diff options
Diffstat (limited to 'mm/vmscan.c')
-rw-r--r-- | mm/vmscan.c | 1311 |
1 files changed, 1311 insertions, 0 deletions
diff --git a/mm/vmscan.c b/mm/vmscan.c new file mode 100644 index 000000000000..4003c0518d28 --- /dev/null +++ b/mm/vmscan.c | |||
@@ -0,0 +1,1311 @@ | |||
1 | /* | ||
2 | * linux/mm/vmscan.c | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | ||
5 | * | ||
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | ||
7 | * kswapd added: 7.1.96 sct | ||
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | ||
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | ||
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). | ||
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | ||
12 | */ | ||
13 | |||
14 | #include <linux/mm.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/slab.h> | ||
17 | #include <linux/kernel_stat.h> | ||
18 | #include <linux/swap.h> | ||
19 | #include <linux/pagemap.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/highmem.h> | ||
22 | #include <linux/file.h> | ||
23 | #include <linux/writeback.h> | ||
24 | #include <linux/blkdev.h> | ||
25 | #include <linux/buffer_head.h> /* for try_to_release_page(), | ||
26 | buffer_heads_over_limit */ | ||
27 | #include <linux/mm_inline.h> | ||
28 | #include <linux/pagevec.h> | ||
29 | #include <linux/backing-dev.h> | ||
30 | #include <linux/rmap.h> | ||
31 | #include <linux/topology.h> | ||
32 | #include <linux/cpu.h> | ||
33 | #include <linux/cpuset.h> | ||
34 | #include <linux/notifier.h> | ||
35 | #include <linux/rwsem.h> | ||
36 | |||
37 | #include <asm/tlbflush.h> | ||
38 | #include <asm/div64.h> | ||
39 | |||
40 | #include <linux/swapops.h> | ||
41 | |||
42 | /* possible outcome of pageout() */ | ||
43 | typedef enum { | ||
44 | /* failed to write page out, page is locked */ | ||
45 | PAGE_KEEP, | ||
46 | /* move page to the active list, page is locked */ | ||
47 | PAGE_ACTIVATE, | ||
48 | /* page has been sent to the disk successfully, page is unlocked */ | ||
49 | PAGE_SUCCESS, | ||
50 | /* page is clean and locked */ | ||
51 | PAGE_CLEAN, | ||
52 | } pageout_t; | ||
53 | |||
54 | struct scan_control { | ||
55 | /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */ | ||
56 | unsigned long nr_to_scan; | ||
57 | |||
58 | /* Incremented by the number of inactive pages that were scanned */ | ||
59 | unsigned long nr_scanned; | ||
60 | |||
61 | /* Incremented by the number of pages reclaimed */ | ||
62 | unsigned long nr_reclaimed; | ||
63 | |||
64 | unsigned long nr_mapped; /* From page_state */ | ||
65 | |||
66 | /* How many pages shrink_cache() should reclaim */ | ||
67 | int nr_to_reclaim; | ||
68 | |||
69 | /* Ask shrink_caches, or shrink_zone to scan at this priority */ | ||
70 | unsigned int priority; | ||
71 | |||
72 | /* This context's GFP mask */ | ||
73 | unsigned int gfp_mask; | ||
74 | |||
75 | int may_writepage; | ||
76 | |||
77 | /* This context's SWAP_CLUSTER_MAX. If freeing memory for | ||
78 | * suspend, we effectively ignore SWAP_CLUSTER_MAX. | ||
79 | * In this context, it doesn't matter that we scan the | ||
80 | * whole list at once. */ | ||
81 | int swap_cluster_max; | ||
82 | }; | ||
83 | |||
84 | /* | ||
85 | * The list of shrinker callbacks used by to apply pressure to | ||
86 | * ageable caches. | ||
87 | */ | ||
88 | struct shrinker { | ||
89 | shrinker_t shrinker; | ||
90 | struct list_head list; | ||
91 | int seeks; /* seeks to recreate an obj */ | ||
92 | long nr; /* objs pending delete */ | ||
93 | }; | ||
94 | |||
95 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | ||
96 | |||
97 | #ifdef ARCH_HAS_PREFETCH | ||
98 | #define prefetch_prev_lru_page(_page, _base, _field) \ | ||
99 | do { \ | ||
100 | if ((_page)->lru.prev != _base) { \ | ||
101 | struct page *prev; \ | ||
102 | \ | ||
103 | prev = lru_to_page(&(_page->lru)); \ | ||
104 | prefetch(&prev->_field); \ | ||
105 | } \ | ||
106 | } while (0) | ||
107 | #else | ||
108 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | ||
109 | #endif | ||
110 | |||
111 | #ifdef ARCH_HAS_PREFETCHW | ||
112 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | ||
113 | do { \ | ||
114 | if ((_page)->lru.prev != _base) { \ | ||
115 | struct page *prev; \ | ||
116 | \ | ||
117 | prev = lru_to_page(&(_page->lru)); \ | ||
118 | prefetchw(&prev->_field); \ | ||
119 | } \ | ||
120 | } while (0) | ||
121 | #else | ||
122 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | ||
123 | #endif | ||
124 | |||
125 | /* | ||
126 | * From 0 .. 100. Higher means more swappy. | ||
127 | */ | ||
128 | int vm_swappiness = 60; | ||
129 | static long total_memory; | ||
130 | |||
131 | static LIST_HEAD(shrinker_list); | ||
132 | static DECLARE_RWSEM(shrinker_rwsem); | ||
133 | |||
134 | /* | ||
135 | * Add a shrinker callback to be called from the vm | ||
136 | */ | ||
137 | struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker) | ||
138 | { | ||
139 | struct shrinker *shrinker; | ||
140 | |||
141 | shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL); | ||
142 | if (shrinker) { | ||
143 | shrinker->shrinker = theshrinker; | ||
144 | shrinker->seeks = seeks; | ||
145 | shrinker->nr = 0; | ||
146 | down_write(&shrinker_rwsem); | ||
147 | list_add_tail(&shrinker->list, &shrinker_list); | ||
148 | up_write(&shrinker_rwsem); | ||
149 | } | ||
150 | return shrinker; | ||
151 | } | ||
152 | EXPORT_SYMBOL(set_shrinker); | ||
153 | |||
154 | /* | ||
155 | * Remove one | ||
156 | */ | ||
157 | void remove_shrinker(struct shrinker *shrinker) | ||
158 | { | ||
159 | down_write(&shrinker_rwsem); | ||
160 | list_del(&shrinker->list); | ||
161 | up_write(&shrinker_rwsem); | ||
162 | kfree(shrinker); | ||
163 | } | ||
164 | EXPORT_SYMBOL(remove_shrinker); | ||
165 | |||
166 | #define SHRINK_BATCH 128 | ||
167 | /* | ||
168 | * Call the shrink functions to age shrinkable caches | ||
169 | * | ||
170 | * Here we assume it costs one seek to replace a lru page and that it also | ||
171 | * takes a seek to recreate a cache object. With this in mind we age equal | ||
