diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/backing-dev.c | 7 | ||||
-rw-r--r-- | mm/page-writeback.c | 704 | ||||
-rw-r--r-- | mm/vmscan.c | 3 |
3 files changed, 560 insertions, 154 deletions
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 7520ef0bfd47..a0860640378d 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -97,6 +97,7 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) | |||
97 | "BdiDirtyThresh: %10lu kB\n" | 97 | "BdiDirtyThresh: %10lu kB\n" |
98 | "DirtyThresh: %10lu kB\n" | 98 | "DirtyThresh: %10lu kB\n" |
99 | "BackgroundThresh: %10lu kB\n" | 99 | "BackgroundThresh: %10lu kB\n" |
100 | "BdiDirtied: %10lu kB\n" | ||
100 | "BdiWritten: %10lu kB\n" | 101 | "BdiWritten: %10lu kB\n" |
101 | "BdiWriteBandwidth: %10lu kBps\n" | 102 | "BdiWriteBandwidth: %10lu kBps\n" |
102 | "b_dirty: %10lu\n" | 103 | "b_dirty: %10lu\n" |
@@ -109,6 +110,7 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) | |||
109 | K(bdi_thresh), | 110 | K(bdi_thresh), |
110 | K(dirty_thresh), | 111 | K(dirty_thresh), |
111 | K(background_thresh), | 112 | K(background_thresh), |
113 | (unsigned long) K(bdi_stat(bdi, BDI_DIRTIED)), | ||
112 | (unsigned long) K(bdi_stat(bdi, BDI_WRITTEN)), | 114 | (unsigned long) K(bdi_stat(bdi, BDI_WRITTEN)), |
113 | (unsigned long) K(bdi->write_bandwidth), | 115 | (unsigned long) K(bdi->write_bandwidth), |
114 | nr_dirty, | 116 | nr_dirty, |
@@ -473,7 +475,8 @@ static int bdi_forker_thread(void *ptr) | |||
473 | * the bdi from the thread. Hopefully 1024 is | 475 | * the bdi from the thread. Hopefully 1024 is |
474 | * large enough for efficient IO. | 476 | * large enough for efficient IO. |
475 | */ | 477 | */ |
476 | writeback_inodes_wb(&bdi->wb, 1024); | 478 | writeback_inodes_wb(&bdi->wb, 1024, |
479 | WB_REASON_FORKER_THREAD); | ||
477 | } else { | 480 | } else { |
478 | /* | 481 | /* |
479 | * The spinlock makes sure we do not lose | 482 | * The spinlock makes sure we do not lose |
@@ -683,6 +686,8 @@ int bdi_init(struct backing_dev_info *bdi) | |||
683 | bdi->bw_time_stamp = jiffies; | 686 | bdi->bw_time_stamp = jiffies; |
684 | bdi->written_stamp = 0; | 687 | bdi->written_stamp = 0; |
685 | 688 | ||
689 | bdi->balanced_dirty_ratelimit = INIT_BW; | ||
690 | bdi->dirty_ratelimit = INIT_BW; | ||
686 | bdi->write_bandwidth = INIT_BW; | 691 | bdi->write_bandwidth = INIT_BW; |
687 | bdi->avg_write_bandwidth = INIT_BW; | 692 | bdi->avg_write_bandwidth = INIT_BW; |
688 | 693 | ||
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 793e9874de51..9c31199dae9a 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -46,26 +46,14 @@ | |||
46 | */ | 46 | */ |
47 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) | 47 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) |
48 | 48 | ||
49 | #define RATELIMIT_CALC_SHIFT 10 | ||
50 | |||
49 | /* | 51 | /* |
50 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | 52 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
51 | * will look to see if it needs to force writeback or throttling. | 53 | * will look to see if it needs to force writeback or throttling. |
52 | */ | 54 | */ |
53 | static long ratelimit_pages = 32; | 55 | static long ratelimit_pages = 32; |
54 | 56 | ||
55 | /* | ||
56 | * When balance_dirty_pages decides that the caller needs to perform some | ||
57 | * non-background writeback, this is how many pages it will attempt to write. | ||
58 | * It should be somewhat larger than dirtied pages to ensure that reasonably | ||
59 | * large amounts of I/O are submitted. | ||
60 | */ | ||
61 | static inline long sync_writeback_pages(unsigned long dirtied) | ||
62 | { | ||
63 | if (dirtied < ratelimit_pages) | ||
64 | dirtied = ratelimit_pages; | ||
65 | |||
66 | return dirtied + dirtied / 2; | ||
67 | } | ||
68 | |||
69 | /* The following parameters are exported via /proc/sys/vm */ | 57 | /* The following parameters are exported via /proc/sys/vm */ |
70 | 58 | ||
71 | /* | 59 | /* |
@@ -167,6 +155,8 @@ static void update_completion_period(void) | |||
167 | int shift = calc_period_shift(); | 155 | int shift = calc_period_shift(); |
168 | prop_change_shift(&vm_completions, shift); | 156 | prop_change_shift(&vm_completions, shift); |
169 | prop_change_shift(&vm_dirties, shift); | 157 | prop_change_shift(&vm_dirties, shift); |
158 | |||
159 | writeback_set_ratelimit(); | ||
170 | } | 160 | } |
171 | 161 | ||
172 | int dirty_background_ratio_handler(struct ctl_table *table, int write, | 162 | int dirty_background_ratio_handler(struct ctl_table *table, int write, |
@@ -260,50 +250,6 @@ static void bdi_writeout_fraction(struct backing_dev_info *bdi, | |||
260 | numerator, denominator); | 250 | numerator, denominator); |
261 | } | 251 | } |
262 | 252 | ||
263 | static inline void task_dirties_fraction(struct task_struct *tsk, | ||
264 | long *numerator, long *denominator) | ||
265 | { | ||
266 | prop_fraction_single(&vm_dirties, &tsk->dirties, | ||
267 | numerator, denominator); | ||
268 | } | ||
269 | |||
270 | /* | ||
271 | * task_dirty_limit - scale down dirty throttling threshold for one task | ||
272 | * | ||
273 | * task specific dirty limit: | ||
274 | * | ||
275 | * dirty -= (dirty/8) * p_{t} | ||
276 | * | ||
277 | * To protect light/slow dirtying tasks from heavier/fast ones, we start | ||
278 | * throttling individual tasks before reaching the bdi dirty limit. | ||
279 | * Relatively low thresholds will be allocated to heavy dirtiers. So when | ||
280 | * dirty pages grow large, heavy dirtiers will be throttled first, which will | ||
281 | * effectively curb the growth of dirty pages. Light dirtiers with high enough | ||
282 | * dirty threshold may never get throttled. | ||
283 | */ | ||
