef CONFIG_ZONE_DMA |
diff --git a/mm/readahead.c b/mm/readahead.c index bec83c15a78f..133b6d525513 100644 --- a/mm/readahead.c +++ b/mm/readahead.c | |||
@@ -17,19 +17,6 @@ | |||
17 | #include <linux/pagevec.h> | 17 | #include <linux/pagevec.h> |
18 | #include <linux/pagemap.h> | 18 | #include <linux/pagemap.h> |
19 | 19 | ||
20 | void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) | ||
21 | { | ||
22 | } | ||
23 | EXPORT_SYMBOL(default_unplug_io_fn); | ||
24 | |||
25 | struct backing_dev_info default_backing_dev_info = { | ||
26 | .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, | ||
27 | .state = 0, | ||
28 | .capabilities = BDI_CAP_MAP_COPY, | ||
29 | .unplug_io_fn = default_unplug_io_fn, | ||
30 | }; | ||
31 | EXPORT_SYMBOL_GPL(default_backing_dev_info); | ||
32 | |||
33 | /* | 20 | /* |
34 | * Initialise a struct file's readahead state. Assumes that the caller has | 21 | * Initialise a struct file's readahead state. Assumes that the caller has |
35 | * memset *ra to zero. | 22 | * memset *ra to zero. |
@@ -44,6 +31,42 @@ EXPORT_SYMBOL_GPL(file_ra_state_init); | |||
44 | 31 | ||
45 | #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) | 32 | #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) |
46 | 33 | ||
34 | /* | ||
35 | * see if a page needs releasing upon read_cache_pages() failure | ||
36 | * - the caller of read_cache_pages() may have set PG_private or PG_fscache | ||
37 | * before calling, such as the NFS fs marking pages that are cached locally | ||
38 | * on disk, thus we need to give the fs a chance to clean up in the event of | ||
39 | * an error | ||
40 | */ | ||
41 | static void read_cache_pages_invalidate_page(struct address_space *mapping, | ||
42 | struct page *page) | ||
43 | { | ||
44 | if (page_has_private(page)) { | ||
45 | if (!trylock_page(page)) | ||
46 | BUG(); | ||
47 | page->mapping = mapping; | ||
48 | do_invalidatepage(page, 0); | ||
49 | page->mapping = NULL; | ||
50 | unlock_page(page); | ||
51 | } | ||
52 | page_cache_release(page); | ||
53 | } | ||
54 | |||
55 | /* | ||
56 | * release a list of pages, invalidating them first if need be | ||
57 | */ | ||
58 | static void read_cache_pages_invalidate_pages(struct address_space *mapping, | ||
59 | struct list_head *pages) | ||
60 | { | ||
61 | struct page *victim; | ||
62 | |||
63 | while (!list_empty(pages)) { | ||
64 | victim = list_to_page(pages); | ||
65 | list_del(&victim->lru); | ||
66 | read_cache_pages_invalidate_page(mapping, victim); | ||
67 | } | ||
68 | } | ||
69 | |||
47 | /** | 70 | /** |
48 | * read_cache_pages - populate an address space with some pages & start reads against them | 71 | * read_cache_pages - populate an address space with some pages & start reads against them |
49 | * @mapping: the address_space | 72 | * @mapping: the address_space |
@@ -65,14 +88,14 @@ int read_cache_pages(struct address_space *mapping, struct list_head *pages, | |||
65 | list_del(&page->lru); | 88 | list_del(&page->lru); |
66 | if (add_to_page_cache_lru(page, mapping, | 89 | if (add_to_page_cache_lru(page, mapping, |
67 | page->index, GFP_KERNEL)) { | 90 | page->index, GFP_KERNEL)) { |
68 | page_cache_release(page); | 91 | read_cache_pages_invalidate_page(mapping, page); |
69 | continue; | 92 | continue; |
70 | } | 93 | } |
71 | page_cache_release(page); | 94 | page_cache_release(page); |
72 | 95 | ||
73 | ret = filler(data, page); | 96 | ret = filler(data, page); |
74 | if (unlikely(ret)) { | 97 | if (unlikely(ret)) { |
75 | put_pages_list(pages); | 98 | read_cache_pages_invalidate_pages(mapping, pages); |
76 | break; | 99 | break; |
77 | } | 100 | } |
78 | task_io_account_read(PAGE_CACHE_SIZE); | 101 | task_io_account_read(PAGE_CACHE_SIZE); |
@@ -233,18 +256,6 @@ unsigned long max_sane_readahead(unsigned long nr) | |||
233 | + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); | 256 | + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2); |
234 | } | 257 | } |
235 | 258 | ||
236 | static int __init readahead_init(void) | ||
237 | { | ||
238 | int err; | ||
239 | |||
240 | err = bdi_init(&default_backing_dev_info); | ||
241 | if (!err) | ||
242 | bdi_register(&default_backing_dev_info, NULL, "default"); | ||
243 | |||
244 | return err; | ||
245 | } | ||
246 | subsys_initcall(readahead_init); | ||
247 | |||
248 | /* | 259 | /* |
249 | * Submit IO for the read-ahead request in file_ra_state. | 260 | * Submit IO for the read-ahead request in file_ra_state. |
250 | */ | 261 | */ |
diff --git a/mm/shmem.c b/mm/shmem.c index 4103a239ce84..d94d2e9146bc 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -28,6 +28,7 @@ | |||
28 | #include <linux/mm.h> | 28 | #include <linux/mm.h> |
29 | #include <linux/module.h> | 29 | #include <linux/module.h> |
30 | #include <linux/swap.h> | 30 | #include <linux/swap.h> |
31 | #include <linux/ima.h> | ||
31 | 32 | ||
32 | static struct vfsmount *shm_mnt; | 33 | static struct vfsmount *shm_mnt; |
33 | 34 | ||
@@ -1067,8 +1068,7 @@ static int shmem_writepage(struct page *page, struct writeback_control *wbc) | |||
1067 | swap_duplicate(swap); | 1068 | swap_duplicate(swap); |
1068 | BUG_ON(page_mapped(page)); | 1069 | BUG_ON(page_mapped(page)); |
1069 | page_cache_release(page); /* pagecache ref */ | 1070 | page_cache_release(page); /* pagecache ref */ |
1070 | set_page_dirty(page); | 1071 | swap_writepage(page, wbc); |
1071 | unlock_page(page); | ||
1072 | if (inode) { | 1072 | if (inode) { |
1073 | mutex_lock(&shmem_swaplist_mutex); | 1073 | mutex_lock(&shmem_swaplist_mutex); |
1074 | /* move instead of add in case we're racing */ | 1074 | /* move instead of add in case we're racing */ |
@@ -2665,6 +2665,7 @@ int shmem_zero_setup(struct vm_area_struct *vma) | |||
2665 | if (IS_ERR(file)) | 2665 | if (IS_ERR(file)) |
2666 | return PTR_ERR(file); | 2666 | return PTR_ERR(file); |
2667 | 2667 | ||
2668 | ima_shm_check(file); | ||
2668 | if (vma->vm_file) | 2669 | if (vma->vm_file) |
2669 | fput(vma->vm_file); | 2670 | fput(vma->vm_file); |
2670 | vma->vm_file = file; | 2671 | vma->vm_file = file; |
@@ -102,6 +102,7 @@ | |||
102 | #include <linux/cpu.h> | 102 | #include <linux/cpu.h> |
103 | #include <linux/sysctl.h> | 103 | #include <linux/sysctl.h> |
104 | #include <linux/module.h> | 104 | #include <linux/module.h> |
105 | #include <trace/kmemtrace.h> | ||
105 | #include <linux/rcupdate.h> | 106 | #include <linux/rcupdate.h> |
106 | #include <linux/string.h> | 107 | #include <linux/string.h> |
107 | #include <linux/uaccess.h> | 108 | #include <linux/uaccess.h> |
@@ -568,6 +569,14 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp) | |||
568 | 569 | ||
569 | #endif | 570 | #endif |
570 | 571 | ||
572 | #ifdef CONFIG_KMEMTRACE | ||
573 | size_t slab_buffer_size(struct kmem_cache *cachep) | ||
574 | { | ||
575 | return cachep->buffer_size; | ||
576 | } | ||
577 | EXPORT_SYMBOL(slab_buffer_size); | ||
578 | #endif | ||
579 | |||
571 | /* | 580 | /* |
572 | * Do not go above this order unless 0 objects fit into the slab. | 581 | * Do not go above this order unless 0 objects fit into the slab. |
573 | */ | 582 | */ |
@@ -1160,7 +1169,7 @@ static void __cpuinit cpuup_canceled(long cpu) | |||
1160 | struct kmem_cache *cachep; | 1169 | struct kmem_cache *cachep; |
1161 | struct kmem_list3 *l3 = NULL; | 1170 | struct kmem_list3 *l3 = NULL; |
1162 | int node = cpu_to_node(cpu); | 1171 | int node = cpu_to_node(cpu); |
1163 | node_to_cpumask_ptr(mask, node); | 1172 | const struct cpumask *mask = cpumask_of_node(node); |
1164 | 1173 | ||
1165 | list_for_each_entry(cachep, &cache_chain, next) { | 1174 | list_for_each_entry(cachep, &cache_chain, next) { |
1166 | struct array_cache *nc; | 1175 | struct array_cache *nc; |
@@ -3318,6 +3327,8 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |||
3318 | unsigned long save_flags; | 3327 | unsigned long save_flags; |
3319 | void *ptr; | 3328 | void *ptr; |
3320 | 3329 | ||
3330 | lockdep_trace_alloc(flags); | ||
3331 | |||
3321 | if (slab_should_failslab(cachep, flags)) | 3332 | if (slab_should_failslab(cachep, flags)) |
3322 | return NULL; | 3333 | return NULL; |
3323 | 3334 | ||
@@ -3394,6 +3405,8 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | |||
3394 | unsigned long save_flags; | 3405 | unsigned long save_flags; |
3395 | void *objp; | 3406 | void *objp; |
3396 | 3407 | ||
3408 | lockdep_trace_alloc(flags); | ||
3409 | |||
3397 | if (slab_should_failslab(cachep, flags)) | 3410 | if (slab_should_failslab(cachep, flags)) |
3398 | return NULL; | 3411 | return NULL; |
3399 | 3412 | ||
@@ -3550,10 +3563,23 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp) | |||
3550 | */ | 3563 | */ |
3551 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 3564 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
3552 | { | 3565 | { |
3553 | return __cache_alloc(cachep, flags, __builtin_return_address(0)); | 3566 | void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); |
3567 | |||
3568 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
3569 | obj_size(cachep), cachep->buffer_size, flags); | ||
3570 | |||
3571 | return ret; | ||
3554 | } | 3572 | } |
3555 | EXPORT_SYMBOL(kmem_cache_alloc); | 3573 | EXPORT_SYMBOL(kmem_cache_alloc); |
3556 | 3574 | ||
3575 | #ifdef CONFIG_KMEMTRACE | ||
3576 | void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags) | ||
3577 | { | ||
3578 | return __cache_alloc(cachep, flags, __builtin_return_address(0)); | ||
3579 | } | ||
3580 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | ||
3581 | #endif | ||
3582 | |||
3557 | /** | 3583 | /** |
3558 | * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. | 3584 | * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. |
3559 | * @cachep: the cache we're checking against | 3585 | * @cachep: the cache we're checking against |
@@ -3598,23 +3624,47 @@ out: | |||
3598 | #ifdef CONFIG_NUMA | 3624 | #ifdef CONFIG_NUMA |
3599 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) | 3625 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3600 | { | 3626 | { |
3601 | return __cache_alloc_node(cachep, flags, nodeid, | 3627 | void *ret = __cache_alloc_node(cachep, flags, nodeid, |
3602 | __builtin_return_address(0)); | 3628 | __builtin_return_address(0)); |