172 | * percentages of the lru and ageable caches. This should balance the seeks | ||
173 | * generated by these structures. | ||
174 | * | ||
175 | * If the vm encounted mapped pages on the LRU it increase the pressure on | ||
176 | * slab to avoid swapping. | ||
177 | * | ||
178 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | ||
179 | * | ||
180 | * `lru_pages' represents the number of on-LRU pages in all the zones which | ||
181 | * are eligible for the caller's allocation attempt. It is used for balancing | ||
182 | * slab reclaim versus page reclaim. | ||
183 | */ | ||
184 | static int shrink_slab(unsigned long scanned, unsigned int gfp_mask, | ||
185 | unsigned long lru_pages) | ||
186 | { | ||
187 | struct shrinker *shrinker; | ||
188 | |||
189 | if (scanned == 0) | ||
190 | scanned = SWAP_CLUSTER_MAX; | ||
191 | |||
192 | if (!down_read_trylock(&shrinker_rwsem)) | ||
193 | return 0; | ||
194 | |||
195 | list_for_each_entry(shrinker, &shrinker_list, list) { | ||
196 | unsigned long long delta; | ||
197 | unsigned long total_scan; | ||
198 | |||
199 | delta = (4 * scanned) / shrinker->seeks; | ||
200 | delta *= (*shrinker->shrinker)(0, gfp_mask); | ||
201 | do_div(delta, lru_pages + 1); | ||
202 | shrinker->nr += delta; | ||
203 | if (shrinker->nr < 0) | ||
204 | shrinker->nr = LONG_MAX; /* It wrapped! */ | ||
205 | |||
206 | total_scan = shrinker->nr; | ||
207 | shrinker->nr = 0; | ||
208 | |||
209 | while (total_scan >= SHRINK_BATCH) { | ||
210 | long this_scan = SHRINK_BATCH; | ||
211 | int shrink_ret; | ||
212 | |||
213 | shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask); | ||
214 | if (shrink_ret == -1) | ||
215 | break; | ||
216 | mod_page_state(slabs_scanned, this_scan); | ||
217 | total_scan -= this_scan; | ||
218 | |||
219 | cond_resched(); | ||
220 | } | ||
221 | |||
222 | shrinker->nr += total_scan; | ||
223 | } | ||
224 | up_read(&shrinker_rwsem); | ||
225 | return 0; | ||
226 | } | ||
227 | |||
228 | /* Called without lock on whether page is mapped, so answer is unstable */ | ||
229 | static inline int page_mapping_inuse(struct page *page) | ||
230 | { | ||
231 | struct address_space *mapping; | ||
232 | |||
233 | /* Page is in somebody's page tables. */ | ||
234 | if (page_mapped(page)) | ||
235 | return 1; | ||
236 | |||
237 | /* Be more reluctant to reclaim swapcache than pagecache */ | ||
238 | if (PageSwapCache(page)) | ||
239 | return 1; | ||
240 | |||
241 | mapping = page_mapping(page); | ||
242 | if (!mapping) | ||
243 | return 0; | ||
244 | |||
245 | /* File is mmap'd by somebody? */ | ||
246 | return mapping_mapped(mapping); | ||
247 | } | ||
248 | |||
249 | static inline int is_page_cache_freeable(struct page *page) | ||
250 | { | ||
251 | return page_count(page) - !!PagePrivate(page) == 2; | ||
252 | } | ||
253 | |||
254 | static int may_write_to_queue(struct backing_dev_info *bdi) | ||
255 | { | ||
256 | if (current_is_kswapd()) | ||
257 | return 1; | ||
258 | if (current_is_pdflush()) /* This is unlikely, but why not... */ | ||
259 | return 1; | ||
260 | if (!bdi_write_congested(bdi)) | ||
261 | return 1; | ||
262 | if (bdi == current->backing_dev_info) | ||
263 | return 1; | ||
264 | return 0; | ||
265 | } | ||
266 | |||
267 | /* | ||
268 | * We detected a synchronous write error writing a page out. Probably | ||
269 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | ||
270 | * fsync(), msync() or close(). | ||
271 | * | ||
272 | * The tricky part is that after writepage we cannot touch the mapping: nothing | ||
273 | * prevents it from being freed up. But we have a ref on the page and once | ||
274 | * that page is locked, the mapping is pinned. | ||
275 | * | ||
276 | * We're allowed to run sleeping lock_page() here because we know the caller has | ||
277 | * __GFP_FS. | ||
278 | */ | ||
279 | static void handle_write_error(struct address_space *mapping, | ||
280 | struct page *page, int error) | ||
281 | { | ||
282 | lock_page(page); | ||
283 | if (page_mapping(page) == mapping) { | ||
284 | if (error == -ENOSPC) | ||
285 | set_bit(AS_ENOSPC, &mapping->flags); | ||
286 | else | ||
287 | set_bit(AS_EIO, &mapping->flags); | ||
288 | } | ||
289 | unlock_page(page); | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * pageout is called by shrink_list() for each dirty page. Calls ->writepage(). | ||
294 | */ | ||
295 | static pageout_t pageout(struct page *page, struct address_space *mapping) | ||
296 | { | ||
297 | /* | ||
298 | * If the page is dirty, only perform writeback if that write | ||
299 | * will be non-blocking. To prevent this allocation from being | ||
300 | * stalled by pagecache activity. But note that there may be | ||
301 | * stalls if we need to run get_block(). We could test | ||
302 | * PagePrivate for that. | ||
303 | * | ||
304 | * If this process is currently in generic_file_write() against | ||
305 | * this page's queue, we can perform writeback even if that | ||
306 | * will block. | ||
307 | * | ||
308 | * If the page is swapcache, write it back even if that would | ||
309 | * block, for some throttling. This happens by accident, because | ||
310 | * swap_backing_dev_info is bust: it doesn't reflect the | ||
311 | * congestion state of the swapdevs. Easy to fix, if needed. | ||
312 | * See swapfile.c:page_queue_congested(). | ||
313 | */ | ||
314 | if (!is_page_cache_freeable(page)) | ||
315 | return PAGE_KEEP; | ||
316 | if (!mapping) { | ||
317 | /* | ||
318 | * Some data journaling orphaned pages can have | ||
319 | * page->mapping == NULL while being dirty with clean buffers. | ||
320 | */ | ||
321 | if (PageDirty(page) && PagePrivate(page)) { | ||
322 | if (try_to_free_buffers(page)) { | ||
323 | ClearPageDirty(page); | ||
324 | printk("%s: orphaned page\n", __FUNCTION__); | ||
325 | return PAGE_CLEAN; | ||
326 | } | ||
327 | } | ||
328 | return PAGE_KEEP; | ||
329 | } | ||
330 | if (mapping->a_ops->writepage == NULL) | ||
331 | return PAGE_ACTIVATE; | ||