284 | #define TASK_LIMIT_FRACTION 8 | ||
285 | static unsigned long task_dirty_limit(struct task_struct *tsk, | ||
286 | unsigned long bdi_dirty) | ||
287 | { | ||
288 | long numerator, denominator; | ||
289 | unsigned long dirty = bdi_dirty; | ||
290 | u64 inv = dirty / TASK_LIMIT_FRACTION; | ||
291 | |||
292 | task_dirties_fraction(tsk, &numerator, &denominator); | ||
293 | inv *= numerator; | ||
294 | do_div(inv, denominator); | ||
295 | |||
296 | dirty -= inv; | ||
297 | |||
298 | return max(dirty, bdi_dirty/2); | ||
299 | } | ||
300 | |||
301 | /* Minimum limit for any task */ | ||
302 | static unsigned long task_min_dirty_limit(unsigned long bdi_dirty) | ||
303 | { | ||
304 | return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION; | ||
305 | } | ||
306 | |||
307 | /* | 253 | /* |
308 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all | 254 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all |
309 | * registered backing devices, which, for obvious reasons, can not | 255 | * registered backing devices, which, for obvious reasons, can not |
@@ -413,6 +359,12 @@ unsigned long determine_dirtyable_memory(void) | |||
413 | return x + 1; /* Ensure that we never return 0 */ | 359 | return x + 1; /* Ensure that we never return 0 */ |
414 | } | 360 | } |
415 | 361 | ||
362 | static unsigned long dirty_freerun_ceiling(unsigned long thresh, | ||
363 | unsigned long bg_thresh) | ||
364 | { | ||
365 | return (thresh + bg_thresh) / 2; | ||
366 | } | ||
367 | |||
416 | static unsigned long hard_dirty_limit(unsigned long thresh) | 368 | static unsigned long hard_dirty_limit(unsigned long thresh) |
417 | { | 369 | { |
418 | return max(thresh, global_dirty_limit); | 370 | return max(thresh, global_dirty_limit); |
@@ -497,6 +449,198 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) | |||
497 | return bdi_dirty; | 449 | return bdi_dirty; |
498 | } | 450 | } |
499 | 451 | ||
452 | /* | ||
453 | * Dirty position control. | ||
454 | * | ||
455 | * (o) global/bdi setpoints | ||
456 | * | ||
457 | * We want the dirty pages be balanced around the global/bdi setpoints. | ||
458 | * When the number of dirty pages is higher/lower than the setpoint, the | ||
459 | * dirty position control ratio (and hence task dirty ratelimit) will be | ||
460 | * decreased/increased to bring the dirty pages back to the setpoint. | ||
461 | * | ||
462 | * pos_ratio = 1 << RATELIMIT_CALC_SHIFT | ||
463 | * | ||
464 | * if (dirty < setpoint) scale up pos_ratio | ||
465 | * if (dirty > setpoint) scale down pos_ratio | ||
466 | * | ||
467 | * if (bdi_dirty < bdi_setpoint) scale up pos_ratio | ||
468 | * if (bdi_dirty > bdi_setpoint) scale down pos_ratio | ||
469 | * | ||
470 | * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT | ||
471 | * | ||
472 | * (o) global control line | ||
473 | * | ||
474 | * ^ pos_ratio | ||
475 | * | | ||
476 | * | |<===== global dirty control scope ======>| | ||
477 | * 2.0 .............* | ||
478 | * | .* | ||
479 | * | . * | ||
480 | * | . * | ||
481 | * | . * | ||
482 | * | . * | ||
483 | * | . * | ||
484 | * 1.0 ................................* | ||
485 | * | . . * | ||
486 | * | . . * | ||
487 | * | . . * | ||
488 | * | . . * | ||
489 | * | . . * | ||
490 | * 0 +------------.------------------.----------------------*-------------> | ||
491 | * freerun^ setpoint^ limit^ dirty pages | ||
492 | * | ||
493 | * (o) bdi control line | ||
494 | * | ||
495 | * ^ pos_ratio | ||
496 | * | | ||
497 | * | * | ||
498 | * | * | ||
499 | * | * | ||
500 | * | * | ||
501 | * | * |<=========== span ============>| | ||
502 | * 1.0 .......................* | ||
503 | * | . * | ||
504 | * | . * | ||
505 | * | . * | ||
506 | * | . * | ||
507 | * | . * | ||
508 | * | . * | ||
509 | * | . * | ||
510 | * | . * | ||
511 | * | . * | ||
512 | * | . * | ||
513 | * | . * | ||
514 | * 1/4 ...............................................* * * * * * * * * * * * | ||
515 | * | . . | ||
516 | * | . . | ||
517 | * | . . | ||
518 | * 0 +----------------------.-------------------------------.-------------> | ||
519 | * bdi_setpoint^ x_intercept^ | ||
520 | * | ||
521 | * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can | ||
522 | * be smoothly throttled down to normal if it starts high in situations like | ||
523 | * - start writing to a slow SD card and a fast disk at the same time. The SD | ||
524 | * card's bdi_dirty may rush to many times higher than bdi_setpoint. | ||
525 | * - the bdi dirty thresh drops quickly due to change of JBOD workload | ||
526 | */ | ||
527 | static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, | ||
528 | unsigned long thresh, | ||
529 | unsigned long bg_thresh, | ||
530 | unsigned long dirty, | ||
531 | unsigned long bdi_thresh, | ||
532 | unsigned long bdi_dirty) | ||
533 | { | ||
534 | unsigned long write_bw = bdi->avg_write_bandwidth; | ||
535 | unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); | ||
536 | unsigned long limit = hard_dirty_limit(thresh); | ||
537 | unsigned long x_intercept; | ||
538 | unsigned long setpoint; /* dirty pages' target balance point */ | ||
539 | unsigned long bdi_setpoint; | ||
540 | unsigned long span; | ||
541 | long long pos_ratio; /* for scaling up/down the rate limit */ | ||
542 | long x; | ||
543 | |||
544 | if (unlikely(dirty >= limit)) | ||
545 | return 0; | ||
546 | |||
547 | /* | ||
548 | * global setpoint | ||
549 | * | ||
550 | * setpoint - dirty 3 | ||
551 | * f(dirty) := 1.0 + (----------------) | ||
552 | * limit - setpoint | ||
553 | * | ||
554 | * it's a 3rd order polynomial that subjects to | ||
555 | * | ||
556 | * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast | ||
557 | * (2) f(setpoint) = 1.0 => the balance point | ||