3629 | |||
3630 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
3631 | obj_size(cachep), cachep->buffer_size, | ||
3632 | flags, nodeid); | ||
3633 | |||
3634 | return ret; | ||
3603 | } | 3635 | } |
3604 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 3636 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3605 | 3637 | ||
3638 | #ifdef CONFIG_KMEMTRACE | ||
3639 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep, | ||
3640 | gfp_t flags, | ||
3641 | int nodeid) | ||
3642 | { | ||
3643 | return __cache_alloc_node(cachep, flags, nodeid, | ||
3644 | __builtin_return_address(0)); | ||
3645 | } | ||
3646 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); | ||
3647 | #endif | ||
3648 | |||
3606 | static __always_inline void * | 3649 | static __always_inline void * |
3607 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | 3650 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) |
3608 | { | 3651 | { |
3609 | struct kmem_cache *cachep; | 3652 | struct kmem_cache *cachep; |
3653 | void *ret; | ||
3610 | 3654 | ||
3611 | cachep = kmem_find_general_cachep(size, flags); | 3655 | cachep = kmem_find_general_cachep(size, flags); |
3612 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3656 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3613 | return cachep; | 3657 | return cachep; |
3614 | return kmem_cache_alloc_node(cachep, flags, node); | 3658 | ret = kmem_cache_alloc_node_notrace(cachep, flags, node); |
3659 | |||
3660 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, | ||
3661 | (unsigned long) caller, ret, | ||
3662 | size, cachep->buffer_size, flags, node); | ||
3663 | |||
3664 | return ret; | ||
3615 | } | 3665 | } |
3616 | 3666 | ||
3617 | #ifdef CONFIG_DEBUG_SLAB | 3667 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE) |
3618 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 3668 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3619 | { | 3669 | { |
3620 | return __do_kmalloc_node(size, flags, node, | 3670 | return __do_kmalloc_node(size, flags, node, |
@@ -3647,6 +3697,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | |||
3647 | void *caller) | 3697 | void *caller) |
3648 | { | 3698 | { |
3649 | struct kmem_cache *cachep; | 3699 | struct kmem_cache *cachep; |
3700 | void *ret; | ||
3650 | 3701 | ||
3651 | /* If you want to save a few bytes .text space: replace | 3702 | /* If you want to save a few bytes .text space: replace |
3652 | * __ with kmem_. | 3703 | * __ with kmem_. |
@@ -3656,11 +3707,17 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | |||
3656 | cachep = __find_general_cachep(size, flags); | 3707 | cachep = __find_general_cachep(size, flags); |
3657 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3708 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3658 | return cachep; | 3709 | return cachep; |
3659 | return __cache_alloc(cachep, flags, caller); | 3710 | ret = __cache_alloc(cachep, flags, caller); |
3711 | |||
3712 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, | ||
3713 | (unsigned long) caller, ret, | ||
3714 | size, cachep->buffer_size, flags); | ||
3715 | |||
3716 | return ret; | ||
3660 | } | 3717 | } |
3661 | 3718 | ||
3662 | 3719 | ||
3663 | #ifdef CONFIG_DEBUG_SLAB | 3720 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE) |
3664 | void *__kmalloc(size_t size, gfp_t flags) | 3721 | void *__kmalloc(size_t size, gfp_t flags) |
3665 | { | 3722 | { |
3666 | return __do_kmalloc(size, flags, __builtin_return_address(0)); | 3723 | return __do_kmalloc(size, flags, __builtin_return_address(0)); |
@@ -3699,6 +3756,8 @@ void kmem_cache_free(struct kmem_cache *cachep, void *objp) | |||
3699 | debug_check_no_obj_freed(objp, obj_size(cachep)); | 3756 | debug_check_no_obj_freed(objp, obj_size(cachep)); |
3700 | __cache_free(cachep, objp); | 3757 | __cache_free(cachep, objp); |
3701 | local_irq_restore(flags); | 3758 | local_irq_restore(flags); |
3759 | |||
3760 | kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, objp); | ||
3702 | } | 3761 | } |
3703 | EXPORT_SYMBOL(kmem_cache_free); | 3762 | EXPORT_SYMBOL(kmem_cache_free); |
3704 | 3763 | ||
@@ -3725,6 +3784,8 @@ void kfree(const void *objp) | |||
3725 | debug_check_no_obj_freed(objp, obj_size(c)); | 3784 | debug_check_no_obj_freed(objp, obj_size(c)); |
3726 | __cache_free(c, (void *)objp); | 3785 | __cache_free(c, (void *)objp); |
3727 | local_irq_restore(flags); | 3786 | local_irq_restore(flags); |
3787 | |||
3788 | kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, objp); | ||
3728 | } | 3789 | } |
3729 | EXPORT_SYMBOL(kfree); | 3790 | EXPORT_SYMBOL(kfree); |
3730 | 3791 | ||
@@ -3988,8 +4049,7 @@ static void cache_reap(struct work_struct *w) | |||
3988 | struct kmem_cache *searchp; | 4049 | struct kmem_cache *searchp; |
3989 | struct kmem_list3 *l3; | 4050 | struct kmem_list3 *l3; |
3990 | int node = numa_node_id(); | 4051 | int node = numa_node_id(); |
3991 | struct delayed_work *work = | 4052 | struct delayed_work *work = to_delayed_work(w); |
3992 | container_of(w, struct delayed_work, work); | ||
3993 | 4053 | ||
3994 | if (!mutex_trylock(&cache_chain_mutex)) | 4054 | if (!mutex_trylock(&cache_chain_mutex)) |
3995 | /* Give up. Setup the next iteration. */ | 4055 | /* Give up. Setup the next iteration. */ |
@@ -65,6 +65,7 @@ | |||
65 | #include <linux/module.h> | 65 | #include <linux/module.h> |
66 | #include <linux/rcupdate.h> | 66 | #include <linux/rcupdate.h> |
67 | #include <linux/list.h> | 67 | #include <linux/list.h> |
68 | #include <trace/kmemtrace.h> | ||
68 | #include <asm/atomic.h> | 69 | #include <asm/atomic.h> |
69 | 70 | ||
70 | /* | 71 | /* |
@@ -126,9 +127,9 @@ static LIST_HEAD(free_slob_medium); | |||
126 | static LIST_HEAD(free_slob_large); | 127 | static LIST_HEAD(free_slob_large); |
127 | 128 | ||
128 | /* | 129 | /* |
129 | * slob_page: True for all slob pages (false for bigblock pages) | 130 | * is_slob_page: True for all slob pages (false for bigblock pages) |
130 | */ | 131 | */ |
131 | static inline int slob_page(struct slob_page *sp) | 132 | static inline int is_slob_page(struct slob_page *sp) |
132 | { | 133 | { |
133 | return PageSlobPage((struct page *)sp); | 134 | return PageSlobPage((struct page *)sp); |
134 | } | 135 | } |
@@ -143,6 +144,11 @@ static inline void clear_slob_page(struct slob_page *sp) | |||
143 | __ClearPageSlobPage((struct page *)sp); | 144 | __ClearPageSlobPage((struct page *)sp); |
144 | } | 145 | } |
145 | 146 | ||
147 | static inline struct slob_page *slob_page(const void *addr) | ||
148 | { | ||
149 | return (struct slob_page *)virt_to_page(addr); | ||
150 | } | ||
151 | |||
146 | /* | 152 | /* |
147 | * slob_page_free: true for pages on free_slob_pages list. | 153 | * slob_page_free: true for pages on free_slob_pages list. |
148 | */ | 154 | */ |
@@ -230,7 +236,7 @@ static int slob_last(slob_t *s) | |||
230 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | 236 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); |
231 | } | 237 | } |
232 | 238 | ||
233 | static void *slob_new_page(gfp_t gfp, int order, int node) | 239 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
234 | { | 240 | { |
235 | void *page; | 241 | void *page; |
236 | 242 | ||
@@ -247,12 +253,17 @@ static void *slob_new_page(gfp_t gfp, int order, int node) | |||
247 | return page_address(page); | 253 | return page_address(page); |
248 | } | 254 | } |
249 | 255 | ||
256 | static void slob_free_pages(void *b, int order) | ||
257 | { | ||
258 | free_pages((unsigned long)b, order); | ||
259 | } | ||
260 | |||
250 | /* | 261 | /* |
251 | * Allocate a slob block within a given slob_page sp. | 262 | * Allocate a slob block within a given slob_page sp. |
252 | */ | 263 | */ |
253 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) | 264 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) |
254 | { | 265 | { |
255 | slob_t *prev, *cur, *aligned = 0; | 266 | slob_t *prev, *cur, *aligned = NULL; |
256 | int delta = 0, units = SLOB_UNITS(size); | 267 | int delta = 0, units = SLOB_UNITS(size); |
257 | 268 | ||
258 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { | 269 | for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { |
@@ -349,10 +360,10 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) | |||
349 | 360 | ||
350 | /* Not enough space: must allocate a new page */ | 361 | /* Not enough space: must allocate a new page */ |
351 | if (!b) { | 362 | if (!b) { |
352 | b = slob_new_page(gfp & ~__GFP_ZERO, 0, node); | 363 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
353 | if (!b) | 364 | if (!b) |
354 | return 0; | 365 | return NULL; |
355 | sp = (struct slob_page *)virt_to_page(b); | 366 | sp = slob_page(b); |
356 | set_slob_page(sp); | 367 | set_slob_page(sp); |
357 | 368 | ||
358 | spin_lock_irqsave(&slob_lock, flags); | 369 | spin_lock_irqsave(&slob_lock, flags); |
@@ -384,7 +395,7 @@ static void slob_free(void *block, int size) | |||
384 | return; | 395 | return; |
385 | BUG_ON(!size); | 396 | BUG_ON(!size); |
386 | 397 | ||
387 | sp = (struct slob_page *)virt_to_page(block); | 398 | sp = slob_page(block); |
388 | units = SLOB_UNITS(size); | 399 | units = SLOB_UNITS(size); |
389 | 400 | ||
390 | spin_lock_irqsave(&slob_lock, flags); | 401 | spin_lock_irqsave(&slob_lock, flags); |
@@ -393,10 +404,11 @@ static void slob_free(void *block, int size) | |||
393 | /* Go directly to page allocator. Do not pass slob allocator */ | 404 | /* Go directly to page allocator. Do not pass slob allocator */ |
394 | if (slob_page_free(sp)) | 405 | if (slob_page_free(sp)) |
395 | clear_slob_page_free(sp); | 406 | clear_slob_page_free(sp); |
407 | spin_unlock_irqrestore(&slob_lock, flags); | ||
396 | clear_slob_page(sp); | 408 | clear_slob_page(sp); |
397 | free_slob_page(sp); | 409 | free_slob_page(sp); |
398 | free_page((unsigned long)b); | 410 | free_page((unsigned long)b); |
399 | goto out; | 411 | return; |
400 | } | 412 | } |
401 | 413 | ||
402 | if (!slob_page_free(sp)) { | 414 | if (!slob_page_free(sp)) { |
@@ -463,27 +475,40 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node) | |||
463 | { | 475 | { |
464 | unsigned int *m; | 476 | unsigned int *m; |