332 | if (!may_write_to_queue(mapping->backing_dev_info)) | ||
333 | return PAGE_KEEP; | ||
334 | |||
335 | if (clear_page_dirty_for_io(page)) { | ||
336 | int res; | ||
337 | struct writeback_control wbc = { | ||
338 | .sync_mode = WB_SYNC_NONE, | ||
339 | .nr_to_write = SWAP_CLUSTER_MAX, | ||
340 | .nonblocking = 1, | ||
341 | .for_reclaim = 1, | ||
342 | }; | ||
343 | |||
344 | SetPageReclaim(page); | ||
345 | res = mapping->a_ops->writepage(page, &wbc); | ||
346 | if (res < 0) | ||
347 | handle_write_error(mapping, page, res); | ||
348 | if (res == WRITEPAGE_ACTIVATE) { | ||
349 | ClearPageReclaim(page); | ||
350 | return PAGE_ACTIVATE; | ||
351 | } | ||
352 | if (!PageWriteback(page)) { | ||
353 | /* synchronous write or broken a_ops? */ | ||
354 | ClearPageReclaim(page); | ||
355 | } | ||
356 | |||
357 | return PAGE_SUCCESS; | ||
358 | } | ||
359 | |||
360 | return PAGE_CLEAN; | ||
361 | } | ||
362 | |||
363 | /* | ||
364 | * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed | ||
365 | */ | ||
366 | static int shrink_list(struct list_head *page_list, struct scan_control *sc) | ||
367 | { | ||
368 | LIST_HEAD(ret_pages); | ||
369 | struct pagevec freed_pvec; | ||
370 | int pgactivate = 0; | ||
371 | int reclaimed = 0; | ||
372 | |||
373 | cond_resched(); | ||
374 | |||
375 | pagevec_init(&freed_pvec, 1); | ||
376 | while (!list_empty(page_list)) { | ||
377 | struct address_space *mapping; | ||
378 | struct page *page; | ||
379 | int may_enter_fs; | ||
380 | int referenced; | ||
381 | |||
382 | cond_resched(); | ||
383 | |||
384 | page = lru_to_page(page_list); | ||
385 | list_del(&page->lru); | ||
386 | |||
387 | if (TestSetPageLocked(page)) | ||
388 | goto keep; | ||
389 | |||
390 | BUG_ON(PageActive(page)); | ||
391 | |||
392 | sc->nr_scanned++; | ||
393 | /* Double the slab pressure for mapped and swapcache pages */ | ||
394 | if (page_mapped(page) || PageSwapCache(page)) | ||
395 | sc->nr_scanned++; | ||
396 | |||
397 | if (PageWriteback(page)) | ||
398 | goto keep_locked; | ||
399 | |||
400 | referenced = page_referenced(page, 1, sc->priority <= 0); | ||
401 | /* In active use or really unfreeable? Activate it. */ | ||
402 | if (referenced && page_mapping_inuse(page)) | ||
403 | goto activate_locked; | ||
404 | |||
405 | #ifdef CONFIG_SWAP | ||
406 | /* | ||
407 | * Anonymous process memory has backing store? | ||
408 | * Try to allocate it some swap space here. | ||
409 | */ | ||
410 | if (PageAnon(page) && !PageSwapCache(page)) { | ||
411 | if (!add_to_swap(page)) | ||
412 | goto activate_locked; | ||
413 | } | ||
414 | #endif /* CONFIG_SWAP */ | ||
415 | |||
416 | mapping = page_mapping(page); | ||
417 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || | ||
418 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | ||
419 | |||
420 | /* | ||
421 | * The page is mapped into the page tables of one or more | ||
422 | * processes. Try to unmap it here. | ||
423 | */ | ||
424 | if (page_mapped(page) && mapping) { | ||
425 | switch (try_to_unmap(page)) { | ||
426 | case SWAP_FAIL: | ||
427 | goto activate_locked; | ||
428 | case SWAP_AGAIN: | ||
429 | goto keep_locked; | ||
430 | case SWAP_SUCCESS: | ||
431 | ; /* try to free the page below */ | ||
432 | } | ||
433 | } | ||
434 | |||
435 | if (PageDirty(page)) { | ||
436 | if (referenced) | ||
437 | goto keep_locked; | ||
438 | if (!may_enter_fs) | ||
439 | goto keep_locked; | ||
440 | if (laptop_mode && !sc->may_writepage) | ||
441 | goto keep_locked; | ||
442 | |||
443 | /* Page is dirty, try to write it out here */ | ||
444 | switch(pageout(page, mapping)) { | ||
445 | case PAGE_KEEP: | ||
446 | goto keep_locked; | ||
447 | case PAGE_ACTIVATE: | ||
448 | goto activate_locked; | ||
449 | case PAGE_SUCCESS: | ||
450 | if (PageWriteback(page) || PageDirty(page)) | ||
451 | goto keep; | ||
452 | /* | ||
453 | * A synchronous write - probably a ramdisk. Go | ||
454 | * ahead and try to reclaim the page. | ||
455 | */ | ||
456 | if (TestSetPageLocked(page)) | ||
457 | goto keep; | ||
458 | if (PageDirty(page) || PageWriteback(page)) | ||
459 | goto keep_locked; | ||
460 | mapping = page_mapping(page); | ||
461 | case PAGE_CLEAN: | ||
462 | ; /* try to free the page below */ | ||
463 | } | ||
464 | } | ||
465 | |||
466 | /* | ||
467 | * If the page has buffers, try to free the buffer mappings | ||
468 | * associated with this page. If we succeed we try to free | ||
469 | * the page as well. | ||
470 | * | ||
471 | * We do this even if the page is PageDirty(). | ||
472 | * try_to_release_page() does not perform I/O, but it is | ||
473 | * possible for a page to have PageDirty set, but it is actually | ||
474 | * clean (all its buffers are clean). This happens if the | ||
475 | * buffers were written out directly, with submit_bh(). ext3 | ||
476 | * will do this, as well as the blockdev mapping. | ||
477 | * try_to_release_page() will discover that cleanness and will | ||
478 | * drop the buffers and mark the page clean - it can be freed. | ||
479 | * | ||
480 | * Rarely, pages can have buffers and no ->mapping. These are | ||
481 | * the pages which were not successfully invalidated in | ||
482 | * truncate_complete_page(). We try to drop those buffers here | ||
483 | * and if that worked, and the page is no longer mapped into | ||
484 | * process address space (page_count == 1) it can be freed. | ||
485 | * Otherwise, leave the page on the LRU so it is swappable. | ||
486 | */ | ||
487 | if (PagePrivate(page)) { | ||
488 | if (!try_to_release_page(page, sc->gfp_mask)) | ||
489 | goto activate_locked; | ||
490 | if (!mapping && page_count(page) == 1) | ||
491 | goto free_it; | ||
492 | } | ||
493 | |||
494 | if (!mapping) | ||
495 | goto keep_locked; /* truncate got there first */ | ||
496 | |||
497 | write_lock_irq(&mapping->tree_lock); | ||
498 | |||
499 | /* | ||
500 | * The non-racy check for busy page. It is critical to check | ||
501 | * PageDirty _after_ making sure that the page is freeable and | ||