558 | * (3) f(limit) = 0 => the hard limit | ||
559 | * (4) df/dx <= 0 => negative feedback control | ||
560 | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) | ||
561 | * => fast response on large errors; small oscillation near setpoint | ||
562 | */ | ||
563 | setpoint = (freerun + limit) / 2; | ||
564 | x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT, | ||
565 | limit - setpoint + 1); | ||
566 | pos_ratio = x; | ||
567 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | ||
568 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | ||
569 | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; | ||
570 | |||
571 | /* | ||
572 | * We have computed basic pos_ratio above based on global situation. If | ||
573 | * the bdi is over/under its share of dirty pages, we want to scale | ||
574 | * pos_ratio further down/up. That is done by the following mechanism. | ||
575 | */ | ||
576 | |||
577 | /* | ||
578 | * bdi setpoint | ||
579 | * | ||
580 | * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) | ||
581 | * | ||
582 | * x_intercept - bdi_dirty | ||
583 | * := -------------------------- | ||
584 | * x_intercept - bdi_setpoint | ||
585 | * | ||
586 | * The main bdi control line is a linear function that subjects to | ||
587 | * | ||
588 | * (1) f(bdi_setpoint) = 1.0 | ||
589 | * (2) k = - 1 / (8 * write_bw) (in single bdi case) | ||
590 | * or equally: x_intercept = bdi_setpoint + 8 * write_bw | ||
591 | * | ||
592 | * For single bdi case, the dirty pages are observed to fluctuate | ||
593 | * regularly within range | ||
594 | * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] | ||
595 | * for various filesystems, where (2) can yield in a reasonable 12.5% | ||
596 | * fluctuation range for pos_ratio. | ||
597 | * | ||
598 | * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its | ||
599 | * own size, so move the slope over accordingly and choose a slope that | ||
600 | * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. | ||
601 | */ | ||
602 | if (unlikely(bdi_thresh > thresh)) | ||
603 | bdi_thresh = thresh; | ||
604 | bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); | ||
605 | /* | ||
606 | * scale global setpoint to bdi's: | ||
607 | * bdi_setpoint = setpoint * bdi_thresh / thresh | ||
608 | */ | ||
609 | x = div_u64((u64)bdi_thresh << 16, thresh + 1); | ||
610 | bdi_setpoint = setpoint * (u64)x >> 16; | ||
611 | /* | ||
612 | * Use span=(8*write_bw) in single bdi case as indicated by | ||
613 | * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. | ||
614 | * | ||
615 | * bdi_thresh thresh - bdi_thresh | ||
616 | * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh | ||
617 | * thresh thresh | ||
618 | */ | ||
619 | span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; | ||
620 | x_intercept = bdi_setpoint + span; | ||
621 | |||
622 | if (bdi_dirty < x_intercept - span / 4) { | ||
623 | pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), | ||
624 | x_intercept - bdi_setpoint + 1); | ||
625 | } else | ||
626 | pos_ratio /= 4; | ||
627 | |||
628 | /* | ||
629 | * bdi reserve area, safeguard against dirty pool underrun and disk idle | ||
630 | * It may push the desired control point of global dirty pages higher | ||
631 | * than setpoint. | ||
632 | */ | ||
633 | x_intercept = bdi_thresh / 2; | ||
634 | if (bdi_dirty < x_intercept) { | ||
635 | if (bdi_dirty > x_intercept / 8) | ||
636 | pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); | ||
637 | else | ||
638 | pos_ratio *= 8; | ||
639 | } | ||
640 | |||
641 | return pos_ratio; | ||
642 | } | ||
643 | |||
500 | static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, | 644 | static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, |
501 | unsigned long elapsed, | 645 | unsigned long elapsed, |
502 | unsigned long written) | 646 | unsigned long written) |
@@ -593,8 +737,153 @@ static void global_update_bandwidth(unsigned long thresh, | |||
593 | spin_unlock(&dirty_lock); | 737 | spin_unlock(&dirty_lock); |
594 | } | 738 | } |
595 | 739 | ||
740 | /* | ||
741 | * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. | ||
742 | * | ||
743 | * Normal bdi tasks will be curbed at or below it in long term. | ||
744 | * Obviously it should be around (write_bw / N) when there are N dd tasks. | ||
745 | */ | ||
746 | static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, | ||
747 | unsigned long thresh, | ||
748 | unsigned long bg_thresh, | ||
749 | unsigned long dirty, | ||
750 | unsigned long bdi_thresh, | ||
751 | unsigned long bdi_dirty, | ||
752 | unsigned long dirtied, | ||
753 | unsigned long elapsed) | ||
754 | { | ||
755 | unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); | ||
756 | unsigned long limit = hard_dirty_limit(thresh); | ||
757 | unsigned long setpoint = (freerun + limit) / 2; | ||
758 | unsigned long write_bw = bdi->avg_write_bandwidth; | ||
759 | unsigned long dirty_ratelimit = bdi->dirty_ratelimit; | ||
760 | unsigned long dirty_rate; | ||
761 | unsigned long task_ratelimit; | ||
762 | unsigned long balanced_dirty_ratelimit; | ||
763 | unsigned long pos_ratio; | ||
764 | unsigned long step; | ||
765 | unsigned long x; | ||
766 | |||
767 | /* | ||
768 | * The dirty rate will match the writeout rate in long term, except | ||
769 | * when dirty pages are truncated by userspace or re-dirtied by FS. | ||
770 | */ | ||
771 | dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; | ||
772 | |||
773 | pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, | ||
774 | bdi_thresh, bdi_dirty); | ||
775 | /* | ||
776 | * task_ratelimit reflects each dd's dirty rate for the past 200ms. | ||
777 | */ | ||
778 | task_ratelimit = (u64)dirty_ratelimit * | ||