465 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 477 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
478 | void *ret; | ||
479 | |||
480 | lockdep_trace_alloc(gfp); | ||
466 | 481 | ||
467 | if (size < PAGE_SIZE - align) { | 482 | if (size < PAGE_SIZE - align) { |
468 | if (!size) | 483 | if (!size) |
469 | return ZERO_SIZE_PTR; | 484 | return ZERO_SIZE_PTR; |
470 | 485 | ||
471 | m = slob_alloc(size + align, gfp, align, node); | 486 | m = slob_alloc(size + align, gfp, align, node); |
487 | |||
472 | if (!m) | 488 | if (!m) |
473 | return NULL; | 489 | return NULL; |
474 | *m = size; | 490 | *m = size; |
475 | return (void *)m + align; | 491 | ret = (void *)m + align; |
492 | |||
493 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, | ||
494 | _RET_IP_, ret, | ||
495 | size, size + align, gfp, node); | ||
476 | } else { | 496 | } else { |
477 | void *ret; | 497 | unsigned int order = get_order(size); |
478 | 498 | ||
479 | ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node); | 499 | ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node); |
480 | if (ret) { | 500 | if (ret) { |
481 | struct page *page; | 501 | struct page *page; |
482 | page = virt_to_page(ret); | 502 | page = virt_to_page(ret); |
483 | page->private = size; | 503 | page->private = size; |
484 | } | 504 | } |
485 | return ret; | 505 | |
506 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, | ||
507 | _RET_IP_, ret, | ||
508 | size, PAGE_SIZE << order, gfp, node); | ||
486 | } | 509 | } |
510 | |||
511 | return ret; | ||
487 | } | 512 | } |
488 | EXPORT_SYMBOL(__kmalloc_node); | 513 | EXPORT_SYMBOL(__kmalloc_node); |
489 | 514 | ||
@@ -494,13 +519,15 @@ void kfree(const void *block) | |||
494 | if (unlikely(ZERO_OR_NULL_PTR(block))) | 519 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
495 | return; | 520 | return; |
496 | 521 | ||
497 | sp = (struct slob_page *)virt_to_page(block); | 522 | sp = slob_page(block); |
498 | if (slob_page(sp)) { | 523 | if (is_slob_page(sp)) { |
499 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 524 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
500 | unsigned int *m = (unsigned int *)(block - align); | 525 | unsigned int *m = (unsigned int *)(block - align); |
501 | slob_free(m, *m + align); | 526 | slob_free(m, *m + align); |
502 | } else | 527 | } else |
503 | put_page(&sp->page); | 528 | put_page(&sp->page); |
529 | |||
530 | kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, block); | ||
504 | } | 531 | } |
505 | EXPORT_SYMBOL(kfree); | 532 | EXPORT_SYMBOL(kfree); |
506 | 533 | ||
@@ -513,8 +540,8 @@ size_t ksize(const void *block) | |||
513 | if (unlikely(block == ZERO_SIZE_PTR)) | 540 | if (unlikely(block == ZERO_SIZE_PTR)) |
514 | return 0; | 541 | return 0; |
515 | 542 | ||
516 | sp = (struct slob_page *)virt_to_page(block); | 543 | sp = slob_page(block); |
517 | if (slob_page(sp)) { | 544 | if (is_slob_page(sp)) { |
518 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 545 | int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
519 | unsigned int *m = (unsigned int *)(block - align); | 546 | unsigned int *m = (unsigned int *)(block - align); |
520 | return SLOB_UNITS(*m) * SLOB_UNIT; | 547 | return SLOB_UNITS(*m) * SLOB_UNIT; |
@@ -570,10 +597,19 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | |||
570 | { | 597 | { |
571 | void *b; | 598 | void *b; |
572 | 599 | ||
573 | if (c->size < PAGE_SIZE) | 600 | if (c->size < PAGE_SIZE) { |
574 | b = slob_alloc(c->size, flags, c->align, node); | 601 | b = slob_alloc(c->size, flags, c->align, node); |
575 | else | 602 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, |
576 | b = slob_new_page(flags, get_order(c->size), node); | 603 | _RET_IP_, b, c->size, |
604 | SLOB_UNITS(c->size) * SLOB_UNIT, | ||
605 | flags, node); | ||
606 | } else { | ||
607 | b = slob_new_pages(flags, get_order(c->size), node); | ||
608 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, | ||
609 | _RET_IP_, b, c->size, | ||
610 | PAGE_SIZE << get_order(c->size), | ||
611 | flags, node); | ||
612 | } | ||
577 | 613 | ||
578 | if (c->ctor) | 614 | if (c->ctor) |
579 | c->ctor(b); | 615 | c->ctor(b); |
@@ -587,7 +623,7 @@ static void __kmem_cache_free(void *b, int size) | |||
587 | if (size < PAGE_SIZE) | 623 | if (size < PAGE_SIZE) |
588 | slob_free(b, size); | 624 | slob_free(b, size); |
589 | else | 625 | else |
590 | free_pages((unsigned long)b, get_order(size)); | 626 | slob_free_pages(b, get_order(size)); |
591 | } | 627 | } |
592 | 628 | ||
593 | static void kmem_rcu_free(struct rcu_head *head) | 629 | static void kmem_rcu_free(struct rcu_head *head) |
@@ -609,6 +645,8 @@ void kmem_cache_free(struct kmem_cache *c, void *b) | |||
609 | } else { | 645 | } else { |
610 | __kmem_cache_free(b, c->size); | 646 | __kmem_cache_free(b, c->size); |
611 | } | 647 | } |
648 | |||
649 | kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, b); | ||
612 | } | 650 | } |
613 | EXPORT_SYMBOL(kmem_cache_free); | 651 | EXPORT_SYMBOL(kmem_cache_free); |
614 | 652 | ||
@@ -16,6 +16,7 @@ | |||
16 | #include <linux/slab.h> | 16 | #include <linux/slab.h> |
17 | #include <linux/proc_fs.h> | 17 | #include <linux/proc_fs.h> |
18 | #include <linux/seq_file.h> | 18 | #include <linux/seq_file.h> |
19 | #include <trace/kmemtrace.h> | ||
19 | #include <linux/cpu.h> | 20 | #include <linux/cpu.h> |
20 | #include <linux/cpuset.h> | 21 | #include <linux/cpuset.h> |
21 | #include <linux/mempolicy.h> | 22 | #include <linux/mempolicy.h> |
@@ -374,14 +375,8 @@ static struct track *get_track(struct kmem_cache *s, void *object, | |||
374 | static void set_track(struct kmem_cache *s, void *object, | 375 | static void set_track(struct kmem_cache *s, void *object, |
375 | enum track_item alloc, unsigned long addr) | 376 | enum track_item alloc, unsigned long addr) |
376 | { | 377 | { |
377 | struct track *p; | 378 | struct track *p = get_track(s, object, alloc); |
378 | 379 | ||
379 | if (s->offset) | ||
380 | p = object + s->offset + sizeof(void *); | ||
381 | else | ||
382 | p = object + s->inuse; | ||
383 | |||
384 | p += alloc; | ||
385 | if (addr) { | 380 | if (addr) { |
386 | p->addr = addr; | 381 | p->addr = addr; |
387 | p->cpu = smp_processor_id(); | 382 | p->cpu = smp_processor_id(); |
@@ -1335,7 +1330,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |||
1335 | n = get_node(s, zone_to_nid(zone)); | 1330 | n = get_node(s, zone_to_nid(zone)); |
1336 | 1331 | ||
1337 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && | 1332 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
1338 | n->nr_partial > n->min_partial) { | 1333 | n->nr_partial > s->min_partial) { |
1339 | page = get_partial_node(n); | 1334 | page = get_partial_node(n); |
1340 | if (page) | 1335 | if (page) |
1341 | return page; | 1336 | return page; |
@@ -1387,7 +1382,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
1387 | slab_unlock(page); | 1382 | slab_unlock(page); |
1388 | } else { | 1383 | } else { |
1389 | stat(c, DEACTIVATE_EMPTY); | 1384 | stat(c, DEACTIVATE_EMPTY); |
1390 | if (n->nr_partial < n->min_partial) { | 1385 | if (n->nr_partial < s->min_partial) { |
1391 | /* | 1386 | /* |
1392 | * Adding an empty slab to the partial slabs in order | 1387 | * Adding an empty slab to the partial slabs in order |
1393 | * to avoid page allocator overhead. This slab needs | 1388 | * to avoid page allocator overhead. This slab needs |
@@ -1596,6 +1591,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, | |||
1596 | unsigned long flags; | 1591 | unsigned long flags; |
1597 | unsigned int objsize; | 1592 | unsigned int objsize; |
1598 | 1593 | ||
1594 | lockdep_trace_alloc(gfpflags); | ||
1599 | might_sleep_if(gfpflags & __GFP_WAIT); | 1595 | might_sleep_if(gfpflags & __GFP_WAIT); |
1600 | 1596 | ||
1601 | if (should_failslab(s->objsize, gfpflags)) | 1597 | if (should_failslab(s->objsize, gfpflags)) |
@@ -1623,18 +1619,46 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, | |||
1623 | 1619 | ||
1624 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 1620 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
1625 | { | 1621 | { |
1626 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | 1622 | void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); |
1623 | |||
1624 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
1625 | s->objsize, s->size, gfpflags); | ||
1626 | |||
1627 | return ret; | ||
1627 | } | 1628 | } |
1628 | EXPORT_SYMBOL(kmem_cache_alloc); | 1629 | EXPORT_SYMBOL(kmem_cache_alloc); |
1629 | 1630 | ||
1631 | #ifdef CONFIG_KMEMTRACE | ||
1632 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) | ||
1633 | { | ||
1634 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | ||
1635 | } | ||
1636 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | ||
1637 | #endif | ||
1638 | |||
1630 | #ifdef CONFIG_NUMA | 1639 | #ifdef CONFIG_NUMA |
1631 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 1640 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
1632 | { | 1641 | { |
1633 | return slab_alloc(s, gfpflags, node, _RET_IP_); | 1642 | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); |
1643 | |||
1644 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret, | ||
1645 | s->objsize, s->size, gfpflags, node); | ||
1646 | |||
1647 | return ret; | ||
1634 | } | 1648 | } |
1635 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 1649 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
1636 | #endif | 1650 | #endif |
1637 | 1651 | ||
1652 | #ifdef CONFIG_KMEMTRACE | ||
1653 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, | ||
1654 | gfp_t gfpflags, | ||
1655 | int node) | ||
1656 | { | ||
1657 | return slab_alloc(s, gfpflags, node, _RET_IP_); | ||
1658 | } | ||
1659 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); | ||
1660 | #endif | ||
1661 | |||
1638 | /* | 1662 | /* |
1639 | * Slow patch handling. This may still be called frequently since objects | 1663 | * Slow patch handling. This may still be called frequently since objects |
1640 | * have a longer lifetime than the cpu slabs in most processing loads. | 1664 | * have a longer lifetime than the cpu slabs in most processing loads. |