502 | * not in use by anybody. (pagecache + us == 2) | ||
503 | */ | ||
504 | if (page_count(page) != 2 || PageDirty(page)) { | ||
505 | write_unlock_irq(&mapping->tree_lock); | ||
506 | goto keep_locked; | ||
507 | } | ||
508 | |||
509 | #ifdef CONFIG_SWAP | ||
510 | if (PageSwapCache(page)) { | ||
511 | swp_entry_t swap = { .val = page->private }; | ||
512 | __delete_from_swap_cache(page); | ||
513 | write_unlock_irq(&mapping->tree_lock); | ||
514 | swap_free(swap); | ||
515 | __put_page(page); /* The pagecache ref */ | ||
516 | goto free_it; | ||
517 | } | ||
518 | #endif /* CONFIG_SWAP */ | ||
519 | |||
520 | __remove_from_page_cache(page); | ||
521 | write_unlock_irq(&mapping->tree_lock); | ||
522 | __put_page(page); | ||
523 | |||
524 | free_it: | ||
525 | unlock_page(page); | ||
526 | reclaimed++; | ||
527 | if (!pagevec_add(&freed_pvec, page)) | ||
528 | __pagevec_release_nonlru(&freed_pvec); | ||
529 | continue; | ||
530 | |||
531 | activate_locked: | ||
532 | SetPageActive(page); | ||
533 | pgactivate++; | ||
534 | keep_locked: | ||
535 | unlock_page(page); | ||
536 | keep: | ||
537 | list_add(&page->lru, &ret_pages); | ||
538 | BUG_ON(PageLRU(page)); | ||
539 | } | ||
540 | list_splice(&ret_pages, page_list); | ||
541 | if (pagevec_count(&freed_pvec)) | ||
542 | __pagevec_release_nonlru(&freed_pvec); | ||
543 | mod_page_state(pgactivate, pgactivate); | ||
544 | sc->nr_reclaimed += reclaimed; | ||
545 | return reclaimed; | ||
546 | } | ||
547 | |||
548 | /* | ||
549 | * zone->lru_lock is heavily contended. Some of the functions that | ||
550 | * shrink the lists perform better by taking out a batch of pages | ||
551 | * and working on them outside the LRU lock. | ||
552 | * | ||
553 | * For pagecache intensive workloads, this function is the hottest | ||
554 | * spot in the kernel (apart from copy_*_user functions). | ||
555 | * | ||
556 | * Appropriate locks must be held before calling this function. | ||
557 | * | ||
558 | * @nr_to_scan: The number of pages to look through on the list. | ||
559 | * @src: The LRU list to pull pages off. | ||
560 | * @dst: The temp list to put pages on to. | ||
561 | * @scanned: The number of pages that were scanned. | ||
562 | * | ||
563 | * returns how many pages were moved onto *@dst. | ||
564 | */ | ||
565 | static int isolate_lru_pages(int nr_to_scan, struct list_head *src, | ||
566 | struct list_head *dst, int *scanned) | ||
567 | { | ||
568 | int nr_taken = 0; | ||
569 | struct page *page; | ||
570 | int scan = 0; | ||
571 | |||
572 | while (scan++ < nr_to_scan && !list_empty(src)) { | ||
573 | page = lru_to_page(src); | ||
574 | prefetchw_prev_lru_page(page, src, flags); | ||
575 | |||
576 | if (!TestClearPageLRU(page)) | ||
577 | BUG(); | ||
578 | list_del(&page->lru); | ||
579 | if (get_page_testone(page)) { | ||
580 | /* | ||
581 | * It is being freed elsewhere | ||
582 | */ | ||
583 | __put_page(page); | ||
584 | SetPageLRU(page); | ||
585 | list_add(&page->lru, src); | ||
586 | continue; | ||
587 | } else { | ||
588 | list_add(&page->lru, dst); | ||
589 | nr_taken++; | ||
590 | } | ||
591 | } | ||
592 | |||
593 | *scanned = scan; | ||
594 | return nr_taken; | ||
595 | } | ||
596 | |||
597 | /* | ||
598 | * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed | ||
599 | */ | ||
600 | static void shrink_cache(struct zone *zone, struct scan_control *sc) | ||
601 | { | ||
602 | LIST_HEAD(page_list); | ||
603 | struct pagevec pvec; | ||
604 | int max_scan = sc->nr_to_scan; | ||
605 | |||
606 | pagevec_init(&pvec, 1); | ||
607 | |||
608 | lru_add_drain(); | ||
609 | spin_lock_irq(&zone->lru_lock); | ||
610 | while (max_scan > 0) { | ||
611 | struct page *page; | ||
612 | int nr_taken; | ||
613 | int nr_scan; | ||
614 | int nr_freed; | ||
615 | |||
616 | nr_taken = isolate_lru_pages(sc->swap_cluster_max, | ||
617 | &zone->inactive_list, | ||
618 | &page_list, &nr_scan); | ||
619 | zone->nr_inactive -= nr_taken; | ||
620 | zone->pages_scanned += nr_scan; | ||
621 | spin_unlock_irq(&zone->lru_lock); | ||
622 | |||
623 | if (nr_taken == 0) | ||
624 | goto done; | ||
625 | |||
626 | max_scan -= nr_scan; | ||
627 | if (current_is_kswapd()) | ||
628 | mod_page_state_zone(zone, pgscan_kswapd, nr_scan); | ||
629 | else | ||
630 | mod_page_state_zone(zone, pgscan_direct, nr_scan); | ||
631 | nr_freed = shrink_list(&page_list, sc); | ||
632 | if (current_is_kswapd()) | ||
633 | mod_page_state(kswapd_steal, nr_freed); | ||
634 | mod_page_state_zone(zone, pgsteal, nr_freed); | ||
635 | sc->nr_to_reclaim -= nr_freed; | ||
636 | |||
637 | spin_lock_irq(&zone->lru_lock); | ||
638 | /* | ||
639 | * Put back any unfreeable pages. | ||
640 | */ | ||
641 | while (!list_empty(&page_list)) { | ||
642 | page = lru_to_page(&page_list); | ||
643 | if (TestSetPageLRU(page)) | ||
644 | BUG(); | ||
645 | list_del(&page->lru); | ||
646 | if (PageActive(page)) | ||
647 | add_page_to_active_list(zone, page); | ||
648 | else | ||
649 | add_page_to_inactive_list(zone, page); | ||
650 | if (!pagevec_add(&pvec, page)) { | ||
651 | spin_unlock_irq(&zone->lru_lock); | ||
652 | __pagevec_release(&pvec); | ||
653 | spin_lock_irq(&zone->lru_lock); | ||
654 | } | ||
655 | } | ||
656 | } | ||
657 | spin_unlock_irq(&zone->lru_lock); | ||
658 | done: | ||
659 | pagevec_release(&pvec); | ||
660 | } | ||
661 | |||
662 | /* | ||
663 | * This moves pages from the active list to the inactive list. | ||
664 | * | ||
665 | * We move them the other way if the page is referenced by one or more | ||
666 | * processes, from rmap. | ||
667 | * | ||
668 | * If the pages are mostly unmapped, the processing is fast and it is | ||
669 | * appropriate to hold zone->lru_lock across the whole operation. But if | ||
670 | * the pages are mapped, the processing is slow (page_referenced()) so we | ||
671 | * should drop zone->lru_lock around each page. It's impossible to balance | ||
672 | * this, so instead we remove the pages from the LRU while processing them. | ||
673 | * It is safe to rely on PG_active against the non-LRU pages in here because | ||