779 | pos_ratio >> RATELIMIT_CALC_SHIFT; | ||
780 | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ | ||
781 | |||
782 | /* | ||
783 | * A linear estimation of the "balanced" throttle rate. The theory is, | ||
784 | * if there are N dd tasks, each throttled at task_ratelimit, the bdi's | ||
785 | * dirty_rate will be measured to be (N * task_ratelimit). So the below | ||
786 | * formula will yield the balanced rate limit (write_bw / N). | ||
787 | * | ||
788 | * Note that the expanded form is not a pure rate feedback: | ||
789 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) | ||
790 | * but also takes pos_ratio into account: | ||
791 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) | ||
792 | * | ||
793 | * (1) is not realistic because pos_ratio also takes part in balancing | ||
794 | * the dirty rate. Consider the state | ||
795 | * pos_ratio = 0.5 (3) | ||
796 | * rate = 2 * (write_bw / N) (4) | ||
797 | * If (1) is used, it will stuck in that state! Because each dd will | ||
798 | * be throttled at | ||
799 | * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) | ||
800 | * yielding | ||
801 | * dirty_rate = N * task_ratelimit = write_bw (6) | ||
802 | * put (6) into (1) we get | ||
803 | * rate_(i+1) = rate_(i) (7) | ||
804 | * | ||
805 | * So we end up using (2) to always keep | ||
806 | * rate_(i+1) ~= (write_bw / N) (8) | ||
807 | * regardless of the value of pos_ratio. As long as (8) is satisfied, | ||
808 | * pos_ratio is able to drive itself to 1.0, which is not only where | ||
809 | * the dirty count meet the setpoint, but also where the slope of | ||
810 | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. | ||
811 | */ | ||
812 | balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, | ||
813 | dirty_rate | 1); | ||
814 | |||
815 | /* | ||
816 | * We could safely do this and return immediately: | ||
817 | * | ||
818 | * bdi->dirty_ratelimit = balanced_dirty_ratelimit; | ||
819 | * | ||
820 | * However to get a more stable dirty_ratelimit, the below elaborated | ||
821 | * code makes use of task_ratelimit to filter out sigular points and | ||
822 | * limit the step size. | ||
823 | * | ||
824 | * The below code essentially only uses the relative value of | ||
825 | * | ||
826 | * task_ratelimit - dirty_ratelimit | ||
827 | * = (pos_ratio - 1) * dirty_ratelimit | ||
828 | * | ||
829 | * which reflects the direction and size of dirty position error. | ||
830 | */ | ||
831 | |||
832 | /* | ||
833 | * dirty_ratelimit will follow balanced_dirty_ratelimit iff | ||
834 | * task_ratelimit is on the same side of dirty_ratelimit, too. | ||
835 | * For example, when | ||
836 | * - dirty_ratelimit > balanced_dirty_ratelimit | ||
837 | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) | ||
838 | * lowering dirty_ratelimit will help meet both the position and rate | ||
839 | * control targets. Otherwise, don't update dirty_ratelimit if it will | ||
840 | * only help meet the rate target. After all, what the users ultimately | ||
841 | * feel and care are stable dirty rate and small position error. | ||
842 | * | ||
843 | * |task_ratelimit - dirty_ratelimit| is used to limit the step size | ||
844 | * and filter out the sigular points of balanced_dirty_ratelimit. Which | ||
845 | * keeps jumping around randomly and can even leap far away at times | ||
846 | * due to the small 200ms estimation period of dirty_rate (we want to | ||
847 | * keep that period small to reduce time lags). | ||
848 | */ | ||
849 | step = 0; | ||
850 | if (dirty < setpoint) { | ||
851 | x = min(bdi->balanced_dirty_ratelimit, | ||
852 | min(balanced_dirty_ratelimit, task_ratelimit)); | ||
853 | if (dirty_ratelimit < x) | ||
854 | step = x - dirty_ratelimit; | ||
855 | } else { | ||
856 | x = max(bdi->balanced_dirty_ratelimit, | ||
857 | max(balanced_dirty_ratelimit, task_ratelimit)); | ||
858 | if (dirty_ratelimit > x) | ||
859 | step = dirty_ratelimit - x; | ||
860 | } | ||
861 | |||
862 | /* | ||
863 | * Don't pursue 100% rate matching. It's impossible since the balanced | ||
864 | * rate itself is constantly fluctuating. So decrease the track speed | ||
865 | * when it gets close to the target. Helps eliminate pointless tremors. | ||
866 | */ | ||
867 | step >>= dirty_ratelimit / (2 * step + 1); | ||
868 | /* | ||
869 | * Limit the tracking speed to avoid overshooting. | ||
870 | */ | ||
871 | step = (step + 7) / 8; | ||
872 | |||
873 | if (dirty_ratelimit < balanced_dirty_ratelimit) | ||
874 | dirty_ratelimit += step; | ||
875 | else | ||
876 | dirty_ratelimit -= step; | ||
877 | |||
878 | bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); | ||
879 | bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; | ||
880 | |||
881 | trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); | ||
882 | } | ||
883 | |||
596 | void __bdi_update_bandwidth(struct backing_dev_info *bdi, | 884 | void __bdi_update_bandwidth(struct backing_dev_info *bdi, |
597 | unsigned long thresh, | 885 | unsigned long thresh, |
886 | unsigned long bg_thresh, | ||
598 | unsigned long dirty, | 887 | unsigned long dirty, |
599 | unsigned long bdi_thresh, | 888 | unsigned long bdi_thresh, |
600 | unsigned long bdi_dirty, | 889 | unsigned long bdi_dirty, |
@@ -602,6 +891,7 @@ void __bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
602 | { | 891 | { |
603 | unsigned long now = jiffies; | 892 | unsigned long now = jiffies; |
604 | unsigned long elapsed = now - bdi->bw_time_stamp; | 893 | unsigned long elapsed = now - bdi->bw_time_stamp; |
894 | unsigned long dirtied; | ||
605 | unsigned long written; | 895 | unsigned long written; |
606 | 896 | ||
607 | /* | 897 | /* |
@@ -610,6 +900,7 @@ void __bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