@@ -1724,7 +1748,7 @@ static __always_inline void slab_free(struct kmem_cache *s, | |||
1724 | c = get_cpu_slab(s, smp_processor_id()); | 1748 | c = get_cpu_slab(s, smp_processor_id()); |
1725 | debug_check_no_locks_freed(object, c->objsize); | 1749 | debug_check_no_locks_freed(object, c->objsize); |
1726 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 1750 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1727 | debug_check_no_obj_freed(object, s->objsize); | 1751 | debug_check_no_obj_freed(object, c->objsize); |
1728 | if (likely(page == c->page && c->node >= 0)) { | 1752 | if (likely(page == c->page && c->node >= 0)) { |
1729 | object[c->offset] = c->freelist; | 1753 | object[c->offset] = c->freelist; |
1730 | c->freelist = object; | 1754 | c->freelist = object; |
@@ -1742,6 +1766,8 @@ void kmem_cache_free(struct kmem_cache *s, void *x) | |||
1742 | page = virt_to_head_page(x); | 1766 | page = virt_to_head_page(x); |
1743 | 1767 | ||
1744 | slab_free(s, page, x, _RET_IP_); | 1768 | slab_free(s, page, x, _RET_IP_); |
1769 | |||
1770 | kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, x); | ||
1745 | } | 1771 | } |
1746 | EXPORT_SYMBOL(kmem_cache_free); | 1772 | EXPORT_SYMBOL(kmem_cache_free); |
1747 | 1773 | ||
@@ -1844,6 +1870,7 @@ static inline int calculate_order(int size) | |||
1844 | int order; | 1870 | int order; |
1845 | int min_objects; | 1871 | int min_objects; |
1846 | int fraction; | 1872 | int fraction; |
1873 | int max_objects; | ||
1847 | 1874 | ||
1848 | /* | 1875 | /* |
1849 | * Attempt to find best configuration for a slab. This | 1876 | * Attempt to find best configuration for a slab. This |
@@ -1856,6 +1883,9 @@ static inline int calculate_order(int size) | |||
1856 | min_objects = slub_min_objects; | 1883 | min_objects = slub_min_objects; |
1857 | if (!min_objects) | 1884 | if (!min_objects) |
1858 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | 1885 | min_objects = 4 * (fls(nr_cpu_ids) + 1); |
1886 | max_objects = (PAGE_SIZE << slub_max_order)/size; | ||
1887 | min_objects = min(min_objects, max_objects); | ||
1888 | |||
1859 | while (min_objects > 1) { | 1889 | while (min_objects > 1) { |
1860 | fraction = 16; | 1890 | fraction = 16; |
1861 | while (fraction >= 4) { | 1891 | while (fraction >= 4) { |
@@ -1865,7 +1895,7 @@ static inline int calculate_order(int size) | |||
1865 | return order; | 1895 | return order; |
1866 | fraction /= 2; | 1896 | fraction /= 2; |
1867 | } | 1897 | } |
1868 | min_objects /= 2; | 1898 | min_objects --; |
1869 | } | 1899 | } |
1870 | 1900 | ||
1871 | /* | 1901 | /* |
@@ -1928,17 +1958,6 @@ static void | |||
1928 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | 1958 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) |
1929 | { | 1959 | { |
1930 | n->nr_partial = 0; | 1960 | n->nr_partial = 0; |
1931 | |||
1932 | /* | ||
1933 | * The larger the object size is, the more pages we want on the partial | ||
1934 | * list to avoid pounding the page allocator excessively. | ||
1935 | */ | ||
1936 | n->min_partial = ilog2(s->size); | ||
1937 | if (n->min_partial < MIN_PARTIAL) | ||
1938 | n->min_partial = MIN_PARTIAL; | ||
1939 | else if (n->min_partial > MAX_PARTIAL) | ||
1940 | n->min_partial = MAX_PARTIAL; | ||
1941 | |||
1942 | spin_lock_init(&n->list_lock); | 1961 | spin_lock_init(&n->list_lock); |
1943 | INIT_LIST_HEAD(&n->partial); | 1962 | INIT_LIST_HEAD(&n->partial); |
1944 | #ifdef CONFIG_SLUB_DEBUG | 1963 | #ifdef CONFIG_SLUB_DEBUG |
@@ -2181,6 +2200,15 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |||
2181 | } | 2200 | } |
2182 | #endif | 2201 | #endif |
2183 | 2202 | ||
2203 | static void set_min_partial(struct kmem_cache *s, unsigned long min) | ||
2204 | { | ||
2205 | if (min < MIN_PARTIAL) | ||
2206 | min = MIN_PARTIAL; | ||
2207 | else if (min > MAX_PARTIAL) | ||
2208 | min = MAX_PARTIAL; | ||
2209 | s->min_partial = min; | ||
2210 | } | ||
2211 | |||
2184 | /* | 2212 | /* |
2185 | * calculate_sizes() determines the order and the distribution of data within | 2213 | * calculate_sizes() determines the order and the distribution of data within |
2186 | * a slab object. | 2214 | * a slab object. |
@@ -2319,6 +2347,11 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | |||
2319 | if (!calculate_sizes(s, -1)) | 2347 | if (!calculate_sizes(s, -1)) |
2320 | goto error; | 2348 | goto error; |
2321 | 2349 | ||
2350 | /* | ||
2351 | * The larger the object size is, the more pages we want on the partial | ||
2352 | * list to avoid pounding the page allocator excessively. | ||
2353 | */ | ||
2354 | set_min_partial(s, ilog2(s->size)); | ||
2322 | s->refcount = 1; | 2355 | s->refcount = 1; |
2323 | #ifdef CONFIG_NUMA | 2356 | #ifdef CONFIG_NUMA |
2324 | s->remote_node_defrag_ratio = 1000; | 2357 | s->remote_node_defrag_ratio = 1000; |
@@ -2475,7 +2508,7 @@ EXPORT_SYMBOL(kmem_cache_destroy); | |||
2475 | * Kmalloc subsystem | 2508 | * Kmalloc subsystem |
2476 | *******************************************************************/ | 2509 | *******************************************************************/ |
2477 | 2510 | ||
2478 | struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; | 2511 | struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; |
2479 | EXPORT_SYMBOL(kmalloc_caches); | 2512 | EXPORT_SYMBOL(kmalloc_caches); |
2480 | 2513 | ||
2481 | static int __init setup_slub_min_order(char *str) | 2514 | static int __init setup_slub_min_order(char *str) |
@@ -2537,7 +2570,7 @@ panic: | |||
2537 | } | 2570 | } |
2538 | 2571 | ||
2539 | #ifdef CONFIG_ZONE_DMA | 2572 | #ifdef CONFIG_ZONE_DMA |
2540 | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; | 2573 | static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; |
2541 | 2574 | ||
2542 | static void sysfs_add_func(struct work_struct *w) | 2575 | static void sysfs_add_func(struct work_struct *w) |
2543 | { | 2576 | { |
@@ -2657,8 +2690,9 @@ static struct kmem_cache *get_slab(size_t size, gfp_t flags) | |||
2657 | void *__kmalloc(size_t size, gfp_t flags) | 2690 | void *__kmalloc(size_t size, gfp_t flags) |
2658 | { | 2691 | { |
2659 | struct kmem_cache *s; | 2692 | struct kmem_cache *s; |
2693 | void *ret; | ||
2660 | 2694 | ||
2661 | if (unlikely(size > PAGE_SIZE)) | 2695 | if (unlikely(size > SLUB_MAX_SIZE)) |
2662 | return kmalloc_large(size, flags); | 2696 | return kmalloc_large(size, flags); |
2663 | 2697 | ||
2664 | s = get_slab(size, flags); | 2698 | s = get_slab(size, flags); |
@@ -2666,7 +2700,12 @@ void *__kmalloc(size_t size, gfp_t flags) | |||
2666 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2700 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
2667 | return s; | 2701 | return s; |
2668 | 2702 | ||
2669 | return slab_alloc(s, flags, -1, _RET_IP_); | 2703 | ret = slab_alloc(s, flags, -1, _RET_IP_); |
2704 | |||
2705 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret, | ||
2706 | size, s->size, flags); | ||
2707 | |||
2708 | return ret; | ||
2670 | } | 2709 | } |
2671 | EXPORT_SYMBOL(__kmalloc); | 2710 | EXPORT_SYMBOL(__kmalloc); |
2672 | 2711 | ||
@@ -2685,16 +2724,30 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | |||
2685 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 2724 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
2686 | { | 2725 | { |
2687 | struct kmem_cache *s; | 2726 | struct kmem_cache *s; |
2727 | void *ret; | ||
2728 | |||
2729 | if (unlikely(size > SLUB_MAX_SIZE)) { | ||
2730 | ret = kmalloc_large_node(size, flags, node); | ||
2688 | 2731 | ||
2689 | if (unlikely(size > PAGE_SIZE)) | 2732 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, |
2690 | return kmalloc_large_node(size, flags, node); | 2733 | _RET_IP_, ret, |
2734 | size, PAGE_SIZE << get_order(size), | ||
2735 | flags, node); | ||
2736 | |||
2737 | return ret; | ||
2738 | } | ||
2691 | 2739 | ||
2692 | s = get_slab(size, flags); | 2740 | s = get_slab(size, flags); |
2693 | 2741 | ||
2694 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2742 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
2695 | return s; | 2743 | return s; |
2696 | 2744 | ||
2697 | return slab_alloc(s, flags, node, _RET_IP_); | 2745 | ret = slab_alloc(s, flags, node, _RET_IP_); |
2746 | |||
2747 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret, | ||
2748 | size, s->size, flags, node); | ||
2749 | |||
2750 | return ret; | ||
2698 | } | 2751 | } |
2699 | EXPORT_SYMBOL(__kmalloc_node); | 2752 | EXPORT_SYMBOL(__kmalloc_node); |
2700 | #endif | 2753 | #endif |
@@ -2753,6 +2806,8 @@ void kfree(const void *x) | |||
2753 | return; | 2806 | return; |
2754 | } | 2807 | } |
2755 | slab_free(page->slab, page, object, _RET_IP_); | 2808 | slab_free(page->slab, page, object, _RET_IP_); |
2809 | |||
2810 | kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, x); | ||
2756 | } | 2811 | } |
2757 | EXPORT_SYMBOL(kfree); | 2812 | EXPORT_SYMBOL(kfree); |
2758 | 2813 | ||
@@ -2986,7 +3041,7 @@ void __init kmem_cache_init(void) | |||
2986 | caches++; | 3041 | caches++; |
2987 | } | 3042 | } |
2988 | 3043 | ||
2989 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { | 3044 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
2990 | create_kmalloc_cache(&kmalloc_caches[i], | 3045 | create_kmalloc_cache(&kmalloc_caches[i], |
2991 | "kmalloc", 1 << i, GFP_KERNEL); | 3046 | "kmalloc", 1 << i, GFP_KERNEL); |
2992 | caches++; | 3047 | caches++; |
@@ -3023,7 +3078,7 @@ void __init kmem_cache_init(void) | |||
3023 | slab_state = UP; | 3078 | slab_state = UP; |
3024 | 3079 | ||
3025 | /* Provide the correct kmalloc names now that the caches are up */ | 3080 | /* Provide the correct kmalloc names now that the caches are up */ |
3026 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) | 3081 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) |
3027 | kmalloc_caches[i]. name = | 3082 | kmalloc_caches[i]. name = |
3028 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | 3083 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); |
3029 | 3084 | ||
@@ -3222,8 +3277,9 @@ static struct notifier_block __cpuinitdata slab_notifier = { | |||
3222 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 3277 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