674 | * nobody will play with that bit on a non-LRU page. | ||
675 | * | ||
676 | * The downside is that we have to touch page->_count against each page. | ||
677 | * But we had to alter page->flags anyway. | ||
678 | */ | ||
679 | static void | ||
680 | refill_inactive_zone(struct zone *zone, struct scan_control *sc) | ||
681 | { | ||
682 | int pgmoved; | ||
683 | int pgdeactivate = 0; | ||
684 | int pgscanned; | ||
685 | int nr_pages = sc->nr_to_scan; | ||
686 | LIST_HEAD(l_hold); /* The pages which were snipped off */ | ||
687 | LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ | ||
688 | LIST_HEAD(l_active); /* Pages to go onto the active_list */ | ||
689 | struct page *page; | ||
690 | struct pagevec pvec; | ||
691 | int reclaim_mapped = 0; | ||
692 | long mapped_ratio; | ||
693 | long distress; | ||
694 | long swap_tendency; | ||
695 | |||
696 | lru_add_drain(); | ||
697 | spin_lock_irq(&zone->lru_lock); | ||
698 | pgmoved = isolate_lru_pages(nr_pages, &zone->active_list, | ||
699 | &l_hold, &pgscanned); | ||
700 | zone->pages_scanned += pgscanned; | ||
701 | zone->nr_active -= pgmoved; | ||
702 | spin_unlock_irq(&zone->lru_lock); | ||
703 | |||
704 | /* | ||
705 | * `distress' is a measure of how much trouble we're having reclaiming | ||
706 | * pages. 0 -> no problems. 100 -> great trouble. | ||
707 | */ | ||
708 | distress = 100 >> zone->prev_priority; | ||
709 | |||
710 | /* | ||
711 | * The point of this algorithm is to decide when to start reclaiming | ||
712 | * mapped memory instead of just pagecache. Work out how much memory | ||
713 | * is mapped. | ||
714 | */ | ||
715 | mapped_ratio = (sc->nr_mapped * 100) / total_memory; | ||
716 | |||
717 | /* | ||
718 | * Now decide how much we really want to unmap some pages. The mapped | ||
719 | * ratio is downgraded - just because there's a lot of mapped memory | ||
720 | * doesn't necessarily mean that page reclaim isn't succeeding. | ||
721 | * | ||
722 | * The distress ratio is important - we don't want to start going oom. | ||
723 | * | ||
724 | * A 100% value of vm_swappiness overrides this algorithm altogether. | ||
725 | */ | ||
726 | swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; | ||
727 | |||
728 | /* | ||
729 | * Now use this metric to decide whether to start moving mapped memory | ||
730 | * onto the inactive list. | ||
731 | */ | ||
732 | if (swap_tendency >= 100) | ||
733 | reclaim_mapped = 1; | ||
734 | |||
735 | while (!list_empty(&l_hold)) { | ||
736 | cond_resched(); | ||
737 | page = lru_to_page(&l_hold); | ||
738 | list_del(&page->lru); | ||
739 | if (page_mapped(page)) { | ||
740 | if (!reclaim_mapped || | ||
741 | (total_swap_pages == 0 && PageAnon(page)) || | ||
742 | page_referenced(page, 0, sc->priority <= 0)) { | ||
743 | list_add(&page->lru, &l_active); | ||
744 | continue; | ||
745 | } | ||
746 | } | ||
747 | list_add(&page->lru, &l_inactive); | ||
748 | } | ||
749 | |||
750 | pagevec_init(&pvec, 1); | ||
751 | pgmoved = 0; | ||
752 | spin_lock_irq(&zone->lru_lock); | ||
753 | while (!list_empty(&l_inactive)) { | ||
754 | page = lru_to_page(&l_inactive); | ||
755 | prefetchw_prev_lru_page(page, &l_inactive, flags); | ||
756 | if (TestSetPageLRU(page)) | ||
757 | BUG(); | ||
758 | if (!TestClearPageActive(page)) | ||
759 | BUG(); | ||
760 | list_move(&page->lru, &zone->inactive_list); | ||
761 | pgmoved++; | ||
762 | if (!pagevec_add(&pvec, page)) { | ||
763 | zone->nr_inactive += pgmoved; | ||
764 | spin_unlock_irq(&zone->lru_lock); | ||
765 | pgdeactivate += pgmoved; | ||
766 | pgmoved = 0; | ||
767 | if (buffer_heads_over_limit) | ||
768 | pagevec_strip(&pvec); | ||
769 | __pagevec_release(&pvec); | ||
770 | spin_lock_irq(&zone->lru_lock); | ||
771 | } | ||
772 | } | ||
773 | zone->nr_inactive += pgmoved; | ||
774 | pgdeactivate += pgmoved; | ||
775 | if (buffer_heads_over_limit) { | ||
776 | spin_unlock_irq(&zone->lru_lock); | ||
777 | pagevec_strip(&pvec); | ||
778 | spin_lock_irq(&zone->lru_lock); | ||
779 | } | ||
780 | |||
781 | pgmoved = 0; | ||
782 | while (!list_empty(&l_active)) { | ||
783 | page = lru_to_page(&l_active); | ||
784 | prefetchw_prev_lru_page(page, &l_active, flags); | ||
785 | if (TestSetPageLRU(page)) | ||
786 | BUG(); | ||
787 | BUG_ON(!PageActive(page)); | ||
788 | list_move(&page->lru, &zone->active_list); | ||
789 | pgmoved++; | ||
790 | if (!pagevec_add(&pvec, page)) { | ||
791 | zone->nr_active += pgmoved; | ||
792 | pgmoved = 0; | ||
793 | spin_unlock_irq(&zone->lru_lock); | ||
794 | __pagevec_release(&pvec); | ||
795 | spin_lock_irq(&zone->lru_lock); | ||
796 | } | ||
797 | } | ||
798 | zone->nr_active += pgmoved; | ||
799 | spin_unlock_irq(&zone->lru_lock); | ||
800 | pagevec_release(&pvec); | ||
801 | |||
802 | mod_page_state_zone(zone, pgrefill, pgscanned); | ||
803 | mod_page_state(pgdeactivate, pgdeactivate); | ||
804 | } | ||
805 | |||
806 | /* | ||
807 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | ||
808 | */ | ||
809 | static void | ||
810 | shrink_zone(struct zone *zone, struct scan_control *sc) | ||
811 | { | ||
812 | unsigned long nr_active; | ||
813 | unsigned long nr_inactive; | ||
814 | |||
815 | /* | ||
816 | * Add one to `nr_to_scan' just to make sure that the kernel will | ||
817 | * slowly sift through the active list. | ||
818 | */ | ||
819 | zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1; | ||
820 | nr_active = zone->nr_scan_active; | ||
821 | if (nr_active >= sc->swap_cluster_max) | ||
822 | zone->nr_scan_active = 0; | ||
823 | else | ||
824 | nr_active = 0; | ||
825 | |||
826 | zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1; | ||
827 | nr_inactive = zone->nr_scan_inactive; | ||
828 | if (nr_inactive >= sc->swap_cluster_max) | ||
829 | zone->nr_scan_inactive = 0; | ||
830 | else | ||
831 | nr_inactive = 0; | ||
832 | |||
833 | sc->nr_to_reclaim = sc->swap_cluster_max; | ||
834 | |||
835 | while (nr_active || nr_inactive) { | ||
836 | if (nr_active) { | ||