610 | if (elapsed < BANDWIDTH_INTERVAL) | 900 | if (elapsed < BANDWIDTH_INTERVAL) |
611 | return; | 901 | return; |
612 | 902 | ||
903 | dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); | ||
613 | written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); | 904 | written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); |
614 | 905 | ||
615 | /* | 906 | /* |
@@ -619,18 +910,23 @@ void __bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
619 | if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) | 910 | if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) |
620 | goto snapshot; | 911 | goto snapshot; |
621 | 912 | ||
622 | if (thresh) | 913 | if (thresh) { |
623 | global_update_bandwidth(thresh, dirty, now); | 914 | global_update_bandwidth(thresh, dirty, now); |
624 | 915 | bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, | |
916 | bdi_thresh, bdi_dirty, | ||
917 | dirtied, elapsed); | ||
918 | } | ||
625 | bdi_update_write_bandwidth(bdi, elapsed, written); | 919 | bdi_update_write_bandwidth(bdi, elapsed, written); |
626 | 920 | ||
627 | snapshot: | 921 | snapshot: |
922 | bdi->dirtied_stamp = dirtied; | ||
628 | bdi->written_stamp = written; | 923 | bdi->written_stamp = written; |
629 | bdi->bw_time_stamp = now; | 924 | bdi->bw_time_stamp = now; |
630 | } | 925 | } |
631 | 926 | ||
632 | static void bdi_update_bandwidth(struct backing_dev_info *bdi, | 927 | static void bdi_update_bandwidth(struct backing_dev_info *bdi, |
633 | unsigned long thresh, | 928 | unsigned long thresh, |
929 | unsigned long bg_thresh, | ||
634 | unsigned long dirty, | 930 | unsigned long dirty, |
635 | unsigned long bdi_thresh, | 931 | unsigned long bdi_thresh, |
636 | unsigned long bdi_dirty, | 932 | unsigned long bdi_dirty, |
@@ -639,37 +935,99 @@ static void bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
639 | if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) | 935 | if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) |
640 | return; | 936 | return; |
641 | spin_lock(&bdi->wb.list_lock); | 937 | spin_lock(&bdi->wb.list_lock); |
642 | __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty, | 938 | __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, |
643 | start_time); | 939 | bdi_thresh, bdi_dirty, start_time); |
644 | spin_unlock(&bdi->wb.list_lock); | 940 | spin_unlock(&bdi->wb.list_lock); |
645 | } | 941 | } |
646 | 942 | ||
647 | /* | 943 | /* |
944 | * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr() | ||
945 | * will look to see if it needs to start dirty throttling. | ||
946 | * | ||
947 | * If dirty_poll_interval is too low, big NUMA machines will call the expensive | ||
948 | * global_page_state() too often. So scale it near-sqrt to the safety margin | ||
949 | * (the number of pages we may dirty without exceeding the dirty limits). | ||
950 | */ | ||
951 | static unsigned long dirty_poll_interval(unsigned long dirty, | ||
952 | unsigned long thresh) | ||
953 | { | ||
954 | if (thresh > dirty) | ||
955 | return 1UL << (ilog2(thresh - dirty) >> 1); | ||
956 | |||
957 | return 1; | ||
958 | } | ||
959 | |||
960 | static unsigned long bdi_max_pause(struct backing_dev_info *bdi, | ||
961 | unsigned long bdi_dirty) | ||
962 | { | ||
963 | unsigned long bw = bdi->avg_write_bandwidth; | ||
964 | unsigned long hi = ilog2(bw); | ||
965 | unsigned long lo = ilog2(bdi->dirty_ratelimit); | ||
966 | unsigned long t; | ||
967 | |||
968 | /* target for 20ms max pause on 1-dd case */ | ||
969 | t = HZ / 50; | ||
970 | |||
971 | /* | ||
972 | * Scale up pause time for concurrent dirtiers in order to reduce CPU | ||
973 | * overheads. | ||
974 | * | ||
975 | * (N * 20ms) on 2^N concurrent tasks. | ||
976 | */ | ||
977 | if (hi > lo) | ||
978 | t += (hi - lo) * (20 * HZ) / 1024; | ||
979 | |||
980 | /* | ||
981 | * Limit pause time for small memory systems. If sleeping for too long | ||
982 | * time, a small pool of dirty/writeback pages may go empty and disk go | ||
983 | * idle. | ||
984 | * | ||
985 | * 8 serves as the safety ratio. | ||
986 | */ | ||
987 | if (bdi_dirty) | ||
988 | t = min(t, bdi_dirty * HZ / (8 * bw + 1)); | ||
989 | |||
990 | /* | ||
991 | * The pause time will be settled within range (max_pause/4, max_pause). | ||
992 | * Apply a minimal value of 4 to get a non-zero max_pause/4. | ||
993 | */ | ||
994 | return clamp_val(t, 4, MAX_PAUSE); | ||
995 | } | ||
996 | |||
997 | /* | ||
648 | * balance_dirty_pages() must be called by processes which are generating dirty | 998 | * balance_dirty_pages() must be called by processes which are generating dirty |
649 | * data. It looks at the number of dirty pages in the machine and will force | 999 | * data. It looks at the number of dirty pages in the machine and will force |
650 | * the caller to perform writeback if the system is over `vm_dirty_ratio'. | 1000 | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. |
651 | * If we're over `background_thresh' then the writeback threads are woken to | 1001 | * If we're over `background_thresh' then the writeback threads are woken to |
652 | * perform some writeout. | 1002 | * perform some writeout. |
653 | */ | 1003 | */ |
654 | static void balance_dirty_pages(struct address_space *mapping, | 1004 | static void balance_dirty_pages(struct address_space *mapping, |
655 | unsigned long write_chunk) | 1005 | unsigned long pages_dirtied) |
656 | { | 1006 | { |
657 | unsigned long nr_reclaimable, bdi_nr_reclaimable; | 1007 | unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ |
1008 | unsigned long bdi_reclaimable; | ||
658 | unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ | 1009 | unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ |
659 | unsigned long bdi_dirty; | 1010 | unsigned long bdi_dirty; |
1011 | unsigned long freerun; | ||
660 | unsigned long background_thresh; | 1012 | unsigned long background_thresh; |
661 | unsigned long dirty_thresh; | 1013 | unsigned long dirty_thresh; |
662 | unsigned long bdi_thresh; | 1014 | unsigned long bdi_thresh; |
663 | unsigned long task_bdi_thresh; | 1015 | long pause = 0; |
664 | unsigned long min_task_bdi_thresh; | 1016 | long uninitialized_var(max_pause); |
665 | unsigned long pages_written = 0; | ||
666 | unsigned long pause = 1; | ||
667 | bool dirty_exceeded = false; | 1017 | bool dirty_exceeded = false; |
668 | bool clear_dirty_exceeded = true; | 1018 | unsigned long task_ratelimit; |
1019 | unsigned long uninitialized_var(dirty_ratelimit); | ||
1020 | unsigned long pos_ratio; | ||
669 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1021 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
670 | unsigned long start_time = jiffies; | 1022 | unsigned long start_time = jiffies; |
671 | 1023 | ||
672 | for (;;) { | 1024 | for (;;) { |
1025 | /* | ||
1026 | * Unstable writes are a feature of certain networked | ||
1027 | * filesystems (i.e. NFS) in which data may have been | ||
1028 | * written to the server's write cache, but has not yet | ||
1029 | * been flushed to permanent storage. | ||
1030 | */ | ||
673 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + | 1031 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + |
674 | global_page_state(NR_UNSTABLE_NFS); | 1032 | global_page_state(NR_UNSTABLE_NFS); |
675 | nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); | 1033 | nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); |
@@ -681,12 +1039,28 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
681 | * catch-up. This avoids (excessively) small writeouts | 1039 | * catch-up. This avoids (excessively) small writeouts |
682 | * when the bdi limits are ramping up. | 1040 | * when the bdi limits are ramping up. |
683 | */ | 1041 | */ |
684 | if (nr_dirty <= (background_thresh + dirty_thresh) / 2) | 1042 | freerun = dirty_freerun_ceiling(dirty_thresh, |
1043 | background_thresh); | ||
1044 | if (nr_dirty <= freerun) | ||
685 | break; | 1045 | break; |
686 | 1046 | ||
1047 | if (unlikely(!writeback_in_progress(bdi))) | ||
1048 | bdi_start_background_writeback(bdi); | ||
1049 | |||
1050 | /* | ||
1051 | * bdi_thresh is not treated as some limiting factor as | ||
1052 | * dirty_thresh, due to reasons | ||
1053 | * - in JBOD setup, bdi_thresh can fluctuate a lot | ||
1054 | * - in a system with HDD and USB key, the USB key may somehow | ||
1055 | * go into state (bdi_dirty >> bdi_thresh) either because | ||
1056 | * bdi_dirty starts high, or because bdi_thresh drops low. | ||
1057 | * In this case we don't want to hard throttle the USB key | ||
1058 | * dirtiers for 100 seconds until bdi_dirty drops under | ||
1059 | * bdi_thresh. Instead the auxiliary bdi control line in | ||
1060 | * bdi_position_ratio() will let the dirtier task progress | ||
1061 | * at some rate <= (write_bw / 2) for bringing down bdi_dirty. | ||
1062 | */ | ||
687 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); | 1063 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); |
688 | min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh); | ||
689 | task_bdi_thresh = task_dirty_limit(current, bdi_thresh); | ||
690 | 1064 | ||
691 | /* | 1065 | /* |
692 | * In order to avoid the stacked BDI deadlock we need | 1066 | * In order to avoid the stacked BDI deadlock we need |
@@ -698,56 +1072,69 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
698 | * actually dirty; with m+n sitting in the percpu | 1072 | * actually dirty; with m+n sitting in the percpu |
699 | * deltas. | 1073 | * deltas. |
700 | */ | 1074 | */ |
701 | if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) { | 1075 | if (bdi_thresh < 2 * bdi_stat_error(bdi)) { |
702 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); | 1076 | bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); |
703 | bdi_dirty = bdi_nr_reclaimable + | 1077 | bdi_dirty = bdi_reclaimable + |
704 | bdi_stat_sum(bdi, BDI_WRITEBACK); | 1078 | bdi_stat_sum(bdi, BDI_WRITEBACK); |
705 | } else { | 1079 | } else { |
706 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 1080 | bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); |
707 | bdi_dirty = bdi_nr_reclaimable + | 1081 | bdi_dirty = bdi_reclaimable + |
708 | bdi_stat(bdi, BDI_WRITEBACK); | 1082 | bdi_stat(bdi, BDI_WRITEBACK); |
709 | } | 1083 | } |
710 | 1084 | ||
711 | /* | 1085 | dirty_exceeded = (bdi_dirty > bdi_thresh) || |
712 | * The bdi thresh is somehow "soft" limit derived from the | ||
713 | * global "hard" limit. The former helps to prevent heavy IO | ||
714 | * bdi or process from holding back light ones; The latter is | ||
715 | * the last resort safeguard. | ||
716 | */ | ||
717 | dirty_exceeded = (bdi_dirty > task_bdi_thresh) || | ||
718 | (nr_dirty > dirty_thresh); | 1086 | (nr_dirty > dirty_thresh); |
719 | clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) && | 1087 | if (dirty_exceeded && !bdi->dirty_exceeded) |
720 | (nr_dirty <= dirty_thresh); | ||
721 | |||
722 | if (!dirty_exceeded) | ||
723 | break; | ||
724 | |||
725 | if (!bdi->dirty_exceeded) | ||
726 | bdi->dirty_exceeded = 1; | 1088 | bdi->dirty_exceeded = 1; |
727 | 1089 | ||
728 | bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty, | 1090 | bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, |
729 | bdi_thresh, bdi_dirty, start_time); | 1091 | nr_dirty, bdi_thresh, bdi_dirty, |
1092 | start_time); | ||
730 | 1093 | ||