3223 | { | 3278 | { |
3224 | struct kmem_cache *s; | 3279 | struct kmem_cache *s; |
3280 | void *ret; | ||
3225 | 3281 | ||
3226 | if (unlikely(size > PAGE_SIZE)) | 3282 | if (unlikely(size > SLUB_MAX_SIZE)) |
3227 | return kmalloc_large(size, gfpflags); | 3283 | return kmalloc_large(size, gfpflags); |
3228 | 3284 | ||
3229 | s = get_slab(size, gfpflags); | 3285 | s = get_slab(size, gfpflags); |
@@ -3231,15 +3287,22 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | |||
3231 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3287 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3232 | return s; | 3288 | return s; |
3233 | 3289 | ||
3234 | return slab_alloc(s, gfpflags, -1, caller); | 3290 | ret = slab_alloc(s, gfpflags, -1, caller); |
3291 | |||
3292 | /* Honor the call site pointer we recieved. */ | ||
3293 | kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, caller, ret, size, | ||
3294 | s->size, gfpflags); | ||
3295 | |||
3296 | return ret; | ||
3235 | } | 3297 | } |
3236 | 3298 | ||
3237 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 3299 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
3238 | int node, unsigned long caller) | 3300 | int node, unsigned long caller) |
3239 | { | 3301 | { |
3240 | struct kmem_cache *s; | 3302 | struct kmem_cache *s; |
3303 | void *ret; | ||
3241 | 3304 | ||
3242 | if (unlikely(size > PAGE_SIZE)) | 3305 | if (unlikely(size > SLUB_MAX_SIZE)) |
3243 | return kmalloc_large_node(size, gfpflags, node); | 3306 | return kmalloc_large_node(size, gfpflags, node); |
3244 | 3307 | ||
3245 | s = get_slab(size, gfpflags); | 3308 | s = get_slab(size, gfpflags); |
@@ -3247,7 +3310,13 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |||
3247 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3310 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3248 | return s; | 3311 | return s; |
3249 | 3312 | ||
3250 | return slab_alloc(s, gfpflags, node, caller); | 3313 | ret = slab_alloc(s, gfpflags, node, caller); |
3314 | |||
3315 | /* Honor the call site pointer we recieved. */ | ||
3316 | kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, caller, ret, | ||
3317 | size, s->size, gfpflags, node); | ||
3318 | |||
3319 | return ret; | ||
3251 | } | 3320 | } |
3252 | 3321 | ||
3253 | #ifdef CONFIG_SLUB_DEBUG | 3322 | #ifdef CONFIG_SLUB_DEBUG |
@@ -3836,6 +3905,26 @@ static ssize_t order_show(struct kmem_cache *s, char *buf) | |||
3836 | } | 3905 | } |
3837 | SLAB_ATTR(order); | 3906 | SLAB_ATTR(order); |
3838 | 3907 | ||
3908 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | ||
3909 | { | ||
3910 | return sprintf(buf, "%lu\n", s->min_partial); | ||
3911 | } | ||
3912 | |||
3913 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | ||
3914 | size_t length) | ||
3915 | { | ||
3916 | unsigned long min; | ||
3917 | int err; | ||
3918 | |||
3919 | err = strict_strtoul(buf, 10, &min); | ||
3920 | if (err) | ||
3921 | return err; | ||
3922 | |||
3923 | set_min_partial(s, min); | ||
3924 | return length; | ||
3925 | } | ||
3926 | SLAB_ATTR(min_partial); | ||
3927 | |||
3839 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 3928 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
3840 | { | 3929 | { |
3841 | if (s->ctor) { | 3930 | if (s->ctor) { |
@@ -4151,6 +4240,7 @@ static struct attribute *slab_attrs[] = { | |||
4151 | &object_size_attr.attr, | 4240 | &object_size_attr.attr, |
4152 | &objs_per_slab_attr.attr, | 4241 | &objs_per_slab_attr.attr, |
4153 | &order_attr.attr, | 4242 | &order_attr.attr, |
4243 | &min_partial_attr.attr, | ||
4154 | &objects_attr.attr, | 4244 | &objects_attr.attr, |
4155 | &objects_partial_attr.attr, | 4245 | &objects_partial_attr.attr, |
4156 | &total_objects_attr.attr, | 4246 | &total_objects_attr.attr, |
diff --git a/mm/sparse.c b/mm/sparse.c index 083f5b63e7a8..da432d9f0ae8 100644 --- a/mm/sparse.c +++ b/mm/sparse.c | |||
@@ -164,9 +164,7 @@ void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, | |||
164 | WARN_ON_ONCE(1); | 164 | WARN_ON_ONCE(1); |
165 | *start_pfn = max_sparsemem_pfn; | 165 | *start_pfn = max_sparsemem_pfn; |
166 | *end_pfn = max_sparsemem_pfn; | 166 | *end_pfn = max_sparsemem_pfn; |
167 | } | 167 | } else if (*end_pfn > max_sparsemem_pfn) { |
168 | |||
169 | if (*end_pfn > max_sparsemem_pfn) { | ||
170 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | 168 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
171 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | 169 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
172 | *start_pfn, *end_pfn, max_sparsemem_pfn); | 170 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
@@ -448,8 +448,8 @@ void pagevec_strip(struct pagevec *pvec) | |||
448 | for (i = 0; i < pagevec_count(pvec); i++) { | 448 | for (i = 0; i < pagevec_count(pvec); i++) { |
449 | struct page *page = pvec->pages[i]; | 449 | struct page *page = pvec->pages[i]; |
450 | 450 | ||
451 | if (PagePrivate(page) && trylock_page(page)) { | 451 | if (page_has_private(page) && trylock_page(page)) { |
452 | if (PagePrivate(page)) | 452 | if (page_has_private(page)) |
453 | try_to_release_page(page, 0); | 453 | try_to_release_page(page, 0); |
454 | unlock_page(page); | 454 | unlock_page(page); |
455 | } | 455 | } |
@@ -457,29 +457,6 @@ void pagevec_strip(struct pagevec *pvec) | |||
457 | } | 457 | } |
458 | 458 | ||
459 | /** | 459 | /** |
460 | * pagevec_swap_free - try to free swap space from the pages in a pagevec | ||
461 | * @pvec: pagevec with swapcache pages to free the swap space of | ||
462 | * | ||
463 | * The caller needs to hold an extra reference to each page and | ||
464 | * not hold the page lock on the pages. This function uses a | ||
465 | * trylock on the page lock so it may not always free the swap | ||
466 | * space associated with a page. | ||
467 | */ | ||
468 | void pagevec_swap_free(struct pagevec *pvec) | ||
469 | { | ||
470 | int i; | ||
471 | |||
472 | for (i = 0; i < pagevec_count(pvec); i++) { | ||
473 | struct page *page = pvec->pages[i]; | ||
474 | |||
475 | if (PageSwapCache(page) && trylock_page(page)) { | ||
476 | try_to_free_swap(page); | ||
477 | unlock_page(page); | ||
478 | } | ||
479 | } | ||
480 | } | ||
481 | |||
482 | /** | ||
483 | * pagevec_lookup - gang pagecache lookup | 460 | * pagevec_lookup - gang pagecache lookup |
484 | * @pvec: Where the resulting pages are placed | 461 | * @pvec: Where the resulting pages are placed |
485 | * @mapping: The address_space to search | 462 | * @mapping: The address_space to search |
diff --git a/mm/truncate.c b/mm/truncate.c index 1229211104f8..55206fab7b99 100644 --- a/mm/truncate.c +++ b/mm/truncate.c | |||
@@ -50,7 +50,7 @@ void do_invalidatepage(struct page *page, unsigned long offset) | |||
50 | static inline void truncate_partial_page(struct page *page, unsigned partial) | 50 | static inline void truncate_partial_page(struct page *page, unsigned partial) |
51 | { | 51 | { |
52 | zero_user_segment(page, partial, PAGE_CACHE_SIZE); | 52 | zero_user_segment(page, partial, PAGE_CACHE_SIZE); |
53 | if (PagePrivate(page)) | 53 | if (page_has_private(page)) |
54 | do_invalidatepage(page, partial); | 54 | do_invalidatepage(page, partial); |
55 | } | 55 | } |
56 | 56 | ||
@@ -99,7 +99,7 @@ truncate_complete_page(struct address_space *mapping, struct page *page) | |||
99 | if (page->mapping != mapping) | 99 | if (page->mapping != mapping) |
100 | return; | 100 | return; |
101 | 101 | ||
102 | if (PagePrivate(page)) | 102 | if (page_has_private(page)) |
103 | do_invalidatepage(page, 0); | 103 | do_invalidatepage(page, 0); |
104 | 104 | ||
105 | cancel_dirty_page(page, PAGE_CACHE_SIZE); | 105 | cancel_dirty_page(page, PAGE_CACHE_SIZE); |
@@ -126,7 +126,7 @@ invalidate_complete_page(struct address_space *mapping, struct page *page) | |||
126 | if (page->mapping != mapping) | 126 | if (page->mapping != mapping) |
127 | return 0; | 127 | return 0; |
128 | 128 | ||
129 | if (PagePrivate(page) && !try_to_release_page(page, 0)) | 129 | if (page_has_private(page) && !try_to_release_page(page, 0)) |
130 | return 0; | 130 | return 0; |
131 | 131 | ||
132 | clear_page_mlock(page); | 132 | clear_page_mlock(page); |
@@ -348,7 +348,7 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) | |||
348 | if (page->mapping != mapping) | 348 | if (page->mapping != mapping) |
349 | return 0; | 349 | return 0; |
350 | 350 | ||
351 | if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) | 351 | if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) |
352 | return 0; | 352 | return 0; |
353 | 353 | ||
354 | spin_lock_irq(&mapping->tree_lock); | 354 | spin_lock_irq(&mapping->tree_lock); |
@@ -356,7 +356,7 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) | |||
356 | goto failed; | 356 | goto failed; |
357 | 357 | ||
358 | clear_page_mlock(page); | 358 | clear_page_mlock(page); |
359 | BUG_ON(PagePrivate(page)); | 359 | BUG_ON(page_has_private(page)); |
360 | __remove_from_page_cache(page); | 360 | __remove_from_page_cache(page); |
361 | spin_unlock_irq(&mapping->tree_lock); | 361 | spin_unlock_irq(&mapping->tree_lock); |
362 | page_cache_release(page); /* pagecache ref */ | 362 | page_cache_release(page); /* pagecache ref */ |
@@ -70,6 +70,36 @@ void *kmemdup(const void *src, size_t len, gfp_t gfp) | |||
70 | EXPORT_SYMBOL(kmemdup); | 70 | EXPORT_SYMBOL(kmemdup); |
71 | 71 | ||
72 | /** | 72 | /** |
73 | * memdup_user - duplicate memory region from user space | ||
74 | * | ||
75 | * @src: source address in user space | ||
76 | * @len: number of bytes to copy | ||
77 | * | ||
78 | * Returns an ERR_PTR() on failure. | ||
79 | */ | ||
80 | void *memdup_user(const void __user *src, size_t len) | ||
81 | { | ||
82 | void *p; | ||
83 | |||
84 | /* | ||
85 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | ||
86 | * cause pagefault, which makes it pointless to use GFP_NOFS | ||
87 | * or GFP_ATOMIC. | ||
88 | */ | ||
89 | p = kmalloc_track_caller(len, GFP_KERNEL); | ||
90 | if (!p) | ||
91 | return ERR_PTR(-ENOMEM); | ||
92 | |||
93 | if (copy_from_user(p, src, len)) { | ||
94 | kfree(p); | ||
95 | return ERR_PTR(-EFAULT); | ||
96 | } | ||
97 | |||