837 | sc->nr_to_scan = min(nr_active, | ||
838 | (unsigned long)sc->swap_cluster_max); | ||
839 | nr_active -= sc->nr_to_scan; | ||
840 | refill_inactive_zone(zone, sc); | ||
841 | } | ||
842 | |||
843 | if (nr_inactive) { | ||
844 | sc->nr_to_scan = min(nr_inactive, | ||
845 | (unsigned long)sc->swap_cluster_max); | ||
846 | nr_inactive -= sc->nr_to_scan; | ||
847 | shrink_cache(zone, sc); | ||
848 | if (sc->nr_to_reclaim <= 0) | ||
849 | break; | ||
850 | } | ||
851 | } | ||
852 | |||
853 | throttle_vm_writeout(); | ||
854 | } | ||
855 | |||
856 | /* | ||
857 | * This is the direct reclaim path, for page-allocating processes. We only | ||
858 | * try to reclaim pages from zones which will satisfy the caller's allocation | ||
859 | * request. | ||
860 | * | ||
861 | * We reclaim from a zone even if that zone is over pages_high. Because: | ||
862 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order | ||
863 | * allocation or | ||
864 | * b) The zones may be over pages_high but they must go *over* pages_high to | ||
865 | * satisfy the `incremental min' zone defense algorithm. | ||
866 | * | ||
867 | * Returns the number of reclaimed pages. | ||
868 | * | ||
869 | * If a zone is deemed to be full of pinned pages then just give it a light | ||
870 | * scan then give up on it. | ||
871 | */ | ||
872 | static void | ||
873 | shrink_caches(struct zone **zones, struct scan_control *sc) | ||
874 | { | ||
875 | int i; | ||
876 | |||
877 | for (i = 0; zones[i] != NULL; i++) { | ||
878 | struct zone *zone = zones[i]; | ||
879 | |||
880 | if (zone->present_pages == 0) | ||
881 | continue; | ||
882 | |||
883 | if (!cpuset_zone_allowed(zone)) | ||
884 | continue; | ||
885 | |||
886 | zone->temp_priority = sc->priority; | ||
887 | if (zone->prev_priority > sc->priority) | ||
888 | zone->prev_priority = sc->priority; | ||
889 | |||
890 | if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY) | ||
891 | continue; /* Let kswapd poll it */ | ||
892 | |||
893 | shrink_zone(zone, sc); | ||
894 | } | ||
895 | } | ||
896 | |||
897 | /* | ||
898 | * This is the main entry point to direct page reclaim. | ||
899 | * | ||
900 | * If a full scan of the inactive list fails to free enough memory then we | ||
901 | * are "out of memory" and something needs to be killed. | ||
902 | * | ||
903 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | ||
904 | * high - the zone may be full of dirty or under-writeback pages, which this | ||
905 | * caller can't do much about. We kick pdflush and take explicit naps in the | ||
906 | * hope that some of these pages can be written. But if the allocating task | ||
907 | * holds filesystem locks which prevent writeout this might not work, and the | ||
908 | * allocation attempt will fail. | ||
909 | */ | ||
910 | int try_to_free_pages(struct zone **zones, | ||
911 | unsigned int gfp_mask, unsigned int order) | ||
912 | { | ||
913 | int priority; | ||
914 | int ret = 0; | ||
915 | int total_scanned = 0, total_reclaimed = 0; | ||
916 | struct reclaim_state *reclaim_state = current->reclaim_state; | ||
917 | struct scan_control sc; | ||
918 | unsigned long lru_pages = 0; | ||
919 | int i; | ||
920 | |||
921 | sc.gfp_mask = gfp_mask; | ||
922 | sc.may_writepage = 0; | ||
923 | |||
924 | inc_page_state(allocstall); | ||
925 | |||
926 | for (i = 0; zones[i] != NULL; i++) { | ||
927 | struct zone *zone = zones[i]; | ||
928 | |||
929 | if (!cpuset_zone_allowed(zone)) | ||
930 | continue; | ||
931 | |||
932 | zone->temp_priority = DEF_PRIORITY; | ||
933 | lru_pages += zone->nr_active + zone->nr_inactive; | ||
934 | } | ||
935 | |||
936 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | ||
937 | sc.nr_mapped = read_page_state(nr_mapped); | ||
938 | sc.nr_scanned = 0; | ||
939 | sc.nr_reclaimed = 0; | ||
940 | sc.priority = priority; | ||
941 | sc.swap_cluster_max = SWAP_CLUSTER_MAX; | ||
942 | shrink_caches(zones, &sc); | ||
943 | shrink_slab(sc.nr_scanned, gfp_mask, lru_pages); | ||
944 | if (reclaim_state) { | ||
945 | sc.nr_reclaimed += reclaim_state->reclaimed_slab; | ||
946 | reclaim_state->reclaimed_slab = 0; | ||
947 | } | ||
948 | total_scanned += sc.nr_scanned; | ||
949 | total_reclaimed += sc.nr_reclaimed; | ||
950 | if (total_reclaimed >= sc.swap_cluster_max) { | ||
951 | ret = 1; | ||
952 | goto out; | ||
953 | } | ||
954 | |||
955 | /* | ||
956 | * Try to write back as many pages as we just scanned. This | ||
957 | * tends to cause slow streaming writers to write data to the | ||
958 | * disk smoothly, at the dirtying rate, which is nice. But | ||
959 | * that's undesirable in laptop mode, where we *want* lumpy | ||
960 | * writeout. So in laptop mode, write out the whole world. | ||
961 | */ | ||
962 | if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) { | ||
963 | wakeup_bdflush(laptop_mode ? 0 : total_scanned); | ||
964 | sc.may_writepage = 1; | ||
965 | } | ||
966 | |||
967 | /* Take a nap, wait for some writeback to complete */ | ||
968 | if (sc.nr_scanned && priority < DEF_PRIORITY - 2) | ||
969 | blk_congestion_wait(WRITE, HZ/10); | ||
970 | } | ||
971 | out: | ||
972 | for (i = 0; zones[i] != 0; i++) { | ||
973 | struct zone *zone = zones[i]; | ||
974 | |||
975 | if (!cpuset_zone_allowed(zone)) | ||
976 | continue; | ||
977 | |||
978 | zone->prev_priority = zone->temp_priority; | ||
979 | } | ||
980 | return ret; | ||
981 | } | ||
982 | |||
983 | /* | ||
984 | * For kswapd, balance_pgdat() will work across all this node's zones until | ||
985 | * they are all at pages_high. | ||
986 | * | ||
987 | * If `nr_pages' is non-zero then it is the number of pages which are to be | ||
988 | * reclaimed, regardless of the zone occupancies. This is a software suspend | ||
989 | * special. | ||
990 | * | ||
991 | * Returns the number of pages which were actually freed. | ||
992 | * | ||
993 | * There is special handling here for zones which are full of pinned pages. | ||
994 | * This can happen if the pages are all mlocked, or if they are all used by | ||