731 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | 1094 | max_pause = bdi_max_pause(bdi, bdi_dirty); |
732 | * Unstable writes are a feature of certain networked | 1095 | |
733 | * filesystems (i.e. NFS) in which data may have been | 1096 | dirty_ratelimit = bdi->dirty_ratelimit; |
734 | * written to the server's write cache, but has not yet | 1097 | pos_ratio = bdi_position_ratio(bdi, dirty_thresh, |
735 | * been flushed to permanent storage. | 1098 | background_thresh, nr_dirty, |
736 | * Only move pages to writeback if this bdi is over its | 1099 | bdi_thresh, bdi_dirty); |
737 | * threshold otherwise wait until the disk writes catch | 1100 | if (unlikely(pos_ratio == 0)) { |
738 | * up. | 1101 | pause = max_pause; |
739 | */ | 1102 | goto pause; |
740 | trace_balance_dirty_start(bdi); | 1103 | } |
741 | if (bdi_nr_reclaimable > task_bdi_thresh) { | 1104 | task_ratelimit = (u64)dirty_ratelimit * |
742 | pages_written += writeback_inodes_wb(&bdi->wb, | 1105 | pos_ratio >> RATELIMIT_CALC_SHIFT; |
743 | write_chunk); | 1106 | pause = (HZ * pages_dirtied) / (task_ratelimit | 1); |
744 | trace_balance_dirty_written(bdi, pages_written); | 1107 | if (unlikely(pause <= 0)) { |
745 | if (pages_written >= write_chunk) | 1108 | trace_balance_dirty_pages(bdi, |
746 | break; /* We've done our duty */ | 1109 | dirty_thresh, |
1110 | background_thresh, | ||
1111 | nr_dirty, | ||
1112 | bdi_thresh, | ||
1113 | bdi_dirty, | ||
1114 | dirty_ratelimit, | ||
1115 | task_ratelimit, | ||
1116 | pages_dirtied, | ||
1117 | pause, | ||
1118 | start_time); | ||
1119 | pause = 1; /* avoid resetting nr_dirtied_pause below */ | ||
1120 | break; | ||
747 | } | 1121 | } |
1122 | pause = min(pause, max_pause); | ||
1123 | |||
1124 | pause: | ||
1125 | trace_balance_dirty_pages(bdi, | ||
1126 | dirty_thresh, | ||
1127 | background_thresh, | ||
1128 | nr_dirty, | ||
1129 | bdi_thresh, | ||
1130 | bdi_dirty, | ||
1131 | dirty_ratelimit, | ||
1132 | task_ratelimit, | ||
1133 | pages_dirtied, | ||
1134 | pause, | ||
1135 | start_time); | ||
748 | __set_current_state(TASK_UNINTERRUPTIBLE); | 1136 | __set_current_state(TASK_UNINTERRUPTIBLE); |
749 | io_schedule_timeout(pause); | 1137 | io_schedule_timeout(pause); |
750 | trace_balance_dirty_wait(bdi); | ||
751 | 1138 | ||
752 | dirty_thresh = hard_dirty_limit(dirty_thresh); | 1139 | dirty_thresh = hard_dirty_limit(dirty_thresh); |
753 | /* | 1140 | /* |
@@ -756,24 +1143,30 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
756 | * 200ms is typically more than enough to curb heavy dirtiers; | 1143 | * 200ms is typically more than enough to curb heavy dirtiers; |
757 | * (b) the pause time limit makes the dirtiers more responsive. | 1144 | * (b) the pause time limit makes the dirtiers more responsive. |
758 | */ | 1145 | */ |
759 | if (nr_dirty < dirty_thresh && | 1146 | if (nr_dirty < dirty_thresh) |
760 | bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 && | ||
761 | time_after(jiffies, start_time + MAX_PAUSE)) | ||
762 | break; | 1147 | break; |
763 | |||
764 | /* | ||
765 | * Increase the delay for each loop, up to our previous | ||
766 | * default of taking a 100ms nap. | ||
767 | */ | ||
768 | pause <<= 1; | ||
769 | if (pause > HZ / 10) | ||
770 | pause = HZ / 10; | ||
771 | } | 1148 | } |
772 | 1149 | ||
773 | /* Clear dirty_exceeded flag only when no task can exceed the limit */ | 1150 | if (!dirty_exceeded && bdi->dirty_exceeded) |
774 | if (clear_dirty_exceeded && bdi->dirty_exceeded) | ||
775 | bdi->dirty_exceeded = 0; | 1151 | bdi->dirty_exceeded = 0; |
776 | 1152 | ||
1153 | current->nr_dirtied = 0; | ||
1154 | if (pause == 0) { /* in freerun area */ | ||
1155 | current->nr_dirtied_pause = | ||
1156 | dirty_poll_interval(nr_dirty, dirty_thresh); | ||
1157 | } else if (pause <= max_pause / 4 && | ||
1158 | pages_dirtied >= current->nr_dirtied_pause) { | ||
1159 | current->nr_dirtied_pause = clamp_val( | ||
1160 | dirty_ratelimit * (max_pause / 2) / HZ, | ||
1161 | pages_dirtied + pages_dirtied / 8, | ||
1162 | pages_dirtied * 4); | ||
1163 | } else if (pause >= max_pause) { | ||
1164 | current->nr_dirtied_pause = 1 | clamp_val( | ||
1165 | dirty_ratelimit * (max_pause / 2) / HZ, | ||
1166 | pages_dirtied / 4, | ||
1167 | pages_dirtied - pages_dirtied / 8); | ||
1168 | } | ||
1169 | |||
777 | if (writeback_in_progress(bdi)) | 1170 | if (writeback_in_progress(bdi)) |
778 | return; | 1171 | return; |
779 | 1172 | ||
@@ -785,8 +1178,10 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
785 | * In normal mode, we start background writeout at the lower | 1178 | * In normal mode, we start background writeout at the lower |
786 | * background_thresh, to keep the amount of dirty memory low. | 1179 | * background_thresh, to keep the amount of dirty memory low. |
787 | */ | 1180 | */ |
788 | if ((laptop_mode && pages_written) || | 1181 | if (laptop_mode) |
789 | (!laptop_mode && (nr_reclaimable > background_thresh))) | 1182 | return; |
1183 | |||
1184 | if (nr_reclaimable > background_thresh) | ||
790 | bdi_start_background_writeback(bdi); | 1185 | bdi_start_background_writeback(bdi); |
791 | } | 1186 | } |
792 | 1187 | ||
@@ -800,7 +1195,7 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite) | |||
800 | } | 1195 | } |
801 | } | 1196 | } |
802 | 1197 | ||
803 | static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; | 1198 | static DEFINE_PER_CPU(int, bdp_ratelimits); |
804 | 1199 | ||
805 | /** | 1200 | /** |
806 | * balance_dirty_pages_ratelimited_nr - balance dirty memory state | 1201 | * balance_dirty_pages_ratelimited_nr - balance dirty memory state |
@@ -820,31 +1215,39 @@ void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, | |||
820 | unsigned long nr_pages_dirtied) | 1215 | unsigned long nr_pages_dirtied) |