98 | return p; | ||
99 | } | ||
100 | EXPORT_SYMBOL(memdup_user); | ||
101 | |||
102 | /** | ||
73 | * __krealloc - like krealloc() but don't free @p. | 103 | * __krealloc - like krealloc() but don't free @p. |
74 | * @p: object to reallocate memory for. | 104 | * @p: object to reallocate memory for. |
75 | * @new_size: how many bytes of memory are required. | 105 | * @new_size: how many bytes of memory are required. |
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 520a75980269..fab19876b4d1 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -24,6 +24,7 @@ | |||
24 | #include <linux/radix-tree.h> | 24 | #include <linux/radix-tree.h> |
25 | #include <linux/rcupdate.h> | 25 | #include <linux/rcupdate.h> |
26 | #include <linux/bootmem.h> | 26 | #include <linux/bootmem.h> |
27 | #include <linux/pfn.h> | ||
27 | 28 | ||
28 | #include <asm/atomic.h> | 29 | #include <asm/atomic.h> |
29 | #include <asm/uaccess.h> | 30 | #include <asm/uaccess.h> |
@@ -152,8 +153,8 @@ static int vmap_pud_range(pgd_t *pgd, unsigned long addr, | |||
152 | * | 153 | * |
153 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | 154 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] |
154 | */ | 155 | */ |
155 | static int vmap_page_range(unsigned long start, unsigned long end, | 156 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
156 | pgprot_t prot, struct page **pages) | 157 | pgprot_t prot, struct page **pages) |
157 | { | 158 | { |
158 | pgd_t *pgd; | 159 | pgd_t *pgd; |
159 | unsigned long next; | 160 | unsigned long next; |
@@ -169,13 +170,22 @@ static int vmap_page_range(unsigned long start, unsigned long end, | |||
169 | if (err) | 170 | if (err) |
170 | break; | 171 | break; |
171 | } while (pgd++, addr = next, addr != end); | 172 | } while (pgd++, addr = next, addr != end); |
172 | flush_cache_vmap(start, end); | ||
173 | 173 | ||
174 | if (unlikely(err)) | 174 | if (unlikely(err)) |
175 | return err; | 175 | return err; |
176 | return nr; | 176 | return nr; |
177 | } | 177 | } |
178 | 178 | ||
179 | static int vmap_page_range(unsigned long start, unsigned long end, | ||
180 | pgprot_t prot, struct page **pages) | ||
181 | { | ||
182 | int ret; | ||
183 | |||
184 | ret = vmap_page_range_noflush(start, end, prot, pages); | ||
185 | flush_cache_vmap(start, end); | ||
186 | return ret; | ||
187 | } | ||
188 | |||
179 | static inline int is_vmalloc_or_module_addr(const void *x) | 189 | static inline int is_vmalloc_or_module_addr(const void *x) |
180 | { | 190 | { |
181 | /* | 191 | /* |
@@ -661,10 +671,7 @@ struct vmap_block { | |||
661 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | 671 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); |
662 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | 672 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); |
663 | union { | 673 | union { |
664 | struct { | 674 | struct list_head free_list; |
665 | struct list_head free_list; | ||
666 | struct list_head dirty_list; | ||
667 | }; | ||
668 | struct rcu_head rcu_head; | 675 | struct rcu_head rcu_head; |
669 | }; | 676 | }; |
670 | }; | 677 | }; |
@@ -731,7 +738,6 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |||
731 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | 738 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); |
732 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | 739 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); |
733 | INIT_LIST_HEAD(&vb->free_list); | 740 | INIT_LIST_HEAD(&vb->free_list); |
734 | INIT_LIST_HEAD(&vb->dirty_list); | ||
735 | 741 | ||
736 | vb_idx = addr_to_vb_idx(va->va_start); | 742 | vb_idx = addr_to_vb_idx(va->va_start); |
737 | spin_lock(&vmap_block_tree_lock); | 743 | spin_lock(&vmap_block_tree_lock); |
@@ -762,12 +768,7 @@ static void free_vmap_block(struct vmap_block *vb) | |||
762 | struct vmap_block *tmp; | 768 | struct vmap_block *tmp; |
763 | unsigned long vb_idx; | 769 | unsigned long vb_idx; |
764 | 770 | ||
765 | spin_lock(&vb->vbq->lock); | 771 | BUG_ON(!list_empty(&vb->free_list)); |
766 | if (!list_empty(&vb->free_list)) | ||
767 | list_del(&vb->free_list); | ||
768 | if (!list_empty(&vb->dirty_list)) | ||
769 | list_del(&vb->dirty_list); | ||
770 | spin_unlock(&vb->vbq->lock); | ||
771 | 772 | ||
772 | vb_idx = addr_to_vb_idx(vb->va->va_start); | 773 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
773 | spin_lock(&vmap_block_tree_lock); | 774 | spin_lock(&vmap_block_tree_lock); |
@@ -852,11 +853,7 @@ static void vb_free(const void *addr, unsigned long size) | |||
852 | 853 | ||
853 | spin_lock(&vb->lock); | 854 | spin_lock(&vb->lock); |
854 | bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); | 855 | bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); |
855 | if (!vb->dirty) { | 856 | |
856 | spin_lock(&vb->vbq->lock); | ||
857 | list_add(&vb->dirty_list, &vb->vbq->dirty); | ||
858 | spin_unlock(&vb->vbq->lock); | ||
859 | } | ||
860 | vb->dirty += 1UL << order; | 857 | vb->dirty += 1UL << order; |
861 | if (vb->dirty == VMAP_BBMAP_BITS) { | 858 | if (vb->dirty == VMAP_BBMAP_BITS) { |
862 | BUG_ON(vb->free || !list_empty(&vb->free_list)); | 859 | BUG_ON(vb->free || !list_empty(&vb->free_list)); |
@@ -990,6 +987,32 @@ void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t pro | |||
990 | } | 987 | } |
991 | EXPORT_SYMBOL(vm_map_ram); | 988 | EXPORT_SYMBOL(vm_map_ram); |
992 | 989 | ||
990 | /** | ||
991 | * vm_area_register_early - register vmap area early during boot | ||
992 | * @vm: vm_struct to register | ||
993 | * @align: requested alignment | ||
994 | * | ||
995 | * This function is used to register kernel vm area before | ||
996 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | ||
997 | * proper values on entry and other fields should be zero. On return, | ||
998 | * vm->addr contains the allocated address. | ||
999 | * | ||
1000 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | ||
1001 | */ | ||
1002 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | ||
1003 | { | ||
1004 | static size_t vm_init_off __initdata; | ||
1005 | unsigned long addr; | ||
1006 | |||
1007 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | ||
1008 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | ||
1009 | |||
1010 | vm->addr = (void *)addr; | ||
1011 | |||
1012 | vm->next = vmlist; | ||
1013 | vmlist = vm; | ||
1014 | } | ||
1015 | |||
993 | void __init vmalloc_init(void) | 1016 | void __init vmalloc_init(void) |
994 | { | 1017 | { |
995 | struct vmap_area *va; | 1018 | struct vmap_area *va; |
@@ -1017,6 +1040,58 @@ void __init vmalloc_init(void) | |||
1017 | vmap_initialized = true; | 1040 | vmap_initialized = true; |
1018 | } | 1041 | } |
1019 | 1042 | ||
1043 | /** | ||
1044 | * map_kernel_range_noflush - map kernel VM area with the specified pages | ||
1045 | * @addr: start of the VM area to map | ||
1046 | * @size: size of the VM area to map | ||
1047 | * @prot: page protection flags to use | ||
1048 | * @pages: pages to map | ||
1049 | * | ||
1050 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | ||
1051 | * specify should have been allocated using get_vm_area() and its | ||
1052 | * friends. | ||
1053 | * | ||
1054 | * NOTE: | ||
1055 | * This function does NOT do any cache flushing. The caller is | ||
1056 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | ||
1057 | * before calling this function. | ||
1058 | * | ||
1059 | * RETURNS: | ||
1060 | * The number of pages mapped on success, -errno on failure. | ||
1061 | */ | ||
1062 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | ||
1063 | pgprot_t prot, struct page **pages) | ||
1064 | { | ||
1065 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | ||
1066 | } | ||
1067 | |||
1068 | /** | ||
1069 | * unmap_kernel_range_noflush - unmap kernel VM area | ||
1070 | * @addr: start of the VM area to unmap | ||
1071 | * @size: size of the VM area to unmap | ||
1072 | * | ||
1073 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | ||
1074 | * specify should have been allocated using get_vm_area() and its | ||
1075 | * friends. | ||
1076 | * | ||
1077 | * NOTE: | ||
1078 | * This function does NOT do any cache flushing. The caller is | ||
1079 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | ||
1080 | * before calling this function and flush_tlb_kernel_range() after. | ||
1081 | */ | ||
1082 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | ||
1083 | { | ||
1084 | vunmap_page_range(addr, addr + size); | ||
1085 | } | ||
1086 | |||
1087 | /** | ||
1088 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | ||
1089 | * @addr: start of the VM area to unmap | ||
1090 | * @size: size of the VM area to unmap | ||
1091 | * | ||
1092 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | ||
1093 | * the unmapping and tlb after. | ||
1094 | */ | ||
1020 | void unmap_kernel_range(unsigned long addr, unsigned long size) | 1095 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1021 | { | 1096 | { |
1022 | unsigned long end = addr + size; | 1097 | unsigned long end = addr + size; |
@@ -1267,6 +1342,7 @@ EXPORT_SYMBOL(vfree); | |||
1267 | void vunmap(const void *addr) | 1342 | void vunmap(const void *addr) |
1268 | { | 1343 | { |
1269 | BUG_ON(in_interrupt()); | 1344 | BUG_ON(in_interrupt()); |
1345 | might_sleep(); | ||
1270 | __vunmap(addr, 0); | 1346 | __vunmap(addr, 0); |
1271 | } | 1347 | } |
1272 | EXPORT_SYMBOL(vunmap); | 1348 | EXPORT_SYMBOL(vunmap); |
@@ -1286,6 +1362,8 @@ void *vmap(struct page **pages, unsigned int count, | |||
1286 | { | 1362 | { |
1287 | struct vm_struct *area; | 1363 | struct vm_struct *area; |
1288 | 1364 | ||
1365 | might_sleep(); | ||
1366 | |||
1289 | if (count > num_physpages) | 1367 | if (count > num_physpages) |
1290 | return NULL; | 1368 | return NULL; |
1291 | 1369 | ||
diff --git a/mm/vmscan.c b/mm/vmscan.c index 56ddf41149eb..39fdfb14eeaa 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -60,8 +60,8 @@ struct scan_control { | |||
60 | 60 | ||
61 | int may_writepage; | 61 | int may_writepage; |
62 | 62 | ||
63 | /* Can pages be swapped as part of reclaim? */ | 63 | /* Can mapped pages be reclaimed? */ |
64 | int may_swap; | 64 | int may_unmap; |
65 | 65 | ||