995 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | ||
996 | * What we do is to detect the case where all pages in the zone have been | ||
997 | * scanned twice and there has been zero successful reclaim. Mark the zone as | ||
998 | * dead and from now on, only perform a short scan. Basically we're polling | ||
999 | * the zone for when the problem goes away. | ||
1000 | * | ||
1001 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | ||
1002 | * zones which have free_pages > pages_high, but once a zone is found to have | ||
1003 | * free_pages <= pages_high, we scan that zone and the lower zones regardless | ||
1004 | * of the number of free pages in the lower zones. This interoperates with | ||
1005 | * the page allocator fallback scheme to ensure that aging of pages is balanced | ||
1006 | * across the zones. | ||
1007 | */ | ||
1008 | static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order) | ||
1009 | { | ||
1010 | int to_free = nr_pages; | ||
1011 | int all_zones_ok; | ||
1012 | int priority; | ||
1013 | int i; | ||
1014 | int total_scanned, total_reclaimed; | ||
1015 | struct reclaim_state *reclaim_state = current->reclaim_state; | ||
1016 | struct scan_control sc; | ||
1017 | |||
1018 | loop_again: | ||
1019 | total_scanned = 0; | ||
1020 | total_reclaimed = 0; | ||
1021 | sc.gfp_mask = GFP_KERNEL; | ||
1022 | sc.may_writepage = 0; | ||
1023 | sc.nr_mapped = read_page_state(nr_mapped); | ||
1024 | |||
1025 | inc_page_state(pageoutrun); | ||
1026 | |||
1027 | for (i = 0; i < pgdat->nr_zones; i++) { | ||
1028 | struct zone *zone = pgdat->node_zones + i; | ||
1029 | |||
1030 | zone->temp_priority = DEF_PRIORITY; | ||
1031 | } | ||
1032 | |||
1033 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | ||
1034 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ | ||
1035 | unsigned long lru_pages = 0; | ||
1036 | |||
1037 | all_zones_ok = 1; | ||
1038 | |||
1039 | if (nr_pages == 0) { | ||
1040 | /* | ||
1041 | * Scan in the highmem->dma direction for the highest | ||
1042 | * zone which needs scanning | ||
1043 | */ | ||
1044 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | ||
1045 | struct zone *zone = pgdat->node_zones + i; | ||
1046 | |||
1047 | if (zone->present_pages == 0) | ||
1048 | continue; | ||
1049 | |||
1050 | if (zone->all_unreclaimable && | ||
1051 | priority != DEF_PRIORITY) | ||
1052 | continue; | ||
1053 | |||
1054 | if (!zone_watermark_ok(zone, order, | ||
1055 | zone->pages_high, 0, 0, 0)) { | ||
1056 | end_zone = i; | ||
1057 | goto scan; | ||
1058 | } | ||
1059 | } | ||
1060 | goto out; | ||
1061 | } else { | ||
1062 | end_zone = pgdat->nr_zones - 1; | ||
1063 | } | ||
1064 | scan: | ||
1065 | for (i = 0; i <= end_zone; i++) { | ||
1066 | struct zone *zone = pgdat->node_zones + i; | ||
1067 | |||
1068 | lru_pages += zone->nr_active + zone->nr_inactive; | ||
1069 | } | ||
1070 | |||
1071 | /* | ||
1072 | * Now scan the zone in the dma->highmem direction, stopping | ||
1073 | * at the last zone which needs scanning. | ||
1074 | * | ||
1075 | * We do this because the page allocator works in the opposite | ||
1076 | * direction. This prevents the page allocator from allocating | ||
1077 | * pages behind kswapd's direction of progress, which would | ||
1078 | * cause too much scanning of the lower zones. | ||
1079 | */ | ||
1080 | for (i = 0; i <= end_zone; i++) { | ||
1081 | struct zone *zone = pgdat->node_zones + i; | ||
1082 | |||
1083 | if (zone->present_pages == 0) | ||
1084 | continue; | ||
1085 | |||
1086 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | ||
1087 | continue; | ||
1088 | |||
1089 | if (nr_pages == 0) { /* Not software suspend */ | ||
1090 | if (!zone_watermark_ok(zone, order, | ||
1091 | zone->pages_high, end_zone, 0, 0)) | ||
1092 | all_zones_ok = 0; | ||
1093 | } | ||
1094 | zone->temp_priority = priority; | ||
1095 | if (zone->prev_priority > priority) | ||
1096 | zone->prev_priority = priority; | ||
1097 | sc.nr_scanned = 0; | ||
1098 | sc.nr_reclaimed = 0; | ||
1099 | sc.priority = priority; | ||
1100 | sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; | ||
1101 | shrink_zone(zone, &sc); | ||
1102 | reclaim_state->reclaimed_slab = 0; | ||
1103 | shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages); | ||
1104 | sc.nr_reclaimed += reclaim_state->reclaimed_slab; | ||
1105 | total_reclaimed += sc.nr_reclaimed; | ||
1106 | total_scanned += sc.nr_scanned; | ||
1107 | if (zone->all_unreclaimable) | ||
1108 | continue; | ||
1109 | if (zone->pages_scanned >= (zone->nr_active + | ||
1110 | zone->nr_inactive) * 4) | ||
1111 | zone->all_unreclaimable = 1; | ||
1112 | /* | ||
1113 | * If we've done a decent amount of scanning and | ||
1114 | * the reclaim ratio is low, start doing writepage | ||
1115 | * even in laptop mode | ||
1116 | */ | ||
1117 | if (total_scanned > SWAP_CLUSTER_MAX * 2 && | ||
1118 | total_scanned > total_reclaimed+total_reclaimed/2) | ||
1119 | sc.may_writepage = 1; | ||
1120 | } | ||
1121 | if (nr_pages && to_free > total_reclaimed) | ||
1122 | continue; /* swsusp: need to do more work */ | ||
1123 | if (all_zones_ok) | ||
1124 | break; /* kswapd: all done */ | ||
1125 | /* | ||
1126 | * OK, kswapd is getting into trouble. Take a nap, then take | ||
1127 | * another pass across the zones. | ||
1128 | */ | ||
1129 | if (total_scanned && priority < DEF_PRIORITY - 2) | ||
1130 | blk_congestion_wait(WRITE, HZ/10); | ||
1131 | |||
1132 | /* | ||
1133 | * We do this so kswapd doesn't build up large priorities for | ||
1134 | * example when it is freeing in parallel with allocators. It | ||
1135 | * matches the direct reclaim path behaviour in terms of impact | ||
1136 | * on zone->*_priority. | ||
1137 | */ | ||
1138 | if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages)) | ||
1139 | break; | ||
1140 | } | ||
1141 | out: | ||
1142 | for (i = 0; i < pgdat->nr_zones; i++) { | ||
1143 | struct zone *zone = pgdat->node_zones + i; | ||
1144 | |||
1145 | zone->prev_priority = zone->temp_priority; | ||