821 | { | 1216 | { |
822 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1217 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
823 | unsigned long ratelimit; | 1218 | int ratelimit; |
824 | unsigned long *p; | 1219 | int *p; |
825 | 1220 | ||
826 | if (!bdi_cap_account_dirty(bdi)) | 1221 | if (!bdi_cap_account_dirty(bdi)) |
827 | return; | 1222 | return; |
828 | 1223 | ||
829 | ratelimit = ratelimit_pages; | 1224 | ratelimit = current->nr_dirtied_pause; |
830 | if (mapping->backing_dev_info->dirty_exceeded) | 1225 | if (bdi->dirty_exceeded) |
831 | ratelimit = 8; | 1226 | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); |
1227 | |||
1228 | current->nr_dirtied += nr_pages_dirtied; | ||
832 | 1229 | ||
1230 | preempt_disable(); | ||
833 | /* | 1231 | /* |
834 | * Check the rate limiting. Also, we do not want to throttle real-time | 1232 | * This prevents one CPU to accumulate too many dirtied pages without |
835 | * tasks in balance_dirty_pages(). Period. | 1233 | * calling into balance_dirty_pages(), which can happen when there are |
1234 | * 1000+ tasks, all of them start dirtying pages at exactly the same | ||
1235 | * time, hence all honoured too large initial task->nr_dirtied_pause. | ||
836 | */ | 1236 | */ |
837 | preempt_disable(); | ||
838 | p = &__get_cpu_var(bdp_ratelimits); | 1237 | p = &__get_cpu_var(bdp_ratelimits); |
839 | *p += nr_pages_dirtied; | 1238 | if (unlikely(current->nr_dirtied >= ratelimit)) |
840 | if (unlikely(*p >= ratelimit)) { | ||
841 | ratelimit = sync_writeback_pages(*p); | ||
842 | *p = 0; | 1239 | *p = 0; |
843 | preempt_enable(); | 1240 | else { |
844 | balance_dirty_pages(mapping, ratelimit); | 1241 | *p += nr_pages_dirtied; |
845 | return; | 1242 | if (unlikely(*p >= ratelimit_pages)) { |
1243 | *p = 0; | ||
1244 | ratelimit = 0; | ||
1245 | } | ||
846 | } | 1246 | } |
847 | preempt_enable(); | 1247 | preempt_enable(); |
1248 | |||
1249 | if (unlikely(current->nr_dirtied >= ratelimit)) | ||
1250 | balance_dirty_pages(mapping, current->nr_dirtied); | ||
848 | } | 1251 | } |
849 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); | 1252 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); |
850 | 1253 | ||
@@ -900,7 +1303,8 @@ void laptop_mode_timer_fn(unsigned long data) | |||
900 | * threshold | 1303 | * threshold |
901 | */ | 1304 | */ |
902 | if (bdi_has_dirty_io(&q->backing_dev_info)) | 1305 | if (bdi_has_dirty_io(&q->backing_dev_info)) |
903 | bdi_start_writeback(&q->backing_dev_info, nr_pages); | 1306 | bdi_start_writeback(&q->backing_dev_info, nr_pages, |
1307 | WB_REASON_LAPTOP_TIMER); | ||
904 | } | 1308 | } |
905 | 1309 | ||
906 | /* | 1310 | /* |
@@ -939,22 +1343,17 @@ void laptop_sync_completion(void) | |||
939 | * | 1343 | * |
940 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are | 1344 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are |
941 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory | 1345 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory |
942 | * thresholds before writeback cuts in. | 1346 | * thresholds. |
943 | * | ||
944 | * But the limit should not be set too high. Because it also controls the | ||
945 | * amount of memory which the balance_dirty_pages() caller has to write back. | ||
946 | * If this is too large then the caller will block on the IO queue all the | ||
947 | * time. So limit it to four megabytes - the balance_dirty_pages() caller | ||
948 | * will write six megabyte chunks, max. | ||
949 | */ | 1347 | */ |
950 | 1348 | ||
951 | void writeback_set_ratelimit(void) | 1349 | void writeback_set_ratelimit(void) |
952 | { | 1350 | { |
953 | ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); | 1351 | unsigned long background_thresh; |
1352 | unsigned long dirty_thresh; | ||
1353 | global_dirty_limits(&background_thresh, &dirty_thresh); | ||
1354 | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); | ||
954 | if (ratelimit_pages < 16) | 1355 | if (ratelimit_pages < 16) |
955 | ratelimit_pages = 16; | 1356 | ratelimit_pages = 16; |
956 | if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) | ||
957 | ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; | ||
958 | } | 1357 | } |
959 | 1358 | ||
960 | static int __cpuinit | 1359 | static int __cpuinit |
@@ -1324,6 +1723,7 @@ void account_page_dirtied(struct page *page, struct address_space *mapping) | |||
1324 | __inc_zone_page_state(page, NR_FILE_DIRTY); | 1723 | __inc_zone_page_state(page, NR_FILE_DIRTY); |
1325 | __inc_zone_page_state(page, NR_DIRTIED); | 1724 | __inc_zone_page_state(page, NR_DIRTIED); |
1326 | __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | 1725 | __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); |
1726 | __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); | ||
1327 | task_dirty_inc(current); | 1727 | task_dirty_inc(current); |
1328 | task_io_account_write(PAGE_CACHE_SIZE); | 1728 | task_io_account_write(PAGE_CACHE_SIZE); |
1329 | } | 1729 | } |
diff --git a/mm/vmscan.c b/mm/vmscan.c index 132d1ddb2238..a1893c050795 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -2266,7 +2266,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
2266 | */ | 2266 | */ |
2267 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; | 2267 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; |
2268 | if (total_scanned > writeback_threshold) { | 2268 | if (total_scanned > writeback_threshold) { |
2269 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned); | 2269 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, |
2270 | WB_REASON_TRY_TO_FREE_PAGES); | ||
2270 | sc->may_writepage = 1; | 2271 | sc->may_writepage = 1; |
2271 | } | 2272 | } |
2272 | 2273 | ||