66 | /* This context's SWAP_CLUSTER_MAX. If freeing memory for | 66 | /* This context's SWAP_CLUSTER_MAX. If freeing memory for |
67 | * suspend, we effectively ignore SWAP_CLUSTER_MAX. | 67 | * suspend, we effectively ignore SWAP_CLUSTER_MAX. |
@@ -78,6 +78,12 @@ struct scan_control { | |||
78 | /* Which cgroup do we reclaim from */ | 78 | /* Which cgroup do we reclaim from */ |
79 | struct mem_cgroup *mem_cgroup; | 79 | struct mem_cgroup *mem_cgroup; |
80 | 80 | ||
81 | /* | ||
82 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | ||
83 | * are scanned. | ||
84 | */ | ||
85 | nodemask_t *nodemask; | ||
86 | |||
81 | /* Pluggable isolate pages callback */ | 87 | /* Pluggable isolate pages callback */ |
82 | unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, | 88 | unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, |
83 | unsigned long *scanned, int order, int mode, | 89 | unsigned long *scanned, int order, int mode, |
@@ -214,8 +220,9 @@ unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, | |||
214 | do_div(delta, lru_pages + 1); | 220 | do_div(delta, lru_pages + 1); |
215 | shrinker->nr += delta; | 221 | shrinker->nr += delta; |
216 | if (shrinker->nr < 0) { | 222 | if (shrinker->nr < 0) { |
217 | printk(KERN_ERR "%s: nr=%ld\n", | 223 | printk(KERN_ERR "shrink_slab: %pF negative objects to " |
218 | __func__, shrinker->nr); | 224 | "delete nr=%ld\n", |
225 | shrinker->shrink, shrinker->nr); | ||
219 | shrinker->nr = max_pass; | 226 | shrinker->nr = max_pass; |
220 | } | 227 | } |
221 | 228 | ||
@@ -276,7 +283,7 @@ static inline int page_mapping_inuse(struct page *page) | |||
276 | 283 | ||
277 | static inline int is_page_cache_freeable(struct page *page) | 284 | static inline int is_page_cache_freeable(struct page *page) |
278 | { | 285 | { |
279 | return page_count(page) - !!PagePrivate(page) == 2; | 286 | return page_count(page) - !!page_has_private(page) == 2; |
280 | } | 287 | } |
281 | 288 | ||
282 | static int may_write_to_queue(struct backing_dev_info *bdi) | 289 | static int may_write_to_queue(struct backing_dev_info *bdi) |
@@ -360,7 +367,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
360 | * Some data journaling orphaned pages can have | 367 | * Some data journaling orphaned pages can have |
361 | * page->mapping == NULL while being dirty with clean buffers. | 368 | * page->mapping == NULL while being dirty with clean buffers. |
362 | */ | 369 | */ |
363 | if (PagePrivate(page)) { | 370 | if (page_has_private(page)) { |
364 | if (try_to_free_buffers(page)) { | 371 | if (try_to_free_buffers(page)) { |
365 | ClearPageDirty(page); | 372 | ClearPageDirty(page); |
366 | printk("%s: orphaned page\n", __func__); | 373 | printk("%s: orphaned page\n", __func__); |
@@ -606,7 +613,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
606 | if (unlikely(!page_evictable(page, NULL))) | 613 | if (unlikely(!page_evictable(page, NULL))) |
607 | goto cull_mlocked; | 614 | goto cull_mlocked; |
608 | 615 | ||
609 | if (!sc->may_swap && page_mapped(page)) | 616 | if (!sc->may_unmap && page_mapped(page)) |
610 | goto keep_locked; | 617 | goto keep_locked; |
611 | 618 | ||
612 | /* Double the slab pressure for mapped and swapcache pages */ | 619 | /* Double the slab pressure for mapped and swapcache pages */ |
@@ -720,7 +727,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
720 | * process address space (page_count == 1) it can be freed. | 727 | * process address space (page_count == 1) it can be freed. |
721 | * Otherwise, leave the page on the LRU so it is swappable. | 728 | * Otherwise, leave the page on the LRU so it is swappable. |
722 | */ | 729 | */ |
723 | if (PagePrivate(page)) { | 730 | if (page_has_private(page)) { |
724 | if (!try_to_release_page(page, sc->gfp_mask)) | 731 | if (!try_to_release_page(page, sc->gfp_mask)) |
725 | goto activate_locked; | 732 | goto activate_locked; |
726 | if (!mapping && page_count(page) == 1) { | 733 | if (!mapping && page_count(page) == 1) { |
@@ -1298,17 +1305,11 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | |||
1298 | } | 1305 | } |
1299 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); | 1306 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); |
1300 | pgdeactivate += pgmoved; | 1307 | pgdeactivate += pgmoved; |
1301 | if (buffer_heads_over_limit) { | ||
1302 | spin_unlock_irq(&zone->lru_lock); | ||
1303 | pagevec_strip(&pvec); | ||
1304 | spin_lock_irq(&zone->lru_lock); | ||
1305 | } | ||
1306 | __count_zone_vm_events(PGREFILL, zone, pgscanned); | 1308 | __count_zone_vm_events(PGREFILL, zone, pgscanned); |
1307 | __count_vm_events(PGDEACTIVATE, pgdeactivate); | 1309 | __count_vm_events(PGDEACTIVATE, pgdeactivate); |
1308 | spin_unlock_irq(&zone->lru_lock); | 1310 | spin_unlock_irq(&zone->lru_lock); |
1309 | if (vm_swap_full()) | 1311 | if (buffer_heads_over_limit) |
1310 | pagevec_swap_free(&pvec); | 1312 | pagevec_strip(&pvec); |
1311 | |||
1312 | pagevec_release(&pvec); | 1313 | pagevec_release(&pvec); |
1313 | } | 1314 | } |
1314 | 1315 | ||
@@ -1543,7 +1544,8 @@ static void shrink_zones(int priority, struct zonelist *zonelist, | |||
1543 | struct zone *zone; | 1544 | struct zone *zone; |
1544 | 1545 | ||
1545 | sc->all_unreclaimable = 1; | 1546 | sc->all_unreclaimable = 1; |
1546 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 1547 | for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, |
1548 | sc->nodemask) { | ||
1547 | if (!populated_zone(zone)) | 1549 | if (!populated_zone(zone)) |
1548 | continue; | 1550 | continue; |
1549 | /* | 1551 | /* |
@@ -1688,17 +1690,18 @@ out: | |||
1688 | } | 1690 | } |
1689 | 1691 | ||
1690 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | 1692 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
1691 | gfp_t gfp_mask) | 1693 | gfp_t gfp_mask, nodemask_t *nodemask) |
1692 | { | 1694 | { |
1693 | struct scan_control sc = { | 1695 | struct scan_control sc = { |
1694 | .gfp_mask = gfp_mask, | 1696 | .gfp_mask = gfp_mask, |
1695 | .may_writepage = !laptop_mode, | 1697 | .may_writepage = !laptop_mode, |
1696 | .swap_cluster_max = SWAP_CLUSTER_MAX, | 1698 | .swap_cluster_max = SWAP_CLUSTER_MAX, |
1697 | .may_swap = 1, | 1699 | .may_unmap = 1, |
1698 | .swappiness = vm_swappiness, | 1700 | .swappiness = vm_swappiness, |
1699 | .order = order, | 1701 | .order = order, |
1700 | .mem_cgroup = NULL, | 1702 | .mem_cgroup = NULL, |
1701 | .isolate_pages = isolate_pages_global, | 1703 | .isolate_pages = isolate_pages_global, |
1704 | .nodemask = nodemask, | ||
1702 | }; | 1705 | }; |
1703 | 1706 | ||
1704 | return do_try_to_free_pages(zonelist, &sc); | 1707 | return do_try_to_free_pages(zonelist, &sc); |
@@ -1713,17 +1716,18 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, | |||
1713 | { | 1716 | { |
1714 | struct scan_control sc = { | 1717 | struct scan_control sc = { |
1715 | .may_writepage = !laptop_mode, | 1718 | .may_writepage = !laptop_mode, |
1716 | .may_swap = 1, | 1719 | .may_unmap = 1, |
1717 | .swap_cluster_max = SWAP_CLUSTER_MAX, | 1720 | .swap_cluster_max = SWAP_CLUSTER_MAX, |
1718 | .swappiness = swappiness, | 1721 | .swappiness = swappiness, |
1719 | .order = 0, | 1722 | .order = 0, |
1720 | .mem_cgroup = mem_cont, | 1723 | .mem_cgroup = mem_cont, |
1721 | .isolate_pages = mem_cgroup_isolate_pages, | 1724 | .isolate_pages = mem_cgroup_isolate_pages, |
1725 | .nodemask = NULL, /* we don't care the placement */ | ||
1722 | }; | 1726 | }; |
1723 | struct zonelist *zonelist; | 1727 | struct zonelist *zonelist; |
1724 | 1728 | ||
1725 | if (noswap) | 1729 | if (noswap) |
1726 | sc.may_swap = 0; | 1730 | sc.may_unmap = 0; |
1727 | 1731 | ||
1728 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 1732 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
1729 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 1733 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
@@ -1762,7 +1766,7 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order) | |||
1762 | struct reclaim_state *reclaim_state = current->reclaim_state; | 1766 | struct reclaim_state *reclaim_state = current->reclaim_state; |
1763 | struct scan_control sc = { | 1767 | struct scan_control sc = { |
1764 | .gfp_mask = GFP_KERNEL, | 1768 | .gfp_mask = GFP_KERNEL, |
1765 | .may_swap = 1, | 1769 | .may_unmap = 1, |
1766 | .swap_cluster_max = SWAP_CLUSTER_MAX, | 1770 | .swap_cluster_max = SWAP_CLUSTER_MAX, |
1767 | .swappiness = vm_swappiness, | 1771 | .swappiness = vm_swappiness, |
1768 | .order = order, | 1772 | .order = order, |
@@ -1963,7 +1967,9 @@ static int kswapd(void *p) | |||
1963 | struct reclaim_state reclaim_state = { | 1967 | struct reclaim_state reclaim_state = { |
1964 | .reclaimed_slab = 0, | 1968 | .reclaimed_slab = 0, |
1965 | }; | 1969 | }; |
1966 | node_to_cpumask_ptr(cpumask, pgdat->node_id); | 1970 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1971 | |||
1972 | lockdep_set_current_reclaim_state(GFP_KERNEL); | ||
1967 | 1973 | ||
1968 | if (!cpumask_empty(cpumask)) | 1974 | if (!cpumask_empty(cpumask)) |
1969 | set_cpus_allowed_ptr(tsk, cpumask); | 1975 | set_cpus_allowed_ptr(tsk, cpumask); |
@@ -2048,22 +2054,19 @@ unsigned long global_lru_pages(void) | |||
2048 | #ifdef CONFIG_PM | 2054 | #ifdef CONFIG_PM |
2049 | /* | 2055 | /* |
2050 | * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages | 2056 | * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages |
2051 | * from LRU lists system-wide, for given pass and priority, and returns the | 2057 | * from LRU lists system-wide, for given pass and priority. |
2052 | * number of reclaimed pages | ||
2053 | * | 2058 | * |
2054 | * For pass > 3 we also try to shrink the LRU lists that contain a few pages | 2059 | * For pass > 3 we also try to shrink the LRU lists that contain a few pages |
2055 | */ | 2060 | */ |
2056 | static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, | 2061 | static void shrink_all_zones(unsigned long nr_pages, int prio, |
2057 | int pass, struct scan_control *sc) | 2062 | int pass, struct scan_control *sc) |
2058 | { | 2063 | { |
2059 | struct zone *zone; | 2064 | struct zone *zone; |
2060 | unsigned long ret = 0; | 2065 | unsigned long nr_reclaimed = 0; |