1146 | } | ||
1147 | if (!all_zones_ok) { | ||
1148 | cond_resched(); | ||
1149 | goto loop_again; | ||
1150 | } | ||
1151 | |||
1152 | return total_reclaimed; | ||
1153 | } | ||
1154 | |||
1155 | /* | ||
1156 | * The background pageout daemon, started as a kernel thread | ||
1157 | * from the init process. | ||
1158 | * | ||
1159 | * This basically trickles out pages so that we have _some_ | ||
1160 | * free memory available even if there is no other activity | ||
1161 | * that frees anything up. This is needed for things like routing | ||
1162 | * etc, where we otherwise might have all activity going on in | ||
1163 | * asynchronous contexts that cannot page things out. | ||
1164 | * | ||
1165 | * If there are applications that are active memory-allocators | ||
1166 | * (most normal use), this basically shouldn't matter. | ||
1167 | */ | ||
1168 | static int kswapd(void *p) | ||
1169 | { | ||
1170 | unsigned long order; | ||
1171 | pg_data_t *pgdat = (pg_data_t*)p; | ||
1172 | struct task_struct *tsk = current; | ||
1173 | DEFINE_WAIT(wait); | ||
1174 | struct reclaim_state reclaim_state = { | ||
1175 | .reclaimed_slab = 0, | ||
1176 | }; | ||
1177 | cpumask_t cpumask; | ||
1178 | |||
1179 | daemonize("kswapd%d", pgdat->node_id); | ||
1180 | cpumask = node_to_cpumask(pgdat->node_id); | ||
1181 | if (!cpus_empty(cpumask)) | ||
1182 | set_cpus_allowed(tsk, cpumask); | ||
1183 | current->reclaim_state = &reclaim_state; | ||
1184 | |||
1185 | /* | ||
1186 | * Tell the memory management that we're a "memory allocator", | ||
1187 | * and that if we need more memory we should get access to it | ||
1188 | * regardless (see "__alloc_pages()"). "kswapd" should | ||
1189 | * never get caught in the normal page freeing logic. | ||
1190 | * | ||
1191 | * (Kswapd normally doesn't need memory anyway, but sometimes | ||
1192 | * you need a small amount of memory in order to be able to | ||
1193 | * page out something else, and this flag essentially protects | ||
1194 | * us from recursively trying to free more memory as we're | ||
1195 | * trying to free the first piece of memory in the first place). | ||
1196 | */ | ||
1197 | tsk->flags |= PF_MEMALLOC|PF_KSWAPD; | ||
1198 | |||
1199 | order = 0; | ||
1200 | for ( ; ; ) { | ||
1201 | unsigned long new_order; | ||
1202 | if (current->flags & PF_FREEZE) | ||
1203 | refrigerator(PF_FREEZE); | ||
1204 | |||
1205 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | ||
1206 | new_order = pgdat->kswapd_max_order; | ||
1207 | pgdat->kswapd_max_order = 0; | ||
1208 | if (order < new_order) { | ||
1209 | /* | ||
1210 | * Don't sleep if someone wants a larger 'order' | ||
1211 | * allocation | ||
1212 | */ | ||
1213 | order = new_order; | ||
1214 | } else { | ||
1215 | schedule(); | ||
1216 | order = pgdat->kswapd_max_order; | ||
1217 | } | ||
1218 | finish_wait(&pgdat->kswapd_wait, &wait); | ||
1219 | |||
1220 | balance_pgdat(pgdat, 0, order); | ||
1221 | } | ||
1222 | return 0; | ||
1223 | } | ||
1224 | |||
1225 | /* | ||
1226 | * A zone is low on free memory, so wake its kswapd task to service it. | ||
1227 | */ | ||
1228 | void wakeup_kswapd(struct zone *zone, int order) | ||
1229 | { | ||
1230 | pg_data_t *pgdat; | ||
1231 | |||
1232 | if (zone->present_pages == 0) | ||
1233 | return; | ||
1234 | |||
1235 | pgdat = zone->zone_pgdat; | ||
1236 | if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0)) | ||
1237 | return; | ||
1238 | if (pgdat->kswapd_max_order < order) | ||
1239 | pgdat->kswapd_max_order = order; | ||
1240 | if (!cpuset_zone_allowed(zone)) | ||
1241 | return; | ||
1242 | if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait)) | ||
1243 | return; | ||
1244 | wake_up_interruptible(&zone->zone_pgdat->kswapd_wait); | ||
1245 | } | ||
1246 | |||
1247 | #ifdef CONFIG_PM | ||
1248 | /* | ||
1249 | * Try to free `nr_pages' of memory, system-wide. Returns the number of freed | ||
1250 | * pages. | ||
1251 | */ | ||
1252 | int shrink_all_memory(int nr_pages) | ||
1253 | { | ||
1254 | pg_data_t *pgdat; | ||
1255 | int nr_to_free = nr_pages; | ||
1256 | int ret = 0; | ||
1257 | struct reclaim_state reclaim_state = { | ||
1258 | .reclaimed_slab = 0, | ||
1259 | }; | ||
1260 | |||
1261 | current->reclaim_state = &reclaim_state; | ||
1262 | for_each_pgdat(pgdat) { | ||
1263 | int freed; | ||
1264 | freed = balance_pgdat(pgdat, nr_to_free, 0); | ||
1265 | ret += freed; | ||
1266 | nr_to_free -= freed; | ||
1267 | if (nr_to_free <= 0) | ||
1268 | break; | ||
1269 | } | ||
1270 | current->reclaim_state = NULL; | ||
1271 | return ret; | ||
1272 | } | ||
1273 | #endif | ||
1274 | |||
1275 | #ifdef CONFIG_HOTPLUG_CPU | ||
1276 | /* It's optimal to keep kswapds on the same CPUs as their memory, but | ||
1277 | not required for correctness. So if the last cpu in a node goes | ||
1278 | away, we get changed to run anywhere: as the first one comes back, | ||
1279 | restore their cpu bindings. */ | ||
1280 | static int __devinit cpu_callback(struct notifier_block *nfb, | ||
1281 | unsigned long action, | ||
1282 | void *hcpu) | ||
1283 | { | ||
1284 | pg_data_t *pgdat; | ||
1285 | cpumask_t mask; | ||
1286 | |||
1287 | if (action == CPU_ONLINE) { | ||
1288 | for_each_pgdat(pgdat) { | ||
1289 | mask = node_to_cpumask(pgdat->node_id); | ||
1290 | if (any_online_cpu(mask) != NR_CPUS) | ||
1291 | /* One of our CPUs online: restore mask */ | ||
1292 | set_cpus_allowed(pgdat->kswapd, mask); | ||
1293 | } | ||
1294 | } | ||
1295 | return NOTIFY_OK; | ||
1296 | } | ||
1297 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
1298 | |||
1299 | static int __init kswapd_init(void) | ||
1300 | { | ||
1301 | pg_data_t *pgdat; | ||
1302 | swap_setup(); | ||
1303 | for_each_pgdat(pgdat) | ||
1304 | pgdat->kswapd | ||
1305 | = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL)); | ||
1306 | total_memory = nr_free_pagecache_pages(); | ||
1307 | hotcpu_notifier(cpu_callback, 0); | ||
1308 | return 0; | ||
1309 | } | ||
1310 | |||
1311 | module_init(kswapd_init) | ||