2061 | 2066 | ||
2062 | for_each_zone(zone) { | 2067 | for_each_populated_zone(zone) { |
2063 | enum lru_list l; | 2068 | enum lru_list l; |
2064 | 2069 | ||
2065 | if (!populated_zone(zone)) | ||
2066 | continue; | ||
2067 | if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) | 2070 | if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) |
2068 | continue; | 2071 | continue; |
2069 | 2072 | ||
@@ -2082,14 +2085,16 @@ static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, | |||
2082 | 2085 | ||
2083 | zone->lru[l].nr_scan = 0; | 2086 | zone->lru[l].nr_scan = 0; |
2084 | nr_to_scan = min(nr_pages, lru_pages); | 2087 | nr_to_scan = min(nr_pages, lru_pages); |
2085 | ret += shrink_list(l, nr_to_scan, zone, | 2088 | nr_reclaimed += shrink_list(l, nr_to_scan, zone, |
2086 | sc, prio); | 2089 | sc, prio); |
2087 | if (ret >= nr_pages) | 2090 | if (nr_reclaimed >= nr_pages) { |
2088 | return ret; | 2091 | sc->nr_reclaimed = nr_reclaimed; |
2092 | return; | ||
2093 | } | ||
2089 | } | 2094 | } |
2090 | } | 2095 | } |
2091 | } | 2096 | } |
2092 | return ret; | 2097 | sc->nr_reclaimed = nr_reclaimed; |
2093 | } | 2098 | } |
2094 | 2099 | ||
2095 | /* | 2100 | /* |
@@ -2103,13 +2108,11 @@ static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, | |||
2103 | unsigned long shrink_all_memory(unsigned long nr_pages) | 2108 | unsigned long shrink_all_memory(unsigned long nr_pages) |
2104 | { | 2109 | { |
2105 | unsigned long lru_pages, nr_slab; | 2110 | unsigned long lru_pages, nr_slab; |
2106 | unsigned long ret = 0; | ||
2107 | int pass; | 2111 | int pass; |
2108 | struct reclaim_state reclaim_state; | 2112 | struct reclaim_state reclaim_state; |
2109 | struct scan_control sc = { | 2113 | struct scan_control sc = { |
2110 | .gfp_mask = GFP_KERNEL, | 2114 | .gfp_mask = GFP_KERNEL, |
2111 | .may_swap = 0, | 2115 | .may_unmap = 0, |
2112 | .swap_cluster_max = nr_pages, | ||
2113 | .may_writepage = 1, | 2116 | .may_writepage = 1, |
2114 | .isolate_pages = isolate_pages_global, | 2117 | .isolate_pages = isolate_pages_global, |
2115 | }; | 2118 | }; |
@@ -2125,8 +2128,8 @@ unsigned long shrink_all_memory(unsigned long nr_pages) | |||
2125 | if (!reclaim_state.reclaimed_slab) | 2128 | if (!reclaim_state.reclaimed_slab) |
2126 | break; | 2129 | break; |
2127 | 2130 | ||
2128 | ret += reclaim_state.reclaimed_slab; | 2131 | sc.nr_reclaimed += reclaim_state.reclaimed_slab; |
2129 | if (ret >= nr_pages) | 2132 | if (sc.nr_reclaimed >= nr_pages) |
2130 | goto out; | 2133 | goto out; |
2131 | 2134 | ||
2132 | nr_slab -= reclaim_state.reclaimed_slab; | 2135 | nr_slab -= reclaim_state.reclaimed_slab; |
@@ -2145,21 +2148,22 @@ unsigned long shrink_all_memory(unsigned long nr_pages) | |||
2145 | 2148 | ||
2146 | /* Force reclaiming mapped pages in the passes #3 and #4 */ | 2149 | /* Force reclaiming mapped pages in the passes #3 and #4 */ |
2147 | if (pass > 2) | 2150 | if (pass > 2) |
2148 | sc.may_swap = 1; | 2151 | sc.may_unmap = 1; |
2149 | 2152 | ||
2150 | for (prio = DEF_PRIORITY; prio >= 0; prio--) { | 2153 | for (prio = DEF_PRIORITY; prio >= 0; prio--) { |
2151 | unsigned long nr_to_scan = nr_pages - ret; | 2154 | unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed; |
2152 | 2155 | ||
2153 | sc.nr_scanned = 0; | 2156 | sc.nr_scanned = 0; |
2154 | ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); | 2157 | sc.swap_cluster_max = nr_to_scan; |
2155 | if (ret >= nr_pages) | 2158 | shrink_all_zones(nr_to_scan, prio, pass, &sc); |
2159 | if (sc.nr_reclaimed >= nr_pages) | ||
2156 | goto out; | 2160 | goto out; |
2157 | 2161 | ||
2158 | reclaim_state.reclaimed_slab = 0; | 2162 | reclaim_state.reclaimed_slab = 0; |
2159 | shrink_slab(sc.nr_scanned, sc.gfp_mask, | 2163 | shrink_slab(sc.nr_scanned, sc.gfp_mask, |
2160 | global_lru_pages()); | 2164 | global_lru_pages()); |
2161 | ret += reclaim_state.reclaimed_slab; | 2165 | sc.nr_reclaimed += reclaim_state.reclaimed_slab; |
2162 | if (ret >= nr_pages) | 2166 | if (sc.nr_reclaimed >= nr_pages) |
2163 | goto out; | 2167 | goto out; |
2164 | 2168 | ||
2165 | if (sc.nr_scanned && prio < DEF_PRIORITY - 2) | 2169 | if (sc.nr_scanned && prio < DEF_PRIORITY - 2) |
@@ -2168,21 +2172,23 @@ unsigned long shrink_all_memory(unsigned long nr_pages) | |||
2168 | } | 2172 | } |
2169 | 2173 | ||
2170 | /* | 2174 | /* |
2171 | * If ret = 0, we could not shrink LRUs, but there may be something | 2175 | * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be |
2172 | * in slab caches | 2176 | * something in slab caches |
2173 | */ | 2177 | */ |
2174 | if (!ret) { | 2178 | if (!sc.nr_reclaimed) { |
2175 | do { | 2179 | do { |
2176 | reclaim_state.reclaimed_slab = 0; | 2180 | reclaim_state.reclaimed_slab = 0; |
2177 | shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); | 2181 | shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); |
2178 | ret += reclaim_state.reclaimed_slab; | 2182 | sc.nr_reclaimed += reclaim_state.reclaimed_slab; |
2179 | } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); | 2183 | } while (sc.nr_reclaimed < nr_pages && |
2184 | reclaim_state.reclaimed_slab > 0); | ||
2180 | } | 2185 | } |
2181 | 2186 | ||
2187 | |||
2182 | out: | 2188 | out: |
2183 | current->reclaim_state = NULL; | 2189 | current->reclaim_state = NULL; |
2184 | 2190 | ||
2185 | return ret; | 2191 | return sc.nr_reclaimed; |
2186 | } | 2192 | } |
2187 | #endif | 2193 | #endif |
2188 | 2194 | ||
@@ -2198,7 +2204,9 @@ static int __devinit cpu_callback(struct notifier_block *nfb, | |||
2198 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { | 2204 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
2199 | for_each_node_state(nid, N_HIGH_MEMORY) { | 2205 | for_each_node_state(nid, N_HIGH_MEMORY) { |
2200 | pg_data_t *pgdat = NODE_DATA(nid); | 2206 | pg_data_t *pgdat = NODE_DATA(nid); |
2201 | node_to_cpumask_ptr(mask, pgdat->node_id); | 2207 | const struct cpumask *mask; |
2208 | |||
2209 | mask = cpumask_of_node(pgdat->node_id); | ||
2202 | 2210 | ||
2203 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) | 2211 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
2204 | /* One of our CPUs online: restore mask */ | 2212 | /* One of our CPUs online: restore mask */ |
@@ -2288,11 +2296,12 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
2288 | int priority; | 2296 | int priority; |
2289 | struct scan_control sc = { | 2297 | struct scan_control sc = { |
2290 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | 2298 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), |
2291 | .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), | 2299 | .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), |
2292 | .swap_cluster_max = max_t(unsigned long, nr_pages, | 2300 | .swap_cluster_max = max_t(unsigned long, nr_pages, |
2293 | SWAP_CLUSTER_MAX), | 2301 | SWAP_CLUSTER_MAX), |
2294 | .gfp_mask = gfp_mask, | 2302 | .gfp_mask = gfp_mask, |
2295 | .swappiness = vm_swappiness, | 2303 | .swappiness = vm_swappiness, |
2304 | .order = order, | ||
2296 | .isolate_pages = isolate_pages_global, | 2305 | .isolate_pages = isolate_pages_global, |
2297 | }; | 2306 | }; |
2298 | unsigned long slab_reclaimable; | 2307 | unsigned long slab_reclaimable; |
diff --git a/mm/vmstat.c b/mm/vmstat.c index 91149746bb8d..66f6130976cb 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c | |||
@@ -27,7 +27,7 @@ static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) | |||
27 | 27 | ||
28 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 28 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
29 | 29 | ||
30 | for_each_cpu_mask_nr(cpu, *cpumask) { | 30 | for_each_cpu(cpu, cpumask) { |
31 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 31 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
32 | 32 | ||
33 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 33 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
@@ -135,11 +135,7 @@ static void refresh_zone_stat_thresholds(void) | |||
135 | int cpu; | 135 | int cpu; |
136 | int threshold; | 136 | int threshold; |
137 | 137 | ||
138 | for_each_zone(zone) { | 138 | for_each_populated_zone(zone) { |
139 | |||
140 | if (!zone->present_pages) | ||
141 | continue; | ||
142 | |||
143 | threshold = calculate_threshold(zone); | 139 | threshold = calculate_threshold(zone); |
144 | 140 | ||
145 | for_each_online_cpu(cpu) | 141 | for_each_online_cpu(cpu) |
@@ -301,12 +297,9 @@ void refresh_cpu_vm_stats(int cpu) | |||
301 | int i; | 297 | int i; |
302 | int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; | 298 | int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
303 | 299 | ||
304 | for_each_zone(zone) { | 300 | for_each_populated_zone(zone) { |
305 | struct per_cpu_pageset *p; | 301 | struct per_cpu_pageset *p; |
306 | 302 | ||
307 | if (!populated_zone(zone)) | ||
308 | continue; | ||
309 | |||
310 | p = zone_pcp(zone, cpu); | 303 | p = zone_pcp(zone, cpu); |
311 | 304 | ||
312 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 305 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
@@ -898,7 +891,7 @@ static void vmstat_update(struct work_struct *w) | |||
898 | { | 891 | { |
899 | refresh_cpu_vm_stats(smp_processor_id()); | 892 | refresh_cpu_vm_stats(smp_processor_id()); |
900 | schedule_delayed_work(&__get_cpu_var(vmstat_work), | 893 | schedule_delayed_work(&__get_cpu_var(vmstat_work), |
901 | sysctl_stat_interval); | 894 | round_jiffies_relative(sysctl_stat_interval)); |
902 | } | 895 | } |
903 | 896 | ||
904 | static void __cpuinit start_cpu_timer(int cpu) | 897 | static void __cpuinit start_cpu_timer(int cpu) |
@@ -906,7 +899,8 @@ static void __cpuinit start_cpu_timer(int cpu) | |||
906 | struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu); | 899 | struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu); |
907 | 900 | ||
908 | INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update); | 901 | INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update); |
909 | schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu); | 902 | schedule_delayed_work_on(cpu, vmstat_work, |
903 | __round_jiffies_relative(HZ, cpu)); | ||
910 | } | 904 | } |
911 | 905 | ||
912 | /* | 906 | /* |